
Multimodal Bandits: Regret Lower Bounds and
Optimal Algorithms

William Réveillard
Division of Decision and Control Systems

KTH Royal Institute of Technology
11428 Stockholm, Sweden

wilrev@kth.se

Richard Combes
Laboratoire des signaux et systèmes

Université Paris-Saclay, CNRS, CentraleSupélec
91190 Gif-sur-Yvette, France

richard.combes@centralesupelec.fr

Abstract

We consider a stochastic multi-armed bandit problem with i.i.d. rewards where
the expected reward function is multimodal with at most m modes. We propose
the first known computationally tractable algorithm for computing the solution to
the Graves-Lai optimization problem, which in turn enables the implementation of
asymptotically optimal algorithms for this bandit problem.

1 Introduction

We consider a stochastic multi-armed bandit with K ≥ 1 arms. At time t ∈ [T], with T ≥ 1, based
on her previous observations, a learner selects an arm k(t) in [K] = {1, . . . ,K}, and subsequently
observes a random reward Xk(t),t. The successive rewards (Xk,t)t∈N obtained when sampling a
given arm k ∈ [K] are drawn i.i.d. from a family of distributions νk(µk) parameterized by their
expectation µk. The vector of mean rewards1 µ = (µk)k∈[K] is unknown to the learner. The learner’s
goal is to select arms in order to discover the optimal arm k⋆(µ) = argmaxk∈[K] µk. More precisely,
the learner aims at minimizing the regret

R(µ, T) = T (max
k∈[K]

µk)−
∑
t∈[T]

µk(t)

which is the expected difference between the total reward obtained by an oracle who knows µ in
advance and always chooses the arm with the largest mean reward, and the total reward obtained by
the learner. If we were to assume that µ is arbitrary, then the problem at hand would reduce to the
classical stochastic multi-armed bandit. Here we consider a structured stochastic multi-armed bandit,
where the structure is encoded by a graph G.

We consider a graph G = (V,E) whose vertices are the arms V = [K], and we say that arms k and ℓ
are neighbors if and only if (k, ℓ) ∈ E. Arm k is a mode of µ with respect to G if and only if it has a
strictly greater reward than all of its neighbors: µk > maxℓ:(k,ℓ)∈E µℓ and we say that µ is m-modal
with respect to G if it has m modes with respect to G.

In this work, we assume that µ is at most m-modal with respect to a graph G known to the learner.
We emphasize that, while G is known to the learner, µ is not, so that finding the optimal arm requires
sampling from suboptimal arms repeatedly. We note that for m = 1, a 1-modal vector is simply a
unimodal vector, thus the problem reduces to unimodal bandits [8]. If G is a line graph, a mode is an
arm whose reward is greater than that of its left and right neighbors. We will assume that G is a tree.

1With a slight abuse of notation, we also refer to µ as the reward function of the bandit problem.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

2 Related work and contribution

In the absence of a multimodal structure, our problem reduces to the classical multi-armed bandit
studied by [13], and several asymptotically optimal algorithms are known for this problem, such as
KL-UCB, proposed by [6], DMED, proposed by [9] and Thompson Sampling, as analyzed by [10].

When adding a multimodal structure with m = 1 mode, we obtain the unimodal bandit problem,
originally studied by [8] and revisited by [25]. Several asymptotically optimal algorithms have been
proposed for this problem including the KL-UCB style algorithm of [2], the Thompson Sampling
style algorithm of [21] and the DMED style algorithm of [19]. A common feature of these algorithms
is that they are all based on local search, where only arms that are neighbors of the optimal arm
are selected a logarithmic amount of time. Local search is necessary for asymptotic optimality in
unimodal bandits because the strategy that minimizes the Graves-Lai bound, as introduced by [7], is
local.

Multimodal bandits with m ≥ 1 modes generalize unimodal bandits, and have been considered in [17]
and [18]. These works explored local search strategies, which, as we shall see, are not necessarily
asymptotically optimal. The main motivation behind multimodal bandits is the fact that many
objective functions encountered in applications are not convex nor unimodal, such as the empirical
risk of deep neural networks. Methods for optimizing or sampling (which are closely related)
multimodal functions include bayesian methods studied by [3] and MCMC methods considered
by [14]. Multimodal functions have also been considered in an active learning setting by [16]. An
interesting application of bandit problems with multimodal rewards is pricing ([15, 24]).

For structured bandits, the Graves-Lai bound is an information-theoretic regret lower bound, stated as
an optimization problem. Its optimal solution identifies strategies for optimal exploration, i.e., the
rate at which suboptimal arms must be selected to ensure minimal regret. Several asymptotically
optimal algorithms with regret matching the Graves-Lai bound have been proposed by [7], [1], [5],
[22]. The main advantage of these algorithms is their universality in the sense that they apply to all
structured bandits.

While the above algorithms are indeed universally asymptotically optimal, they often pose a tremen-
dous computational challenge, because they must solve the Graves-Lai optimization problem. In
some simple structures, the Graves-Lai optimization problem admits a closed-form solution, for
instance: classical bandits ([13]), unimodal bandits ([2]), dueling bandits ([11]) to name a few. For
some other structures such as combinatorial bandits ([4]), the Graves-Lai optimization problem
can be solved with efficient iterative algorithms. For multimodal bandits, solving the Graves-Lai
optimization problem is challenging, as we shall see, primarily due to the highly non-convex nature
of its constraint set.

Our contribution. In this work, we provide the first known computationally tractable algorithm to
solve the Graves-Lai optimization problem for multimodal bandits. The algorithm is involved and
uses a combination of discretization, dynamic programming and projected subgradient descent in
order to navigate the intricate structure of the constraint set. The algorithm applies to a wide variety
of reward distributions, and any tree graph. We further demonstrate that local search strategies are
suboptimal, which means that solving the Graves-Lai problem is unavoidable for optimality. The
code for the proposed algorithms, which are involved, is publicly available at https://github.
com/wilrev/MultimodalBandits.

3 Asymptotically optimal algorithms for multimodal bandits

In this section, we state our problem assumptions, present the Graves-Lai lower bound specialized to
the case of multimodal bandits, and recall how solving the Graves-Lai optimization problem enables
one to design asymptotically optimal algorithms, i.e., with regret matching the Graves-Lai lower
bound.

Notation. To ease exposition, we use the following notation. All vectors are represented with
bold symbols. We denote by e(k) ∈ RK the k-th canonical basis vector of RK , and by ∥x∥p =

(
∑

k∈[K] |x|p)1/p the Lp norm. The closure of a set S ⊂ RK is denoted by S. We denote µ⋆ =

maxk∈[K] µk and µ⋆ = mink∈[K] µk the maximum and minimum mean reward, respectively. We

2

https://github.com/wilrev/MultimodalBandits
https://github.com/wilrev/MultimodalBandits

assume that the optimal arm k⋆(µ) = argmaxk∈[K] µk is unique. We define the vector of gaps
∆ = (µ⋆ − µk)k∈[K] and the minimal gap ∆min = mink∈[K]:∆k>0 ∆k.

For a given tree G = (V,E) with V = [K], we denote by diam(G) its diameter and deg(G)
its maximal degree. M(µ) is the set of modes of µ with respect to G, so that µ is m-modal if
|M(µ)| = m, and N (µ) is the set of modes and neighbors of modes of µ. We define F≤m (resp.
Fm) the set of reward functions of RK with at most m modes (resp. exactly m modes) with respect
to G. We assume that µ ∈ F≤m for some m > 1, and that m is known to the learner.

Finally, we sometimes consider the tree G to be directed. Then, for a given arm k ∈ [K], we denote
by C(k) the set of children of k, D(k) the set of descendants of k, p(k) the parent of k and p2(k) the
grandparent of k (i.e., the parent of p(k)).

Assumptions on reward distributions. The rewards from arm k ∈ [K] form an i.i.d. sample from
distribution νk(µk). Let dk(µk, λk) = D(νk(µk) ∥ νk(λk)) denote the relative entropy between the
rewards distributions of arm k under parameters µk and λk. For µ,λ ∈ RK we use the vectorized
notation d(µ,λ) = (dk(µk, λk))k∈[K]. We make two assumptions regarding these relative entropies.

Assumption 1. For all µ ∈ RK and k ∈ [K], λk 7→ dk(µk, λk) is strictly decreasing for λk < µk

and strictly increasing for λk > µk.
Assumption 2. For all k ∈ [K], µ ∈ RK and λ,λ′ in [µ⋆, µ

⋆]K we have ∥d(µ,λ)− d(µ,λ′)∥1 ≤
A(µ)∥λ− λ′∥1 where A(µ) ≥ 0 can be understood as the Lipschitz constant of the relative entropy
when its first argument is held constant.

The first assumption boils down to the relative entropy dk being unimodal, and its unique mode being
the minimizer λk = µk. The second assumption is satisfied whenever the divergence is continuously
differentiable over [µ⋆, µ

⋆]K . For example, when νk(µk) = N (0, 1), it holds with A(µ) = µ⋆ − µ⋆.

Regret lower bound. Proposition 1 states that the asymptotic regret of any uniformly good algo-
rithm (i.e., whose regret scales subpolynomially on all problem instances) must be lower bounded by
the value of the Graves-Lai optimization problem multiplied by lnT . We denote this optimization
problem by PGL.

Proposition 1. Consider an algorithm such that limT→∞
R(µ,T)

Tα = 0 for all α > 0 and all µ ∈ F≤m.
Then its asymptotic regret is lower bounded as lim infT→∞

R(µ,T)
lnT ≥ C(m,µ) for all µ ∈ F≤m

where C(m,µ) is the value of:

minimizeη η⊤∆ subject to inf
λ∈B(m,µ)

η⊤d(µ,λ) ≥ 1 and η ≥ 0 (PGL)

with B(m,µ) = {λ ∈ F≤m, λk⋆(µ) = µ⋆, k⋆(λ) ̸= k⋆(µ)}.

PGL is a semi-infinite linear program. There are infinitely many constraints, and these constraints are
described by B(m,µ), which is the set of confusing parameters. λ ∈ B(m,µ) is confusing to the
learner because it cannot be distinguished from µ by selecting the optimal arm k⋆(µ), thereby forcing
the learner to explore suboptimal arms. In particular, for a fixed η ≥ 0, we call most confusing
parameter the minimizer λ⋆ of λ 7→ η⊤d(µ,λ) over B(m,µ). The set B(m,µ) has a complicated
structure, which is why solving PGL is non-trivial. Proposition 1 is a direct consequence of the
general bound of Theorem 1 in [7] or alternatively the simpler lower bound of Theorem 1 in [1].

Asymptotically optimal algorithms. We recall that, if PGL can be solved, then there exists a wide
variety of algorithms that are asymptotically optimal, such as those presented by [7], [1], [5] and
[22]. All these algorithms attempt to select arm k ̸= k⋆(µ) a number of times η⋆k lnT + o(lnT)
when T →∞, where η⋆ is a solution to PGL. The only requirement is that one is able to solve PGL

several times in order to decide which arm to explore.
Theorem 1 (Theorem 2 in [1]). Consider Gaussian rewards with variance one and assume that for
any µ ∈ F≤m, a solution to the Graves-Lai problem can be computed. Then, the OSSB algorithm

with parameters ε = γ = 0 is such that for all µ ∈ F≤m, lim sup
T→∞

R(µ, T)

lnT
≤ C(m,µ).

For completeness, the pseudo-code of OSSB is provided in Appendix A.1. We now focus on how to
solve PGL for multimodal bandit problems.

3

4 A computationally tractable algorithm to solve the Graves-Lai problem

In this section, we propose an algorithm to solve the Graves-Lai optimization problem in a computa-
tionally tractable manner, which constitutes our main contribution. The algorithm is rather intricate,
and we go through its derivation step by step. The complete approach is summarized in Figure 1. For
clarity, detailed proofs are provided in Appendix C.

(A) Penalized subgradient descent

Current sampling rates η(s)

Compute most confusing parameter λ(s)

Update rates via subgradient step:
η(s + 1) = Π[η(s) − δ · ∇hλ(s)(η(s))]

Iterate

(B) Decomposition into subproblems

Goal: compute λ(s) =
argminλ∈B(m,µ) η(s)

⊤d(µ,λ)

1. Decompose into subprob-
lems over all (k, k′) pairs

2. For each subproblem, discretize
the constraint set Bk,k′(m,µ)

3. Solve each discretized
subproblem via DP

4. Select λ(s) as the solu-
tion with lowest overall cost

(C) Dynamic programming solver

Goal: compute λ(k,k′) =
argminλ∈B̃k,k′ (m,µ) η(s)

⊤d(µ,λ)

k

ℓ1 ℓ2

ℓ0

root

leaf

Forward pass
Compute costs fℓ(·)
from leaves to root.

Backward pass
Reconstruct λ(k,k′)

from root to leaves.

Figure 1: Summary of the procedure to solve PGL.

4.1 Reducing the constraint of PGL to tractable subproblems

On the difficulty of computing the constraint. In the unimodal case where m = 1, solving PGL

can be done in closed form, however for m > 1 this is much less straightforward. The main difficulty
is to compute the value of the constraint infλ∈B(m,µ) η

⊤d(µ,λ). While λ 7→ η⊤d(µ,λ) is usually
a convex function, minimizing it over B(m,µ) is difficult, due to the particular structure of the set
B(m,µ). Indeed, B(m,µ) is not convex, nor is it connected. In Proposition 2 we show that, if one
wanted to express B(m,µ) as a union of U(K,m) convex sets (so that we could minimize η⊤d(µ,λ)
over each set using convex programming), then one would require U(K,m) to be exponentially large
in K. For example, if G is a line graph with K = 100 nodes, and we consider multimodal functions
with m = 5 modes, then the number of convex components U(K,m) must be greater than 105.
Proposition 2. Assume that B(m,µ) can be written as a union of U(K,m) convex sets. Then for
any m > 1, we have:

U(K,m) ≥ ((deg(G)− 1)m)!

(deg(G)m)!
(K − (deg(G) + 1)m)m,

hence U(K,m) grows exponentially with m.

Figure 2: 2-modal example.

In contrast to the unimodal case (m = 1), where the
most confusing parameter λ⋆ is obtained by perturbing
a single neighbor of the optimal arm k⋆(µ) (as shown
by [2]), the multimodal setting (m > 1) introduces
more complex possibilities. While one might expect
the most confusing parameter to be such that λk =
µ⋆ for a single k ∈ N (µ) \ k⋆(µ), and equal to µ
elsewhere, this intuition fails in general. Depending on
the value of η, it may be more confusing to set λk =
µ⋆ for k /∈ N (µ), and to ensure that λ ∈ F≤m, set
λk′ = λℓ for some k′ ∈M(µ) \ k⋆(µ) and ℓ such that
(k′, ℓ) ∈ E. Figure 2 provides a concrete illustration of

4

this phenomenon on a line graph, with λ⋆ = argminλ∈B(2,µ) η
⊤d(µ,λ) for µ = (1, 2, 4, 2, 3),

η = (0.01, 0.25, 1, 0.25, 1), and Gaussian rewards with variance one.

Restricting the constraint and solution spaces. We first show some elementary properties of the so-
lution, which will allow us to restrict both the spaces where η and λ lie. First, we decompose the con-
straint set as B(m,µ) = ∪k ̸=k⋆(µ)Bk(m,µ) with Bk(m,µ) = {λ ∈ F≤m, λk⋆(µ) = µ⋆, k⋆(λ) =

k}. Clearly, minimizing η⊤d(µ,λ) over λ ∈ B(m,µ) amounts to minimizing η⊤d(µ,λ) over
λ ∈ Bk(m,µ) for each k ̸= k⋆(µ). Proposition 3 states that this minimization problem is straight-
forward when µ has strictly less than m modes or when k is in the neighborhood of the modes of
µ.
Proposition 3. Let η ≥ 0 and k ̸= k⋆(µ). If k ∈ N (µ) or |M(µ)| < m,

inf
λ∈Bk(m,µ)

η⊤d(µ,λ) = ηkdk(µk, µ
⋆),

which is attained for λ = µ+ (µ⋆ − µk)e
(k) ∈ Bk(m,µ).

We now focus on the case |M(µ)| = m and k /∈ N (µ). Proposition 4 shows that the constraint
λ ∈ Bk(m,µ) is equivalent to a constraint on a compact set whose elements have entries comprised
between the minimum and maximum of µ, and that have the same value µ⋆ at k and k⋆(µ).

Proposition 4. Let η ≥ 0, k /∈ N (µ) and B′k(m,µ) = {λ ∈ [µ⋆, µ
⋆]K∩F≤m, λk = λk⋆(µ) = µ⋆}.

Then
inf

λ∈Bk(m,µ)
η⊤d(µ,λ) = min

λ∈B′
k(m,µ)

η⊤d(µ,λ).

Proposition 5 shows that, in order to compute a solution to PGL, we can restrict our attention to
a compact region, and that the entries of η cannot be larger than B(µ). In turn, B(µ) may be
interpreted as the regret predicted by the Lai-Robbins bound in absence of a multimodal structure,
divided by the minimal gap.
Proposition 5. There is a solution η⋆ of PGL such that η⋆ ∈ [0,B(µ)]K where B(µ) =

1
∆min

∑
k:∆k>0

∆k

dk(µk,µ⋆) .

Location of modes in subproblems. We have shown in the previous section that the computation
of the constraint of PGL can be reduced to solving the following subproblem for all η ≥ 0 and for
each k ∈ [K] \ N (µ):

minimizeλ η⊤d(µ,λ) subject to λ ∈ B′k(m,µ). (PGL(k))

We now present the most important structural result about the solution to PGL(k), which pertains
to the location of its modes. Proposition 6 states that the modes of the solution to PGL(k) all lie in
the set of modes of µ, apart from k, which must of course be a mode since it is a maximizer. This
is in fact the reason why one is able to compute the solution to PGL(k). While this will be made
clearer by exhibiting an efficient algorithm to compute the solution, it is understood searching over λ
is much easier when the location of its modes is known.
Proposition 6. Consider λ⋆ the solution to PGL(k). ThenM(λ⋆) ⊂M(µ) ∪ {k}.

If |M(µ)| = m, we have |M(µ) ∪ {k}| = m+ 1, which implies that there must exist a mode k′ of
µ that is not a mode of λ⋆, and all of the modes of λ⋆ apart from k are modes of µ. Additionally, we
can assume that k′ ̸= k⋆(µ). Indeed, if k′ = k⋆(µ), the constraint λk⋆(µ) = µ⋆ would yield λℓ ≥ µ⋆

for some neighbor ℓ of k⋆(µ). This cannot improve upon the solution given by Proposition 3. This
means that we can restrict our attention to the sets Bk,k′(m,µ) for k′ ∈M(µ) \ {k⋆(µ)} with

Bk,k′(m,µ) = {λ ∈ [µ⋆, µ
⋆]K ,M(λ) ⊂M(µ) ∪ {k} \ {k′}, λk⋆(µ) = λk = µ⋆}

which is the set of vectors whose modes lie inM(µ) ∪ {k} \ {k′} and attain their maximum at
k⋆(µ) and k, and that have the same value as µ at k⋆(µ). We must solve the subproblems, for
k ∈ [K] \ N (µ), k′ ∈M(µ) \ {k⋆(µ)}:

minimizeλ η⊤d(µ,λ) subject to λ ∈ Bk,k′(m,µ). (PGL(k, k
′))

5

Discretizing the subproblems. The last step before we can solve PGL(k, k
′) is to discretize the

space in which λ lies, which will allow us to design a discrete search procedure over λ. Proposition 7
states that discretizing each entry of λ ∈ Bk,k′(m,µ) with a grid of n points D(n,µ), incurs a small
approximation error that can be controlled, and vanishes at a rate inversely proportional to n. It is
noted that this result is non trivial in the sense that there exists sets of large volume whose intersection
with some grid can be empty, and holds because of the particular structure of Bk,k′(m,µ). In essence,
we can round λ to ensure both a small rounding error while leaving the set of modes of λ unchanged.
Proposition 7. Consider D(n,µ) the following uniform discretization of [µ⋆, µ

⋆] with n discretiza-
tion points:

D(n,µ) = {µ⋆ + (i/n)(µ⋆ − µ⋆), i ∈ [n]}.
Then there exists λ̃ ∈ Bk,k′(m,µ) ∩D(n,µ)K such that for any η ∈ [0,B(µ)]K:

η⊤d(µ, λ̃)− C(µ)

n
≤ min

λ∈Bk,k′ (m,µ)
η⊤d(µ,λ) ≤ η⊤d(µ, λ̃)

with C(µ) = diam(G)(µ⋆ − µ⋆)A(µ)B(µ)K.

4.2 Computing the constraint sets via dynamic programming

We now explain how to efficiently solve the discretized version of PGL(k, k
′), namely

minimizeλ η⊤d(µ,λ) subject to λ ∈ B̃k,k′(m,µ) (P̃GL(k, k
′))

for B̃k,k′(m,µ) = Bk,k′(m,µ) ∩ D(n,µ)K . We use a dynamic programming procedure which
necessitates viewing G as a directed tree Gk, obtained by performing depth-first search on the
undirected tree G starting at node k (which is consequently the root of Gk). We recall the notations
C(ℓ),D(ℓ), p(ℓ) and p2(ℓ) to denote the children, descendants, parent and grandparent of a node
ℓ in Gk. The high-level idea of the procedure is to compute the value of P̃GL(k, k

′) recursively
with a formula that relates the minimal obtainable value of

∑
j∈D(ℓ)∪{ℓ} ηjdj(µj , λj) to that of∑

j∈D(ℓ) ηjdj(µj , λj) for any node ℓ. Note that when ℓ = k, the former is equal to the value of
P̃GL(k, k

′), and when ℓ is a leaf of Gk, the latter is equal to 0. This recursion formula heavily relies
on the fact that all modes of the solution to P̃GL(k, k

′) are inM(µ) ∪ {k} \ {k′}.
We now introduce some important quantities for our dynamic programming approach. For a node
ℓ ̸= k in Gk , we define fℓ(z, u) as the minimal obtainable value of∑

j∈D(ℓ)∪{ℓ}

ηjdj(µj , λj)

subject to the constraints λ ∈ B̃k,k′(m,µ), λℓ = z and λℓ > λp(ℓ) if u = 1 (resp. λℓ ≤ λp(ℓ) if
u = −1). To simplify the notations further, we introduce the following auxiliary functions2:

f⋆
ℓ (z,+1) = min

w>z
fℓ(w,+1), f⋆

ℓ (z,−1) = min
w≤z

fℓ(w,−1), f⋄
ℓ (z) = min

u∈{−1,+1}
f⋆
ℓ (z, u),

which represent the minimal obtainable value of
∑

j∈D(ℓ)∪{ℓ} ηjdj(µj , λj) for λ ∈ B̃k,k′(m,µ)

when λℓ > λp(ℓ) = z, λℓ ≤ λp(ℓ) = z and λp(ℓ) = z, respectively. Finally, to ensure that
the constraint λk⋆(µ) = µ⋆ is satisfied during the dynamic programming procedure, we set 3

ηk⋆(µ) = +∞, and we use the convention that ηk⋆(µ)dk⋆(µ)(µ
⋆, z) equals 0 if z = µ⋆ and +∞

otherwise.
Proposition 8. The functions fℓ(z, u) for ℓ ∈ [K], z ∈ D(n,µ) and u ∈ {−1,+1} obey the
following recursion:

If ℓ ∈M(µ)∪{k} \ {k′}: fℓ(z, u) = ηℓdℓ(µℓ, z)+
∑

j∈C(ℓ) f
⋄
j (z), and if ℓ ̸∈ M(µ)∪{k} \ {k′}:

fℓ(z, u) =


ηℓdℓ(µℓ, z) +

∑
j∈C(ℓ) f

⋄
j (z) if u = −1

ηℓdℓ(µℓ, z) +
∑

j∈C(ℓ) f
⋄
j (z) + minv∈C(ℓ) gv(z) if u = +1, C(ℓ) ̸= ∅

+∞ if u = +1, C(ℓ) = ∅
2The minima are taken with the implicit constraint w ∈ D(n,µ).
3Recall that the value of ηk⋆(µ) has no impact on the solution to P̃GL(k, k

′).

6

where gv(z) = min{f⋆
v (z,+1), fv(z,−1)} − f⋄

v (z), and the value of P̃GL(k, k
′) equals fk(µ⋆, u)

for any u ∈ {−1,+1}.

Since the discretized search space D(n,µ) is finite, we can straightforwardly compute the values
of fℓ(z, u), f⋆

ℓ (z, u) and f⋄
ℓ (z) for each ℓ ∈ [K], z ∈ D(n,µ) and u ∈ {−1,+1} with the dynamic

programming equations of Proposition 8. The solution λ⋆ of P̃GL(k, k
′) can then be obtained

recursively as in Corollary 1, in which the condition ℓ = argminv∈C(p(ℓ)) gv(λ
⋆
p(ℓ)) can be understood

as ℓ being the children of p(ℓ) that induces the smallest cost when constrained by the value of p(ℓ).

Corollary 1. The solution λ⋆ of P̃GL(k, k
′) is such that λ⋆

k = µ⋆ and for ℓ ̸= k:

If p(ℓ) /∈M(µ) ∪ {k} \ {k′}, λ⋆
p(ℓ) > λ⋆

p2(ℓ) and ℓ = argminv∈C(p(ℓ)) gv(λ
⋆
p(ℓ)):

λ⋆
ℓ =

{
argminz>λ⋆

p(ℓ)
fℓ(z,+1) if f⋆

ℓ (λ
⋆
p(ℓ),+1) ≤ fℓ(λ

⋆
p(ℓ),−1)

λ⋆
p(ℓ) if f⋆

ℓ (λ
⋆
p(ℓ),+1) > fℓ(λ

⋆
p(ℓ),−1).

and otherwise λ⋆
ℓ =

{
argminz>λ⋆

p(ℓ)
fℓ(z,+1) if f⋆

ℓ (λ
⋆
p(ℓ),+1) ≤ f⋆

ℓ (λ
⋆
p(ℓ),−1)

argminz≤λ⋆
p(ℓ)

fℓ(z,−1) if f⋆
ℓ (λ

⋆
p(ℓ),+1) > f⋆

ℓ (λ
⋆
p(ℓ),−1).

Furthermore, computing the solution to P̃GL(k, k
′) using the procedure of Proposition 8 and Corol-

lary 1 can be done in time and memory O(nK).

Overall time complexity. This procedure allows us to solve the subproblems P̃GL(k, k
′) for all

k /∈ N (µ) and k′ ∈M(µ)\{k⋆(µ)}. By comparing these solutions with the trivial parameters from
Proposition 3, we can find the most confusing parameter in B(m,µ) ∩D(n,µ)K for any sampling
rate η in time O(K2mn). In practice, these subproblems are independent and can be solved in
parallel. In Appendix E, we describe a more involved dynamic program that runs in time O(Kn)
without requiring parallelism.

Illustration of the dynamic programming approach. We now illustrate the computation of
the most confusing parameter in B(m,µ) ∩ D(n,µ)K with the line graph example of Figure 2.
There, the divergence is dk(λk, µk) =

1
2 (λk − µk)

2, the optimal arm is k⋆(µ) = 3, the modes are
M(µ) = {3, 5}, and their neighborhood is N (µ) = {2, 3, 4, 5}. If k = k⋆(λ) is chosen in N (µ),
applying Proposition 3 yields

inf
λ∈Bk(m,µ)

η⊤d(µ,λ) =
1

2
.

Otherwise, we must have k = 1, and the only choice for the mode of µ to be removed is k′ = 5.

We can then solve P̃GL(k, k
′) for (k, k′) = (1, 5) by applying Proposition 8 as follows.

We first form the directed tree G1 as a line graph, rooted at 1, with leaf node 5. For each node ℓ and
each grid value z ∈ D(n, µ) the program computes and stores in memory the values

fℓ(z,−1), fℓ(z,+1),

together with the auxiliary minima f⋆
ℓ (z, ·) and f⋄

ℓ (z), as defined in Proposition 8. The leaf entry is
obtained directly from the divergence:

f5(z,−1) =
η5
2
(µ5 − z)2, f5(z,+1) = +∞,

and f⋆
5 (z, ·), f⋄

5 (z) are then computed by minimizing over the grid D(n, µ). For an internal node
ℓ ̸= 5, the recursion in Proposition 8 is applied: each entry fℓ(z, ·) is derived from the already
computed child cost values as prescribed in the proposition. Finally, the value of the discretized
subproblem P̃GL(k, k

′) is read off at the root as f1(µ⋆,+1), where µ⋆ = 4 in the present example.
The minimizer is finally recovered by backtracking, as described in Corollary 1. In the limit n→∞,
this minimizer approaches λ⋆ = (4, 2, 4, 2.8, 2.8). This non-trivial confusing parameter turns out
to be the global minimizer of PGL as its value approaches 0.145 < 0.5.

7

4.3 Solving PGL via penalized subgradient descent

We are now capable of computing a minimizer of η⊤d(µ,λ) overB(m,µ)∩D(n,µ)K , the constraint
in the original problem PGL, with discretization. The last step to close the loop is to use an iterative
procedure to derive an approximate solution to PGL. The simplest way to understand this procedure
is to view it as a projected subgradient descent for the convex function

h : η 7→ η⊤∆+ γmax

[
1− min

λ∈B(m,µ)∩D(n,µ)K
{η⊤d(µ,λ)}, 0

]
which can be interpreted as the objective of PGL with a discretized constraint space and where the
hard constraints have been replaced by a penalty similar to the hinge loss function, and where γ
controls the magnitude of the penalty. The projection step is used to enforce the constraint η ≥ 0. We
show in Proposition 9 that the minimizer of h(η) subject to the constraint η ≥ 0 is an approximate
solution to PGL.

Proposition 9. Consider a step size δ2 = KB(µ)2

tE(µ)2 where t is the number of iterations, E(µ) =

∥∆∥2 + γK3/2A(µ)(µ⋆ − µ⋆), a penalty γ = 2maxk,∆k>0
∆k

d(µk,µ⋆) and an iterative procedure
η(1) = 0, and for s < t:

η(s+ 1) = Π
[
η(s)− δ

(
∆− γd(µ,λ(s))1{η⊤d(µ,λ(s)) < 1}

)]
where λ(s) ∈ argminλ∈B(m,µ)∩D(n,µ)K η(s)⊤d(µ,λ) and Π [x] = (max(xk, 0))k∈[K] is the

projection on the positive orthant. Define η̄(t) = (1/t)
∑t

s=1 η(s) the average iterate and a scaled

version η̃(t) = η̄(t)
(
1− C(µ)

n − 2F(µ)

γ
√
t

)−1

for F(µ) =
√
KB(µ)E(µ). Then η̃(t) is a feasible

solution to PGL with value at most:

η̃(t)⊤∆ ≤
(
1− C(µ)

n
− 2

F(µ)

γ
√
t

)−1 (
C(m,µ) +

F(µ)√
t

)
if
C(µ)

n
− 2

F(µ)

γ
√
t
< 1.

Putting it all together. We end this section by stating our main result, which is a direct consequence
of the previous propositions, and propose a computationally tractable algorithm in order to compute
an approximate solution to PGL. With the more intricate dynamic programming scheme presented in
Appendix E, its time complexity can be improved to O(Knt).
Theorem 2. Consider the algorithm which outputs η̃(t) after t iterations of the scheme described
in Proposition 9 with n discretization points. At each step s ≤ t, λ(s) is computed by solving
P̃GL(k, k

′) for all k /∈ N (µ) and all k′ ∈M(µ)\{k⋆(µ)} using the dynamic programming scheme
of Proposition 8. This algorithm runs in time O(K2mnt) and space O(Knt) and yields η̃(t), a
feasible solution to PGL with value at most:

η̃(t)⊤∆ ≤
(
1− C(µ)

n
− 2

F(µ)

γ
√
t

)−1 (
C(m,µ) +

F(µ)√
t

)
if
C(µ)

n
− 2

F(µ)

γ
√
t
< 1.

The parameters n and t can be chosen by the learner. Since the time complexity grows linearly in nt,
and the optimization error is proportional to 1/n+ 1/

√
t, given a time budget constraint nt = a, one

may choose n = a1/3 and t = a2/3, which yields an optimization error proportional to a−1/3.

5 Local search strategies and peaked functions

In this section, we consider algorithms that primarily explore arms in N (µ), where we recall that
N (µ) is the set of all modes of µ and their neighbors. The proofs are deferred to Appendix D.

Local search. To analyze such algorithms within the Graves-Lai framework, we connect this
behavior to the properties of the corresponding sampling rate vector η. Let Nk(t) =

∑t
s=1 1{k(s) =

k} denote the number of times arm k has been selected by up to round t. The asymptotic sampling
rate for arm k ∈ [K] is given by ηk = lim supT→∞

E[Nk(T)]
log T . An algorithm performs local search if

ηk = 0 for all k /∈ N (µ). This leads directly to the following definition.

8

Definition 1. Consider η ∈ (R+)K a feasible solution to PGL. We say that η is a local search
strategy if and only if ηk = 0 for all k ̸∈ N (µ). Further define Cloc(m,µ) the optimal value of PGL

restricted to the set of local search strategies.

The appeal of local search strategies stems from two key properties: they are provably optimal in the
unimodal case (m = 1), and are conceptually simpler than non-local strategies, which may explore
all arms.

Suboptimality of local search strategies. Unfortunately, and rather counterintuitively, not only are
local search strategies suboptimal, the performance gap between local and non-local strategies is not
upper bounded. More precisely, the ratio between the value of the best local strategy and the value of
the best strategy can be arbitrarily large. Local search strategies are suboptimal because for every
mode k ̸= k⋆(µ) and every neighbor ℓ of k, they must be able to check that µk > µℓ, requiring a
number of samples proportional to 1

dℓ(µℓ,µk)
, which can cause an arbitrarily large amount of regret if

the function is flat in the neighborhood of k, so that µk is very close to µℓ.
Theorem 3. Assume that |N (µ)| < K. Then the following bounds hold:

Cloc(m,µ) ≥
∑

k∈M(µ)\{k⋆(µ)}

∆k

dk(µk, µk − δk)
and C(m,µ) ≤

∑
k∈[K]

∆k

dk(µk, µ⋆)

where δk = minℓ:(k,ℓ)∈E |µk − µℓ| > 0. As a consequence, supµ∈Fm

Cloc(m,µ)
C(m,µ) = +∞, i.e., the

performance ratio between local and non-local strategies is unbounded.

In particular, this result implies that the IMED-MB algorithm from [18], which uses a local search
strategy, cannot be asymptotically optimal, which contradicts the statement of their Theorem 2. This
is rigorously shown in Appendix D.2.

Peaked reward functions. While in general local search strategies can be far from optimal, there
exists a smaller subclass of reward functions on which they can be shown to be quasi-optimal, up to a
constant multiplicative factor. We call these reward functions peaked in the sense that they are not
flat around their modes.
Definition 2. A reward function µ ∈ RK is κ-peaked if and only if for all k ∈ M(µ) and all ℓ
neighbor of k we have dk(µk, µ

⋆) ≤ κdk(µk, µk − δk/2) and dℓ(µℓ, µ
⋆) ≤ κdℓ(µℓ, µk − δk/2).

In particular, when rewards are Gaussian, the condition above reduces to a simpler one: for all modes
k, the gap between k and its neighbors should be at least proportional to the gap between k and the
optimal arm, so that indeed, the function cannot be flat around the modes.
Proposition 10. Consider Gaussian rewards with fixed variance. Then µ is κ-peaked if and only if
for all k ∈M(µ) we have ∆k ≤ δk(

√
κ
2 − 1).

Proposition 11 shows that for κ-peaked reward functions, there exists local search strategies that are
a factor κ from optimal.
Proposition 11. Assume that µ ∈ Fm. Then the following bounds hold:

Cloc(m,µ) ≤
∑

k∈M(µ)\{k⋆(µ)}

∆k

dk(µk, µk − δk/2)
+

∑
k∈M(µ)

∑
ℓ:(k,ℓ)∈E

∆ℓ

dℓ(µℓ, µk − δk/2)

C(m,µ) ≥
∑

k∈N (µ)\{k⋆(µ)}

∆k

dk(µk, µ⋆)

and by corollary, if µ is κ-peaked, there exists local search strategies within a constant factor:
supµ∈Fm,κ− peaked

Cloc(m,µ)
C(m,µ) ≤ κ.

6 Numerical experiments

In this section, we conduct numerical experiments to demonstrate the benefit of properly exploiting
the multimodal structure. To this end, we implement OSSB from [1] and use our approach to solve

9

PGL. At round t, OSSB samples as dictated by the solution η⋆(t) to the Graves-Lai problem for
the empirical estimate µ̂(t) of µ, which is given by µ̂k(t) =

∑t
s=1 Xk,s1{k(s)=k}
max(1,Nk(t))

. We compare the
cumulative regret of two algorithms:

(i) Multimodal OSSB: the OSSB algorithm where the Graves-Lai problem is solved using our
proposed method,

(ii) Classical OSSB: the OSSB algorithm for unstructured bandits, which serves as a baseline.

The pseudo-code of OSSB and further details regarding the experiment are deferred to Appendix A.1.

G is chosen as a fixed binary tree of height two (resulting in K = 7 arms). We consider instances
µ ∈ F2 with rewards from arm k ∈ [K] drawn from a Gaussian distribution N (µk, 1). The mean
rewards µk are generated as a sum of exponential functions centered on the modesM(µ):

µk =
∑

j∈M(µ)

(
1 + 1j=k⋆(µ)

)
exp (−ρjk/σ) ,

where ρjk is the shortest path distance between nodes j and k in G. We chooseM(µ) = {4, 6} and
k⋆(µ) = 6. The parameter σ controls how peaked the reward function is: a small σ leads to sharp
peaks with modes well-separated from their neighbors, whereas a large σ creates flatter modes.

We consider two instances: σ = 0.5 (easy instance) and σ = 4 (hard instance). We run the experiment
up to a horizon of T = 10, 000. To reduce the computational burden of solving PGL at each round,
we only update η⋆(t) when t = 2k for k ∈ {0, . . . , ⌊ log2 T ⌋}. The cumulative regret is averaged
over 500 trials. The results are presented in Figure 3, where the shaded regions have radius one
standard error. In both settings, multimodal OSSB exhibits superior performance over classical OSSB.

(a) σ = 0.5 (b) σ = 4

Figure 3: Cumulative regret as a function of the number of rounds.

Further experiments on the runtime of our dynamic programming approach are deferred to Appendices
A.2 and E.8. The code used for the experiments is available at https://github.com/wilrev/
MultimodalBandits.

7 Conclusion

We have considered a stochastic multi-armed bandit with i.i.d. rewards and a multimodal reward
structure, and have proposed the first known computationally tractable algorithm to solve the Graves-
Lai optimization problem, which we have shown is a requirement to implement asymptotically optimal
algorithms, as the performance ratio between local and non-local strategies can be arbitrarily large.
We believe that an interesting direction for future work is to characterize the minimal computational
complexity necessary to solve this problem in terms of the number of arms, modes and graph structure.

10

https://github.com/wilrev/MultimodalBandits
https://github.com/wilrev/MultimodalBandits

References
[1] Richard Combes, Stefan Magureanu, and Alexandre Proutiere. Minimal exploration in structured

stochastic bandits. In Advances in Neural Information Processing Systems, 2017.

[2] Richard Combes and Alexandre Proutiere. Unimodal bandits: Regret lower bounds and optimal
algorithms. In Proceedings of the 31st International Conference on Machine Learning, 2014.

[3] Emile Contal. Statistical learning approaches for global optimization. PhD thesis, Université
Paris Saclay (COmUE), 2016.

[4] Thibault Cuvelier, Richard Combes, and Eric Gourdin. Asymptotically optimal strategies for
combinatorial semi-bandits in polynomial time. In ALT, 2021.

[5] Remy Degenne, Han Shao, and Wouter M. Koolen. Adaptive algorithms for stochastic bandits.
In Proceedings of ICML, 2020.

[6] Aurelien Garivier and Olivier Cappe. The KL-UCB algorithm for bounded stochastic bandits
and beyond. In Proceedings of COLT, 2011.

[7] Todd L. Graves and Tze Leung Lai. Asymptotically efficient adaptive choice of control laws in
controlled markov chains. SIAM Journal on Control and Optimization, 35(3):715–743, 1997.

[8] Ulrich Herkenrath. The n-armed bandit with unimodal structure. Metrika, 30(1):195–210, 1983.

[9] Junya Honda and Akimichi Takemura. An asymptotically optimal bandit algorithm for bounded
support models. In Proceedings of COLT, 2010.

[10] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically
optimal finite-time analysis. In Proceedings of ALT, 2012.

[11] Junpei Komiyama, Junya Honda, Hisashi Kashima, and Hiroshi Nakagawa. Regret lower bound
and optimal algorithm in dueling bandit problem. In Proceedings of COLT, pages 1141–1154,
2015.

[12] Dieter Kraft. A software package for sequential quadratic programming. Technical Report
DFVLRFB 88-28, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt – Institut
für Dynamik der Flugsysteme, Köln, Deutschland., 1988.

[13] Tze Lung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6(1):4–22, 1985.

[14] Holden Lee. MCMC algorithms for sampling from multimodal and changing distributions. PhD
thesis, Princeton University, 2019.

[15] Kanishka Misra, Eric M. Schwartz, and Jacob Abernethy. Dynamic online pricing with
incomplete information using multiarmed bandit experiments. Marketing Science, 38(2):226–
252, 2019.

[16] Vivek Myers, Erdem Biyik, Nima Anari, and Dorsa Sadigh. Learning multimodal rewards from
rankings. In Aleksandra Faust, David Hsu, and Gerhard Neumann, editors, Proceedings of the
5th Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research,
pages 342–352, 08–11 Nov 2022.

[17] Hassan Saber. Structure Adaptation in Bandit Theory. PhD thesis, Université de Lille, 2022.

[18] Hassan Saber and Odalric-Ambrym Maillard. Bandits with multimodal structure. Reinforcement
Learning Journal, 5:2400–2439, 2024.

[19] Hassan Saber, Pierre Ménard, and Odalric-Ambrym Maillard. Indexed minimum empirical
divergence for unimodal bandits. In Proceedings of NeurIPS, volume 34, pages 7346–7356,
2021.

[20] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

11

[21] Cindy Trinh, Emilie Kaufmann, Claire Vernade, and Richard Combes. Solving bernoulli
rank-one bandits with unimodal thompson sampling. In Proceedings of ALT, 2020.

[22] Bart Van Parys and Negin Golrezaei. Optimal learning for structured bandits. Management
Science, 2023.

[23] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. Scipy 1.0: fundamental algorithms for scientific
computing in python. Nature Methods, 17(3):261–272, Mar 2020.

[24] Yining Wang, Boxiao Chen, and David Simchi-Levi. Multimodal dynamic pricing. Manage.
Sci., 67(10):6136–6152, October 2021.

[25] Jia Yuan Yu and Shie Mannor. Unimodal bandits. In Proceedings of ICML, page 41–48, 2011.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We indeed provide in the paper the first known computationally tractable
algorithm to solve the Graves-Lai problem for multimodal bandits.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We state in the conclusion that interesting future work would be to characterize
the minimal computational complexity required to solve the Graves-Lai problem.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

12

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Assumptions are clearly stated in Section 3 and detailed proofs of all results
are provided in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The dynamic programming procedure used is described fully in the main paper.
Details on OSSB’s implementation (along with the corresponding pseudo-code) and our
experiments is provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed

13

instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code used for the experiments is available at https://github.com/
wilrev/MultimodalBandits.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The specific instances considered are provided explicitly in the paper.

Guidelines:

14

https://github.com/wilrev/MultimodalBandits
https://github.com/wilrev/MultimodalBandits
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Empirical 95% confidence intervals are provided for the regret results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Hardware specifications are provided in Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects or sensitive data, and we do not
believe our research findings to have any potential negative societal impact.

15

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is mostly theoretical, and consequently has no immediate societal
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

16

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The code used is our own and the data is synthetic.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We introduce no such asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We conduct no such experiment.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

17

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We conduct no such experiment.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as a non-standard component in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

A Experimental details

A.1 OSSB for multimodal bandits

As explained in Section 3, asymptotically optimal algorithms for structured bandits attempt to sample
k ̸= k⋆(µ) a number of times η⋆k lnT + o(lnT) when T →∞, where η⋆ is a solution to PGL. The
OSSB algorithm of [1] does so by sampling as dictated by the solution to the Graves-Lai problem for
the empirical estimate µ̂(t) of µ, updated at each round t. The pseudo-code of OSSB for multimodal
bandits is given in Algorithm 1.

Algorithm 1 Optimal Sampling for Structured Bandits (OSSB)

Nk(1)← 0, µ̂k(1)← 0 ∀k ∈ [K] {Initialization}
for t = 1, . . . , T do

Compute η⋆(t) the solution to PGL for µ̂(t)
if ∀k ∈ [K], Nk(t) ≥ η⋆k(t) ln t then
k(t)← arg max

k∈[K]
µ̂k(t) {Exploitation, ties broken arbitrarily}

else
k(t)← arg min

k∈[K]

Nk(t)

η⋆k (µ̂(t))
{Exploration, ties broken arbitrarily}

end if
Observe Xk,(t),t

for k ̸= k(t) do
µ̂k(t+ 1)← µ̂k(t)
Nk(t+ 1)← Nk(t)

end for
µ̂k(t)(t+ 1)← Xk(t),t+µ̂k(t)(t)Nk(t)(t)

Nk(t)(t)+1

Nk(t)(t+ 1)← Nk(t)(t) + 1
end for

We implement two versions of OSSB. Each version is associated with a specific sampling strategy
η⋆(t), which it aims to follow at round t. Let ∆̂k(t) = maxk′∈[K] µ̂k′(t)− µ̂k(t). These strategies
are given by:

• the solution to PGL for µ̂(t), as computed by our algorithm, with the convention η⋆k(t) = 0
if k ∈ argmax µ̂(t) (Multimodal OSSB, Algorithm 1)

• η⋆k(t) = 1
dk(µ̂k(t),µ̂(t)⋆)1{∆̂k(t) > 0} (Classical OSSB, rates given by the Lai-Robbins

bound [13]).

The specific instances µ ∈ F2 considered in the experiment of Section 6 are shown in Figure 4.

Peaked instance (σ = 0.5)

0

0.05

1

0.14

2

0.27

3

0.02

4

1.00

5

0.04

6

2.00

Flat instance (σ = 4.0)

0

1.82

1

1.72

2

2.03

3

1.34

4

1.74

5

1.58

6

2.37

Figure 4: 2-modal reward instances on the binary tree G (K = 7,M(µ) = {4, 6}, k⋆(µ) = 6).

19

In this specific experiment, instead of the penalized subgradient subroutine described in Proposition
9, we used the Sequential Least SQuares Programming (SLSQP) method from [12] and implemented
in SciPy by [23] for faster convergence towards a solution to PGL for each µ̂(t), and we only solve
PGL when t = 2k for k ∈ {0, . . . , ⌊log2 T ⌋}. We used n = 100 discretization points.

A.2 Runtime experiment

In this experiment, we evaluate the runtime of the algorithm of Theorem 2 with respect to the number
of arms K. We generate line graphs with varying numbers of arms K ∈ {20, 25, 30, . . . , 70}, number
of modes |M(µ)| = m ∈ {2, 3, 4, 5}, for n = 100 discretization points and t = 100 iterations of
penalized subgradient descent. The reward instances µ are generated as in Section 6 with σ = 2. To
ensure that they are always m-modal, the position of k⋆(µ) and of the other modes of µ are chosen
to be as spread out as possible. We perform 5 trials per configuration (K,m). Figure 5 displays the
average runtime as a function of K for each value of m on a log-log plot, as well as the corresponding
slopes obtained from log-log regression. The runtime exhibits an approximately quadratic growth
with the number of arms, which aligns with the time complexity O(K2mnt) stated in Theorem 2.

Figure 5: Runtime as a function of the number of arms.

All experiments were run on a single desktop PC equipped with an AMD Ryzen 7 5800X 8-core/16-
thread CPU @ 3.8 GHz, 16 GB DDR4 RAM.

B Proofs of Section 3

Proof of Proposition 1. Applying Theorem 1 in [1] to the parameter set F≤m yields that the Graves-
Lai constant C(m,µ) is the value of

minimizeη η⊤∆ subject to inf
λ∈λ(m,µ)

η⊤d(µ,λ) ≥ 1 and η ≥ 0

with λ(m,µ) = {λ ∈ F≤m, dk(µk, λk) = 0, k⋆(λ) ̸= k} for k = k⋆(µ). By Assumption 1,
dk(µk, λk) = 0 holds if and only if µk = λk, which concludes the proof.

C Proofs of Section 4

C.1 Proof of Proposition 2

Assume that B(m,µ) = ∪U(K,m)
i=1 Zi where the Zi are disjoint convex sets. Denote by X (m) the set

of independent sets of G of size m, and let us lower bound its size. Consider the process in which we
first select a node x1 ∈ [K], and then for i = 2, ...,m we select a node xi ∈ [K] in [K] \∪i−1

j=1N (xj)

where N (xj) is xj and its neighbors. Then X = {x1, ..., xm} is an independent set of G of size m,
and at step i of the process has at least

|[K] \ ∪i−1
j=1N(xj)| ≥ K −

i−1∑
j=1

|N(xj)| ≥ K −m(deg(G) + 1)

20

choices, since |N(xj)| ≤ deg(G) + 1 and i ≤ m. Hence, the number of independent sets of G of
size m is at least

|X (m)| ≥ 1

m!
(K − (deg(G) + 1)m)m.

For each independent set of size m, X ∈ X (m), define the vector µX ∈ RK such that µX
k = 1{k ∈

X} for k ∈ [K]. We can readily check that µX is multimodal with m modes, and that its m modes
are precisely the elements of X . Now consider another independent set of size m, X ′ ∈ X (m) and
consider λX,X′

= (3/4)µX +(1/4)µX′
a convex combination of µX and µX′

. For k ∈ X we have
that λk = 3/4 and λk′ ≤ 1/4 for any k′ that is a neighbor of k, and hence k is a mode of λ. On
the other hand, assume that there exists k ∈ X ′ such that k is not a neighbor of a node in X . Then
λX,X′

k = 1/4 and λX,X′

k′ = 0 for any k′ that is a neighbor of k so that k is a mode of λX,X′
. Putting

it together, this means that, for λX,X′
to have m modes, one must make sure each element of X ′ is

the neighbor of an element in X .

Consider X ∈ Zi for some i. For any X ′ ∈ ∪Zi by convexity we must have λX,X′ ∈ Zi so that
λX,X′

has m modes. By the above this means that all elements of X ′ must be neighbors of X , so
|X (m) ∪ Zi| ≤

(
deg(G)m

m

)
since X ′ has m elements and X has at most deg(G)m neighbors. Since

the Zi are disjoint,

1

m!
(K − (deg(G) + 1)m)m ≤ |X (m)| =

U(K,m)∑
i=1

|X (m) ∪ Zi| ≤ U(K,m)

(
deg(G)m

m

)
.

This yields the result: U(K,m) ≥ ((deg(G)−1)m)!
(deg(G)m)! (K − (deg(G) + 1)m)m.

C.2 Proof of Proposition 3

By definition, for any λ ∈ Bk(m,µ), we must have λk > µ⋆, so that infλ∈B(m,µ) η
⊤d(µ,λ) ≥

ηkdk(µk, µ
⋆). Conversely, let ε > 0 and λε = µ+ (µ⋆ + ε− µk)e

(k). If |M(µ)| < m,M(λε) ⊂
M(µ) ∪ {k} ensures that |M(λε)| ≤ m and in turn λε ∈ Bk(m,µ). If k ∈ N (µ), either k is a
mode of µ andM(λε) =M(µ), or k is a neighbor of a mode ℓ andM(λε) =M(µ) ∪ {k} \ {ℓ}.
In any case, |M(λε)| ≤ m and in turn, λε ∈ Bk(m,µ). Consequently, infλ∈Bk(m,µ) η

⊤d(µ,λ) ≤
η⊤d(µ,λε) = ηkdk(µk, µ

⋆ + ε). Letting ε→ 0 yields the other side of the inequality. Finally, note
that µ+ (µ⋆ − µk)e

(k) = limε→0 λ
ε ∈ Bk(m,µ). This concludes the proof.

C.3 Proof of Proposition 4

We first demonstrate the following intermediary result.
Lemma 1. The closure of Bk(m,µ) in RK is given by

Fk = {λ ∈ F≤m, λk⋆(µ) = µ⋆, λk = max
j∈[K]

λj , λk ≥ µ⋆}.

Proof. Consider (λt)t≥0 a sequence of elements of Bk(m,µ) with limt→∞ λt = λ∞ and let us
prove that λ∞ ∈ Fk. For all t ≥ 0, we have λt

k⋆(µ) = λ∞
k⋆(µ) = µ⋆. Furthermore, for all

t ≥ 0, k⋆(λt) = k, hence λt
k > λt

k⋆(µ) = µ⋆ so that λ∞
k ≥ µ⋆. Now, let i ∈ M(λ∞), which

implies λ∞
i > λ∞

ℓ for all ℓ neighbor of i. Hence, for all t large enough, i ∈ M(λt). Repeating
the same reasoning for all the modes of λ∞, for all t large enough, M(λ∞) ⊂ M(λt), and
|M(λ∞)| ≤ |M(λt)| ≤ m. We have proven that λ∞ ∈ Fk. Conversely, let λ ∈ Fk. Either
λk > µ⋆ and λ ∈ Bk(m,µ) ⊂ Bk(m,µ), or λj ≤ µ⋆ for all j. There are then two cases to
distinguish.

(i) If k is a mode of λ, we can write λ = limt→∞ λt where λt ∈ Bk(m,µ) is defined by
λt
k = µ⋆ + 1/t and λt

j = λj for j ̸= k.

(ii) If k is not a mode of λ, as λj ≤ µ⋆ for all j, this must mean that there exists a neighbor ℓ of
k such that λℓ = λk = µ⋆. Note further that k /∈ N (µ) ensures ℓ ̸= k⋆(µ). Then we can

21

write λ = limt→∞ λt where λt ∈ Bk(m,µ) is defined by λt
j = µ⋆ + 1/t for j ∈ {k, ℓ}

and λt
j = λj otherwise.

In any case, we have shown that λ ∈ Bk(m,µ), which concludes the proof.

We now prove Proposition 4. By Assumption 2, λ 7→ η⊤d(µ,λ) is continuous, so that
infλ∈Bk(m,µ) η

⊤d(µ,λ) = infλ∈Bk(m,µ) η
⊤d(µ,λ). Consider now λ ∈ Bk(m,µ) such that

λℓ > µ⋆ for some ℓ and let ε = minℓ,λℓ>µ⋆(λℓ−µ⋆) > 0 the minimal amount by which an entry of λ
is larger than µ⋆. We will show that there exists λ′ ∈ Bk(m,µ) such that η⊤d(µ,λ′) < η⊤d(µ,λ).

Consider a graph G′ = ([K], E′) where (i, j) ∈ E′ if and only if (i, j) ∈ E and λi = λj . Consider
S ⊂ [K] the connected component of G′ where ℓ lies. Consider the minimal gap between two neigh-
boring arms: δ = min(i,j)∈E,λi ̸=λj

|λi − λj |. Consider λ′ such that λ′
i = λi − (min(ε, δ)/2)1{i ∈

S}. As the nodes are modified by strictly less than δ, we have M(λ′) = M(λ). As they are
modified by strictly less than ε, λ′

k > µ⋆. In turn, λ′ ∈ Bk(m,µ). Furthermore, d(µ,λ′) < d(µ,λ)
since for all k, λk 7→ dk(µk, λk) is strictly increasing whenever λk > µ⋆ ≥ µk, which implies that
η⊤d(µ,λ′) < η⊤d(µ,λ).

We may prove similarly that if λℓ < µ⋆ for some ℓ, there exists λ′ ∈ Bk(m,µ) such that
η⊤d(µ,λ′) < η⊤d(µ,λ). This ensures that infλ∈Bk(m,µ) η

⊤d(µ,λ) = infλ∈B′
k(m,µ) η

⊤d(µ,λ).
Finally, as λ 7→ η⊤d(µ,λ) is continuous on the compact set B′k(m,µ), the infimum is attained. This
concludes the proof.

C.4 Proof of Proposition 5

Consider η defined as ηk = 1
dk(µk,µ⋆) for all k ̸= k⋆(µ), and where the value of ηk⋆(µ) is arbitrary.

Let us check that η is a feasible solution to PGL. For any λ ∈ B(m,µ), there must exist k ̸= k⋆(µ)
such that λk > µ⋆ and therefore η⊤d(µ,λ) ≥ ηkdk(µk, λk) > ηkdk(µk, µ

⋆) = 1. This shows that
infλ∈B(m,µ) η

⊤d(µ,λ) ≥ 1 hence η is indeed a feasible solution to PGL, so η must have a higher
value than a solution η⋆ of PGL. As long as η⋆k = 0 when ∆k = 0 (note that this choice does not
impact the value of PGL), we get

∥η⋆∥∞∆min ≤ η⋆⊤∆ ≤ η⊤∆ =
∑

k,∆k>0

∆k

dk(µk, µ⋆)

hence ∥η⋆∥∞ ≤ B(µ) as announced.

C.5 Proof of Proposition 6

Consider i ̸= k a mode i ∈M(λ⋆), and define the minimal difference between i and its neighbors
δi = min(i,j)∈E |λ⋆

i − λ⋆
j |) For all δ′ ∈ (−δi, δi), it is noted thatM(λ⋆) =M(λ⋆ + δ′e(i)), and so

λ⋆ + δ′e(i) ∈ B′k(m,µ). Therefore, the function δ′ 7→ ηd(µ⋆,λ⋆ + δ′e(i)) must attain its minimum
at δ′ = 0, which implies λ⋆

i = µi. Further consider ℓ a neighbor of i and δℓ = |λ⋆
i − λ⋆

ℓ |. For all
δ′ ∈ [0, δℓ), it is noted thatM(λ⋆ + δ′e(ℓ)) ⊂M(λ⋆), so that λ⋆ + δ′e(ℓ) ∈ B′k(m,µ). Therefore,
the function δ′ 7→ ηd(µ⋆,λ⋆ + δ′e(ℓ)) must attain its minimum at δ′ = 0, which implies λ⋆

ℓ ≥ µℓ.
Putting it together, we have proven that, if i ∈M(λ⋆), for all (ℓ, i) ∈ E we have µℓ ≤ λ⋆

ℓ < λ⋆
i = µi,

and in turn i ∈M(µ), which concludes the proof.

C.6 Proof of Proposition 7

Let us consider λ a minimizer of η⊤d(µ,λ) over Bk,k′(m,µ). We already know that λ ∈ [µ⋆, µ
⋆]

from Proposition 4. Consider Gk the directed tree rooted at k and define λ̃ a rounding of λ using the
following recursive procedure: start at the root λ̃k ∈ argmin{|x− λk| : x ∈ D(n,µ)} then for all ℓ,
choose

λ̃ℓ = argmin{|x− λ̃p(ℓ)| : x ∈ D(n,µ), sgn(x− λ̃p(ℓ)) = sgn(λℓ − λp(ℓ))}

22

where p(ℓ) is the parent of ℓ and sgn is the sign function. The idea is that, when rounding in this
fashion, we both have the insurance that for any (i, ℓ) ∈ E |λ̃ℓ − λ̃i| ≤ (1/n)(µ⋆ − µ⋆) so that, by
recursion over ℓ: ∥λ̃ − λ∥∞ ≤ (1/n)diam(G)(µ⋆ − µ⋆) and we also have that sgn(λi − λℓ) =

sgn(λ̃i − λ̃ℓ) so that M(λ̃) =M(λ). In essence, we round λ to ensure both a small rounding error
while leaving the set of modes unchanged. We further have

η⊤d(µ, λ̃) = η⊤d(µ, λ̃) + η⊤(d(µ, λ̃)− d(µ,λ)) ≤ η⊤d(µ, λ̃) + ∥η∥∞∥d(µ, λ̃)− d(µ,λ)∥1
≤ η⊤d(µ, λ̃) +B(µ)A(µ)∥λ̃− λ∥1 ≤ η⊤d(µ, λ̃) +B(µ)A(µ)K∥λ̃− λ∥∞

≤ η⊤d(µ, λ̃) +
C(µ)

n

with C(µ) = diam(G)(µ⋆−µ⋆)B(µ)A(µ)K using Assumption 2, the fact that ∥η∥∞ ≤ B(µ) and
the previous bound. This concludes the proof.

C.7 Proof of Proposition 8

We recall that we consider the graph Gk, which is a directed tree rooted at k. Consider node ℓ and its
parent p(ℓ), assume that λp(ℓ) is known, and we wish to minimize the value:

ηℓdℓ(µℓ, λℓ) +
∑

j∈D(ℓ)

ηjdj(µj , λj)

which corresponds to η⊤d(µ,λ) restricted to ℓ and its descendants, subject to λ ∈ Bk,k′(m,µ).
Then it suffices to optimize over λℓ and λj for j ∈ D(ℓ). Also, we may readily check that setting
ηk⋆(µ) = +∞ is equivalent to enforcing the constraint λk⋆(µ) = µ⋆. Of course, the sign of λℓ−λp(ℓ)

is important to ensure that the constraints are satisfied. Define fℓ(z,+1) the minimal value that can
be obtained if selecting λℓ = z > λp(ℓ) and fℓ(z,−1) the minimal value that can be obtained if
selecting λℓ = z ≤ λp(ℓ). Consider λℓ = z and λp(ℓ) fixed, and let us examine how one can select λj

for j ∈ C(ℓ) the children of ℓ to ensure that λ ∈ Bk,k′(m,µ) is respected.

(i) First consider ℓ ̸∈ M(µ) ∪ {k} \ {k′}, so that ℓ should not be a mode. If λℓ ≤ λp(ℓ) then ℓ
cannot be a mode anyways, so for each j ∈ C(ℓ) we have two choices: select λj ≤ λℓ, which
gives a minimal value of minw≤z fj(w,−1) = f⋆

j (z,−1), or select λj > λℓ, which gives a minimal
value of minw>z fj(w,+1) = f⋆

j (z,+1). The minimal value over these two choices is f⋄
j (z) =

min(f⋆
j (z,−1), f⋆

j (z,+1)). Therefore,

fℓ(z,−1) = ηℓdℓ(µℓ, z) +
∑

j∈C(ℓ)

f⋄
j (z).

(ii) If λℓ > λp(ℓ), since ℓ should not be a mode, one must make sure that there exists at least one
child v ∈ C(ℓ) of ℓ such that λℓ ≤ λv, and the value of λj for j ∈ C(ℓ) \ {v} can be chosen freely.
Of course, if C(ℓ) = ∅ this is not possible and one has simply fℓ(z,+1) = +∞. If C(ℓ) ̸= ∅ and
v ∈ C(ℓ), min{f⋆

v (z,+1), fv(z,−1)} represents the minimal cost of choosing a value of λv such
that λℓ ≤ λv . By the same reasoning as before, the minimal obtainable value is therefore:

fℓ(z,+1) = ηℓdℓ(µℓ, z) +
∑

j∈C(ℓ)

f⋄
j (z) + min

v∈C(ℓ)
gv(z)

for gv(z) = min{f⋆
v (z,+1), fv(z,−1)} − f⋄

v (z), where we have minimized over the choice of
v ∈ C(ℓ).
(iii) Now consider the case ℓ ∈ M(µ) ∪ {k} \ {k′}. Since ℓ can either be a mode or not a mode,
regardless of the sign of λℓ − λp(ℓ), we have no constraints on the choice of λj for j ∈ C(ℓ) and the
minimal value that can be obtained is

fℓ(z, u) = ηℓdℓ(µℓ, z) +
∑

j∈C(ℓ)

f⋄
j (z)

for both u = −1 and u = +1.

We have proven that fℓ indeed obeys the dynamic programming equations. Since k is the root of the
tree and we must have λ⋆

k = µ⋆, then fk(µ
⋆, u) is the value of PGL(k, k

′) for any u.

23

C.8 Proof of Corollary 1

From the definition of P̃GL(k, k
′), λ⋆

k = µ⋆. Consider ℓ ̸= k and its parent p(ℓ) in Gk, and assume
that λ⋆

p(ℓ) is known. There are two cases to consider:

(i) If p(ℓ) /∈ M(µ) ∪ {k} \ {k′}, λ⋆
p(ℓ) > λ⋆

p2(ℓ) where p2(ℓ) is the parent of p(ℓ), and
ℓ = argminv∈C(p(ℓ)) gv(z) is the node that induces the smallest cost when constrained,
we must have λ⋆

ℓ ≥ λ⋆
p(ℓ) to ensure that p(ℓ) is not a mode. There are two choices:

either select λ⋆
ℓ > λ⋆

p(ℓ) which yields value f⋆
ℓ (λ

⋆
p(ℓ),+1) and dictates the choice λ⋆

ℓ ∈
argminz>λ⋆

p(ℓ)
fℓ(z,+1), otherwise select λ⋆

ℓ = λ⋆
p(ℓ) which yields value fℓ(λ

⋆
p(ℓ),−1).

Taking the minimal value among the two choices gives:

λ⋆
ℓ =

{
argminz>λ⋆

p(ℓ)
fℓ(z,+1) if f⋆

ℓ (λ
⋆
p(ℓ),+1) ≤ fℓ(λ

⋆
p(ℓ),−1)

λ⋆
p(ℓ) if f⋆

ℓ (λ
⋆
p(ℓ),+1) > fℓ(λ

⋆
p(ℓ),−1)

(ii) Otherwise, there are no constraints on the value of λ⋆
ℓ : either select λ⋆

ℓ > λ⋆
p(ℓ) which

yields value f⋆
ℓ (λ

⋆
p(ℓ),+1) and dictates the choice λ⋆

ℓ ∈ argminz>λ⋆
p(ℓ)

fℓ(z,+1), oth-
erwise select λ⋆

ℓ ≤ λ⋆
p(ℓ) which yields value f⋆

ℓ (λ
⋆
p(ℓ),−1) and dictates the choice

λ⋆
ℓ ∈ argminz≤λ⋆

p(ℓ)
fℓ(z,−1). Taking the minimal value among the two choices gives:

λ⋆
ℓ =

{
argminz>λ⋆

p(ℓ)
fℓ(z,+1) if f⋆

ℓ (λ
⋆
p(ℓ),+1) ≤ f⋆

ℓ (λ
⋆
p(ℓ),−1)

argminz≤λ⋆
p(ℓ)

fℓ(z,−1) if f⋆
ℓ (λ

⋆
p(ℓ),+1) > f⋆

ℓ (λ
⋆
p(ℓ),−1)

It is noted that storing the values of fℓ(z, u), f⋆
ℓ (z, u) and f⋄

ℓ (z) for ℓ ∈ [K], z ∈ D(n,µ) and
u ∈ {−1,+1} requires memory O(nK) since |D(n,µ)| = n. Furthermore, if fj(z, u), f⋆

j (z, u)
and f⋄

j (z) for j ∈ C(ℓ), z ∈ D(n,µ) and u ∈ {−1,+1}, have been computed, then one may
compute fℓ(z, u), f⋆

ℓ (z, u) and f⋄
ℓ (z) for z ∈ D(n,µ) and u ∈ {−1,+1} in time O(n|C(ℓ)|) from

the dynamic programming equations. Since
∑

ℓ∈[K] |C(ℓ)| = K−1, the complete procedure requires
time O(nK). This completes the proof.

C.9 Proof of Proposition 9

To ease the notation, denote

g(η,µ, n) = min
λ∈B(m,µ)∩D(n,µ)K

{η⊤d(µ,λ)} and g(η,µ) = min
λ∈B(m,µ)

{η⊤d(µ,λ)}.

Recall that h(η) = η⊤∆+ γmax [1− g(η,µ, n), 0] which is convex as a sum of a linear function,
and a maximum of linear functions, with subgradients:

∆− γd(µ,λ)1{g(η,µ, n) < 1} = v ∈ ∂h(η)

for any λ such that g(η,µ, n) = η⊤d(µ,λ). The norm of a subgradient is upper bounded as

∥v∥2 ≤ ∥∆∥2 + γ∥d(µ,λ)∥2 ≤ ∥∆∥2 + γK3/2A(µ)(µ⋆ − µ⋆) = E(µ)

since

∥d(µ,λ)∥2 ≤
√
K∥d(µ,λ)∥1 ≤

√
KA(µ)∥µ− λ∥1 ≤ K3/2A(µ)(µ⋆ − µ⋆).

Hence, h is Lipschitz continuous with Lipschitz constant E(µ). Let η⋆ the minimizer of h over
(R+)K , and let us prove that g(η⋆,µ, n) ≥ 1. Any subgradient at η⋆ must have positive entries so
that:

0 ≤∆− γd(µ, λ̃)1{η⋆⊤d(µ, λ̃) ≤ 1}
where λ̃ is such that g(η⋆,µ, n) = η⋆⊤d(µ, λ̃). In turn, since λ̃ ∈ B(m,µ) there must exist
k ̸= k⋆(µ) such that λ̃k ≥ µ⋆ and hence:

1{η⊤d(µ, λ̃) ≤ 1} ≤ ∆k

γdk(µk, µ⋆)
≤ 1

2

24

by definition of γ. This implies that η⊤d(µ, λ̃) ≥ 1 and so g(η⋆,µ, n) ≥ 1. So η⋆ minimizes η⊤∆
over the set of η such that g(η,µ, n) ≥ 1.

We may now analyze the iterative scheme in itself. Since h is convex and Lipschitz continuous with
Lipschitz constant E(µ), and our iterative scheme is a projected subgradient descent with step size δ,
from [20][Lemma 14.1]:

h(η̄(t))− h(η⋆) ≤ 1

2t

(
∥η⋆∥22

δ
+ tδE(µ)2

)
≤ 1

2t

(
KB(µ)2

δ
+ tδE(µ)2

)
=

√
KB(µ)E(µ)√

t
=

F(µ)√
t

where we used Proposition 5 and setting δ2 = KB(µ)2

tE(µ)2 to optimize the right hand side.

Let us now check that η̃(t) is an approximate solution to PGL. From the above

η̄(t)⊤∆ ≤ h(η̄(t)) ≤ h(η⋆) +
F(µ)√

t
= η⋆⊤∆+

F(µ)√
t
≤ C(m,µ) +

F(µ)√
t

using the definition of h, the above bound, the fact that η⋆⊤∆ is the minimum of η⊤∆ subject to
g(η,µ, n) ≥ 1, η ≥ 0 and the fact that C(m,µ) is the minimum of η⊤∆ subject to g(η,µ) ≥ 1,
η ≥ 0. Scaling the above on both sides gives a bound on the value of η̃(t):

η̃(t)⊤∆ ≤
(
1− C(µ)

n
− 2

F(µ)

γ
√
t

)−1 (
C(m,µ) +

F(µ)√
t

)
We now have to check that η̃(t) is a feasible solution to PGL. Denote by ϕ = g(η̄(t),µ, n). Consider
the case ϕ < 1, so that:

η̄(t)⊤∆ ≥ min
η:g(η,µ,n)≥ϕ

η⊤∆ = ϕ min
η:g(η,µ,n)≥1

η⊤∆ = ϕη⋆⊤∆

where we used the fact that g is homogeneous, i.e. g(η,µ, n) ≥ ϕ if and only if g(η/ϕ,µ, n) ≥ 1.
This implies

ϕη⋆⊤∆+ γ(1− ϕ) ≤ η̄(t)⊤∆+ γ(1− ϕ) = h(η̄(t)) ≤ h(η⋆) +
F(µ)√

t
= η⋆⊤∆+

F(µ)√
t

Rearranging the terms we get:

1− ϕ ≤ 2
F(µ)

γ
√
t

Therefore, using Proposition 7:

g(η̄(t),µ) ≥ g(η̄(t),µ, n)− C(µ)

n
≥ 1− C(µ)

n
− 2

F(µ)

γ
√
t

And once again using the homogeneity of g we get

g(η̃(t),µ) = g(η̃(t),µ, n)

(
1− C(µ)

n
− 2

F(µ)

γ
√
t

)
≥ 1

which is the announced result and concludes the proof.

D Proofs of Section 5

D.1 Proof of Theorem 3

Consider j ̸∈ N (µ), k ̸= k⋆(µ) a mode of µ and ℓ the neighbor of k which is the closest to k, that
is argminℓ:(k,ℓ)∈E |µk − µℓ|. Define the parameter λ = µ+ (µ⋆ − µj)e

(j) + (µℓ − µk)e
(k). One

may check that λ ∈ B(m,µ). For any feasible local search strategy η we have 1 ≤ η⊤d(µ,λ) =
ηjdj(µj , λj)+ηkdk(µk, λℓ) = ηjdj(µj , µ

⋆)+ηkdk(µk, µk−δk) = ηkdk(µk, µk−δk) since ηj = 0

25

as j ̸∈ N (µ) and η is a local search strategy. Hence, ∆kηk ≥ ∆k

dk(µk,µk−δk)
for any mode k and

summing over modes we get the announced result

Cloc(m,µ) ≥
∑

k∈M(µ)\{k⋆(µ)}

∆k

dk(µk, µk − δk)
.

Now, since a multimodal bandit problem is also a classical bandit problem, we always have

C(m,µ) ≤
∑

k∈[K]

∆k

dk(µk, µ⋆)

so that

sup
µ∈Fm

Cloc(m,µ)

C(m,µ)
= +∞

as there exists reward functions µ ∈ Fm where δk is arbitrarily small while µ⋆ − µk remains
comparatively large for any k ̸= k⋆(µ), for instance consider a case where µk = 1 if k = k⋆(µ),
µk = ϵ if k ∈M(µ) \ {k⋆(µ)} and µk = 0 if k ̸∈ M(µ). This function has exactly m modes and
δk = ϵ for any mode k ̸= k⋆(µ).

D.2 Suboptimality of IMED-MB

We argue that IMED-MB cannot be asymptotically optimal for all instances µ ∈ F≤m, contrary to
the statement of Theorem 2 in [18]. Consider an instance µ ∈ Fm for which the optimal value for
local search strategies is strictly greater than the value of PGL, i.e. Cloc(m,µ) > C(m,µ). Such an
instance is guaranteed to exist by Theorem 3. Assume by contradiction that their Theorem 2 holds.
Then, by their Proposition 1, IMED-MB is asymptotically optimal, so that

lim sup
T→∞

R(µ, T)

ln(T)
≤ C(m,µ).

Furthermore, by their Proposition 1 and Theorem 2 again, for k ̸= k⋆(µ) and ηk =

limT→∞
E[Nk(T)]
ln(T) , we have ηk = 1

dk(µk,µ⋆) if k ∈ N (µ), and ηk = 0 otherwise. In particular,
η is a local search strategy (and IMED-MB is uniformly good), so that its regret must verify

lim inf
T→∞

R(µ, T)

lnT
≥ Cloc(m,µ).

Combining these inequalities leads to:

Cloc(m,µ) ≤ lim inf
T→∞

R(µ, T)

ln(T)
≤ lim sup

T→∞

R(µ, T)

ln(T)
≤ C(m,µ),

a contradiction.

D.3 Proof of Proposition 10

Consider k a mode and ℓ one of its neighbors. For Gaussian rewards the conditions become
(µ⋆ − µk)

2 ≤ κ(δk/2)
2 and (µ⋆ − µℓ)

2 ≤ κ(µk − δk/2 − µℓ)
2. These conditions are equivalent

to ∆k ≤
√
κδk/2 and ∆ℓ ≤

√
κ(∆ℓ −∆k − δk/2). This must be true for all ℓ neighbor of k and

should hold when ∆ℓ = ∆k + δk, therefore we must have ∆k ≤ (
√
κ
2 − 1)δk. Hence, µ is κ-peaked

if and only if ∆k ≤ δk(
√
κ
2 − 1) for all k ∈M(µ).

D.4 Proof of Proposition 11

By Proposition 3, for k ∈ N (µ) \ {k⋆(µ)}, infλ∈B(m,µ) η
⊤d(µ,λ) ≤ ηkdk(µk, µ

⋆), so for any η

feasible solution to PGL we must have ηk ≥ 1
dk(µk,µ⋆) . Summing over k ∈ N (µ) \ {k⋆(µ)}, the

value of PGL is lower bounded as

C(m,µ) ≥
∑

k∈N (µ)\{k⋆(µ)}

∆k

dk(µk, µ⋆)
.

26

Now, consider the local search strategy η defined as

ηk =


max

(
1

dk(µk,µ⋆) ,
1

dk(µk,µk−δk/2)

)
if k ∈M(µ) \ {k⋆(µ)}

max
(

1
dk(µk,µ⋆) ,

1
dk(µk,µℓ−δℓ/2)

)
if (k, ℓ) ∈ E and ℓ ∈M(µ)

0 otherwise.

Let us check that η is feasible. Consider λ ∈ B(m,µ) attaining its maximum at k ∈ [K] \
{k⋆(µ)}. On the one hand, if k ∈ N (µ), since λk > µ⋆ we have η⊤d(µ,λ) ≥ ηkdk(µk, λk) >
ηkdk(µk, µ

⋆) ≥ 1. On the other hand, if k ̸∈ N (µ) there must exist at least one j ∈ M(µ) such
that j ̸∈ M(λ), as otherwise λ would have more than m modes. In turn there must exist ℓ a
neighbor of j such that λj ≤ λℓ. This implies that either λj ≤ µj − δj/2 < µj and in that case
η⊤d(µ,λ) ≥ ηjdj(µj , λj) ≥ ηjdj(µj , µj − δj/2) ≥ 1, or λℓ > µj − δj/2 > µℓ and in that case
η⊤d(µ,λ) ≥ ηℓdℓ(µℓ, λℓ) > ηℓdℓ(µℓ, µj − δj/2) ≥ 1. In all cases we have η⊤d(µ,λ) ≥ 1 for all
λ ∈ B(m,µ), hence η is feasible. This concludes the proof.

E An improved dynamic programming procedure

In this section, we describe a more complex, but more computationally efficient dynamic program
than that presented in Section 3, which enables solving PGL more efficiently. Throughout this section
we view G as the directed tree Gk⋆(µ) rooted at node k⋆(µ).

E.1 Dynamic programming variables

We describe a dynamic programming procedure to solve the optimization problem

minimizeλ η⊤d(µ,λ) subject to λ ∈ ∪k ̸=k⋆(µ)B̃k(m,µ) (P̃ ′
GL)

where B̃k(m,µ) = B′k(m,µ) ∩D(n,µ)K (refer to Proposition 4 for the definition of B′k(m,µ)).
Consider λ⋆ the optimal solution to this problem. Then there exists a node k ̸= k⋆(µ) such that
λ⋆
k = µ⋆. With a slight abuse of notation, we denote this node by k⋆(λ⋆). We distinguish two cases.

Case 1. If k = k⋆(λ⋆) ∈ N (µ), from Proposition 3, the optimal solution is λ⋆ = µ+(µ⋆−µk)e
(k),

and the optimal value is ηkdk(µk, µ
⋆).

Case 2. If k = k⋆(λ⋆) ̸∈ N (µ), from Proposition 6, the modes of λ⋆ must be located atM(λ⋆) =
M(µ) ∪ {k} \ {k′}, where k′ ∈M(µ) \ {k⋆(µ)} is the mode of µ that is not a mode of λ⋆.

Given a node ℓ of G, and flags (z, a, b, c) ∈ D(n,µ) × {0, 1, 2} × {0, 1} × {0, 1} we de-
fine hℓ(z, a, b, c) as the minimal value of

∑
j∈D(ℓ)∪{ℓ} ηjdj(µj , λj) where M(λ⋆) = M(µ) ∪

{k⋆(λ⋆)} \ {k′} for some k′ ∈M(µ) \ {k⋆(µ)}, under four constraints:
(i) λℓ = z
(ii) If a = 0, ℓ ∈M(λ⋆), if a = 1, maxv∈C(ℓ) λv ≥ λℓ, and if a = 2, λp(ℓ) ≥ λℓ

(iii) b = 1{k⋆(λ⋆) ∈ D(ℓ) ∪ {ℓ}}
(iv) c = 1{k′ ∈ D(ℓ) ∪ {ℓ}}
We further define λ⋆(ℓ, z, a, b, c) as the corresponding optimal solution. Recall that Gk⋆(µ) is a tree
rooted at k⋆(µ) and that in case 2, k⋆(µ) must be a mode of λ⋆. Putting the two cases together, the
optimal solution to P̃ ′

GL is

λ⋆ =

{
µ+ (µ⋆ − µk⊥)e(k

⊥) if ηk⊥dk⊥(µ⊥
k , µ

⋆) ≤ hk⋆(µ)(µ
⋆, 0, 1, 1)

λ⋆(k⋆(µ), µ⋆, 0, 1, 1) otherwise

where k⊥ ∈ argmink∈N (µ) ηkdk(µk, µ
⋆).

E.2 Terminal conditions for leaves

First consider ℓ a leaf of G. Then five terminal conditions must be satisfied:
(i) Since a = 1 requires minv∈C(ℓ) λv ≥ λℓ, we must have a ̸= 1
(ii) If b = 0 then ℓ ̸= k⋆(λ⋆), so that either a ̸= 0 or ℓ ∈M(µ)

27

(iii) If b = 1 then ℓ = k⋆(λ⋆), so that a = 0 and ℓ ̸∈ M(µ)
(iv) If c = 0 then ℓ ̸= k′, so that either a = 0 or ℓ ̸∈ M(µ)
(v) If c = 1 then ℓ = k′, so that a ̸= 0 and ℓ ∈M(µ) so that

hℓ(z, a, b, c) =

{
ηℓdℓ(µℓ, z) +

∑
v∈D(ℓ) hv(zv, av, bv, cv) if (i) - (v) hold

+∞ otherwise.

E.3 Dynamic programming rules for internal nodes

Now consider ℓ an internal node of G. We wish to compute the value of h recursively using dynamic
programming. We first write

hℓ(z, a, b, c) = ηℓdℓ(µℓ, λℓ) +
∑

v∈C(ℓ)

hv(zv, av, bv, cv)

where (zv, av, bv, cv)v∈C(ℓ) obeys a set of rules:
(i) If a = 0 then ℓ is a mode of λ, so zv < z for all v ∈ C(ℓ), and av = 2, because λv < λℓ = λp(v)

(ii) if a = 1 then ℓ has a child with higher value, so there must exist at least one v ∈ C(ℓ) with zv ≥ z
(iii) If b = 0 then bv = 0 for all v ∈ C(ℓ), since if the subtree of ℓ does not contain k⋆(λ⋆), then none
of the subtrees of v contain k⋆(λ⋆)
(iv) If b = 1, a = 0 and ℓ ̸∈ M(µ), then ℓ = k⋆(λ⋆), so that none of the subtrees of v contain
k⋆(λ⋆), i.e., bv = 0 for all v ∈ C(ℓ).
(v) If b = 1 and either a ∈ {1, 2} or ℓ ∈ M(µ), then

∑
v∈C(ℓ) bv = 1, since if the subtree of ℓ

contains k⋆(λ⋆), and ℓ ̸= k⋆(λ⋆) then there must exist exactly one v whose subtree contains k⋆(λ⋆)
(vi) If c = 0 and ℓ ∈ M(µ) then a = 0, since if the subtree of ℓ does not contain k′ then ℓ ̸= k′,
which gives ℓ ∈M(λ⋆)
(vii) If c = 0 then cv = 0 for all v ∈ C(ℓ), since if the subtree of ℓ does not contain k′ then the
subtree of all v does not contain k′

(viii) If c = 1 then either a = {1, 2} and ℓ ∈ M(µ) and we have ℓ = k′, which implies cv = 0 for
all v ∈ D(ℓ), or there must exist exactly one v whose subtree contains k′, so that

∑
v∈D(ℓ) cv = 1

(ix) If zv ≤ z then av = 2, otherwise av ∈ {0, 1}.

E.4 Recursive equations for internal nodes

Based on those rules we compute the value of hℓ(z, a, b, c) recursively using dynamic programming.
To do so we define the following auxiliary functions where, as in Section 4.2, the minima are taken
with the implicit constraint w ∈ D(n,µ):

h>
ℓ (z, b, c) = min

w>z
min

a∈{0,1}
hℓ(w, a, b, c) , h<

ℓ (z, b, c) = min
w<z

hℓ(w, 2, b, c)

h≥
ℓ (z, b, c) = min(h>

ℓ (z, b, c), hℓ(z, 2, b, c)) , h⋆
ℓ (z, b, c) = min(h<

ℓ (z, b, c), hℓ(z, 2, b, c), h
>
ℓ (z, b, c))

h∆
ℓ (z, b, c) = |C(ℓ)|−1 min

v∈C(ℓ)

{
h≥
v (z, b, c)− h⋆

v(z, b, c)
}

Xℓ(s1, s2) =
{
(x1,v, x2,v)v∈C(ℓ) ∈ {0, 1}2×C(ℓ) :

∑
v∈C(ℓ)

(x1,v, x2,v) = (s1, s2)
}

for (s1, s2) ∈ Z2

where it is noted that Xℓ(s1, s2) = ∅ if min(s1, s2) < 0.

We have hℓ(z, a, b, c) = +∞ if any of the three conditions hold:
(i) a = 0, ℓ ̸∈ M(µ) and b = 0
(ii) a = 0, ℓ ̸∈ M(µ), and z ̸= µ⋆

(iii) a ∈ {1, 2} and ℓ ∈M(µ) and c = 0.
Indeed, if a = 0 and ℓ ̸∈ M(µ) we must have ℓ = k⋆(λ⋆), so that in turn b = 1, and λℓ = µ⋆. Also,
if a ∈ {1, 2} and ℓ ∈M(µ) then we must have ℓ = k′, which imposes c = 1.

28

Otherwise, the value of hℓ(z, a, b, c) is given by the following recursive equations, where by conven-
tion, minimization over an empty set yields +∞:

hℓ(z, 0, b, c) = ηℓdℓ(µℓ, z) + min
(b,c)∈Xℓ(b−1{ℓ ̸∈M(µ)},c)

{ ∑
v∈C(ℓ)

h<
v (z, bv, cv)

}
hℓ(z, 1, b, c) = ηℓdℓ(µℓ, z) + min

(b,c)∈Xℓ(b,c−1{ℓ∈M(µ)})
min

w∈C(ℓ)

{
h≥
w(z, bw, cw) +

∑
v∈C(ℓ),v ̸=w

h⋆
v(z, bv, cv)

}
= ηℓdℓ(µℓ, z) + min

(b,c)∈Xℓ(b,c−1{ℓ∈M(µ)})
min

w∈Wℓ(z)

{
h≥
w(z, bw, cw) +

∑
v∈C(ℓ),v ̸=w

h⋆
v(z, bv, cv)

}
hℓ(z, 2, b, c) = ηℓdℓ(µℓ, z) + min

(b,c)∈Xℓ(b,c−1{ℓ∈M(µ)})

{ ∑
v∈C(ℓ)

h⋆
v(z, bv, cv)

}
with

Wℓ(z) = ∪(b,c)∈{0,1}2

{
argmin
w∈C(ℓ)

[
h≥
w(z, b, c)− h⋆

w(z, b, c)
]}

so that |Wℓ(z)| ≤ 4 and where we used the fact that

argmin
w∈C(ℓ)

{
h≥
w(z, bw, cw) +

∑
v∈C(ℓ),v ̸=w

h⋆
v(z, bv, cv)

}
= argmin

w∈C(ℓ)

{
h≥
w(z, bw, cw)− h⋆

w(z, bw, cw) +
∑

v∈C(ℓ)

h⋆
v(z, bv, cv)

}
= argmin

w∈C(ℓ)

{
h≥
w(z, bw, cw)− h⋆

w(z, bw, cw)
}
∈Wℓ(z)

E.5 Fast evaluation of recursive equations

We now propose an efficient strategy to compute the minimization problems in the recursive equations.
For any function ϕ, we can minimize

∑
v∈C(ℓ) ϕv(bv, cv) over (b, c) ∈ Xℓ(s1, s2) in time and

memory O(|C(ℓ)|) for any (s1, s2) ∈ {0, 1}2 using the following strategy. If (s1, s2) = (0, 0), then
trivially

min
(b,c)∈Xℓ(0,0)

{ ∑
v∈C(ℓ)

ϕv(bv, cv)
}
=

∑
v∈C(ℓ)

ϕv(0, 0)

If (s1, s2) = (1, 0),

min
(b,c)∈Xℓ(1,0)

{ ∑
v∈C(ℓ)

ϕv(bv, cv)
}
= min

b∈{0,1}C(ℓ):
∑

v∈C(ℓ) bv=1

{ ∑
v∈C(ℓ)

ϕv(bv, 0)
}

= min
w∈C(ℓ)

{
ϕw(1, 0)− ϕw(0, 0)

}
+

∑
v∈C(ℓ)

ϕv(0, 0)

and by symmetry, if (s1, s2) = (0, 1),

min
(b,c)∈Xℓ(0,1)

{ ∑
v∈C(ℓ)

ϕv(bv, cv)
}
= min

w∈C(ℓ)

{
ϕw(0, 1)− ϕw(0, 0)

}
+

∑
v∈C(ℓ)

ϕv(0, 0)

and finally, if (s1, s2) = (1, 1),

min
(b,c)∈Xℓ(1,1)

{ ∑
v∈C(ℓ)

ϕv(bv, cv)
}
= min(∆,∆′) +

∑
v∈C(ℓ)

ϕv(0, 0)

with

∆ = min
w∈C(ℓ)

{
ϕw(1, 1)− ϕw(0, 0)

}
∆′ = min

w1,w2∈C(ℓ)2,w1 ̸=w2

{
ϕw1(1, 0)− ϕw1(0, 0) + ϕw2(0, 1)− ϕw2(0, 0)

}

29

In all cases, one can compute the minimization in time O(|C(ℓ)|). In particular ∆′ can be computed
by realizing that the only pairs (w1, w2) that minimize the expression must be either the first or
second smallest entry of ϕv(1, 0) − ϕv(0, 0) and ϕv(0, 1) − ϕv(0, 0). We recall that, finding the
first and second smallest entry of a vector can be done in time proportional to the vector size, by
inspecting each entry at most twice.

E.6 Retrieving the optimal solution

Once the value of hℓ(z, a, b, c) has been determined, we can retrieve the optimal solution
λ⋆(k⋆(µ), µ⋆, 0, 1, 1) by retrieving the value of the flags (z⋆ℓ , a

⋆
ℓ , b

⋆
ℓ , c

⋆
ℓ) for all ℓ. Consider a node

ℓ ̸= k⋆(µ), once its flags (z⋆ℓ , a
⋆
ℓ , b

⋆
ℓ , c

⋆
ℓ) have been computed, we compute the flags of its children as

follows.
(i) If a⋆ℓ = 0, then

(b⋆v, c
⋆
v)v∈C(ℓ) ∈ argmin

(b,c)∈Xℓ(b−1{ℓ ̸∈M(µ)},c)

{ ∑
v∈C(ℓ)

h<
v (z

⋆
ℓ , bv, cv)

}
and

z⋆v ∈ arg min
z<z⋆

ℓ

hv(z, 2, b
⋆
v, c

⋆
v).

(ii) If a⋆ℓ = 1, then

(b⋆v, c
⋆
v)v∈C(ℓ) ∈ argmin

(b,c)∈Xℓ(b,c−1{ℓ∈M(µ)})
min

w∈Wℓ(z⋆
ℓ)

{
h≥
w(z

⋆
ℓ , bw, cw) +

∑
v∈C(ℓ),v ̸=w

h⋆
v(z

⋆
ℓ , bv, cv)

}
,

z⋆v =



argminz>z⋆
ℓ
mina∈{0,1} hv(z, a, b

⋆
v, c

⋆
v) if v = w⋆

ℓ and h>
v (z

⋆
ℓ , b

⋆
v, c

⋆
v) = h≥

v (z
⋆
ℓ , b

⋆
v, c

⋆
v)

z⋆ℓ if v = w⋆
ℓ and hv(z

⋆
ℓ , 2, b

⋆
v, c

⋆
v) = h≥

v (z
⋆
ℓ , b

⋆
v, c

⋆
v)

argminz>z⋆
ℓ
mina∈{0,1} hv(z, a, b

⋆
v, c

⋆
v) if v ̸= w⋆

ℓ and h>
v (z

⋆
ℓ , b

⋆
v, c

⋆
v) = h⋆

v(z
⋆
ℓ , b

⋆
v, c

⋆
v)

z⋆ℓ if v ̸= w⋆
ℓ and hv(z

⋆
ℓ , 2, b

⋆
v, c

⋆
v) = h⋆

v(z
⋆
ℓ , b

⋆
v, c

⋆
v)

argminz<z⋆
ℓ
hv(z, 2, b

⋆
v, c

⋆
v) if v ̸= w⋆

ℓ and h<
v (z

⋆
ℓ , b

⋆
v, c

⋆
v) = h⋆

v(z
⋆
ℓ , b

⋆
v, c

⋆
v)

where

w⋆
ℓ ∈ argmin

w∈Wℓ(z⋆
ℓ)

{
h≥
w(z

⋆
ℓ , b

⋆
w, c

⋆
w)− h⋆

w(z
⋆
ℓ , b

⋆
w, c

⋆
w)

}
(iii) If a⋆ℓ = 2, then

(b⋆v, c
⋆
v)v∈C(ℓ) ∈ argmin

(b,c)∈Xℓ(b,c−1(ℓ∈M(µ)))

{ ∑
v∈C(ℓ)

h⋆
v(z

⋆
ℓ , bv, cv)

}
and

z⋆v =


argminz>z⋆

ℓ
mina∈{0,1} hv(z, a, b

⋆
v, c

⋆
v) if h>

v (z
⋆
ℓ , b

⋆
v, c

⋆
v) = h⋆

v(z
⋆
ℓ , b

⋆
v, c

⋆
v)

z⋆ℓ if hv(z
⋆
ℓ , 2, b

⋆
v, c

⋆
v) = h⋆

v(z
⋆
ℓ , b

⋆
v, c

⋆
v)

argminz<z⋆
ℓ
hv(z, 2, b

⋆
v, c

⋆
v) if h<

v (z
⋆
ℓ , b

⋆
v, c

⋆
v) = h⋆

v(z
⋆
ℓ , b

⋆
v, c

⋆
v)

Finally, a⋆v = 2 if z⋆ℓ ≥ z⋆v and a⋆v ∈ argmina∈{0,1} hv(z
⋆
v , a, b

⋆
v, c

⋆
v) otherwise. In practice, these

argmins can be stored during the forward pass (where we compute each hℓ(z, a, b, c)) and do not
need to be recomputed.

E.7 Computational complexity

Recall that z ∈ D(µ, n), which is a grid of size n. If hv(z, a, b, c) has been computed for all (z, a, b, c)
and all v ∈ C(ℓ), then one can compute h>

v (z, b, c), h
=
v (z, b, c), h

<
v (z, b, c), h

≥
v (z, b, c), h

⋆
v(z, b, c)

for all (z, a, b, c) and all v ∈ C(ℓ) in time O(n|C(ℓ)|). In turn, using the fast evaluation strategy
explained above, one can compute hℓ(z, a, b, c) for all (z, a, b, c) in time O(n|C(ℓ)|). Therefore, the
total time and memory required to solve P̃ ′

GL with this strategy is O(n
∑

ℓ |C(ℓ)|) = O(nK) since
G is a tree.

E.8 Runtime comparison in practice

The improved dynamic program (DP) runs in time O(Kn), compared to O(K2mn) for the procedure
described in Section 4.2, which we will refer to as the original DP in what follows. In practice,

30

however, the improved DP may run slower than the original DP on tree instances with moderate
values of K. To clarify when one should use each procedure, we report their average runtime over
50 trials on specific tree instances, with η uniformly sampled at random in [0, 1]K , µ generated as
in Section 6 with m = |M(µ)| = 3, σ = 2, and a discretization parameter of n = 100. We pick a
Gaussian divergence: dk(λk, µk) = (λk − µk)

2/2 for each k ∈ [K]. We perform two experiments:

(i) We measure runtime on random trees as the number of nodes K increases, with K ∈
{100, 400, 700, 1000, 1300, 1600, 1900}.

(ii) We measure runtime on balanced d-ary trees (i.e., each node has d children) of a fixed height
h = 3. We vary the branching factor d ∈ {2, 4, 6, 8, 10, 12}, which implicitly varies the
number of nodes K from 15 to 1885.

The results are reported in Figure 6, along with 95% confidence intervals using bootstrap. The left
panel shows that for random trees, the original DP is faster on average up to K = 1000, after which
the improved DP generally runs faster. The difference is more pronounced in the right panel, with the
average runtime of the original DP increasing much faster with the branching factor d of the balanced
tree.

Notably, the original DP exhibits higher runtime variance. This may be explained by an implementa-
tion trick we applied to reduce its runtime: specifically, before running the complete dynamic program-
ming subroutine for each k /∈ N (µ), we check whether ηkdk(µk, µ

⋆) ≥ minℓ∈N (µ) ηℓdℓ(µℓ, µ
⋆).

If this holds, the subroutine will not find a parameter with a smaller value than the trivial solution
of Proposition 3, hence it is skipped. The number of calls to the subroutine is therefore highly
instance-dependent.

Figure 6: Average runtime of each dynamic program with respect to the number of nodes K or the
branching factor d.

31

	Introduction
	Related work and contribution
	Asymptotically optimal algorithms for multimodal bandits
	A computationally tractable algorithm to solve the Graves-Lai problem
	Reducing the constraint of PGL to tractable subproblems
	Computing the constraint sets via dynamic programming
	Solving PGL via penalized subgradient descent

	Local search strategies and peaked functions
	Numerical experiments
	Conclusion
	Experimental details
	OSSB for multimodal bandits
	Runtime experiment

	Proofs of Section 3
	Proofs of Section 4
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Corollary 1
	Proof of Proposition 9

	Proofs of Section 5
	Proof of Theorem 3
	Suboptimality of IMED-MB
	Proof of Proposition 10
	Proof of Proposition 11

	An improved dynamic programming procedure
	Dynamic programming variables
	Terminal conditions for leaves
	Dynamic programming rules for internal nodes
	Recursive equations for internal nodes
	Fast evaluation of recursive equations
	Retrieving the optimal solution
	Computational complexity
	Runtime comparison in practice

