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Abstract

In this work, we propose ProtoLens, a001
novel prototype-based model that provides002
fine-grained, sub-sentence level interpretability003
for text classification. ProtoLens uses a004
Prototype-aware Span Extraction module to005
identify relevant text spans associated with006
learned prototypes and a Prototype Alignment007
mechanism to ensure prototypes are seman-008
tically meaningful throughout training. By009
aligning the prototype embeddings with human-010
understandable examples, ProtoLens provides011
interpretable predictions while maintaining012
competitive accuracy. Extensive experiments013
demonstrate that ProtoLens outperforms014
both prototype-based and non-interpretable015
baselines on multiple text classification016
benchmarks. Code and data are avail-017
able at https://anonymous.4open.018
science/r/ProtoLens-CE0B/.019

1 Introduction020

Deep neural networks (DNNs) have achieved re-021

markable success in various natural language pro-022

cessing tasks, including text classification (Kowsari023

et al., 2019), sentiment analysis (Medhat et al.,024

2014), and question answering (Allam and Hag-025

gag, 2012). However, their black-box nature026

presents significant challenges for interpretabil-027

ity, limiting their use in high-stakes applications028

where transparency, user trust, and accountability029

are paramount (Castelvecchi, 2016; Rudin, 2019).030

While post-hoc explanation methods attempt to031

address this (Jacovi et al., 2018; Mishra et al.,032

2017), they often lack faithfulness and consistency033

in explaining predictions (Rudin, 2019). In con-034

trast, inherently interpretable models guarantee035

transparency, facilitating understanding and trust036

in model outputs (Molnar, 2020).037

Among various approaches aimed at enhanc-038

ing model interpretability, prototype-based meth-039

ods have emerged as a prominent line of research.040

Figure 1: Interpretable classification by ProtoLens.

These methods enable models to generate predic- 041

tions by comparing inputs to prototypical examples, 042

akin to human reasoning that relies on analogies to 043

familiar cases . While prototype-based approaches 044

have been extensively explored in computer vi- 045

sion (Dong and Xing, 2018; Sumbul et al., 2019; 046

Zhang et al., 2023; Ming et al., 2019a; Gautam 047

et al., 2022; Arik and Pfister, 2020; Willard et al., 048

2024; Nauta et al., 2023; Ma et al., 2024; Nauta 049

et al., 2021; Xue et al., 2022), their application in 050

natural language processing (NLP) is a relatively 051

new area, with only a few works (Hong et al., 2023; 052

Ming et al., 2019b; Sourati et al., 2023; Arik and 053

Pfister, 2020) emerging in recent years. These mod- 054

els provide an intuitive form of interpretability, fa- 055

cilitating an understanding of predictions through 056

direct reference to interpretable examples. For in- 057

stance, in a movie review classification task, a pro- 058

totype might represent a review like "This movie 059

was amazing, with stunning visuals and a gripping 060

storyline," which the model uses to classify new re- 061

views with similar sentiments. The model explains 062

its classification of a new review by highlighting 063

its similarity to this prototypical example. 064

Despite the potential of prototype-based models 065

for enhancing interpretability, existing approaches 066

encounter significant limitations in text-based ap- 067

plications (Hong et al., 2023; Ming et al., 2019b). 068

Typically, these models define prototypes at the 069
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instance/sentence level, which often lacks the070

granularity needed for effective interpretability071

in complex or lengthy texts. For example, in a072

movie review like "The visuals were stunning, but073

the plot was too predictable", an instance/sentence-074

level prototype might only capture the general sen-075

timent of the review, missing the nuance that the076

visuals were positive, while the plot had negative as-077

pects. This coarse granularity makes it challenging078

to provide insightful interpretations when different079

sentiments or nuances coexist within a single text.080

In contrast, more fine-grained prototype modeling,081

such as sub-sentence level, is crucial for delivering082

detailed interpretative insights, allowing the model083

to explain specific aspects of the text, like "stunning084

visuals" or "predictable plot".085

To address this challenge, a novel prototype-086

based model ProtoLens is designed for finer-087

grained interpretability. ProtoLens builds on the088

concept of prototypical learning but extends it in089

key ways that make it better suited for handling the090

complexities inherent in textual data. The general091

reasoning process of ProtoLens is illustrated by the092

example in Figure 1: ProtoLens leverages three pro-093

totypes related to "emotion", "performance", and094

"script", and extracts prototype-specific text spans095

(sub-sentence level) from the input. Based on ex-096

tracted spans, Prototype 1 and 2 are activated and097

thus positive prediction is derived.098

There are two core modules in ProtoLens. First,099

for a specific prototype, the Prototype-aware100

Span Extraction module employs a Dirichlet Pro-101

cess Gaussian Mixture Model (DPGMM) (Görür102

and Edward Rasmussen, 2010; Rasmussen, 1999)103

to extract relevant text spans in inputs for model104

prediction and interpretation. This module enables105

sub-sentence extraction and offers a more accurate106

and finer-grained extraction of text spans for cer-107

tain prototypes. Second, we devise the Prototype108

Alignment mechanism, which adaptively aligns109

the learned prototype embeddings with represen-110

tative data samples throughout training. By this,111

we ensure that learned prototypes are semantically112

reasonable and effective for interpretation.113

Extensive experiments demonstrate that Pro-114

toLens not only outperforms competitive baselines115

on multiple text classification benchmarks but also116

provides more intuitive and user-friendly explana-117

tions for its predictions.118

2 Related Work 119

Post-hoc Explanations. Several post-hoc meth- 120

ods interpret DNN models by analyzing gradients 121

or neuron activations, such as Integrated Gradi- 122

ents (Sayres et al., 2019; Qi et al., 2019), DeepLift 123

(Li et al., 2021), and NeuroX (Nalls et al., 2015). 124

Tsang et al. (2018) proposed a hierarchical method 125

to capture interaction effects, later adapted by Jin 126

et al. (2019) for text classification. In sentiment 127

analysis, contextual decomposition (Murdoch et al., 128

2018) identifies sentiment words and their contribu- 129

tions. Attention-based models, such as Bahdanau 130

(2014); Rocktäschel et al. (2015), analyze attention 131

weights, though Jain and Wallace (2019) question 132

their explanatory power. 133

Prototype-based Deep Neural Networks. 134

Prototype-based deep neural networks enhance 135

interpretability by using prototypes as intuitive 136

references for decision-making, a concept rooted 137

in traditional models (Sørgaard, 1991; Fikes and 138

Kehler, 1985; Kim et al., 2014). While prototype- 139

based reasoning has been extensively developed 140

in CV, with methods like ProtoPNet (Chen et al., 141

2019) for image classification and ProtoVAE 142

(Gautam et al., 2022) introducing diverse and 143

interpretable prototypes, its application in NLP is a 144

relatively new area. Early works such as ProSeNet 145

(Ming et al., 2019b) adapted prototype-based 146

reasoning for text classification, followed by Pro- 147

toAttend (Arik and Pfister, 2020), which employed 148

attention mechanisms for dynamic prototype 149

selection. Recently, ProtoryNet (Hong et al., 150

2023) introduced prototype trajectory modeling to 151

improve interpretability across domains. Despite 152

these advances, prototype-based approaches in 153

NLP remain underexplored, making our work a 154

significant step forward in this emerging field. 155

Unlike previous methods, our approach directly 156

embeds interpretability at the sub-sentence level, 157

providing more granular insights than word- or 158

sentence-level methods. 159

3 Method 160

To deliver inherently interpretable predictions at 161

a fine-grained level, we introduce ProtoLens, a 162

prototype-based interpretable neural network. Pro- 163

toLens is designed to overcome two primary chal- 164

lenges: (C1) How to effectively extract text spans 165

associated with a given prototype to provide in- 166

terpretable predictions? and (C2) How to ensure 167

2



Figure 2: Model Structure. ProtoLens integrates Prototype-aware Span Extraction (via a GMM) and an interpretable
classifier. The GMM models the similarity distribution between prototypes and text spans, identifying relevant
spans. The classifier aggregates prototype contributions to predict outputs and provide interpretable explanations.

learned prototypes are semantically reasonable168

and effective for interpretation? To address C1,169

we propose a Prototype-Aware Span Extraction170

module, which extracts most relevant text spans for171

prototypes by a Dirichlet Process Gaussian Mix-172

ture Model. To address C2, we design a Prototype173

Alignment mechanism to adaptively align proto-174

type embeddings to representative data samples175

through training. The overall model architecture is176

illustrated in Figure 2.177

3.1 Overall Structure178

Given a corpus of textual data D = {(xi, yi)},179

where i = 1, . . . , N , each instance xi is associated180

with a label yi ∈ Y , our model processes the text181

through a text encoder, such as BERT (Devlin et al.,182

2019), ψ : X → Rd, where X represents the space183

of inputs and d is determined by the encoder.184

For a text instance x, it is first inputted to an185

Prototype-aware Span Extraction module, con-186

taining a set of trainable prototypes P = {pk ∈187

Rd : k = 1, . . . ,K}, where each prototype is rep-188

resented by a learnable embedding, and the hyper-189

parameter K is the number of prototypes specified.190

The model will deliver classifications by comparing191

the input to these prototypes. For each prototype k,192

we identify a relevant text span xk ⊆ x, which rep-193

resents a sub-sentence capturing the most relevant194

portion of x associated with that prototype. We195

then use an encoder ψ to compute an embedding196

for each extracted span xk: 197

zk = ψ(xk), (1) 198

The similarity between zk and prototype pk is 199

then computed as sk = RMSNorm(cos(zk,pk)). 200

The final prediction is computed via an inter- 201

pretable model f applied to the similarity vec- 202

tor across all prototypes s = [s1, s2, . . . , sK ]: 203

ŷ = f(s), where s captures the proximity to all 204

prototypes, serving as features for the final predic- 205

tion; and f can be any interpretable models, such 206

as decision tree or logistic regression. In this paper, 207

we adopt the logistic regression as f . 208

Model Interpretation. The interpretability of Pro- 209

toLens is two-fold. First, it employs prototypes 210

aligned with real-world text sentences to represent 211

human-understandable concepts, assigning weights 212

that reveal their presence and importance in pre- 213

dictions, ensuring intrinsic interpretability. Sec- 214

ond, it extracts input spans most relevant to the 215

activated prototypes, allowing users to intuitively 216

compare these spans with the corresponding proto- 217

types for fine-grained interpretability. These proto- 218

types serve as features for an interpretable classifier, 219

such as logistic regression, which provides an ad- 220

ditional layer of transparency. Logistic regression 221

assigns interpretable coefficients to each prototype, 222

offering clear insights into how each prototype con- 223

tributes to the final prediction. As illustrated in 224

Figure 1, ProtoLens highlights spans from the in- 225
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put text that relevant to prototypes. For example,226

spans like "powerful emotions" and "script was227

well-crafted" align with Prototype 1 and Prototype228

3, respectively, contributing positively to the pre-229

diction. In contrast, Prototype 2, "The script is dull230

and uninspired", is not activated and thus has no231

contribution to the prediction.232

3.2 Prototype-aware Span Extraction233

To extract the most relevant spans of the input text234

x for each prototype, we divide the input x into235

n-grams x = (ct)
T
t=1, where ct denotes the t-th236

n-gram, T is the total number of n-grams, and n237

is a hyperparameter. A text span is composed of238

consecutive n-grams. The text encoder processes239

each part ct ∈ x to produce an embedding et =240

ψ(ct) ∈ Rd. The similarity mt,k between the part241

embedding et and the prototype embedding pk242

is then measured using cosine similarity: mt,k =243

cos(et,pk). The intermediate output of the module244

is the similarity vector between each text input and245

prototype k, denoted as mk = (mt,k)
T
t=1.246

3.2.1 Similarity Distribution Modeling by247

DPGMM248

Identifying the most relevant text spans that align249

with a prototype is a challenging task due to the250

inherent complexity and variability of patterns in251

natural language. The primary aim of employing252

"fine-grained prototypes" is to extract text spans253

of flexible lengths, rather than relying on rigid254

instance/sentence-level, or fixed-size windows.255

To address this challenge, we use a Dirichlet Pro-256

cess Gaussian Mixture Model (DPGMM) (Görür257

and Edward Rasmussen, 2010; Rasmussen, 1999),258

which represents the relevance between proto-259

types and text spans as a probability distribution.260

By modeling similarity distributions in mk with261

Gaussian components, DPGMM provides an effec-262

tive framework for dynamically identifying high-263

similarity regions in the input text, thereby facil-264

itating the extraction of flexible and relevant text265

spans. DPGMM approximates mk using up to G266

Gaussian components:267

p(mk) =

G∑
g=1

πg · N (mk | µg, σg), (2)268

where πg is the mixture weight, and N (mk |269

µg, σg) is the Gaussian distribution with mean µg270

and standard deviation σg. We deploy a neural271

network based method to learn these parameters272

following existing works (Viroli and McLachlan, 273

2019; Bishop, 1994). Specifically, we first learn 274

a hidden representation h = MLP(mk) and com- 275

pute these parameters as: 276

µ = sigmoid(Wµh+ bµ)× T, (3) 277

σ = exp(Wσh+ bσ), (4) 278

ν = sigmoid(Wπh+ bπ), (5) 279
280

πg = νg

g−1∏
ℓ=1

(1− νℓ), g = 1, . . . , G. (6) 281

Here, µ and σ are the parameters for the Gaus- 282

sian components, while π is determined using the 283

Stick-Breaking Process (Ren et al., 2011), allowing 284

for an adaptive number of components. Detailed 285

explanations can be found in the Appendix A. 286

3.2.2 Span Extraction 287

To extract a span that focuses on the most relevant 288

area of the text, we select the Gaussian component 289

with the highest mixture weight πg = max(π), 290

characterized by (µg, σg). Then, µg serves as the 291

center of the span, while σg defines its length. The 292

span is thus given by: xk = x[µg − σg, µg + σg]. 293

3.3 Prototype Alignment 294

To ensure interpretable classifications, the learned 295

prototypes must be semantically meaningful. How- 296

ever, these prototypes are numerical embeddings 297

that are not inherently interpretable by human users. 298

Therefore, we introduce a prototype alignment 299

mechanism that maps each prototype to real-world 300

training text sentences throughout the learning pro- 301

cess. 302

Representative Candidates. We begin by en- 303

coding all sentences in the training instances (an 304

instance can contain multiple sentences) into em- 305

beddings. In the embedding space, we apply the 306

k-means to cluster sentences. The top 50 sen- 307

tences closest to each cluster center obtained from 308

k-means serve as representative examples of each 309

cluster, making them suitable candidates for align- 310

ing prototypes. 311

Prototype Alignment. In Figure 3, we depict 312

the prototype alignment process in ProtoLens. At 313

one epoch during training, for each prototype with 314

its current learned embedding pk, the top 3 most 315

similar candidate sentences (green circles) from 316
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Figure 3: Prototype Alignment.

the representative candidates are selected. These317

candidates are averaged to form a representative318

embedding ck (purple cross), which encapsulates319

the meaning from actual training data. The pro-320

totype is then updated towards ck (orange arrow),321

resulting in an updated prototype p′
k (yellow star).322

Specifically, pk is updated towards ck controlled323

by a weight factor ωk:324

ωk = sigmoid(γ · (dk − τ)), (7)325

where dk represents the Euclidean distance be-326

tween pk and ck, τ is the movement threshold and327

γ controls the smoothness of the transition.328

The updated prototype p′
k is derived as a329

weighted combination of pk and the movement330

towards ck:331

p′
k = ωk · (pk + τ · uk) + (1− ωk) · ck, (8)332

where uk is the unit vector pointing from pk to ck,333

defined as:334

uk =
ck − pk

dk + ϵ
, (9)335

with ϵ being a small value to prevent division by336

zero. If pk is far from ck (i.e., dk ≥ τ ), pk will337

move a distance of τ toward ck. Conversely, if338

dk ≤ τ , pk is directly aligned with ck. This pro-339

cess ensures that the prototypes shift toward seman-340

tically meaningful regions without abrupt changes.341

3.4 Learning Objectives342

The learning objectives of the proposed model con-343

sist of three key components that contribute to both344

prediction accuracy and the interpretability of the345

learned representations.346

3.4.1 GMM Loss347

To approximate complex similarity distributions348

between text samples and prototypes, we employ349

a Negative Log-Likelihood (NLL) loss for GMM 350

jointly trained with the model, which is given by: 351

LNLL = − log(
M∑

m=1

πm · N (s̃ | µm, σm) + ϵ),

(10) 352

where πm, µm, and σm are the mixture weights, 353

means, and standard deviations of the m-th Gaus- 354

sian component, respectively, and ϵ is a small con- 355

stant added for numerical stability. 356

The overall loss for the GMM is defined as: 357

LGMM = E[LNLL] + LL1, (11) 358

where an L1 regularization term is introduced 359

to promote sparsity in the mixture weights: LL1 = 360

λ
∑M

m=1 |πm|, where λ controls the regularization 361

strength. This sparsity encourages the model to 362

focus on a few significant Gaussian components. λ 363

is set to 1e−3 for all experiments. 364

3.4.2 Diversity Loss 365

To encourage the model to learn high-quality and 366

diverse prototypes, we introduce a Diversity Loss 367

based on cosine distance: 368

Ldiv =
∑
i ̸=j

(1− cos(pi,pj)). (12) 369

Maximizing this diversity loss enhances general- 370

ization and interpretability by maintaining a diverse 371

set of prototypes. 372

3.4.3 Overall Objective 373

The final objective function for the proposed model 374

is a weighted combination of the aforementioned 375

loss components: 376

L = CrossEntropy(y, ŷ)+αLGMM−βLdiv, (13) 377

where y represents the true labels, ŷ denotes the pre- 378

diction, α and β are hyperparameters that control 379

the balance between accuracy, Gaussian mixture 380

modeling, and prototype diversity. α and β is set 381

to 1e−1 and 1e−3 for all experiments, respectively. 382

4 Experiments 383

In this section, we conduct comprehensive experi- 384

ments to evaluate the proposed model and answer 385

the following research questions: RQ1: How does 386

ProtoLens perform in terms of classification ac- 387

curacy compared to state-of-the-art (SOTA) base- 388

lines? RQ2: What is the quality of the model 389

interpretations? RQ3: What are the effects of the 390
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proposed Prototype Alignment mechanism and Di-391

versity loss on ProtoLens? RQ4: What are the im-392

pacts of different hyperparameters on ProtoLens?393

4.1 Experimental Setup394

Datasets. We evaluate ProtoLens on seven di-395

verse text classification datasets spanning single-396

label, multi-label, and domain-specific classifica-397

tion tasks: IMDB, Yelp, Amazon, Hotel, Steam,398

DBPedia, and Consumer Complaint. Details are399

provided in Appendix B.400

Reproducibility. The ProtoLens model was imple-401

mented using PyTorch. For training, the prototype402

number K is selected from {10, 20, 40, 50, 100}.403

The learning rate is selected from {1e − 4, 1e −404

5, 5e− 5}, with a decay of 10% every 10 epochs.405

We used the AdamW optimizer (Loshchilov, 2017)406

with a batch size of 16 for 25 epochs and407

the n-gram size is selected from {1, 3, 5, 7, 9}.408

The experiments were conducted on an NVIDIA409

A100 80GB GPU. Code and data are available410

at https://anonymous.4open.science/411

r/ProtoLens-CE0B/.412

Baselines. We compare ProtoLens against a range413

of baselines, encompassing both interpretable and414

non-interpretable models. The interpretable base-415

lines include ProSeNet (Ming et al., 2019b) and416

ProtoryNet (Hong et al., 2023), both are SOTA417

prototype-based methods that provide insights into418

their predictions via learned prototypical repre-419

sentations. Additionally, we include a zero-shot420

Llama-3-8b (Touvron et al., 2023), MPNet (Song421

et al., 2020a) and a Bag-of-Words model (Zhang422

et al., 2010) using TF-IDF representations and Lo-423

gistic Regression for interpretable classification424

(Hosmer Jr et al., 2013).425

4.2 Prediction Accuracy (RQ1)426

We evaluate the accuracy of ProtoLens against427

several competitive baselines, including both428

prototype-based and non-prototype-based methods.429

The results are presented in Table 1. ProtoLens430

consistently achieves the highest scores, outper-431

forming the baselines in all cases. The consis-432

tently higher performance of ProtoLens demon-433

strates its effectiveness and robustness across di-434

verse domains, highlighting its superiority in lever-435

aging fine-grained interpretability without sacrific-436

ing predictive accuracy.437

Figure 4: Sampled aligned interpretation of prototypes
and their top-3 activated prototypes with aligned text
sentences from the training set, with sentiment scores.
Each prototype captures a distinct concept, and the
aligned sentences provide interpretable explanations
linked to sentiment contributions.

4.3 Model Interpretations (RQ2) 438

ProtoLens offers two-fold interpretability. First, 439

it uses prototypes aligned with training sentences 440

to represent concepts with weights, revealing their 441

presence and importance in predictions for intrin- 442

sic interpretability. Second, it extracts input spans 443

most relevant to activated prototypes, allowing 444

users to intuitively compare spans with prototypes 445

for fine-grained interpretability. 446

4.3.1 Prototype Interpretation 447

In this section, we present an example of ProtoLens 448

trained on the IMDB dataset with K = 10 proto- 449

types. Figure 4 showcases five randomly selected 450

prototypes along with their aligned sentence inter- 451

pretations. These prototypes span a wide range of 452

concepts, including acting, horror elements, humor, 453

storyline, and film execution. 454

What stands out is that ProtoLens achieves high 455

accuracy while relying on concise and interpretable 456

prototypes, often represented by short sentences. 457

This allows for rapid and straightforward compre- 458

hension of the model’s reasoning process. Each 459

prototype captures key characteristics of the corre- 460

sponding text, providing insightful interpretations 461

for various aspects of the movie, such as acting 462

quality, humor, or poor execution. This feature 463

enhances both the model’s interpretability and us- 464

6

https://anonymous.4open.science/r/ProtoLens-CE0B/
https://anonymous.4open.science/r/ProtoLens-CE0B/
https://anonymous.4open.science/r/ProtoLens-CE0B/


Table 1: Performance of ProtoLens in comparison with baselines.

Model IMDB Amazon Yelp Hotel Steam DBPedia Consumer
Llama-3-8b 0.813 0.767 0.787 0.787 0.667 0.768 0.807
MPNet 0.846 0.899 0.950 0.961 0.913 0.991 0.933
Bag-of-words 0.877 0.830 0.908 0.905 0.844 0.993 0.930
ProSeNet 0.863 0.875 0.932 0.930 0.834 0.984 0.878
ProtoryNet 0.871 0.890 0.941 0.949 0.876 0.991 0.927
ProtoLens 0.903* 0.937* 0.962* 0.963* 0.931* 0.995* 0.945*

Figure 5: Case study of a positive class text instance.ProtoLens identifies relevant prototypes (e.g., "highly
entertaining flick") and aligns them with specific spans in the input text. Extracted spans, similarity scores, and
sentiment weights show how each prototype contributes to the positive prediction.

ability, as users can easily relate the prototypes to465

human-understandable concepts, making the pre-466

dictions more transparent. Further examples and an467

in-depth analysis of prototype interpretations can468

be found in Appendix C.469

4.3.2 Classification Interpretation470

When conducting classification on a text sample,471

ProtoLens extracts the most relevant span from the472

sample for all prototypes. Similarities between473

spans and prototypes are then calculated to deter-474

mine which concepts are activated for the sample.475

Last, interpretable classification is delivered based476

on the similarities. We present a positive example477

in Figure 5 and a negative example in Figure 6,478

both from the IMDB dataset.479

As shown in Figure 5, the top three prototypes480

with the highest similarity scores significantly in-481

fluence the classification. Prototype 0 captures the482

concept of a "highly entertaining flick" (similar-483

ity score 0.708, sentiment weight 0.985), Proto-484

type 2 reflects humor with the span "crime com-485

edy that’s often very funny" (score 0.549, weight486

0.247), and Prototype 5 highlights good acting with487

"some great actors playing these characters" (score488

0.730, weight 0.931). These prototypes, focus-489

ing on entertainment, comedy, and acting, lead the490

model to correctly predict a "Positive" sentiment.491

In contrast, Figure 6 shows a negative example.492

Table 2: Performance of ProtoLens with different abla-
tion settings on various datasets.

Dataset ProtoLens w/o Diversity w/o Alignment
IMDB 0.903 0.882 0.886
Amazon 0.937 0.926 0.927
Yelp 0.962 0.931 0.943
Hotel 0.963 0.947 0.953
Steam 0.931 0.917 0.923

The text activates prototype 4, reflecting dissatis- 493

faction with special effects, as captured in the span 494

"problems with this film: 1 cheap special effects," 495

with a similarity score of 0.657 and a sentiment 496

weight of -0.956. Prototype 7 reflects frustration 497

with the movie, highlighted by the span "ended up 498

watching it the whole 2 hours," scoring 0.676 with 499

a weight of -0.809. Prototype 9 captures disap- 500

pointment with the lack of character development, 501

aligned with the span "there was no character de- 502

velopment," with a similarity score of 0.664 and 503

weight of -0.756. These prototypes highlight nega- 504

tive aspects of the movie, leading the model to cor- 505

rectly predict the sentiment as "Negative". Further 506

examples and an in-depth analysis of classification 507

interpretations are shown in Appendix C. 508

4.4 Ablation Study (RQ3) 509

To demonstrate the effectiveness of the Prototype 510

Alignment and Diversity Loss, we compare Pro- 511
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Figure 6: Case study of a negative class text instance. ProtoLens identifies relevant prototypes (e.g., "there was no
character development") and aligns them with specific spans in the input text. Extracted spans, similarity scores,
and sentiment weights show how each prototype contributes to the negative prediction.

Figure 7: Performance of ProtoLens in comparison with
different number of prototypes. Performance improves
with more prototypes, peaking at an optimal K (e.g., 40
for IMDB), before stabilizing or slightly decreasing.

toLens trained with and without these components.512

Prototype Alignment ensures that prototypes main-513

tain their semantic faithfulness. The Diversity Loss514

encourages prototypes to be distinct, reducing re-515

dundancy in representation. The results, shown in516

Table 2, indicate that both the Prototype Alignment517

and Diversity Loss are essential for maintaining518

ProtoLens’s high performance and interpretabil-519

ity, as their removal leads to significant declines520

in accuracy across datasets. A detailed analysis is521

provided in Appendix E.522

4.5 Hyperparameter (RQ4)523

We explored the impact of varying the number of524

prototypes K and n-gram sizes on ProtoLens’s per-525

formance, identifying dataset-specific optimal val-526

ues that balance model complexity and classifica-527

tion accuracy. In conclusion, the optimal number528

of prototypes K varies by dataset, with K = 50529

performing best for Amazon and Yelp, K = 40 for530

IMDB, and K = 20 for Hotel, while an n-gram531

Figure 8: Accuracy of ProtoLens across IMDB, Ama-
zon, and Hotel datasets as n-gram size varies. Larger
n-grams improve contextual representation, but perfor-
mance plateaus or slightly decreases beyond n=5, indi-
cating a tradeoff between context and generalizability.

size of 5 consistently yields the best results across 532

all datasets, balancing complexity and performance. 533

A detailed analysis is provided in Appendix F. 534

5 Conclusion 535

In this paper, we present ProtoLens, a prototype- 536

based model offering fine-grained, sub-sentence 537

level interpretability for text classification. we in- 538

troduce a Prototype-aware Span Extraction module 539

with a Prototype Alignment mechanism to ensure 540

prototypes remain semantically meaningful and 541

aligned with human-understandable examples. Ex- 542

tensive experiments across multiple benchmarks 543

show that ProtoLens outperforms both prototype- 544

based and non-interpretable baselines in accuracy 545

while providing more intuitive and detailed expla- 546

nations. 547
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6 Limitations548

While ProtoLens offers significant advancements549

in interpretability through prototype-based reason-550

ing and fine-grained sub-sentence level analysis,551

there are several limitations to consider. First, the552

quality of the learned prototypes heavily depends553

on the training data. If the data contains inherent554

biases, these biases may be reflected in the pro-555

totypes, potentially leading to biased predictions556

or explanations. This limitation underscores the557

importance of careful data curation and ongoing558

monitoring of the model’s outputs to mitigate bias.559

Second, ProtoLens currently focuses on text clas-560

sification tasks and has not yet been evaluated on561

more complex natural language processing (NLP)562

tasks such as machine translation or summarization.563

Adapting ProtoLens to these tasks may require564

significant architectural changes to maintain inter-565

pretability without compromising performance.566

Additionally, while we include results using567

large language models (LLMs) in a zero-shot set-568

ting, we have not yet explored their capabilities569

in fine-tuning, or in-context learning scenarios. A570

thorough comparison of ProtoLens across these571

settings with LLMs could provide deeper insights572

into its robustness, scalability, and utility in diverse573

tasks.574

Future work could address these limitations by575

developing methods to automatically detect and576

mitigate biases, adapting ProtoLens to more com-577

plex tasks, conducting comprehensive comparisons578

across LLM learning settings, and improving the579

efficiency and usability of the learned interpreta-580

tions.581

7 Ethics582

We have carefully considered the ethical implica-583

tions of our work. ProtoLens is designed to en-584

hance interpretability in deep neural networks, par-585

ticularly for text classification tasks. By providing586

more transparent and intuitive explanations, Pro-587

toLens aims to improve trust and accountability588

in AI systems, which is crucial in high-stakes ap-589

plications such as healthcare, legal, and financial590

domains.591

We are committed to ensuring that the use of Pro-592

toLens is aligned with ethical standards, promoting593

transparency and fairness in decision-making pro-594

cesses. However, as with all AI models, there is595

a potential risk of misuse or bias amplification if596

the model is trained on biased data. To mitigate597

this, we emphasize the importance of careful data 598

curation and ongoing monitoring of model outputs 599

to identify and address any unintended biases. We 600

encourage users of ProtoLens to conduct thorough 601

bias audits and ensure that the model is applied in 602

a fair and responsible manner. 603

Furthermore, the datasets used in our experi- 604

ments, including IMDB, Yelp, Amazon, Hotel, and 605

Steam reviews, are publicly available and widely 606

used in the research community. We have ensured 607

that no personally identifiable information (PII) 608

is present in the data, and that our use of these 609

datasets complies with relevant ethical guidelines. 610

In conclusion, we believe that ProtoLens con- 611

tributes positively to the field of interpretable AI 612

by improving transparency and user understanding. 613

We acknowledge the importance of continuously 614

evaluating and mitigating potential risks to ensure 615

that AI systems remain fair, accountable, and ethi- 616

cal in their applications. 617
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A DPGMM 811

To model each similarity distribution as a mixture 812

of Gaussian components, we use a neural network 813

that takes a hidden representation h as input, which 814

is derived from mk via a two-layer MLP: h = 815

MLP(mk). This hidden representation h is then 816

used to generate the parameters of the Gaussian 817

mixture, including the mixture weights π, means µ, 818

and standard deviations σ, allowing the model to 819

approximate the similarity distribution effectively. 820

Means (µ) and Standard Deviations (σ). The pa- 821

rameters of the Gaussian components are computed 822

as follows: 823

µ = sigmoid(Wµh+ bµ)× T, (14) 824

825
σ = exp(Wσh+ bσ), (15) 826

where µ and σ are the mean and standard deviation 827

for each of the M Gaussian components. 828

Mixture Weights (π). To dynamically determine 829

the mixture weights, we employ the Stick-Breaking 830

Process (Ren et al., 2011), with the Dirichlet Pro- 831

cess (DP) (Teh et al., 2010) implicitly implemented 832

through the stick-breaking formulation. The DP 833

provides a nonparametric Bayesian approach that 834

allows the model to determine the appropriate num- 835

ber of components adaptively, which is crucial for 836

handling data with unknown complexity. 837

We define a maximum number of Gaussian com- 838

ponents, G, which represents the potential number 839

of components for approximating the similarity 840

distribution. The mixture weights πg for each com- 841

ponent g are generated as follows: 842

νg = sigmoid(Wπh+ bπ), (16) 843

844

πg = νg

g−1∏
ℓ=1

(1− νℓ), g = 1, . . . , G, (17) 845

Here, νg is computed by applying a sigmoid func- 846

tion to a linear transformation of the hidden repre- 847

sentation h. The Stick-Breaking Process ensures 848

that the mixture weights πm sum to one and adap- 849

tively determine the number of active components, 850

enabling the model to capture complex and poten- 851

tially multi-modal distributions. 852

11

http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
https://doi.org/10.1109/igarss.2019.8900532
https://doi.org/10.1109/igarss.2019.8900532
https://doi.org/10.1109/igarss.2019.8900532
https://doi.org/10.1109/igarss.2019.8900532
https://doi.org/10.1109/igarss.2019.8900532
http://arxiv.org/abs/2406.14675
http://arxiv.org/abs/2406.14675
http://arxiv.org/abs/2406.14675
http://arxiv.org/abs/2406.14675
http://arxiv.org/abs/2406.14675


B Datasets853

The IMDB dataset contains 25,000 balanced train-854

ing and test samples and follows a binary senti-855

ment classification format. The dataset was split856

into training (90%) and validation (10%) partitions.857

The Yelp Reviews dataset consists of 580,000 sam-858

ples, with training and test sets comprising 550,000859

and 30,000 samples, respectively. Sentiments were860

binarized by treating 1–2 stars as negative and861

3–4 stars as positive. The Amazon dataset was862

created by selecting 30,000 random reviews, with863

24,000 samples allocated for training and valida-864

tion and 6,000 for testing. The Hotel dataset in-865

cludes 20,000 reviews evaluating 1,000 hotels, re-866

duced to a balanced subset of 4,508 reviews (2,254867

positive and 2,254 negative). The Steam Reviews868

dataset consists of 130,000 pre-processed reviews,869

balanced between positive and negative sentiments.870

Reviews with fewer than 10 characters or contain-871

ing less than two sentences were excluded.872

The DBPedia dataset is a multiclass dataset ex-873

tracted from Wikipedia. For the experiments in874

this paper, we use only 4 labels: “Person,” “Ani-875

mal,” “Building,” and “Natural Place.” Similarly,876

the Consumer Complaints dataset is a multiclass877

dataset. For the experiments, we use only 4 classes:878

“Checking or Savings Account,” “Credit Card or879

Prepaid Card,” “Debt Collection,” and “Mortgage.”880

In all experiments, pre-trained embeddings from881

the BERT-based language model (Song et al.,882

2020b) were employed to convert raw text into883

sentence embeddings, enabling downstream analy-884

sis.885

C Prototype Interpretation886

To assess the interpretability of the ProtoLens887

model, we provide prototype-aligned interpreta-888

tions across multiple datasets. Each figure show-889

cases the top-3 original text sentences from the890

training set that are most aligned with each pro-891

totype. These examples illustrate how ProtoLens892

associates prototypes with representative samples,893

making its decision-making process more inter-894

pretable and transparent.895

For the IMDB dataset, as shown in Figure 9,896

ProtoLens aligns prototypes with representative897

training samples that reflect key aspects of movie898

reviews. Positive prototypes are associated with re-899

views praising elements such as acting and overall900

quality, as seen in samples like “He does an excel-901

lent job in this movie” and “I deeply enjoyed his902

performance.” Negative prototypes, on the other 903

hand, align with reviews critiquing aspects like 904

plot and execution, exemplified by samples such 905

as “This movie was poorly acted, poorly filmed, 906

poorly written” and “It’s talky, illogical, slow, and 907

ultimately boring.” These representative samples 908

demonstrate ProtoLens’ ability to capture diverse 909

perspectives in sentiment analysis. 910

In the Yelp dataset, as shown in Figure 10, Pro- 911

toLens aligns prototypes with representative sam- 912

ples that capture customer opinions on food, ser- 913

vice, and ambiance. Positive prototypes are linked 914

to text such as “The service is impeccable” and 915

“The food is great, good portions and quality,” re- 916

flecting positive customer experiences. Conversely, 917

negative prototypes correspond to samples high- 918

lighting dissatisfaction, such as “The food was 919

horrible” and “The place looked dirty and disor- 920

ganized.” These aligned samples illustrate how Pro- 921

toLens effectively represents common patterns in 922

customer feedback. 923

For the Hotel dataset, as shown in Figure 11, 924

ProtoLens aligns prototypes with representative 925

training samples reflecting both positive and neg- 926

ative experiences. Positive prototypes align with 927

samples such as “Room was clean and good” and 928

“The staff were friendly and helpful,” highlighting 929

aspects of comfort and service. Negative proto- 930

types correspond to samples like “The room had 931

no soundproofing” and “The carpet is disgusting 932

and filthy,” emphasizing common complaints in 933

hospitality feedback. These representative samples 934

demonstrate ProtoLens’ ability to capture recurring 935

themes in hotel reviews. 936

In the Steam dataset, as shown in Figure 12, Pro- 937

toLens identifies prototypes aligned with gaming 938

reviews that reflect both satisfaction and dissatis- 939

faction. Positive prototypes are linked to reviews 940

like “This game is amazing” and “Runs smooth 941

even on low settings,” which highlight positive 942

gameplay experiences. Negative prototypes, on 943

the other hand, align with samples such as “The 944

servers are abandoned” and “This game sucks, do 945

not buy it,” reflecting technical issues and user frus- 946

tration. These representative samples demonstrate 947

ProtoLens’ ability to adapt to highly specific and 948

technical feedback in gaming. 949

For the Amazon dataset, as shown in Figure 13, 950

ProtoLens aligns prototypes with representative 951

training samples focusing on product quality, us- 952

ability, and service. Positive prototypes correspond 953

to samples such as “The decor is beautiful and 954
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the ambiance is great” and “I enjoyed this place955

and will go back,” reflecting favorable customer956

feedback. Negative prototypes align with samples957

like “The food was uninspired and lacked flavor”958

and “Horrible management and worse customer959

service,” highlighting dissatisfaction. These exam-960

ples demonstrate ProtoLens’ versatility in captur-961

ing meaningful patterns in e-commerce reviews.962

Overall, these results underscore ProtoLens’ abil-963

ity to align prototypes with semantically mean-964

ingful training samples, providing interpretable965

insights into the patterns learned during training.966

This interpretability is key to understanding the967

model’s reasoning across diverse datasets.968

D Classification Interpretation969

ProtoLens explains its classification predictions by970

aligning input text with prototypes from the train-971

ing set and computing similarity scores to highlight972

the most relevant prototypes. Each prototype con-973

tributes to the final prediction based on its similarity974

to the input text and its associated sentiment weight.975

Below, we discuss how ProtoLens interprets both976

positive and negative classifications through repre-977

sentative examples.978

D.1 Positive Sentiment Interpretation979

Figure 14 demonstrates a positive sentiment classi-980

fication. ProtoLens activates three prototypes that981

correspond to semantically aligned samples from982

the training set. For instance, **Prototype 10**983

highlights positive movie reviews with phrases like984

“In all it is a good movie to see,” capturing strong985

alignment with the input’s positive tone. Similarly,986

**Prototype 14** emphasizes “acting was terrific,”987

contributing further evidence of a positive senti-988

ment. The similarity scores and sentiment weights989

of these prototypes are combined to determine the990

final classification as positive. This process un-991

derscores how ProtoLens grounds its decisions in992

interpretable and meaningful text examples.993

D.2 Negative Sentiment Interpretation994

Figure 15 illustrates a negative sentiment classifi-995

cation. ProtoLens activates prototypes that align996

with critical text samples from the training set. For997

example, **Prototype 3** reflects dissatisfaction998

through statements such as “It’s talky, illogical,999

slow, and ultimately very boring,” aligning with1000

the input’s description of the movie as “pretty bad.”1001

**Prototype 4** further reinforces the negative sen-1002

timent by associating with phrases like “poorly1003

acted, poorly filmed, poorly written.” These pro- 1004

totypes provide interpretability by grounding the 1005

model’s negative classification in representative 1006

samples that closely match the input text. 1007

D.3 Interpretability 1008

The examples in Figures 14 and 15 demonstrate 1009

ProtoLens’ ability to explain its predictions us- 1010

ing interpretable prototypes. By aligning input 1011

text with training set samples that serve as proto- 1012

types, ProtoLens offers a transparent view of how 1013

classification decisions are made. The similarity 1014

scores and sentiment weights ensure that each ac- 1015

tivated prototype meaningfully contributes to the 1016

overall prediction, enhancing both interpretability 1017

and faithfulness of the model. 1018

Overall, these results highlight ProtoLens’ ca- 1019

pacity to provide human-understandable explana- 1020

tions for sentiment classification tasks, bridging the 1021

gap between model interpretability and practical 1022

applications. 1023

E Ablation Study 1024

To demonstrate the effectiveness of the Prototype 1025

Alignment and Diversity Constraint, we compare 1026

ProtoLens trained with and without these compo- 1027

nents. Prototype Alignment ensures that prototypes 1028

maintain their semantic faithfulness. The Diversity 1029

Constraint encourages prototypes to capture dis- 1030

tinct, non-redundant features, enhancing general- 1031

ization and reducing redundancy in representation. 1032

The results are shown in Table 2. 1033

Impact of Diversity Constraints. The removal of 1034

diversity constraints (w/o Diversity) leads to a no- 1035

ticeable accuracy decline across all tested datasets, 1036

notably on IMDB (from 0.903 to 0.882), Amazon 1037

(from 0.937 to 0.926), Yelp (from 0.962 to 0.931) 1038

and Hotel (from 0.963 to 0.947). This indicates 1039

that the diversity loss plays a crucial role in encour- 1040

aging distinct and varied prototype representations, 1041

which helps the model generalize better across dif- 1042

ferent data points. The drop in accuracy suggests 1043

that when prototypes become more redundant, they 1044

lose their ability to represent the diversity in the 1045

dataset, limiting the model’s interpretability and 1046

performance. 1047

Impact of Prototype Alignment. The ablation re- 1048

sults for removing prototype alignment (w/o Align- 1049

ment) show a decline in performance, particularly 1050

on the Yelp dataset (from 0.963 to 0.943), highlight- 1051

ing the importance of prototype alignment. Align- 1052
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ing prototypes with representative embeddings en-1053

sures they remain semantically meaningful, leading1054

to more accurate and interpretable predictions. The1055

slight performance drop across other datasets, such1056

as IMDB and Amazon, further emphasizes that the1057

adaptive update process enabled by prototype align-1058

ment promotes more stable and reliable learning,1059

improving the model’s interpretability and accu-1060

racy.1061

F Hyperparameter1062

Effect of K. The number of prototypes, denoted by1063

K, plays a crucial role in determining the balance1064

between model interpretability and classification1065

performance. As shown in Figure 7, increasing K1066

generally leads to improved accuracy across most1067

datasets, with the exception of some slight fluctua-1068

tions. For instance, in the IMDB dataset, increas-1069

ing K from 10 to 40 boosts the performance from1070

0.884 to 0.903, while for the Yelp dataset, a similar1071

increase elevates the accuracy from 0.931 to 0.950.1072

The improvements plateau or slightly decrease for1073

higher values of K, suggesting diminishing returns1074

beyond a certain point.1075

The optimal value of K appears to be dataset-1076

dependent. For example, K = 50 yields the best1077

performance on the Amazon and Yelp datasets with1078

0.937 and 0.962, respectively, while K = 40 pro-1079

vides the best performance on the IMDB dataset1080

(0.903). Meanwhile, for the Hotel dataset, K = 201081

achieves the highest accuracy at 0.963. This varia-1082

tion indicates that the ideal number of prototypes1083

may depend on the complexity and size of the1084

dataset.1085

Overall, increasing K allows the model to cap-1086

ture more fine-grained patterns by using a larger set1087

of prototypes, but settingK too high may introduce1088

unnecessary complexity without substantial accu-1089

racy gains. Thus, choosing K involves a trade-off1090

between maintaining a manageable number of inter-1091

pretable prototypes and achieving high predictive1092

performance.1093

Effect of n-gram. An n-gram is a hyperparameter1094

that determines the granularity of text division. As1095

shown in Figure 8, an n-gram size of 5 achieves the1096

best performance across all datasets, with notable1097

improvements on IMDB (0.903), Amazon (0.937),1098

and Hotel (0.963), indicating that n = 5 is the1099

optimal n-gram size, providing the best trade-off1100

between incorporating sufficient context and avoid-1101

ing unnecessary complexity. For smaller n-gram1102

sizes (e.g., n = 1, 3), performance is slightly lower, 1103

likely due to the model’s limited ability to capture 1104

broader contextual information. On the other hand, 1105

a larger n-gram size (n = 7, 9) does not yield im- 1106

proved performance and even leads to a decrease 1107

in accuracy on all datasets, as seen with IMDB and 1108

Amazon. This suggests that including too large of 1109

a n-gram introduces noise, which results in slight 1110

performance degradation. 1111

G Cross-Dataset Prototype 1112

Generalization 1113

To assess the generalizability of ProtoLens proto- 1114

types across datasets, we conducted a cross-dataset 1115

evaluation. Specifically, we tested the performance 1116

of ProtoLens on the Hotel dataset using prototypes 1117

derived from the Yelp and Amazon datasets, which 1118

also represent customer review domains. Table 3 1119

summarizes the results. 1120

Table 3: Cross-dataset evaluation results. ProtoLens per-
formance on the Hotel dataset with prototypes derived
from different datasets.

Prototype Source Accuracy on Hotel Dataset
Hotel (Original) 0.963
Yelp 0.954
Amazon 0.943

The results demonstrate that ProtoLens main- 1121

tains strong performance even when using proto- 1122

types derived from external datasets. While the 1123

accuracy slightly decreases compared to using pro- 1124

totypes generated directly from the target dataset 1125

(Hotel), the drop in performance is modest: a 0.9% 1126

and 2.0% reduction in accuracy when using Yelp 1127

and Amazon prototypes, respectively. This sug- 1128

gests that ProtoLens prototypes capture generaliz- 1129

able patterns that can extend across datasets with 1130

similar domains. 1131

These findings underscore the robustness of 1132

ProtoLens in leveraging prototypes across related 1133

datasets, a desirable property for practical applica- 1134

tions where annotated data for prototype derivation 1135

may be limited. Furthermore, the ability to gener- 1136

alize across datasets indicates that ProtoLens can 1137

identify domain-invariant concepts, making it a 1138

promising approach for transfer learning and cross- 1139

domain interpretability in prototype-based models. 1140
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Figure 9: Aligned interpretation of prototypes with corresponding text sentences on the IMDB dataset. Each
prototype is associated with specific spans of text and sentiment weights, providing insights into the reasoning
behind the model’s predictions.
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Figure 10: Aligned interpretation of prototypes with corresponding text sentences on the Yelp dataset. The figure
highlights the diverse prototypes and their representative candidates, emphasizing interpretability in the sentiment
analysis task.
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Figure 11: Aligned interpretation of prototypes with corresponding text sentences on the Hotel dataset. The
interpretations include both positive and negative sentiment examples, showcasing the model’s ability to capture
nuanced feedback.
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Figure 12: Aligned interpretation of prototypes with corresponding text sentences on the Steam dataset. The figure
demonstrates how ProtoLens handles diverse feedback in gaming reviews, including issues like performance and
user experience.
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Figure 13: Aligned interpretation of prototypes with corresponding text sentences on the Amazon dataset. This
figure illustrates ProtoLens’ interpretability across product reviews, focusing on features such as quality, service,
and usability.
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Figure 14: The figure showcases how ProtoLens aligns input text with prototypes to explain a positive sentiment
prediction. The extracted spans and similarities for the top-3 activated prototypes are presented, along with sentiment
weights contributing to the final prediction.

Figure 15: The figure shows how ProtoLens aligns input text with prototypes to explain a negative sentiment
prediction, supported by similarity scores and sentiment weights.
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