
Under review as a conference paper at ICLR 2024

IMPROVING PRIVATE TRAINING VIA IN-DISTRIBUTION
PUBLIC DATA SYNTHESIS AND GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

To alleviate the utility degradation of deep learning classification with differential
privacy (DP), employing extra public data or pre-trained models has been widely
explored. Recently, the use of in-distribution public data has been investigated,
where a tiny subset of data owners share their data publicly. In this paper, to miti-
gate memorization and overfitting by the limited-sized in-distribution public data,
we leverage recent diffusion models and employ various augmentation techniques
for improving diversity. We then explore the optimization to discover flat minima
to public data and suggest weight multiplicity to enhance the generalization of
the private training. While assuming 4% of training data as public, our method
brings significant performance gain even without using pre-trained models, i.e.,
achieving 85.78% on CIFAR-10 with a privacy budget of ε = 2 and δ = 10−5.

1 INTRODUCTION

Differential privacy (DP) (Dwork, 2006; Dwork et al., 2014) establishes a mathematical framework
to ensure the privacy of training data. In deep learning, differentially private stochastic gradient
descent (DP-SGD) (Abadi et al., 2016) has become the de facto standard method. However, pri-
vate deep learning with DP-SGD inevitably degrades performance compared to standard (non-DP)
training (Bagdasaryan et al., 2019). As a practical solution, leveraging public pre-trained models
or public data has been explored to enhance utility (Yu et al., 2021a;b; 2022; Li et al., 2022b; De
et al., 2022; Tramer & Boneh, 2021). As using public data raises no privacy concerns, fine-tuning
pre-trained models on private data can make use of learned features for free. However, since public
data might be out-of-distribution in terms of private data, the utilization is restricted to when the
public data have a similar distribution with private datasets (Tramer & Boneh, 2021).

Recently, researchers have investigated the use of in-distribution public data, indicating that a small
portion of in-distribution data is made public (Li et al., 2022a). For example, some data owners may
choose to share their data publicly in exchange for economic incentives. This setup allows us to
leverage public data with a distribution similar to private data. Past studies have shown that utilizing
side information from the in-distribution public during optimization can enhance the performance of
DP-SGD (Nasr et al., 2023; Amid et al., 2022; Li et al., 2022a; Asi et al., 2021). However, repeated
use of limited-sized public data may induce memorization and overfitting (Nasr et al., 2023).

We hypothesize that the performance of private learning can be further enhanced by leveraging in-
distribution public data from two factors: first, the recent data synthesis model can enrich the side
information of public data; second, the better optimization techniques concerning the geometric
properties of loss functions can relieve overfitting and discover well-generalizing minima. We aim to
bring these techniques into private learning, specifically dealing with the problem of the limited size
of in-distribution public data, thereby achieving a new state-of-the-art classification performance.

The rest of the paper is organized as follows: Section 2 presents the background and related works,
and Section 3 introduces the general scenarios using public data. In Section 4, we examine the
risks of the generative model with limited data and employ current diffusion models (Karras et al.,
2022; Kim et al., 2023a) and augmentation techniques as a solution. Section 5 utilizes geometric-
based optimization (Foret et al., 2020) to alleviate public data overfitting. Furthermore, we introduce
a method called weight multiplicity to enhance loss function smoothness (Park et al., 2023; Wang
et al., 2021). In Section 6, we present the experimental results assuming 4% of public data, indicating
that our results outperform the existing state-of-the-art methods, i.e., increasing the accuracy from
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Table 1: Ablation study on the impact of various techniques, including synthesis, augmentation, and
optimization, to enhance classification performance using in-sample public data from CIFAR-10
under (2,10−5)-DP. Refer to the relevant sections for additional details.

Setup Training Settings Section Test Acc
Baselines

Cold Existing Baseline (WRN16-4, De et al. (2022)) (3) 64.02%
Warm Warm-up on public data (warm) (3) 68.09%

WarmSyn Warm-up on DDPM synthesis (Nasr et al., 2023) (3) 72.0%
Extended DOPE-SGD (Nasr et al., 2023) (3) 75.1%
In-sample Public Data Synthesis & Augmentation
WarmSyn Warm-up on better synthetic data using EDM (4.2) 75.13 %
WarmSyn EDM synthesis + Intra-class diversity (DG) (4.3) 77.66 %
WarmSyn EDM synthesis + Augmentation (common + cutout) (4.3) 84.88%
Generalization & Optimization
WarmSyn + Sharpness-aware training in warm-up (5.1) 85.28%
Extended + Weight multiplicity (5.2) 85.78%

75.1% (Nasr et al., 2023) to 85.78% on CIFAR-10, with a privacy budget of ε = 2 and δ = 10−5. We
first summarize our various approaches and their performance improvements in Table 1.

2 BACKGROUND AND RELATED WORK

2.1 DIFFERENTIALLY PRIVATE DEEP LEARNING

Differential privacy (DP) (Dwork et al., 2014) can guarantee the privacy of training data as follows:

Definition 2.1 (Differential privacy) For two adjacent inputs d, d′ ∈ D, a randomized mechanism
M ∶ D →R satisfies (ε, δ)-differential privacy for any set of possible outputs S ⊆R if

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ. (1)

The privacy budget ε ≥ 0 controls the level of privacy guarantee with the broken probability δ ≥ 0.
DP-SGD (Abadi et al., 2016) enables the private weight update by two steps: averaging the clipped
per-sample gradient ∇ℓi(w) ∶= ∇ℓ(w;xi) for weight w with respect to each individual private data
sample xi ∈Xpr

t and adds Gaussian noise to the averaged gradient, which is formulated as follows:

g̃pr
t = g

pr
t +N (0,C2σ2I) = 1

∣Xpr
t ∣

∑
xi∈Xpr

t

clip (∇ℓi(wt),C) +N (0,C2σ2I), (2)

where clip(u,C) projects u to the L2-ball of radius C and vector norm ∥ ⋅ ∥ means the L2-norm
∥ ⋅ ∥2. Then, we can update the weight by wt+1 = wt − ηg̃pr

t , where η is the learning rate. The noise
level σ is determined by the privacy budget (ε, δ), the number of training steps, and the sampling
probability (refer to Appendix A.1 for details). Additionally, we denote the gradient of public data
as gpub

t ∶= 1

∣Xpub
t ∣ ∑xi∈Xpub

t
∇ℓi(wt) without clipping and noise addition.

To mitigate the accuracy drop in DP-SGD, various studies explored DP-friendly properties, in-
cluding architecture (Tramer & Boneh, 2021; Cheng et al., 2022) and loss/activation functions
(Shamsabadi & Papernot, 2023; Papernot et al., 2021). As private learning often exhibits training
instability (Bu et al., 2023), uncovering smooth or flat minima is effective for generalization (Park
et al., 2023; Wang et al., 2021). Notably, De et al. (2022) achieved superior performance using the
relatively large WideResNet (WRN) model, employing techniques such as augmentation multiplic-
ity to minimize the averaged loss of various augmentations Li(wt) = Ek[ℓ(wt,aug

k(xi))], weight
standardization (Qiao et al., 2019), and Exponential Moving Average (EMA). Note that the recently
proposed adaptive clipping (Andrew et al., 2021; Bu et al., 2023) could improve our results.

2.2 PRIVATE LEARNING WITH PUBLIC INFORMATION

Public pre-trained models offer the advantage of utilizing large models trained on extensive amounts
of data (De et al., 2022). Thus, numerous researchers have shown their effectiveness in natural
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language processing (NLP) (Yu et al., 2021a;b; 2022; Li et al., 2022b) and computer vision (De
et al., 2022; Bu et al., 2022). The transfer learning using public data of similar distribution, such as
CIFAR-100 and CIFAR-10, was also investigated (Tramer & Boneh, 2021; Sun & Lyu, 2021).

With in-distribution public data, previous studies (Nasr et al., 2023; Amid et al., 2022; Li et al.,
2022a; Asi et al., 2021) have focused on reducing errors of DP-SGD with side information. These
methods, categorized as extended in Section 3, utilize both public and private gradients during
weight updates, defined as wt+1 = wt − ηfg(wt;X

pub
t ,Xpr

t ). For example, normalizing private
gradient gpr

t with the accumulated public gradient gpub
t (Li et al., 2022a) or linear combination of

private gradient g̃pr
t and public gradient gpub

t (Amid et al., 2022) are proposed. Recently proposed
DOPE-SGD (Nasr et al., 2023) first updates towards the public gradient gpub

t and takes a private
step towards gpub

t − gpr
t to minimize the effects of clipping and noise addition as follows:

wt+1 =wt − η(gpub
t + clip(gpub

t − gpr
t ,C) +N (0,C2σ2I)). (3)

From now on, we denote in-distribution public data as public data unless otherwise specified.

2.3 DIFFUSION SYNTHESIS FOR CLASSIFICATION AND PRIVACY

The integration of generative models in classification tasks has been widely explored to enhance
generalization performance without extra data samples (He et al., 2023; Azizi et al., 2023; Gao
et al., 2023). These models aim to generate diverse images within the data manifold, providing a
better approximation of the decision boundary. The recent success of diffusion models has further
advanced these approaches, providing both high quality and diversity in generated samples (Ho et al.,
2020; Karras et al., 2022). However, most prior studies have concentrated on large data samples, such
as ImageNet (Azizi et al., 2023) or the whole dataset of CIFAR-10 and CIFAR-100 (Wang et al.,
2023). In the context of limited data availability, He et al. (2023) emphasized the significance of the
diversity and data amount for generation to improve the classification performance.

To measure the quality of generated images, various measures are proposed: Inception Score (IS)
(Salimans et al., 2016) and Precision to measure fidelity, Recall to measure diversity (Kynkäänniemi
et al., 2019), Fréchet Inception Distance (FID) (Heusel et al., 2017) to measure the distributional
quality for mean and variance. However, as the synthesis measures can be not aligned with classi-
fication performance, Ravuri & Vinyals (2019) suggested the classification accuracy score (CAS)
which measures the classification performance on a test set using a model trained on synthetic data.

In terms of the data synthesis for privacy, only Nasr et al. (2023) explored the use of the denois-
ing diffusion probabilistic model (DDPM) (Ho et al., 2020) as an augmentation technique for in-
distribution data, which closely aligns with our settings. Note that differentially private data synthe-
sis with diffusion models are investigated (Dockhorn et al., 2022; Lyu et al., 2023), presenting huge
opportunities for future work. For example, Ghalebikesabi et al. (2023) demonstrated that private
fine-tuning on pre-trained diffusion models can improve both generation and classification results.

3 PROBLEM SETUP

Setup We follow the most common scenarios leveraging public data (Nasr et al., 2023). In this
paper, we specifically focus on the WarmSyn and Extended scenarios among the following settings:

• Cold: Conduct DP training (e.g., DP-SGD) on the private dataset without using public data.
• Warm: Train models through (i) non-DP warm-up training phase on the public dataset

(e.g., SGD) and (ii) private training phase on the private dataset with DP methods.
• WarmSyn: During the warm-up phase, amplify the public information by using synthesis

or augmentation methods. Then, train models in the same manner as in the Warm settings.
• Extended: After the warm-up training of WarmSyn, further utilize the gradient information

from both the private dataset and the non-private dataset in the private training phase.

In Sections 4 and 5, we primarily focus on the CIFAR-10 dataset, utilizing WRN-16-41 with the
techniques proposed in (De et al., 2022). Within the training set, we randomly select 2,000 instances

1As noted in (Nasr et al., 2023), training WRN-40-4 requires excessive GPU considering its performance.
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(a) Illustration of original(●)-generated(+) data and decision boundaries.
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Figure 1: Diffusion toy experiment on spiral data by varying the portion of training samples.

(4%) for the public samples, as suggested in (Nasr et al., 2023). These samples are uniformly drawn
from each class. Additional experimental details are provided in Section 6.1 and Appendix C.

4 DATA SYNTHESIS FOR IN-DISTRIBUTION PUBLIC DATA

Given the restricted number of public data, we first analyze how to amplify the side information in
the public data. To achieve this, we employ a better diffusion model to approximate the underlying
true distribution based on the public data. Subsequently, we investigate the diversity of synthetic
data to enhance their utility for classification tasks. All the measures for evaluating the generated
data in this section are calculated with the entire training set as a reference.

4.1 RISK OF GENERATIVE MODELS WITH LIMITED DATA

We first describe that the generative models with a limited number of training samples can possess
risks, i.e., over- or underestimating the data distribution. As a toy example, we depict a spiral dataset
with higher probabilities for points closer to the origin, detailed in Appendix D.1. We train the diffu-
sion models with 100, 250, and 2,500 training samples. Subsequently, we generate 1,000 synthetic
data from each model and draw decision boundaries with SVM using generated data. As shown in
Figure 1a, the generated data successfully captures the data manifold in dense regions, but they fail
to find the manifold and only imitate the training data in sparse regions. As shown in the probability
density functions along the x-axis in Figure 1b, the models trained with small samples possess higher
probabilities than the true distribution in the dense region (C). Conversely, their generated data have
lower probabilities than the true distribution in sparse regions (B and D). The lack of diversity in
Figure 1a may lead to misclassification due to distorted decision boundaries.

4.2 BETTER DIFFUSION MODELS FOR PUBLIC DATA SYNTHESIS

In the recent work, Nasr et al. (2023) utilized DDPM as an augmentation for public data to improve
classification performance. We now demonstrate that a more accurate approximation within the in-
distribution data can enhance the model’s ability to match the whole data distribution.

Theorem 4.1 (Distribution matching with in-distribution data) For a finite number of training
data samples Sdata = {x1,⋯,xN}, split the data samples into Spub = {x1,⋯,xn} and Spr =
{xn+1,⋯,xN}, without loss of generality. Let pdata, ppub, and ppr be the probability distribution of
the corresponding dataset and pθ be a data distribution generated by the trained model. Then,

r1 log r1 + r2 log r2 ≤DKL(pdata∥pθ) −DKL(ppub∥pθ) ≤ r1 log r1 + r2 log r2 + r2 log τpr,

where τpr = {(N − n)minx∈Spr
pθ(x)}−1 ≥ 1. r1 = n

N
and r2 = N−n

N
represent the ratios of public

and private data, respectively. Therefore, when r1 is small, pθ that minimizes DKL(ppub∥pθ) can
approximate pdata and ppr. When r1 → 1, then ppub → pdata and the equality holds.

The detailed proof is presented in Appendix B. Thus, to better generate synthetic images by mini-
mizing DKL(ppub∥pθ), we adopt the elucidating diffusion model (EDM) (Karras et al., 2022) that
achieves the lowest FID scores. We train the EDM model on 2,000 public data samples without us-
ing external datasets and employ class-conditional sampling to match the original distribution. The
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Table 2: Quality comparison of synthetic data trained with 4% of public data on CIFAR-10.

Sampling Fidelity Diversity Quality CAS (↑)
(%)

Test Acc
(%)IS (↓) Precision (↑) Recall (↑) FID (↓)

EDM (wd=0) 11.008 0.964 0.157 7.799 62.82 75.13
EDM + DG (wd=3) 10.815 0.964 0.153 7.786 62.47 75.31

EDM + DG (wd=10) 10.796 0.946 0.170 8.274 64.61 75.98
EDM + DG (wd=20) 10.157 0.873 0.191 11.497 67.61 77.66
EDM + DG (wd=30) 9.113 0.785 0.211 19.748 66.53 77.22

calculated measures with EDM samples are shown in Table 2. The FID score of EDM synthesis at
7.80 outperforms the reported FID score of 12.8 achieved with DDPM on 40K images (Nasr et al.,
2023), resulting in improved classification performance as shown in Table 1. However, the genera-
tion quality using public data is notably worse than the FID of 1.79 achieved with the entire dataset,
as reported in (Karras et al., 2022). Within the limited public data, the model struggles to capture di-
versity, resulting in a recall of 0.16, even though precision remains high at 0.96. Note that repeating
each sample in the public data 25 times (thus 50,000 samples) results in a precision of 1.00, recall
of 0.04, and FID of 13.64. The generated images and its memorization problems are illustrated in
Appendix F. Thus, we need to enhance the diversity within the generated images.

4.3 INTRA-CLASS DIVERSITY MATTERS

Diversity in generation To enhance the intra-class diversity during generation, we adopt the idea
of discriminator guidance (DG) (Kim et al., 2023a). By introducing a discriminator to judge whether
the sampling is from the true data or synthesis, DG can control the trade-off between fidelity and
diversity of the generated images by adjusting the weight wd of the discriminator. Refer to Ap-
pendix D.2 for the details of DG. As shown in Table 2, a higher weight of guidance ensures greater
intra-class diversity without any augmentation, but sacristies the fidelity. The best FID score is ob-
tained with wd = 3 while the best CAS is obtained at a bigger weight wd = 20.

As observed in (He et al., 2023; Ravuri & Vinyals, 2019), diversity plays an important role in im-
proving CAS. Interestingly, we need to larger the weight in the in-sample data than that of standard
training, to achieve a similar gain of diversity. Figure 2 represents selected examples from two ex-
treme cases, with wd = 0 and wd = 30 to visualize the difference. Despite the quality degradation
of detailed features with wd = 30, the CAS is higher due to the increased intra-class diversity in
features. Thus, we need to enhance diversity while maintaining quality for better classification.

Explicit diversity with data augment To explicitly enhance diversity in synthetic images during
the warm-up training, we employ various data augmentation techniques designed for classification
tasks. Wang et al. (2023) argued that utilizing appropriate augmentation in diffusion-based gener-
ated images can further improve the classification performance. Common augmentation (He et al.,
2016) uses padding and random crop to the original size and horizontal flipping for the images. Cut-
mix (Yun et al., 2019) randomly replaces a part of the image with another and cutout (DeVries &
Taylor, 2017) randomly pad images. AutoAugment (Cubuk et al., 2019) chooses the best combina-
tion of augmentations such as color, rotation, or cutout. We set a baseline with no augmentation for
synthetic images of EDM and then apply the aforementioned augmentations. The results are sum-
marized in Table 3, where adding cutout augmentation to common augmentation demonstrates the
best performance in terms of CAS and test accuracy. Interestingly, combining DG and augmentation
does not yield further improvement, as presented in Appendix E.1.

Figure 2: Selected samples from (top)
EDM and (bottom) EDM + DG (wd = 30).

Augmentation CAS(%) Test Acc (%)
EDM w/o augmentation 64.02 75.32

Common 77.99 83.97
Common + Cutout 80.72 84.88
Common + Cutmix 65.73 82.20

AutoAugment 77.21 83.45

Table 3: CAS (%) and test accuracy (%) with differ-
ent augmentation methods during warm-up phase.
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Figure 3: Learning dynamics of private training with different datasets and optimization methods.

5 GENERALIZATION OF PRIVATE OPTIMIZATION

5.1 MITIGATING OVERFITTING TO PUBLIC DATA

We now investigate the optimization properties of private training after the warm-up phase of Sec-
tion 4. In Figure 3a, we illustrate the accuracy and loss for each public, synthetic, private, and test
dataset during private training. Notably, the model consistently achieves near-zero loss and 100%
accuracy on synthetic data (also on public data) but struggles with private data. This implies that we
need to focus on private data during optimization as the model has already learned the most of infor-
mation from public data. Figure 3b illustrates the gradient norms of synthetic and public data using
different optimization methods, with each gradient calculated based on the corresponding batch size.
While the private gradient norm ∥gpr

t ∥ (clipped but without noise) gradually decreases, the public
gradient norm ∥gpub

t ∥ consistently increases across all optimization methods. Interestingly, due to
the large learning rate of private training and advanced warm-up models using EDM and augmenta-
tion, DOPE-SGD can encounter exploding gradients. This occurs when the model is overfitted and
stuck into sharp minima on synthetic data and diverges after updating towards synthetic gradients
without clipping in Equation (3). For further insights about the learning dynamics in terms of the
loss function and private gradient norm without clipping, please refer to Appendix D.3.

Therefore, we focus on the geometric properties of the loss landscape in the warm-up phase, specif-
ically sharpness and smoothness (Dinh et al., 2017; Keskar et al., 2017). To prevent overfitting to
public information, we consider using sharpness-aware minimization (SAM) (Foret et al., 2020) on
the warm-up training. Instead of minimizing wt, SAM effectively identifies flat minima by mini-
mizing the worst-case perturbation within a parameter space of radius ρ as follows:

wt+1 =wt − η∇ℓ(wp
t ) =wt − η∇ℓ(wt + ρ∇ℓ(wt)/∥∇ℓ(wt)∥). (4)

The results presented in Table 4 show the effectiveness of SAM (4) in the warm-up phase, obtaining
lower values in the top Hessian value λmax, ratio of Hessian λmax/λ5, and trace of Hessian matrix
Tr(∇2ℓ(w)). Specifically, SAM uncovers flat minima, not only with synthetic data but also with
private data. Note that SGD even demonstrates a negative trace value on private data.

Table 4: Geometric measures of the models trained with SGD and SAM after warm-up phase.

Optimizer Synthetic Data Private Data
λmax λmax/λ5 Tr(∇2ℓ(w)) λmax λmax/λ5 Tr(∇2ℓ(w))

SGD 1.38 10.62 71.98 112.82 1.58 -2527.78
SAM 0.44 2.63 53.21 58.32 1.50 333.03

5.2 WEIGHT MULTIPLICITY

To push further, we pursue to improve generalization by seeking a flat and smooth loss landscape
in the private training phase. To discover flat minima in private learning, minimizing the weights
in the vicinity of the parameter space can be a practical solution (Wang et al., 2021; Park et al.,
2023). Thus, we introduce an effective optimization concept for seeking flat and smooth minima,
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which we call weight multiplicity, to minimize Li(w) = Ev[ℓ(w + v;xi)] with the perturbation
vector v sampled from the parameter space. This idea is analogous to the augmentation multiplicity
(De et al., 2022) to minimize Ek[ℓ(w;augk(xi))] for each unique example, which is widely used
in recent studies on DP-SGD (Nasr et al., 2023; Knolle et al., 2023; Ghalebikesabi et al., 2023)
with K ≥ 16 multiplicity. Therefore, we combine the two aforementioned methods and focus on
minimizing Ek[ℓ(w + vk;augk(xi))] to simultaneously improve the generalization of both input-
loss and weight-loss landscapes. Then, we can alter the private gradient of Equation (2) as follows:

gpr
t =

1

∣Xpr
t ∣

∑
xi∈Xpr

t

clip( 1

K

K

∑
k=1
∇ℓ (wt + vk

t ;aug
k(xi)) ,C) . (5)

Motivated by (Gong et al., 2021), the following Theorem proves the effect of weight and augmenta-
tion multiplicity as a gradient norm regularization w.r.t the weight and input space, respectively.

Theorem 5.1 (Multiplicity as gradient norm regularizer) Let Lm(w,v1 ∶ vK ;xi) = 1
K ∑

K
k=1 ℓ(w+

vk;augk(xi)) with ∥vk∥ = ρ. For ℓ(w + vk;xi) ≥ ℓ(w;xi) and ℓ(w;augk(xi)) ≥ ℓ(w;xi),
Lm(w,v1 ∶ vK ;xi) = ℓ(w;xi)+Φ(w,v1 ∶ vK ;xi) +Ψ(w;xi) +O(ρ2) +O(h2)

with c1
K

∑
k=1
∥∇wℓ(w;augk(xi))∥ ≤Φ(w,v1 ∶ vK ;xi) ≤ c2

K

∑
k=1
∥∇wℓ(w;augk(xi))∥

and c3∥∇xℓ(w;xi)∥ ≤ Ψ(w;xi) ≤ c4∥∇xℓ(w;xi)∥,

with some constants ci ≥ 0 and h = ∑K
k=1 ∥augk(xi) − xi∥/K. Therefore, minimizing Ex[Lm] has

the effect of adding extra Lipschitz-like regularization in terms of weight and input gradient norms.

cos( 1) = 0.9987
cos( 2) = 0.9995
cos( 12) = 0.1339

12

1

2

Private data
Synthetic data
Private mean vector
Synthetic mean vector

Figure 4: Individual gradient
concentration of private and
synthetic data on a 2D plane
spanned by dog-bird classes.

The detailed proof is presented in Appendix B. However, the op-
timal direction of perturbation v is still debated, considering pri-
vacy leakage (Park et al., 2023) or uncertain optimization properties
(Compagnoni et al., 2023; Kim et al., 2023b). Thus, to extend the
use of public information, we focus on the fact that gradient descent
primarily occurs within a low-dimensional top Hessian subspace
(Sagun et al., 2018; Papyan, 2019; Lee et al., 2023) and its effec-
tiveness in private training (Yu et al., 2021b; Ye & Shokri, 2022).
As depicted in Figure 4, we visualize the concentration of individ-
ual gradient directions for both synthetic and private data when pro-
jected onto a 2D plane spanned by the mean vectors of two classes
(dog-bird). The results in a low-dimensional subspace suggest that
individual gradient directions of both datasets are similar among
intra-class samples but differ between classes. Therefore, we sug-
gest to calculate the perturbation vk

t of the private sample xi with
the public batch Xpub

t , similar to Equation (4) as follows:

Ek[ℓ(wt + vk
t ;aug

k(xi))] =
1

K

K

∑
k=1

ℓ(wt + ρ
∇ℓ(wt;X

pubk
t )

∥∇ℓ(wt;X
pubk
t ))∥

;augk(xi)) . (6)

Please refer to Appendix A.2 for the detailed algorithm. Due to the high similarities of individual
gradients in Figure 4, Equation (6) can act as a regularization of the gradient norm to weight space,
as proved in Theorem 5.1. Note that Equation (6) requires the same privacy budget as DP-SGD since
calculating each ascent direction with a public gradient ∇ℓi(wt;X

pub
t ) does not reveal private data

and averaging K gradients for individual sample do not leakage privacy (De et al., 2022).

6 RESULTS

6.1 EXPERIMENTAL SETUP

We assess the effectiveness of our proposed methods using public data in two datasets: CIFAR-10
and CIFAR-100. For the public dataset, we randomly sample 4% of the training data (2,000 sam-
ples) uniformly drawn from each class, while the remaining data are used as private samples. We
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Table 5: Test accuracy (%) of private classification on CIFAR-10 on privacy budget of ε ∈
{1,2,3,4,6}. The public and synthesis columns indicate the Warm and WarmSyn settings, respec-
tively. Our method employs all the techniques in Table 1. We highlight the best accuracy in bold.

Datasets Architecture Public Synthesis Method ε = 1 ε = 2 ε = 3 ε = 4 ε = 6

CIFAR
-10

CNN-Tanh (0.55M) ✗ ✗ Papernot et al. (2021) 45.8 58.3 63.5 - -
ScatterNet (0.16M) ✗ ✗ Tramer & Boneh (2021) 60.3 67.2 69.3 - -
DPNAS (0.53M) ✗ ✗ Park et al. (2023) 60.1 67.2 69.9 - -
WRN-16-4 (2.74M) ✗ ✗ De et al. (2022) 56.8 64.9 69.2 71.9 77.0
WRN-40-4 (8.94M) ✗ ✗ De et al. (2022) 56.4 65.9 70.7 73.5 78.8

WRN-16-4 (2.74M)

✓ ✗ Amid et al. (2022)† - 68.7 - 73.1 77.2
✓ ✗ Li et al. (2022a)† - 68.7 - 73.5 77.9
✓ DDPM Amid et al. (2022)† - 70.5 - 74.5 78.2
✓ DDPM Li et al. (2022a)† - 69.1 - 74.1 78.1
✓ DDPM Nasr et al. (2023)† - 75.1 - 77.9 80.0
✓ EDM Ours 84.32 85.78 86.00 86.59 87.23

†We note the results reported in (Nasr et al., 2023) to set the architecture same. All other baseline results are adopted from the original paper.

Table 6: Test accuracy (%) of private classification on CIFAR-100 on the privacy budget of ε ∈
{1,2,6,10}. The public and synthesis columns indicate Warm and WarmSyn settings, respectively.
We employ the techniques in Table 1 sequentially, i.e., synthesis, augmentation, and optimization.

Datasets Architecture Public Synthesis Methods ε = 1 ε = 2 ε = 6 ε = 10

CIFAR
-100

Resnet-9 ✗ ✗ Knolle et al. (2023)† 18.1 24.9 - 40.8
Resnet-9 (6.62M) ✗ ✗ Cold† 8.35 14.42 29.89 35.11
WRN-16-4 (2.74M) ✗ ✗ Cold 9.28 18.19 33.61 39.09

WRN-16-4 (2.74M)

✓ ✗ Warm 20.84 25.15 33.47 38.89
✓ EDM WarmSyn 26.27 31.55 35.61 40.89
✓ EDM +Augmentation 41.17 44.51 50.50 54.25
✓ EDM +Optimization 45.89 47.93 54.72 56.46

†Unfortunately, their DP-SGD results are not reproducible, even when using the same hyperparameters as in the original paper.

then train the EDM (Karras et al., 2022) models with the 2,000 public data samples and build 50K
synthetic datasets with EDM sampling. For classification models, we primarily adopt WRN-16-4,
following the methodology outlined in (De et al., 2022) and use pre-trained vision transformer mod-
els following (Bu et al., 2022). Our experiments are conducted using PyTorch libraries (Yousefpour
et al., 2021) on eight NVIDIA GeForce RTX 3090 GPUs, partially performed on a cloud server with
four NVIDIA A100 40GB GPUs. For more detailed settings, including learning rates, epochs, public
batch sizes, and the radius of weight multiply ρ, refer to Appendix C. We will make the code public
at anonymized-url, including the trained diffusion models and the sampled synthetic images.

6.2 CLASSIFICATION PERFORMANCE WITH PUBLIC DATA

Effects of individual techniques We first revisit Table 1, the ablation study of sequentially em-
ploying our techniques with privacy budget (2,10−5)-DP on CIFAR-10. By using better EDM syn-
thesis, we achieve the previous SOTA performance of 75.13%. Additionally, recognizing the sig-
nificance of diversity in data generation, we employ common + cutout augmentation techniques for
diversity in classification, resulting in a performance of 84.88%. To mitigate potential overfitting to
side information, we make use of generalization techniques, such as SAM and the proposed weight
multiplicity. All these efforts collectively lead to an accuracy of 85.78% under (2,10−5)-DP.

CIFAR-10 experiments We report the performance comparison for our method with various pre-
vious approaches on a wide range of ε ∈ {1,2,3,4,6}with δ = 10−5 in Table 5. Our approach, which
incorporates EDM synthesis, augmentation, and optimization through SAM and weight multiplicity,
exhibits superior classification performance when compared to existing methods including DDPM-
based augmentation and previous extended optimizations. The accuracies of ε = 0 (after warm-up,
without private data) and ε =∞ (not private, with clipping) are 80.4% and 88.5%, respectively.

CIFAR-100 experiments We then investigate a more complex dataset of CIFAR-100, where the
classification from scratch without using pre-trained models is not actively investigated. Similar to
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Table 7: Test accuracy (%) of private classification using pre-trained models.

Datasets Privacy budget ε = 0.5 ε = 2
Architecture Pre-trained Cold Warm Ours Cold Warm Ours

CIFAR
-100

CrossViT small 240 (26.3M) ✓ 61.70 73.34 77.52 70.99 77.19 80.66
CrossViT 18 240 (42.6M) ✓ 67.02 77.50 80.03 78.61 80.31 82.91
DeiT base patch16 224 (85.8M) ✓ 49.34 80.08 79.81 69.09 83.01 83.07
CrossViT base 240 (103.9M) ✓ 65.90 75.45 78.09 75.13 79.21 81.25

Table 8: Performance by varying
the number of synthetic data.

Generated Test Acc (%)
ε = 2 ε = 4 ε = 6

5K 77.48 77.98 78.00
20K 83.29 84.08 84.22
40K 85.14 85.61 86.03

Table 9: Performance and computational time of optimization
methods. Bold for best and underline for runner-up results.

Privacy budget ε
(δ = 10−5)

Optimization
DP-SGD Mirror GD DOPE-SGD Weight multiplicity

ε = 2 85.28 85.52 85.53 85.78
ε = 4 86.55 86.31 86.69 86.71
ε = 6 87.08 86.73 86.84 87.23

Time (ms/image) 12.70 12.80 12.86 13.06

CIFAR-10, we first train the EDM model with 2K images and generate 50K images. Given the 100
classes in CIFAR-100, only 20 public samples are available per class, significantly fewer than in
CIFAR-10. The FID score on 50K images is 11.28 on EDM synthesis and 15.58 on replicating each
public image 25 times. After the warm-up, the CAS of synthetic images is 38.04%, while the test
accuracy of using 2K public samples without synthesis is only 16.79%. In Table 6, all the approaches
in Table 1 including synthesis, augmentation, and optimization are sequentially adopted. As a result,
we succeed to obtain 47.93% accuracy on ε = 2 without using pre-trained models.

CIFAR-100 with pre-trained models To push further, we demonstrate the effectiveness of our
procedures when combined with pre-trained models. We adopt the vision transformers model for
fine-tuning without augmentation-weight multiplicity, aligning with the original implementation (Bu
et al., 2022). The results in Table 7 indicate that using in-sample data can boost the classification
performance. Within a wide range of models and privacy budgets, our methods outperform the warm
settings even though private learning is sensitive to training settings.

6.3 SENSITIVITY ANALYSIS

Amount of generated data To analyze the effect of the generated data size, we train models with
5K, 20K, and 40K synthetic samples in the warm-up phase until convergence for each model. The
results in Table 8 indicate that data size remains a critical factor, even when applying the identical
EDM model. Note that 40K sample size is equal in the experiments of (Nasr et al., 2023).

Effects of extended methods In Table 9, we compare the effects of different optimization meth-
ods, which include DP-SGD, mirror GD (Amid et al., 2022), and DOPE-SGD (Nasr et al., 2023),
while maintaining the same synthesis, augmentation, and sharpness-aware warm-up techniques. In-
terestingly, the performance improvements from existing extended methods are not substantial. In
contrast, our proposed weight multiplicity approach demonstrates the potential to enhance perfor-
mance, with a consistent decrease in private gradient norm, as illustrated in Figure 3b. The com-
putational time in Table 9, indicates minimal overhead (less than 3%) when employing extended
methods with a multiplicity of K = 16. Additional ablation studies can be found in Appendix E.

7 CONCLUSION

In this paper, we investigated the potential of using in-distribution public data in differentially private
classification tasks. By using the current diffusion generative models and augmentation techniques,
we demonstrated the importance of diversity. To relieve overfitting to the public data, we found well-
generalizing minima by using the geometric properties. As a limitation, we leave the experiments on
sensitive real-world datasets such as medical or face image datasets for future work. We believe that
this work can contribute to leveraging in-distribution data for relieving utility-privacy trade-offs.
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ETHICS STATEMENT

When using in-distribution public data, we should be aware of the undesirable privacy leakage of
private data. Moreover, using pre-trained models may also introduce another privacy risk, when
combined with other forms of sensitive data, such as language models or time series data. Therefore,
we can consider the potential of our methods with additional privacy-preserving techniques, such as
federated learning or homomorphic encryption.

REPRODUCIBILITY

We provide the code for reproduction in the supplementary material. Please refer to Appendix C
for experimental settings. Due to the size limits, we will provide the trained diffusion models and
sampled images after submission.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Ehsan Amid, Arun Ganesh, Rajiv Mathews, Swaroop Ramaswamy, Shuang Song, Thomas Steinke,
Vinith M Suriyakumar, Om Thakkar, and Abhradeep Thakurta. Public data-assisted mirror de-
scent for private model training. In International Conference on Machine Learning, pp. 517–535.
PMLR, 2022.

Galen Andrew, Om Thakkar, Hugh Brendan McMahan, and Swaroop Ramaswamy. Differentially
private learning with adaptive clipping. In Advances in Neural Information Processing Systems,
2021.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International Conference on Machine Learning, pp. 639–668. PMLR, 2022.

Hilal Asi, John Duchi, Alireza Fallah, Omid Javidbakht, and Kunal Talwar. Private adaptive gradient
methods for convex optimization. In Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 383–392. PMLR,
18–24 Jul 2021.

Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J Fleet.
gaosynthetic data from diffusion models improves imagenet classification. arXiv preprint
arXiv:2304.08466, 2023.

Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential privacy has disparate
impact on model accuracy. Advances in neural information processing systems, 32, 2019.

Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large convolutional neural
networks with differential privacy. In Advances in Neural Information Processing Systems, 2022.

Zhiqi Bu, Hua Wang, Zongyu Dai, and Qi Long. On the convergence and calibration of deep learning
with differential privacy. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=K0CAGgjYS1.

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale
vision transformer for image classification. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pp. 357–366, 2021.

Anda Cheng, Jiaxing Wang, Xi Sheryl Zhang, Qiang Chen, Peisong Wang, and Jian Cheng. Dpnas:
Neural architecture search for deep learning with differential privacy. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 6358–6366, 2022.

Enea Monzio Compagnoni, Luca Biggio, Antonio Orvieto, Frank Norbert Proske, Hans Kersting,
and Aurelien Lucchi. An sde for modeling sam: Theory and insights. In International Conference
on Machine Learning, pp. 25209–25253. PMLR, 2023.

10

https://openreview.net/forum?id=K0CAGgjYS1


Under review as a conference paper at ICLR 2024

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 113–123, 2019.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis. Differentially private diffusion mod-
els. arXiv preprint arXiv:2210.09929, 2022.

Cynthia Dwork. Differential privacy. In International Colloquium on Automata, Languages, and
Programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2020.

Cong Gao, Benjamin D Killeen, Yicheng Hu, Robert B Grupp, Russell H Taylor, Mehran Armand,
and Mathias Unberath. Synthetic data accelerates the development of generalizable learning-
based algorithms for x-ray image analysis. Nature Machine Intelligence, 5(3):294–308, 2023.

Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes,
Soham De, Samuel L Smith, Olivia Wiles, and Borja Balle. Differentially private diffusion models
generate useful synthetic images. arXiv preprint arXiv:2302.13861, 2023.

Chengyue Gong, Tongzheng Ren, Mao Ye, and Qiang Liu. Maxup: Lightweight adversarial train-
ing with data augmentation improves neural network training. In Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition, pp. 2474–2483, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and Tim-
othy A Mann. Improving robustness using generated data. Advances in Neural Information Pro-
cessing Systems, 34:4218–4233, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and XIAO-
JUAN QI. Is synthetic data from generative models ready for image recognition? In The Eleventh
International Conference on Learning Representations, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances
in neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

11



Under review as a conference paper at ICLR 2024

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017.

Dongjun Kim, Yeongmin Kim, Se Jung Kwon, Wanmo Kang, and Il-Chul Moon. Refining genera-
tive process with discriminator guidance in score-based diffusion models. In Proceedings of the
40th International Conference on Machine Learning, Proceedings of Machine Learning Research,
pp. 16567–16598. PMLR, 23–29 Jul 2023a.

Hoki Kim, Jinseong Park, Yujin Choi, Woojin Lee, and Jaewook Lee. Exploring the effect of multi-
step ascent in sharpness-aware minimization. arXiv preprint arXiv:2302.10181, 2023b.

Moritz Knolle, Robert Dorfman, Alexander Ziller, Daniel Rueckert, and Georgios Kaissis. Bias-
aware minimisation: Understanding and mitigating estimator bias in private sgd. arXiv preprint
arXiv:2308.12018, 2023.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, pp. 5905–5914. PMLR, 2021.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

Sungyoon Lee, Jinseong Park, and Jaewook Lee. Implicit Jacobian regularization weighted with
impurity of probability output. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 19141–19184. PMLR,
23–29 Jul 2023.

Tian Li, Manzil Zaheer, Sashank Reddi, and Virginia Smith. Private adaptive optimization with
side information. In International Conference on Machine Learning, pp. 13086–13105. PMLR,
2022a.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2022b.

Saiyue Lyu, Margarita Vinaroz, Michael F Liu, and Mijung Park. Differentially private latent diffu-
sion models. arXiv preprint arXiv:2305.15759, 2023.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Milad Nasr, Saeed Mahloujifar, Xinyu Tang, Prateek Mittal, and Amir Houmansadr. Effectively
using public data in privacy preserving machine learning. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
25718–25732. PMLR, 23–29 Jul 2023.

Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson. Tem-
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A DIFFERENTIAL PRIVACY

A.1 DP-SGD

The noise level σ of DP-SGD (2) is determined by the total steps, sampling probability, and privacy
budget (ε, δ) as follows:

Proposition A.1 (Abadi et al. (2016)). There exist constant c1 and c2 so that given total steps T
and sampling probability q, for any ε < c1q2T , DP-SGD (2) guarantee (ε, δ)-DP, for any δ > 0 if we
choose

σ ≥ c2
q
√
T log(1/δ)

ε
. (7)

A.2 WEIGHT MULTIPLICITY

De et al. (2022) modified the gradient of DP-SGD (2) with K multiple augmentations to calculate
the individual gradient. Inspired by augmentation multiply, we further investigate the average of
multiple weights space for smoothness and flatness in Equation (5). For selecting the direction v for
perturbation, we choose to use the public gradient as a line of the extended method. The detailed
algorithm of Equation (6) is presented in Algorithm 1. As the weight-augmentation multiplicity
only needs the computation for calculating vk

t for weight multiplicity, its computational burden is
marginal with respect to augment multiplicity. Note that the direction of v can be altered to any
direction after uncovering the loss landscape of weight in private learning, as variants developed
versions of SAM (Foret et al., 2020) are investigated in standard training (Zhuang et al., 2021; Kwon
et al., 2021; Kim et al., 2023b; Andriushchenko & Flammarion, 2022), as discussed in Appendix E.4.

Algorithm 1: Weight Multiplicity
Input: Initial parameter w0, multiplicity K, learning rate η, radius ρ, clipping threshold C,

variance σ2 from Proposition A.1, and small γ > 0 to prevent zero division.
Output: Final parameter wT .
for t = 1,2, . . . , T do

Random sampling a private mini-batch Xpr
t and a public mini-batch Xpub

t .
for k = 1,2, . . . ,K do

vk
t = ρ

∇ℓ(wt;X
pubk
t )

∥∇ℓ(wt;X
pubk
t ))∥+γ

end
for i = 1,2, . . . , ∣Xpr

t ∣ do
for k = 1,2, . . . ,K do

if weight-augment multiplicity then
g
(i,k)
t = ∇ℓ (wt + vk

t ;aug
k(xi))

else if only augment multiplicity (De et al., 2022) then
g
(i,k)
t = ∇ℓ (wt;aug

k(xi))
end
gi
t = 1

K ∑
K
k=1 g

(i,k)
t

end
gpr
t = 1

∣Xpr
t ∣
∑∣X

pr
t ∣

i=1 clip (gi
t,C)

g̃pr
t = g

pr
t +N (0,C2σ2I)

wt+1 =wt − ηg̃pr
t

end
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B PROOFS

B.1 PROOF OF THEOREM 4.1.

Following (Karras et al., 2022), we address this theorem with a finite number of samples Sdata =
{x1,⋯,xN}. As mentioned in Appendix B.3 of (Karras et al., 2022), pdata and ppub can be repre-
sented by mixtures of Dirac delta distributions:

pdata(x) =
1

N

N

∑
i=1

δ(x −xi),

and

ppub(x) =
1

n

n

∑
i=1

δ(x −xi),

where x ∈ X which is discrete sample space, since any pixel of an image can be represented by int
between 0 to 255. Then, by the definition of KL divergence with a discrete probability distribution,

DKL(pdata∥pθ) = ∑
x∈X
(pdata(x) log

pdata(x)
pθ(x)

)

= ∑
x∈Spub

(pdata(x) [log
ppub(x)
pθ(x)

+ log pdata(x)
ppub(x)

]) + ∑
x∉Spub

(pdata(x) log
pdata(x)
pθ(x)

)

=DKL(ppub∥pθ) +
n

N
log

n

N
+ ∑

x∉Spub

(pdata(x) log
pdata(x)
pθ(x)

)

=DKL(ppub∥pθ) +
n

N
log

n

N
+ 1

N
∑

x∈Spr

(log 1

Npθ(x)
)

=DKL(ppub∥pθ) +
n

N
log

n

N
+ N − n

N
log

1

N
− N − n

N
log
⎛
⎝ ∏x∈Spr

pθ(x)
⎞
⎠

1
N−n

≥DKL(ppub∥pθ) +
n

N
log

n

N
+ N − n

N
log

1

N
− N − n

N
log

1

N − n
=DKL(ppub∥pθ) +

n

N
log

n

N
+ N − n

N
log

N − n
N

.

The inequality is followed by AM-GM inequality and the fact that the sum of probabilities is less
than or equal to 1. Moreover, to make KL divergence well-defined in the finite setting, pθ(x) ≠ 0
where pdata(x) ≠ 0. Then, by the definition of τpr = {(N − n)minx∈Spr

pθ(x)}−1,

DKL(pdata∥pθ) =DKL(ppub∥pθ) +
n

N
log

n

N
+ 1

N
∑

x∈Spr

(log 1

Npθ(x)
)

≤DKL(ppub∥pθ) +
n

N
log

n

N
+ N − n

N
(log (N − n)τpr

N
)

=DKL(ppub∥pθ) +
n

N
log

n

N
+ N − n

N
log

N − n
N

+ N − n
N

log τpr.

Note that as n→ N , ppub → pdata, and above two inequality achieves equality. Moreover, as ∣Spr ∣ =
N − n, we have minpθ(x) ≤ 1

N−n , ensuring that log τpr ≥ 0.

This theorem tells that we can approximate pdata with ppub with in-distribution Spub. Furthermore,
when n small, we can approximate ppr with ppub since Sdata is similar to Spr.

16



Under review as a conference paper at ICLR 2024

B.2 PROOF OF THEOREM 5.1.

Motivated by the Theorem 1 of (Gong et al., 2021),

1

K

K

∑
k=1

ℓ(w + vk;augk(xi)) =
1

K

K

∑
k=1
{ℓ(w;augk(xi)) +∇wℓ(w;augk(xi))Tvk +O(ρ2)} (8)

= 1

K

K

∑
k=1
{ℓ(w;augk(xi)) + ρ∥∇wℓ(w;augk(xi))∥ cos θk} +O(ρ2)

(9)

= ℓ(w;xi) +
1

K

K

∑
k=1
{ℓ(w;augk(xi)) − ℓ(w;xi)} (10)

+Φ(w,v1 ∶ vK ;xi) +O(ρ2) (11)

= ℓ(w;xi) +
1

K
∇xℓ(w;xi)T

K

∑
k=1
(augk(xi) −xi) +O(h2) (12)

+Φ(w,v1 ∶ vK ;xi) +O(ρ2) (13)

= ℓ(w;xi) +Φ(w,v1 ∶ vK ;xi) +Ψ(w;xi) +O(ρ2) +O(h2) (14)

We now explain the techniques in the proof.

Equation (8) and Equation (12) are followed by Taylor expansion. θk, defined in Equation (9), is
the angle between the gradient ∇xℓ(w;aug(xi)) and vk, which is always positive since vk is
loss-ascending direction. Therefore, by defining Φ(w,v1 ∶ vK ;xi) as Equation (11), we can get

ρ

K
min
k

cos θk
K

∑
k=1
∥∇wℓ(w;augk(xi))∥ ≤ Φ(w,v1 ∶ vK ;xi) ≤

ρ

K

K

∑
k=1
∥∇wℓ(w;augk(xi))∥,

so that c1 = ρ
K
mink cos θ

k and c2 = ρ
K

. Note that the higher cosine similarity between vk and gra-
dient ensures the larger c1, providing the higher weight to the weight regularization term. Moreover,

Ψ(w;xi) =
1

K
∇xℓ(w;xi)T

K

∑
k=1
(augk(xi) −xi) = ∥∇xℓ(w;xi)∥

1

K

K

∑
k=1

αT (augk(xi) −xi),

where α = ∇xℓ(w;xi)/∥∇xℓ(w;xi)∥. By assumption, ℓ(w;augk(xi)) ≥ ℓ(w;xi), then

c = 1

K

K

∑
k=1

αT (augk(xi) −xi) ≥min
k
(αT (augk(xi) −xi)) = c3 ≥ 0.

Therefore, we got c ≤ 1
K ∑

K
k=1 ∥augk(xi) −xi∥ = c4.
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C EXPERIMENTAL SETTINGS

C.1 CLASSIFICATION

Private training For private learning, we adopt all the techniques of (De et al., 2022) with WRN-
16-4. We employ the techniques such as augmentation multiplicity to minimize the averaged loss of
various augmentations Li(w) = Ek[ℓ(w,augk(xi))], weight standardization (Qiao et al., 2019),
and Exponential Moving Average (EMA). We re-implement the JAX official code of (De et al.,
2022) in https://github.com/google-deepmind/jax_privacy and extended meth-
ods using Pytorch Opacus (Yousefpour et al., 2021) libraries.

We present the experimental details for CIFAR-10 in Table 10 and CIFAR-100 in Table 11 with their
search spaces and best hyperparameter values. All experiments are conducted with DP-SGD with
momentum 0 unless otherwise specified. As private learning is hugely affected by the hyperparame-
ter settings, we use a different search space for cold and warm settings. We calculated the noise level
σ for training with the hyperparameters in Tables 10 and 11 using Opacus libraries.

Table 10: Hyperparameters for CIFAR-10.

Setup Hyper-parameter Search space Best values

Warm

ε {1, 2, 3, 4, 6} 1 2 3 4 6
δ {10−5} 10−5 10−5 10−5 10−5 10−5

Multiplicity K {16} 16 16 16 16 16
Batch size {4096} 4096 4096 4096 4096 4096
Clipping norm C {1} 1 1 1 1 1
Epochs {15, 20, 30, 40} 15 30 30 30 20
Learning rate η {0.1, 0.5, 1, 2, 4} 0.5 0.5 1 1 2

+ Extended Public batch size {32, 64, 128} 64 64 64 64 64
Weight multiplicity ρ {0.05, 0.1, 0.2} 0.05 0.1 0.1 0.1 0.1

Table 11: Hyperparameters for CIFAR-100.

Setup Hyper-parameter Search space Best values

Warm

ε {1, 2, 6, 10} 1 2 6 10
δ {10−5} 10−5 10−5 10−5 10−5

Multiplicity K {16} 16 16 16 16
Batch size {4096} 4096 4096 4096 4096
Clipping norm C {1} 1 1 1 1
Epochs {25, 50, 75} 25 50 75 75
Learning rate η {0.1, 0.5, 1, 2, 4} 0.5 0.5 1 1

+ Extended Public batch size {32, 64, 128} 64 64 64 64
Weight multiplicity ρ {0.05, 0.1, 0.2} 0.1 0.1 0.05 0.05

Warm-up training We present the experimental details of the warm-up phase with SGD (not DP-
SGD) in Table 12. We use SGD with momentum 0.9 as a default setting for warm-up training. For
the warm setting, we train epochs until convergence since the number of training data of 2,000 is
less than the warmSyn of 50,000 samples.

Pre-trained model We use pre-trained Vision Transformers such as DeiT (Touvron et al., 2021),
and CrossViT (Chen et al., 2021). We used the ghost clipping methods proposed in (Bu et al., 2022)
and their GitHub code from https://github.com/woodyx218/private_vision. For
the cold setting, we trained the models with 5 epochs with Adam optimizer with a learning rate
of 0.002. We used a batch size of 1,000 following the default settings in GitHub. We tested var-
ious ranges of model sizes. For the warm settings, we took a grid search on the learning rate of
{0.0005,0.001,0.002} on both the warm-up phase and the private training phase.
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Table 12: Hyperparameters for warm-up phase on CIFAR-10 and CIFAR-100.

Hyper-parameter Search space CIFAR-10 CIFAR-100
Batch size {64, 100, 128, 256} 100 64
Epochs {50, 100, 200} 100 200
Learning rate η {0.05, 0.1, 0.2, 0.3} 0.05 0.1
Momentum {0.9} 0.9 0.9
Learning rate decay {Cosine} Cosine Cosine
Weight decay {5 × 10−4} 5 × 10−4 5 × 10−4
Radius ρ for SAM {0.05, 0.1, 0.2} 0.1 0.1

C.2 DIFFUSION SYNTHESIS

EDM settings We implemented EDM (Karras et al., 2022) from their official GitHub code from
https://github.com/NVlabs/edm and DG (Kim et al., 2023a) from their official GitHub
code from https://github.com/alsdudrla10/DG. We trained the EDM model using the
base settings as reported on the official GitHub repository. For the CIFAR-10 dataset, we utilized a
batch size of 512 images, distributed among four NVIDIA GeForce RTX 3090 GPUs, while main-
taining the other setting as the default setting. Specifically, we use a learning rate of 10−3, an EMA
coefficient of 0.5, duration of 200. The detailed settings are reported in Table 7 of (Karras et al.,
2022). We sampled images with σmin = 0.002, σmax = 80, ρ = 7, Schurn = 0, Smin = 0, Smax =
∞, Snoise = 1, and a step size of 18, as the default setting. For the CIFAR-100 dataset, we employed
a batch size of 1024 images, distributed among four NVIDIA A100 GPUs, while maintaining the
same settings as those used for the CIFAR-10 dataset. The training took less than 3 days with four
NVIDIA GeForce RTX 3090 GPUs. Image sampling with a step size of 18 and a batch size of
500, took less than 30 seconds per batch when using a single NVIDIA GeForce RTX 3090 GPU.
Therefore, it took about one hour to sampling 50K images.

DG settings We trained both the classifier and discriminator for DG from scratch with synthetic
data from the 2,000 public data. We avoided using pre-trained models from the CIFAR or Imagenet
datasets to solely investigate the effects by using in-sample data.

D ADDITIONAL NOTES

D.1 DEEPER ANALYSIS FOR TOY EXAMPLE IN SECTION 4.1

For the spiral dataset, the radius increases proportionally with the angle and at each location, the
points have a probability distribution that decreases proportionally with the cumulative sum. In other
words, points closer to the origin have higher probabilities. With this dataset, we construct a simple
diffusion model with time step 20 and two diffusion blocks, containing a linear layer with unit 64.
We train the model 10,000 epochs with a learning rate of 0.001 using Adam optimizer. We train SVM
classifiers with an RBF kernel, setting the hyperparameter C to 1,000 to enforce a hard margin. All
other settings remained at their default values, following the conventions of the sklearn library. The
diffusion models closely approximate the true data distribution, as shown in Figure 1b. The diffusion
model effectively approximated the distribution, regardless of the number of training data in region
A. However, in region C, where the true density is high, the generated distribution shows a higher
probability when the number of training data is limited. This indicates that when the number of
training data is small, the model tends to memorize the training dataset. Conversely, in regions B
and D, where the true density is low, the probability distribution of generated samples is lower than
the true distribution, even the true density is low. This indicates that when the number of samples is
small, the model tends to ignore the tail distribution. As the number of in-distribution data is small,
we should be aware of using synthetic data in terms of data memorization and ignore the tail part.

GAN mode collapse The diversity problem is more significant in other generative models, such
as generative adversarial networks (GAN) (Goodfellow et al., 2020). As GAN can generative im-
ages with high fidelity, however, GAN suffers from training instability to control both generator and
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discriminatory, sometimes generating only a small portion of data repeatedly called mode collapse.
The mode collapse happens when the convergence speed of the discrimination is faster than that
of the generator, which induces the generator to generate the same images which can confuse the
discriminator without generating similar images to real data. Figure 5 illustrates that the mode col-
lapse is easy to happens with a smaller number of samples on Ring data. Thus, we mainly focus on
diffusion models in this paper.
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(a) GAN trained with 160 samples.
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(b) GAN trained with 400 samples.
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(c) GAN trained with 1,000 samples.
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(d) GAN trained with 10,000 samples.

Figure 5: Mode collapse of GAN with a different number of samples on Ring data.

D.2 DETAILS OF DISCRIMINATOR GUIDANCE

EDM (Karras et al., 2022) can achieve better generation than DDPM (Ho et al., 2020) by a higher-
order Runge-Kutta method for sampling process and a new stochastic sampler based on σ. Thus, DG
(Kim et al., 2023a) used the EDM as a base model for generating CIFAR datasets. To control the
trade-off between fidelity and diversity in diffusion models, Dhariwal & Nichol (2021) suggested
using the classifier to diffusion networks. The classifier, which is trained on noisy images during
diffusion steps and their labels, can force the model to generate certain types of images based on their
labels. To push further, DG (Kim et al., 2023a) adopted another network called discriminator. The
discriminator is trained to decide whether the images during the diffusion process are generated from
real data or not. Thus, similar to the discriminator in GAN, the model can force the diffusion model
to generate more similar images to the real datasets. Both studies enable the users to control the level
of fidelity and diversity in diffusion sampling, where the optimal FID is obtained with a moderate
level of fidelity and diversity. Instead, we focus on a high level of weight in the discriminator to
generate images with high diversity, rather than repeating typical images with high fidelity.

D.3 TRAINING DYNAMICS

For detailed analysis in Figure 3, we show additional results representing the learning dynamics of
the private training phase. We measure the gradient norm and loss of private and synthetic data, as
shown in Figure 6. As DP-SGD focuses on private data, the loss of private data decreases constantly,
while the loss of public data is increasing. On the other hand, DOPE-SGD controls the loss of both
synthetic and private data. However, in a certain range of training, DOPE-SGD occasionally fails
to converge and diverge, where their gradient norms explode and the accuracy plummets to 0. As
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private training with DP-SGD usually uses a larger learning rate than of standard training, explicitly
minimizing the public gradient might be dangerous as the model can be overfitted to training data
and stuck into sharp minima during training. However, the proposed weight multiplicity shows the
intermediate behavior of DP-SGD and DOPE-SGD.

Interestingly, Figure 6d illustrates the gradient norm, the same as Figure 3b but without clipping.
Both DOPE-SGD and DP-SGD show diverging gradient norms during training, where weight mul-
tiply can decrease the norm even without clipping. This might be a main reason to explain the
usefulness of weight multiplicity.
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Figure 6: Learning dynamics during private training of various optimization methods.

D.4 CLUSTER OF GRADIENTS IN THE WEIGHT SUB-SPACE

It is known that SGD happens in tiny subspaces among large weight dimension, which usually
has the same dimension as the class number in classification tasks (Papyan, 2019). We can find a
meaningful manifold of the weight space by decomposing the weight matrix and projecting to the
space spanned by the top eigenvectors of the loss-weight function (Sagun et al., 2018; Lee et al.,
2023). Various researchers have already used the decomposition and low-rank approximation to
mitigate the effect of clipping and noise addition in private learning (Yu et al., 2021b; Ye & Shokri,
2022).

Similar to Figure 4, we provide the clusters of individual gradients projected onto the 2D plane
spanned by the two mean gradients with normalization in Figure 7. Figures 7a and 7b show similar
results of Figure 4 with different classes, where individual gradient directions of both datasets are
similar among intra-class samples but differ between classes. Figures 7d 7e, and 7f illustrate the
difference between private and synthetic data when projected with their mean vectors. The difference
in gradients between private and synthetic data is small. However, their gradient norm is significantly
different as shown in Figure 7c, where the norm of synthetic data is near the origin but the norm of
a private vector is relatively large along their direction.
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Figure 7: Clusters of individual gradients projected onto the 2D plane spanned by the two mean
gradients.

E ABLATION STUDY

E.1 DG AFTER AUGMENTATION

The CAS for applying common + cutout augmentation to the synthetic images generated by EDM +
DG are presented in Table 13. Interestingly, the combination of DG and augmentation does not show
significant performance improvement than images with wd = 0. The performance becomes worse
in larger wd, as the image quality is decreased. We believe that the deficient diversity in sparse
in-sample data is covered with augmentation techniques and leave their combination for the future
work. The lower accuracy of both the classifier and discriminator of DG trained with 2,000 samples
and limited synthetic images might be a reason. Note that Wang et al. (2023) chose the synthetic
images with FID for improving performance in adversarial training.

Table 13: CAS comparison of synthetic data generated from EDM and DG (wd = 3,10,20,30) with
common + cutout augmentation on CIFAR-10.

Sampling EDM + DG (wd=3) + DG (wd=10) + DG (wd=20) + DG (wd=30)
CAS (%) 80.40 80.44 80.62 79.69 78.89

E.2 DIFFERENT PRIVACY BUDGET ε ON PRE-TRAINED CIFAR-100

We additionally append the experimental results, using the same hyperparameter setup of Table 7,
in Table 14 with privacy budget of ε ∈ {1,4}.
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Table 14: Test accuracy (%) of private classification using pre-trained models.

Datasets Privacy budget ε = 1 ε = 4
Architecture Pre-trained Cold Warm Ours Cold Warm Ours

CIFAR
-100

CrossViT small 240 (26.3M) ✓ 66.88 74.70 78.91 72.91 78.80 81.75
CrossViT 18 240 (42.6M) ✓ 71.27 78.60 81.39 76.22 81.73 83.75
DeiT base patch16 224 (85.8M) ✓ 63.84 81.55 81.62 72.84 84.60 84.43
CrossViT base 240 (103.9M) ✓ 71.08 77.30 79.65 76.63 80.43 82.63

E.3 EFFECT OF RADIUS ρ ON WEIGHT MULTIPLICITY

We take an ablation study on the effect of radius ρ in Table 15. We test the effects on CIFAR-10
datasets while maintaining all the other settings the same.

Table 15: Performance of the weight multiplicity on different radius ρ on CIFAR-10.

Radius ρ ε = 2 ε = 4 ε = 6
0.05 85.21 86.53 87.01
0.1 85.78 86.59 87.23
0.2 85.17 86.51 85.38

E.4 ADDITIONAL OPTIMIZATION METHODS

We try to use various techniques for private learning to improve classification performance. The
classification results with (2,10−5)-DP are presented in Table 16.

Table 16: Test accuracy of adversarial training and adaptive weight multiplicity on CIFAR-10.

Datasets Architecture Public Synthesis Methods ε = 2
CIFAR

-10 WRN-16-4 (2.74M)
✓ EDM Adversarial training (8/255) in warm-up 77.25
✓ EDM Adversarial training (2/255) in warm-up 81.55
✓ EDM Adaptive weight multiplicity 85.16

Adversarial Training Adversarial training (Madry et al., 2018; Zhang et al., 2019) aims to make
decision boundaries smooth in terms of input space. Furthermore, the importance of generative mod-
els is well under-studied in adversarial training (Gowal et al., 2021; Rebuffi et al., 2021; Wang et al.,
2023). Similar to DP training, the task of adversarial training is harder than standard training, Wang
et al. (2023) observed that utilizing the synthetic data with EDM can improve the generalization
performance and prevent robust overfitting without extra data samples. Therefore, we adopt to use
of adversarial training in the warm-up phase. However, adversarial training methods are designed
to reduce the accuracy of PGD-10 (Madry et al., 2018), and the standard accuracy is significantly
dropped. Therefore, the private classification results are also decreased.

Different direction of perturbation in weight multiplicity As mentioned in Section 5.2, the
selection of v in the parameter space is controversial even in standard training (Andriushchenko &
Flammarion, 2022; Kim et al., 2023b; Kwon et al., 2021; Zhuang et al., 2021). Therefore, we adopted
some techniques into Equation (6) to check the methods are still working on the private training. We
mainly adopt adaptive SAM (ASAM) (Kwon et al., 2021) to better select the perturbation v. ASAM
poses more weight to the layers that have a larger weight norm, in contrast to SAM which has
the same importance along all the layers. However, it requires one additional controllable hyper-
parameter than SAM, thus hard to tune in our experimental settings.
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F GENERATED IMAGES

We illustrate the samples of generated images using in-sample public data. Figure 8a demonstrates
the memorization within CIFAR-10, by random sampling synthetic images in the first row and
choose the nearest samples in the synthetic dataset. Figure 8b and Figure 8c are obtained from
generated images of CIFAR-10, and Figure 8d is obtained from generated images of CIFAR-100.

(a) Illustration of memorization within generated CIFAR-10 images.

(b) Samples of generated CIFAR-10 images with EDM using 2,000 samples.

(c) Samples of generated CIFAR-10 images with EDM + DG (wd=30) using 2,000 samples.

(d) Samples of generated CIFAR-100 images with EDM using 2,000 samples.

Figure 8: Samples of generated images using in-sample public data.
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