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Abstract

Recent studies indicate a preference for sum-001
maries generated using large language mod-002
els (LLMs) over those using classical models,003
highlighting a performance discrepancy. This004
study explores strategies to narrow the gap be-005
tween the summaries generated through these006
two models. To address this, we introduce007
a novel framework that uses LLM-generated008
summaries to train classical models, adopt-009
ing a two-stage training approach to enhance010
their summary quality. Although classical mod-011
els are relatively smaller in size than LLMs,012
through automatic metrics and human eval-013
uations, we can demonstrate that the perfor-014
mances of classical models, trained using LLM-015
generated references can catch up with LLMs.016
Our findings create a simple yet potential way017
to improve classical summarization models by018
leveraging LLMs. Additionally, we contribute019
a new dataset GXSum1, enabling further re-020
search and promoting development progress in021
this subject.022

1 Introduction023

Text summarization plays a pivotal role in the field024

of natural language processing by condensing ar-025

ticles into concise versions that capture the main026

information. With the rapid development of deep027

learning, automatic text summarization systems028

have made significant progress. (Nallapati et al.,029

2016a; Vaswani et al., 2017; Li et al., 2018; Shi030

et al., 2021). More recently, large language mod-031

els (LLMs) have revolutionized the field of nat-032

ural language processing. These models exhibit033

remarkable results in summarization accuracy, par-034

ticularly under zero-shot and few-shot fine-tuning035

scenarios (Wang et al., 2023; Basyal and Sanghvi,036

2023; Ahmed and Devanbu, 2023). Unlike classi-037

cal models, LLMs leverage reinforcement learning038

from human feedback (RLHF) (Kirk et al., 2023),039

*Equal contribution.
1https://github.com/anonymous

fine-tuning their outputs to align more closely with 040

human preferences, thereby widening the perfor- 041

mance gap with classical models (Wang et al., 042

2023; Zhang et al., 2024; Fabbri et al., 2021). Some 043

studies even indicate that humans might prefer 044

LLM-generated summaries to those written (or se- 045

lected) by humans (Liu et al., 2023b,a). 046

Sweeping over previous research on text sum- 047

marization, most studies mainly concentrated on 048

developing novel model architectures (Dou et al., 049

2021; Wang et al., 2022a; Liu et al., 2022) or train- 050

ing method (Stiennon et al., 2020). These efforts 051

improve performance on specific benchmarks, yet 052

they often increase model complexity or compro- 053

mise training efficiency. However, these efforts still 054

do not bridge the performance gap with LLMs. 055

Knowledge distillation is a simple and straight- 056

forward way to transfer model capabilities from 057

one model to another. To move beyond LLMs in 058

a simple and cost-effective way, we present a two- 059

stage training framework that is expected to allow 060

classical summarization models to rival the perfor- 061

mance of LLMs based on the fundamental philoso- 062

phy of knowledge distillation in this study. More 063

specifically, in the first stage, we leverage LLMs 064

to generate summaries and form a new dataset. 065

Next, we train classical models referring to the new 066

ground truths with the traditional maximum likeli- 067

hood objective. By doing so, the classical model 068

is expected to not only inherit the advantages of 069

LLMs but also retain the abilities of original de- 070

signs, delivering better results than LLMs. 071

In sum, our key contributions are at least three- 072

fold. First, we propose a simple yet efficient frame- 073

work to enhance the performance of classical mod- 074

els and catch up with LLMs. Second, a series of 075

experiments were used to show that significant per- 076

formance gains are achievable even with limited 077

data for fine-tuning. Of course, as always, more 078

data yields better results. Third, a new dataset 079

GXSum is released to facilitate further research, 080
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perform fair comparisons, make results producible,081

and promote research progress in the line of re-082

search.083

2 Related Work084

Previous research has demonstrated the exceptional085

proficiency of LLMs in generating summaries, out-086

performing classical models in both automated087

evaluation metrics and human assessments. Ad-088

ditionally, summaries generated using LLMs, es-089

pecially in the news domain, have been shown to090

be at par with, or even superior to, those crafted by091

humans. These results reveal significant potential092

for LLMs on the text summarization task (Victor093

et al., 2022; Wang et al., 2022b; Goyal et al., 2022).094

Some studies further emphasize that the field of095

summarization is undergoing significant changes,096

suggesting a pivotal moment in summarization re-097

search. A thought-provoking question is whether098

those human-generated ground truths bound the099

performances of classical summarization models100

(Pu et al., 2023; Zhang et al., 2024).101

The feasibility of using LLMs for generating102

source data has been extensively explored. Some re-103

search has introduced methods for distilling LLMs104

and employing them in data augmentation tasks105

(Wang et al., 2021; Ding et al., 2023; Kang et al.,106

2023). Specifically, these methods focus on extract-107

ing the most relevant information from LLMs to108

enrich training datasets, thereby enhancing model109

performance without the need for extensive com-110

putational resources. Notably, a series of studies111

have demonstrated the use of LLMs to generate112

both final answers and task-related descriptions,113

which aid in training smaller models for reasoning114

tasks (Li et al., 2022; Shridhar et al., 2023; Hsieh115

et al., 2023). In the realm of text summarization,116

Wang et al. (2021) have used GPT-3 (Brown et al.,117

2020) to generate reference summaries. Concur-118

rently, Gekhman et al. (2023) proposed the use of119

LLMs for annotating summary factual consistency120

(Maynez et al., 2020), facilitating the training of121

models to evaluate factual consistency. Moreover,122

Liu et al. (2023c) have explored further fine-tuning123

of news summaries generated by the GPT series124

for the summarization domain.125

Therefore, in this paper, we expand the dataset126

and thoroughly analyze the differences between127

LLMs and human summarization. In the subse-128

quent research, we will further train the summaries129

generated using LLMs, aiming to redefine the role130

of LLMs in summarization tasks. 131

3 LLM-Guided Summarization 132

3.1 Models 133

In this study, we selected the most advanced Chat- 134

GPT2 provided by OpenAI as an example. To 135

minimize the randomness of generated results, we 136

set the temperature parameter of the model to 0, 137

whereas other parameters are at their default val- 138

ues to ensure stability and reproducibility of the 139

experimental results. 140

For a comprehensive analysis, BART (Lewis 141

et al., 2020), PEGASUS (Zhang et al., 2020), and 142

BRIO (Liu et al., 2022) were chosen as the ba- 143

sic classic summarization models for our exper- 144

iments. These models have been proven in pre- 145

vious research to possess excellent text summa- 146

rization capabilities, each representing various re- 147

search directions in the field of summarization. The 148

pre-trained models of BART and PEGASUS are 149

sourced from the Transformers Library (Wolf et al., 150

2020), whereas the weights for BRIO are obtained 151

from the GitHub repository of the original paper. 152

3.2 Human Referenced Datasets 153

In this study, we adopted two key news summa- 154

rization datasets that are widely used in the re- 155

search of summarization models and the evalua- 156

tion of large language model performance: the 157

Extreme Summarization Dataset (abbreviated as 158

XSum) (Narayan et al., 2018)3 and the CNN / 159

DailyMail News Summarization Dataset (abbre- 160

viated as CNNDM)4 (Nallapati et al., 2016b). The 161

XSum dataset is comprised of press releases from 162

the British Broadcasting Corporation, whereas the 163

CNNDM dataset compiles news articles from the 164

Cable News Network (CNN) and the Daily Mail. 165

Notably, these two datasets differ significantly in 166

their nature. Compared to CNNDM, the summary 167

reference texts in XSum mostly contain only one 168

to two sentences, posing a significant challenge for 169

summarization models to refine and extract core 170

information for the summary. Table 1 shows the 171

ROUGE scores (cf. section 4.2) of classic models 172

on the XSum and CNNDM datasets. 173

2GPT-4-Turbo (gpt-4-1106-review)
https://platform.openai.com/docs/models/overview

3https://github.com/EdinburghNLP/XSum
4https://cs.nyu.edu/~kcho/DMQA/
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XSum CNNDM

Models R-1 R-2 R-L R-1 R-2 R-L

BART 45.14 22.27 37.25 44.16 21.28 40.90
PEGASUS 47.21 24.56 39.25 44.17 21.47 41.11
BRIO 49.07 25.59 40.40 47.78 23.55 44.57

Table 1: BART, PEGASUS, and BRIO’s ROUGE scores on the XSum and CNNDM datasets.

3.3 LLM Referenced Dataset174

As one of the core objectives of our research, we175

created a dataset comprising summaries generated176

by LLMs to serve as reference summaries. This177

dataset is based on XSum and CNNDM, maintain-178

ing the format of the original datasets. To leverage179

the ChatGPT API for generating high-quality sum-180

maries, we have meticulously designed a prompt181

template that specifically emphasizes the role of182

ChatGPT as a summary writer. Additionally, to183

better control the summary length, we included a184

description of the length limit as a soft constraint185

in the prompt and set the API max_tokens parame-186

ter as a hard constraint. The detailed design of187

the prompt is presented in Appendix A.1. For188

the source text, we designated the document from189

XSum and the article from CNNDM as the vari-190

ables. During the summary generation process,191

the length restriction was set to ensure that the192

difference in lengths between the newly generated193

summaries and the original reference summaries re-194

mained within a range of plus or minus five tokens.195

We provide an example of our summary generation196

process in Appendix A.2.197

3.4 Implementation Details198

3.4.1 Data Processing199

We extracted a sample comprising 20,000 data200

points from the training set and 1,100 data points201

from the validation set. These samples were202

subjected to the LLM summarization workflow to203

produce reference summaries. This subset was204

designated as the Small variant. In contrast, the205

test set underwent comprehensive processing to206

guarantee a robust and reliable evaluation. Data207

processing was conducted on both the XSum208

and CNNDM datasets to ensure uniformity and209

accuracy in our analyses.210

211

3.4.2 Training Details 212

The initiation of training for each model leveraged 213

checkpoints that had been previously fine-tuned 214

on the benchmarked XSum and CNNDM datasets. 215

These fine-tuned checkpoints used for BART 5, 216

PEGASUS 6 and BRIO 7 were obtained from the 217

Huggingface library. For optimization, the AdamW 218

optimizer was employed, incorporating a weight 219

decay of 0.01 and an initial learning rate of 0.00002. 220

A linear learning rate scheduler was applied with- 221

out any warm-up steps. Model performance evalu- 222

ation on the validation set informed the selection 223

of checkpoints, whereas performance metrics on 224

the test set were documented and reported. 225

3.5 Evaluation Methods 226

To validate the performance of our model, we use 227

two primary evaluation methods: human validation 228

and automatic metrics. Initially, human validation 229

gauges the summaries’ quality from readers’ view- 230

points. Automatic metrics are used to determine 231

whether the fine-tuning process is functioning prop- 232

erly and toward the training objectives. 233

3.5.1 Human Evaluation Protocol 234

As the main evaluation methods of this study, we 235

adopted three common forms of human validation, 236

including the Likert scale scoring, pairwise com- 237

parison, and multiple candidate ranking. 238

The Likert scale scoring is the most used method 239

in human validation assessments. The evaluation 240

process involves presenting a source text and its 241

corresponding generated summary, where human 242

annotators are required to score the summary on 243

several aspects of performance. In this research, 244

we defined five distinct aspects for evaluation: rele- 245

vance, consistency, fluency, coherence, and infor- 246

5https://huggingface.co/facebook/bart-large-xsum and
https://huggingface.co/facebook/bart-large-cnn

6https://huggingface.co/google/pegasus-xsum and
https://huggingface.co/google/pegasus-cnn_dailymail

7https://huggingface.co/Yale-LILY/brio-xsum-cased and
https://huggingface.co/Yale-LILY/brio-cnndm-cased

3



(a) (b)

Figure 1: Pairwise Comparison on XSum and CNNDM

mativeness. Detailed guidelines for these metrics247

are elaborated in Appendix B.1. Through these248

metrics, human annotators can more comprehen-249

sively score the overall quality of summaries. The250

scoring range is set from 1 (worst) to 5 (best).251

Pairwise comparison is a human validation eval-252

uation method based on relative comparison. Given253

a source text and two summaries generated by dif-254

ferent models, assessors are asked to select the one255

with the better quality.256

Multiple candidate rating is an advanced and257

complex variation of the pairwise comparison258

method. Assessors are compelled to examine a set259

of summaries for a given source text and assign a260

unique rating to each, reflecting the overall quality261

of each summary. Therefore, the method facilitates262

a thorough evaluation of the performance variations263

across various summarization models. Within our264

experiment, we established a rating scale from 1265

(lowest quality) to 5 (highest quality).266

3.5.2 Automatic Evaluation Metrics267

We adopted Recall-Oriented Understudy for Gist-268

ing Evaluation (ROUGE) (Lin, 2004) as our au-269

tomatic evaluation metric for summarization ef-270

fectiveness. ROUGE is crucial in performing271

summarization research, serving as a standard272

for comparing the similarity and quality between273

computer-generated and human-crafted reference274

summaries. This study employs three ROUGE275

variants: ROUGE-1 (R-1), ROUGE-2 (R-2), and276

ROUGE-L (R-L). ROUGE-1 assesses unigram sim-277

ilarity to gauge informational content. ROUGE-2278

evaluates bigram similarity for fluency. ROUGE-279

L focuses on the longest common subsequence to280

determine core content extraction.281

4 Experiment Result and Analysis 282

4.1 Human preference 283

The collection of human annotations contains eval- 284

uations of summaries generated by models that 285

were fine-tuned on the Small dataset. These eval- 286

uations were obtained through a combination of 287

crowd-sourced contributors and expert judgments. 288

Crowd-Sourced Annotations The annotation data 289

from crowd-sourced participants were meticulously 290

gathered via the Amazon Mechanical Turk (MTurk) 291

platform, the detailed recruitment setting is de- 292

scribed in Appendix B.2. We collected annota- 293

tions for a sample of 1,000 articles from the XSum 294

and CNNDM test sets, which were summarized 295

using various pairs of systems. To establish a base- 296

line for comparison, we used models fine-tuned on 297

the original datasets. These baseline models were 298

then compared to those fine-tuned on the LLM- 299

reference dataset. Each summary evaluation will 300

be conducted by three separate crowd annotators, 301

using the Likert scale scoring and pairwise compar- 302

ison methods detailed in Section 3.5.1. 303

Figures 1b and 1a depict the crowd-sourced win- 304

ning rates from the pairwise comparisons for each 305

dataset. Systems trained using human references 306

are denoted with the subscript Human, whereas 307

those trained using GPT-4 references are marked 308

with the subscript GPT. Pairwise comparisons were 309

conducted between these two training settings, em- 310

ploying the same base model for each comparison. 311

We made the following observations: 312

(1) The summaries used as training references, 313

generated by the GPT-4 system, surpassed those 314

written by humans in terms of human preference on 315

both the XSum and CNNDM tasks. This outcome 316

substantially supports to the hypotheses posited 317
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Dataset System Relevance Consistency Fluency Coherence Informativeness

Human Base 0% 0% 0% 0% 0%

XSum

GPT-4 +13.8% +13.2% +9.3% +7.5% +3.6%
BARTGPT +17% +15.5% +10.9% +11.3% +4.2%
PEGASUSGPT +18.3% +15.4% +14.5% +16.5% +7.4%
BRIOGPT +11% +8.3% +9% +7% +3.3%

CNNDM

GPT-4 +3.58% +1.6% +5.6% +1.2% -0.2%
BARTGPT +0.2% +0.7% +1.4% +1.4% +0.9%
PEGASUSGPT -1.1% +3.1% +1.5% +1.8% +1.4%
BRIOGPT -1.9% +2.9% +0.7% +0.9% -0.5%

Table 2: Evaluation through Crowd-Sourced Likert Scale Scoring, which models referenced by humans serve as the
baseline for comparison (default as 0%). The report highlights the percentage difference in occurrences where one
system is adjudged to outperform the other. For instance, GPT-4 exceeds human writers in Relevance by 13.8% on
the XSum dataset. In case of a tie, both systems are recognized as winners.

in the related work (Goyal et al., 2022; Liu et al.,318

2023c; Pu et al., 2023).319

(2) The model trained using the references320

generated by GPT-4 consistently outperformed321

the model trained using human-generated refer-322

ences, demonstrating that supervised training with323

high-quality references can enhance summarization324

model performance. On examining the discrepan-325

cies between datasets, it was observed that, in com-326

parison to XSum, the performance advantage of327

the system guided by GPT-4 on CNNDM was less328

marked.329

The observed performance discrepancies, as re-330

vealed through pairwise comparisons, prompted331

us to conduct an in-depth analysis across various332

systems and datasets, using the Likert scale scoring333

to quantify these differences with better accuracy.334

Table 2 illustrates the comparative performance of335

models referenced by humans versus those refer-336

enced by GPT-4, using the Likert scale scoring.337

From these results, we observe that:338

(1) In the XSum dataset, GPT-4 referenced mod-339

els outperformed across all metrics. Detailed anal-340

ysis showed the most significant improvement in341

summary relevance with GPT-4 training, although342

informativeness remained the weakest point as per343

the annotators. This is attributed to the XSum re-344

quirement (Narayan et al., 2018) for highly abstract,345

single-sentence summaries, leading to inevitable346

information loss in both human-generated and GPT-347

4-generated summaries, with the human ones more348

susceptible to bias or misinformation. Our exper-349

imental results corroborate that GPT-4 can effec-350

tively improve these issues. For a more detailed351

case study, refer to the Appendix C. 352

(2) Our analysis of the CNNDM dataset reveals 353

that although GPT-4 referenced summaries still 354

outshine human-generated ones on several metrics, 355

the margin of advantage has significantly narrowed. 356

The Performance of the models trained on GPT-4 357

and human references are closely matched, with 358

discrepancies often within a 1-2% margin. This 359

trend is likely influenced by the CNNDM dataset 360

approach (Nallapati et al., 2016b) of collecting hu- 361

man reference summaries, which involves compil- 362

ing human-written summary bullets from CNN and 363

Daily Mail articles. These summaries lean toward 364

an extractive nature, closely mirroring the origi- 365

nal article content, and their length helps minimize 366

information omission. Thus, the inherent advan- 367

tages of GPT-4 training are less pronounced in this 368

context. 369

The results derived from crowd-sourced annota- 370

tions significantly validate our approach of using 371

LLM-guided training sets. However, potential re- 372

liability concerns of our experiment exist because 373

of the variability in nonexpert summary judgments, 374

as highlighted by prior studies (Callison-Burch and 375

Dredze, 2010; Goyal et al., 2022; Zhang et al., 376

2024). This variability, reflecting the subjective 377

nature of human evaluation and minor performance 378

disparities between systems, can impact the con- 379

sistency of annotation quality. To address this, we 380

conducted additional analyses with expert review- 381

ers to ensure more dependable evaluations. 382

Expert Annotations To ensure the rigor of expert 383

analysis, we established specific criteria for the 384

selection of annotators, focusing on those with a 385

5



(a) (b)

Figure 2: Rating proportions in XSum and CNNDM

requisite level of expertise. We collected annota-386

tions for a sample of 100 articles from the XSum387

and CNNDM test sets. The evaluation of each sum-388

mary was entrusted to three distinct expert annota-389

tors who applied the Multiple Candidates Rating390

Methods as delineated in Section 3.5.1. Addition-391

ally, annotators were required to provide reviews392

of their annotations, enabling verification of results.393

The candidates the position of an expert annotator394

are hired from the Upwork platform. The detailed395

recruitment setting is described in Appendix B.3.396

Figures 2b and 2a illustrate the rating distribu-397

tions (1-5) for each system according to expert398

evaluations. The analysis yields two key insights:399

(1) Expert raters show a clear preference for sum-400

maries generated using GPT-4 and GPT-4-assisted401

systems over those written by humans. This sup-402

ports our hypothesis based on crowd-sourced an-403

notations, confirming the ability of our system to404

produce summaries aligned more with human pref-405

erences.406

(2) Significantly, models trained using the GPT-407

4 references achieve, and sometimes surpass,408

the performance of GPT-4 in expert assess-409

ments, achieving a 68% inter-annotators agree-410

ment. This indicates that using our training method-411

ology, smaller models can reach the efficacy of412

LLMs.413

To enhance understanding of our findings, we414

delved into detailed case studies, referenced in415

Appendix C. The analysis of annotators’ reviews416

revealed a preference for our fine-tuned models,417

which produce summaries containing significantly418

more relevant information and demonstrating better419

coherence. 420

4.2 Automatic Metric 421

Next, in Table 3, we compare various summary gen- 422

eration models on the XSum and CNNDM datasets, 423

using ROUGE scores for evaluation. This anal- 424

ysis contrasts human-generated summaries with 425

those generated from GPT-4, noting lower ROUGE 426

scores when comparing GPT-4 outputs to human 427

references, highlighting differences in sentence 428

structure and expression. Our results indicate vari- 429

ability in model performance, with GPT’s BRIO 430

model leading in ROUGE-1 and ROUGE-L scores 431

on CNNDM, and GPT-based models surpassing 432

human performance on XSum in these scores. De- 433

spite this, a significant performance gap exists be- 434

tween the best models and human summaries, par- 435

ticularly on XSum’s ROUGE-2 scores. This result 436

shows the strength of GPT-based models in abstract 437

text generation, despite the challenges in closely 438

mimicking human summarization. 439

5 Comparative Study 440

To facilitate a more comprehensive analysis of our 441

training methodology, we present a comparative ex- 442

periment from various perspectives in this section. 443

5.1 Training Efficiency 444

In Section 4.2, we detail the ROUGE score perfor- 445

mance of various systems fine-tuned on a dataset 446

of 20,000 GPT-4 generated references. The results 447

show a discernible performance gap between the 448

ROUGE scores achieved by our model and those 449

reported in the original papers (Lewis et al., 2020; 450
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XSum CNNDM

Reference Hypothesis R-1 R-2 R-L R-1 R-2 R-L

GPT-4

Human 24.95 5.64 18.59 36.80 10.89 31.91
BARTGPT 45.36 19.59 36.28 48.97 20.84 41.03
PEGASUSGPT 43.71 18.68 35.07 46.28 20.54 39.10
BRIOGPT 47.37 21.30 38.55 50.03 21.96 41.73

Human

GPT-4 24.95 5.64 18.57 36.80 10.90 32.05
BARTGPT 26.39 6.61 19.10 40.05 14.86 35.08
PEGASUSGPT 28.00 7.94 20.77 40.50 16.18 35.76
BRIOGPT 26.81 7.01 19.81 40.39 15.19 35.20

Table 3: Evaluation of ROUGE Scores after Fine-Tuning with 20,000 GPT-4 Summaries. This table presents the
calculated ROUGE scores, comparing various Hypotheses with References.

Zhang et al., 2020; Liu et al., 2022), particularly451

concerning the XSum dataset. Therefore, we ques-452

tioned whether fine-tuning the model on a larger453

dataset can yield further improvements in ROUGE454

performance. To check this, we created three sets455

of reference summaries from XSum articles using456

GPT-4, each varying in size, to serve as an enlarged457

training corpus. The specifics of the three datasets458

are detailed in Table 4.459

First, we trained the model starting from the460

checkpoint fine-tuned on XSum, employing the461

same experimental setup as detailed in 3.4, results462

are reported in Table 5. On analysis, it becomes ev-463

ident that augmenting the size of the dataset leads464

to an improvement in model performance, as mea-465

sured by the ROUGE metric.466

However, as we use the XSum checkpoint for467

its proven quality as a baseline, human reference468

remains crucial in our training process, leading to469

redundancy compared to other systems. To address470

this redundancy, we conducted additional exper-471

iments where, alongside using the XSum check-472

point, we initiated training with pre-trained weights473

for each model in this new configuration. Recog-474

nizing the influence of data volume on training effi-475

cacy, our performance evaluation in this experiment476

was confined to only two dataset sizes, medium and477

large.478

Variant Train Validation Test

Small (20k) 20,000 1,100
11,334Medium (50K) 50,000 2,750

Large (100K) 100,000 5,500

Table 4: Details of three dataset variations on XSum

System Dataset R-1 R-2 R-L

BARTGPT

Small 45.36 19.59 36.28
Medium 47.44 21.47 38.34
Large 48.52 22.42 39.57

PEGASUSGPT

Small 43.71 18.68 35.07
Medium 46.63 20.99 38.12
Large 47.62 22.13 39.32

BRIOGPT

Small 47.37 21.30 38.55
Medium 48.82 23.28 40.66
Large 49.05 23.81 41.20

Table 5: Evaluation of ROUGE scores after fine-tuning
from the XSum checkpoint with various data sizes.

System Dataset R-1 R-2 R-L

BARTGPT

Small 46.28 20.37 37.26
Medium 48.06 22.11 39.60
Large 48.84 23.13 40.68

PEGASUSGPT

Small 45.04 19.59 36.26
Medium 47.21 21.76 38.80
Large 47.88 22.50 39.64

BRIOGPT

Small 47.64 21.68 38.93
Medium 48.99 23.35 40.79
Large 49.33 24.08 41.44

Table 6: Evaluation of ROUGE scores post fine-tuning
from pre-trained weight with different data sizes.

Table 6 shows the result of fine-tuning from pre- 479

trained weight. We observed that: 480

(1) The model performance can indeed be advanced 481

by training with only LLM reference, which 482

proved that our dataset can substitute the origi- 483

nal XSum dataset in the training procedure. 484

(2) Compared to the model fine-tuned on the XSum 485

checkpoint, the model that was fine-tuned from 486

pre-trained weights demonstrated enhanced perfor- 487

mance on identical data volumes. This improve- 488
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ment likely originates from variances between hu-489

man reference and LLM reference (detailed in sec-490

tion 4.2), prompting the model to perceive previ-491

ously trained targets as potential noise.492

(3) Our dataset reduces the performance gap493

across models like BART, PEGASUS, and BRIO,494

indicating that summaries generated using LLM ef-495

fectively counteract biases associated with the var-496

ied styles of human writers in the original dataset.497

Therefore, these LLM-generated summaries fa-498

cilitate a smoother learning process for models,499

thereby diminishing the requirement for intricate500

training methodologies.501

5.2 Novelty Analysis502

In this section, we delve into the comparative anal-503

ysis of novelty between the summaries authored by504

humans and those generated by GPT-4. Novelty is505

defined through the computation of novel n-grams,506

a method that serves to gauge the ’abstraction’ of507

our models. The novelty metric is calculated8 using508

the formula from Liu et al. (2022), i.e.,509

Novelty(D,S∗) =

∑
g∈GS∗ 1(g /∈ GD)

|GS∗ | (1)510

where D and S∗ are the source document and ref-511

erence summary respectively, GD and GS∗ are the512

sets of bigrams in D and S∗, 1 is the indicator513

function.514

As presented in Table 7, models referencing515

GPT-4 exhibit better abstraction compared to those516

referencing human-generated summaries in the CN-517

NDM dataset. Conversely, for the XSum dataset,518

models using human references are more "abstract"519

than those based on GPT-4 references. Despite520

these differences, as discussed in Section 4, sum-521

maries guided by GPT-4 are favored by human522

annotators across both the XSum and CNNDM523

datasets. This preference suggests that GPT-4,524

alongside our model, successfully balances the use525

of a diverse vocabulary for summary composition526

with effective information extraction from the orig-527

inal articles. Such a balance enhances summary528

relevance and aligns more closely with human pref-529

erences in summary generation.530

6 Conclusion531

In this work, we propose a novel supervised learn-532

ing framework that leverages summaries generated533

8The calculation is performed using ExplainaBoard
(Liu et al., 2021). https://github.com/neulab/
ExplainaBoard, and we had not employed PTBTokenizer
prior to this calculation.

XSum CNNDM

System Unigram Bigram Unigram Bigram

Human .3399 .8342 .1180 .4960
GPT-4 .2960 .8009 .2375 .7074

BART .2461 .7310 .0118 .0922
BARTGPT .1986 .6643 .1287 .5389

PAGASUS .2664 .7474 .1666 .2919
PAGASUSGPT .1558 .5780 .0946 .4616

BRIO .2696 .7654 .0258 .2261
BRIOGPT .2203 .7039 .1389 .5666

Table 7: Ratio of novel n-grams of various models on
XSum and CNNDM. Novel n-grams are those that appear
in the summaries but not in the source documents.

using LLMs as references. We performed an exten- 534

sive human evaluation to compare systems guided 535

by human-written summaries and those guided us- 536

ing LLM-generated summaries, analyzing the pro- 537

duced summaries across various dimensions. Our 538

findings suggest that LLMs can guide small sum- 539

marization models to produce summaries closely 540

aligned with human preferences, indicating a new 541

direction for research in automatic summarization. 542

Furthermore, to facilitate ongoing research, we are 543

releasing GXSum datasets in three sizes, compris- 544

ing articles from the XSum dataset and summaries 545

generated using LLMs. Our experiments validate 546

the potential of our dataset to replace the original 547

XSum dataset. We believe that our insights and the 548

datasets we provide will encourage further explo- 549

ration into the application of LLM knowledge in 550

enhancing smaller, task-specific language models. 551

We believe that our findings and released dataset 552

provide new and unique insights into the LLM- 553

enhanced automatic text summarization task. 554

7 Limitations 555

Our work introduces a new dataset, GXsum, for 556

which we employ summaries generated by GPT- 557

4 as references. It is essential to note that in our 558

experiments, summaries were generated using Ope- 559

nAI’s API, which, due to its rapid iteration capa- 560

bility, might result in variable outcomes that could 561

limit the reproducibility of our experiments. Fur- 562

thermore, constrained by the performance of GPT- 563

4, the generated summaries may still possess a 564

certain level of hallucination. Additionally, con- 565

sidering effectiveness, the dataset and generated 566

summaries used in this experiment are confined to 567

the news domain. Employing datasets from other 568

domains might provide a more comprehensive anal- 569
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ysis, which represents a potential future research570

direction for us. Lastly, the human evaluation ex-571

periments conducted aim to explore a wide range572

of human reading preferences. The outcomes may573

vary depending on the timing of the assessment and574

the platform used to employ evaluators; we merely575

state the observed facts.576
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Çağlar Gulçehre, and Bing Xiang. 2016b. Abstrac-731
tive text summarization using sequence-to-sequence732
RNNs and beyond. In Proceedings of the 20th733
SIGNLL Conference on Computational Natural Lan-734
guage Learning, pages 280–290, Berlin, Germany.735
Association for Computational Linguistics.736

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.737
2018. Don’t give me the details, just the summary!738

topic-aware convolutional neural networks for ex- 739
treme summarization. In Proceedings of the 2018 740
Conference on Empirical Methods in Natural Lan- 741
guage Processing, pages 1797–1807, Brussels, Bel- 742
gium. Association for Computational Linguistics. 743

Xiao Pu, Mingqi Gao, and Xiaojun Wan. 2023. 744
Summarization is (almost) dead. arXiv preprint 745
arXiv:2309.09558. 746

Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and 747
Chandan K Reddy. 2021. Neural abstractive text 748
summarization with sequence-to-sequence models. 749
ACM Transactions on Data Science, 2(1):1–37. 750

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya 751
Sachan. 2023. Distilling reasoning capabilities into 752
smaller language models. In Findings of the Asso- 753
ciation for Computational Linguistics: ACL 2023, 754
pages 7059–7073, Toronto, Canada. Association for 755
Computational Linguistics. 756

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel 757
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, 758
Dario Amodei, and Paul F Christiano. 2020. Learn- 759
ing to summarize with human feedback. Advances 760
in Neural Information Processing Systems, 33:3008– 761
3021. 762

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 763
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 764
Kaiser, and Illia Polosukhin. 2017. Attention is all 765
you need. In Advances in Neural Information Pro- 766
cessing Systems, volume 30. Curran Associates, Inc. 767

Sanh Victor, Webson Albert, Raffel Colin, Bach 768
Stephen, Sutawika Lintang, Alyafeai Zaid, Chaffin 769
Antoine, Stiegler Arnaud, Raja Arun, Dey Manan, 770
et al. 2022. Multitask prompted training enables zero- 771
shot task generalization. In International Conference 772
on Learning Representations. 773

Fei Wang, Kaiqiang Song, Hongming Zhang, Lifeng Jin, 774
Sangwoo Cho, Wenlin Yao, Xiaoyang Wang, Muhao 775
Chen, and Dong Yu. 2022a. Salience allocation as 776
guidance for abstractive summarization. In Proceed- 777
ings of the 2022 Conference on Empirical Methods 778
in Natural Language Processing. 779

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang 780
Zhu, and Michael Zeng. 2021. Want to reduce la- 781
beling cost? GPT-3 can help. In Findings of the 782
Association for Computational Linguistics: EMNLP 783
2021, pages 4195–4205, Punta Cana, Dominican Re- 784
public. Association for Computational Linguistics. 785

Yiming Wang, Zhuosheng Zhang, and Rui Wang. 2023. 786
Element-aware summarization with large language 787
models: Expert-aligned evaluation and chain-of- 788
thought method. In Proceedings of the 61st Annual 789
Meeting of the Association for Computational Lin- 790
guistics (Volume 1: Long Papers), pages 8640–8665, 791
Toronto, Canada. Association for Computational Lin- 792
guistics. 793

10

https://doi.org/10.18653/v1/2021.acl-demo.34
https://doi.org/10.18653/v1/2021.acl-demo.34
https://doi.org/10.18653/v1/2021.acl-demo.34
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.acl-long.228
https://doi.org/10.18653/v1/2023.acl-long.228
https://doi.org/10.18653/v1/2023.acl-long.228
https://doi.org/10.18653/v1/2023.acl-long.228
https://doi.org/10.18653/v1/2023.acl-long.228
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207
http://arxiv.org/abs/2305.14239
http://arxiv.org/abs/2305.14239
http://arxiv.org/abs/2305.14239
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2023.acl-long.482
https://doi.org/10.18653/v1/2023.acl-long.482
https://doi.org/10.18653/v1/2023.acl-long.482
https://doi.org/10.18653/v1/2023.acl-long.482
https://doi.org/10.18653/v1/2023.acl-long.482


Yizhong Wang, Swaroop Mishra, Pegah Alipoor-794
molabashi, Yeganeh Kordi, Amirreza Mirzaei,795
Anjana Arunkumar, Arjun Ashok, Arut Sel-796
van Dhanasekaran, Atharva Naik, David Stap, et al.797
2022b. Benchmarking generalization via in-context798
instructions on 1,600+ language tasks. arXiv e-prints,799
pages arXiv–2204.800

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien801
Chaumond, Clement Delangue, Anthony Moi, Pier-802
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-803
icz, Joe Davison, Sam Shleifer, Patrick von Platen,804
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,805
Teven Le Scao, Sylvain Gugger, Mariama Drame,806
Quentin Lhoest, and Alexander Rush. 2020. Trans-807
formers: State-of-the-art natural language processing.808
In Proceedings of the 2020 Conference on Empirical809
Methods in Natural Language Processing: System810
Demonstrations, pages 38–45, Online. Association811
for Computational Linguistics.812

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-813
ter J. Liu. 2020. Pegasus: pre-training with extracted814
gap-sentences for abstractive summarization. In Pro-815
ceedings of the 37th International Conference on816
Machine Learning, ICML’20. JMLR.org.817

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang,818
Kathleen McKeown, and Tatsunori B Hashimoto.819
2024. Benchmarking large language models for news820
summarization. Transactions of the Association for821
Computational Linguistics, 12:39–57.822

A LLM Summary Generation823

A.1 Prompt Template Example824

Assuming you are an abstract writer, re-
sponsible for writing summaries of articles.
Given the source article: {article}, please
write a summary between {len_lower} to
{len_upper} words about this article. please
ensure that the summary is grammatically
correct and coherent.

Figure 3: Template for a ChatGPT API prompt.

Figure 3 illustrates the template for our prompt825

design. The {article} variable represents the826

source article from the original dataset, and the827

{len_lower} and {len_upper} variables represent828

the lower bound and upper bound length constraints829

that we will set.830

A.2 Generation Process831

Figure 4 shows an example of our LLM summary832

generation process.833

LLM generated summary:
Prison Link Cymru highlights the chronic need for post-release 
housing to prevent homelessness and reoffending in Wales.

ar ticle:
Prison Link Cymru had 1,099 referrals in 2015-16 and said some 
ex-offenders were living rough for up to a year before finding 
suitable accommodation.Workers at the charity claim investment 
in housing would be cheaper than jailing homeless repeat 
offenders. The Welsh Government said more people than ever 
were getting help to address housing problems. Changes to the 
Housing Act in Wales, introduced in 2015...

Source Ar ticle

reference:
There is a "chronic" need for more housing for prison leavers in 
Wales, according to a charity.

Reference Summary

Assuming you are an abstract writer, responsible for 
writing summaries of articles. Given the source article: 
{ article} , please write a summary between { ref_len - 5}  to 
{ ref_len + 5}  words about this article. please ensure that 
the summary is grammatically correct and coherent.

Prompt

Figure 4: Illustration of LLM summary generation pro-
cess

B Human Annotation Setting 834

B.1 Annotation Guideline 835

The definitions of various quality aspects we use in 836

our annotation tasks are as follows: 837

• Relevance: Measures the importance of the 838

summary content relative to the article, consid- 839

ering whether it has extracted the key points. 840

• Consistency: Considers whether the summary 841

accurately includes all facts without fabricat- 842

ing false information. 843

• Fluency: Assesses whether each sentence in 844

the summary is well-written and grammati- 845

cally correct. 846

• Coherence: Considers whether the entire sum- 847

mary flows smoothly and reads naturally. 848

• Informativeness: Considers whether the sum- 849

mary clearly conveys the main message of the 850

article, excluding unnecessary details. 851

B.2 Amazon Mechanical Turk Recruitment 852

To recruit qualified crowd annotators, stringent se- 853

lection criteria were applied. These criteria stipu- 854

lated that participants must have successfully com- 855

pleted more than 500 Human Intelligence Tasks 856

(HITs), maintained an acceptance rate exceeding 857
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95%, and resided within the United States. This rig-858

orous selection process was implemented to guar-859

antee that the annotators were native English speak-860

ers and had a demonstrable record of experience in861

effectively performing annotation tasks.862

B.3 Upwork Recruitment863

To ensure the rigor of expert analysis, we estab-864

lished specific criteria for selecting annotators, fo-865

cusing on those with a requisite level of expertise.866

We engaged the Upwork platform to identify suit-867

able candidates, stipulating prerequisites such as868

residency in English-speaking countries (specifi-869

cally the USA, UK, Australia, or Canada), min-870

imum educational attainment of a bachelor’s de-871

gree, and prior experience in data annotation or872

linguistics-related roles. The ultimate selection of873

our expert candidates comprised individuals with874

backgrounds as writers, journalists, and profes-875

sional text data annotators.876

C Case Study877
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Article ID 36043765 AVG. Score
Human A seal found tangled in nets on an Aberdeenshire beach has been

returned to the sea.
1.0

GPT-4 Scottish SPCA rescues and frees a heavily netted grey seal at Cruden
Bay, preventing potential lethal injuries.

3.0

BARTGPT A large seal entangled in netting at Cruden Bay was rescued by the
Scottish SPCA and safely released.

3.3

PEGASUSGPT Scottish SPCA rescued a grey seal from Cruden Bay with a large net
tangled around its neck, releasing him unharmed.

3.0

BRIOGPT A grey seal entangled in heavy netting at Cruden Bay was rescued
by the Scottish SPCA and released unharmed.

4.6

Table 8: Case study on XSum

Article ID 38537698 AVG. Score
Human The reaction from BT’s investors told us much about media regulator

Ofcom’s ruling on the fate of Openreach, the BT subsidiary that
provides much of the UK’s broadband infrastructure.

1.6

GPT-4 BT’s shares surged after Ofcom ruled out a company break-up due to
practical challenges, including a complex pension scheme and legal
obstacles, potentially leading to future operational conflicts.

3.3

BARTGPT Ofcom’s Sharon White admits BT’s potential break-up faces practical
hurdles due to land deals, pension scheme complexities, and potential
conflicts over Openreach’s ownership and governance.

4.3

PEGASUSGPT BT shares rise 3% after Ofcom’s decision not to break up the com-
pany, citing pension issues and land deals.

3

BRIOGPT Ofcom postpones BT’s break-up due to pension scheme and land
deals, prompting plans for separation and potential conflicts of inter-
est.

2.6

Table 9: Case study on XSum
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Article ID ee17dfb574feca82ccac5689595e47483bd23f12 AVG. Score
Human London’s Metropolitan Police say the man was arrested at Luton

airport after landing on a flight from Istanbul. He’s been charged
with terror offenses allegedly committed since the start of November.

1.0

GPT-4 British man, Yahya Rashid, 19, faces terror charges upon his UK
return from Turkey. Arrested at Luton airport, he’s accused of prepar-
ing and aiding terrorist acts from November to March. Rashid will
appear in court in Westminster.

2.6

BARTGPT Yahya Rashid, a 19-year-old from northwest London, was charged
with terror offenses after his arrest at Luton airport on his return
from Turkey. He faces charges of terrorism preparation and aiding
acts of terrorism between November 1 and March 31, with a court
appearance set for Wednesday.

5.0

PEGASUSGPT Yahya Rashid, a 19-year-old from London, was charged with terror-
ism offenses at Luton Airport after returning from Turkey. He faces
charges of preparing acts of terrorism and assisting others to commit
terrorism.

2.6

BRIOGPT 19-year-old Yahya Rashid, a UK man, was charged with terror of-
fenses after his arrest at London’s Luton airport after his return from
Turkey. He faces charges for planning and aiding acts of terrorism
between November 1 and March 31, with his court appearance set
for Wednesday.

3.6

Table 10: Case Study on CNNDM.
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