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Abstract

The search for new high-performance organic
semiconducting molecules is challenging due to
the vastness of the chemical space, machine learn-
ing methods, particularly deep learning models
like graph neural networks (GNNs), have shown
promising potential to address such challenge.
However, practical applications of GNNs for
chemistry are often limited by the availability
of labelled data. Meanwhile, unlabelled molecu-
lar data is abundant and could potentially be uti-
lized to alleviate the scarcity issue of labelled data.
Here, we advocate the use of self-supervised learn-
ing to improve the performance of GNNs by pre-
training them with unlabeled molecular data. We
investigate regression problems involving ground
and excited state properties, both relevant for op-
toelectronic properties of organic semiconductors.
Additionally, we extend the self-supervised learn-
ing strategy to molecules in non-equilibrium con-
figurations which are important for studying the
effects of disorder. In all cases, we obtain con-
siderable performance improvement over results
without pre-training, in particular when labelled
training data is limited, and such improvement
is attributed to the capability of self-supervised
learning in identifying structural similarity among
unlabeled molecules.

1. Introduction
Organic semiconductors (OSCs) have been a vibrant field
of research since the discovery of their electroluminescence
properties in the 1960s and 1970s (Ostroverkhova, 2016;
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Christensen et al., 2021b) due to their potential applica-
tions in solar cells (Hains et al., 2010; Myers & Xue, 2012;
Lu et al., 2015; Hedley et al., 2017), light-emitting de-
vices(Minaev et al., 2014; Xu et al., 2016) and field-effect
transistors (Sirringhaus, 2014). The use of organic materials
offers several advantages as compared to their inorganic
counterparts, such as low production costs, versatile synthe-
sis processes, and high portability. However the search of
new high performance OSCs has proved challenging due to
the vastness of chemical space. Computational simulation
could assist the search for OSCs materials with desirable
electronic properties critical to their electronic applications
at a lower cost compared to experiments. Despite the ef-
ficiency of computational simulations, quantum chemistry
methods such as the density functional theory (DFT) are
still too expensive for high-throughput virtual screening in-
volving a large number of candidate molecules (Hachmann
et al., 2011). Recent successful applications of machine
learning (ML) in chemistry show that it could accurately
predict various molecular and material properties with vastly
higher efficiency compared to quantum chemistry calcula-
tions (Christensen et al., 2021a; Behler, 2011; 2015; 2016;
Poltavsky & Tkatchenko, 2021; Smith et al., 2018; Taylor
et al., 2021; Kulichenko et al., 2021; Dral et al., 2018; Chen
et al., 2018; Wang et al., 2021; Dral, 2020; von Lilienfeld
et al., 2020; Noé et al., 2020; Olivares-Amaya et al., 2011;
Sajeev et al., 2013; Kanal et al., 2013; Shu & Levine, 2015;
Li et al., 2015; Pyzer-Knapp et al., 2016; Gómez-Bombarelli
et al., 2016; Nagasawa et al., 2018; Jørgensen et al., 2018;
Janai et al., 2018; Sahu et al., 2018; Padula & Troisi, 2019;
Padula et al., 2019; Lee, 2019; St. John et al., 2019; Lederer
et al., 2019; Roch et al., 2020; Simine et al., 2020; Lu et al.,
2020; Farahvash et al., 2020; Pereira et al., 2017; Duan
et al., 2020; Welborn et al., 2018; Prezhdo, 2020; Musil
et al., 2018; Mahapatra et al., 2018; Atahan-Evrenk & Ata-
lay, 2019; Bian et al., 2019; Thawani et al., 2020), these
include ML modeling of potential energy (Christensen et al.,
2021a; Behler, 2011; 2015; 2016; Poltavsky & Tkatchenko,
2021), OSCs (Olivares-Amaya et al., 2011; Sajeev et al.,
2013; Kanal et al., 2013; Shu & Levine, 2015; Li et al.,
2015; Pyzer-Knapp et al., 2016; Gómez-Bombarelli et al.,
2016; Nagasawa et al., 2018; Jørgensen et al., 2018; Janai
et al., 2018; Sahu et al., 2018; Padula & Troisi, 2019; Padula
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et al., 2019; Lee, 2019; St. John et al., 2019; Lederer et al.,
2019; Roch et al., 2020; Simine et al., 2020; Lu et al., 2020;
Farahvash et al., 2020), non-adiabatic dynamics (Wang et al.,
2021; Dral et al., 2018; Chen et al., 2018) and electronic
structures (Pereira et al., 2017; Duan et al., 2020; Welborn
et al., 2018). In particular, state-of-the-art deep learning
methods such as the graph neural networks (GNNs) have
shown to be able to achieve prediction accuracy superior to
other traditional ML methods (Ramakrishnan et al., 2014;
Duvenaud et al., 2015; Schütt et al., 2017b; Gilmer et al.,
2017; Wu et al., 2018; Lu et al., 2019; Schütt et al., 2018;
2019; Chen et al., 2019; Unke & Meuwly, 2019; Klicpera
et al., 2020; Liu et al., 2020; Qiao et al., 2020; Hao et al.,
2020).

Despite its immense potential, practical application of
GNNs in chemistry is frequently limited by the availabil-
ity of labelled training data. Meanwhile, in many cases
unlabelled data are abundant, e.g. from publicly available
database like PubChem or molecular dynamics simulations.
In order to utilize the availability of these unlabelled data
and overcome the scarcity of labelled data, recently various
self-supervised pre-training strategies have been devised
for GNNs, and have been successfully demonstrated in so-
cial network and biological domains (Xie et al., 2021; Lu
et al., 2021; Hu* et al., 2020; Rong et al., 2020; Zhang
et al., 2021). However its applications on quantum me-
chanical properties have been limited and only available on
simple small molecules like those in the QM7 and QM8
datasets (Rong et al., 2020). Additionally, these pre-training
strategies have not been tested on excited state properties or
molecules in non-equilibrium configurations. In this work
we advocate the use of self-supervised learning (SSL) in
GNNs for predicting the optoelectronic properties of OSCs.
SSL pre-training of GNNs consists of two steps: unsuper-
vised learning and supervised fine-tuning. During the un-
supervised learning stage, a GNN is first trained on a large
collection of unlabeled molecular data such that it derives
generic transferable knowledge encoding the intrinsic graph
representation of molecules. During the fine-tuning stage
the pre-trained GNN model is fine-tuned on task-specific
molecular data, such that it adapts the generic knowledge
for specific tasks.

For the first application in this work, we apply SSL to
the prediction of optoelectronic properties of organic pho-
tovoltaic molecules where the only input is the SMILES
strings of the molecules. For the second application, we ex-
tend the SSL strategy to molecules in non-equilibrium con-
figurations by incorporating 3D coordinates into the training
of SSL. Existing SSL studies only focus on molecules in
their equilibrium geometries and thus do not consider the
effect of disorder or temperature on the electronic proper-
ties of OSC molecules. However the presence of disorder
could have significant implication on the performance of

OSC devices. For example it is known that the existence of
disorder can limit the transport of charges and excitons (Lee
et al., 2019), leading to a drop in device efficiency. On
the other hand disorder can sometimes assist the separation
of charge-transfer exciton, an important step for efficient
organic photovoltaics (Deotare et al., 2015; Shi et al., 2017).
Thus to design high-performance OSCs, it is essential to
understand the effects of disorder on the electronic proper-
ties of OSCs. Therefore in this work, we also explore the
application of SSL on predicting the excited state properties
of OSC molecules in non-equilibrium configurations.

2. Graph neural networks
In contrast with traditional ML methods where hand-crafted
molecular descriptors are required as input, deep learning
methods such as GNNs are capable of extracting informa-
tive representation of a molecule solely from atom types
and Cartesian coordinates. In GNNs, the basic chemical
information of molecules are encoded as computational
graphs and these graphs are used as the input for the graph-
based training algorithm. As compare to the traditional ML
methods, GNNs are capable of representing the irregular
molecular graph structures more naturally. Specifically, a
computational graph G = (V,E) is defined as the con-
nectivity relations between a set of nodes (V ) and a set of
edges (E). Naturally, a molecule can also be considered
as a graph consisting of a set of atoms (nodes) and a set of
bonds (edges).

A schematic of the GNNs is shown in Fig. 1a. After a
molecule is converted into a computational graph, each
node (atom) is represented by an embedding vector. GNNs
learn the optimal representation of each atom using a mes-
sage passing algorithm that iteratively aggregates the in-
formation of its neighboring atoms and the corresponding
edges (Gilmer et al., 2017). After the message passing
phase, the molecule-level embedding vectors can be gener-
ated by pooling all the atoms through summation. Finally,
the learned molecular representation can be used for the pre-
diction of molecular properties through the read-out phase.
It is worth noting that alternative pooling strategies can also
be used, such as the maximum function or attention-based
layers (Wang et al., 2019). Our version of GNNs are imple-
mented using PyTorch (Adam et al., 2017), and the source
codes can be found on GitHub (Sou).

3. Self-supervised learning
We use node and edge-level attribute masking for SSL of
GNNs in this work: first the node and edge attributes of
the graphs are masked, then the GNNs are tasked to pre-
dict those attributes based on neighboring structures (Hu*
et al., 2020). Fig.1 (b) illustrates the working mechanism of
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Figure 1. A schematic of the model used in this work. (a) A molecule is first converted into a computational graphs, and each node (i.e.
atom) is represented by an embedding vector. The optimal node embedding is learned via a message passing algorithm, i.e. the embedding
vector is iteratively updated by aggregating the embeddings of its neighboring nodes and edges. The molecule-level embedding vectors
can then be generated by pooling all the atoms through summation. The learned molecular representation can be used for the prediction of
molecular properties through the read-out phase. (b) In self-supervised learning (SSL), we randomly mask 15% of the node (i.e atom) and
edge (i.e. bond) attributes, and the GNNs are tasked to predict these masked attributes.

attribute masking when applied to a molecular graph. We
randomly mask the atom and bond types of the molecular
graphs by replacing them with special masked indicators.
GNNs are then tasked to predict these masked node or edge
at attributes. More details of the attribute masking SSL
can be found in the Supplementary Materials (SM). Af-
ter the GNN pre-training is finished, we then fine-tune the
pre-trained GNN model on specific prediction tasks.

4. Organic Photovoltaic Dataset
We first apply the attribute masking SSL strategy to pre-
dict the quantum property of organic photovoltaic (OPV)
molecules. The OPV dataset used in this work contains
the SMILES strings of the 90823 unique molecules and
their corresponding the ground state electronic properties
obtained from DFT calculations with B3LYP/6-31G(d) (St.
John et al., 2019). 5000 molecules were randomly selected
from the dataset for each of the validation and test sets.
The remaining data is used for pre-training and fine-tuning.
The underlying GNN used is the Graph Isomorphism Net-
work (Xu et al., 2019), a powerful GNN that is widely used
in a variety of graph related task. However it is worth not-
ing that the pre-training strategy advocated in this work is
general and applicable to most GNNs. The entire training
process consists of pre-training and fine-tuning. We first

pre-train the GNNs with the entire training dataset (with-
out the molecules in the test and validation sets) using the
attribute masking SSL strategy as depicted in Fig. 1 (b).
After pre-training, we then fine-tuned the GNNs with just a
small number of the labelled data. The details of the training
process and parameters can be found in the SM.

The ground state electronic properties we focus on are the
values of HOMO-LUMO gap, HOMO and LUMO, the cor-
responding results are shown in Fig. 2 in which the test set
mean absolute errors (MAEs) of the property predictions
(in eV) are shown as a function of the number of labelled
training data used in the fine-tuning stage. We use all 80823
unlabelled molecules for the pre-training. The prediction re-
sults with and without SSL pre-training are shown as black
and blue dots with dashed lines, respectively. It can be seen
that the use of SSL pre-training generally leads to consider-
able improvement in prediction accuracy. For example with
1000 labelled training data, the MAE for HOMO-LUMO
gap prediction drops from 0.203eV to 0.144eV, an approxi-
mately 30% improvement in accuracy. From another point
of view, GNN without training would need approximately
four times the number of labelled training data to achieve
the same performance as the GNN with pre-training. Siz-
able but smaller relative improvements (approximately 20%
reduction in MAEs with 1000 labelled data) can also be
observed for the predictions of HOMO and LUMO values.
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Figure 2. Test set mean absolute errors (MAE) of (a) HOMO-LUMO gap, (b) HOMO and (c) LUMO of organic photovoltaics (OPV)
molecules as a function of the number of labelled training data. Blue lines represent the results from direct training of GNNs without
pre-learning, whereas the black lines denote the results of GNNs pre-train with unlabelled data.

As expected, it can also be observed that the advantage from
SSL pre-training decreases when the number of labelled
data increases for all three properties, which shows that SSL
is most useful for applications when labelled data is scarce.
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Figure 3. Test set MAE of HOMO-LUMO gap for OPV dataset as
a function of the number of unlabelled pre-training data. There are
a total of 80823 molecules in the pre-training dataset.

Next we investigate the performance dependence of SSL on
the amount of unlabelled data used in the pre-training stage.
Fig. 3 shows the test set MAE of HOMO-LUMO gap predic-
tion as a function of the number of unlabelled pre-training
data, expressed in terms of the percentage of the total pre-
training dataset (80823 molecules). We use 1000 labelled
data for the fine-tuning. As expected, the prediction per-
formance is sensitive to the amount of data used in the pre-
training of GNNs, more data leads to higher performance.
Interestingly, it is shown that the MAE curve has not lev-
eled even after using all of the training data for pre-training,
indicating the performance of SSL can be further improved

from more unlabelled data. One could potentially pre-train
GNNs using other large publicly available chemical datasets
such the PubChem (Kim et al., 2021) and ZINC (Irwin et al.,
2012) datasets in addition to the OPV dataset, each of these
datasets contains millions of molecules and could poten-
tially further boost the performance of the GNNs. Though
pre-training of GNNs with such a large dataset could be
computationally intensive, it needs only to be performed
once and the pre-trained GNNs can be used for various
downstream tasks. Gigantic pre-trained models have been
released in the computer vision (Simonyan & Zisserman,
2015; Szegedy et al., 2015; Krizhevsky et al., 2012) and
nature language processing (Devlin et al., 2019; Alec Rad-
ford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
2019) domains, and had subsequently led to rapid advances
in these fields, it will be a fruitful endeavor to attempt similar
approach in chemical sciences in the future.

Embedding Visualization

To better understand the effect of pre-training, we use
the t-distributed Stochastic Neighbor Embedding (t-SNE)
(Van der Maaten & Hinton, 2008) technique to visualize
the GNN vector embeddings after SSL. t-SNE is an un-
supervised dimensionality reduction technique commonly
used for the visualization of high-dimensional datasets. As
a non-linear dimensionality technique, t-SNE reduces the
dimensions of correlated data by projecting the original
set of vectors onto small number of principal components
while preserving most of the data variation. Fig. 4 shows
the two-dimensional t-SNE distribution of the molecule
vector embeddings after performing SSL pre-training. It
can be seen that after pre-training the embeddings of many
molecules form clusters in the t-SNE distribution instead of
being randomly distributed. It is expected that molecules
in a cluster or nearby molecules in the reduced dimensions
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share some structural similarity. By looking into the struc-
tures of some of the adjacent molecules, we indeed find
some nearby molecules that are structurally very similar, as
illustrated in Fig. 4. However due to the diversity and com-
plexity of the OPV dataset, many molecules are isolated and
do not belong to any cluster in the reduced dimensions. In
additional to higher prediction accuracy, the recognition of
similar molecular structures during pre-training also leads
to learning curves that converge faster and are more stable
as compared to the learning curves without pre-training (see
SM).

Figure 4. Two-dimensional visualization of the results of the pre-
training using t-SNE.

5. Non-equilibrium configurations
We next explore the capability of SSL on molecules in
non-equilibrium configurations and their excited state prop-
erties. For this purpose we use a dataset that contains 80000
non-equilibrium configurations of sexithiophene molecule.
These configurations are generated from molecular dynam-
ics simulations at 1000K and the excited properties are
obtained using time-dependent DFT (TD-DFT) calculations
with the CAM-B3LYP functional, more details about the
dataset can be found in Refs. 45 and 40. Applications
of ML for spectroscopy and exciton transport using non-
equilibrium molecular configurations have previously been
explored in Refs. (Lu et al., 2020; Lee et al., 2021; Farah-
vash et al., 2020). Similar to the OPV calculations, we
randomly select 5000 configurations each for validation
and testing, and use the remaining data for pre-training and
fine-tuning. The underlying GNN used is SchNet since we
need to take the 3D molecular coordinates into account in
addition to the graph structures (Schütt et al., 2018). Since
the non-equilibrium dataset involves the same molecule,
the standard atom/bond type masking in SSL is not appli-
cable. Instead, we mask the inter-atomic distance feature
vectors after the rbf layer in the filter-generating network,

and SchNet is tasked to predict these pair-wise vector in the
pre-training stage.

In Fig. 5 we evaluate the performance of pre-training in pre-
dicting two excited state properties: the lowest excited state
energy and the magnitude of its transition dipole moment.
It can be seen from Fig. 5a that the prediction of the excited
state energy is considerably improved by the use of SSL
pre-training as compared to the results without pre-training.
Similar to the results with OPV dataset, the improvement
is most significant when the labelled data is scarce. For
example, with only 1000 labelled data, the MAEs drops
from 0.181eV to 0.142eV, an approximately 22% reduction.
As the number of labelled training increases, the improve-
ment decreases and becomes nearly negligible beyond 4000
labelled data. Next in Fig. 5b, we show the test set MAE of
transition dipole moment magnitude prediction as a function
of the number of labelled training data. We again observe
significant improvement from SSL pre-training of GNNs.
Interestingly, unlike the excited state energy prediction, the
magnitude of improvement of nearly 16 − 20% is nearly
constant even when the labelled training data increases from
1000 to 5000. It has been previously shown that the predic-
tion of transition dipole moment is more difficult compared
to other electronic properties (Lu et al., 2020; Ye et al.,
2019), our results here suggest SSL could be especially use-
ful for the prediction of such challenging property in which
the need for training data is greater.

Discussions and Conclusions
We demonstrate the capability of SSL pre-training of GNNs
in improving the prediction accuracy of optoelectronic prop-
erties of OSCs. Similar to pre-training strategies in other
domains such as computer vision where the neural networks
are tasked to learn the basic features such as edges and
curves in pictures from abundant unlabelled data, the SSL
pre-training allows GNNs to recognize the basic structures
in molecules, such as bonds and ring structures. From the
t-SNE plot in Fig. 4, it can be seen that some structurally
similar molecules are grouped together in the vector embed-
ding space during the process of pre-training, such group-
ing assist the training process during the fine-tuning stage.
Importantly, the pre-training only needs to be performed
once, and the pre-trained GNNs can be fine-tuned for any
property-specific task.

In this work we apply SSL to two types of problems, namely
equilibrium ground state and non-equilibrium excited state
property predictions. For the equilibrium case, the only in-
put required is the SMILES strings of the molecules. A po-
tential application is the virtual screening of OSC molecules
for desirable optical properties before they are actually syn-
thesized. For the non-equilibrium counterpart, accurate
prediction of the dependence of the OSC optoelectronic
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Figure 5. Evaluation on excited state properties of non-equilibrium
configurations. Test set MAEs of (a) excited state energy and (b)
magnitude of transition dipole moment of sexithiophene molecule
as a function of the number of labelled training data. Blue lines
represent the results from direct training of SchNet without pre-
learning, whereas the black lines denote the results of SchNet
pre-trained with unlabelled data.

properties on the 3D configuration is crucial in understand-
ing how disorder could affect the performance of OSCs. In
both cases, we obtain considerable performance improve-
ment over results without the use of pre-training, and the
improvement is most significant when labelled training is
scarce. Finally, there are other ML strategies that could
alleviate the need of labelled data, e.g. transfer learning and
active learning, and it will be a fruitful endeavor to combine
SSL with these strategies to maximize the potential of ML
methods for chemical applications.
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A. Implementation Details of Graph Neural
Networks

A.1. Implementation of GIN

We apply Graph Isomorphism Network (GIN) (Xu et al.,
2019) for the molecular property prediction of OPV dataset.
We select the following settings for GIN: 300 dimensional
hidden units, 5 GNN layers, ReLU activation, dropout prob-
ability 0.5 for all layers except the input layer, and average
pooling for the readout function.

For the input to GIN, we use RDKit (Landrum & Others,
2006) to obtain the node and edge features: Node features:
Atomic number; Chirality tag: {unspecified, tetrahedral cw,
tetrahedral ccw, other}. Edge features: Bond type: {single,
double, triple, aromatic}; Bond direction: {–, endupright,
enddownright}.

GIN is trained with Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.001. Both pretraining and fine-
tuning are trained for 100 epochs. For self-supervised pre-
training, we use a batch size of 256, while for finetuning,
we use a batch size of 32. We use Pytorch (Adam et al.,
2017) and Pytorch Geometric (Fey & Lenssen, 2019) for all
of our implementation.

A.2. Implementation of SchNet

We apply SchNet (Schütt et al., 2017a) for the property
prediction of non-equilibrium thiophene molecules. We
select the following settings for SchNet: 2 interaction blocks,
64 dimensional hidden units, shifted softplus activation, 3.0
cutoff, 0.1 width, and sum pooling for the readout function.
The input to SchNet are the atom attributes, i.e. atomic
numbers and the interatomic distances.

SchNet is trained with Adam optimizer (Kingma & Ba,
2015) with a learning rate of 0.0001. We pretrain SchNet
for 100 epochs and finetune it for 1000 epochs. For both
self-supervised pre-training and finetuning, we use a batch
size of 20. We use PyTorch (Adam et al., 2017) and PyTorch
Geometric (Fey & Lenssen, 2019) for all of our implemen-
tation.

For both GIN and SchNet, we use mean squared error (MSE)
as loss function in the training process. We use the same
learning rates as the original papers, other hyperparameters
are found using grid search. The GNNs are implemented in
PyTorch 1.8.0.

B. Implementation Details of Self-supervised
Learning

We employ attribute masking as the strategy for self-
supervised learning (Hu* et al., 2020). Generally, we mask
the node/edge attributes by randomly initializing the embed-
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Figure 6. Training curves of HOMO with (red) and without (blue)
SSL pre-training. A total of 80823 molecules are used for pre-
training, and 1000 labeled data are used for fine-tuning.

dings, and then let GNNs predict those attributes based on
neighboring structure. In experiments, we randomly sample
15% nodes and edges and replace them with special mask
indicators. For SchNet, we replace the interatomic distance
embeddings of m asked edges after the rbf layer with special
mask indicators. We then apply GNNs to obtain the corre-
sponding node/edge embeddings (edge embeddings can be
obtained as a sum of node embeddings of the edge’s end
nodes). Finally, a fully-connected layer is applied on top of
embeddings to predict the masked node/edge attributes. For
the masked edges in SchNet, we predict which interval the
interatomic distance belongs to. The pre-training step takes
about 4 hours whereas the the fine-tuning step takes about 1
hour, both on a single NVIDIA V100 GPU.

C. Dependence on Pre-training Data Size
In Fig.7, we show additional results of the performance
dependence of SSL on the amount of unlabelled data used
in the pre-training stage. Similar to Fig. 3 in the main text,
1000 labelled data is used for the fine-tuning stage.

D. Comparing GNN predicted values with
DFT labels

In Fig.8, we compare the GNN predicted values of HOMO
against the values from DFT calculations for the OPV
dataset. With pre-training, the R2 coefficient increases from
0.856 to 0.928. It is also observed that the improvement is
most noticeable when the absolute HOMO values are large.

E. Learning Curves
In Fig. 6, we show the training set MAEs of HOMO as a
function of epoch number for the OPV dataset. It can be
seen that the use of SSL pre-training not only leads to lower
MAE, the training curve is also less noisy.
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Figure 7. Test set MAEs of HOMO and LUMO for OPV dataset as a function of the number of unlabelled pre-training data. There are a
total of 80823 molecules in the pre-training dataset.
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Figure 8. Scatter plots comparing the GNN predicted values of HOMO against DFT calculations without (a) and with pre-training (b). A
total of 80823 molecules are used for pre-training, and 1000 labeled data are used for fine-tuning


