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Abstract

Pre-trained diffusion models have been success-
fully used as priors in a variety of linear inverse
problems, where the goal is to reconstruct a signal
from noisy linear measurements. However, exist-
ing approaches require knowledge of the linear
operator. In this paper, we propose GibbsDDRM,
an extension of Denoising Diffusion Restoration
Models (DDRM) to a blind setting in which the
linear measurement operator is unknown. Gibbs-
DDRM constructs a joint distribution of the data,
measurements, and linear operator by using a pre-
trained diffusion model for the data prior, and it
solves the problem by posterior sampling with an
efficient variant of a Gibbs sampler. The proposed
method is problem-agnostic, meaning that a pre-
trained diffusion model can be applied to various
inverse problems without fine-tuning. In experi-
ments, it achieved high performance on both blind
image deblurring and vocal dereverberation tasks,
despite the use of simple generic priors for the
underlying linear operators.

1. Introduction
Inverse problems are frequently encountered in various sci-
ence and engineering fields such as image processing, acous-
tic signal processing, and medical imaging. In an inverse
problem, the goal is to restore a clean data signal from mea-
surements generated by some forward (measurement) pro-
cess. In image processing, problems such as deblurring (Zhu
et al., 2018; Kupyn et al., 2019; Tu et al., 2022), inpaint-
ing (Yeh et al., 2017), and colorization (Larsson et al., 2016)
are naturally formulated as inverse problems. In audio sig-
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Figure 1. Blind image deblurring results obtained by GibbsDDRM:
(a) measurement, (b) restored clean images with blur kernels (bot-
tom right insets), and (c) ground truth images and blur kernels.

nal processing, problems such as dereverberation (Nakatani
et al., 2010; Saito et al., 2023) and band extension (Larsen
& Aarts, 2005) are also classic inverse problems. In medi-
cal imaging, many problems such as computed tomography
(CT) (Zhu et al., 2018; Song et al., 2021a) also rely on
inverse problem solving.

In general, inverse problems are ill-posed because the infor-
mation in the original data is lost through the measurement
process (e.g., because of noise); the incorporation of prior
knowledge about the original data is thus critical. In the past,
assumptions such as sparsity (Candès & Wakin, 2008), low
rank (Fazel et al., 2008), and total variation (Candès et al.,
2006) were made for the data distribution to narrow the set
of plausible candidate solutions. A more recent trend has
been to solve inverse problems by using richer deep genera-
tive models (Rick Chang et al., 2017; Anirudh et al., 2018;
Kadkhodaie & Simoncelli, 2020; Whang et al., 2021) trained
with a large amount of data as priors. In particular, the evo-
lution of methods related to diffusion models (Kawar et al.,
2021; 2022; Chung et al., 2023b;a) has been significant,
and many such methods are problem-agnostic, meaning that
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they do not require retraining of the generative model used
for inference on each task (i.e., each inverse problem).

Existing approaches typically assume that the measurement
process is known. However, many settings are blind, mean-
ing that the measurement process itself is (partially) un-
known. This is known as a blind setting and includes prob-
lems such as blind image deblurring (Pan et al., 2016) and
audio dereverberation (Nakatani et al., 2010). For example,
in a blind image deblurring problem, the original image has
to be restored from the convolution process where the blur
kernel is unknown. To address this additional uncertainty,
priors are introduced on both the data and the parameters of
the linear operator involved (Chan & Wong, 1998; Krishnan
& Fergus, 2009; Xu et al., 2013). BlindDPS (Chung et al.,
2023a) is a method that uses a pre-trained diffusion model
for both data and parameters. However, while it can lever-
age widely available pre-trained diffusion models for signals
such as images and audio, it requires training a diffusion
model for the parameters of the linear operators of interest,
severely restricting its applicability in practice.

To overcome this limitation, we propose GibbsDDRM,
which does not require a data-driven prior model of the mea-
surement process. This method is an extension of Denoising
Diffusion Restoration Models (DDRM) (Kawar et al., 2022)
– a method designed for non-blind linear inverse problems –
to the blind linear setting. It constructs a joint distribution
of the data, the measurements, and the linear operator’s
parameters by using a pre-trained diffusion model for the
data and a generic prior for the measurement parameters.
Then, it performs approximate sampling from the corre-
sponding posterior distribution of the data and parameters
conditioned on the measurements. Here, we adopt a par-
tially collapsed Gibbs sampler (PCGS) (Van Dyk & Park,
2008) to enable efficient sampling from the posterior distri-
bution. PCGS allows us to replace an intractable conditional
distribution in the naı̈ve Gibbs sampler with a more tractable
one without changing the stationary distribution. PCGS al-
ternately samples the data or latent variables and the linear
operator’s parameters, and the generative model’s represen-
tational power is exploited while sampling the parameters
of the linear operator. This allows our method to accurately
estimate both data and the parameters despite using a simple
prior for the parameters.

We conducted experiments on the tasks of blind image de-
blurring in the image processing domain and vocal dere-
verberation in the acoustic signal processing domain. The
results confirm that high performance can be achieved on
both tasks without strong assumptions on the prior for the
linear operator’s parameters. In the blind image deblurring
task, GibbsDDRM demonstrates exceptional quantitative
performance in terms of both image quality and faithfulness.
It outperforms competing methods and BlindDPS by a large

margin in LPIPS, which measures the perceptual similarity
of images. The results also show that a faithful image can
be restored even with large measurement noise. (see Fig-
ure 1 for restored images and estimated blur kernels.) In
vocal dereverberation, GibbsDDRM outperforms alternative
methods in terms of the quality of the processed vocal, the
proximity of the signals, and the degree of reverberation
removal.

2. Background
Blind linear inverse problems. Blind linear inverse prob-
lems involve the estimation of both unknown clean data
and the parameters of a linear operator from noisy measure-
ments. This type of problem can be formulated as a linear
system of equations of the following form:

y = Hφx0 + z, (1)

where y ∈ Rdy is a vector of measurements, Hφ ∈
Rdy×dx0 is a linear operator parameterized by φ ∈ Rdφ ,
and x0 ∈ Rdx0 is the unknown original clean data to be es-
timated. z ∼ N (0, σ2

yI) is a Gaussian measurement noise
with known covariance σ2

yI, where I is the identity matrix.
For notational convenience, we index the clean data x0 with
“0” to distinguish it from latent variables of the diffusion
model that are defined later. The aim here is to find estimates
of both x0 and φ that fit the given noisy measurements y.
The problem is ill-posed without any additional assump-
tions. To obtain a solution, it is assumed that x0 is drawn
from a generative model pθ(x0) (close to the true data distri-
bution), and that the parameters φ are drawn from a known
prior p(φ) independently of the data. In the Bayesian frame-
work, the optimal solution is to sample from the posterior
p(x0,φ|y).

Denoising Diffusion Probabilistic Models. Denoising
Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021b;
Lai et al., 2022), or diffusion models for short, are generative
models with a Markov chain xT → · · · → xt → · · · → x0

represented by the following joint distribution:

pθ(x0:T ) = p
(T )
θ (xT )

T−1∏
t=0

p
(t)
θ (xt|xt+1), (2)

where the model’s output is x0. To train a diffusion model,
a fixed variational inference distribution is introduced:

q(x1:T |x0) = q(T )(xT |x0)

T−1∏
t=1

q(t)(xt|xt+1,x0), (3)

which gives the evidence lower bound (ELBO) on the maxi-
mum likelihood objective. With Gaussian parameterization

2



GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration

for pθ and q, the ELBO objective is reduced to the following
denoising autoencoder objective:

T∑
t=1

γtE(x0,xt)∼pdata(x0)q(xt|x0)

[
∥x0 − f (t)θ (xt)∥22

]
. (4)

Here, f (t)θ is a θ-parameterized neural network that esti-
mates noiseless data x0 from noisy xt and characterizes pθ;
xθ,t denotes the estimate of noise-less data by f (t)θ ; γt are
positive weighting coefficients determined by q.

Denoising Diffusion Restoration Models. Denoising Dif-
fusion Restoration Models (DDRM) (Kawar et al., 2022) is
a method that uses a pre-trained diffusion model as a prior
for data in a non-blind linear inverse problem. It is defined
as a Markov chain xT → xT−1 → · · · → x1 → x0 (where
xt ∈ Rdx0 ) conditioned on the measurements y:

p(x0:T |y) = p
(T )
θ (xT |y)

T−1∏
t=0

p
(t)
θ (xt|xt+1,y), (5)

where x0 is the model’s output. The conditionals in DDRM
are defined in terms of the denoising function f (t)θ of a pre-
trained diffusion model; intriguingly, the objective derived
using the ELBO coincides with that of the unconditional
diffusion model, except for a constant factor. This means
that the unconditionally pre-trained diffusion model can be
used during inference without finetuning. The core idea of
DDRM is to use the singular value decomposition (SVD)
of a linear operator H to transform both the unknown in-
put x0 and the observed output y, potentially corrupted by
noise, to a shared spectral space. In this space, DDRM exe-
cutes denoising on dimensions for which information from
y is available (i.e., when the singular values are non-zero).
When such information is not available (i.e., when the sin-
gular values are zero or the noise in the dimension is large),
DDRM performs imputation while explicitly considering
the measurement noise.

Partially collapsed Gibbs sampler. A Gibbs sampler is
a simple, widely used Markov chain Monte Carlo method
for sampling from the joint distribution of a set of vari-
ables (Casella & George, 1992). The procedure entails
iterative sampling from the fully conditional distributions of
each variable, given the current values of the other variables.
A blocked Gibbs sampler (Liu et al., 1994) is a variant
in which, instead of sampling each variable individually,
variables in a group or a “block” of variables are sampled
simultaneously while conditioned on all the other variables.
This approach is effective when the variables within a block
are highly correlated, and it can improve the sampler’s con-
vergence speed.

A partially collapsed Gibbs sampler (PCGS) (Van Dyk &
Park, 2008; Kail et al., 2012) is a generalization of a blocked

Figure 2. Graphical model for the joint distribution in Eq. (7).

Gibbs sampler that effectively explores the probability space
through three basic operations in the sampling procedure:
marginalization, permutation, and trimming, which are de-
scribed in detail in (Van Dyk & Park, 2008) and Appendix A.
In short, the removal of certain variables among the condi-
tional variables does not alter the Gibbs sampler’s stationary
distribution, as long as these variables are not included
among the conditional variables until the next time they are
sampled. Hence, we can achieve efficient sampling when
the distributions obtained after trimming are tractable.

3. GibbsDDRM: Partially Collapsed Gibbs
Sampler with DDRM

3.1. Target joint distribution for blind linear inverse
problems

In this paper, we seek to solve blind linear inverse problems
by sampling from the posterior of the joint distribution of
the data and the linear operator’s parameters, given the mea-
surements. The joint distribution of the data x0, parameters
φ, and measurements y is defined as follows:

p(x0,y,φ) = pθ(x0)p(φ)N (y|Hφx0, σ
2
yI), (6)

where pθ(x0) and p(φ) are the known prior distributions
for the data and the parameters, respectively. The Gaussian
distributionN (y|Hφx0, σ

2
yI) comes from the measurement

model given in Eq. (1). The aim is to sample from the
joint posterior distribution p(x0,φ|y). Using a pre-trained
generative model as a prior pθ(x0) can drastically improve
the solutions in inverse problems; however, inference can
be challenging. Even in the non-blind setting where φ
is known, sampling from the posterior is intractable and
requires approximations like in DDRM (Kawar et al., 2022).

Here we model the data distribution using a pre-trained
diffusion model as in Eq. (2). This leads to the following
joint distribution over the data, its latent variables, and the
parameters, as shown in Figure 2,

p(x0:T ,φ,y)

= p
(T )
θ (xT )

T−1∏
t=0

p
(t)
θ (xt|xt+1)p(φ)N (y|Hφx0, σ

2
yI).

(7)
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Note that sampling from the posterior distribution
p(x0:T |φ,y) under a fixed φ corresponds to the objective
of DDRM. In addition, we also assume that the parameters’
prior p(φ) is a generic and simple prior, such as a sparsity
prior.

3.2. Partially Collapsed Gibbs Sampler for the joint
distribution

To sample from the joint posterior in Eq. (7), we could at-
tempt to sample from the joint posterior distribution that
includes the latent variables of the diffusion model. How-
ever, it is still not feasible to run a naı̈ve Gibbs sampler for
the posterior p(x0:T ,φ|y), as it would require a conditional
distribution for every individual variable, conditioned on all
the other variables. For instance, the conditional distribution
p(xt|x0:t−1,xt+1:T ,φ,y) for the joint distribution defined
in Eq. (7) is not obvious.

A possible strategy is to use a blocked Gibbs sampler (Liu
et al., 1994) with the variables divided into two groups, x0:T

and φ, and sampled alternately. In more detail, after initial-
izing φ, the sampling procedure of DDRM is performed
keeping φ fixed to obtain an estimate of the clean data x0.
Then, φ is sampled such that it is consistent with the es-
timated data x0 and measurements y. By repeating these
operations, we can sample x0 and φ from the joint posterior.
However, this approach may be inefficient because of the
small number of updates made to φ: the entire sampling
of x0:T must be performed for a step of sampling φ, which
results in slow convergence.

Hence, we adopt a partially collapsed Gibbs sampler
(PCGS) (Van Dyk & Park, 2008) for the joint posterior.
This strategy’s main advantage is that we can still use a
similar sampling method defined by the original DDRM.
This enables simultaneous sampling of the latent variables
x1:T and the linear operator’s parameters φ within a cycle
of DDRM sampling, thus improving the convergence speed.

In a naı̈ve Gibbs sampler, the order of sampling variables is
arbitrary. In a PCGS, however, the sampling order must be
carefully chosen to facilitate the trimming operation, which
removes conditional variables from the conditional distribu-
tion. Specifically, once a variable has been marginalized and
removed from the conditional set, it should not be added
back until the next time it is sampled. We show a simple
example of a PCGS in Appendix A. Figure 3 shows the
sampling order of the proposed PCGS. After sampling xT ,
the following operations are performed in descending order
of t, until t = 0: for each t, xt is sampled once, and then φ
and xt are alternately sampled Mt times. One set of these
operations constitutes a single cycle of the PCGS, and the
operations are repeated for N cycles.

The proposed PCGS is defined in Algorithm 1. The fol-

Figure 3. Sampling order of variables in the proposed PCGS,
whose output entails the final sample of data x0 and parameters φ.

lowing proposition ensures that it samples from the true
posterior distribution.

Proposition 3.1. The PCGS defined in Algorithm 1 has
the true posterior distribution p(x0:T ,φ|y) as its station-
ary distribution if the approximations to the conditional
distributions are exact.

We give the proof in Appendix A.

Algorithm 1 Proposed PCGS for the posterior in Eq. (7)

Input: Measurement y, initial values φ(0,0).
Output: Restored data x

(N,M0)
0 , linear operator’s param-

eters φ(N,K).
K ← 0 // K counts the number of updates for φ in a
cycle.
for n = 1 to N do

φ(n,0) ← φ(n−1,K), K ← 0

Sample x
(n,0)
T ∼ p(xT |φ(n,K),y)

// ↑ approximated by pθ(xT |φ,y).
for t = T − 1 to 0 do
χt ← {x(n,Mt+1)

t+1 ,x
(n,Mt+2)
t+2 , · · · ,x(n,0)

T }
Sample x

(n,0)
t ∼ p(xt|φ(n,K), χt,y)

// ↑ approximated by pθ(xt|xt+1,φ,y).
for m = 1 to Mt do

Sample φ(n,K+1) ∼ p(φ|x(n,m−1)
t , χt,y)

// ↑ Langevin sampling with the approximated
score∇φ log p(y|xθ,t,φ).
K ← K + 1
Sample x

(n,m)
t ∼ p(xt|φ(n,K), χt,y)

// ↑ approximated by pθ(xt|xt+1,φ,y).
end for

end for
end for

Proposition 3.1 states that it is possible to sample reason-
able data and parameters by executing the PCGS defined
in Algorithm 1, but the conditional distributions the PCGS
includes are intractable. Hence, we replace each conditional
distribution with approximations from which we can effi-
ciently sample. In the following paragraphs, we provide the
details of the sampling procedures at each step.
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Sampling of xT . The sampling of xT is performed with
the distribution p(xT |φ,y), which is obtained by trimming
x0:T−1. Because this conditional distribution is intractable,
as discussed above, we use modified DDRM to approximate
the conditional distribution.

Here, in order to introduce the modified DDRM, we use
SVD of the linear operator Hφ and its spectral space, sim-
ilarly to previous studies (Kawar et al., 2021; 2022). The
SVD is given as Hφ = UφΣφV

T
φ, where Uφ ∈ Rdy×dy

and Vφ ∈ Rdx0
×dx0 are orthogonal matrices, and Σφ ∈

Rdy×dx0 is a rectangular diagonal matrix. Here we assume
dy ≤ dx0

, but our method would work for dy > dx0
. The

diagonal elements of Σφ are the singular values of Hφ in
descending order, denoted s1,φ, s2,φ, · · · , sdy,φ. Hereafter,
we omit the subscript φ from the singular values for nota-
tional simplicity. The values in the spectral space are rep-
resented as follows: x(i)

t is the i-th element of xt = VT
φxt,

and y(i) is the i-th element of y = Σ†
φU

T
φy, where A†

is the Moore-Penrose pseudo-inverse of a matrix A. Note
that the spectral space also depends on the parameters φ,
which is unknown in our blind setting, unlike in DDRM.
Our modified DDRM update for sampling xT is defined as
follows:

p
(T )
θ

(
x
(i)
T | y,φ

)
={

N
(
y(i), σ2

T − σ2
y/s

2
i

)
if si > 0

N
(
0, σ2

T

)
if si = 0

, (8)

where the only difference from the original DDRM is that
the parameters φ are treated as random variables.

Sampling of xt. The sampling of xt (t < T ) is per-
formed by sampling from the conditional distribution
p(xt|xt+1:T ,φ,y), which trims x0:t−1 if t > 0. As in
the sampling of xT , we approximate the conditional distri-
bution by modifying DDRM. Denoting the prediction of x0

at every time step t by xθ,t which is made by the diffusion
model as in Sec. 2, modified DDRM is defined as follows:

p
(t)
θ

(
x
(i)
t | xt+1,φ,y

)
=

N
(
x
(i)
θ,t +

√
1− η2σt

x
(i)
t+1−x

(i)
θ,t

σt+1
, η2σ2

t

)
if si = 0

N
(
x
(i)
θ,t +

√
1− η2σt

y(i)−x
(i)
θ,t

σy/si
, η2σ2

t

)
if σt <

σy

si

N
(
(1− ηb)x(i)

θ,t + ηby
(i), σ2

t −
σ2
y

s2i
η2b

)
if σt ≥ σy

si

,

(9)

where 0 ≤ η ≤ 1 and 0 ≤ ηb ≤ 1 are hyperparameters, and
0 = σ0 < σ1 < σ2 < · · · < σT are noise levels that is the
same as that defined with the pre-trained diffusion model.

Thus we have the approximation

p(xt|xt+1:T ,φ,y) ≃ pθ(xt|xt+1:T ,φ,y)

= pθ(xt|xt+1,φ,y), (10)

where the final equation comes from the Markov property
of the modified DDRM.

Sampling of φ. At time step t, the sampling of the pa-
rameters φ is done by using the conditional distribution
p(φ|xt:T ,y). For the joint distribution defined by Eq. (7),
the conditional distribution is not easily obtained because,
while φ and xt:T are related through x0, the distribution
of x0 cannot be evaluated at this point. Hence, we use the
approximation in (Chung et al., 2023b;a) for the score of
the conditional distribution and then perform sampling by
Langevin dynamics (Langevin, 1908), as follows:

φ← φ+ (ξ/2)∇φ log p(φ|xt:T ,y) +
√
ξϵ, (11)

where ξ is a step size and ϵ ∼ N (0, I). By Bayes’ rule,
the score ∇φ log q(φ|xt:T ,y) can be decomposed into two
terms:

∇φ log p(φ|xt:T ,y) =

∇φ log p(y|xt:T ,φ) +∇φ log p(φ|xt:T ). (12)

Regarding the first term, we exploit the following theorem.

Theorem 3.2. (modified version of Theorem 1 in (Chung
et al., 2023b)) For the measurement model in Eq. (1), we
have

p(y|xt:T ,φ) ≃ p(y|xθ,t,φ), (13)

and the approximation error can be quantified with the
Jensen gap (Gao et al., 2017), which is upper bounded by

J ≤ 1

σy

(√
2πσ2

y

)dy
e−1/2s1m1, (14)

where m1 :=
∫
∥x0 − xθ,t∥p(x0|xt:T )dx0, and s1 is the

largest singular value of Hφ.

By leveraging Theorem 3.2, we obtain the approximate
gradient with respect to φ for the Langevin dynamics:

∇φ log p(y|xt:T ,φ) ≃ ∇φ log p(y|xθ,t,φ), (15)

and for our measurement model in Eq. (1), the gradient is

∇φ log p(y|xθ,t,φ) = −
1

2σ2
y

∇φ∥y −Hφxθ,t∥22, (16)

which is tractable in practice.

As for the second term in Eq. (12), the conditional variables
can be eliminated since xt:T and φ are independent from
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Figure 4. Visualization of GibbsDDRM for the blind image deblurring task on the AFHQ dataset.

Eq. (7). As a result, we can use a simple prior distribution
(e.g., a Gaussian prior) for φ that does not depend on xt:T .

We now have the conditional score of φ for the Langevin
dynamics as follows:

∇φ log p(φ|xt:T ,y)

≃ − 1

2σ2
y

∇φ∥y −Hφxθ,t∥22 +∇φ log p(φ). (17)

Note that at a particular time step t, xt varies because of
the Gibbs sampling, and so does xθ,t. This iterative process
can be viewed as feeding the information from the diffusion
model to the parameter estimation. It allows for accurate
parameter estimation even with simple priors.

We refer to the proposed PCGS as the Gibbs Denoising Dif-
fusion Restoration Models (GibbsDDRM), and we describe
the details of its instantiation for each of our experimental
tasks in Appendix B.

3.3. Implementation considerations

Initialization of φ. In GibbsDDRM, the initialization for
φ is arbitrary. If an existing simple method can be used
to obtain an estimate of φ, then we can use that estimate
as the initial value. In our experiments, we initialize the
blur kernel with a Gaussian blur kernel in the blind image
deblurring task. For the vocal dereverberation task, the
parameters are initialized with estimates obtained by the
weighted prediction error method (WPE) (Nakatani et al.,
2010), which is an unsupervised method that is not based
on machine learning, to accelerate the convergence speed.

Dependence of number of iterations, Mt, on time step.
When t is large, the estimation of x0 ( = xθ,t) is difficult
because of the large amount of noise in xt. This uncertainty
can lead to instability in the sampling of φ. The number

of sampling steps for φ can vary across the diffusion time
steps and may even be zero. Accordingly, we use a strategy
of not updating φ when t is large.

4. Experiments
We demonstrate our approach through two tasks: blind
image deblurring in the image processing domain and vocal
dereverberation in the audio processing domain.

4.1. Blind image deblurring.

The aim of blind image deblurring is to restore a clean
image from a noisy blurred image without knowledge of
the blur kernel. The details of the problem formulation and
its instantiation as a linear inverse problem are given in
Appendix B. Our code is available at https://github.
com/sony/gibbsddrm.

Experimental settings. We conduct experiments on the
Flickr Face High Quality (FFHQ) 256×256 dataset (Karras
et al., 2019) and the Animal Faces-HQ (AFHQ) 256× 256
dataset (Choi et al., 2020b). We use a 1000-image vali-
dation set for FFHQ and a 500-image test set for the dog
class in AFHQ. All images are normalized to the range
[0, 1]. The blur type used is motion blur, and blur kernels
of size 64 × 64 are generated via code 1, with an inten-
sity value of 0.5. We use the pre-trained diffusion models
from (Choi et al., 2021) 2 for FFHQ and from (Dhariwal &
Nichol, 2021) for AFHQ, without finetuning for this task.
Measurements are generated by convolving the blur kernel
with a ground truth image and adding Gaussian noise with
σy = 0.02. We use η = 0.80 and ηb = 0.90 for the pro-

1https://github.com/LeviBorodenko/
motionblur

2https://github.com/jychoi118/ilvr_adm
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Table 1. Blind image deblurring results on FFHQ and AFHQ (256 × 256). The blurred images have additive Gaussian noise with
σy = 0.02. (∗) The results for BlindDPS (Chung et al., 2023a), as reported in the original paper, are also listed, although that method
uses a pre-trained score function for blur kernels. The results of DDRM (Kawar et al., 2022) with the ground truth kernels (i.e., non-blind
setting) are also listed. Bold: Best. underscore: second best.

FFHQ (256× 256) AFHQ (256× 256)
Method FID↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS↓ PSNR↑
GibbsDDRM (ours) 38.71 0.115 25.80 48.00 0.197 22.01
MPRNet (Zamir et al., 2021) 62.92 0.211 27.23 50.43 0.278 27.02
DeblurGANv2 (Kupyn et al., 2019) 141.55 0.320 19.86 156.92 0.429 17.64
Pan-DCP (Pan et al., 2017) 239.69 0.653 14.20 185.40 0.632 14.48
SelfDeblur (Ren et al., 2020) 283.69 0.859 10.44 250.20 0.840 10.34
BlindDPS (Chung et al., 2023a)∗ 29.49 0.281 22.24 23.89 0.338 20.92
DDRM (Kawar et al., 2022) with GT kernel 33.97 0.062 30.64 24.60 0.078 29.37

posed method. The number of steps, T , is set to 100, and
N is set to 1. Following the discussion in Section 3.3, Mt

is set to 0 for 70 ≤ t ≤ 100 and to 3 for t < 70. The
number of iterations and the step size for Langevin dynam-
ics (Eq. (16)) are set to 500 and 1.0× 10−11, respectively.
The blur kernel is initialized with a Gaussian blur kernel and
normalized to have non-negative values and a sum of 1.0,
which remains normalized throughout the processing. We
use a Laplace prior for the parameters φ, which has the form
∇φ log p(φ) = −λ∇φ∥φ∥1 The diversity hyperparameter
λ is set to 103.

Comparison methods. We compare GibbsDDRM with
several other methods as baselines. These include MPR-
Net (Zamir et al., 2021) and DeblurGANv2 (Kupyn
et al., 2019) as supervised learning-based baselines, pan-
dark channel prior (Pan-DCP) (Pan et al., 2017) as an
optimization-based method, and SelfDeblur (Ren et al.,
2020), which utilizes deep image prior (DIP) for co-
estimation of the data and kernel. We also list the results for
BlindDPS (Chung et al., 2023a) as reported in that paper,
although it uses a prior for the blur kernel that is trained in
a supervised manner, thus giving it an unfair advantage.

Evaluation metrics. For quantitative comparison of the
different methods, the main metrics are the peak signal-to-
noise-ratio (PSNR), the Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018), and the Fréchet
Inception Distance (FID) (Heusel et al., 2017).

Results. Table 1 summarizes the quantitative results of
blind image deblurring on FFHQ and AFHQ. While show-
ing a lower FID score, which measures the quality of gener-
ated data, GibbsDDRM outperforms all the other methods
in terms of the LPIPS, which measures faithfulness to the
original image. To investigate the performance limit of our
method, we also list the results of DDRM with a ground
truth kernel.

Ground truth Ground truth

Measurement Restored Measurement Restored

Figure 5. Blurry images and restored images obtained with a re-
stored blur kernel in blind image deblurring under different mea-
surement noise conditions. The top row contains the ground truth
images and blur kernels.

Figure 4 visualizes the evolution of the variables for N = 2.
We can see that even in steps where xt is still quite noisy,
the estimated xθ,t is close to the ground truth. This leads to
an accurate sampling of the blur kernel, which is quite close
to the ground truth at t = 0.

Figure 5 shows the restoration results for different measure-
ment noise levels. We can see that even with large noise, a
faithful image can be restored via the SVD.

We find that BlindDPS has a lower (better) FID score, but
the restored images are relatively far from the original im-
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age in terms of the quantitative results. We think that this
is because our method uses DDRM, which enables effi-
cient treatment of information obtained from measurements
through the SVD, whereas BlindDPS performs more gener-
ation than is necessary for noisy observations, which may
negatively affect its faithfulness.

Figure 6 shows the results obtained by our method and the
comparison methods. The supervised method MPR achieves
the highest PSNR of all the methods, but our method out-
performs it in FID and LPIPS. It is observed that the images
obtained by the MPRNet exhibit a certain degree of blurri-
ness when compared to the ground truth images, whereas
the images obtained by GibbsDDRM look to be of superior
quality in terms of visual perception.

GibbsDDRM takes approximately 56 seconds of computa-
tion time per image using one RTX3090 with a batch size
of 4.

4.2. Vocal dereverberation

Problem formulation. The objective of vocal derever-
beration is to restore the original dry vocal from a noisy,
reverberant (wet) vocal. Appendix B gives the details of the
problem formulation and the specific implementation of the
GibbsDDRM that we use for this task.

Experimental settings. The proposed method is quan-
titatively evaluated on wet vocal signals. A pre-trained
diffusion model is trained with dry vocal signals from an
internal proprietary dataset of various genres and singers,
with a total duration of 15 hours. A test dataset compris-
ing 1000 wet vocal signals, with a total duration of around
1.4 hours, is prepared by adding artificial reverb to dry vocal
signals from the NHSS dataset (Sharma et al., 2021), which
contains 100 English pop songs by different singers, with
a total duration of 285.24 minutes. Both the training and
testing data are monaural recordings sampled at 44.1 kHz.
The artificial reverb is added with commercial software by
using 10 presets with an RT60 shorter than 2 seconds. The
wet vocal signals are prepared by creating 100 × 10 sig-
nals, dividing them into 5-second samples, and randomly
selecting 1000 of the resulting signals.

For the GibbsDDRM algorithm, the following parameter
values are used: η = 0.8, ηb = 0.8, and σy = 1.0× 10−3.
We set T = 50 for the number of sampling steps andN = 1.
The parameter Mt is set to zero for 40 ≤ t ≤ 50, and to
5 for t ≤ 40. The linear operator’s parameters are initial-
ized using results from the WPE algorithm (Nakatani et al.,
2010), which is an unsupervised method for dereverberation.
The number of iterations and the learning rate for Langevin
dynamics (Eq. (16)) are set to 400 and 1.0× 10−13, respec-
tively. We use a Laplace prior, and the diversity hyperpa-
rameter λ is set to 2.0. Appendix C gives the details of the

Table 2. Vocal dereverberation results. Bold: Best.
Method FAD ↓ SI-SDR ↑ SRMR ↑improvement

Wet (unprocessed) 5.74 – 7.11
Reverb Conversion (Koo et al., 2021) 5.69 0.02 7.23

Music Enhancement (Kandpal et al., 2022) 7.51 −23.9 7.92
Unsupervised Dereverberation(Saito et al., 2023) 4.99 0.37 7.94

GibbsDDRM 4.21 0.59 8.40

network architecture and the dataset.

Comparison methods. We evaluate the proposed method
against three baselines: Reverb Conversion (RC) (Koo et al.,
2021), Music Enhancement (ME) (Kandpal et al., 2022),
and Unsupervised Dereverberation (UD) (Saito et al., 2023).
RC is a state-of-the-art, end-to-end, DNN-based method
that requires pairs of wet and dry vocal signals for derever-
beration. It is trained with wet and dry vocal signals that
are obtained with different commercial reverb plugins from
those used for the test dataset. ME is a supervised method
based on diffusion models that denoise and dereverb music
signals containing vocal signals. It is trained with pairs of
16-kHz reverberant noisy and clean music signals and is
evaluated at 16 kHz. UD is a method similar to ours, in that
it uses DDRM; however, it differs in how it estimates the
linear operator’s parameters.

Evaluation metrics. For quantitative comparison of the
different methods, the metrics are the scale-invariant signal-
to-distortion ratio (SI-SDR) (Roux et al., 2019) improve-
ment, the Fréchet Audio Distance (FAD) (Kilgour et al.,
2018), and the speech-to-reverberation modulation energy
ratio (SRMR) (Santos et al., 2014). Because the FAD uses
the pre-trained classification model VGGish (Hershey et al.,
2017), which is originally trained with 16 kHz audio sam-
ples, we downsample all the signals to 16 kHz to compute
FAD.

Results. Table 2 lists the scores for each metric. GibbsD-
DRM outperforms the comparison methods on all metrics.
In particular, the result for UD demonstrates that our pro-
posed way of estimating the linear operator’s parameters
gives better performance than UD’s way. Moreover, ME
doesn’t work at all, which may have been because the distri-
bution of its training dataset does not cover that of its test
dataset. Indeed, the wet signals for ME’s training are created
using only simulated natural reverb with some background
noise (Kandpal et al., 2022).

5. Conclusion
We have proposed GibbsDDRM, a method for solving blind
linear inverse problems by sampling data and the parameters
of a linear operator from a posterior distribution by using
a PCGS. The PCGS procedure ensures that the stationary
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distribution is unchanged from that of the original Gibbs
sampler. GibbsDDRM performed well in experiments on
blind image deblurring and vocal dereverberation, partic-
ularly in terms of preserving the original data, despite its
use of a simple prior distribution for the parameters. Addi-
tionally, GibbsDDRM has problem-agnostic characteristics,
which means that a single pre-trained diffusion model can
be used for various tasks. One limitation of the proposed
method is that it is not easily applicable to problems involv-
ing linear operators for which the SVD is computationally
infeasible.
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A. Proofs
A.1. Proof of Proposition 3.1

Proposition 3.1 The PCGS defined in Algorithm 1 has the true posterior distribution p(x0:T ,φ|y) as its stationary
distribution if the approximations to the conditional distributions are exact.

Before giving the proof, we revisit three basic tools for constructing a partially collapsed Gibbs sampler (PCGS) (Van Dyk
& Park, 2008).

Gibbs sampler. Let θ = (θ1, . . . , θJ)
T be a vector of J variables, and let θj̃ denote θ without the j th element θj . To

obtain samples from p(θ), a Gibbs sampler (Casella & George, 1992) iteratively generates samples of each θj from p(θj |θj̃)
in an arbitrary order. The generated samples approximate the joint distribution of all variables.

PCGS. A PCGS is an extension of the Gibbs sampler that facilitates the following three basic tools (see (Van Dyk & Park,
2008) for details).

• Marginalization. Rather than sampling only θj in a step, other variables may be sampled with θj instead of being
conditioned on. This process is called marginalization, and it can improve the convergence rate significantly, especially
with a strong correlation between the target variables. Within an entire PCGS iteration, certain parameters can be
sampled in more than one step.

• Trimming. If a variable is sampled in several steps and is not used as a condition on these steps, only the value sampled
in the last step is relevant because the other values are never used. Such unused variables can thus be removed from the
respective sampling distribution. This reduces the complexity of the sampling steps without affecting the convergence
behavior.

• Permutation. It is reasonable to choose an (arbitrary) sampling order such that trimming can be performed. After
trimming, permutations are only allowed if they preserve the justification of the trimming that has already been applied.

For example, the following PCGS for sampling (X,Y,Z,W) is a simple PCGS.

Step 1. Sample Y from p(Y,��W|X,Z)
Step 2. Sample Z from p(Z,��W|X,Y)

Step 3. Sample W from p(W|X,Y,Z)
Step 4. Sample X from p(X|W,Y,Z) (18)

Here, the random variable W is trimmed in steps 1 and 2 because it is sampled in step 3 before being included in the
conditional variables. Note that the order of steps 3 and 4 cannot be interchanged. The reason is that the variable W,
which is trimmed in steps 1 and 2, would be included among the conditional variables in p(X|W,Y,Z), thus altering the
sampler’s stationary distribution.

Proof. To show that the proposed sample is a valid PCGS, we transform a naı̈ve Gibbs sampler by applying the above
PCGS tools to the proposed PCGS. First, we consider the naı̈ve Gibbs sampler defined in Algorithm 2, which we denote as
Sampler 1.

Sampler 1 has a stationary distribution p(x0:T ,φ|y), since it is a naı̈ve Gibbs sampler for the joint distribution in Eq. (7).
In Gibbs sampling, the stationary distribution is unaffected by repeating certain steps and changing the order of the steps.
Therefore, the sampling scheme depicted in Figure 3 constructs Sampler 2, which is defined in Algorithm 3.

Next, Sampler 2 is converted to Sampler 3, which is defined in Algorithm 4, by marginalizing the variables ψt. Subsequently,
we convert the Sampler 3 to our proposed sampler by employing the PCGS trimming operation and approximating the
conditional distributions. The variables ψt for t = 0, 1, . . . , T can be trimmed from Sampler 3, as they do not appear in the
conditional variables of the conditional distribution before they are next sampled. Because the proposed PCGS corresponds
to a sampler that omits ψt from Sampler 3, it has the true posterior distribution p(x0:T |y) as its stationary distribution. Thus,
if the approximations for the conditional distributions are exact, the PCGS has the true posterior distribution as its stationary
distribution.
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Algorithm 2 Sampler 1 for the posterior in Eq. (7)

Input: Measurement y, initial values φ(0), x(0)
0:T .

Output: Restored data x
(N)
0 , linear operator’s parameters φ(N)

for n = 1 to N do
Sample x

(n)
T ∼ p(xT |x(n−1)

0:T−1,φ
(n−1),y)

for t = T − 1 to 0 do
Sample x

(n)
t ∼ p(xt|x(n−1)

0:t−1 ,x
(n)
t+1:T ,φ

(n−1),y)
end for
φ(n) ∼ p(φ|x(n)

0:T ,y)
end for

Algorithm 3 Sampler 2 for the posterior in Eq. (7)

Input: Measurement y, initial values φ(0,0), x(0,M0)
0:T

Output: Restored data x
(N,M0)
0 , parameters of linear operator φ(N,K)

K ← 0 // K counts the number of updates for φ in a cycle.
for n = 1 to N do
φ(n,0) ← φ(n−1,K)

K ← 0
ψT ← {x(n−1,M0)

0 ,x
(n−1,M1)
1 , . . . ,x

(n−1,Mt)
t , . . . ,x

(n−1,MT−1)
T−1 }

Sample x
(n,0)
T ∼ p(xT |φ(n,K), ψT

::
,y)

for t = T − 1 to 0 do
ψt ← {x(n−1,M0)

0 ,x
(n−1,M1)
1 , . . . ,x

(n−1,Mt−1)
t−1 }

χt ← {x(n,Mt+1)
t+1 ,x

(n,Mt+2)
t+2 , · · · ,x(n,0)

T }
Sample x

(n,0)
t ∼ p(xt|φ(n,K), ψt

::
, χt,y)

for m = 1 to Mt do
Sample φ(n,K+1) ∼ p(φ|x(n,m−1)

t , ψt
::
, χt,y)

K ← K + 1
Sample x

(n,m)
t ∼ p(xt|φ(n,K), ψt

::
, χt,y)

end for
end for

end for

A.2. Proof of Theorem 3.2

We follow the result from (Chung et al., 2023b;a). First, we confirm the following lemmas.

Lemma A.1. Let ϕ(·) be a univariate Gaussian density function with mean µ and variance σ2. ϕ(·) is L-Lipschitz such
that ∀x1, x2 ∈ R,

|ϕ(x1)− ϕ(x2)| ≤ L|x1 − x2|, (19)

where L = 1√
2πσ2

e−1/2.

Proof. Since ϕ(·) is an everywhere differentiable function and it has the bounded first derivative, we use the mean value
theorem to get

∀x1, x2 ∈ R, |ϕ(x1)− ϕ(x2)| ≤ ∥ϕ′∥∞|x1 − x2|. (20)

Since L is the minimal value for Eq. (19), we have that L ≤ ∥ϕ′∥∞. Taking the limit x2 → x1 gives |ϕ′(x)| ≤ L, and thus
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Algorithm 4 Sampler 3 for the posterior in Eq. (7)

Input: Measurement y, initial values φ(0,0), x(0,M0)
0:T

Output: Restored data x
(N,M0)
0 , parameters of linear operator φ(N,K)

K ← 0 // K counts the number of updates for φ in a cycle.
for n = 1 to N do
φ(n,0) ← φ(n−1,K)

K ← 0
ψT ← {x(n−1,M0)

0 ,x
(n−1,M1)
1 , . . . ,x

(n−1,Mt)
t , . . . ,x

(n−1,MT−1)
T−1 }

Sample {x(n,0)
T , ψT

::
} ∼ p(xT |φ(n,K),y)

for t = T − 1 to 0 do
ψt ← {x(n−1,M0)

0 ,x
(n−1,M1)
1 , . . . ,x

(n−1,Mt−1)
t−1 }

χt ← {x(n,Mt+1)
t+1 ,x

(n,Mt+2)
t+2 , · · · ,x(n,0)

T }
Sample {x(n,0)

t , ψt
::
} ∼ p(xt|φ(n,K), χt,y)

for m = 1 to Mt do
Sample {φ(n,K+1), ψt

::
} ∼ p(φ|x(n,m−1)

t , χt,y)

K ← K + 1
Sample {x(n,m)

t , ψt
::
} ∼ p(xt|φ(n,K), χt,y)

end for
end for

end for

∥ϕ′∥∞ ≤ L. Hence

L = ∥ϕ′∥∞ =

∥∥∥∥−x− µσ2
ϕ(x)

∥∥∥∥
∞
. (21)

Since the derivative of ϕ′ is given as

ϕ′′(x) = −σ−2(1− σ−2(x− µ)2)ϕ(x), (22)

and the maximum is attained when x = µ± σ, we have

L = ∥ϕ′∥∞ =
1√
2πσ2

e−1/2 (23)

Lemma A.2. Let f(·) be an isotropic multivariate Gaussian density function with mean µ and variance σ2I. f(·) is
L-Lipschitz such that ∀x1,x2 ∈ Rd,

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥, (24)

where

L =
1

σ
(√

2πσ2
)d
e−1/2 (25)

Proof. We first evaluate the value of maxx ∥∇f(x)∥, where f(x) =
∏d

i=1 ϕ(xi). Without loss of generality, we assume

14



GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration

µ = 0.

∇f(x) =
[
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xd

]T

=

ϕ′(x1)∏
i̸=1

ϕ(xi), . . . , ϕ
′(xd)

∏
i ̸=d

ϕ(xi)

T

=

[
−x1
σ2

d∏
i=1

ϕ(xi), . . . ,−
xd
σ2

d∏
i=1

ϕ(xi)

]T

= −
∏d

i=1 ϕ(xi)

σ2
[x1, . . . , xd]

T
. (26)

Therefore, maxx ∥∇f(x)∥ can be evaluated as follows,

∥∇f(x)∥ =
√
x21 + · · ·+ x2d

∏d
i=1 ϕ(xi)

σ2

=
√
x21 + · · ·+ x2d

exp
(
−x2

1+···+x2
d

2σ2

)
σ2 ·

(√
2πσ2

)d

= r
exp(− r2

2σ2 )

σ2 ·
(√

2πσ2
)d
, r ≥ 0

(
r =

√
x21 + · · ·+ x2d

)
(a)

≤ 1

σ
(√

2πσ2
)d
e−1/2 = Cmulti, (27)

where the equality holds when r (=
√
x21 + · · ·+ x2d) = σ. (a) is by the result of the lemma A.1. Here, by the mean value

theorem, for any x1,x2 ∈ Rd, the following holds:

∥f(x1)− f(x2)∥ ≤ Cmulti∥x1 − x2∥. (28)

By setting x1 = [σ, 0, . . . , 0]T and taking the limit x2 → x1, the equality holds. Hence, f(·) is L-Lipschitz with the
Lipschitz constant L = Cmulti.

Lemma A.3. Let H ∈ Rdy×dx be a linear operator. The linear operator is L-Lipschitz such that ∀x1,x2 ∈ Rdx ,

∥Hx1 −Hx2∥ ≤ L∥x1 − x2∥, (29)

where L is the largest singular value of H.

This property has been reported in several papers, such as (Miyato et al., 2018).

Theorem 3.2 (modified version of Theorem 1 in (Chung et al., 2023b)) For the measurement model in Eq. (1), we have

p(y|xt:T ,φ) ≃ p(y|xθ,t,φ), (30)

and the approximation error can be quantified with the Jensen gap (Gao et al., 2017), which is upper bounded by

J ≤ 1

σy

(√
2πσ2

y

)dy
e−1/2s1m1, (31)

where m1 :=
∫
∥x0 − xθ,t∥p(x0|xt:T )dx0, and s1 is the largest singular value of Hφ.
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Proof. In our case, the Jensen gap (Gao et al., 2017) is defined as follows:

J = |p(y|xt:T ,φ)− p(y|xθ,t,φ)| .

Let f(µ) be an isotropic multivariate Gaussian density function with mean µ and variance σ2
yI, and thus p(y|x0,φ) =

f(Hφx0) in our case. The Jensen gap is evaluated as follows:

J = |p(y|xt:T ,φ)− p(y|xθ,t,φ)|

=

∣∣∣∣∫ (p(y|xt:T ,x0,φ)− p(y|xθ,t,φ)) p(x0|xt:T )dx0

∣∣∣∣
(a)
=

∣∣∣∣∫ (p(y|x0,φ)− p(y|xθ,t,φ)) p(x0|xt)dx0

∣∣∣∣
=

∣∣∣∣∫ (f(Hφx0)− f(Hφxθ,t)) p(x0|xt)dx0

∣∣∣∣
(b)

≤ 1

σy

(√
2πσ2

y

)dy
e−1/2

∫
∥Hφx0 −Hφxθ,t∥p(x0|xt)dx0

(c)

≤ 1

σy

(√
2πσ2

y

)dy
e−1/2s1

∫
∥x0 − xθ,t∥p(x0|xt)dx0

=
1

σy

(√
2πσ2

y

)dy
e−1/2s1m1, (32)

where (a) is by the conditional independence of y and xt:T given x0 and the Markov property of xt:T , and (b) and (c) are by
the lemmas A.2 and A.3.

B. Instantiation of blind linear inverse problems
Blind image deblurring. The aim of blind image deblurring is to restore a clean image from a noisy blurred image without
knowledge of the blur kernel. The problem is formulated as follows:

y = k ∗ x0 + z, (33)

where k is the blur kernel, corresponding to the parameters φ in our setting, and ∗ denotes the convolution operator.
Although dealing with this problem in our framework requires the SVD of the convolution operator, it can be computed
efficiently by using an FFT (Sedghi et al., 2019; Kruse et al., 2017). Thus, the SVD enables efficient calculation in the
spectral domain. In performing the SVD with an FFT, it is necessary to consider signals in the complex domain; however,
the proposed method can be naturally extended to the complex case.

Vocal dereverberation. The details of dealing with vocal dereverberation as a linear inverse problem are discussed
in (Saito et al., 2023). Let ywet

τ,f ∈ C be the wet (reverberant) vocal signals in a short-time Fourier transform (STFT) domain,
where τ and f denote the respective time and frequency indices. We use the following measurement model:

ywet
τ,f =

L−1∑
l=0

g∗l,fx
dry
τ−l,f + zτ,f , (34)

where xdry
τ,f ∈ C and gτ,f ∈ C are the dry vocal signals and the acoustic transfer function between wet and dry signals,

respectively. Here, we assume additive noise zτ,f ∈ C. (·)∗ denotes the complex conjugate, and L is the length of
reverberation. As with blind image deblurring, the linear operator, in this case, is a convolution operator whose acoustic
transfer function is unknown. Thus, the efficient method of performing the SVD by using an FFT is applicable.
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C. Details on experimental settings
C.1. Blind image deblurring.

Comparison methods. For methods requiring training data, images from the dataset are corrupted with blur kernels that
are generated by using the MotionBlur library3 and Gaussian noise with variance σy = 0.02 is added. The blur kernel size
is 64× 64, and the intensity value is determined for each kernel by uniform sampling from the range [0.4, 0.6].

MPRNet (Zamir et al., 2021). We use the official implementation 4 for the deblurring task, with the recommended
parameters, learning rate decay, and neural network architectures. The model is trained for 100k iterations with a batch size
of 4 for both the FFHQ and AFHQ datasets.

DeblurGANv2 (Kupyn et al., 2019). We use the official implementation 5 while adhering to the default settings for the
parameters and network architectures. Specifically, the model is trained by minimizing the sum of the pixel distance loss,
WGAN-gp adversarial loss, and perceptual loss with the weight parameters specified in the official implementation. The
generator uses Inception-ResNet-v2 as its backbone. For both the FFHQ and AFHQ datasets, the model is trained for 500k
iterations with a batch size of 1. The hyperparameters for the loss are set to λpixel = 5.0× 10−1, λadv = 6.0× 10−3, and
λperceptual = 1.0× 10−2.

Pan-DCP (Pan et al., 2016). We use the official implementation 6 with the parameters recommended for facial images. For
the hyperparameters, we use λdark = 4.0× 10−3, and λgrad = 4.0× 10−3. The number of iterations is set to 5.

SelfDeblur (Ren et al., 2020). We use the official implementation 7 with the default settings for YCbCR and a fixed learning
rate of 0.01 for 2500 steps. The optimization process involves minimizing the mean squared error (MSE) for the initial 500
steps, followed by a switch to the structural similarity index (SSIM) loss function for the remaining steps.

Details on evaluation metrics. The FID scores reported in the paper are calculated using the cleanfid library (Parmar et al.,
2022) 8. Specifically, for FFHQ, the evaluation is conducted with 1,000 restored images and 70,000 images from the training
and validation set. Similarly, for AFHQ, the evaluation is conducted on 500 restored images and 4,739 images from the
training set. The limited number of samples used in the evaluation is due to the computational complexity of the proposed
method. The BlindDPS paper doesn’t provide details on the calculation of FID, so there may be slight differences in the
reported values.

C.2. Vocal dereverberation.

The pre-trained diffusion model for GibbsDDRM is trained with only dry vocal signals from an internal dataset containing
various genres of songs by various singers. The total signal duration is around 15 hours. For a test dataset, we use 1000
wet vocal signals (1.4 hours in total) by adding artificial reverb to dry vocal signals from another dataset, the NHSS
dataset (Sharma et al., 2021). That dataset contains 100 English pop songs (20 unique songs) by different singers, with a
total signal duration of 285.24 minutes. Each song for training and testing is sampled at 44.1 kHz and features monaural
recording. For artificial reverb, we use the presets for vocals in the FabFilter Pro-R plug-in 9, which is a commercial artificial
reverb plug-ins. From a total of 19 kinds of vocal reverb presets, we use all the presets whose RT60 is shorter than 2 seconds
(10 in total). We prepare wet test dataset by creating 100× 10 signals, dividing them into 5-second samples, and randomly
selecting 1000 of the resulting signals.

The implementation of our method and the network architecture of the pre-trained diffusion model are mostly based on the
code provided by the authors of the DDRM paper 10. We slightly modify certain parts as follows. We convert each audio
input to a complex-valued STFT representation by using a window size of 1024, a hop size of 256, and a Hann window.
Further, to follow the original input configuration, we cut the direct-current components of the input signals and input them
as 2-channeled 512× 512 image data. The first and second channels correspond to the respective real and imaginary parts.

3https://github.com/LeviBorodenko/motionblur
4https://github.com/swz30/MPRNet
5https://github.com/VITA-Group/DeblurGANv2
6https://jspan.github.io/projects/dark-channel-deblur
7https://github.com/csdwren/SelfDeblur
8https://github.com/GaParmar/clean-fid
9https://www.fabfilter.com/products/pro-r-reverb-plug-in

10https://github.com/bahjat-kawar/ddrm
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We modify the original U-Net (Ronneberger et al., 2015) architecture of the pre-trained model used on DDRM by adding a
time-distributed, fully connected (TFC) layer (Choi et al., 2020a) to the last layer of every residual block expecting the TFC
layers to capture the harmonic structure of music signals efficiently.

For the training, we reduce the diffusion model’s size by having fewer trainable parameters (31.3 M), and the training took
less than three days with an NVIDIA A100 GPU. The hyperparameters for the training of the diffusion model are in Table 3.
We also incorporate an adaptive group normalization (Dhariwal & Nichol, 2021) into each residual block. We train the
model using AdamW (Loshchilov & Hutter, 2019) with β1 = 0.9 and β2 = 0.999 in 16-bit precision (Micikevicius et al.,
2018). We use an exponential moving average over model parameters with a rate of 0.9999 (Song & Ermon, 2020).

Table 3. Hyperparameters for training diffusion model on dry vocal signals. We follow the same notations defined in (Dhariwal & Nichol,
2021)

Diffusion steps 4000
Noise schedule cosine (Nichol & Dhariwal, 2021)
Model size 31.3 M
Channels 64
Depth 2
Channels multiple 1, 1, 2, 2, 4, 4
Heads 2
Attention resolution 32, 16
BigGAN up/downsample ✓
Dropout 0.0
Batch size 6
Iterations 370K
Learning rate 1.0× 10−4

For initialization of the linear operator, we used the WPE with the parameters L = 150, D = 4, and one iteration.
GibbsDDRM takes 36 seconds to restore 1 second vocal signals, whereas UD takes 6 seconds.

Comparison methods. Reverb conversion: A state-of-the-art end-to-end DNN-based method for vocal dereverberation.
We use the original code and the pre-trained model11, which is trained with the pairs of 44.1 kHz wet and dry vocal signals.
Note that the wet signals are reverbed with the artificial reverb for vocal taken from the different commercial reverb plug-ins
(e.g., 1213) from those of our test dataset (Koo et al., 2021). We input pairs of wet and dry signals since this method needs
them for dereverberation.

Music enhancement: A supervised method to denoise and dereverb music signals based on diffusion models (Kandpal
et al., 2022). We use both the original code and the pre-trained model specified in the paper. Since ME is trained with pairs
of 16 kHz reverberant noisy and clean music signals containing vocal signals, we evaluate this method at 16 kHz for all the
objective metrics. Note that the wet signals of the training dataset are created using room impulse responses from the DNS
Challenge dataset (K. A. Reddy et al., 2021), which may have some different characteristics from artificial reverb for vocal
signals, and adding the background noise from the ACE Challenge dataset (Eaton et al., 2015).

UnsupervisedDereverb: An unsupervised method for vocal dereverberation (Saito et al., 2023). This method is similar
to our GibbsDDRM, which utilizes DDRM. However, it differs in how it estimates the linear operator’s parameter. We
use the same pre-trained diffusion model as GibbsDDRM. We set L = 150, D = 4, the number of iterations of WPE to
one, η = 0.8, ηb = 0.8, σy = 1.0 × 10−3, with the number of sampling steps T set to 50. The number of iterations, the
learning rate, and the regularization parameter for refinement of the linear operator are set to 10000, 1.0× 10−6, and 1.0,
respectively.

11The original code and the pre-trained model are shared by Junghyun Koo from the Department of Intelligence and Information at
Seoul National University. Mr. Koo also assisted with the discussion of the RC results of our experiment.

12https://valhalladsp.com/shop/reverb/valhalla-room/
13https://valhalladsp.com/shop/reverb/valhalla-vintage-verb/
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D. Additional Results.
D.1. Blind image deblurring.

A
F

H
Q

F
F

H
Q

(a) Measurement (b) Pan-DCP (c) SelfDeblur (d) DeblurGANv2 (e) MPRNet (f) GibbsDDRM (ours) (g) Ground truth

Figure 6. Blind image deblurring results on the FFHQ and AFHQ datasets: (a) measurements, (b) Pan-DCP (Pan et al., 2016), (c) SelfDe-
blur (Ren et al., 2020), (d) DeblurGANv2 (Kupyn et al., 2019), (e) MPRNet (Zamir et al., 2021), (f) GibbsDDRM (ours), and (g) ground
truth. The kernels are also shown for methods that estimate them.

Qualitative comparison. We show the results of our method and comparison methods in Figure. 6. The images estimated
by GibbsDDRM appear perceptually similar to the ground truth images, but the images estimated by MPRNet have better
quality in terms of PSNR. However, the images estimated by MPRNet lack definition compared to the ground truth images.
GibbsDDRM utilizes a generative model to generate components lost during the measurement process by considering the
spectral space of the linear operator, which is one of the reasons why MPRNet outperforms GibbsDDRM in terms of PSNR.
In addition, it is important to note that MPRNet is specifically trained on the corruption caused by motion blur.

In our experiments, other comparison methods, except for MPRNet, do not perform well in restoring the images with a
high degree of accuracy. This is consistent with the results reported in (Chung et al., 2023a). In the motion blur corruption
process used in this study, the blur kernel is relatively large to the image size, and there is also measurement noise, making it
challenging to estimate a stable solution in such situations.

Relationship between hyperparameters η and ηb and each evaluation metric. We show the relationship between the
hyperparameters η and ηb and each evaluation metric on the FFHQ dataset in Table 4. Note that although there is a small
difference, the parameters that best achieve LPIPS differ from those that best achieve PSNR. The parameters for T , Mt, and
Langevin dynamics are set to be the same as those described in the paper.

η \ ηb 0.7 0.8 0.9
0.7 40.57 39.43 38.70
0.8 40.59 39.28 38.51
0.9 42.00 40.68 39.50

(a) FID (↓)

η \ ηb 0.7 0.8 0.9
0.7 25.38 25.65 25.78
0.8 25.39 25.64 25.78
0.9 25.36 25.62 25.81

(b) PSNR(↑)

η \ ηb 0.7 0.8 0.9
0.7 0.125 0.118 0.115
0.8 0.125 0.119 0.115
0.9 0.130 0.123 0.118

(c) LPIPS(↓)

Table 4. Relationship between hyperparameters and evaluation metrics on FFHQ (256× 256) dataset. Bold: Best.

19



GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration

Investigation of sampling methods of φ. In GibbsDDRM, φ is sampled by Langevin dynamics using the estimated score
in (17). If no Gaussian noise is added in Eq. (11), the operation can be interpreted as a step of gradient descent method for
maximum a posteriori (MAP) estimation of φ, with log p(φ|xt:T ,y) as the likelihood function. Although this operation
cannot be included in GibbsDDRM as it is not a sampling of φ, we can consider updating φ using this procedure. This
strategy is referred to as “MAP” and the GibbsDDRM as “Langevin.” Figure 7 shows histograms of PSNR and LPIPS
computed for the images (in total 1000-images) estimated by Langevin (GibbsDDRM) and by MAP in the blind image
deblurring experiment on FFHQ (256× 256) dataset. It can be seen that the MAP’s histogram has a longer tail, indicating
that while MAP can sometimes estimate images with high accuracy, it is less stable compared to Langevin. This suggests
that Langevin sampling serves to stabilize the estimation of φ.

(a) (b)

Figure 7. Histograms of blind image deblurring results on FFHQ (256 × 256) dataset obtained from different update strategies for φ.
MAP: The linear operator’s parameters are updated by MAP estimation, Langevin: GibbsDDRM, Proposed.

Additional figures We list additional qualitative results in Figs. 8 and 9 in order to see the details in the restored images
and kernels.
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Measurement Restored Ground truth

Figure 8. Blind image deblurring results obtained by GibbsDDRM on FFHQ (256× 256) dataset.
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Measurement Restored Ground truth

Figure 9. Blind image deblurring results obtained by GibbsDDRM on AFHQ (256× 256) dataset.
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