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ABSTRACT

Machine learning (ML) models are increasingly used in various applications, from
recommendation systems in e-commerce to diagnosis prediction in healthcare. In
this paper, we present a novel dynamic framework for thinking about the deploy-
ment of ML models in a performative, human-ML collaborative system. In our
framework, the introduction of ML recommendations changes the data-generating
process of human decisions, which are only a proxy to the ground truth and which
are then used to train future versions of the model. We show that this dynamic pro-
cess in principle can converge to different stable points, i.e. where the ML model
and the Human+ML system have the same performance. Some of these stable
points are suboptimal with respect to the actual ground truth. As a proof of concept,
we conduct an empirical user study with 1,408 participants. In the study, humans
solve instances of the knapsack problem with the help of machine learning predic-
tions of varying performance. This is an ideal setting because we can identify the
actual ground truth, and evaluate the performance of human decisions supported by
ML recommendations. We find that for many levels of ML performance, humans
can improve upon the ML predictions. We also find that the improvement could
be even higher if humans rationally followed the ML recommendations. Finally,
we test whether monetary incentives can increase the quality of human decisions,
but we fail to find any positive effect. Using our empirical data to approximate our
collaborative system suggests that the learning process would dynamically reach an
equilibrium performance that is around 92% of the maximum knapsack value. Our
results have practical implications for the deployment of ML models in contexts
where human decisions may deviate from the indisputable ground truth.

1 INTRODUCTION

Human-ML collaboration is increasingly used in various applications, from content moderation in
social media (Lai et al., 2022) to predicting diagnoses in healthcare (Jacobs et al., 2021; Dvijotham
et al., 2023) and making hiring decisions in human resources (Peng et al., 2022). Companies that
implement human-ML collaborative systems face three crucial challenges: 1) ML models learn from
past human decisions, which are often only an approximation to the ground truth (noisy labels); 2)
ML models are rolled out to help future human decisions, affecting the data-generating process of
human-ML collaboration that then influences future updates to ML models (performative predictions
as in Perdomo et al. (2020)); and 3) the quality of the human-ML collaborative prediction of the
ground truth may change as a function of incentives and other human factors. These challenges create
a dynamic learning process. Without access to the ground truth, it is often difficult to know whether
the learning process will reach an equilibrium state with a good approximation of the ground truth, if
it is interrupted at a sub-optimal level, or if it does not reach a stable state at all.

For intuition, we can focus on the decision of a healthcare company to develop and deploy an ML
model to predict medical diagnoses from patient visits. The problem is made difficult by the fact
that a doctor’s diagnoses can be wrong, and it is often too costly or time-consuming to identify the
indisputable ground truth—i.e., the underlying true diagnosis of a patient—so the company typically
uses all diagnoses to train their ML model, without distinction between good or bad diagnoses. In
addition, the company typically evaluates the algorithm’s performance based on its ability to match
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those same doctor diagnoses, potentially replicating their mistakes. The dynamic deployment of
updates to ML models that support doctor diagnoses could lead to a downward spiral of human+ML
performance if the company deploys a bad model and the bad model adversely affects doctor decisions.
Or, it can lead to continuous improvement until it reaches a stable point that is a good approximation
to the indisputable ground truth. Without (potentially costly) efforts to measure the ground truth, the
company has no way of distinguishing between downward spirals or continuous improvements.

This raises a multitude of empirical questions regarding the governing mechanisms of this dynamic
system. How do humans improve on ML predictions of different quality levels, and do financial
incentives matter? Will the dynamic learning process converge to a good equilibrium even without
the company knowing the actual ground truth labels?

Contributions. In this paper, we present a novel framework for thinking about ML deployment
strategies in a performative, human-AI collaborative system. We present a theoretical framework to
identify conditions under which ML deployment strategies converge to stable points that are a good
approximation to the ground truth, and conditions under which there are downward spirals away
from the ground truth. Our theory introduces the notion of a collaborative characteristic function,
which maps algorithmic performance to the performance of human decisions supported by ML
predictions. As a proof of concept for our theory, we provide an empirical study in which humans
solve knapsack problems with the help of machine learning predictions. We conducted a user study
with 1,408 participants, each of whom solved 10 knapsack problems. The empirical exercise allows
us to evaluate 1) the quality of human decisions supported by ML models of varying performance, 2)
how these human decisions compare to a best-case scenario, and 3) how these human decisions are
affected by monetary incentives. With some additional assumptions, we can map these data to our
theoretical collaborative characteristic function.

We highlight three main empirical results. First, we show that humans tend to improve upon the ML
recommendation for many levels of ML performance. Second, humans sometimes submit solutions
that are worse than the ML recommendation, despite the fact that with knapsack, it is fairly easy for
them to compare their solution to the ML suggestion and pick the best of the two. Third, humans do
not respond to financial incentives for performance. The empirical data can be used to approximate
theoretical collaborative characteristic functions. The results suggest that, at least in our context,
collaborative characteristic functions are invariant to monetary incentives. Additionally, the fact that
humans sometimes submit solutions that are worse than the provided ML recommendation implies
that there remains a gap between the collaborative characteristic function based on human labels and
the collaborative characteristic function constructed by selecting the maximum between the human
and ML solution.

Our results have practical implications for the deployment of ML models when humans are influenced
by those models but their decisions deviate from an unknown ground truth. First, performance metrics
of ML models can be misleading when the learning objective is based on comparisons against human
decisions and those decisions can be wrong. Companies should thus exert efforts to assess the quality
of human decisions and take that into account when training ML models. For example, in the medical
setting, human diagnoses should be first verified or confirmed by external experts, or patients should
be followed up to confirm the validity of initial diagnoses. At a minimum, ML models should be
trained on subsets of data for which there is enough confidence that the decisions are correct. Second,
our work highlights the strategic importance of deploying ML models that allow for convergence
to a stable point with higher utility than humans alone. Such convergence is not guaranteed and, as
argued above, difficult to assess. Third, our work calls for the need to adopt a dynamic approach
when deploying algorithms that interact with human decisions, and those interactions are used for
future model building.

2 RELATED WORK

There has been a growing body of work investigating various forms of human-ML collaboration.
From learning-to-defer systems, where a model defers prediction tasks to humans if its own uncer-
tainty is too high (Cortes et al., 2016; Charusaie et al., 2022; Mozannar et al., 2023), to ML-assisted
decision making where humans may or may not consult ML predictions to make a decision (Mozannar
et al., 2024c; Dvijotham et al., 2023; Jacobs et al., 2021). Several alternative decision mechanisms
have also been explored (Steyvers et al., 2022; Mozannar et al., 2024a). The application areas
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range from programming (Dakhel et al., 2023; Mozannar et al., 2024b), to healthcare (Jacobs et al.,
2021; Dvijotham et al., 2023) and business consulting (Dell’Acqua et al., 2023). Related work also
investigates factors influencing human-ML collaboration, such as explanations of ML predictions
(Vasconcelos et al., 2023), monetary incentives (Agarwal et al., 2023), fairness constraints (Sühr
et al., 2021), and humans’ adaptability to model changes (Bansal et al., 2019). In this work, for the
first time to the best of our knowledge, we theoretically examine the human+ML interaction from a
dynamic perspective, where ML models learn from human decisions that are 1) the result of previous
human+ML collaboration and 2) can arbitrarily deviate from the underlying ground truth.

This paper is also inspired by an extensive line of work on performative prediction (Perdomo et al.,
2020; Mendler-Dünner et al., 2020; Hardt et al., 2022; Mendler-Dünner et al., 2022), a theoretical
framework in which predictions influence the outcome they intend to predict. We adapt the ideas
of performative prediction to a context of human-ML collaboration and extend it in three major
ways: 1) In our setting, the model predictions change the quality of the human-ML labels as a proxy
for the ground truth (e.g., a doctor diagnosis), but the ground truth is held constant (e.g., the true
patient diagnosis); 2) We introduce the concept of utility, to quantify the quality of a solution with
respect to the ground truth. There can be several stable points with respect to model parameters in the
performative prediction framework, but not all of them have the same utility, i.e., are equally good
at approximating the indisputable ground truth; 3) The ground truth is unknown, and the mapping
between human or ML labels and the ground truth is not fixed. To the best of our knowledge, we
are the first to explore performative predictions where the deployment of ML models occurs while
the model’s performance relative to the ground truth is unknown, and only its similarity to human
labels is available. Our empirical application is also novel in that it provides a first step towards
investigating the implications of performative predictions for human-ML collaboration.

3 PROBLEM STATEMENT

We consider a setting in which time is separable in discrete time epochs t = 1, ..., T . At each t, a firm
deploys machine learning model Mt ∈M of a model classM, with Mt : X → Y . The model Mt

predicts a solution Y ∈ Y (e.g., a diagnosis) to a problem X ∈ X (e.g. the patient’s symptoms) as a
function of past data. The firm employs expert humans H ∈ H with H : X × Y → Y , who solve
the problems with the help of ML predictions. We will write Mt(X) = YMt

and H(X,YMt
) = YHt

.
We assume that for all X ∈ X , there exists an optimal solution Y ∗, which is the indisputable ground
truth.

The Firm’s Learning Objective. In many real-world applications, determining the ground truth
label Y ∗ can be extremely costly. For example, obtaining the correct medical diagnosis can often
require the knowledge of various specialists (e.g., orthopedists, pediatricians, neurologists). Even
when a single expert is enough, they can misdiagnose a patient’s symptoms. Yet, in many of
these cases, using the human labels YHt as a proxy for Y ∗ is the only feasible option to build ML
models. We allow the quality of YHt with respect to Y ∗ to change. This means that two iterations
of the ML model, Mt and Mt+1, are trained on data from two different data generating processes,
(X,YHt−1) ∼ Dt−1 and (X,YHt) ∼ Dt, respectively.

Without access to Y ∗, the only feasible learning objective for a firm that wants to update its model
parameters at time t is the comparison between the latest human-ML collaborative labels with the
new predictions.1 For a given loss function l : Y × Y → R+ we can write this as follows:

L(YMt
, YHt−1

) := E
H∈H

[ E
(X,YHt−1

)∼Dt−1

l(YMt
, YHt−1

)]. (1)

The firm wants to minimize the difference between the model predictions at time t and the human
labels at time t− 1. We can write the firm’s problem as selecting a model Mt to minimize the loss
function in Equation 1:

minimize
Mt∈M

L(YMt
, YHt−1

). (2)

For simplicity, we assume that at each time t, the firm collects enough data to perfectly learn the
human-ML solution. In other words, with the optimal model, L(YMt

, YHt−1
) = 0. We discuss

relaxing this assumption in Appendix A.7.
1We assume that models at time t are trained exclusively on data from the previous period t− 1, although we

can generalize our setting to include any data points from 0 to t− 1.
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Utility. In our scenario, the firm cannot quantify the true quality of a solution Y with respect to
Y ∗. The loss in Equation 2 is just a surrogate for the loss L(Y, Y ∗), which is impossible or too costly
to obtain. The firm thus defines the human label as "ground truth," and maximizes the similarity
between model and human solutions, without knowing how close the human or ML solutions are
to the indisputable ground truth. In order to evaluate the firm’s progress in approximating Y ∗, it is
useful to define a measure of utility.

Definition 1. (Utility) Let dX be a distance measure on Y with respect to a given X ∈ X . The
function U : X × Y → R is a utility function on X × Y , if ∀X ∈ X , Ymin, Y, Y

′, Y ∗ ∈ Y

1. ∃Ymin ∈ Y : U(X,Y ) ∈ [U(X,Ymin),U(X,Y ∗)] (bounded)

2. ∃ε > 0 : |dX(Y, Y ∗)− dX(Y ′, Y ∗)| < ε⇒ U(X,Y ) = U(X,Y ′) (ε-sensitive)

3. dX(Y, Y ∗) + ε < dX(Y ′, Y ∗)⇒ U(X,Y ) > U(X,Y ′) (proximity measure)

The utility of a solution for the firm is maximal if Y is ε-close to Y ∗ with respect to the underlying
problem X . The variable ε should be interpreted as the threshold below which a firm perceives no
difference between two outcomes, i.e., it does not care about infinitely small improvements.

Collaborative Characteristic Function. As time t increases, the firm hopes that the distributions
Dt shift closer to the optimal distribution D∗, where (X,Y ) = (X,Y ∗). In other words, for each
model’s distance d, d(Dt, D

∗) > d(Dt+1, D
∗). This could happen, for example, if humans were

able to easily compare available solutions and pick the one that is closest to the indisputable ground
truth.

We can translate this continuous improvement into properties of the human decision function H as
follows: for all t = 1, ..., T and X ∈ X ,

E
H∈H

[U(X,H(X,YMt
))] = U(X,YMt

) + δMt
. (3)

The firm’s hope is that δMt
≥ 0 for Mt. Effectively, δMt

characterizes the human-ML collaboration
for all utility levels of a model. If δMt

is positive, humans are able to improve on a ML prediction
(and future model iterations will thus get better at approximating the ground truth). Instead, if δMt

is
negative, humans will perform worse than the ML recommendations, and future model iterations will
get progressively farther away from the ground truth.

We define the function given by Equation 3 as the collaborative characteristic function:

Definition 2. (Collaborative Characteristic Function) For a utility function U, humans H ∈ H and
model M ∈M, we define the collaborative characteristic function ∆U : R×M→ R as follows:

∆U(U(X,YM ),M) = E
H∈H

[U(X,H(X,YM ))] = U(X,YM ) + δM .

The function ∆U can take any arbitrary form. Several factors can affect ∆U, e.g., ML explanations
and monetary incentives (as we empirically explore in Section 4). Note that ∆U is also a function
of the ML model M , and not just of its utility, because equal levels of utility across different ML
models do not guarantee equal collaborative reactions from humans. In the rest of the paper however,
we will shorten the notation and write ∆U(U(X,YM )).

Collaborative Learning Path and Stable Points. Although ∆U has infinite support, a firm will only
experience a discrete set of utility values achieved by humans with the help of ML recommendations.
We call this the collaborative learning path. It is characterized by ∆U, the utility of the first deployed
model s, and the number of deployment cycles T :

Definition 3. (Collaborative Learning Path) Let ∆U be a collaborative characteristic function,
t = 1, ..., T ∈ N≥1 the number of deployment cycles and s = U(X,YM1) the utility of the starting
model. We define the collaborative learning path to be the function

L∆U(s, t) = E
H∈H

[ E
X∈X

(U(H(X,YMt
))].

Definition 4. (Stable Point) A stable point L∆U(s, t) occurs at t if for all t′ ≥ t, L∆U(s, t
′) =

L∆U(s, t).
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Figure 1: Collaborative Improvement (left): The firm’s collaborative characteristic function and one collabo-
rative learning path, if humans improve on the ML solution. The x-axis denotes the model expected utility, the
y-axis denotes expected human+ML utility. The firm deploys a first model with utility (s). Then humans use the
model and improve utility by δ1, leading to expected human+ML utility (1). The firm learns a new model with
utility (b) on the new data distribution. This is viable under the assumption that the new model has the same
utility as the previous period’s human+ML labels, i.e., we can move horizontally from (1) to the 45-degree line
at (b). Humans can further improve utility by δ2, which leads to expected utility (2). The dynamic improvement
process continues until it reaches stable point utility (6-d). Collaborative Harm (right): The firm deploys a
model with expected utility (s) but the humans, when interacting with the model, decrease utility by δ1, with
expected utility (1). The firm will thus learn a model of utility (b) on the new distribution. The downward spiral
continues until stable point (d).

Stable points are states where the utility remains constant in all future model deployments. If Y ∗ is
unique for all X , then this is also a stable point for the distribution shifts. Whether a firm can reach a
stable point on its collaborative learning function depends on the shape of ∆U and the initial model
utility s. Figure 1 shows two examples of collaborative characteristic functions and collaborative
learning paths. The 45-degree line includes the points where E

X,H
[U(X,H(X,Y ))] = E

X
[U(X,Y )]

and maps the human performance at t − 1 to the ML performance at t under the assumption of
perfect learning (i.e., L(YMt

, YHt−1
) = 0). Stable points will always lie on this line, because a

stable point requires δt ≈ 0 (|δt| ≤ ϵ), where ϵ is defined in Appendix A.5 and denotes the smallest
change in utility that is possible for a given ε from Definition 1. If |δt| > ϵ, it indicates that humans’
influence changes labels Y relative to the most recent ML model, leading to a new data distribution.
The model at t+ 1 will thus differ from Mt, preventing stability. When the model and human+ML
labels differ, there are two possible cases. First, δMt

> ϵ, which implies that the collaborative
characteristic function ∆U is above the 45-degree line on that portion of the domain (Figure 1a). In
this case, human+ML labels are closer to the indisputable ground truth than the model alone, which
leads to improvements of subsequent model deployments. Second, if δMt

< −ϵ, the collaborative
characteristic function is below the 45-degree line (Figure 1b). In this case, human+ML labels are
further away from the indisputable ground truth than the model alone, which leads to deterioration of
subsequent model deployments. We present the best-case and worst-case scenarios from Figure 1 as
Propositions 1 and 2 below:

Proposition 1. (Collaborative Improvement) If ∆U(U(X,YM )) ≥ U(X,YM ) for all M ∈M, X ∈
X . Then L∆U(s, t), is non-decreasing with t = 1, ..., T and for sufficiently large T it exists a
t′ ∈ [1, T ] such that L∆U(s, t

′) is a stable point.

Proof. (sketch) Because U is bounded, δM must be 0 in the extreme points. Furthermore, because of
the ε-sensitivity of U, the steps t until reaching the maximum utility are also bounded. It follows that
there exists a t ∈ N such that L∆U(s, t)− L∆U(s, t+ 1) = 0, which is a stable point. See Appendix
A.6 for the complete proof.

Proposition 2. (Collaborative Harm) If ∆U(U(X,YM )) ≤ U(X,YM ) for all M ∈ M, X ∈ X .
Then L∆U(s, t), is non-increasing with t = 1, ..., T and for sufficiently large T it exists a t′ ∈ [1, T ]
such that L∆U(s, t

′) is a stable point.

Proof. Similar to the proof of Proposition 1.
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In practice, a firm’s collaborative characteristic function can take any arbitrary shape, with portions
above and portions below the 45-degree line. As long as the function is continuous, at least one stable
point exists, and possibly more. When more than one stable point exist, the firm would like to reach
the stable point with the highest utility (i.e., the highest point of the characteristic function lying on
the 45-degree line). However, since the firm does not have access to the indisputable ground truth,
when it reaches a stable point it does not know where such point lies on the 45-degree line.

In what follows, we offer a proof of concept of our theoretical setup. We empirically explore a context
where it is easy for us to identify the indisputable ground truth. Although with some simplifying
assumptions, the setting allows us to approximate a portion of the collaborative characteristic function,
and explore the effects of human behavior on its shape, particularly the effect of monetary incentives
and alternative solution selection criteria. We present study participants with instances of hard
knapsack problems to answer the following research questions:

RQ1: How do monetary incentives affect human performance? To keep our treatment condition
manageable, we explore the effect of different levels of performance bonuses on U(H(X, .)), i.e., the
human performance without ML recommendations.

RQ2: Can we approximate the human-ML collaborative characteristic function ∆U? Here, we hold
the performance bonus constant, and test humans’ effect δM on utility for different levels of ML
performance. This will enable us to construct two approximations of ∆U for a specific task.

4 EXPERIMENTAL SETUP

In this section, we describe our user study. The goal of our experimental setup is to simulate an
environment in which users work on difficult tasks with the help of ML. The company responsible for
deploying ML models does not know the optimal solution Y ∗ (e.g., the true patient’s diagnosis), and
it trains ML models to replicate experts’ decisions (doctor diagnoses). To evaluate how the company’s
models perform against Y ∗, we need a setting in which we, as researchers, know the quality of any
solution Y using a utility function U(X,Y ). This allows us to make absolute quality assessments
of solutions. Note that this is often unattainable in practice, as we argued in the introduction. The
knapsack problem is particularly well suited for this context.

The Knapsack Problem. In our experiment, users solve instances of the knapsack problem. An
instance involves selecting which of n = 18 items to pack into a knapsack, each with a weight w and
a value v. The objective is to maximize value without exceeding the weight limit W of the knapsack
(between 5 and 250). We focus on the one-dimensional 0-1 knapsack problem, in which participants
choose which items to pack (see Appendix A.2 for a formal definition). We constrain the weights,
values, and capacity of our instances to integer values, to make them easier to interpret by humans.
We describe the details of the knapsack problem generation in Appendix A.10.

The knapsack problem has desirable properties for the empirical application of our framework. First,
users do not require special training—beyond a short tutorial—to find a solution to the problem. Yet,
the task is hard for humans, especially with a growing number of items (Murawski & Bossaerts,
2016). Thus, the optimal solution Y ∗ is not obvious. Second, we can generate solutions to the
knapsack problem in two ways. The “optimal” solution can be found with dynamic programming.
The “ML” solution can be found by imitating what humans select and computing the training loss as
the difference between the items selected by participants versus items selected by a model. Finally, it
allows us to showcase our theoretical approach with two different utility functions and two selection
criteria to approximate the collaborative characteristic function.

This setup allows us to quantify the utility of the proposed solution relative to the optimal solution.
We define utility for the knapsack problem as follows:

Definition 5. (Economic Performance) For a knapsack instance X =
((w1, · · · , wn), (v1, · · · , vn),W ) with optimal solution max

x1,·,xn;
∑n

i=1 xiwi≤W

∑n
i=1 xivi =: Y ∗ and

a valid solution Y we call the function UEcon(X,Y ) = Y
Y ∗ the economic performance of Y given X .

Appendix A.4 contains details about UEcon(X,Y ) and discusses our results using an alternative utility
function UOpt(X,Y ) (optimality), which is equal to one if a solution is optimal and zero otherwise.
Note that there can be multiple optimal combinations of items to pack, but the optimal value Y ∗ is
always unique.
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Model None q1 q2 q3 q4 q5 q6
Mean UEcon(X,Y ) . 0.717 0.800 0.844 0.884 0.899 0.920
SD . 0.083 0.105 0.098 0.105 0.088 0.085
No Bonus N=102
2-cent Bonus N=98
10-cent Bonus∗ N=100+117 N=64 N=78 N=194 N=179 N=70 N=191
20-cent Bonus N=96

Table 1: Matrix of treatment conditions. The columns denote information on the ML recommendation
performance. The rows denote bonus payments for performance. The number of study participants are presented
in the relevant cells. ∗We ran the 10-cent bonus treatment with no ML recommendation twice: once without a
comprehension quiz for the bonus structure (100 participants) and once with the comprehension quiz (117).

Study Design. We recruited participants from Prolific2 exclusively from the UK to ensure familiarity
with the currency and weight metrics used to describe the knapsack items and monetary incentives in
the study. Appendix A.11 presents screenshots of the web interface for each step of the study. At the
beginning of the study, participants received a tutorial on the knapsack problem, our web application’s
interface, and the payment structure, described below. After the tutorial, the participants solved two
practice problems and received feedback on their submission’s performance. For the main task, each
participant received 10 knapsack problems generated by Algorithm 1. For each problem, they had 3
minutes to submit their solution. If the participant did not actively click on the submit button, the
selected items were automatically submitted at the 3-minute mark. Participants could take unlimited
breaks between problems. At the end of the study, we asked participants about their demographics,
previous experience with the knapsack problem, and how much effort they put in solving the task.

A total of 1,408 participants completed the study; we removed 119 participants due to forbidden
browser reloads or uses of the browser’s back-button, which left 1,289 for the analyses below. See
Appendix A.9 for an overview of participants’ demographics. On average, participants’ compensation
implied an hourly wage of £12.17 ($15.22), which is above the UK minimum wage of £11.44.
Appendix A.3 contains additional payment details.

Every participant received a base payment of £2.00 (approx. $2.50) if they achieved at least 70%
of the value of the optimal solution, averaged across the 10 knapsack instances they solved. We set
the 70% threshold to discourage participants from randomly selecting items, as randomly-generated
solutions that pick items until reaching the weight capacity have an average UEcon around 60%.

Participants were randomly allocated into four monetary treatments and seven algorithmic recommen-
dations (see Table 1). All monetary conditions were tested while users had no access to algorithmic
recommendations. Participants in the No Bonus condition did not receive any additional payments
beyond the base payment. Participants in the 2-cent Bonus condition received an additional £0.02
for each percentage point of UEcon above 70%. For example, if a participant achieved on average
UEcon = 85%, they would receive £2.00 + 15× £0.02 = £2.30. Participants in the 10-cent Bonus
and 20-cent Bonus treatments had similar incentives for performance, but higher monetary rewards
for each additional percentage point increase in performance (£0.10 and £0.20, respectively).

We ran the 10-cent Bonus treatment twice. In the second round, we introduced a comprehension
quiz to ensure that our participants understood the payment structure. Within the 10-cent Bonus with
bonus comprehension quiz, we randomized access to ML recommendations. Users were randomly
allocated to one of seven ML treatments. The control group had no ML recommendations. The other
six groups had access to recommendations from progressively better ML models, denoted q1 through
q6 as Table 1 shows on each of the last six columns.

The rationale for selecting the treatment conditions described above is the following. First, we want
to understand whether monetary incentives change human effort, which in turn would translate into a
shift in the collaborative characteristic function from Figure 1. Although ideally one would want to
approximate the entire collaborative characteristic function under different incentive structures, to
ensure statistical power under a limited budget, we opted for testing the role of varying bonuses with-
out ML recommendations. Second, we want to understand how ML models of varying performance
affect the human-ML performance to draw the collaborative characteristic function. Ideally, one
would want these models to be trained on human labels (themselves potentially affected by previous
model iterations) to mirror the theoretical framework, but this would have required sequential rounds

2https://www.prolific.com/
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(b) Different ML recommendations.

Figure 2: Economic Performance Across Treatments. Error bars denote 95% confidence intervals based on
standard errors clustered at the user level. Solid bars denote the average economic performance of the submitted
solution, striped bars denote the performance if one picked the higher solution between the submitted solution
and the provided ML recommendation. Appendix Figure 4 replicates the analysis using optimality as a measure
of utility.

of experimentation. Instead, we approximate the sequential nature of our framework by training all
models on optimally solved knapsack instances, rather than instances solved by humans. Appendix
A.8 discusses further details on the model training. Ex-post, we verify that models trained on human
labels (from the data collected during the experiment) have a wide range of utility levels. Appendix
Figure 6 confirms that the utilities of the models selected for our treatments fall comfortably within
the large range of utility levels of models trained on human labels. Nonetheless, we emphasize
that these design choices limit our ability to truly replicate our theoretical model. We return to the
limitations of this approach in the conclusion.

5 RESULTS

We start by discussing the null results of monetary performance incentives (RQ1). Figure 2a shows
the results. On average, user economic performance without any bonus is 89.7% (light blue bar).
None of the bonus alternatives are statistically distinguishable from the control group, nor from
each other, and their point estimates are all between 88.6% (for the 20-cent bonus) and 90% (for the
10-cent bonus).

The null effect of monetary incentives is not due to the fact that users did not understand the bonus
structure. To test this hypothesis, we can compare the performance of users in the two 10-cent
bonus treatments without algorithmic recommendations (third column in Figure 2a and first column
in Figure 2b, both yellow). These two treatments only differ by the fact that the one in Figure 2b
had a comprehension quiz for the bonus structure. The difference in performance between the two
treatments is a mere 0.9%, not statistically different from zero (p = 0.268, based on standard errors
clustered at the user level). If we assume that the effect of monetary incentives without ML support is
greater than or equal to their effect with ML support, these results imply that monetary incentives are
unlikely to shift the collaborative characteristic function.

RQ2: We test the introduction of ML recommendations with a single bonus structure, the 10-cent
bonus. Figure 2b presents the results. Focusing on the solid bars, three insights are noteworthy. First,
comparing the first two columns (yellow and blue), models with low economic performance seem
to lead humans to perform slightly worse than if they were not supported by ML recommendations
(89.4% versus 90.9%). This comparison is not statistically significant (p = 0.147), likely due to
low statistical power, but the level difference is not trivial (especially when looking at optimality as
a measure of utility in Appendix Figure 4). Despite this, humans’ utility does improve relative to
the algorithmic recommendations (89.4% versus 71.8% in the q1 treatment, p = 1.8e-28). Second,
models with better economic performance lead to increases in human performance, as evidenced by
the progressively increasing economic performance from q1 to q6. Third, even if human performance
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Figure 3: Empirical approximations of collaborative characteristic functions for two utility functions: economic
performance (left) and optimality (right). Error bars represent confidence intervals based on participant-level
clustered standard errors. Significance levels for the estimates of δqi are based on t-tests against the null δqi = 0.
***: p < 0.001

increases with the performance of the ML recommendation, the increments in performance are
quantitatively fairly small and sometimes statistically indistinguishable from one another, going from
89.4% when the model’s performance is 72%, to 92.6% when the model’s performance is 92%.3 To
evaluate whether the results are at least in part due to users changing their effort level, Appendix
Figure 21 plots time spent on each problem across treatment conditions, and shows no clear patterns.
Additionally, Appendix Figure 10 shows similarly high reported effort levels across ML and non-ML
conditions.4

5.1 APPROXIMATION OF THE COLLABORATIVE CHARACTERISTIC FUNCTION

Figure 3 embeds our empirical results in the framework presented in Section 3. On the x-axis, we
plot the economic performance of the six ML models deployed in our study. On the y-axis, we
plot the performance of the solutions submitted by humans who receive ML recommendations:
economic performance on the left plot and optimality on the right plot. Each of the points correspond
to the six ML treatments of Figure 2b. We linearly interpolate the estimated points to form an
approximation of the collaborative characteristic function ∆U (solid blue line). Looking at the left
plot, in this approximation of a collaborative characteristic function, humans improve on the ML
recommendations for ML performance levels between 70% and 92%. The estimated δqi’s range from
17.5% (p = 1.8e-28) for q1, to 0.5% (p = 0.46) for q6. We denote q6 a stable point since the human
improvement is estimated to be small and statistically indistinguishable from zero. The results imply
that, for this portion of the domain, a firm could deploy a model with below-human performance and
still converge to a stable point with 92% performance in subsequent deployments. The insights from
the right plot are qualitatively similar, although there is no stable point in the portion of the domain
that we explored.

An adjustment to the solution selection method allows us to simulate an additional collaborative
characteristic function. Indeed, in this specific setting, as participants add items to the knapsack, in
principle, they can easily compare the value of their solution to the value of the ML recommendation
(both of which appear at the top of the interface, see Appendix Figure 18). If humans had picked the
highest between their solution and the ML recommendation, the collaborative characteristic function
would have shifted upward to the dashed green line in Figure 3, and the stable point would have
achieved even higher performance. The discrepancy between the solid and dashed lines increases
as the ML model improves, suggesting that even in a straightforward comparison, humans do not
follow ML recommendations when it is in their best financial interest to do so (the difference can
also be seen by comparing the solid and striped bars in Figure 2b). Appendix Figure 22 decomposes

3Regression results, controlling for time taken to solve each problem, are presented in Appendix Table 3.
4Appendix Figure 10 highlights an interesting contrast between users with and without ML recommendations.

Indeed, participants without ML stated that they would have exerted less effort if they had been given ML
recommendations. In contrast, the majority of those who received ML recommendations believed they would
have exerted similar effort even without ML.
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the net effect into two parts. On one hand, as the model performance improves, humans are more
likely to follow its recommendations. On the other, when they do not follow the ML recommendation,
as the model performance improves, it is much more likely that the submitted solution is inferior
compared to the recommendation. Under both solid and dashed collaborative characteristic functions,
we can imagine possible collaborative learning paths, L∆U . With this shape of ∆U, the deployment
decision is simple: all collaborative learning paths will eventually reach a stable point at above human
performance.

6 CONCLUSIONS

We present a theoretical framework for human-ML collaboration in a dynamic setting where human
labels can deviate from the indisputable ground truth. We introduce the collaborative characteristic
function, which theoretically links the utility of ML models with respect to the indisputable ground
truth, to the utility of humans using those same ML models to support their decisions. The collab-
orative characteristic function allows for multiple collaborative learning paths, depending on the
utility of the initially deployed ML model. Each of the collaborative learning paths characterizes a
possible ML deployment strategy and its ensuing dynamic learning process. We theoretically show
conditions under which this dynamic system reaches a stable point through dynamic utility improve-
ment or deterioration. We then present the empirical results of a large user study, which allows
us to approximate collaborative characteristic functions of the knapsack problem. For ML models
of economic performance between 72% and 92%, our empirical approximations of collaborative
characteristic functions all lie above the 45-degree line. Any collaborative learning path starting at
utility between 72% and 92% will thus likely converge to a stable point with utility around 92%. We
explore two factors that can shift the collaborative characteristic function. We find that monetary
incentives do not seem to affect human performance. However, we find that wherever applicable,
a simple post-processing step that picks the best among available solutions (as is possible for the
knapsack problem) can substantially shift the collaborative characteristic function upward, leading to
stable equilibria of higher utility.

Our work has a number of limitations. On the theoretical side, our collaborative learning paths assume
that the firm is able to perfectly replicate human+ML performance in future ML models. Appendix
A.7 discusses stability when learning does not exactly replicate previous human+ML performance.
However, since this assumption will likely not hold in the real world, imperfect learning may require
more iterations than perfect learning, so more empirical studies are required to explore the speed of
model convergence. On the empirical side, to reduce costs while maintaining statistical power, we
only randomized monetary incentives without ML recommendations, and we randomized the quality
of ML recommendations while fixing monetary incentives. Studying the interaction of monetary
incentives and ML performance is an important extension. The null result of monetary incentives
should be interpreted within our context. Specifically, the study participants received payments above
minimum wage, and we only tested different levels of linear performance bonuses. It would be
valuable to extend our work to evaluate the extent to which alternative base payments or non-linear
bonuses may induce different levels of quality and effort by participants and thus collaborative
characteristic functions of varying shapes.

Our approximation of ∆U for the knapsack problem is naturally incomplete for two main reasons.
First, we use prediction models trained on synthetic data to approximate the collaborative character-
istic function. Second, we did not test every possible level of model performance to fully draw the
collaborative characteristic function. It is unlikely that these models and their linear interpolation
would lead to the same performative trajectories as models trained on human feedback. We see this
as a first proof of concept of collaborative characteristic functions, but much more work is needed to
estimate these functions in real-world settings.

Future work could investigate the properties of ∆U that guarantee a unique optimal stable point, both
theoretically and empirically. Provided that researchers have access to the indisputable ground truth,
realistic empirical investigations of collaborative characteristic functions are crucial to shed light
on the shape of those functions for practically relevant tasks such as medical diagnoses or hiring
decisions. Future work should also discuss fairness aspects of this framework, e.g., whether or not
fair stable points exist and how a firm can reach them. More generally, we hope this work generates
more interest in studying settings where ML deployments lead to changes in the data generating
process, which have broad managerial and practical applications.
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A APPENDIX

A.1 DATA AND CODE

The code for model training, data generation, the web application for user study and our data analysis
and plotting can be found in retracted for anonymity; all files are part of the submission as .zip
file

A.2 THE KNAPSACK PROBLEM

Definition 6. (0-1 knapsack Problem) We call maximize
∑n

i=1 vixi s.t.
∑n

i=1 wixi ≤ W
with xi ∈ {0, 1}, vi, wi,W ∈ R+ the 0-1 knapsack Problem.

A.3 PAYMENT DETAILS

We calculated the base payment assuming an average time of 19 minutes to complete the study. The
base payment was adjusted upward if the median time to completion was longer than 19 minutes. We
adjusted the payment despite the fact that many participants finished our survey but did not enter the
completion code directly afterwards. This sometimes increased the median time to completion.

A.4 ANALYSIS WITH OPTIMALITY

Definition 7. (Optimality) For a knapsack instance X with optimal solution Y ∗ and a valid solution

Y we call the function UOpt(X,Y ) =

{
1 if, Y = Y ∗,

0 else
the optimality of Y given X . Furthermore,

we call E
X
[UOpt(X,Y )], the optimal solution rate over all X .

Observation 1. Economic performance and Optimality are utility functions (1).
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Figure 4: Optimality Across Treatments. Error bars denote 95% confidence intervals based on standard errors
clustered at the user level. Solid bars denote the average optimality of the submitted solution, striped bars
denote the optimality if one picked the best solution between the submitted solution and the provided ML
recommendation.

Proof. We start with the proof that Economic Performance is a utility function. 1) Economic
performance is bounded between 0 (for an empty knapsack) and 1, for the optimal value of the
knapsack. 2) There exists an ε > 0, which is the minimum value of an item for the knapsack problem.
The value of that item is the smallest possible distance between two solutions which are not equally
good. 3) Because the Y in our case is the sum of the values of the items in the knapsack and Y ∗ is
the maximum possible value of the knapsack, any value that is closer to the optimal solution has also
higher economic performance because the numerator grows. We chose ε to be the minimum item
value, thus this minimum increase in value between solutions is fulfilled. In summary, Economic
Performance satisfies all three criteria of a utiltiy function.

We continue with the proof that optimality is a utility function. 1) it is 0 or 1 and thus
bounded. 2) If we choose 0 < ε < 1, then ε-sensitivity is satisfied. 3) Is always true for the choice of
our ε. Assume for example ε = 0.5, then it is that d(1, 1) + 0.5 < d(0, 1) and U(1) > U(0). This
statement is true for all 0 < ε < 1 which is what we specified for ε.

Optimality is the function that indicates whether a solution to a knapsack problem has the optimal
value or not. Figure 5 shows the empirical collaborative characteristic function for optimality as
utility function. The humans achieve approximately 20% optimalty without ML advice. The effect
of human on human-ML performance is significant for all models (p < 0.001). Interestingly, the
effect is large even beyond human performance. Furthermore, for models q1,q2,3 with extremely low
utility (average optimality of almost 0%), human effects on the overall outcome is large and close to
human performance. As in Figure 3, the utility gain of rationally acting humans would have been
larger for most models. Our observations suggest that stable points of optimality would lie above
human performance without ML adivce.

A.5 COMMENTS ON THE DEFINITION OF UTILITY

We want to denote that ε-sensitivity implies the following:

Observation 2. ∃ϵ, ε > 0 : |dX(Y, Y ∗)− dX(Y ′, Y ∗)| = ε⇒ |U(X,Y )− U(X,Y ′)| = ϵ

This means that there is a minimum utility change that we call ϵ.
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Figure 5: Empirical Collaborative Characteristic Function for the "Optimality" utility function.
Confidence intervals are based on standard errors clustered at the participant level.

A.6 PROOF OF PROPOSITON 1&2

Proposition 1 (Collaborative Improvement)
If ∆U(U(X,YM )) ≥ U(X,YM ) for all M ∈ M, X ∈ X . Then L∆U(s, t), is non-decreasing with
t = 1, ..., T and for sufficiently large T it exists a t′ ∈ [1, T ] such that L∆U(s, t

′) is a stable point.

Proof. Let t ∈ 1, ..., T be the number of deployment (epochs) that a firm will make. The firm perfectly
learns the data distribution in every epoch, in other words, we assume that L(YMt

, YHt−1
= 0,∀t.

Furthermore, it is ∆U(U(X,YM )) ≥ U(X,YM ) for all M ∈M, X ∈ X .

We first show that L∆U(s, t) is non-decreasing with t. For that, assume that there exists t
for which L∆U(s, t) > L∆U(s, t + 1). But L∆U(s, t + 1) = E

X∈X
(U(H(X,YMt+1

))) ≥δi≥0

E
X∈X

(U(YMt+1
)) =L(YMt+1

,YHt )=0 E
X∈X

(U(H(X,YMt
))) = L∆U(s, t). It follows that L∆U(s, t)

must be non-decreasing.

Now we show that there exists a t′ ∈ [1, T ] such that L∆U(s, t
′) is a stable point for sufficiently large

T . For this, consider that U has a maximum U(Y ∗) (Property 1 (bounded) of definition 1) and there
exists a minimum increment of utility ϵ (see A.5) in each deployment. If we do not achieve at least
ϵ increment in utility, we have reached a stable point. Thus, we can write the maximum utility as
U(Y ∗) = U(YMt

) +Nϵ. For sufficiently large (T ≥ N + 1), this implies that we reached maximum
utility with L∆U(s, T ), and every deployment beyond that must have equal utility.

Proposition 2 (Collaborative Harm)
If ∆U(U(X,YM )) ≤ U(X,YM ) for all M ∈ M, X ∈ X . Then L∆U(s, t), is non-increasing with
t = 1, ..., T and for sufficiently large T it exists a t′ ∈ [1, T ] such that L∆U(s, t

′) is a stable point.

Proof. Analogous to the proof of Proposition 1.
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Figure 6: Distribution of mean model performances trained on human data ex-post to verify that we picked
models with reasonable performances. Vertical lines indicate the economic performances of models trained on
synthetic data, which were chosen to approximate the collaborative characteristic functionof the task.

A.7 PERFECT VS IMPERFECT LEARNING

In this section, we discuss what changes if we loosen the assumption L(YMt
, YHt−1

) = 0. We call
this assumption the "perfect learner" assumption because the firm perfectly learns the human labels
from epoch t− 1 with a model in epoch t. In the following, we consider an imperfect learner such
that L(YMt

, YHt−1
) = σ.

Figure 1 helps illustrate the relaxation of the assumption. An imperfect learner effectively amounts
to tilting the 45-degree line upward or downward. The tilt is upward if imperfect learning leads the
ML model to have lower performance with respect to the indisputable ground truth compared to the
human (i.e., the slope of the straight line is higher than 1). The tilt is downward if imperfect learning
leads the ML model to have higher performance with respect to the ground truth (i.e., the slope of the
straight line is lower than 1).

It is straightforward to extend Proposition 1 and Proposition 2 to the case of imperfect learning. In the
case of collaborative improvement (∆U(U(X,YM )) ≥ U(X,YM )), the human will improve on any
model that the firm can deploy. However, if imperfect learning leads to (U(YMt

)− U(YMt−1
)) < 0

then the performance gain from the human effort does not fully transfer to the ML model. If the
above statement is true for all Mt, then the imperfection creates collaborative harm, which is the
case covered in Proposition 2. However, this would still lead to a stable point. The alternative
scenario where L(YMt

, YHt−1
) = σ ⇒ (U(YMt

)− U(YMt−1
)) > 0 for all Mt, is still a scenario of

collaborative improvement, which means that we will again reach a stable point.

In summary, imperfect and perfect learners are analogous. In both cases, the crucial question is how
much humans improve the system’s performance. For the case of an imperfect learner, an additional
empirical question is how much of the human improvement transfers to the ML model.

A.8 MODEL TRAINING

We release the code required for training our models, our model parameters and all predictions for the
instances together with the instances that participants saw. Learning to solve the knapsack problem
is a research area for itself, however for the small, one-dimensional case of our experiment, it is
possible on consumer hardware. We only train models for knapsack instances with 18 items. As input
features we concatenate weights w1, ..., w18, values v1, ..., v18, the weight constraint W , the sum of
the weights and the sum of the values. Thus, our input dimension is 39. Our goal was to train models
with a broad spectrum of economic performances, not to solve the knapsack problem perfectly. We
added 5 fully connected layers, 4 of them with ReLU activation functions. We use torch.Sigmoid()
for our outputs. The output dimension was 18 and the output values in each index can be interpreted
as the likelihood that the item belongs to a solution or not. For more details on the architecture, see
our code. In summary, all models had dimensions in order of layers: (39,90), (90,550), (550,90),
(90,84), (84,18).

We want to highlight two important aspects of how we thought about the model training. First, did
not want to use any prior knowledge that a firm in our setting could not have either. For example,
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if we could have known the utility of a knapsack solution (economic performance or optimality)
we could have just directly maximized it, or if we could know the optimal solution, we could have
just used the distance to the optimal solution as our loss. Instead, we used the binary cross-entropy
between the label and prediction as our loss. The label was a 18-dimensional 0-1 vector. If the i-th
entry of this output vector is 1, it means that the i-th item is in the knapsack and otherwise not. Thus
we simply minimized the differences between chosen items in our training data and those of our
model. For us, this was a reasonable analogy for the application context of healthcare in which every
"item" is a diagnosis or a symptom (e.g. an ICD10 code).

Because our financial budget was limited and we wanted to test multiple models, we trained all
models on optimally solved knapsack instances. It would have also created a lot of overhead and
space for errors if we would have collected the data of model q1 then trained q2 and rerun the user
study. Training them all on generated labels made it possible to run more treatments at once. We still
wanted to use ML models instead of solutions produced with dynamic programming, because we
wanted to incorporate the distributional character of ML predictions (see Figure 11) and study the
reaction to different quantiles of solution quality in greater detail in future work.

However, we had to include two pieces of prior knowledge in order to achieve better model per-
formance (especially for q5 and q6). First, we sorted the items by density (value/weight). This is
a big advantage in general, but only a small one for our knapsack instances because weights and
values are strongly correlated. Second, we normalized weights and values in a pre-processing step. In
our setting, both operations could not have been done by the firm (what is a normalized symptom)?
However, with those minor modifications we were able to create a larger range of models without
massive resources and still just immitate the "human" label without incorporating anything in the
loss. In a post-processing step, we sorted the items by sigmoid outputs. We then added items to the
knapsack until the weight constraint was reached. From that item selection, we calculated the actual
knapsack values. For more details, please visit our github repository To be added after acceptance.

A.9 OVERVIEW STATISTICS

Figure 7 shows the overview of the answer to the demographic questions in the end of our study. Most
participants held an Undergraduate degree, were between 25 and 44 years old and have not heard
about the knapsack problem before completing the study. 50.1% of the participants identified as
female 48.6% as male and 0.8% as non-binary or non-gender conforming. 96.8% of the participants
have not heard about the knapsack problem before this study. Figure 8 shows the perceived difficulty
of the task for the participants, as well as the reported effort the participants put to complete the
task. Most participants perceived the task as neutral to hard and put in large to very large effort
(self-reportedly). Figure 9 shows how much effort people think they would have spent with or without
the help of ML. It seems like participants who had no ML help think they would put less effort in the
task. People who had the help of ML reported to put about as much effort as all participants reported
to put in right now. Future work should investigate these perceptions in detail.

A.10 GENERATING HARD KNAPSACK PROBLEMS

knapsack problems where the weights wi and values vi are strongly, yet imperfectly, correlated
(Pisinger, 2005; Murawski & Bossaerts, 2016) tend to be hard to solve. We generate knapsack
instances with strong correlations (r ∈ [0.89, 1.00], mean r = .9814) using Algorithm 1, following
the criteria for difficult problems outlined by Pisinger (2005). In our experiment, users solve knapsack
instances with n = 18 items, Wmin = 5, Wmax = 250. We constrain the weights, values, and
capacity of our instances to integer values, to make them easier to interpret by humans.
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Figure 10: Task Difficulty, Effort, and Hypothetical Effort with and without ML recommendations. Perceived
difficulty of the task does not vary between participants with and without ML recommendations. Participants
without ML recommendation expect to invest less effort if they would have had a ML recommendation, while
participants with ML recommendations expected to invest the same effort without ML.

Algorithm 1 Generate hard knapsack instance

Require: number of items n ≥ 0, knapsack capacity range Wmin,Wmax > 0
W ← random.uniform.integer(Wmin,Wmax)
w ← random.uniform.integer(1,W, n) ▷ n-dimensional vector of weights
i← 1
while i ≤ n do

vi ← max(1, random.uniform.integer(wi − ⌊W10 ⌋, wi + ⌊W10 ⌋)
end while
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Figure 11: Distribution of economic performances of solutions by the six models we deployed in our
experiment.

Figure 12: Tutorial 1/5
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Figure 21: Time Spent Across Treatment Conditions19
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Figure 13: Tutorial 2/5

Figure 14: Tutorial 3/5 (with ML treatment)

Figure 15: Tutorial 4/5 (with 10 cents/ppt monetary incentive)
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Figure 16: Tutorial 5/5 (with comprehension quiz)

Figure 17: Feedback to a practice problem

Figure 18: Interface for the main task: 1) the knapsack capacity, 2) sum of weights of selected items,
3) sum of values of selected items, 4) remaining time, 5) items with weights and values, 6) machine
learning solution (only visible if user receives corresponding treatment). Clicking on gray items adds
them to the knapsack if the weight allows it, and clicking on green items removes them from the
knapsack. The total weight and value of selected items is shown at the top and automatically updated.

Figure 19: Demographic questions after tasks
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Figure 20: Score screen for performance feedback in the end

UEcon(X,H(X)) UEcon(X,H(X))

Intercept 0.7620∗∗∗ 0.6957∗∗∗

(0.0184) (0.0408)
02-cent bonus 0.0003 0.1087∗

(0.0077) (0.0484)
10-Cent bonus 0.0011 0.0683

(0.0076) (0.0499)
20-Cent bonus −0.0087 0.0787

(0.0079) (0.0478)
log(seconds spent) 0.0322∗∗∗ 0.0481∗∗∗

(0.0039) (0.0093)
02-cent bonus · log(seconds spent) — −0.0260∗

(0.0112)
10-cent bonus · log(seconds spent) — −0.0161

(0.0115)
20-cent bonus · log(seconds spent) — −0.0210

(0.0113)

N 3,960 3,960
Adj.R2 0.0613 0.0661

UEcon(X,H(X,Y )) UOpt(X,H(X,Y ))

Intercept 0.8082∗∗∗ −0.0297
(0.0049) (0.0245)

q1 (72%) −0.0131 −0.0408
(0.0044)∗∗ (0.0260)

q2 (80%) 0.0011 −0.0161
(0.0043) (0.0283)

q3 (84%) 0.0048 −0.0324
(0.0049) (0.0198)

q4 (88%) 0.0151∗∗∗ 0.0333
(0.0033) (0.0214)

q5 (90%) 0.0247∗∗∗ 0.0518∗

(0.0043) (0.0263)
q6 (92%) 0.0211∗∗∗ 0.0880∗∗∗

(0.0033) (0.0213)
log(seconds spent) 0.0240∗∗∗ 0.0533∗∗∗

(0.0010) (0.0045)

N 8,930 8,930
Adj.R2 0.0733 0.0281

Table 2: Linear regressions with clustered standard errors on participant id. Effect of monetary
incentive on UEcon of human solutions (left). Effect of ML recommendation on different levels of
economic performance UEcon (right). Standard errors in parentheses. * p < 0.05, ** p < 0.01, ***
p < 0.001.
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Figure 22: ML-usage increased with better ML performance. Share of ignored ML solutions did also
increase with better performance.
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UEcon(X,H(X))
(1) (2) (3)

Intercept 0.7620∗∗∗ 0.7676∗∗∗ 0.8082∗∗∗

(0.0184) (0.0276) (0.0049)
2-cent Bonus 0.0003

(0.0077)
10-cent Bonus 0.0011

(0.0076)
20-cent Bonus −0.0087

(0.0079)
Comprehension Quiz 0.0104

(0.0076)
q1 (72%) −0.0131

(0.0044)∗∗

q2 (80%) 0.0011
(0.0043)

q3 (84%) 0.0048
(0.0049)

q4 (88%) 0.0151∗∗∗

(0.0033)
q5 (90%) 0.0247∗∗∗

(0.0043)
q6 (92%) 0.0211∗∗∗

(0.0033)
log(seconds spent) 0.0322∗∗∗ 0.0317∗∗∗ 0.0240∗∗∗

(0.0039) 0.0064 (0.0010)

N 3,960 2170 8,930
Adj.R2 0.0613 0.0506 0.00733
Included Bonus Treatments All 10-cent 10-cent
Included ML Treatments No ML No ML All ML
Comprehension Quiz No Both Yes

Table 3: Linear regressions of economic performance UEcon on dummies for the various treatment
conditions. Column 1 includes all treatment conditions without ML recommendations and without
comprehension quiz. It tests the difference in performance across different bonus levels. Column 2
includes the two treatment conditions without ML recommendation and with 10-cent bonus. The
difference between the two treatment conditions is the presence of a comprehension quiz for the
bonus structure. Column 3 includes all treatments with comprehension quiz and 10-cent bonus. It
tests the difference in performance across ML recommendations with different performance. Standard
errors, in parentheses, are clustered at the participant level. * p < 0.05, ** p < 0.01, *** p < 0.001.
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