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Figure 1: The main cause of the Janus Problem in SDS-based text-to-3D methods is their reliance on
high-certainty 2D priors for 3D representation, which can result in heads appearing from multiple
viewpoints. To address this, we introduced the LCGen method, using low-certainty generation to
align viewpoints with the optimization direction.

Abstract

The Janus Problem is a common issue in SDS-based text-to-3D methods. Due to
view encoding approach and 2D diffusion prior guidance, the 3D representation
model tends to learn content with higher certainty from each perspective, leading
to view inconsistency. In this work, we first model and analyze the problem, visu-
alizing the specific causes of the Janus Problem, which are associated with discrete
view encoding and shared priors in 2D lifting. Based on this, we further propose the
LCGen method, which guides text-to-3D to obtain different priors with different
certainty from various viewpoints, aiding in view-consistent generation. Exper-
iments have proven that our LCGen method can be directly applied to different
SDS-based text-to-3D methods, alleviating the Janus Problem without introducing
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additional information, increasing excessive training burden, or compromising the
generation effect. Project page is [here].

1 Introduction

At the forefront of the digital domain, considerable advancements have been achieved in converting
textual prompts into realistic 2D images, signaling a new epoch of computational creativity [14, 5,
4, 3, 2, 36, 38, 39, 30, 31, 22, 17, 18]. However, transferring such achievements to the 3D domain
introduces an additional layer of intricacy. While 3D generation technology [35, 29, 9, 24, 32] is
becoming increasingly indispensable across various fields, from virtual reality to architectural design,
traditional 3D content generation demands a substantial investment of time and expertise, and the
difficulty in acquiring 3D data makes explicit text-to-3D modeling exceedingly challenging. In
response, Score Distillation Sampling (SDS) [25], based on 2D lifting, has emerged to simplify
and advance the 3D creative process [6, 16, 23, 34]. In text-to-3D tasks, 3D representation (such
as NeRF [24]) renders and outputs the corresponding visual image of given camera viewpoints.
After that, SDS employs the guidance from priors embedded within pre-trained text-conditioned 2D
diffusion models to compute losses for images or latents, iteratively guiding the 3D representation to
its optimality.

However, this paradigm carries certain risks, with the Janus Problem [25] standing out as a significant
and common issue [33, 37, 40]. This problem occurs when 3D models exhibit multiple, often
conflicting viewpoints, resulting in inconsistencies with the original text conditions. As illustrated
in Fig. 1, faces appear at various positions within the same 3D object. This is an inevitable result
stemming from the inherent nature of SDS-based text-to-3D approaches. Firstly, current SDS-based
text-to-3D methods employ discrete viewpoint encoding. Camera perspectives are classified into
regions, with each region sharing a uniform view and text guidance. Consequently, the images
within each region share the same prior distribution, biasing the 3D representation towards locally
optimal synthesis with the highest certainty, as shown in Fig. 2 and Sec. 3. From a global perspective,
there is a high probability of bias towards synthesizing heads at multiple biased positions. Secondly,
diffusion models lack diverse 3D training data and thus a nuanced understanding of 3D space [19].
For different camera views, there is a tendency to generate images with high certainty that emphasize
the most characteristic features of the object [11], such as the head [1]. These intrinsic shortcomings
render the Janus Problem a dominant challenge in the text-to-3D process.

Addressing Janus Problem remains a critical challenge, with numerous studies dedicated to mitigating
its effects [15, 19–21, 28, 40, 12], like DreamControl [13] and Perp-Neg [1]. However, these methods
either require extensive multi-stage fine-tuning or object-specific designs and do not address the
fundamental causes of the Janus Problem. In response, we have innovatively modeled and analyzed
the underlying causes of the text-to-3D Janus Problem and proposed a novel approach named Low
Certainty Generation (LCGen) method.

Specifically, we first analyzed the causes of the Janus Problem through probability modeling. Under
the paradigm of discrete viewpoint encoding, viewpoint inputs from the same region possess the
same prior distribution. We modeled this distribution and analyzed the relationship between the
occurrence of the Janus Problem at various biased positions and the distribution itself. By calculating
probabilities, we derived the likelihood of biases occurring at specific positions, as illustrated in Fig. 2
showing probability density peaks at different biases, indicating the Janus Problem.

Thus, addressing the text-to-3D Janus Problem necessitates reevaluating the relationship between
views and distributions of guidance, advocating for their decoupling rather than adherence to a shared
distribution. Direct explicit modeling of the distribution is quite challenging, so we sought implicit
distribution constraints based on certainty learning. Here, we define the probability C(xt−1|xt) in
Eq. 7, estimated at the current timestep, as generation certainty in diffusion. We discovered that
different viewpoint images exhibit varying levels of certainty during the diffusion denoising process.
For areas rich in object features (such as the front), diffusion model tends to exhibit higher certainty
during the denoising process, and conversely lower elsewhere. This is linked to the data bias in
pretrained diffusion models [33] (see Appendix. B). Leveraging this characteristic, we constrain
the generation of 3D representations so that their input xt into diffusion model achieves certainty
consistent with the viewpoint. Consequently, we obtain a decoupled data distribution for precise
distribution localization of separated viewpoints, thus releasing the Janus Problem. Extensive data
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analysis and visualization substantiate the scientific validity and effectiveness of LCGen. Our method
can be integrated into various SDS-based text-to-3D methods, consistently mitigating the Janus
Problem without compromising generative performance.

Our contributions are as follows:

• We model and analyze the Janus Problem in text-to-3D, identifying the fundamental reasons
for its occurrence. Our findings indicate that the inevitability of the Janus Problem is
associated with the SDS-based text-to-3D framework that employs discrete view encoding
and 2D diffusion lifting.

• We specifically develop LCGen, a method that decouples the distribution of viewpoint data
from the perspective of generation certainty, thereby guiding precise view localization and
effectively mitigating the Janus Problem.

• We conduct extensive data analysis and experiments to demonstrate the scientific validity
and effectiveness of LCGen. Our method is transferable and consistently mitigates the Janus
Problem across various baselines without compromising the generative quality.

2 Background

2.1 Diffusion model

Diffusion models [10, 27] have proven a powerful class of generative models, particularly excelling
in text-to-image synthesis. Building on the progress made with text-to-image diffusion models, new
approaches have been developed to extend these capabilities to 3D content generation.

A diffusion model typically involves a forward process that gradually adds noise to a data sample
and a reverse process that aims to reconstruct the original sample by progressively denoising it.
Mathematically, the forward process is described as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where N is Gaussian distribution, βt are variance terms increasing over time, and I is the identity
matrix. The reverse process, which is more pertinent to generative tasks, is modeled as:

pΦ(xt−1|xt) = N (xt−1;µΦ(xt, t), σ
2
t I), (2)

where µΦ(xt, t) represents the mean learned by the diffusion model Φ, and σ2
t are learned variances.

2.2 SDS-based text-to-3D

Score Distillation Sampling (SDS). Score Distillation Sampling (SDS) [25] is a novel approach
tailored for bridging the gap between 2D image generation and 3D model synthesis. The SDS process
utilizes the gradients from a pretrained 2D diffusion model Φ to guide the generation of 3D model
Θ. The key idea is to render 2D projections of a 3D model from various views and adjust the model
parameters to maximize the agreement between these projections and the images generated by a
text-conditioned diffusion model. Given text prompt y, SDS can be described as:

∇ΘLSDS(Θ) = Et,ϵ,c

[
Ω(t)(ϵ̂Φ(xt, t, y

c)− ϵ)
∂x

∂Θ

]
(3)

where ϵ̂Φ is the noise predicted by Φ, x is the rendered image of view c by Θ, Ω is weighting factor.

Variational Score Distillation (VSD). Building upon SDS, Variational Score Distillation (VSD) [34]
introduces a probabilistic framework that treats the problem of text-to-3D synthesis as a distribution
optimization task. VSD seeks to create a distribution over possible 3D shapes that is likely under the
given text condition, rather than finding a single deterministic shape. VSD can be expressed as:

∇ΘLVSD(Θ) = Et,ϵ,c

[
Ω(t)(ϵ̂Φ(xt, t, y

c)− ϵ̂Θ(xt, t, c, y))
∂x

∂Θ

]
(4)

where ϵ̂Θ(xt, t, c, y) is the noise predicted by rendered images. This approach allows for exploring a
richer space of 3D geometries, potentially capturing more complex and diverse features consistent
with the textual description.
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3 Analysis of Janus Problem in Text-to-3D

In this Section, we analyze the reasons for the Janus Problem produced by the SDS-based text-to-3D
method. Through modeling, we have identified how the discrete view encoding method leads to
shared distributions that cause the Janus Problem. For detailed derivation, please refer to Appendix C.
In response to this finding, we have developed the LCGen method, as described in Section 4.
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Figure 2: Analysis of the Janus Problem in Text-to-3D. Due to the discrete encoding of viewpoints,
there is a high probability of multiple heads appearing at different positions b on the sphere.

Our modeling focuses on two variables: the camera viewpoint parameter c and the position of
the head b in the 3D representation. Both variables can be considered as points on a sphere S2,
represented by (θ, ϕ). Taking the head position as an example, our modeling yields the probability
P (b) of the head appearing at each position b on the sphere. The modeling steps are as follows:

As shown in Fig. 2(a), in the SDS, the sphere S2 is divided into different region intervals I. For
each c within I, the same viewpoint text is used, resulting in the same text condition and diffusion
guidance (See Appendix. B). We represent the guidance as a superposition of Gaussian distributions
with the spherical position as the variable. In one-dimensional Gaussian distribution across θ or ϕ
dimension, the probability p of generating a head at position b under the viewpoint c is given by:

pI(b, c) =
∑
i

wI
i

1√
2πσI

i
2
exp

(
− (c− b− µI

i )
2

2σI
i
2

)
(5)

where wI
i are the mixture weights for ith Gaussian component in I, µI

i and σI
i
2 are the mean and

variance of the i-th Gaussian component in I,
∑

i w
I
i = 1 to ensure that the total probability of the

mixture distribution in I integrates to one over its domain.

As shown in Fig. 2(b), integrating over the viewpoints [c0, c1] within I gives the probability P of
generating a head at position b within I as P I(b) =

∫
I pI(b, c) dc.

Now, we extend from one dimension Gaussian distribution to two dimensions pI(b, c) =∑
i w

I
i

1√
(2π)k|ΣI

i |
exp

(
− 1

2 (c− b− µI
i )

⊤ΣI
i
−1

(c− b− µI
i )
)

in Fig. 2(c) and consider spheri-

cal integration. the probability of generating a head at position b is given by:

P (b) =
∑
I

∫
I
pI(b, c) dA =

∑
I

∫
I
pI(b, θ, ϕ) sin(θ) dθ dϕ (6)

where I represents different regions of the sphere, dA is the differential solid angle element in
spherical coordinates, and sin(θ) accounts for the area element on the sphere. Each integral

∫
I

calculates the contribution to P (b) from each region I.

Thus, we can use numerical integration techniques to obtain the probability of generating a head at
different positions b. As shown in Fig. 2(d), probability peaks appear at different positions b. This
indicates that discrete viewpoint encoding may lead to the generation of heads at different positions
in the 3D representation, known as the Janus Problem. Another head is equally likely to appear on
the side and back, compromising the realism of the 3D representation. See details in Appendix C.

4



4 LCGen: Low Certainty Generation
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Figure 3: Overview of LCGen. LCGen can be embedded into any SDS-based text-to-3D method,
providing different guidance for various viewpoints by constraining the generation certainty, thus
alleviating Janus Problem.

From the analysis in Sec. 3, it is evident that the discrete view-dependent text condition can lead
the 3D representation to manifest the Janus Problem at different positions b during the synthesis
process. Therefore, addressing the relationship between c and guidance presents a viable method
for mitigating the Janus Problem. We propose LCGen, which leverages the certainty characteristics
to decouple distributions across different viewpoints, thereby mitigating the Janus Problem in the
text-to-3D task. Specifically, for c ∈ I, we constrain the guidance towards pct (xt | c, y) rather than
pIt (xt | c, y).
LCGen. During the diffusion denoising process, different c with different xt of the same object
possess distinct certainty C(xt−1|xt). We decouple these to guide the synthesis process to generate
images that correspond more closely to the desired viewpoint.

In the diffusion model in SDS, each denoising step is considered a probabilistic inference process
from the current state xt to the previous state xt−1. This process typically relies on the following
assumptions: 1) The noise ϵ follows a Gaussian distribution, which is estimated by the model at each
step. 2) The mapping from xt to xt−1 can be represented using a parameterized Gaussian process.

Assuming we have obtained the prediction of ϵ̂t through the diffusion model, we can predict the
estimation of the certainty of xt−1 given xt. This estimation typically assumes that the certainty
follows a Gaussian distribution:

Cc(xt−1|xt) ≜ N (xt−1;µ
c,σc2) (7)

Here, µc and σc2 represent the mean and variance that guides the U-Net’s prediction, thus affecting
the synthetic results. µc and σc2 can be calculated as follows:

µc =
1√

1− βt
(xt −

√
1− βtϵ̂t),σ

c2 = 1− αt (8)

Here, βt is the variance parameter at step t, αt is 1− βt. The Gaussian distribution parameters guide
the Diffusion model’s prediction to minimize the Janus Problem at step t− 1. The certainty function
is defined as:

Cc(xt−1|xt) =
1√
2πσc

exp

(
− (xt−1 − µc)2

2σc2

)
(9)

By constraining Cc(xt−1|xt), we can ensure that different viewpoints have different distributions.
We have designed the Lcert as follows:

Lcert ≜
1

γ
· Cc(xt−1|xt) ·G(c) (10)

where γ is normalization constant, G(c) is the function of view-based guidance.
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Figure 4: Results of Qualitative Comparison. The areas enclosed in red boxes are where the Janus
Problem occurs.

Back propagation. Although Eq. 10 specifies the basic form of Lcert, direct backpropagation involves
redundancy. In this method, the diffusion model serving as guidance is frozen, and it is unnecessary
to calculate gradients for it. We hope to perform backpropagation directly on NeRF. In SDS [25], to
simplify the gradient calculation and update processes, researchers simplify the loss function LSDS,
avoiding the complex gradient calculations involved with a frozen diffusion model Φ. The gradients
are applied directly to NeRF Θ and its rendered images xt. In LCGen, we also specifically design
the Lcert to bypass the diffusion model and apply directly in the NeRF flow parameter updates.

For Lcert, we obtain:

∂Lcert

∂Θ
=

∂Lcert

∂xt
· ∂xt

∂Θ
(11)
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Using the chain rule, we can expand and simplify the first term on the right side in Eq. 11. For details
of the process, please refer to the Appendix D. We get:

∇ΘLCert(Θ) = Et,ϵ,c

[
ω(t) · 1

γ
· Cc(xt−1|xt) ·G(c) · ∂xt

∂Θ

]
= Et,ϵ,c

[
ω(t) · Lcert ·

∂xt

∂Θ

] (12)

where

ω(t) = −
xt−1 − 1√

1−βt
(xt −

√
1− βtϵ̂t)

σc2
· 1√

1− βt
(13)

By simplifying the calculations, we enable Lcert to apply directly in the NeRF flow parameter Θ
updates, avoiding the complex gradient calculations of the Unet layer in diffusion model Φ, and
maintaining calculation consistency with LSDS.

5 Experiment

In this Section, we apply LCGen to several baseline methods of SDS-based text-to-3D, including
DreamFusion [25], Magic3D [16], and ProlificDreamer [34], and conduct corresponding experi-
ments. We also compare with other methods that address the Janus Problem. Sec. 5.2 presents the
effects of original methods and LCGen, including qualitative and quantitative assessments. Sec. 5.3
demonstrates the ablation of hyperparameters. Furthermore, Sec. 5.4 presents visualization results of
LCGen’s impact on generation certainty.

5.1 Experiment Settings

We implement original methods and LCGen based on threestudio [8] and a single A100 GPU. In
the experiment, we set G(c) = |ϕ| and γ to 10, and obtained the results after a maximum of 10,000
steps. For the sake of experimental consistency, we have chosen the Stable Diffusion 2.1 base [27]
as guidance and NeRF [24] as the 3D representation in the SDS-based method. See Details in
Appendix. E and F.

5.2 Results of LCGen

Qualitative Comparison. We selected two sets of text prompts from the library [25] and conducted
experiments on three SDS-based text-to-3D baseline methods, including DreamFusion-sd [25],
Magic3D-sd coarse [16], and ProlificDreamer [34], both without and with LCGen, with qualitative
results as shown in Fig. 4. It can be observed that, as indicated by the red boxes in Fig. 4, the original
methods have a high probability of exhibiting the Janus Problem. For instance, in the first set of
examples, the beagle appears with two faces, and in the second set of cases, the fox’s front and back
both exhibit a cello. As previously analyzed, this is a common issue inherent to SDS-based methods,
resulting from the nature of the paradigm. After applying LCGen to each method, the Janus Problem
was mitigated, with the generated 3D content exhibiting spatial consistency. In particular, our method
has a very strong suppressive effect on the Janus Problem that occurs on the backside of objects.

Figure 5: Results of Quantitative Comparison. ↓ represents
that a smaller value is better, while ↑ indicates that a larger
value is preferred. The gray background represents the results
with LCGen.

Metrics Dreamfusion Magic3D Prolificdreamer
Origin LCGen Origin LCGen Origin LCGen

JR (%) ↓ 56.67 16.67 46.67 23.33 63.33 20.00
CS (%) ↑ 22.73 22.95 23.77 23.61 26.23 28.94

Quantitative Comparison. We have
conducted a quantitative analysis of
the results from our three sets of base-
lines, as shown in Fig. 5. The Janus
Rate (JR) represents the rate at which
the Janus Problem occurs and is used
to measure the 3D consistency of the
generation method. The CLIP-Score
(CS), on the other hand, is a metric for
assessing the consistency between the
text and the prompt and the generated
image. See Appendix. F for details. We selected 30 sets of text prompts from the library and calculate
the mean score. It can be observed that our method significantly reduces the probability of the
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Janus Problem occurring. Meanwhile, the CS reflects that LCGen improves spatial consistency
without compromising the quality of the generated images. This demonstrates the effectiveness and
practicality of LCGen.

LCGen vs. Other Methods addressing Janus Problem. Some current work is also
designed to address the Janus Problem [15, 19–21, 28, 40, 13, 1, 12]. However, these
methods either require extensive multi-stage fine-tuning or object-specific designs and do
not address the fundamental causes of the Janus Problem, as shown in Fig. 6 (See more
comparison in Appendix G). Compared to these methods, our approach has the follow-
ing advantages: 1) It targets the essence of the Janus Problem by tapping into the multi-
perspective information within 2D priors without the need to introduce additional information.

Figure 6: Comparison of different methods dealing with Janus Problem.

Method No Additional
Prior

Single Stage and
No Fine-tuning

No Object-
specificity

JR
(%)

CS
(%)

MVDream [28] ✗ (3D data) ✗ ✓ 20.00 26.17
Prep-Neg [1] ✓ ✓ ✗ 26.67 26.23
D-SDS [12] ✗ (LLM) ✓ ✓ 23.33 24.82

DreamControl [13] ✓ ✗ ✓ 20.00 28.14

LCGen (Prolificdreamer) ✓ ✓ ✓ 20.00 28.94

2) It can be directly inte-
grated into any SDS-based
text-to-3D method. 3)
There is no need to alter the
training paradigm, and the
computational cost for cer-
tainty calculations is negli-
gible compared to the base-
line.

5.3 Ablation Study
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Figure 7: The impact of different choices of G(c).

Ablation of G(c). G(c) is an important hyper-
parameter in LCGen, representing the prefer-
ence for the selection tendency of generation
certainty. The larger the G(c), the higher the
suppression of certainty, and the more inclined
it is towards low certainty generation. For the
text prompt "a corgi" in ProlificDreamer, we de-
signed different G(c) as shown in Fig. 7. It can
be observed that when G is a piecewise function
of |ϕ| in Fig. 7(a), there is a possibility of gener-
ating multiple faces from different front views;
when using an absolute value function of ϕ, it
can generate correctly but also exhibits subtle
differences in the generation process, as shown
in Fig. 7(b)(c). See Appendix. E for G selection.

Va
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0

Figure 8: The difference in the variance of certainty
within the training step windows between w/ and
w/o LCGen.

Certainty within the training step windows.
We also conducted ablation experiments on the
certainty at different time step windows during
the training process. As shown in Fig. 8, for
each step, a window (step − 200, step] is se-
lected, and the variance of certainty within the
window is calculated. By subtracting the win-
dow variance values of the LCGen and origin
methods, the results are obtained. It can be ob-
served that during the training process, the cer-
tainty variance of most step windows in LCGen
is larger. This indicates that the LCGen method
effectively separates the certainty of different
viewpoints.

5.4 Visualization

In this Section, we conduct a visualization analysis of the LCGen and the corresponding certainty
for each viewpoint. Our chosen textual example is "A corgi". We use ProlificDreamer [34] as our
baseline and achieve results after a maximum of 10,000 steps.
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colors as represented in the scatter plot.

As shown in Fig. 9, the left side shows the original ProlificDreamer results, while the right side
features the ProlificDreamer using the LCGen method. For each method, the lower half presents
visualized outputs showing rendering results at various azimuths ϕ with an elevation θ of −15◦. It
can be observed that the original prolificdreamer generates the corgi with faces on both the front
and back, which is indicative of the Janus Problem. In contrast, the 3D representation created using
LCGen exhibits high spatial consistency. We have also visualized the certainty obtained from the
diffusion model after inputting images of the fully trained NeRF from various viewpoints. It is shown
that due to the presence of multiple faces, the certainty in the original method does not show a clear
pattern of change, consistent with the analysis presented earlier. In comparison, LCGen demonstrates
a more distinct pattern of certainty varying with c where the certainty is greater when |ϕ| is small and
decreases as |ϕ| increases. This highlights the effectiveness of LCGen’s constraints on certainty and
also corroborates the relationship between certainty and c. See details in Appendix E.

6 Related Works

Methods addressing Janus Problem. Past research has explored multi-stage networks that utilize
3D priors to reduce the Janus Problem. A two-stage 2D lifting framework has been proposed in
DreamControl [13], leveraging 3D self-priors to enhance geometric consistency in 3D generation.
Other approaches, such as Perp-Neg [1], innovate by using negative prompts in diffusion models
to remove undesirable attributes or views while maintaining the core concept. However, these
approaches either necessitate extensive multi-stage pre-training or are tailored to specific objects,
without tackling the root causes of the Janus Problem. Additionally, they often require specialized
and resource-intensive procedures. See details in Appendix. G

7 Conclusion and Discussion

In this study, we initially model the Janus Problem and analyze its causes visually. We then introduce
LCGen to guide text-to-3D generation toward spatial consistency by establishing varied certainty
priors across viewpoints. Our method, validated through experiments, can integrate seamlessly with

9



various SDS-based text-to-3D methods to mitigate the Janus Problem. It does so without adding extra
data requirements, excessive computational overhead, or degrading the quality of generated outputs.

Limitations and Broader Impacts. Our method performs well in generating individual objects but
has limitations with complex multi-object scenes. Due to the lack of 3D training data resulting in an
insufficient understanding of the 3D world, LCGen still has some failure cases in the text-to-3D Janus
Problem. Additionally, using a fixed G leaves room for improvement in adaptive generation. At the
same time, realistic AI-generated content may have adverse social impacts. Like other generative
model researchers, we must remain vigilant and take precautions against generating false content.
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A Symbol Reference Table

Table 1: Symbol Reference Table

Symbol Meaning Description

xt
State variable or ren-
dered image Represents the state at time t in the diffusion process or

rendered image from 3D models

q(xt|xt−1)
Transition probability
distribution Probability of state xt−1 given state xt during the diffu-

sion forward process

p(xt−1|xt)
Transition probability
distribution Probability of state xt−1 given state xt during the diffu-

sion reverse process
βt Variance parameter Variance term at time t in the diffusion process
I Identity matrix Identity matrix with ones on the diagonal and zeros else-

where
N Gaussian distribution Normal (Gaussian) distribution
µ,µ Mean Mean of the Gaussian distribution

σ2,Σ,Σ
Variance & covari-
ance matrix Variance & covariance matrix of the Gaussian distribution

Φ Pretrained model Pretrained 2D diffusion model
Θ 3D model 3D model to be optimized
LSDS SDS loss function Loss function used in Score Distillation Sampling
LVSD VSD loss function Loss function used in Variational Score Distillation
Ω Weighting factor Weighting factor used in LSDS and LVSD
ϵ Noise Noise term in the diffusion process
ϵ̂t Predicted noise Noise predicted by the diffusion model at time t
t Time step Time step in the diffusion process
y Text prompt The text input that guides the generation process in text-

to-3D or text-to-image models

c, c
Camera viewpoint pa-
rameter Represents camera viewpoint parameters in the 3D model

b, b
Head position in 3D
representation Represents the position of the head in the 3D model

S2 Sphere The 2D spherical surface on which c and b lie
I Interval Regions of the sphere S2

wi
Weight of the i-th
Gaussian component Represents the weighting factor for the i-th Gaussian com-

ponent in a mixture model
p(b, c) Probability Probability of generating a head at position b under view-

point c
P (b) Probability Probability of the head appearing at position b
A Solid angle element Differential solid angle element in spherical coordinates
(θ, ϕ) Spherical coordinates The elevation and azimuth used to represent points on S2

αt−1 Coefficient Coefficient related to βt in the diffusion process
Cc(xt−1|xt)Certainty Defined certainty in LCGen

Lcert
Certainty loss func-
tion Loss function used in LCGen to ensure certainty consis-

tency

γ
Normalization con-
stant Constant used for normalization in Lcert

G(c) View-based guidance Function for view-based guidance in Lcert
ω Weighting factor Weighting factor used in Lcert

B View Distribution in 2D Diffusion Model

We generated 100 2D images for each text condition y of I in Stable Diffusion 2.1 base [27], with
the texts y being “a pig wearing a backpack, front view”, “a pig wearing a backpack, side view”,
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Figure 10: View distributions given different text conditions in 2D diffusion model.

“a pig wearing a backpack, back view”, and “a pig wearing a backpack, overhead view”. For the
generated images, we manually assessed and categorized the camera parameters in the elevation θ
and azimuth ϕ dimensions, obtaining the results shown in Fig. 10.

It can be observed that the images generated by the 2D diffusion model have some variation in view
distribution corresponding to different y of I, exhibiting different peaks. From the θ dimension, in
the front view, almost all (99%) of the generated 2D images are at θ = 0. If the text is changed to an
overhead view, 22% of the images are above θ = 0. In the azimuth dimension, when the view is front,
75% of the generated images are concentrated at ϕ = 0; when the view is back, 44% of the images
are at ϕ = 180, while 29% are at ϕ = 0; for the side view, the distribution is relatively scattered,
generally symmetrically distributed around ϕ = 0, exhibiting diverse view characteristics.

This corresponds to the content in Sec. 3. When different c within I are given the same y, the
2D diffusion guidance follows the same distribution. In this work, we model this distribution as a
combination of Gaussian distributions, as shown in Eq. 5.
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C Detailed Analysis of Janus Problem

According to Sec. 3, SDS-based text-to-3D methods utilize a view-dependent prompt approach
with discrete encoding. In the context of the sphere S2, based on elevation and azimuth, Camera
parameters c are classified into intervals I representing four view categories: side, front, back, and
overhead, as shown in Fig. 2 (a).

However, text prompts are generally limited to high-level descriptions and do not offer the precise
control achievable in actual photography. This issue largely stems from the lack of detailed data
in diffusion training datasets, where specific camera settings are rarely documented [7]. As a
result, images generated based on viewpoint text conditions in the diffusion model tend to be
imprecise and show significant viewpoint fluctuations. Images of the front may be generated under
guidance from textual prompts of different viewpoints [1]. To address this, the conditional probability
density function pIt (xt | c, y) for each interval I is modeled as a mixture of multivariate Gaussian
distributions, each parameterized by NI

i (µ
I
i ,Σ

I
i ).

Specifically, taking a one-dimensional Gaussian distribution as an example, for camera parameter
c ∈ I, the probability density for synthesizing a head at a position with bias b ∈ S2 is denoted as
follows:

pI(b, c) =
∑
i

wI
i

1√
2πσI

i
2
exp

(
− (c− b− µI

i )
2

2σI
i
2

)
(14)

where: - wI
i are the mixture weights for each Gaussian component in interval I , - µI

i and σI
i
2 are the

mean and variance of the i-th Gaussian component, -
∑

i w
I
i = 1 to ensure that the total probability

of the mixture distribution integrates to one over its domain.

As shown in Fig. 2 (b), the integral of pI with respect to c over the interval I is given by:

P I(b) =

∫
I
pI(b, c) dc =

∑
i

wI
i

∫ c1

c0

1√
2πσI

i
2
exp

(
− (c− b− µI

i )
2

2σI
i
2

)
dc. (15)

c𝜙
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𝒄lookat

z

x

y

up

Figure 11: Camera geometry
in 3D space.

Here, I = [c0, c1] represents the view interval of integration. The
integral P I provides the probability density function PDF of Janus
Problem occurring at b.

We now extend our analysis to the multivariate Gaussian distribution,
as shown in Fig. 2 (c). This extension actually incorporates several
inherent settings regarding camera geometry in 3D space, as shown
in Fig. 11.

1. The camera’s "lookat" axis intersects the world coordinate
origin, effectively fixing two rotational degrees of freedom
of c,

2. The "up" axis is aligned with the z-axis of the world coordi-
nate system, thereby constraining another rotational degree
of freedom,

3. The assumptions hold under a constant distance between
the camera and the world coordinate origin, which fixes
the translational freedom along the radial axis from the
origin—a parameter that does not explicitly influence the
perspective modeling.

Given these conditions, the remaining camera parameters c can be described by two active degrees of
freedom: elevation θ and azimuth ϕ. If we evaluate the impact of the vector b on this distribution
over a specified interval I, the resulting integral P I(b) can be interpreted as the probability density
of b over that interval:
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P I(b) =

∫
I
pI(b, c) dc

=
∑
i

wI
i

∫
I

1√
(2π)k|ΣI

i |
exp

(
−1

2
(c− b− µI

i )
⊤ΣI

i

−1
(c− b− µI

i )

)
dc.

(16)

Here, k = 2 is the dimension of the space, c ∈ I and b ∈ S2 are vectors defining the position
in this space, and µI

i and ΣI
i represent the mean vector and covariance matrix of the distribution,

respectively.

Recognizing that different intervals I yield distinct probability functions, the total probability density
P (b) for the Janus Problem occurring at the position defined by b ∈ S2 is calculated as the sum of
integrals over distinct regions I of the sphere:

P (b) =
∑
I

∫
I
pI(b, c) dA =

∑
I

∫
I
pI(b, θ, ϕ) sin(θ) dθ dϕ (17)

where I represents different regions of the sphere, dA is the differential solid angle element in
spherical coordinates, and sin(θ) accounts for the area element on the sphere. Each integral

∫
I

calculates the contribution to P (b) from each region I.

𝜃	of	𝒃

𝜙	
of	
𝒃

𝑃 𝒃

Figure 12: Modeling result
without Janus Problem.

While direct integration is theoretically feasible, the integration of
multivariate Gaussian distributions can present considerable com-
plexity in practical execution. Consequently, numerical integra-
tion techniques are employed to approximate P (b) effectively, as
shown in Fig. 2 (d). It can be observed that when the parameters I,
NI

i (µ
I
i ,Σ

I
i ), and wI

i are altered, P (b) exhibits a high likelihood
of manifesting the Janus Problem at various points b ∈ S2.

This provides us with an approach to address the Janus Problem. If
we can decouple the relationship between viewpoints and distribu-
tions, allowing different c to follow different distributions (with µ
coinciding with c), we can achieve the modeling results shown in
Fig. 12. It can be observed that there is only one probability peak
in S2, indicating the presence of only one head. Based on this, we
propose LCGen, utilizing the method of low certainty generation, to
effectively mitigate the Janus Problem, as shown in Sec. 4.

D Back Propagation Details

For Lcert, we obtain:
∂Lcert

∂Θ
=

∂Lcert

∂xt
· ∂xt

∂Θ
(18)

Using the chain rule, we first calculate the partial derivative with respect to xt, involving derivatives
of µc and σc. Given µc and σc, since σc does not depend on xt, its derivative is zero. The derivative
of µc is:

∂µc

∂xt
=

1√
1− βt

(19)

Since σc is independent of xt, inserting into the expression for Cc(xt−1|xt) and using properties of
the Gaussian distribution, we have:

∂pc

∂xt
= − (xt−1 − µc)

σc2
· Cc(xt−1|xt) ·

∂µc

∂xt
(20)

Since G(c) is independent of xt, incorporating the derivative into ∂Lcert
∂xt

:
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∂Lcert

∂xt
=

1

γ

∂pc

∂xt
G(c) = − 1

γ
Cc(xt−1|xt)G(c) · (xt−1 − µc)

σc2
· ∂µ

c

∂xt
(21)

Substituting the expression for µc, we get:

∇ΘLCert(Θ) = Et,ϵ,c

[
ω(t) · 1

γ
· Cc(xt−1|xt) ·G(c) · ∂xt

∂Θ

]
= Et,ϵ,c

[
ω(t) · Lcert ·

∂xt

∂Θ

] (22)

where

ω(t) = −
xt−1 − 1√

1−βt
(xt −

√
1− βtϵ̂t)

σc2
· 1√

1− βt

(23)

E Implementation Details

E.1 Analysis of Janus Problem

In the Sec. 3 and C, we simulated different data distributions by setting different values of µ and Σ
in Eq. 16. To simplify the model, we use σ2 instead of Σ.

Intervals and Boundaries

1. Threshold across elevation θ:
toverhead =

π

4

2. Thresholds across azimuth ϕ:
tfront =

π

6
, tback =

π

8

Parameters of Gaussian Distributions

1. Side view:

• Integration Range of Iside:{
0 ≤ θ < π − toverhead

ϕ < π
2 − tfront or ϕ > 3π

2 + tback
and

{
0 ≤ θ < π − toverhead
π
2 + tfront < ϕ < 3π

2 − tback

• Parameters of Gaussian Distribution 1:

(θ, ϕ) =
(π
2
, bϕ

)
, σ1 = 0.3

• Parameters of Gaussian Distribution 2:

(θ, ϕ) =
(π
2
+ bθ,

π

2
+ bϕ

)
, σ2 = 0.3

2. Front view:

• Integration Range of Ifront: {
0 ≤ θ < π − toverhead
π
2 − tfront ≤ ϕ ≤ π

2 + tfront

• Parameters of Gaussian Distribution 3:

(θ, ϕ) =
(π
2
, π + bϕ

)
, σ3 = 0.2

3. Back view:
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• Integration Range of Iback: {
0 ≤ θ < π − toverhead
3π
2 − tback ≤ ϕ ≤ 3π

2 + tback

• Parameters of Gaussian Distribution 4:

(θ, ϕ) =

(
π

2
− bθ,

3π

2
+ bϕ

)
, σ4 = 0.4

4. Overhead view:

• Integration Range of Ioverhead:
θ ≥ π − toverhead

• Parameters of Gaussian Distribution 5:

(θ, ϕ) =
(
π − |bθ|,

π

2
+ bϕ

)
, σ5 = 0.3

Integral Computation Range of b

1. bθ Values:
bθ ranges from − π

2
to

π

2
with 50 intervals

2. bϕ Values:
bϕ ranges from − π to π with 50 intervals

From this, we can obtain the 3D plot in Fig. 2(d). By varying I and the parameters of the Gaussian
distribution, we can model the probability of generating a Janus Problem at different b under different
distributions. The location of the probability peak represents the potential position where a head
might appear.

E.2 LCGen.

We implement original methods and LCGen based on threestudio [8] and a single A100 GPU, using
the PyTorch framework. For Dreamfusion, Magic3D, and ProlificDreamer, the hyperparameters are
all kept consistent with the default settings in config files in the repository. Specifically, according to
the instructions in threestudio,

• In Dreamfusion, to prevent scene being stuffed with floaters/becoming empty, we set
system.loss.lambda_sparsity=0.1.

• In Dreamfusion and Magic3D, to prevent the model incorrectly treating the background as
part of the object, we replace the background with random colors with a probability 0.5 by
setting system.background.random_aug=true.

In the experiment, we set G(c) = |ϕ|, and obtained the results after a maximum of 10,000 steps. We
also attempted to embed ϕ into G. In the experiments, we found that the multi-head problem almost
never appeared in the θ dimension, and setting θ did not significantly affect the results. Therefore,
we ultimately chose the above G. For the sake of experimental consistency, we have chosen the
Stable Diffusion 2.1 base [27] as guidance and NeRF [24] as the 3D representation in the SDS-based
method. In Lcert, we use γ as the normalization parameter. In our experiments, we set γ to 10, which
provides the most stable mitigation of the Janus problem.

E.3 Visualization.

In Sec. 5.4, to make the results clearer, we smooth the values at each position. Specifically, we take
the average certainty of all points within a distance of 0.1 from the given position and use this average
as the certainty of the scatter point. This helps to avoid disturbances in the visualization results caused
by factors such as random view sampling and t.
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F Metrics

In the text-to-3D task, it is difficult to quantitatively evaluate the generated results. This task lacks
ground truth for objective scoring. In this work, our goal is to reduce the occurrence of the Janus
Problem, so it is necessary to assess the 3D consistency of the generated models and the extent to
which the Janus Problem is mitigated. Similar to DreamControl [13], we choose CLIP-Score (CS)
and Janus Problem Rate (JR) as our quantitative metrics in Sec. 5.

CLIP-Score (CS). The CLIP Score [41] is calculated using the CLIP (Contrastive Language-Image
Pretraining) model [26], which is a language-image model learned through contrastive learning. The
CLIP model consists of an image encoder and a text encoder, enabling it to measure the similarity
between different modalities. The CLIP Score measures the Cosine Similarity between two embedded
features. This implementation utilizes the pretrained CLIP model to calculate the mean average of
cosine similarities between text and generated images from different views.

Janus Problem Rate (JR). To assess the consistency of 3D geometries, we count the instances of
inconsistent 3D content produced by each method and calculate their proportion in all content. This
represents the occurrence rate of the Janus problem (JR).

G Comparison with other methods

Table 2: Comparison of different methods dealing with Janus Problem.

Method Task No Additional
Prior

Single
Stage

No
Fine-tuning

No Object-
specificity

SweetDreamer [15] Image-to-3D ✗ (3D data) ✗ ✗ ✓
SyncDreamer [20] Image-to-3D ✗ (3D data) ✗ ✗ ✓

Wonder3D [21] Image-to-3D ✗ (3D data) ✗ ✗ ✓
EfficientDreamer [40] Image-to-3D ✗ (3D data) ✗ ✗ ✓

Zero-1-to-3 [19] Image-to-3D ✗ (3D data) ✗ ✗ ✓

MVDream [28] Text-to-3D ✗ (3D data) ✗ ✗ ✓
Prep-Neg [1] Text-to-3D ✓ ✓ ✓ ✗
D-SDS [12] Text-to-3D ✗ (LLM) ✓ ✓ ✓

DreamControl [13] Text-to-3D ✓ ✗ ✗ ✓

LCGen (Ours) Text-to-3D ✓ ✓ ✓ ✓

Table. 2 presents a comparison of our LCGen method with other approaches addressing the Janus
Problem. It can be observed that some other methods utilize additional prior information, some
employ multi-stage training strategies and fine-tuning of pre-trained models, and some require object-
specific designs. In contrast, our method does not require any additional information and can be
directly embedded into existing SDS-based text-to-3D methods without fine-tuning the models. It
alleviates the Janus Problem with minimal computational cost.

H Some Other Results

Examples without concept of heads. In Fig. 13 A and B, we show the results of ’a street lamp’
and ’a tree’ as you mentioned. It can be seen that both the original Prolificdreamer and our method
achieve spatial consistency generation. Considering that the above two examples do not have obvious
differences between different views, we conducted experiments on ’a sunflower’ and ’a piano’ as
shown in Fig.C and D in Fig. 13. It can be seen that the original Prolificdreamer produced spatial
inconsistencies, showing multiple frontal images of the flower and multiple keyboards in single piano
from different views. Our method successfully alleviated this issue, generating a sunflower and piano
with correct front and back images. This indicates that our method is effective not only for objects
with heads but also for spatial consistency modeling of other objects.

Multiple objects with multiple heads. We will supplement the discussion details in the limitations
section of the Main Paper. Multi-object generation is another important and challenging field in
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Figure 13: Some other results.

text-to-3D tasks. For SDS-based methods, the current most important issue in multi-object generation
is not the Janus problem but how to handle the relationships between different objects. In H in Fig. 13,
we show the results of ’three corgis facing different directions.’ It can be seen that the original
Prolificdreamer cannot correctly generate 3 corgis, and there is some degree of sticking between the
objects. Both our method and the current state-of-the-art multi-view consistent generation method
DreamControl cannot correctly handle this example. Once the multi-view generation issue is resolved,
our work will have more exploration possibilities.

A large amount of descriptive language. In Fig. 13 F: "A sleek, silver-gray dolphin leaping
gracefully out of the crystal-clear ocean, its body glistening in the sunlight as it arcs through the air
with joyful exuberance." It can be observed that the original Prolificdreamer generates two dolphin
heads, while our LCGen method correctly generates the image. In Fig. 13 G, we also carefully
designed a prompt: "A Matte painting of a Christmas cake made of cheese surrounded by a moat
made of ice cream". It can be observed that in the original prolificdreamer, the front and back of Santa
Claus on the cake both have faces. However, using our method, the correct samples are generated.
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“an astronaut riding a kangaroo”

Figure 14: Failure example.

I Failure Example

Although experiments demonstrate that our method excels in mitigating the Janus Problem, there
are still some failure cases. Fig. 14 shows a failure example. By incorporating our method into
ProlificDreamer [34] and setting the text prompt y as "an astronaut riding a kangaroo", the method
correctly generated a single human head and a single kangaroo head. However, it resulted in issues
such as an incorrect human arm position and multiple kangaroo legs. This may be due to the presence
of multiple objects in the generated text, making it difficult to separate the combinations of objects
from the perspective of certainty.

When objects are in very unusual poses, our method has a certain probability of failing. For example,
"an upside-down lion." In this case, using the original certainty to separate different views fails
because the bottom might be the highest certainty view. For such samples, we need to redesign the
view-based guidance function to accommodate the generation of these special samples.

Our method may fail in multi-object generation scenarios. This is due to the limitations of current text-
to-3D methods in multi-object generation tasks. As shown in Fig. 13 H, when the text is "three corgis
facing different directions," baseline method Prolificdreamer fails to generate three corgis correctly,
with an overlap between different objects. On this basis, the current best view-consistent generation
methods, such as DreamControl and our method, cannot directly address the Janus Problem. To solve
this issue, the primary task is to solve the multi-object generation problem in text-to-3D, which is a
significant research area.

Due to the lack of 3D prior knowledge, like other SDS-based methods, our method can only model
3D representations that appear more realistic from various perspectives, but cannot ensure that these
3D representations adhere to the physical laws of the real world. For example, during the generation
of octopus tentacles, since there is no difference in tentacles from different views and the model does
not know how many tentacles should be generated, it may produce 3D representations that do not
conform to objective reality. To address this issue, we need to endow the model with the ability to
understand the 3D world. One possible approach is to collect massive 3D data and design appropriate
representation forms to establish a pre-trained 3D generation model (e.g., 3D diffusion). Given the
enormous data requirements and training difficulty, this requires the collective effort of the entire
AIGC community.

J Prompt Library

"a bald eagle carved out of wood", "a beagle in a detective’s outfit", "a beautiful rainbow fish", "a
bichon frise wearing academic regalia", "a cat with a mullet", "a ceramic lion", "a chihuahua wearing
a tutu", "a chimpanzee holding a peeled banana", "a chimpanzee looking through a telescope", "a
confused beagle sitting at a desk working on homework", "a corgi taking a selfie", "a cute steampunk
elephant", "a DSLR photo of a baby dragon drinking boba", "a DSLR photo of a cat wearing a bee
costume", "a DSLR photo of a corgi puppy", "a DSLR photo of a dog made out of salad", "a DSLR
photo of a frog wearing a sweater", "a DSLR photo of a humanoid robot using a laptop", "a DSLR
photo of a lion reading the newspaper", "a DSLR photo of a mouse playing the tuba", "a DSLR
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photo of a pig playing a drum set", "a DSLR photo of a robot dinosaur", "a fox playing the cello", "a
highland cow", "a lionfish", "a pig wearing a backpack", "a red panda", "a tiger playing the violin", "a
zoomed out DSLR photo of a baby dragon", "a zoomed out DSLR photo of a monkey riding a bike"

22



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors in
Sec. 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper provides the full set of assumptions and a complete and correct
proof in Sec. 3 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed in Sec. 5 and Appendix. E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code will be available [here] if accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details in Sec. 5 and Appendix. E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Statistical significance bars are not reported because it would be too computa-
tionally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

https://anonymous.4open.science/r/LCGen-BA57
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: There are provided in Sec. 5 and Appendix. E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses potential societal impacts the work performed in Sec. 7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No released data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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