
Published as a conference paper at ICLR 2025

TEST-TIME ENSEMBLE VIA LINEAR MODE CONNEC-
TIVITY: A PATH TO BETTER ADAPTATION

Byungjai Kim1∗ Chanho Ahn1 Wissam J. Baddar1 Kikyung Kim1 Huijin Lee1
Saehyun Ahn1 Seungju Han1 Sungjoo Suh1 Eunho Yang2
1AI Center, Samsung Electronics
2Korea Advanced Institute of Science and Technology
{byungjai.kim, chanho.ahn, wisam.baddar, kk87.kim}@samsung.com
{huijin.lee, saehyun.ahn, sj75.han, sungjoo.suh}@samsung.com
eunhoy@mli.kaist.ac.kr

ABSTRACT

Test-time adaptation updates pretrained models on the fly to handle distribution
shifts in test data. While existing research has focused on stable optimization dur-
ing adaptation, less attention has been given to enhancing model representations
for adaptation capability. To address this gap, we propose Test-Time Ensemble
(TTE) grounded in the intriguing property of linear mode connectivity. TTE lever-
ages ensemble strategies during adaptation: 1) adaptively averaging the parameter
weights of assorted test-time adapted models and 2) incorporating dropout to fur-
ther promote representation diversity. These strategies encapsulate model diver-
sity into a single model, avoiding computational burden associated with managing
multiple models. Besides, we propose a robust knowledge distillation scheme to
prevent model collapse, ensuring stable optimization and preserving the ensemble
benefits during adaptation. Notably, TTE integrates seamlessly with existing TTA
approaches, advancing their adaptation capabilities. In extensive experiments,
integration with TTE consistently outperformed baseline models across various
challenging scenarios, demonstrating its effectiveness and general applicability.

1 INTRODUCTION

As machine learning advances with larger and more complex architectures, the demand for sub-
stantial computational resources and extensive datasets rises. This trend has made off-the-shelf pre-
trained models more valuable than training models from scratch. However, these pretrained models
often struggle with data distributions that deviate from their training environments, underscoring the
need for effective methods to adapt to diverse distribution shifts and maintain robust performance.

Test-Time Adaptation (TTA) has emerged as an online adaptation method for handling distribution
shifts in test data. By leveraging off-the-shelf models, TTA enables the adjustment of model param-
eters to better align with test distributions (Wang et al., 2021). Previous studies have highlighted
the importance of maintaining optimization stability to prevent model collapse (Zhang et al., 2022b;
Niu et al., 2023; Lim et al., 2023). Addressing more practical environments, some research has tack-
led stability issues related to dynamic distribution shifts that static models struggle to handle (Gong
et al., 2022; Wang et al., 2022; Yuan et al., 2023). However, there has been limited exploration into
enhancing model representations during test time to further improve adaptation capabilities.

In parallel, several studies have explored offline methods to enhance the adaptability of off-the-shelf
models for out-of-distribution. Notably, empirical evidence suggests that fine-tuned models from a
pretrained model are ‘linearly connected’ (Neyshabur et al., 2020), with the fine-tuning operation
often approximated by first-order or linear expansions (Jacot et al., 2018; Wortsman et al., 2022;
Evci et al., 2022). This property enables straightforward techniques for improving domain general-
ization. For instance, several approaches have constructed ensembles by averaging the weights of
fine-tuned models (Rame et al., 2022; Wortsman et al., 2022), where these ensembles, built from a
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single model, incur no additional computational cost during inference. Recent work has also utilized
high-level dropout rates to mitigate shortcut learning and encourage diverse collaboration of exist-
ing representations (Zhang & Bottou, 2024). As a result, robust fine-tuning seeks to enhance the
representation of off-the-shelf models under linear approximation conditions, demonstrating strong
generalization performance across distribution shifts (Zhang et al., 2022a; Zhang & Bottou, 2023).

This paper explores the intersection between TTA and robust fine-tuning, both enhancing model
performance on out-of-distribution but differing in their online and offline operation, respectively.
Building on the insight that fine-tuning under linear approximation can streamline adaptation pro-
cesses, we extend this advantage to TTA. Our preliminary study empirically shows that TTA models
can exhibit the linear connectivity. This finding opens the door to incorporating advancements in
offline domain generalization into TTA to enrich versatile representations in test time.

We propose Test-Time Ensemble (TTE) that leverages ensemble strategies to dynamically enrich
representations during online adaptation. TTE constructs an ensemble network by adaptively aver-
aging the parameter weights of assorted TTA models. Notably, unlike prior methods that require
multiple predictions to improve adaptation (Jang et al., 2022; Yuan et al., 2023), this simple weight
averaging captures model diversity in a single model, boosting representation quality but reducing
the computational burden of multiple model inference. To further promote diverse collaboration
among the representations within TTA models, we incorporate dropout, ensuring it does not hinder
adaptation or inference. However, existing TTA models often collapse, such as consistently assign-
ing all samples to the same class. Ensemble from such unstable models can lead to performance
degradation. To address the instability, we propose de-biased and noise-robust knowledge distilla-
tion schemes to stabilize the learning of TTA models within the ensemble. TTE is straightforward to
implement and integrates effortlessly with existing TTA methods. By building on the foundational
efforts, TTE achieves a significant leap in adaptation performance.

Author contributions. 1) We reveal that TTA models exhibit linear mode connectivity, an in-
triguing insight that simplifies and enhances the adaptation process. 2) Based on this insight, we
introduce Test-Time Ensemble (TTE), a novel and computationally efficient approach that not only
enriches model representations but also stabilize TTA optimization through de-biased and noise-
robust knowledge distillation. 3) TTE integrates effortlessly with existing TTA methods, enhancing
adaptation in diverse scenarios and showing potential for applicability to future TTA methods.

2 PRELIMINARIES

This section covers the main categories of prior work and preliminary analysis that inspired the
proposed TTE. Detailed discussions of related works are included in Appendix A.

2.1 TEST-TIME ADAPTATION

Let f(θ) a pretrained model with parameters θ for the taskXtr → Y where training inputs xtr ∈ Xtr

and labels y ∈ Y . TTA adapts the model f to learn Xte → Y only using out-of-distribution test
inputs xte ∈ Xte in online. The majority of objective functions in TTA are based on entropy
minimization (Wang et al., 2021), which aims to reduce uncertainty in the model’s predictions,
ŷ = f(xte, θ), by adjusting the affine transformation layers of f . Specifically, Shannon entropy
is adopted as H(ŷ) = −

∑
c p(ŷ

c) log p(ŷc), where p(ŷc) denotes the probability of class c with
the softmax function p. Entropy minimization offers a training-independent method that effectively
adapts off-the-shelf models for TTA. However, it is prone to model collapse, especially under severe
distribution shifts (Gong et al., 2022).

To address challenges in test-time adaptation (TTA), previous approaches have focused on ensuring
stable optimization through methods such as selecting reliable samples (Niu et al., 2023; 2022;
Yuan et al., 2023; Lee et al., 2024), maintaining prediction consistency (Wang et al., 2022; Zhang
et al., 2022b; Chen et al., 2022), manipulating affine transform statistics (Gong et al., 2022; Lim
et al., 2023; Zhao et al., 2023), and using robust optimizers (Niu et al., 2023; Gong et al., 2024).
In contrast, our work shifts the focus to enhancing adaptation capability, a less explored aspect of
TTA research. Some methods have aimed to improve adaptation through dense image augmentation
(Yuan et al., 2023; Döbler et al., 2023) or multiple predictions (Jang et al., 2022). Unfortunately,
such strategies resulted in heavy computational complexity.
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Figure 1: Accuracy trajectories of weight-space and output-space interpolated TTA models in
ImageNet-C with 15 corruptions (level 5). The interpolation is performed with adjusting α from
0 to 1 in steps of 0.1. The x-axis shows accuracy for the target corruptions (or distributions) which
two TTA models are adapted for and the y-axis for all non-targets. Interpolating model weights
(solid line) and interpolating outputs (dashed line) often show similar trajectories.

2.2 CAN TEST-TIME ADAPTATION BE APPROXIMATED BY LINEAR EXPANSION?

Domain generalization under linear approximation. Several studies provide empirical evidence
that fine-tuning a pretrained model can be approximated by a linear expansion when using a dataset
much smaller than what is needed to train the network from scratch (Jacot et al., 2018; Maddox
et al., 2021). This linear approximation simplifies the process and offers a pathway for applying
straightforward strategies to enhance domain generalization. Some researchers have revisited model
weight averaging, originally designed for convex problems (Rame et al., 2022; Wortsman et al.,
2022), and introduced fine-tuning methods under the premise that fine-tuning primarily leverages
existing representations in pretrained models (Evci et al., 2022; Zhang & Bottou, 2024).

We view TTA as a form of domain generalization, where adaptation to currently shifted test samples
seeks to improve performance on future samples with potentially different distributions. Building
on previous work on fine-tuning with linear expansion, we investigate whether TTA, fine-tuning on
domain-shifted test data, can also be approximated by linear expansion.

Preliminary analysis. We investigate whether TTA models can be approximated by a linear expan-
sion. Using the setup from Frankle et al. (2020); Wortsman et al. (2022), Linear Mode Connectivity
in TTA is empirically demonstrated, as described by

(1− α) · AccD(θ1) + α · AccD(θ2) ≤ AccD((1− α) · θ1 + α · θ2) (1)

where θ1 and θ2 are the weights of two TTA models adapted to different distributions, α is a mix-
ing coefficient in the range [0, 1] and AccD is classification accuracy for a certain distribution D.
This property suggests that averaging the weights of two models can yield better performance than
each model by mimicking output-space ensemble effect. The connection between weight-space and
output-space averaging implies that θ1 and θ2 can be linearly approximated around the pretrained
θ0, indicating that they are linearly connected (Fort et al., 2020). Neural networks, being non-linear,
usually do not benefit from weight interpolation, but linear mode connectivity enables enhanced
performance. Appendix B.1 presents theoretical analysis for linear approximation in TTA.

Figure 1 presents the preliminary results for linear mode connectivity, using a visualization method
for robustness in distribution shifts (Recht et al., 2019; Taori et al., 2020). Weight-space interpo-
lation can provide higher accuracy both on target and non-target corruptions than single models,
following the accuracy trajectories of output-space interpolation. Although trajectory differences
grow as the corruption properties become more distinct (noise and blur in Figure 1 (a)), perfor-
mance improvements are still valid. The results suggest that TTA models can be linearly connected
across different distributions, indicating the applicability of domain generalization strategies based
on linear approximation. Appendix B.2 describes the details of the preliminary experiments. We
also report additional preliminary results under various TTA scenarios in Appendix B.3.
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Figure 2: Overall framework of TTE. The ensemble network fe is constructed from fa using weight-
space and dropout ensembles. Ensemble outputs ŷe serve as predictions and drive de-biased, noise-
robust knowledge distillation to enhance the representation and stability of fa. The procedures
integrate seamlessly with existing TTA methods, yielding significant accuracy improvements across
three representative methods. Stronger methods achieve even higher performance through TTE.

3 TEST-TIME ENSEMBLE

We propose a test-time ensemble (TTE) approach, designed to enhance the adaptation capabilities
of existing TTA methods (Figure 2). TTE is built on a teacher-student framework, comprising an
adapter network fa and an ensemble network fe. The proposed TTE involves 1) constructing fe
from orignal TTA models fa through adaptive ensemble strategies and 2) distilling the knowledge
from fe to fa to ensure stable optimization. The proposed knowledge distillation maintains linear
mode connectivity between fa and fe during TTA and also mitigates model collapse, a common
issue in TTA processes. Further details are provided in the following sections.

3.1 ENSEMBLE STRATEGIES FOR ENHANCING ADAPTATION PERFORMANCE

TTE uses the same input view for both fe and fa without augmentation. Instead of multiple pre-
dictions with dense augmentations in teacher-student frameworks (Wang et al., 2022; Yuan et al.,
2023), we propose computationally efficient ensemble strategies to enhance the representation of fe.

Adaptive weight-space ensemble. Our preliminary results in Figure 1 underscore two insights: 1)
TTA models even adapted to different distributions would have non-redundant representations and
their ensemble are further beneficial for diverse distribution shifts. 2) Weight-space interpolation can
emulate the rich representations of ensembles with a single model, eliminating the computational
burden of multiple models at test time. In this paper, we propose an online weight-space ensemble
approach, where the weights of fe is iteratively updated via an exponential moving average (EMA)
as θe ← mθe + (1 − m)θa with a momentum m, where θe and θa denote weights of fe and fa,
respectively. Our preliminary findings suggest that using a wide range of momentum m does not
hinder optimization but rather enhances domain adaptation. Thus, we propose an adaptive EMA
modulated by the divergence Lrkl, which measures the probability distance between fe and fa.

m = m0 · e−Lrkl/τ (2)

where m0 is a base momentum and τ is a temperature controlling sensitivity to the divergence. Eq.
2 promotes a lower momentum to actively construct ensembles when fe and fa have different repre-
sentations. This adaptive scheme is particularly valuable in online TTA, where data distributions are
unknown and subject to dynamic shifts. The method for calculating the divergence Lrkl is described
in Section 3.2.

Dropout ensemble. Dropout is traditionally used to introduce noise that hinders optimization, pre-
venting overfitting, and is typically applied in long-range learning a non-linear function from scratch.
However, recent studies have shown that applying dropout during fine-tuning create diverse collab-
oration between existing features Zhang & Bottou (2024), based on the assumption that fine-tuning
a pretrained model is a near-linear process that primarily leverages existing representations Evci
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Figure 3: Failure case study. Classification accuracy in applying the proposed ensemble strategies
to a conventional TTA approach (Tent, Wang et al. (2021)). The loss barrier between fa and fe
is measured, as a common metric for assessing linear mode connectivity between them (Eq. 7 in
Appendix). The predictions in (b) and (d) present the model outcomes of ensemble fe. Details of
this study are included in Appendix D.1

et al. (2022); Jacot et al. (2018). Building on this insight, TTE incorporates dropout in the penul-
timate layer of fa during test-time adaptation as fa(·; ρ) = ha(dropout(ga(·), ρ)), where ha and
ga are the linear head and the backbone of fa, respectively, and ρ is the dropout probability. This
dropout encourages model diversity of fa during exploring distribution shifts in test data, which is
then transferred to fe through weight-space ensemble.

3.2 DE-BIASED AND NOISE-ROBUST KNOWLEDGE DISTILLATION

Existing TTA models often collapse, such as consistently assigning all samples to improperly biased
classes (Niu et al., 2023). To solve the issues, TTE employs a robust knowledge distillation objective
within a teacher-student framework for stable optimization, addressing a key degradation factor in
output ŷe: bias as a prominent aspect of model collapse.

De-biased distillation. Simply constructing ensembles with unstable TTA models can rather de-
grade performance. Figure 3 illustrates failure cases: while ensemble improves performance under
glass blur, it degrades as the TTA model collapses under shot noise, providing long-range biased
predictions (Fig. 3(d)). In terms of linear mode connectivity, the loss barrier spikes as the TTA
model fa begins to collapse (Fig. 3(c)). This indicates that the linear connectivity between the TTA
model fa and its ensemble fe is disrupted on the loss surface, stopping the benefits of the ensemble
for adaptation. To solve collapse issues, we introduce a de-biased representation ŷ′

e for knowledge
distillation to reduce improper bias in fa and maintain linear mode connectivity. First, we quantify
the accumulated bias cbias in fa by applying EMA to the first-order batch statistics of ŷa, as follows

cbias ← n · cbias + (1− n) · 1

M

M∑
i

ŷa,i (3)

Figure 4: Comparisons of standard and reverse
KL divergence with Gaussian noise on ImageNet-
C (Level 5), combined with the TTA objective
(Tent, Wang et al. (2021)).

where n is a momentum constant, M is a batch
size and cbias is initialized as all zero. Due to
the long-range effects of improper bias, cbias
converges into a specific distribution when
model collapse manifests. Second, we identify
bias-guiding samples from ŷe by measuring the
cosine similarity between cbias and each output
ŷe,i: si =

cbias·ŷe,i

∥cbias∥∥ŷe,i∥ . As si increases, ŷe,i is
more likely to intensify the bias in fa during
distillation. Third, for bias-guiding samples,
ŷe,i is adjusted to construct de-biased repre-
sentations ŷ′

e,i. The ŷ′
e,i is generally described

with a weight function w(s) = max(0, α · s) with a scale α as follows

ŷ′
e,i = ŷe,i − w(si) · cbias. (4)
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When si > 0, ŷe,i is adjusted with cbias to introduce the effects of label smoothing, increasing the
probabilistic distance between ŷa,i and cbias during distillation. This adjustment acts as a regularizer
for the unsupervised TTA process, helping to prevent model collapse.

Noise-robust distillation. Besides, to mitigate the impact of noisy predictions in ŷe, which are
used as pseudo-labels for fa during distillation, we employ reverse KL divergence as the distillation
objective. Figure 4 compares standard and reverse KL divergence when they integrate with a con-
ventional TTA approach. Reverse divergence improves accuracy over standard one by penalizing the
gradient of incorrect predictions. True labels are used to distinguish correct from incorrect samples,
and the gradient ratio is calculated by dividing the gradient of incorrect predictions by that of correct
ones. These findings are consistent with results observed in supervised learning with noisy labels
(Wang et al., 2019b). The mathematical analysis is included in Appendix D.2.

Consequently, the proposed knowledge distillation objective is mathematically defined as the
Kullback-Leibler (KL) divergence between the predictions of fa and fe as Lrkl(ŷa, ŷ

′
e) =

KL(ŷa||ŷ′
e). This term is also used to dynamically update the momentum value in Eq. 2.

3.3 OBJECTIVE FUNCTION IN TTE

Consequently, the objective function for TTE combines the existing TTA objective Ltta with the
knowledge distillation objective Lrkl. Note that Ltta is usually based on entropy H(ŷa) in prior
TTA approaches (Wang et al., 2021; Niu et al., 2023; Lee et al., 2024). The combined objective can
be interpreted as aiming to reduce the uncertainty of ŷa while ensuring noise-robust alignment with
the de-biased ensemble output from ŷ′

e, as given by

Ltte(ŷa, ŷ
′
e; θa) = Ltta(ŷa; θa) + Lrkl(ŷa, ŷ

′
e; θa). (5)

To avoid over-tuned hyperparameter configurations, the two objective terms are assigned equal
weights. Beyond basic entropy minimization, some prior approaches have proposed reliable sam-
ple selection or weighting strategies (Niu et al., 2022; Lee et al., 2024), and robust optimization
techniques (Niu et al., 2023). In our framework, we integrate these methods directly into the Ltte

objective. Algorithms outline how TTE performs with each prior approach in Appendix C.2.

4 EXPERIMENTS

Datasets and models. We conducted experiments with four benchmark datasets: ImageNet-C
(Apache-2.0 License) (Hendrycks & Dietterich, 2019) assesses adaptation performance under 15
types of corruptions at five severity levels, reflecting extreme distribution shifts from the original Im-
ageNet (Deng et al., 2009). All experiments were conducted at level 5, the most severe. ImageNet-S
(MIT License) (Wang et al., 2019a) and ImageNet-R (MIT License) (Hendrycks et al., 2021) eval-
uated adaptation performance under natural distribution shifts. Unlike ImageNet-C’s artificial cor-
ruptions, ImageNet-S features sketch-style images for every ImageNet classes, while ImageNet-R
includes diverse renditions of 200 ImageNet classes, such as art, cartoons, graffiti, etc. ImageNet-
V2 (MIT License) (Recht et al., 2019) consists of data sampled after a decade of progress on the
original ImageNet dataset. It was used to measure performance unaffected by adaptive overfitting,
offering a measure of adaptation performance to intrinsic shifts.

We evaluated two types of architectures: Vision Transformer Base (ViTBase) and ResNet-50 with
Group Normalization (ResNet50-GN). Architectures with batch normalization were excluded due
to their batch size sensitivity and instability during the TTA process (Niu et al., 2023; Mounsaveng
et al., 2024). The models’ parameters were initialized using pre-trained weights from the PyTorch
Image Models library (Wightman, 2019). For adaptation, the affine parameters of normalization
layers in each architecture were trainable. For the ensemble strategies in TTE, the temperature τ
was set to 1.0 with a dropout ratio of 0.9 for ResNet50-GN, and τ = 10.0 with a dropout ratio of
0.4 for ViTBase. The value of m0 was fixed at 1.0 for both ResNet and ViT models. For de-biased
knowledge distillation, n was set to 0.99 and α to 3.0. These settings were consistent across all
test-time scenarios and baseline methods integrated with TTE to avoid over-tuned hyperparameter
configuration. When integrating TTE with existing TTA approaches, we followed the original im-
plementations and hyperparameter settings as specified in their papers to ensure accurate evaluation

6



Published as a conference paper at ICLR 2025

Table 1: Integration with previous TTA approaches. Classification accuracy (%) with Label Shifts
and Batch Size 1 setups (ImageNet-C, level 5). Underline depicts performance improvement when
applying TTE. Bold numbers are the best results.

Label Shifts Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

ResNet50-GN 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6

• Tent 3.9 4.6 4.7 16.4 6.0 27.2 29.0 18.9 27.4 2.4 72.1 46.1 8.1 52.4 56.1 25.0
• Tent + TTE 36.2 38.4 37.3 29.6 25.8 36.1 38.6 50.2 48.8 54.9 72.1 47.7 40.1 53.0 56.4 44.4
• SAR 33.1 36.5 35.2 18.9 20.8 33.3 29.8 27.8 44.9 35.2 71.9 46.6 7.6 52.1 56.2 36.7
• SAR + TTE 35.9 38.4 37.3 29.7 25.3 36.2 37.4 49.8 48.0 53.2 71.9 47.6 39.1 52.8 56.2 43.9
• DeYo 28.1 44.3 42.9 23.4 16.6 41.5 6.1 52.9 52.0 20.2 73.2 53.0 37.7 60.0 59.4 40.8
• DeYo + TTE 43.0 45.3 44.0 34.4 33.6 43.4 46.0 55.2 53.6 61.0 73.4 54.4 51.5 61.0 60.2 50.7
ViTBase 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9

• Tent 30.9 1.0 23.2 54.9 53.2 58.8 54.3 13.3 12.5 69.8 76.3 66.3 59.7 69.8 66.8 47.4
• Tent + TTE 46.6 45.4 47.9 55.4 54.4 59.0 55.3 62.7 62.0 69.9 76.4 66.3 61.7 69.8 67.0 60.0
• SAR 46.6 29.5 48.1 55.2 54.2 59.0 54.6 58.0 44.1 69.8 76.2 66.1 60.9 69.7 66.6 57.2
• SAR + TTE 48.6 46.4 48.4 55.8 55.2 59.4 55.8 63.2 62.4 70.1 76.4 66.4 62.4 70.0 67.0 60.5
• DeYo 49.1 35.9 53.6 57.6 58.6 63.8 37.5 67.9 66.0 73.1 77.9 66.5 68.6 73.5 70.1 61.3
• DeYo + TTE 54.0 54.7 55.2 58.9 59.7 64.5 62.1 68.3 66.7 73.9 78.0 68.3 69.3 73.8 70.3 65.2

Batch Size 1 Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

ResNet50-GN 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6

• Tent 3.1 4.1 3.7 16.6 5.2 27.2 29.0 17.7 25.1 1.9 72.0 46.2 8.1 52.7 56.3 24.6
• Tent + TTE 41.6 43.9 42.7 33.8 31.2 41.0 44.1 53.5 52.2 59.3 73.1 51.3 47.8 57.7 58.1 48.7
• SAR 23.4 26.5 23.9 18.4 15.1 28.6 30.3 44.4 44.8 27.4 72.3 44.7 14.6 47.0 56.1 34.5
• SAR + TTE 25.9 28.6 26.7 23.7 17.7 30.8 32.4 48.0 46.1 42.1 72.2 45.2 34.2 47.7 56.1 38.5
• DeYo 41.3 44.2 42.4 23.7 25.1 41.4 19.9 54.6 52.2 1.9 73.4 53.4 39.9 59.9 59.7 42.2
• DeYo + TTE 42.5 44.9 43.5 34.8 32.8 43.3 45.9 55.8 53.7 60.5 73.4 54.4 51.0 60.9 60.4 50.5
ViTBase 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9

• Tent 43.2 1.6 44.0 52.6 48.9 55.8 51.2 22.3 21.5 67.0 75.0 64.9 54.3 67.2 64.4 48.9
• Tent + TTE 49.2 48.8 50.1 56.2 55.8 60.2 56.9 64.3 63.6 71.4 76.9 67.0 64.1 70.7 68.1 61.6
• SAR 40.9 36.6 41.9 53.4 50.5 57.4 52.9 59.1 57.2 68.9 75.5 65.6 58.1 68.9 65.9 56.9
• SAR + TTE 43.6 40.4 44.3 55.2 53.1 59.2 55.4 61.5 61.9 70.7 76.7 66.7 61.9 70.2 67.3 59.2
• DeYo 53.1 51.2 54.3 58.8 59.6 64.0 37.4 68.1 66.4 73.7 78.3 68.2 68.5 73.7 70.5 63.1
• DeYo + TTE 53.8 54.0 54.6 59.1 59.7 64.4 62.3 68.4 66.8 73.9 78.3 68.5 69.2 73.9 70.7 65.2

of TTE’s effects. Comparative methods are introduced in each comparison section. Implementation
details are provided in Appendix C.1 and C.2.

4.1 COMPARISON STUDY

Table 2: Classification accuracy (%) with
the Mix Shifts setup (ImageNet-C, level 5).
Underline depicts improvement when apply-
ing TTE. Bold presents the best results.

Methods ResNet50-GN ViTBase

No Adapt 30.6 29.9

• Tent 33.1 52.3
• Tent+TTE 38.7 57.2
• SAR 38.1 57.1
• SAR+TTE 39.1 57.5
• DeYO 33.8 58.6
• DeYO+TTE 42.9 60.6

Integration with previous TTA approaches. TTE
was applied to three representative TTA approaches
to verify its effectiveness and general applicability:
Tent (Wang et al., 2021) introduced entropy mini-
mization; SAR (Niu et al., 2023) added sharpness-
aware entropy minimization for optimization stabil-
ity; and DeYO (Lee et al., 2024) introduced object-
based sample weighting and selection. We followed
the three wild test scenarios from Niu et al. (2023)
using ImageNet-C: Label Shifts where batches are
class-imbalanced with most samples belonging to
the same class, Batch Size 1 where each batch con-
tains only one sample, testing adaptation with minimal information, and Mix Shifts where batches
contain samples from various distributions, testing adaptation with multiple shifts simultaneously.

Table 1 presents classification accuracy across 15 distributions in ImageNet-C with the two setups
of Label Shifts and Batch Size 1. Table 2 shows classification accuracy for the Mix Shifts setup.
The results along with the standard deviations are detailed in Table 14 and 15. Integrating TTE
(+TTE) significantly improved accuracy compared to using the original methods alone. Interest-
ingly, while Tent initially performed worse than SAR, Tent+TTE achieved comparable results to
SAR+TTE in Label/Mix Shifts and even outperforms SAR+TTE in Batch Size 1 (48.7% vs. 38.5%
on ResNet50-GN, and 61.6% vs. 59.2% on ViTBase). This suggests that sharpness-aware optimiza-
tion in SAR has less benefit for adaptation with small batch size. The DeYO+TTE delivered the
best performance across all challenging scenarios, outperforming DeYO. Specifically, it achieved
an average accuracy improvement of +9.9% in Label Shifts, +8.3% in Batch Size 1, and +11.1% in
Mix Shifts on ResNet50-GN, and +3.9%, +2.1%, and +1.9% on ViTBase. Notably, +TTE remained
stable across most setups while previous methods experienced model collapse in certain cases (e.g.,
shot noise in Label Shifts). The experiments showed that TTE can enhance adaptation performance
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Table 3: Continual TTA with non-i.i.d. conditions. Classification accuracy (%) with ImageNet-C
(level 5). Bold numbers are the best results.

Adaptation Order (−→)

Methods Gauss Defoc Snow Contr Shot Glass Frost Elastic Impul Motion Fog Pixel Zoom Brit JPEG Avg

ResNet50-GN 18.0 19.8 40.4 36.3 19.8 11.4 47.3 18.6 17.9 21.4 33.6 28.4 24.9 69.3 52.3 30.6

• Tent 3.9 1.8 1.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6
• CoTTA 23.5 5.5 2.0 0.7 0.4 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.2
• SAR 33.1 16.8 44.7 44.6 42.3 18.8 45.7 37.8 39.7 9.3 3.1 2.1 0.7 5.4 1.2 23.0
• DeYO 28.1 3.7 7.2 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.8
• TTE (w. DeYO) 43.0 31.7 52.7 52.3 45.1 36.4 52.2 53.6 40.9 43.0 59.1 60.3 47.4 68.9 59.0 49.7
ViTBase 9.4 29.1 15.8 43.9 6.7 23.4 26.3 30.5 8.3 34.0 47.4 44.5 27.0 54.7 47.6 29.9

• Tent 30.9 18.5 7.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 3.9
• CoTTA 34.1 13.6 2.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.4
• SAR 46.6 54.2 54.7 49.0 38.7 38.9 45.3 45.3 37.5 40.0 45.8 50.0 37.3 58.6 48.6 46.0
• DeYO 49.1 36.7 63.3 61.4 52.8 49.9 59.1 62.2 48.9 54.0 61.5 69.2 2.2 64.8 67.2 53.5
• TTE (w. DeYO) 54.0 55.2 64.6 62.5 54.2 55.9 62.6 66.8 52.0 59.1 68.5 69.9 55.2 74.9 68.4 61.6

Table 4: TTA with natural distribution shifts. Classification accuracy (%) with ImageNet-Sketch
(S), ImageNet-Rendition (R), ImageNet-V2 (V2). Bold numbers are the best results.

(a) Label Shifts
Methods S R V2 Avg

ResNet50-GN 29.2 40.8 68.9 46.3

• Tent 30.8 41.5 68.9 47.1
• CoTTA 30.8 41.2 68.8 46.9
• SAR 30.6 41.6 68.9 47.0
• DeYO 34.6 44.4 68.9 49.3
• TTE (w. DeYO) 36.9 45.1 68.9 50.3

ViTBase 18.2 43.1 66.2 37.9

• Tent 8.8 41.9 68.9 39.8
• CoTTA 28.4 45.1 67.5 47.0
• SAR 17.8 45.1 68.5 43.8
• DeYO 42.4 58.6 71.1 57.3
• TTE (w. DeYO) 43.6 59.1 71.1 57.9

(b) Batch Size 1
Methods S R V2 Avg

ResNet50-GN 29.2 40.8 68.9 46.3

• Tent 31.9 42.1 68.9 47.6
• CoTTA 26.7 40.6 68.7 45.3
• SAR 31.6 41.9 68.9 47.5
• DeYO 37.0 46.0 69.0 50.7
• TTE (w. DeYO) 39.1 47.1 69.0 51.7

ViTBase 18.2 43.1 66.2 37.9

• Tent 7.0 40.6 69.1 38.9
• CoTTA 24.0 46.0 66.9 45.6
• SAR 26.4 44.7 69.4 46.8
• DeYO 43.6 59.8 71.2 58.2
• TTE (w. DeYO) 45.0 61.3 71.3 59.2

even further when paired models have stronger representations. TTE would have potential to boost
performance in future TTA methods.

Continual TTA with non-i.i.d. conditions. We extended the ImageNet-C scenarios to continual
TTA with non-i.i.d. distributions and classes. These challenging scenarios require models to adapt to
imbalanced classes (Label Shifts) across 15 corruptions continuously, a setting where TTA models
are prone to collapse. For comparison, we included CoTTA (Wang et al., 2022), originally designed
for continual TTA with a teacher-student framework. Table 3 reports classification accuracy, with
detailed results and standard deviations in Table 16. TTE consistently achieved the highest average
accuracy, with 49.7% on ResNet50-GN and 61.6% on ViTBase, while other methods, including
DeYO, showed unstable and near-zero accuracy in later adaptation stages (all comparative methods
on ResNet50-GN and Tent, CoTTA on ViTBase). The results highlight that ensemble strategies
improve model representations for better adaptation, while robust knowledge distillation stabilizes
TTA optimization and prevents model collapse. Furthermore, we conducted these experiments with
other baseline methods integrated with TTE, as shown in Table 11, and compared their performance
in addressing the issue of catastrophic forgetting in Figure 8.

Natural distribution shifts. We evaluated adaptation under natural distribution shifts by combining
two challenging scenarios: Label Shifts and Batch Size 1. Table 4 presents classification accuracy
for both ResNet50-GN and ViTBase. TTE proved highly effective on natural distribution shifts,
consistently outperformed DeYO with a +1.0% gain on ResNet50-GN and +0.6% on ViTBase for
Label Shifts, and a +1.0% on ResNet50-GN and +1.0% on ViTBase in the Batch Size 1. Notably,
the ensemble strategies demonstrated strong benefits on ImageNet-R where natural shifts occur con-
currently, outperforming DeYO across all cases. However, in ImageNet-V2, which features intrinsic
shifts, TTE provided modest gains (0.0% to 0.1%) compared to DeYO, suggesting that further in-
vestigation is needed for this type of shift. Additionally, Table 12 reports the results of other baseline
methods integrated with TTE.

Computational complexity. Integrating TTE required only an additional feedforward pass for fe,
resulting in minimal computational overhead. Table 9 in Appendix compares the computational
complexity with baseline models. Further discussion is provided in Appendix C.3.
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Table 5: Impacts of TTE components on classification accuracy (%) in Label Shifts with ImageNet-
C. DB: de-biasing in knowledge distillation, WSE: weight-space ensemble with adaptive momen-
tum, RKL: reverse KL divergence, Do: dropout ensemble.

Methods Gauss Shot Impul Defoc Glass Motio Zoom Snow Frost Fog Brit Contr Elast Pixel JPEG Avg
ResNet50-GN 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6
DeYO 28.1 44.3 42.9 23.4 16.6 41.5 6.1 52.9 52.0 20.2 73.2 53.0 37.7 60.0 59.4 40.8
+DB 32.8 36.3 35.9 23.7 20.8 35.6 32.9 49.9 47.1 51.7 72.6 49.0 36.6 55.2 57.6 42.5
+DB+WSE 42.5 44.7 43.6 34.3 32.7 42.8 44.2 53.8 52.5 59.2 73.2 53.5 49.4 59.5 59.7 49.7
+DB+WSE+RKL 42.6 44.9 43.9 34.4 33.0 42.9 44.4 54.0 52.7 59.5 73.3 53.7 49.9 59.6 59.7 49.9
+DB+WSE+RKL+DO 43.0 45.3 44.0 34.4 33.6 43.4 46.0 55.2 53.6 61.0 73.4 54.4 51.5 61.0 60.2 50.7
ViTBase 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9
DeYO 49.1 35.9 53.6 57.6 58.6 63.8 37.5 67.9 66.0 73.1 77.9 66.5 68.6 73.5 70.1 61.3
+DB 49.3 47.8 50.4 57.0 56.1 60.7 55.8 64.9 64.3 71.7 78.0 66.5 65.0 72.0 68.9 61.9
+DB+WSE 53.0 50.7 54.1 58.7 59.0 63.3 59.6 67.3 66.1 73.4 78.2 68.5 68.2 73.2 69.9 64.2
+DB+WSE+RKL 53.4 53.3 54.4 58.9 59.3 63.8 59.6 67.7 66.4 73.7 78.2 68.5 68.5 73.4 70.1 64.6
+DB+WSE+RKL+DO 54.0 54.7 55.2 58.9 59.7 64.5 62.1 68.3 66.7 73.9 78.0 68.3 69.3 73.8 70.3 65.2

Figure 5: Momentum profile in Continual TTA with non i.i.d. conditions (left axis). Classification
accuracy (%) of TTE, reported to compare constant m and adaptive m in this setup. (right axis)

4.2 ABLATION STUDY

Impact of the proposed components. We analyzed the contribution of each proposed component
to improving the baseline DeYO. Table 5 shows classification accuracy as components are added
sequentially. First, we constructed a conventional teacher-student framework with DeYO, updated
using EMA with m = 0.999 and standard KL divergence for knowledge distillation, which are
the standard setting in such frameworks (Performance for this setup is not included). Adding de-
biasing in knowledge distillation (+DB) prevented collapse and led to general gains of +1.7% on
ResNet50-GN and +0.6% on ViTBase in average. Introducing the weight-space ensemble with
adaptive momentum (+WSE) improved performance across all distributions, with average gains of
+7.2% on ResNet50-GN and +2.3% on ViTBase. Replacing the standard KL divergence with reverse
KL (+RKL) provided the average gains of +0.2% on ResNet50-GN and +0.4% on ViTBase. Lastly,
applying dropout to fa (+DO) further improved average accuracy by +0.8% on ResNet50-GN and
+0.6% on ViTBase.

Table 6: Classification accuracy
(%) with varying momentum val-
ues in TTE (ImageNet-C, level 5).

ResNet50-GN ViTBase

DeYO 40.8 61.3

m = 0.999 43.0 62.0
m = 0.99 49.3 65.0
m = 0.9 50.6 64.8
m = 0.5 50.7 64.6
Adaptive m 50.7 65.2

Adaptive momentum. Table 6 compares the proposed adap-
tive momentum scheme with the conventional constant scheme
across a wide range of m values in Label Shifts for TTE
with DeYO. The commonly used value of m = 0.999
from other momentum-based approaches (Wang et al., 2022;
Yuan et al., 2023) did not yield significant ensemble ef-
fects, resulting in lower accuracy. In contrast, lower momen-
tum values enhanced the ensemble effect, leading to better
performance—specifically m = 0.5 for ResNet50-GN and
m = 0.99 for ViTBase. The proposed adaptive momentum
scheme, which lower momentum based on probabilistic dis-
tance, achieved the best performance for ViTBase. For ResNet, lower momentum generally worked
well. These results are consistent with our preliminary study, which observed linear mode connec-
tivity between TTA models.

To further verify effectiveness of the adaptive scheme, we tested it in the challenging scenario of
Continual TTA with non-i.i.d. conditions for ViTBase, where distribution shifts were sequentially
changed. Figure 5 illustrates the momentum values during TTA and compares classification accu-
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Figure 6: Hyperparameter Sensitivity. Average classification accuracy (%) in Label Shifts
(ImageNet-C, level 5). If not specified in experiments, the default values were: dropout ratio =
0.9, τ = 15.0 for ResNet50-GN and dropout ratio = 0.4, τ = 15.0 for ViTBase.

racy between constant and adaptive schemes. Note that the constant momentum value was set to
m = 0.99, as it achieved the best performance in Table 6. As shown in Figure 5, momentum values
were adjusted to lower levels during transitions to new distributions, actively promoting ensemble
construction. This dynamic adjustment led to a +1.8% accuracy improvement. For additional study,
the proposed adaptive weight averaging is compared with stochastic weight averaging (Izmailov
et al., 2018) in Appendix D.5.

Ensemble hyperparameter sensitivity. Figure 6 illustrates the impact of varying ensemble hyper-
parameters (with DeYO) on ViTBase and ResNet. It is noteworthy that TTE steadily outperformed
DeYO across different hyperparameter values, demonstrating the low sensitivity of hyperparameter.
For dropout, increasing the ratio generally enhanced accuracy compared to a ratio of 0.0. However,
the extreme case of a high dropout ratio above 0.9 led to decreased accuracy in ViTBase while led
to increased accuracy in ResNet. For the temperature τ controlling decaying factor in adaptive mo-
mentum, TTE achieved the best performance with τ = 1.0 for ResNet and τ = 10.0 for ViTBase.

Figure 7: Average classification accuracy (%)
with standard deviation in Label Shits for ViT-
Base, with varying hyperparameters in de-biasing
scheme. The values for ensemble hyperparame-
ters were set to dropout ratio=0.4 and τ = 15.0.

Analysis for de-biasing scheme. The de-
biasing scheme, which penalizes biased rep-
resentations in knowledge distillation, is more
closely related to optimization stability than to
adaptation capability. To assess optimization
stability, Figure 7 presents the standard devia-
tion of performance across three random seeds.
As α, controlling de-biasing degree in ŷ′e, ap-
proched 1.0, classification accuracy dropped
and standard deviation increased, indicating the
models struggled with biasing under certain
random seeds. When the bias update rate n ap-
proached 1.0, accuracy decreased with greater
standard deviation, suggesting the update was
too slow to estimate bias properly. Extensive
experiments with α = 3.0 and n = 0.99 con-
firmed the de-biasing scheme effectively prevented model collapse in diverse test-time scenarios.
However, we observed the sensitivity of the proposed de-biasing scheme with true-biased scenario
where same class samples were fed into the model consecutively over 100 times. Further analysis is
included in Appendix D.6.

5 CONCLUSION

We proposed a novel test-time adaptation (TTA) approach, TTE, that enhances the performance of
existing methods through ensemble strategies. TTE consistently improved adaptation, demonstrated
broad applicability, and remained computationally efficient. Extensive experiments confirmed its
effectiveness, and notably, TTE exhibited exceptional stability, preventing model collapse across
four datasets and four test-time scenarios. This approach holds significant potential for advancing
future TTA developments.
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Mario Döbler, Robert A Marsden, and Bin Yang. Robust mean teacher for continual and gradual test-
time adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7704–7714, 2023.

Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Selecting relevant features from a multi-
domain representation for few-shot classification. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16, pp. 769–786.
Springer, 2020.

Utku Evci, Vincent Dumoulin, Hugo Larochelle, and Michael C Mozer. Head2toe: Utilizing in-
termediate representations for better transfer learning. In International Conference on Machine
Learning, pp. 6009–6033. PMLR, 2022.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850–5861, 2020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthurai N
Suganthan. Ensemble deep learning: A review. Engineering Applications of Artificial Intelli-
gence, 115:105151, 2022.

Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with masked autoen-
coders. Advances in Neural Information Processing Systems, 35:29374–29385, 2022.

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. Note: Ro-
bust continual test-time adaptation against temporal correlation. Advances in Neural Information
Processing Systems, 35:27253–27266, 2022.

Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. Sotta: Robust
test-time adaptation on noisy data streams. Advances in Neural Information Processing Systems,
36, 2024.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. ICCV,
2021.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

11



Published as a conference paper at ICLR 2025

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in Neural Information Processing Systems, 31, 2018.

Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-time adaptation via self-training with
nearest neighbor information. arXiv preprint arXiv:2207.10792, 2022.

Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sun-
groh Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled
factors. In International Conference on Learning Representations, 2024.

Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal representations: A unified look at multiple
task and domain learning. International Journal of Computer Vision, pp. 1–25, 2023.

Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. Ttn: A domain-shift aware batch
normalization in test-time adaptation. arXiv preprint arXiv:2302.05155, 2023.

Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? Advances in Neural
Information Processing Systems, 34:21808–21820, 2021.

Wesley Maddox, Shuai Tang, Pablo Moreno, Andrew Gordon Wilson, and Andreas Damianou. Fast
adaptation with linearized neural networks. In International Conference on Artificial Intelligence
and Statistics, pp. 2737–2745. PMLR, 2021.

Saypraseuth Mounsaveng, Florent Chiaroni, Malik Boudiaf, Marco Pedersoli, and Ismail Ben Ayed.
Bag of tricks for fully test-time adaptation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 1936–1945, 2024.

Fangzhou Mu, Yingyu Liang, and Yin Li. Gradients as features for deep representation learning.
arXiv preprint arXiv:2004.05529, 2020.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-
ing? Advances in Neural Information Processing Systems, 33:512–523, 2020.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In International Conference on
Machine Learning, pp. 16888–16905. PMLR, 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In International Conference on
Learning Representations, 2023.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 35:10821–10836, 2022.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International Conference
on Machine Learning, pp. 9229–9248. PMLR, 2020.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
Schmidt. Measuring robustness to natural distribution shifts in image classification. Advances
in Neural Information Processing Systems, 33:18583–18599, 2020.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In International Conference on Learning Repre-
sentations, 2021.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
tions by penalizing local predictive power. In Advances in Neural Information Processing Sys-
tems, pp. 10506–10518, 2019a.

12



Published as a conference paper at ICLR 2025

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7201–7211, 2022.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross
entropy for robust learning with noisy labels. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 322–330, 2019b.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, pp. 7959–7971, 2022.

Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15922–15932, 2023.
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A RELATED WORK

Test-time adaptation (TTA), using pretrained models, has become essential for adjusting to distri-
bution shifts in test data (Wang et al., 2021). Many existing methods have focused on optimizing
stability to prevent model collapse amid dynamic distribution shifts, by selecting reliable samples
(Niu et al., 2023; 2022; Yuan et al., 2023), ensuring consistency in predictions (Wang et al., 2022;
Zhang et al., 2022b; Chen et al., 2022), manipulating affine transform statistics (Gong et al., 2022;
Lim et al., 2023; Zhao et al., 2023) and using a robust optimizer (Niu et al., 2023; Gong et al.,
2024). However, enhancing model representation for adaptation capability remains less explored to
date. Similar to the proposed TTE, several researchers have adopted student-teacher networks and
employed an exponential moving average strategy to update the teacher network (Wang et al., 2022;
Yuan et al., 2023; Döbler et al., 2023; Chen et al., 2022). Unlike TTE, however, they typically have
introduced a weight-averaged network to ensure optimization stability and minimize abrupt model
changes by using a high momentum value for the average, close to 0.999. To achieve relevant rep-
resentations, these methods have often utilized dense image augmentation or relied on source data.
Unfortunately, such strategies resulted in increased computational complexity.

Test-time training, similar to TTA, has been designed to actively adjust a pretrained model to dis-
tribution shifts using test data. Unlike TTA, which domain adaptation processes are independent
of the training phase, test-time training starts by developing a training process that can be extended
into a test phase for adaptation (Sun et al., 2020). Most strategies have implemented a combined
optimization of supervised and self-supervised learning during a training phase, subsequently per-
forming the self-supervised learning with test data (Sun et al., 2020; Liu et al., 2021; Gandelsman
et al., 2022). However, dependence on specific training procedures and architectures, designed for
self-supervised objectives, could restrict the methods’ applicability to various off-the-shelf models.
Additionally, these methods sometimes demanded substantial computational resources due to the
intensive augmentations used in self-supervised learning (Gandelsman et al., 2022).

Fine-tuning under linear approximation has garnered significant attention as an efficient strategy
for adapting complex pretrained models to downstream tasks. Research has shown that the later
stages of training deep neural networks often stabilize within nearly-convex regions, suggesting that
the landscape of the models’ cost functions is more tractable (Izmailov et al., 2018; Frankle et al.,
2020; Fort et al., 2020). This observation persists even when fine-tuning large networks with datasets
much smaller than those required to train a model from scratch. Further advancing this concept,
fine-tuning processes have been approximated by a first-order Taylor expansion, transforming the
process into a linear system based on Neural Tangent Kernel (NTK) features (Maddox et al., 2021;
Jacot et al., 2018). More recently, notable approaches have proposed averaging the weights of
various fine-tuned models, effectively replicating the performance of output ensembles across both
in-distribution and out-of-distribution datasets, and underscoring the near-linear characteristics of
the fine-tuning process (Wortsman et al., 2022; Rame et al., 2022). Inspired by these intriguing
findings, we aim to develop a TTA method based on the premise that test-time tuning of pretrained
models can also exhibit near-linear characteristics.

Constructing versatile representations is crucial for improving generalization performance, espe-
cially in distribution shifts. Researchers have increased the versatility of representations by diversi-
fying architectures, datasets, and hyper-parameters (Dvornik et al., 2020; Chowdhury et al., 2021;
Ganaie et al., 2022), rather than merely enlarging dataset sizes. Some studies have collected features
from different models (Li et al., 2023), while others have integrated diverse representations through
weight averaging (Wortsman et al., 2022; Rame et al., 2022). Notably, recent research has shown
that redundant representations, although not beneficial for in-distribution performance, can signifi-
cantly enhance out-of-distribution generalization (Zhang & Bottou, 2023). Building on this concept,
the proposed components in TTE aim to cultivate versatile representations during test time, thereby
enhancing performance against unexpected distribution shifts.
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B DETAILS OF THE PRELIMINARY STUDY

B.1 THEORETICAL ANALYSIS OF LINEAR MODE CONNECTIVITY IN TTA

Our preliminary experiments suggest that weight-space interpolation can mimic the effects observed
in output-space interpolation. It is crucial, however, to understand the conditions under which
weight-space interpolation can theoretically approximate output-space interpolation. Previous re-
search (Mu et al., 2020; Maddox et al., 2021) has proposed approximating the fine-tuning process
using a first-order Taylor expansion, resulting in a linear system that operates on Neural Tangent Ker-
nel (NTK) features (Jacot et al., 2018; Fort et al., 2020). We extend this hypothesis to TTA, a specific
form of fine-tuning, positing that it can similarly be approximated by a linear expansion. Under this
framework, weight-space interpolation approximates output-space interpolation correctly.

Proposition. If for any θ within Θ = {(1− α)θ1 + αθ2 : α ∈ [0, 1]}, the function f(θ) can be
approximated linearly around θ0 as follows: f(θ) = f(θ0) +∇f(θ0)⊤(θ − θ0), then weight-space
interpolation between θ1 and θ2 is equivalent to performing an output-space interpolation. Here, θ0
denotes the parameter of a pretrained model.

Proof. We initiate with output-space ensemble and retrieve weight-space ensemble

(1− α)f(θ1) + αf(θ2)

= (1− α)f(θ0) + (1− α)∇f(θ0)⊤(θ1 − θ0) + αf(θ0) + α∇f(θ0)⊤(θ2 − θ0)

= f(θ0) +∇f(θ0)⊤((1− α)(θ1 − θ0) + α(θ2 − θ0))

= f(θ0) +∇f(θ0)⊤((1− α)θ1 + αθ2 − θ0))

= f((1− α)θ1 + αθ2)

(6)

B.2 PRELIMINARY STUDY FOR LINEAR MODE CONNECTIVITY

We conducted a preliminary study to empirically investigate the linear connectivity between two
TTA models and to suggest strong cues for the benefits of weight-space interpolation for TTA. All
experiments in the preliminary study were performed with ImageNet-C (severity level 5) by using
Tent (Wang et al., 2021). The sample selection scheme suggested in Niu et al. (2023) was integrated
with Tent to prevent model collapse and to clearly analyze the linear property in TTA. The details of
experimental procedures are as follows:

1. We performed TTA for four corruptions individually, which were Gaussian noise, defocus
blur, snow, and contrast.

2. Two TTA models were interpolated with a mixing coefficient α in both output and weight
spaces.

3. Classification accuracy was measured over all 15 corruptions in ImageNet-C (level 5), by
using the predictions from the two types of interpolation.

4. We repeated the second and the third steps by changing α in [0, 1].

Accuracy values averaged across two target corruptions were used as x values in Figure 1, to show
adaptation performance. Accuracy over all other corruptions were used as y values to show gener-
alization performance.

B.3 EXPANDING TO VARIOUS TTA SCENARIOS

Inspired by the results in Appendix B.2, we conducted an additional preliminary study to verify the
effects of linear mode connectivity across various TTA scenarios. In this study, four corruptions
(Gaussian noise, defocus blur, snow, and contrast) were selected as target distributions, while the
remaining corruptions were considered as non-target distributions. We assessed weight-space inter-
polation through two scenarios: single-instance TTA, where each model adapts to one corruption,
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and continual TTA, where a model sequentially updates across four target distributions, reflect-
ing practical settings. The classification accuracy for both target and non-target corruptions was
measured after TTA processes.

Single-instance TTA. We constructed a ensemble by averaging the parameters of four models with
0.25 mixing coefficients. Table 7 compares the performance of each TTA model and their ensem-
ble. Interestingly, the ensemble model achieved the best average performance on both target and
non-target corruptions, suggesting that merely averaging model parameters can effectively capture
diverse representations from multiple models.

Continual TTA. Model parameters were saved before transitioning to subsequent corruptions,
yielding three intermediate models plus a final model. Table 8 compares the performance of the
final model against the ensemble of the four models with 0.25 coefficients. The ensemble models
generally outperformed the continual models, demonstrating that linear mode connectivity remains
valid in continual setups. Notably, even with the sample selection scheme in the baseline TTA mod-
els, the continual model collapsed in the sequence of D−→ S−→ C−→ G, providing near-zero accuracy,
while the ensemble model mitigated the performance degradation.

Table 7: Classification accuracy (%) under single-instance TTA. Note that WSE stands for weight-
space ensemble. G,D,S and C represent Gaussian noise, defocus blur, snow and contrast respec-
tively. Bold and underlined numbers are the best and the second best results.
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No adapt 9.4 29.1 15.8 43.9 24.6 6.7 8.3 23.4 34.0 27.0 26.3 47.4 54.7 30.5 44.5 47.6 31.8

TTA (G) 51.0 28.4 42.3 29.1 37.7 47.8 51.7 29.9 38.8 32.4 49.0 44.2 70.2 39.5 57.1 57.1 47.1
TTT (D) 12.9 57.2 38.5 52.5 40.3 11.8 12.1 35.2 53.4 40.4 42.1 60.0 71.7 34.4 57.3 57.4 43.2
TTA (S) 21.0 35.5 60.9 37.4 38.7 16.3 20.8 31.4 43.3 32.0 58.2 52.6 74.7 40.8 55.7 57.8 44.0
TTA (C) 14.0 43.5 29.0 67.7 38.6 11.4 13.1 30.2 46.1 34.7 39.2 61.4 65.5 32.2 53.9 56.5 40.4
WSE (G+D+S+C) 30.7 45.7 49.5 56.0 45.5 26.2 31.6 34.5 49.5 38.2 51.1 59.3 73.7 38.7 60.6 60.5 47.6

Table 8: Classification accuracy (%) under continual TTA with four corruption orders. Notations
are identical to Table 7.

Target corruptions Non-target corruptions
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No adapt 9.4 29.1 15.8 43.9 24.6 6.7 8.3 23.4 34.0 27.0 26.3 47.4 54.7 30.5 44.5 47.6 31.8

TTA (G−→ D−→ S−→ C) 38.7 52.5 40.2 66.1 49.4 36.9 39.9 35.0 50.5 33.1 51.0 60.1 75.2 38.3 62.4 63.5 49.6
WSE (G+D+S+C) 45.9 51.7 49.1 56.1 50.7 43.5 46.8 35.9 50.4 36.4 53.8 58.6 75.4 39.9 63.3 62.9 51.5
TTA (C−→ G−→ D−→ S) 40.4 46.4 42.5 51.9 45.3 38.1 40.8 27.4 44.9 27.9 51.7 52.1 74.2 35.2 60.1 62.4 46.8
WSE (C+G+D+S) 43.6 51.3 49.9 64.1 52.2 39.8 44.3 35.3 51.4 38.3 52.5 61.8 74.5 38.5 62.5 63.3 51.1
TTA (S−→ C−→ G−→ D) 44.0 55.8 56.3 62.2 54.6 41.2 44.5 38.1 53.7 41.4 52.8 61.3 75.8 41.5 61.4 63.7 52.3
WSE (S+C+G+D) 40.0 48.6 60.0 64.0 53.1 35.5 40.7 37.8 51.6 39.4 56.9 60.9 75.6 42.5 62.7 63.8 51.6

TTA (D−→ S−→ C−→ G) 0.2 0.3 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.4 0.1 9.9 0.6 2.3 3.7 1.6
WSE (D+S+C+G) 2.4 16.9 3.5 6.8 7.4 2.8 1.9 4.9 11.5 4.9 18.5 13.1 62.3 11.6 44.8 44.1 20.0
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C DETAILS OF IMPLEMENTATION

C.1 BASELINE MODELS

We utilized pre-trained ViT-base1 and ResNet50-GN2 obtained from the publicly available PyTorch
Image Models repository Wightman (2019). The public models used were trained on ImageNet-1k
for image recognition tasks. The implementations of the comparative methods were obtained from
their public repositories and followed the guidelines outlined in their original papers. Additionally,
when integrating TTE with existing TTA approaches, we followed the original implementations and
hyperparameter settings as specified in the respective papers to ensure accurate evaluation of TTE’s
effects. Further details are provided below.

Tent (Wang et al., 2021)3 Tent used stochastic gradient descent (SGD) with a momentum of 0.9 as
the optimizer. The learning rate was set to 0.00025 for ResNet50-GN and 0.001 for ViTBase. For
a batch size of 1, the learning rates were adjusted to 0.00025/32 for ResNet50-GN and 0.001/64 for
ViTBase. The trainable parameters included all affine parameters in the normalization layers.

CoTTA (Wang et al., 2022)4 used the Adam optimizer with a learning rate of 0.0025 for ResNet
and 0.001 for ViTBase. The method employed model-specific hyperparameters and reported their
values for ResNet, prompting us to search for optimal values for ViTBase. The restoration factor
p was explored within the range [0.01,0.9], and the EMA smoothing factor α was searched within
[0.1,0.001]. Based on performance, we selected p = 0.7 and α = 0.001 for ViTBase, while for
ResNet, we followed the author’s recommendation with p = 0.01 and α = 0.001. Additionally,
the augmentation confidence threshold pth was set to 0.1. All weights in the architectures were
trainable.

SAR (Niu et al., 2023)5 used SGD with a momentum of 0.9 as the optimizer. The learning rate was
set to 0.00025 for ResNet50-GN and 0.001 for ViTBase. For a batch size of 1, the learning rates
were adjusted to 0.00025/16 for ResNet50-GN and 0.001/32 for ViTBase. We set the sharpness
threshold to ρ = 0.05 and the entropy threshold to E0 = 0.4 · ln(1000). The learnable parameters
included affine parameters in the normalization layers, while the top layers were frozen: layer 4 in
ResNet and blocks 9-11 in ViTBase.

DeYO (Lee et al., 2024)6 used SGD with a momentum of 0.9 as the optimizer. The learning rate
was set to 0.00025 for ResNet50-GN and 0.001 for ViTBase. For a batch size of 1, the learning rates
were adjusted to 0.00025/16 for ResNet50-GN and 0.001/32 for ViTBase. The required hyperpa-
rameters for DeYO are the entropy threshold τEnt, the probability difference threshold τPLPD, and the
normalizing factor Ent0. We set τEnt = 0.5 × ln(1000), τPLPD = 0.3, and Ent0 = 0.4 × ln(1000).
The learnable parameters included the affine parameters in the normalization layers, while the top
layers were frozen: layer 4 in ResNet and blocks 9-11 in ViTBase.

+ TTE (Ours) employed SGD with a momentum of 0.9 as the optimizer. The learning rate was set
to 0.00025 for ResNet50-GN and 0.001 for ViTBase. For a batch size of 1, the learning rates were
adjusted to 0.00025/16 for ResNet50-GN and 0.001/32 for ViTBase. The temperature τ was set to
1.0 with a dropout ratio of 0.9 for ResNet, and τ = 10.0 with a dropout ratio of 0.4 for ViTBase. For
the de-biasing scheme, α = 3.0 and n = 0.99 were used. Note that a linear ramp-up was applied
to gradually increase m from 0.0 to m0 over initial 100 iterations for a batch size of 64, and initial
6400 iterations for a batch size of 1, where ensemble effects were insignificant. After the ramp-up
phase, the active momentum scheme was applied. The trainable parameters in TTE were identical
to those of the baseline model with which TTE was integrated.

1https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_
0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.
01-res_224.npz

2https://github.com/rwightman/pytorch-image-models/releases/download/
v0.1-rsb-weights/resnet50_gn_a1h2-8fe6c4d0.pth

3https://github.com/DequanWang/tent
4https://github.com/qinenergy/cotta
5https://github.com/mr-eggplant/SAR
6https://github.com/Jhyun17/DeYO
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C.2 ALGORITHMS

TTE was integrated into three existing methods to verify its effectiveness and broad applicability:
Tent (Wang et al., 2021), SAR (Niu et al., 2023), and DeYO (Lee et al., 2024). TTE was seamlessly
incorporated by leveraging the optimization procedures and sample selection/weighting mechanisms
originally proposed in these methods. The algorithms for Tent, SAR, and DeYO are detailed in Al-
gorithm 1, 2, and 3, respectively, with the parts introduced by TTE highlighted in blue. Importantly,
TTE required few implementation lines, adding minimal computational burden.

Algorithm 1: TTE + Tent (Wang et al., 2021)
Input: Test samples Dtest = {xi}Mi=1, adapter model fa(·; θa, ρ) with trainable parameters θ̃a ⊂ θa and a dropout

ratio ρ, ensemble model fe(·; θe) with θ̃e aligned to θ̃a, bias vector cbias, step size η > 0, momentum m,
debiasing parameters n, α.

Output: Predictions {ŷe,i}Mi=1.
1 Initialize θ̃a ← θ̃0, θ̃e ← θ̃0, cbias ← 0;
2 for xi ∈ Dtest do
3 Predict ŷa,i = fa(xi; θa, ρ), ŷe,i = fe(xi; θe) and compute entropy E(ŷa,i; θa);
4 Compute weight w(ŷe,i) and de-biased representation ŷ′

e,i;
5 Compute KL(ŷa,i||ŷ′

e,i; θa) and total objective Ltte:

Ltte(ŷa,i, ŷ
′
e,i; θa) = E(ŷa,i; θa) +KL(ŷa,i||ŷ′

e,i; θa)

6 Compute gradient g = ∇θ̃a
Ltte(ŷa,i, ŷ

′
e,i; θa);

7 Update θ̃a ← θ̃a − ηg;
8 Compute momentum m from Eq.2 and update ensemble parameters: θ̃e ← m · θ̃e + (1−m) · θ̃a;
9 Compute first-order batch statistics µŷa,i

= 1
N

∑N
i=1 ŷa,i;

10 Update bias vector: cbias ← n · cbias + (1− n) · µŷa,i
;

11 end

Algorithm 2: TTE + SAR (Niu et al., 2023)
Input: Test samples Dtest = {xi}Mi=1, model fa(·; θa, ρ) with trainable parameters θ̃a ⊂ θa and a dropout ratio ρ,

ensemble model fe(·; θe) with θ̃e aligned to θ̃a, bias vector cbias, step size η > 0, neighborhood size ρ > 0,
τEnt > 0 in Eq. (2), e0 > 0 for model recovery. momentum m, debiasing parameters n, α.

Output: Predictions {ŷe,i}Mi=1.
1 Initialize θ̃a ← θ̃0, θ̃e ← θ̃0, moving average of entropy em = 0 cbias ← 0;
2 for xi ∈ Dtest do
3 Predict ŷa,i = fa(xi; θa, ρ), ŷe,i = fe(xi; θe) and compute entropy Ei = E(ŷa,i; θa);
4 if Ei > τEnt then
5 continue;
6 end
7 Compute weight w(ŷe,i) and de-biased representation ŷ′

e,i;
8 Compute KL(ŷa,i||ŷ′

e,i; θa) and total objective Ltte:

Ltte(ŷa,i, ŷ
′
e,i; θa) = E(ŷa,i; θa) +KL(ŷa,i||ŷ′

e,i; θa)

9 Compute gradient∇θ̃a
Ltte(ŷa,i, ŷ

′
e,i; θa);

10 Compute ϵ̂(θ̃) per Eq. (4);
11 Compute gradient approximation: g = ∇θ̃a

Ltte(ŷa,i, ŷ
′
e,i; θa)|θ+ϵ̂(θ);

12 Update θ̃a ← θ̃a − ηg;
13 Compute momentum m from Eq.2 and update ensemble parameters: θ̃e ← m · θ̃e + (1−m) · θ̃a;
14 Compute first-order batch statistics µŷa,i

= 1
N

∑N
i=1 ŷa,i;

15 Update bias vector: cbias ← n · cbias + (1− n) · µŷa,i
;

16 em = 0.9× em + 0.1× E(ŷa,i; θa + ϵ̂(θa)) if em ̸= 0 else E(xi; θa + ϵ̂(θa));
17 if em < e0 then
18 Recover model weights: θ̃a ← θ̃0, θ̃e ← θ̃0
19 end
20 end
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Algorithm 3: TTE + DeYO (Lee et al., 2024)
Input: Test samples Dtest = {xi}Mi=1, model fa(·; θa, ρ) with trainable parameters θ̃a ⊂ θa and a dropout ratio ρ,

ensemble model fe(·; θe) with θ̃e aligned to θ̃a, bias vector cbias, an object-destructive transformationA, step
size η > 0, and hyperparameters Ent0, τEnt, τPLPD > 0, momentum m, debiasing parameters n, α.

Output: Predictions {ŷi}Mi=1.
1 Initialize θ̃a ← θ̃0, θ̃e ← θ̃0, cbias ← 0;
2 for xi ∈ Dtest do
3 Predict ŷa,i = fa(xi; θa, ρ), ŷe,i = fe(xi; θe) and compute entropy Ei = E(ŷa,i; θa);
4 if Ei > τEnt then
5 continue;
6 end
7 Obtain x′

i = A(xi);
8 Compute pseudo-label probability difference PLPDθ(xi,x

′
i);

9 if PLPDθ(xi,x
′
i) < τPLPD then

10 continue;
11 end
12 Compute weight w(ŷe,i) and de-biased representation ŷ′

e,i;
13 Compute KL(ŷa,i||ŷ′

e,i; θa) and total objective Ltte:

Ltte(ŷa,i, ŷ
′
e,i; θa) = E(ŷa,i; θa) +KL(ŷa,i||ŷ′

e,i; θa)

14 Compute sample weight αθa (xi);
15 Compute the overall loss LDeYO = αθa (xi) · Ltte;
16 Compute gradient g = ∇θ̃a

LDeYO;

17 Update θ̃a ← θ̃a − ηg;
18 Compute momentum m from Eq.2 and update ensemble parameters: θ̃e ← m · θ̃e + (1−m) · θ̃a;
19 Compute first-order batch statistics µŷa,i

= 1
N

∑N
i=1 ŷa,i;

20 Update bias vector: cbias ← n · cbias + (1− n) · µŷa,i
;

21 end

C.3 COMPUTATIONAL COMPLEXITY

Integrating TTE required only an additional feedforward pass for fe, resulting in minimal computa-
tional overhead. Table 9 details the computation and runtime required for adaptation with ViTBase
under Gaussian noise (ImageNet-C, level 5). ViTBase was chosen for its superior performance over
ResNet. Integrating TTE introduced an additional network, fe, requiring only a single feedforward
pass to compute ŷe, adding minimal computational overhead. For example, a single feedforward
pass without adaptation took 3 minutes 57 seconds. That was why TTE integration resulted in about
a 4-minute increase in GPU time. In contrast to CoTTA, which relied on dense augmentations and
multiple feedforward passes for knowledge distillation, TTE maintained efficiency by requiring only
a single pass.

Table 9: Computational complexity and runtime for adaptation using ViTBase under Gaussian noise
(ImageNet-C, level 5) with a Label Shifts setup. The total sample size is 100,000. Bold numbers
present accuracy gain by applying TTE.

Methods #Model #Forward #Backward Other Computation GPU time (100k images) Accuracy (%)

No adapt 1 100k - n/a 3 min 57 sec (×1.0) 9.4
Tent 1 100k 100k n/a 8 min 12 sec (×2.1) 30.9
SAR 1 100k+75k 75k+72k weight perturbation 14 min 46 sec (×3.7) 46.6
DeYO 1 100k+92k 75k probability difference 11 min 49 sec (×3.0) 49.1

CoTTA 2 200k+479k 100k anchor probability 81 min 14 sec (×20.5) 34.1

Tent+TTE
2

200k 100k
Lrkl, cbias

12 min 30 sec (×3.2) 46.6(+15.7)
SAR+TTE 200k+72k 72k+72k 20 min 30 sec (×5.2) 48.6(+2.0)
DeYO+TTE 200k+89k 72k 15 min 47 sec (×4.0) 54.0(+4.9)
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D FURTHER ANALYSIS

D.1 FAILURE CASE ANALYSIS

In this section, we analyzed failure cases when applying ensemble strategies to TTA alone. Two en-
semble strategies were applied to a representative TTA method, Tent (Wang et al., 2021): construct-
ing an ensemble network fe through a weight-space ensemble of the original TTA model fa and
using knowledge distillation with standard KL divergence between outputs. Additionally, dropout
was applied to the penultimate layer of fa to further enhance ensemble representations. The hyper-
parameters for ensemble strategies were set as m0 = 1.0, τ = 1.0 and a dropout ratio 0.6.

We evaluated classification accuracy under the challenging Label Shift scenario on ViTBase and
ImageNet-C (level 5). To gain deeper insights, the loss barrier between fa and fe was measured as
a typical metric for assessing linear mode connectivity, following Fort et al. (2020). The loss barrier
was calculated along a linear interpolation path between the models in weight space, as described
by

max
α∈[0,1]

(
R̂(θα)−

1

2

(
R̂(θe) + R̂(θa)

))
, (7)

where R̂(θα) = 1
N

∑N
i L(fα(xi; θα), yi) and α is interpolation coefficient in [0, 1]. Here, L is

classification loss with input x and label y.

Table 10 compares TTA with and without the two ensemble strategies. Figure 3 visualizes the
average accuracy profile and prediction distributions for two representative datasets. The results
show that TTA is unstable in the challenging scenario and can sometimes perform worse than no
adaptation, due to biased class predictions (we call it model collapse). Applying ensemble strategies
could occasionally worsen performance by constructing ensembles with unreliable fa. Additional
methods are needed to prevent the model from biasing.

Table 10: Classification accuracy (%) of ViTBase measured under Label Shifts (ImageNet-C, level
5). Red number indicates lower performance than without adaptation, signifying model collapse.
Bold number highlights the best performance.

Gauss Shot Impul Defoc Glass Motio Zoom Snow Frost Fog Brit Contr Elast Pixel JPEG Avg
No Adapt 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9
TTA 20.1 1.2 19.0 54.9 53.4 58.9 54.1 14.3 13.6 69.8 76.3 66.4 59.8 69.8 66.9 46.6
TTA + Ensemble 47.0 1.4 32.7 55.5 54.8 59.5 55.4 14.9 17.6 70.8 76.9 66.7 62.0 70.4 67.5 50.2

D.2 MATHEMATICAL ANALYSIS OF REVERSE KL DIVERGENCE

In this section, we mathematically analyzed the robustness of reverse KL divergence in the context
of TTA. Since KL divergence is asymmetric, swapping its inputs resulted in different effect. To
understand this difference, we computed the gradients of both standard and reverse KL divergence
when integrated with a typical TTA objective. Specifically, we used Tent (Wang et al., 2021), which
minimized Shannon entropy via−ŷa log(ŷa). The objective Ltte could be described in two ways as

Ltte(ŷa, ŷ
′
e) =

{
H(ŷa) +KL(ŷ′

e||ŷa) for Standard
H(ŷa) +KL(ŷa||ŷ′

e) for Reverse (8)

where H(ŷa) = −
∑

c p(ŷ
c
a) log p(ŷ

c
a) and KL(p(ŷc

a)||p(ŷ′c
e )) = −

∑
c p(ŷ

c
a) log(p(ŷ

′c
e )/p(ŷ

c
a)).

Here, p(ŷc
a) denotes the probability of class c with the softmax function p. To simplify expressions,

p(ŷc
a) and p(ŷ′c

e ) are denoted as qca and q′ce . The gradient magnitude of the objective function is
calculated for the weight θa as

∣∣∣∣∂Ltte(ŷa, ŷ
′
e)

∂θa

∣∣∣∣ = { ∑
c−(1 + log qca + q′ce /q

c
a) for Standard∑

c− log q′ce for Reverse (9)
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In standard KL divergence, the term q′ce /q
c
a produces larger gradients for samples where q′ce is high

but q′ca is low. This term results in those misaligned samples being implicitly weighted more dur-
ing gradient updates, as compared to samples where q′ce and qca align. While this weighting can
be beneficial when q′ce is reliable, it may lead to overfitting to noise if q′ce is noisy. In contrast, re-
verse KL divergence lacks the q′ce /q

c
a term, treating all samples only based on ensemble prediction

(−
∑

c log q
′c
e ). Figure 4 empirically supports the analysis by comparing classification accuracy and

gradient ratio during TTA process. Reverse KL divergence reduces the gradient weight on incorrect
predictions while increasing it for correct ones.

D.3 FURTHER EXPERIMENTS FOR TENT+TTE AND SAR+TTE

To further validate the robustness of TTE, we revisited the experiments in Tables 3 and 4, incor-
porating other baselines integrated with TTE (e.g., Tent+TTE and SAR+TTE). Tables 11 and 12
present the additional results alongside some previous findings, demonstrating consistency with the
DeYO+TTE results and reaffirming the effectiveness of TTE.

Table 11: Continual TTA with non i.i.d. conditions. Classification accuracy (%) with ImageNet-C
(level 5). Underline depicts performance improvement when applying TTE. Bold numbers are the
best results.

Adaptation Order −→
Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

ResNet50-GN 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6

• Tent 3.9 1.8 1.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6
• Tent + TTE 36.2 27.9 46.8 48.1 42.1 30.4 49.4 45.2 36.8 34.7 50.3 52.8 39.4 67.0 55.9 44.2
• SAR 33.1 16.8 44.7 44.6 42.3 18.8 45.7 37.8 39.7 9.3 3.1 2.1 0.7 5.4 1.2 23.0
• SAR + TTE 35.9 28.3 46.9 48.9 43.1 30.7 50.1 45.6 38.2 35.5 51.5 54.4 39.7 67.8 57.0 44.9
• DeYO 28.1 3.7 7.2 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.8
• DeYO + TTE 43.0 31.7 52.7 52.3 45.1 36.4 52.2 53.6 40.9 43.0 59.1 60.3 47.4 68.9 59.0 49.7
ViTBase 9.4 43.9 30.5 44.5 29.1 6.7 8.3 27.0 15.8 23.4 34.0 54.7 26.3 47.4 47.6 29.9

• Tent 30.9 18.5 7.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 3.9
• Tent + TTE 46.6 51.6 61.0 59.9 49.5 51.3 60.8 62.8 49.4 55.2 64.5 68.4 52.5 74.6 66.1 58.3
• SAR 46.6 54.2 54.7 49.0 38.7 38.9 45.3 45.3 37.5 40.0 45.8 50.0 37.3 58.6 48.6 46.0
• SAR + TTE 48.6 53.8 62.3 62.8 51.5 54.2 62.2 64.8 51.5 57.7 66.8 69.8 55.1 75.3 67.5 60.3
• DeYO 49.1 36.7 63.3 61.4 52.8 49.9 59.1 62.2 48.9 54.0 61.5 69.2 2.2 64.8 67.2 53.5
• DeYO + TTE 54.0 55.2 64.6 62.5 54.2 55.9 62.6 66.8 52.0 59.1 68.5 69.9 55.2 74.9 68.4 61.6

Table 12: TTA with natural distribution shifts. Classification accuracy (%) with ImageNet-Sketch
(S), ImageNet-Rendition (R), ImageNet-V2 (V2). Underline depicts performance improvement
when applying TTE. Bold numbers are the best results.

(a) Label Shifts
Methods S R V2 Avg

ResNet50-GN 29.2 40.8 68.9 46.3

• Tent 30.8 41.5 68.9 47.1
• Tent+TTE 33.4 42.1 68.9 48.1
• SAR 30.6 41.6 68.9 47.0
• SAR+TTE 32.5 41.9 68.9 47.8
• DeYO 34.6 44.4 68.9 49.3
• DeYO+TTE 36.9 45.1 68.9 50.3

ViTBase 18.2 43.1 66.2 37.9

• Tent 8.8 41.9 68.9 39.8
• Tent+TTE 36.9 52.1 69.1 52.7
• SAR 17.8 45.1 68.5 43.8
• SAR+TTE 37.0 51.9 68.8 52.6
• DeYO 42.4 58.6 71.1 57.3
• DeYO+TTE 43.6 59.1 71.1 57.9

(b) Batch Size 1
Methods S R V2 Avg

ResNet50-GN 29.2 40.8 68.9 46.3

• Tent 31.9 42.1 68.9 47.6
• Tent+TTE 36.2 44.1 68.9 49.7
• SAR 31.6 41.9 68.9 47.5
• SAR+TTE 31.7 41.8 68.9 47.5
• DeYO 37.0 46.0 69.0 50.7
• DeYO+TTE 39.1 47.1 69.0 51.7

ViTBase 18.2 43.1 66.2 37.9

• Tent 7.0 40.6 69.1 38.9
• Tent+TTE 38.5 53.7 69.3 53.8
• SAR 26.4 44.7 69.4 46.8
• SAR+TTE 33.7 50.4 68.9 51.0
• DeYO 43.6 59.8 71.2 58.2
• DeYO+TTE 45.0 61.3 71.3 59.2

D.4 FURTHER EXPERIMENTS FOR CATASTROPHIC FORGETTING

The proposed TTE effectively prevents model collapse and demonstrates stable optimization across
extensive TTA experiments. To further evaluate its stability, we conducted additional experiments to
determine whether TTE can address catastrophic forgetting—a phenomenon where a model exhibits
severe performance degradation on source domain dataset after adaptation. To test this, we concur-
rently measured the accuracy on the clean ImageNet dataset immediately after each adaptation to
a distribution in Table 11. Figure 8 shows that integrating TTE successfully mitigates forgetting
issues, whereas other baseline methods suffer from them.
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Figure 8: Comparison of preventing catastrophic forgetting on Continual TTA with non-i.i.d. con-
ditions. Classification accuracy on in-distribution data (ImageNet). Each point was measured after
TTA on each out-of-distribution data in Table 11.

D.5 FURTHER EXPERIMENTS FOR WEIGHT AVERAGING STRATEGY

The proposed ensemble strategy is inspired by weight-averaging methods originally developed for
offline domain generalization. In this section, we compare the proposed adaptive weight-averaging
method with the stochastic weight-averaging (SWA) method (Izmailov et al., 2018). For this com-
parison, we create a variant of the TTE method by replacing the proposed ensemble strategy with
SWA while keeping all other components identical. SWA focuses on the uniform averaging of TTA
models generated during the TTA process and is implemented as follows:

wswa ←
wswa · nmodels + w

nmodels + 1
(10)

where nmodels represents the number of ensemble models, wswa and w denote the parameters of the
TTA model fa and the ensemble model fe, respectively. The value of nmodels is determined by the
frequency f of model selection during TTA. We extensively optimized f within the range [1, 20]
and selected 1 for ResNet50-GN and 5 for ViTBase to achieve maximum performance. Table 13
presents the comparison results on ImageNet-C under the Label Shifts setup. The results indicate
that the proposed adaptive scheme achieves higher adaptation performance compared to the SWA
approach.

Table 13: Comparison study between different weight averaging schemes. Classification accuracy
(%) with the Label Shifts setup (ImageNet-C, level 5). Note that swa stands for stochastic weight
averaging. Bold numbers are the best results.

Label Shifts Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

ResNet50-GN 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6

DeYO 28.1 44.3 42.9 23.4 16.6 41.5 6.1 52.9 52.0 20.2 73.2 53.0 37.7 60.0 59.4 40.8
+ TTE (swa) 39.8 42.9 41.6 30.2 28.7 39.8 40.4 52.9 50.9 58.4 73.3 51.6 45.1 57.5 58.5 47.4
+ TTE (ours) 43.0 45.3 44.0 34.4 33.6 43.4 46.0 55.2 53.6 61.0 73.4 54.4 51.5 61.0 60.2 50.7
ViTBase 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9

DeYO 49.1 35.9 53.6 57.6 58.6 63.8 37.5 67.9 66.0 73.1 77.9 66.5 68.6 73.5 70.1 61.3
+ TTE (swa) 53.5 53.6 54.4 58.7 59.4 63.7 60.7 67.9 66.3 73.9 78.3 68.4 68.7 73.6 70.2 64.7
+ TTE (ours) 54.0 54.7 55.2 58.9 59.7 64.5 62.1 68.3 66.7 73.9 78.0 68.3 69.3 73.8 70.3 65.2

D.6 FURTHER EXPERIMENTS FOR LONG-RANGE TRUE-BIASED SCENARIOS

The proposed de-biasing scheme is designed to prevent the model from biasing towards specific
classes, a key issue when models collapse. However, in cases where true label stream is heavily
biased (i.e., a model encounter the same class samples consecutively for over 100 iterations), we
assessed whether the de-biasing scheme could still perform effectively. To simulate extreme sce-
narios, we combined a batch size of 1 with the Label Shifts setup, where class-imbalanced streams
persisted over 100 iterations.

Figure 9 shows the average accuracy across all distributions in the Label Shifts setup for ViTBase.
Unfortunately, the default de-biasing configuration (α = 3.0, n = 0.99) penalized true-biased
predictions, providing lower accuracy than the baseline DeYO. By reducing the de-biasing strength
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(α = 1.0) and more gradually estimating model bias (n = 0.999), TTE stabilized and achieved
higher accuracy than DeYO. However, over-tuning hyperparameter based on test data performance
could be controversial. Future work should explore additional methods to distinguish between true
bias and false bias, which can lead to model collapse.

Figure 9: Average classification accuracy (%) in varing with hyperparameter of de-biasing schemes
in Lable Shifts for ViTBase (ImageNet-C, level 5). The extremely biased scenario is used to assume
that same class samples are fed into the model consecutively over 100 times.
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E MAIN RESULTS WITH STANDARD DEVIATION

In this paper, experiments were conducted with three different random seeds: 2022, 2023, and 2024.
The results presented in Tables 1, 2, and 3 include the mean values across these three repetitions.
The corresponding standard deviations are provided in Tables 14, 15, and 16, respectively.

Table 14: Integration with previous TTA approaches. Classification accuracy (%) with Label Shifts
and Batch Size 1 setups (ImageNet-C, level 5). Underline depicts performance improvement when
applying TTE. Bold numbers are the best results.

Label Shifts Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

ResNet50-GN 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6

• Tent 3.9
±0.27

4.6
±0.5

4.7
±0.24

16.4
±0.04

6.0
±2.16

27.2
±0.6

29.0
±1.94

18.9
±1.0

27.4
±0.51

2.4
±0.25

72.1
±0.03

46.1
±0.2

8.1
±0.76

52.4
±0.03

56.1
±0.07

25.0
±0.48

• Tent + TTE 36.2
±0.23

38.4
±0.11

37.3
±0.05

29.6
±0.21

25.8
±0.1

36.1
±0.14

38.6
±0.22

50.2
±0.23

48.8
±0.06

54.9
±0.14

72.1
±0.01

47.7
±0.16

40.1
±0.07

53.0
±0.13

56.4
±0.02

44.4
±0.06

• SAR 33.1
±0.79

36.5
±0.17

35.2
±0.72

18.9
±0.51

20.8
±1.19

33.3
±0.41

29.8
±3.78

27.8
±6.04

44.9
±0.36

35.2
±22.21

71.9
±0.05

46.6
±0.18

7.6
±2.24

52.1
±0.11

56.2
±0.09

36.7
±1.04

• SAR + TTE 35.9
±0.25

38.4
±0.29

37.3
±0.18

29.7
±0.32

25.3
±0.4

36.2
±0.1

37.4
±0.16

49.8
±0.19

48.0
±0.18

53.2
±0.53

71.9
±0.06

47.6
±0.21

39.1
±0.29

52.8
±0.04

56.2
±0.09

43.9
±0.09

• DeYo 28.1
±18.89

44.3
±0.17

42.9
±0.42

23.4
±0.73

16.6
±10.19

41.5
±0.34

6.1
±1.18

52.9
±0.46

52.0
±0.19

20.2
±27.32

73.2
±0.08

53.0
±0.25

37.7
±14.93

60.0
±0.1

59.4
±0.05

40.8
±0.87

• DeYo + TTE 43.0
±0.31

45.3
±0.27

44.0
±0.14

34.4
±0.17

33.6
±0.38

43.4
±0.28

46.0
±0.21

55.2
±0.13

53.6
±0.18

61.0
±0.31

73.4
±0.14

54.4
±0.35

51.5
±0.44

61.0
±0.03

60.2
±0.05

50.7
±0.13

ViTBase 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9

• Tent 30.9
±11.44

1.0
±0.15

23.2
±6.06

54.9
±0.04

53.2
±0.27

58.8
±0.13

54.3
±0.2

13.3
±0.91

12.5
±0.86

69.8
±0.03

76.3
±0.06

66.3
±0.18

59.7
±0.47

69.8
±0.06

66.8
±0.09

47.4
±1.01

• Tent + TTE 46.6
±0.33

45.4
±0.09

47.9
±0.07

55.4
±0.05

54.4
±0.19

59.0
±0.08

55.3
±0.13

62.7
±0.08

62.0
±0.14

69.9
±0.14

76.4
±0.15

66.3
±0.16

61.7
±0.23

69.8
±0.06

67.0
±0.05

60.0
±0.05

• SAR 46.6
±2.46

29.5
±14.73

48.1
±1.37

55.2
±0.07

54.2
±0.06

59.0
±0.08

54.6
±0.31

58.0
±5.7

44.1
±2.78

69.8
±0.14

76.2
±0.14

66.1
±0.18

60.9
±0.27

69.7
±0.06

66.6
±0.08

57.2
±0.91

• SAR + TTE 48.6
±0.42

46.4
±1.87

48.4
±1.65

55.8
±0.05

55.2
±0.22

59.4
±0.12

55.8
±0.17

63.2
±0.12

62.4
±0.17

70.1
±0.1

76.4
±0.15

66.4
±0.22

62.4
±0.18

70.0
±0.07

67.0
±0.09

60.5
±0.24

• DeYo 49.1
±5.79

35.9
±25.22

53.6
±0.9

57.6
±0.29

58.6
±0.11

63.8
±0.07

37.5
±21.33

67.9
±0.15

66.0
±0.04

73.1
±0.06

77.9
±0.04

66.5
±0.09

68.6
±0.45

73.5
±0.08

70.1
±0.09

61.3
±3.5

• DeYo + TTE 54.0
±0.37

54.7
±0.49

55.2
±0.14

58.9
±0.2

59.7
±0.06

64.5
±0.05

62.1
±0.58

68.3
±0.13

66.7
±0.06

73.9
±0.2

78.0
±0.04

68.3
±0.26

69.3
±0.1

73.8
±0.16

70.3
±0.04

65.2
±0.11

BS1 Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

ResNet50-GN 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6

• Tent 3.1
±0.01

4.1
±0.4

3.7
±0.28

16.6
±0.06

5.2
±1.99

27.2
±0.68

29.0
±2.55

17.7
±0.56

25.1
±1.12

1.9
±0.09

72.0
±0.08

46.2
±0.06

8.1
±0.64

52.7
±0.08

56.3
±0.07

24.6
±0.05

• Tent + TTE 41.6
±0.03

43.9
±0.1

42.7
±0.03

33.8
±0.07

31.2
±0.05

41.0
±0.06

44.1
±0.13

53.5
±0.08

52.2
±0.11

59.3
±0.11

73.1
±0.05

51.3
±0.11

47.8
±0.14

57.7
±0.17

58.1
±0.02

48.7
±0.02

• SAR 23.4
±0.32

26.5
±0.22

23.9
±0.24

18.4
±0.18

15.1
±0.1

28.6
±0.18

30.3
±0.09

44.4
±0.4

44.8
±0.15

27.4
±2.17

72.3
±0.13

44.7
±0.07

14.6
±0.96

47.0
±0.04

56.1
±0.06

34.5
±0.21

• SAR + TTE 25.9
±0.07

28.6
±0.21

26.7
±0.25

23.7
±0.07

17.7
±0.2

30.8
±0.1

32.4
±0.2

48.0
±0.13

46.1
±0.08

42.1
±0.97

72.2
±0.04

45.2
±0.08

34.2
±0.18

47.7
±0.14

56.1
±0.04

38.5
±0.08

• DeYo 41.3
±0.23

44.2
±0.1

42.4
±0.18

23.7
±0.33

25.1
±0.18

41.4
±0.09

19.9
±9.34

54.6
±0.04

52.2
±0.07

1.9
±0.12

73.4
±0.12

53.4
±0.11

39.9
±10.57

59.9
±0.23

59.7
±0.09

42.2
±1.19

• DeYo + TTE 42.5
±0.09

44.9
±0.28

43.5
±0.24

34.8
±0.13

32.8
±0.22

43.3
±0.19

45.9
±0.05

55.8
±0.19

53.7
±0.12

60.5
±0.12

73.4
±0.05

54.4
±0.04

51.0
±0.3

60.9
±0.04

60.4
±0.18

50.5
±0.06

ViTBase 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9

• Tent 43.2
±0.08

1.6
±0.19

44.0
±0.22

52.6
±0.09

48.9
±0.1

55.8
±0.11

51.2
±0.08

22.3
±0.73

21.5
±0.7

67.0
±0.06

75.0
±0.04

64.9
±0.04

54.3
±0.43

67.2
±0.06

64.4
±0.0

48.9
±0.11

• Tent + TTE 49.2
±0.06

48.8
±0.08

50.1
±0.05

56.2
±0.07

55.8
±0.07

60.2
±0.08

56.9
±0.1

64.3
±0.12

63.6
±0.13

71.4
±0.03

76.9
±0.07

67.0
±0.08

64.1
±0.08

70.7
±0.01

68.1
±0.03

61.6
±0.01

• SAR 40.9
±0.23

36.6
±0.26

41.9
±0.12

53.4
±0.18

50.5
±0.14

57.4
±0.04

52.9
±0.02

59.1
±0.48

57.2
±2.03

68.9
±0.01

75.5
±0.39

65.6
±0.03

58.1
±0.13

68.9
±0.08

65.9
±0.11

56.9
±0.19

• SAR + TTE 43.6
±0.48

40.4
±0.24

44.3
±0.28

55.2
±0.15

53.1
±0.17

59.2
±0.04

55.4
±0.17

61.5
±0.39

61.9
±0.1

70.7
±0.08

76.7
±0.03

66.7
±0.08

61.9
±0.15

70.2
±0.1

67.3
±0.09

59.2
±0.01

• DeYo 53.1
±0.1

51.2
±3.1

54.3
±0.15

58.8
±0.14

59.6
±0.09

64.0
±0.17

37.4
±6.68

68.1
±0.1

66.4
±0.12

73.7
±0.16

78.3
±0.06

68.2
±0.05

68.5
±0.17

73.7
±0.04

70.5
±0.05

63.1
±0.33

• DeYo + TTE 53.8
±0.14

54.0
±0.07

54.6
±0.16

59.1
±0.01

59.7
±0.09

64.4
±0.07

62.3
±0.16

68.4
±0.11

66.8
±0.15

73.9
±0.13

78.3
±0.03

68.5
±0.08

69.2
±0.11

73.9
±0.04

70.7
±0.03

65.2
±0.0

Table 15: Integration with previous TTA approaches. Classification accuracy (%) with the Mix
Shifts setup (ImageNet-C, level 5). Underline depicts performance improvement when applying
TTE. Bold numbers are the best results.

Methods ResNet50-GN ViTBase

No Adapt 30.6 29.9

• Tent 33.1±0.12 52.3±3.99

• Tent+TTE 38.7±0.32 57.2±0.37

• SAR 38.1±0.21 57.1±0.04

• SAR+TTE 39.1±0.33 57.5±0.34

• DeYO 33.8±1.6 58.6±0.13

• DeYO+TTE 42.9±0.18 60.6±0.45
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Table 16: Continual TTA with correlatively sampling. Classification accuracy (%) with ImageNet-C
(level 5). Bold numbers are the best results.

Correlative Sampling in Both of Domain and Class (Adaptation Order −→)

Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

ResNet50-GN 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6

• Tent 3.9
±0.27

1.8
±0.28

1.6
±0.19

0.1
±0.03

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.6
±0.05

• CoTTA 23.5
±0.31

5.5
±1.29

2.0
±0.47

0.7
±0.45

0.4
±0.19

0.2
±0.02

0.2
±0.02

0.1
±0.03

0.1
±0.03

0.1
±0.03

0.1
±0.04

0.1
±0.03

0.1
±0.03

0.1
±0.03

0.1
±0.03

2.2
±0.1

• SAR 33.1
±0.79

16.8
±0.36

44.7
±0.04

44.6
±0.25

42.3
±0.08

18.8
±0.58

45.7
±0.37

37.8
±0.51

39.7
±0.19

9.3
±1.97

3.1
±0.15

2.1
±0.27

0.7
±0.06

5.4
±0.48

1.2
±0.46

23.0
±0.06

• DeYO 28.1
±18.89

3.7
±2.67

7.2
±8.28

0.9
±0.94

0.1
±0.03

0.1
±0.02

0.1
±0.03

0.1
±0.03

0.1
±0.02

0.1
±0.03

0.1
±0.01

0.1
±0.02

0.1
±0.01

0.1
±0.02

0.1
±0.03

2.8
±1.86

• TTE (w. DeYO) 43.0
±0.31

31.7
±0.39

52.7
±0.2

52.3
±0.12

45.1
±0.24

36.4
±0.16

52.2
±0.22

53.6
±0.11

40.9
±0.19

43.0
±0.25

59.1
±0.06

60.3
±0.27

47.4
±0.23

68.9
±0.2

59.0
±0.2

49.7
±0.07

ViTBase 9.4 43.9 30.5 44.5 29.1 6.7 8.3 27.0 15.8 23.4 34.0 54.7 26.3 47.4 47.6 29.9

• Tent 30.9
±11.44

18.5
±24.76

7.1
±9.74

0.1
±0.0

0.1
±0.04

0.1
±0.0

0.1
±0.0

0.1
±0.01

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.2
±0.05

0.1
±0.0

3.9
±3.06

• CoTTA 34.1
±2.79

13.6
±9.93

2.2
±2.9

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

0.1
±0.0

3.4
±0.93

• SAR 46.6
±2.46

54.2
±0.32

54.7
±5.12

49.0
±21.9

38.7
±17.14

38.9
±22.57

45.3
±23.45

45.3
±28.06

37.5
±20.71

40.0
±26.08

45.8
±31.59

50.0
±27.96

37.3
±25.39

58.6
±24.07

48.6
±26.9

46.0
±19.67

• DeYO 49.1
±5.79

36.7
±25.19

63.3
±3.21

61.4
±0.43

52.8
±0.25

49.9
±3.17

59.1
±2.02

62.2
±3.96

48.9
±2.31

54.0
±1.38

61.5
±4.79

69.2
±0.71

2.2
±1.4

64.8
±9.61

67.2
±0.5

53.5
±2.09

• TTE (w. DeYO) 54.0
±0.37

55.2
±0.56

64.6
±0.03

62.5
±0.31

54.2
±0.06

55.9
±0.22

62.6
±0.02

66.8
±0.32

52.0
±0.94

59.1
±0.8

68.5
±0.5

69.9
±0.45

55.2
±1.1

74.9
±0.1

68.4
±0.21

61.6
±0.36

Table 17: TTA with natural distribution shifts. Classification accuracy (%) with ImageNet-Sketch
(S), ImageNet-Rendition (R), ImageNet-V2 (V2). Bold numbers are the best results.

(a) Label Shifts
Methods S R V2 Avg

ResNet50-GN 29.2 40.8 68.9 46.3

• Tent 30.8±0.0 41.5±0.1 68.9±0.0 47.1±0.0
• CoTTA 30.8±0.1 41.2±0.1 68.8±0.1 46.9±0.0
• SAR 30.6±0.1 41.6±0.0 68.9±0.0 47.0±0.1
• DeYO 34.6±0.4 44.4±0.2 68.9±0.1 49.3±0.2
• TTE (w. DeYO) 36.9±0.0 45.1±0.4 68.9±0.1 50.3±0.1

ViTBase 18.2 43.1 66.2 37.9

• Tent 8.8±0.5 41.9±0.6 68.9±0.0 39.8±0.3
• CoTTA 28.4±1.2 45.1±0.8 67.5±0.1 47.0±0.4
• SAR 17.8±2.7 45.1±0.9 68.5±0.1 43.8±1.0
• DeYO 42.4±0.6 58.6±0.3 71.1±0.2 57.3±0.2
• TTE (w. DeYO) 43.6±0.1 59.1±0.1 71.1±0.2 57.9±0.1

(b) Batch Size 1
Methods S R V2 Avg

ResNet50-GN 29.2 40.8 68.9 46.3

• Tent 31.9±0.2 42.1±0.1 68.9±0.0 47.6±0.0
• CoTTA 26.7±0.0 40.6±0.3 68.7±0.2 45.3±0.1
• SAR 31.6±0.2 41.9±0.1 68.9±0.1 47.5±0.1
• DeYO 37.0±0.5 46.0±0.2 69.0±0.1 50.7±0.3
• TTE (w. DeYO) 39.1±0.1 47.1±0.0 69.0±0.0 51.7±0.1

ViTBase 18.2 43.1 66.2 37.9

• Tent 7.0±0.2 40.6±0.5 69.1±0.1 38.9±0.1
• CoTTA 24.0±0.0 46.0±0.0 66.9±0.0 45.6±0.0
• SAR 26.4±2.8 44.7±0.6 69.4±0.2 46.8±1.0
• DeYO 43.6±0.5 59.8±0.3 71.2±0.2 58.2±0.1
• TTE (w. DeYO) 45.0±0.1 61.3±0.2 71.3±0.1 59.2±0.0

F LIMITATIONS AND FUTURE WORKS

The proposed TTE, as a TTA approach, performs optimization with limited, unlabeled data during
inference. In scenarios where test data is identical to training data, over-tuning hyperparameters
based on the performance of test data could be controversial. To avoid this risk, we maintained con-
sistent hyperparameter settings across all experiments, although these settings were still determined
by performance outcomes. Additionally, reliance on hyperparameter values tailored for specific
out-of-distribution characteristics may lead to performance degradation when encountering out-of-
distribution scenarios not anticipated in pre-experimental setups. Therefore, developing an effective
validation method that determines hyperparameters using either in-distribution data or a subset of
out-of-distribution data represents a valuable direction for future research.
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