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Abstract

Time-series foundation models excel at tasks
like forecasting across diverse data types by
leveraging informative waveform representations.
Wearable sensing data, however, pose unique
challenges due to their variability in patterns
and frequency bands, especially for healthcare-
related outcomes. The main obstacle lies in craft-
ing generalizable representations that adapt effi-
ciently across heterogeneous sensing configura-
tions and applications. To address this, we pro-
pose NORMWEAR, a foundation model designed
to extract generalized and informative representa-
tions from wearable sensing data. NORMWEAR
is pretrained on a diverse set of physiological sig-
nals, including PPG, ECG, EEG, GSR, and IMU,
from various public datasets. For evaluation, we
benchmark its performance across 11 public wear-
able sensing datasets, spanning 18 applications
in mental health, body state inference, vital sign
estimation, and disease risk evaluation, demon-
strating superior performance compared to com-
petitive baselines. Additionally, using a novel
representation-alignment-match method, we align
physiological signal embeddings with text embed-
dings, enabling zero-shot inference for unseen
wearable signal-based health applications.

1. Introduction
Mobile and wearable sensors have been shown to be valu-
able for the field of healthcare by passively and continuously
tracking physiological signals such as photoplethysmogra-
phy (PPG) for pulse, electrocardiography (ECG) for heart ac-
tivity, galvanic skin response (GSR), and electroencephalog-
raphy (EEG) for brain activity. These time series signals are
beneficial for early diagnosis, personalized health insights,
and remote patient monitoring (Zhang et al., 2024a).
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Recently, several foundation models have emerged for
time series modeling, including Ansari et al. (2024); Ab-
baspourazad et al. (2023); Woo et al. (2024); Foumani et al.
(2024). Another common approach for signal modeling in-
volves converting raw signal series into 2D images or spec-
trograms, using fixed-size sliding windows, followed by the
use of visual encoders like Vision Transformers (ViT) to
extract representations for making inferences (Semenoglou
et al., 2023; Wimmer & Rekabsaz, 2023; Vishnupriya &
Meenakshi, 2018; Chun et al., 2016; Krishnan et al., 2020;
Dosovitskiy et al., 2020). These works have significantly ad-
vanced the field and provided valuable insights, yet two main
issues still exists which need further exploration to fully
understand their potential in wearable scenarios. First, con-
trastive learning-based foundation models (Abbaspourazad
et al., 2023) rely on a predefined set of input signal types,
making them unsuitable when transferring to scenarios with
different types and numbers of sensors. Second, while both
time series foundation models (Ansari et al., 2024; Zhang
et al., 2022; Woo et al., 2024) and spectral-based approaches
(Semenoglou et al., 2023; Wimmer & Rekabsaz, 2023) at-
tempt to address this issue by training a generic encoder
that can handle type-agnostic series, they remain limited to
processing only univariate series. Because of this constraint,
these previous works fail to account for the heterogeneity of
multivariate input data; specifically, they do not capture the
complex relationships between signals from sensors located
on different body parts. These two limitations of recent
approaches hinder their generalization and usefulness for
wearable health monitoring.

Moreover, Wearable-based multimodal physiological sig-
nals present unique challenges that distinguish them from
general time series data, such as stock prices or weather
patterns. Wearable signal modalities, such as PPG and EEG,
vary in characteristics like dimensionality, sampling rate,
and resolution, often requiring modality-specific preprocess-
ing. Existing methods tokenize raw signals (Ansari et al.,
2024; Zhang et al., 2022) or convert them into image or
spectral representations (Wu et al., 2023; Mathew et al.,
2024; Vaid et al., 2023). While effective for specific tasks,
these approaches lack generalizability and fail to provide
a consistent preprocessing pipeline across multiple modal-
ities. A consistent framework that accommodates diverse
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Figure 1. The role of our framework. Several icons from Freepik (n.d.); Zhang et al. (2024a).)

signal requirements is essential for training deep learning-
based foundation models and advancing multimodal signal
analysis.

In this work, we present NORMWEAR, a normative foun-
dation model, aiming to learn effective wearable sensing
representations, addressing the above-discussed research
gaps. NORMWEAR has been pretrained on more than 2.5
million multivariate wearable sensing segments, comprising
total of 14,943 hours of sensor signal series, using publicibly
avaliable datasets. We evaluated NORMWEAR on 18 pub-
lic downstream tasks against competitive baselines under
both linear probing and zero-shot inference. Overall, our
contributions with the proposed NORMWEAR healthcare
modeling framework can be summarized as follows:

• To our knowledge, we are the first to develop a founda-
tion model specifically designed for wearable sensing
data, capable of processing arbitrary configuration of
multivariate signals from sources such as the heart,
skin, brain, and physical body.

• NORMWEAR comprises novel methodologies built
upon the advanced practice in both the fields of signal
processing and deep learning, including (a) continuous
wavelet transform (CWT) based multi-scale represen-
tations for modality- and number-agnostic tokeniza-
tion, (b) channel-aware attention layer that enables the
model to process arbitrary multivariate inputs, and (c)
a human sensing adapted fusion mechanism that makes
NORMWEAR the first to achieve zero-shot inference
on wearable sensing tasks.

• We are also the first to integrate and process a compre-
hensive wearable signals dataset with varied number of
input channels for training self-supervised learning al-
gorithms, with thorough downstream evaluation. These
datasets cover key health applications, including men-

tal and physical state inference, vital sign estimation,
and disease risk evaluation. We make the preprocessed
data, codebase, and model weights publicly available.

Our proposed NORMWEAR aims to provide a generalized
data representation solution for smart health monitoring,
benefiting the general public, and serving as a fundamen-
tal tool for researchers and professionals to address future
healthcare challenges.

2. Related Work
Foundation models have emerged as a transformative
paradigm in machine learning, enabling generalizable and
reusable representations across diverse downstream tasks
(Bommasani et al., 2022). In the time series domain, re-
cent works (Ansari et al., 2024; Foumani et al., 2024; Ab-
baspourazad et al., 2023; Narayanswamy et al., 2024) have
demonstrated success in tasks such as forecasting, classifica-
tion, and anomaly detection. However, their generalizability
to health-related wearable signals remains limited due to the
lack of in-depth evaluation, reliance on specific sensor types
and univariate data, as well as the inability to handle the
heterogeneity of multivariate wearable signals. In contrast,
NORMWEAR builds upon these principles by introducing a
modeling framework that is agnostic to the sensor modality
and number of input channels, as stated in section 1, and
is presented in details in section 3. NORMWEAR has been
evaluated on 18 digital healthcare tasks and demonstrate
peak performance against solid time series modeling base-
lines, including common statistical approach, SoTA model
in time series with self-supervised learning (Zhang et al.,
2022), SoTA spectrum based modeling approach (Wu et al.,
2023), and SoTA time series forecasting model (Ansari et al.,
2024). Our work not only generalizes to arbitrary sensor
configurations but also ensures compatibility across multi-
variate data, addressing key limitations of earlier approaches.
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Table 1. Downstream evaluation data that are unseen during pretraining.
Downstream Dataset Sensor Tasks #Samp. (#Subj.)
WESAD
(Schmidt et al., 2018)

IMU, PPG,
ECG, GSR

Stress
Detection 11050(15)

UCI-HAR
(Reyes-Ortiz et al., 2012) IMU HAR 10299(30)

DriverFatigue
(Min et al., 2017) EEG Fatigue

Detection 2400(12)

Activity Recognition Total - - 23749(57)
Epilepsy
(Andrzejak et al., 2023) EEG State

Recognize 11500(500)

GAMEEMO
(Alakus et al., 2020) EEG Valence-

Arousal 5600(28)

EEG Main Tasks Total - - 17100(528)
ECG-Abnormal
(Bousseljot et al., 2009) ECG Abnormal

Detection 11640(249)

PPG-BP
(Liang et al., 2018) PPG Risk of

Diseases 657(219)

PhysioNet EMG
(Goldberger et al., 2000) EMG Muscular

Diseases 163(3)

Risk Evaluation Total - - 12460(471)
Noninvasive-BP
(Esmaili et al., 2017) PPG BP

Estimate 125(26)

PPG-Hgb
(Esmaili et al., 2017) PPG Hgb

Estimate 68(68)

Fetal-fPCG
(Bhaskaran et al., 2022) PCG Fetal HR

Estimate 47(47)

Vital Signs Total - - 240(141)
Total All - - 53549(1197)

Table 2. Baselines and pretraining data.

Baseline Methods Modeling Strategies

TF-C (Zhang et al., 2022)
SoTA in TS SSL; modeling
time and frequency domain
information at same time.

CLAP (Wu et al., 2023) SoTA in audio modeling;
process signal as spectrogram

Chronos (Ansari et al., 2024) SoTA in TS forecasting,
leverage LLM for modeling

Statistical approach Reserve full interpretability

Pretrain Dataset Sensors #Samp (hours).
Cuff-Less-BP
(Kachuee et al., 2016) ECG, PPG 42934(72)

PPG-Dalia
(Reiss Attila, 2019)

ECG, PPG
IMU, GSR 42606(71)

Auditory-EEG
(Alzahab et al., 2022) EEG 13601(23)

PhyAAt
(Bajaj et al., 2020) EEG 19550(33)

MAUS
(Beh et al., 2021)

ECG, PPG
GSR 13068(22)

Mendeley-YAAD
(Dar et al., 2022) ECG, GSR 2964(5)

Brain-Cognitive
(Dar et al., 2022) EEG 51201(85)

EPHNOGRAM
(Dar et al., 2022) ECG, PCG 36611(61)

BIDMC
(Dar et al., 2022) ECG, PPG 8427(14)

Num Segments (# Segm.) - 230,962(385)
# Segm. w/ Augment - 2,576,418(4,294)
Num Sensor Signals (# Sign.) - 802,019(1,337)
# Sign. w/ Augment - 8,965,538(14,943)

3. Method
3.1. Dataset construction for model pretraining and

downstream evaluation
We curated a collection of 9 publicly available datasets
(Table 2) exclusively for model pretraining, resulting in
approximately 230,962 multivariate time series segments,
comprising 4,294 hours of total sensor signal series, across
various modalities, including PPG, ECG, EEG, GSR, PCG,
and inertial measurement unit (IMU) data. To address the
dataset size limitation, we then applied herustic data aug-
mentation (algorithm 1) to expand the pretrain dataset to 2.5
million segments, comprising 14,943 hours of total sensor
signal series. Notably, each sample segment may contain
a variable number of input channels depending on the sen-
sor signals provided by the respective datasets. This input
configuration aligns seamlessly with our model’s design,
which is optimized to flexibly handle arbitrary numbers and
configurations of sensor signal inputs.

To prevent potential data leakage in downstream tasks, we
evaluate our model’s transferability using an additional 11
publicly available datasets encompassing 18 modeling tasks,
which include affective state classification, physical state
recognition, biological estimation, and disease risk evalua-
tion. Details about the datasets is presented in Table 1.

3.2. Tokenization
Tokenization is a fundamental term widely used in natural
language processing. In the context of wearable sensing, we
leverage this term to represent the stage of signal processing
before sending the processed data to the deep learning-based

encoder. Spectral methods, which utilize the short-time Fast
Fourier Transform (FFT) (Brigham, 1988) with a sliding
window to compute spectrograms, are widely regarded as
the benchmark approach for tokenization. However, due to
the inherent trade-off between time and frequency resolu-
tion, the spectral representation with a fixed window size
cannot be generalized. This is because the window size has
to be modulated accordingly when the modality varies. To
enhance transferability, we propose a well-designed signal
processing pipeline that preserves information in both the
frequency and time domains across multiple scales. We
begin by calculating the first and second derivatives for each
single signal series, as suggested by Slapničar et al. (2019),
followed by computing the continuous wavelet transform
(CWT) on both the raw and derivative series, resulting in
three scalograms. Then, we stack the three scalograms to
form data in RGB-image-like format. The derivatives cap-
ture the rate of signal change at different moments, while
the wavelet transform provides a multi-resolution encod-
ing that preserves information from both the time and fre-
quency domains Torrence & Compo (1998). For the wavelet
transform, we use the Mexican Hat wavelet for signal con-
volution, as recommended by previous studies (Burke &
Nasor, 2004; Hosni & Atef, 2023; Hassani, 2021; Negi
et al., 2024; Nedorubova et al., 2021b). We apply scales
ranging from 1 to 64, following the guidance of (Sengupta
et al., 2022; Nedorubova et al., 2021a), which sufficiently
covers most frequency bands of interest for physiological
signals. Finally, this RGB-like scalogram is divided into
patches, which is treated in the same way as tokens in an
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Figure 2. Overview of the pretrain pipeline.

ViT (Dosovitskiy et al., 2020). In this way, this tokenization
approach can be applied to various types of sensing signals
without sensor-specific adjustments or reconfigurations.

3.3. Model architecture and pretrain strategies
Following the tokenization step, we adopt common
reconstruction-based pretraining strategies from Masked
Auto Encoder (MAE) (He et al., 2021; Huang et al., 2023;
Zhang et al., 2023), which applying masking to input to-
kens and and optimizing the model using mean squared
error (MSE) for reconstructing the raw time series. Inspired
by Huang et al. (2023), we experiment with four masking
strategies, as shown in Figure 2 (a), including masking on (1)
temporal and scale, (2) scale only, (3) temporal only, and (4)
unstructured axes. We observe that the temporal and scalar
masking yields the best performance for the downstream
tasks. For the model architecture, we construct the backbone
of our proposed framework with a convolutional patching
layer followed by 12 standard Transformer blocks (Vaswani
et al., 2023). For the same reason, NORMWEAR uses a
lightweight decoder consisting of 2 Transformer blocks,
combined with a linear projection layer and a convolution
layer to reconstruct the raw physiological signals both tem-
porally and spatially. We also prepend a special token [CLS]
at each signal channel, aiming to learn and extract a generic
representation for each signal.

Another important point to consider is that although empir-
ical studies (Nie et al., 2023; Abbaspourazad et al., 2023)
show that channel-independent structures effectively capture
local patterns, they fail to account for relationships across
channels. To address this, we introduce a channel-aware

attention (fusion) layer after every other encoder block to
incorporate cross-channel information. We explore sev-
eral fusion approaches as shown in Figure 2 (b), with each
method described below:

(1) All-Attention Fusion: This approach involves con-
catenating all tokens from each modality without consider-
ing their individual properties and fusing the information
through a self-attention module. However, this method re-
quires quadratic computation time, as every token passes
through the self-attention module, making it impractical for
real-world applications.

(2) Cross-Attention Fusion: In addition to the cross-
attention mechanism used in Cross-ViT (Chen et al., 2021),
we introduce a slight modification to fit in our problem
setting. We propose a symmetric fusion method, using
the [CLS] token from each modality as an intermediary to
exchange information between the patch tokens of another
modality, then projecting the information back to its original
modality in the subsequent Transformer layer. While this
strategy is efficient, it restricts the model to handling only
two time series signals or modalities, which deviates from
our goal of building a general model capable of processing
an arbitrary number of channels.

(3) [CLS]-Attention Fusion The [CLS] token serves as
an abstract global representation for each signal modality.
Here, we propose a hybrid fusion approach. We stack the
[CLS] tokens from all signal modalities and perform feature
fusion using a self-attention mechanism. The fused [CLS]
token is then reattached to its original channel, enabling the
newly learned information to be propagated to each patch
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token in subsequent transformer encoder layers.

(4) Mean-Pooling Fusion Similar to the [CLS]-Attention
Fusion approach, we employ mean-pooling within each
channel instead of using the [CLS] token as an abstract
global representation.

Our empirical results show that [CLS]-attention fusion
achieves the best performance for downstream tasks for our
proposed NORMWEAR model. Details of all the ablation
studies are reported in appendix B.

3.4. Zero-shot inference
Zero-shot learning traditionally refers to generalizing to
unseen object categories in classification tasks (Pourpanah
et al., 2022). In this work, we extend this concept to explore
NORMWEAR’s ability to generalize across unseen datasets
and tasks. While extensively studied in vision-language
(Radford et al., 2021) and audio-language (Wu et al., 2023)
domains, zero-shot learning remains underexplored in wear-
able sensors. Existing frameworks, such as (Zhang et al.,
2024b; Wu et al., 2023), align signal time series with text
descriptions leveraging end-to-end training. To reduce com-
putation cost and counteract the issue of catastrophic forget-
ting (Li et al., 2023), we use off-the-shelf frozen encoders
for both signal and text modalities. Specifically, we enable
zero-shot inference by first training a human-sensing-driven
fusion module, followed by an aligner module to map input
signals into textual space.

Addressing Three Human Sensing Challenges. Differ-
ent human-sensing tasks require different sets of signals
and patterns. To guide better information extraction from
distinct embedding space, our zero-shot inference module
incorporates query sentences that guide the target task as
heuristic input. For instance, if the task is physical activity
detection, the focus should be on IMU, rather than EEG.
Such signal modality identification will be guided in our
zero-shot inference through query sentences such as: ”What
activity is the subject doing?”. To effectively retrieve task-

relevant signal information guided by the query sentence,
we introduce relevance score.

Human physiological and behavioral signals are highly dy-
namic, meaning they can change rapidly in response to
external stimuli or internal states. Focusing on the recent
past ensures that the data being analyzed remains contex-
tually relevant and accurately reflects the person’s current
physiological or emotional state. For instance, the freezing
effect on heart rate occurs as a rapid fluctuation in response
to an acute external stressor (Roelofs, 2017; Chowdhury
et al., 2020; Chaudhury et al., 2021), such as a sudden loud
noise, a perceived threat, or an anxiety-inducing situation.
Hence, systems designed for physiological signals need to
focus more on recent physiological and behavioral signals
to ensure effective and meaningful assessments. To this end,
we introduce recency scores, which assign higher weights to
patches closer to the most recent time step in the sequence.

Moreover, due to the challenges of precise labeling, hu-
man sensing signals are often weakly labeled (He et al.,
2018; Kim et al., 2022; Qian et al., 2021; Ma et al., 2021),
mostly consisting of generic state sequences. Only a rela-
tively small fraction of the sequences contain meaningful
active segments, anomalies, or transient states, which are
crucial for accurate inference of human-centric tasks such
as state recognition and risk assessment. To address this
characteristic, we introduce an importance score that dy-
namically determines the retention weights across temporal
steps, thereby regulating the information flow for subse-
quent processing.

To summarize, the latent signal representations from
NORMWEAR have to be aggregated according to (1) how
relevant they are to the objective tasks, (2) how close they
are to the most current time step, and (3) how important
they are to the data itself . Inspired by the philosophy of
memory stream retrieval mechanism (Park et al., 2023),
we implemented such a fusion mechanism named MSiTF
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to generate representations optimized for human sensing,
shown in Figure 3.

Memory Stream inspired Temporal Fusion (MSiTF).
Our Aggregation or Fusion Module, MSiTF, is designed
to addresses the above-discussed three challenges through
three scores discussed below. Specifically, we denote f as
the function that takes the semantic embedding of query sen-
tence q and backbone output H ∈ RP×E as input, where P
is the patch size and E is the embedding size, thus having
the final fused representation f(q,H) = Ŷ ∈ RE .

We consider the Relevance score to be the cross-attention
score between the sentence embedding generated by the
pretrained language model (Muzammil, 2021) of the query
sentence and the key representation of the embedding of
each time step, enabling distinct but relevant contextual in-
formation identification. For the Recency score, to prioritize
recent time steps, we use an exponential decay function,
where the further the time step to the most recent time step,
the lower the score. Finally, we consider the importance
score IMP in this case to be whether to keep the represen-
tation at each time step or not. In order to achieve this,
we assign binary parameters to each time step, denoted as
θt = p(vt) ∈ R2 where vt ∈ RE is the representation vec-
tor at time step t and p is a trainable linear transformation
function which will be optimized during pretraining. We
then have the importance score for each patch defined as

Wimp(t) = argmax
i∈{0,1}

exp

((
log(θt,i) + ϵ

)
/τ

)
∑

j∈{0,1} exp

((
log(θt,j) + ϵj

)
/τ

)
(1)

where ϵ is the noise term sampled from Gumbel distribution
(Jang et al., 2017), and τ is the temperature controlling
the sharpness of the softmax function. Because argmax
is not a differentiable function, we will directly take the
resulting probability corresponding to index at j = 1 to be
the importance score, with τ being set to a small number
to push the result closer to one hot vector from the softmax
function. As a result, this logit function will determine to
what extent to activate the gate during forward pass on each
patch of the input signals. The final score for each patch
is the summation of the three scores as described above.
This score will be treated as the weight for aggregating the
representations from all the patches to form the fixed length
embedded output (vector with size of 768 in our case).

Once the signal embeddings are aggregated, we adopt a
variational-inspired approach (Kingma & Welling, 2022).
This design injects stochasticity into the representation, en-
couraging the model to explore and capture nuanced varia-
tions in semantic representations.

Aligner Module, Objective Function, and Pretraining.
Finally, the Aligner Module matches two vectors: the fused

representation f(q,H) = Ŷ ∈ RE with the semantic em-
bedding (Y ) of ground truth sentence, which is obtained
from prompting the ground truth label using a template, for
example, ”The subject is presently {activity label}”. In
the same manner as the query embedding, the ground truth
sentence is encoded using the same pre-trained language
model (Muzammil, 2021). At this stage, Y is leveraged to
supervise the fused output Ŷ with integrated loss function
with penalty on Manhattan distance and cosine similarity,
aiming to align the physiological and semantic vectors to
have the same magnitude and direction:

Loss(Y, Ŷ ) = λ|Y − Ŷ |+

(
1− Y · Ŷ
∥Y ∥∥Ŷ ∥

)
(2)

where λ is hyper-parameters controlling the weight of loss
components. We train the MSiTF on the pretraining datasets
stated in Table 2, with both classification and regression
tasks. To increase the diversity of semantic representations
of query and ground truth sentences in the pretraining sig-
nal corpus, we utilize large language models (GPT-3.5)
(Achiam et al., 2023) to generate 20 alternative variations
for each sentence, from which only one is randomly sampled
during pre-training.

During test-time inference on downstream datasets, each
ground truth label is converted into a sentence (details in ap-
pendix A), which is transformed into a semantic embedding
using a frozen text encoder. The sentence with the closest
distance with the embedding from our foundation model is
used as the final inferential result.

4. Experiments
In this section, we present a comprehensive evaluation
across 11 publicly available datasets, focusing on 18 widely-
recognized digital healthcare tasks. We first assess the trans-
ferability advantage of our proposed model compared to
the solid baselines. Additionally, we examine the zero-shot
capabilities of NORMWEAR.

4.1. Selection of baselines covering representative
modeling strategies

Modeling multivariate wearable signals with arbitrary input
channels and sensor types, such as those capturing activ-
ities of heart, brain, and body physical motions, presents
unique challenges, as no universally recognized open-source
baseline or state-of-the-art (SoTA) model exists in this do-
main. To evaluate our approach, we selected diverse and
representative baselines (as shown in Table 2).

In the literature, various modeling strategies have been pro-
posed. Firstly, early approaches involved handcrafting sta-
tistical features, which was a widely adopted practice in sig-
nal processing (Yan et al., 2023a; Reyes-Ortiz et al., 2012;
Mikelsons et al., 2017). We include this simple baseline as
sanity check. Secondly, since sensory data can be naturally
represented as time series (Woo et al., 2024; Semenoglou
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- Disease: Performance on disease risk predictions. | - EEG: Performance on main EEG tasks (mental and abnormal states prediction)
- State: State recognition, including physical and mental activies. | - Macro: Average performance over types of tasks
- Micro: Average performance over each task.

Figure 4. Overview of performance trend of NORMWEAR against competitive baselines in downstream tasks: (1) Disease risk predictions.
(2) EEG main tasks (mental and abnormal states prediction). (3) State recognition: physical and mental activities. (4) Macro: Average
performance over types of tasks. (5) Micro: Average performance over each task.

Table 3. Performance on various downstream wearable-signal-based health related applications under linear probing evaluation.

Downstream Tasks Statistical Chronos CLAP TF-C NORMWEAR (Ours)
WESAD 66.213 71.489 72.383 69.865 76.060
UCI-HAR 95.784 91.593 96.420 96.892 98.954
DriverFatigue 63.249 76.722 61.889 66.882 74.292
Activity Recognition Avg. 75.082 79.935 76.897 77.880 83.102
Epilepsy (eye open state) 82.489 82.41 85.094 89.153 92.743
Epilepsy (eye relaxation) 87.457 88.218 89.867 94.416 94.828
Epilepsy (health area) 86.274 81.08 83.711 85.619 88.541
Epilepsy (tumor area) 82.816 81.034 83.644 86.348 87.197
Epilepsy (seizure) 88.272 97.572 97.734 93.998 97.053
GAMEEMO 51.009 53.747 52.551 56.275 54.937
EEG Main Tasks Avg. 79.720 80.677 82.100 84.302 85.883
ECG-Abnormal 97.092 98.585 97.23 98.275 99.140
PPG-BP (HTN) 59.499 52.425 56.757 65.229 62.341
PPG-BP (DM) 47.823 51.164 42.455 57.883 55.893
PPG-BP (CVA) 71.25 50.278 51.667 58.125 70.625
PPG-BP (CVD) 51.219 58.31 50.91 58.674 51.773
PhysioNet EMG 99.309 61.6 98.627 78.308 99.216
Risk Evaluation Avg. 71.032 62.060 66.274 69.416 73.165
Noninvasive-BP 92.31 91.79 91.922 87.481 92.420
PPG-Hgb 94.219 95.005 94.291 93.408 94.632
Fetal-fPCG 98.929 99.048 99.195 99.077 99.072
Vital Signs Avg. 95.153 95.281 95.136 93.322 95.375
Micro Avg. 78.623 76.782 78.130 79.773 82.762
Macro Avg. 80.247 79.488 80.103 81.230 84.381

et al., 2023), we benchmarked our model against Chronos
(Ansari et al., 2024) , as well as a self-supervised framework
TF-C (Zhang et al., 2022). Finally, the spectrum-based mod-
eling methods (Vishnupriya & Meenakshi, 2018; Chun et al.,
2016; Krishnan et al., 2020) are widely used for signal mod-
eling. Therefore, we incorporate CLAP (Wu et al., 2023)
into baselines that has demonstrates SoTA performance in
spectrogram-based modeling. These baselines span distinct
paradigms, providing a solid foundation to demonstrate the
strengths of our model in wearable signal tasks.

4.2. Downstream evaluation, NORMWEAR achieves the
peak performance

We perform supervised training to evaluate the representa-
tion with linear probing on each downstream dataset. Perfor-
mance is then assessed in the test set of these datasets. The
classification tasks, using logistic regression, are solved by
Newton’s method with conjugate gradient, with AUC ROC
being reported as main metric. The regression (vital signs)
tasks, using ridge regression, are solved by Cholesky’s
method with closed form solution, with relative accuracy
being reported. All scores are the higher the better. Such
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Table 4. Zero-shot performance on the downstream datasets, with AUC ROC being reported. The last two columns show the average
across the tasks and across group types respectively.
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CLAP - MD 45.3 62.8 58.5 53.1 44.9 45.1 47.6 30.5 84.9 59.4 41.8 46.0 57.4 22.9 55.4 50.4 51.2
CLAP - DP 50.7 52.3 61.1 51.6 54.4 41.9 58.6 46.4 74.3 52.2 41.4 50.6 58.9 42.7 38.3 51.7 52.2

NORMWEAR

w/ MSiTF
55.9 71.4 54.9 50.2 54.0 56.4 66.9 57.4 53.7 56.5 53.2 65.0 63.1 74.3 65.7 59.9 60.1

- w/o IMP 56.2 70.3 55.4 49.8 54.0 56.5 66.9 57.3 52.9 56.5 54.3 61.7 60.7 73.4 65.2 59.4 59.6

- w/o text aug 54.8 65.8 55.2 49.2 31.0 58.4 58.6 32.8 58.1 50.2 52.6 50.8 50.6 47.7 33.6 50.0 51.4

evaluation framework ensure better reproducibility, numeri-
cal stability, and fairness in performance comparison.

From Figure 4, Table 3, and Table 12, we observe that
NORMWEAR consistently achieves peak performance across
all task groups, including activity recognition, EEG signal
analysis, disease risk evaluation, and vital sign estimation.
Furthermore, its leading performance remains consistent
across various evaluation metrics. Based on the macro-
averaged total score across task groups, NORMWEAR de-
livers a 3.9% improvement over the state-of-the-art (SoTA)
time-series self-supervised learning framework (Zhang et al.,
2022), a 5.3% improvement over the SoTA spectrum-
based modeling method (Wu et al., 2023), a 6.1% im-
provement over SoTA time-series forecasting models with
LLM backbones (Ansari et al., 2024), and a 5.2% improve-
ment over standard statistical baselines. On larger datasets,
NORMWEAR significantly outperforms the statistical base-
line by 9.0% and 7.5% for activity recognition and EEG
brain activity monitoring tasks, respectively. On smaller
datasets, it still achieves peak performance in disease risk
evaluation. For vital sign estimation, all methods yield
comparable results, suggesting inherent challenges in these
regression tasks that warrant further investigation but are
beyond the scope of this study. These findings illustrate
NORMWEAR’s capacity to balance consistency and adapt-
ability across a diverse range of tasks and conditions. By
excelling across standard benchmarks while addressing the
intricacies of varied applications, NORMWEAR exemplifies
the philosophy of a foundation model: a reliable general-
ist capable of performing robustly across both typical and
challenging scenarios.

4.3. The first zero-shot enabled foundation model for
wearable sensing health applications

We achieve zero-shot inference by pretraining our proposed
novel temporal fusion module on the task of representa-
tion alignment. We include the SoTA spectral-based model
CLAP (Wu et al., 2023) as a baseline to provide a more

comprehensive comparison of the results. For CLAP, we
experimented with both Manhattan distance (MD) and dot
product (DP) as similarity metrics during inference. We
observe that there are no statistically significant differences
in performance when using MD and DP for label retrieval
in CLAP. From table 4, we could observe that overall,
NORMWEAR equipped with MSiTF outperforms the base-
lines. We compare NORMWEAR with a few ablations by
removing importance score (w/o IMP) and removing text
augmentation (w/o text aug). We can observe that perfor-
mance drop after removing each of the above components,
verifying their respective importance in improving general-
ization across various downstream tasks. We present this
outcome to demonstrate that, even without fine-tuning, the
model is capable of learning informative representations
that can be directly leveraged for downstream tasks. Fur-
thermore, as shown in Section 4.2, even a straightforward
adaptation, such as linear probing, can yield notably im-
proved results.

5. Conclusion
In this work, we mainly propose a foundation model for
wearable physiological signals. NORMWEAR is a practical
tool that could serve as a starting point for researchers and
clinicians when tackling a problem with wearable based
signal data. Our proposed model could extract informa-
tive representations from raw signal series, which can be
leveraged for further machine learning modeling, clustering,
embedding vector-based information retrieval, and deploy-
ment of real-time health states monitoring with minimal
tuning. We’ve justified the utilizability and generalization
of NORMWEAR through an extensive evaluation of various
ubiquitous health applications. As for future works, it is
important to leverage our framework on larger scale clini-
cal applications and explore the applicability of embedding
vectors as state representations for intervention modeling
problems that comprise the decision-making process.
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Impact Statement
NORMWEAR addresses a significant need—handling com-
plex, heterogeneous biosignals across a variety of healthcare
tasks—and provides promising evidence of strong perfor-
mance and generalizability. The methodological innova-
tions, particularly the tokenization and fusion mechanisms,
are valuable contributions that could inspire future work in
multimodal healthcare analytics.

Ethics Statement
This study contains applications in the field of healthcare.
We ensured that all the data being used during pretraining
and evaluations were made publicly available by the original
authors, and all these works were cited properly.

Reproducibility Statement
The full code base is submitted in supplementary material
referred to as NormWear main.zip, comprising all the scripts
for exploratory data analysis and preprocessing, model con-
struction, pretraining, downstream evaluation, result analy-
sis, and all the visualizations that are described in this paper.
The GitHub repository containing all the documentation
will be published simultaneously with the paper.
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A. Implementation Detail
Datasets. Few openly accessible multi-channel or multi-device datasets for physiological signals exist, limiting advance-
ments in this field. To address this gap, we curated a dataset comprising approximately 385 hours of recordings. Using
the augmentation algorithm described below, we expanded this dataset to 4294 hours. The distribution of the pretraining
dataset, as shown in Figure 5, reflects the inherent diversity of the original recordings, ensuring balanced representation
across channels and devices. This curated and augmented dataset provides a critical resource for developing robust models,
facilitating progress in multi-channel physiological signal research.

EEG

35.7%

ECG

18.3%

PPG15.8%

PCG

4.6%

IMU

15.9%

GSR

9.7%

(a) Distribution of sensor signals for pretrain.

Brain

35.7%
Heart

38.7%

Physical

15.9%

Skin Conductance

9.7%

(b) Distribution of type of information for pretrain.

Figure 5. Pretrain data distribution.

Data Preprocess. For the data preparation, we set the uniform sampling rate and interval length to 65 HZ and 6 seconds
respectively. In our case, 65 Hz covers most of the frequency bands of interest such as heart activity, physical motions, and
neuron activity up to the beginning of Gamma power (above 30 Hz). And a great amount of samples are less than 6 seconds
such as (Reyes-Ortiz et al., 2012; Liang et al., 2018; Bousseljot et al., 2009). We conduct basic pre-processing for each
signal with identical setting: (1) de-trended by subtract the result of a linear least-squares fit to series data from the raw time
series, and (2) Gaussian smoothed with standard deviation of 1.3 (0.02 seconds), ensuring a highly consistent dataset for
training.

Since the Transformer’s computational requirements scale quadratically with input length, to release the full potential of
our self-supervised algorithm, we segment our multivariate time series into intervals with a uniform length and pad shorter
samples with zeros. This approach not only enables parallel processing of samples in large minibatches but also addresses
variation in the length of individual samples.

For the downstream task, we split the data into train and test sets for linear probing evaluation with portion of 80% and 20%
correspondingly. The split is stratified on the anonymized subject ID if this information is provided by the dataset.

Data Augmentation. Since there are very few publicly available datasets containing multiple devices or modalities, we aim
to expand our curated training set to fully leverage the potential of self-supervised learning. Inspired by data augmentation
techniques in computer vision and natural language processing (Zhang et al., 2017; Carmona et al., 2021), we adopt a
heuristic approach to augment the dataset. Specifically, we augment each sub-dataset by a factor of 10. For each dataset, we
sample two time series, randomly extract a segment from one, and substitute it with a transformed counterpart, as outlined
in the pseudocode in Algorithm 1. As a result, our training set is expanded to 2,586,404 segments, corresponding to 4,294
hours of data.

Pretraining Framework. Normwear is derived from the Masked Autoencoder (MAE) (He et al., 2021). The detailed
hyper-parameter choice is descibe in 5. We use a Conv2D layer with a kernel size of (9, 5) and a stride of (9, 5), ensuring no
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Algorithm 1 Time Series Mixup Augmentation
Input: Time series dataset X , number of augmentations n
Output: Augmented Dataset X̃

1: for i = 1 to n do
2: Sample two time series x(1),x(2) ∼ X
3: Sample a chunk size λ ∼ U(0, l)
4: Sample start indices s1, s2 ∼ U(0, l − λ)
5: Swap chunk from x(2) into x(1):

x
(1)
s1:s1+λ ← x

(2)
s2:s2+λ

6: Append x(1) into X̃
7: end for
8: return X̃

overlapping patches. This layer takes input with 3 channels and projects it to 768 channels, matching the hidden size of our
encoders. In Normwear, we apply structured masking independently to each variate along both the frequency and time axes,
with respective masking ratios of 0.6 and 0.5. This results in an expected overall masking ratio of 0.8 for each variate. Only
the unmasked tokens are passed to the encoder, reducing computational complexity. To enhance representation learning,
we introduce six additional transformer blocks as fusion layers, interleaved with the original 12 encoder blocks, creating a
total of 18 blocks. Each transformer block has a hidden dimension of 768 and uses LayerNorm as in the original MAE.
The latent embeddings obtained from the encoder are projected from 768 to 512 dimensions. Learnable masked tokens
are reinserted at their original positions, and positional embeddings are added to guide the decoder in reconstructing the
input series. The lightweight decoder consists of two transformer blocks with a hidden dimension of 512, followed by two
Conv1D layers. The first Conv1D layer maps from the flattened multivariate signal embedding to an intermediate dimension,
and the second Conv1D layer maps from this intermediate dimension back to the original multivariate signal space. A
GELU activation function is used between these layers, with BatchNorm applied to the input. The decoder reconstructs the
original input series, and the model is trained using Mean Squared Error (MSE) loss on all data points. Our models are
pre-trained for 45,000 steps with a batch size of 256, using the AdamW optimizer with a learning rate of 10−4. We did not
perform on-the-fly data augmentation, as suggested in the MAE framework, due to the high masking ratio. (An end-to-end
example of the input and output of this pretraining pipeline is illustrated in Fig. 6)

MSiTF. For pretraining the representation alignment module, we have the training hyper-parameters in Table 6.

Sentence template example for signal-sext alignment.
• Emotion Task:

– ’The emotion detected is {}.’,
– ’This subject is feeling {}.’,
– ’The emotional state is {}.’,
– ’The identified emotion is {}.’

• Activity Task:
– ’This subject is currently {}.’,
– ’The subject is engaged in {}.’,
– ’Current activity is {}.’,
– ’Subjectś activity is {}.’

where {} is the placeholder for the corresponding label of each sample in pretraining datasets.

Statistical Feature list:

Features in time domain: mean, std, max, min, skew, kurtosis, 25% quantile, median, 75% quantile.

Features in frequency domain: centroid, spread, mean frequency, peak frequency, 25% quantile frequency, median frequency,
75% quantile frequency.

Radar Plot or Performance Trend. To enhance the visual contrast between model performances across tasks, we applied
the Softmax function to the raw performance scores. This transformation rescales the scores to a range between 0 and 1,
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Figure 6. Visualization of original time series (left), CWT transformation image with structured masking (middle), and reconstructed time
series (right).

accentuating relative differences between models. While the Softmax transformation emphasizes the relative improvement
of our model over others, we note that the absolute scores may differ from those originally reported.

B. Ablation Study
Due to computational constraints, we will conduct the ablation study on our smaller dataset (37k samples) to train and
evaluate the model, establishing a proof of concept and demonstrating the effectiveness of our approach in a controlled
setting.

Fusion Schemes. Table 7 shows the performance of different fusion schemes, including (1) no fusion, (2) cross-attention
fusion, (3) [CLS]-attention fusion, and (4) mean-pooling fusion. We excluded all-attention fusion in our ablation study
because it is computationally prohibitible. Among all the compared strategies, the [CLS] token fusion generally achieves
the best accuracy with a minor increase in parameters.

Masking Strategies in Pre-training. We ablated our masking strategy introduced in Section 3.3. Using a consistent mask
ratio of 0.8 in all strategies, we found that applying masking along the scale and time axes produced the best performance
(details in Table 8).

Input Representations. Table9 compares the performance of two input representations: (1) CWT scalogram and (2) raw
time series. The CWT scalogram converts the time series into a time-frequency representation, while the raw time series
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Table 5. NormWear Pretraining Hyper-parameters.
Hyper-parameter Value

# cross-patches Transformer Encoder 12
# cross-channels Transformer Encoder 6
# Transformer Decoder 2
# Attention Heads 12
Encoder Latent Size 768
Decoder Latent Size 512
Feedforward Latent Size 3072
Normalization LayerNorm
Patch size (time axis) 9
Patch size (scale axis) 5
Optimizer AdamW
Loss Scalar NativeScaler
Base Learning Rate (blr) 1e-3
Epochs 140
Batch size 192

Table 6. MSiFT Hyper-parameter
Hyper-parameter Value

Learning rate (lr) 1e-3
Epochs 40
Batch size 32
L2 regularization 5e-6
lr decay rate 0.997
λ 0.5
τ 0.5

Table 7. Performance Comparison of Various Fusion Schemes

Downstream Tasks No fusion Cross-Attention fusion Mean pooling fusion [CLS] Token fusion
WESAD 72.209 74.165 71.99 75.390
UCI-HAR 97.793 96.908 97.566 98.928
DriverFatigue 73.252 60.308 72.552 75.167
Activity Recognition Avg. 81.085 77.127 80.703 83.162

Epilepsy (eye open state) 90.966 84.075 89.817 92.203
Epilepsy (eye relaxation) 94.399 93.589 93.912 94.908
Epilepsy (health area) 87.866 86.899 87.248 88.117
Epilepsy (tumor area) 86.599 86.861 87.152 86.888
Epilepsy (seizure) 97.477 96.351 96.719 96.638
GAMEEMO 57.695 56.724 58.079 56.532

EEG Main Tasks Avg. 85.834 84.083 85.488 85.881

ECG-Abnormal 99.429 99.441 99.268 99.041
PPG-BP (HTN) 61.850 60.983 63.577 60.344
PPG-BP (DM) 58.333 62.800 62.200 59.459
PPG-BP (CVA) 61.319 61.458 59.236 70.278
PPG-BP (CVD) 48.417 53.585 46.961 52.596
PhysioNet EMG 93.715 95.49 86.749 98.184
Risk Evaluation Avg. 70.511 72.293 69.665 73.317

Noninvasive-BP 88.356 92.759 88.719 92.470
PPG-Hgb 95.031 93.413 95.086 94.766
Fetal-fPCG 98.582 99.145 98.771 99.088

Vital Signs Avg. 93.990 95.106 94.192 95.441
Micro Avg. 81.294 80.831 80.867 82.833
Macro Avg. 82.855 82.152 82.512 84.450

retains the original sensor data. Among the two representations, the model trained on CWT scalograms demonstrates better
performance, suggesting that the time-frequency features enhance model accuracy.
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Table 8. Performance Comparison of Different Masking Strategies

Downstream Tasks
Unstructured Mask

(P = 0.8)
Time Mask

(Pt = 0.8, Pf = 0.0)
Scale Mask

(Pt = 0.0, Pf = 0.8)
Structured Mask

(Pt = 0.6, Pf = 0.5)
WESAD 71.46 71.952 72.201 75.390
UCI-HAR 97.097 98.438 98.106 98.928
DriverFatigue 72.719 73.424 78.354 75.167

Activity Recognition Avg. 80.425 81.271 82.887 83.162
Epilepsy (eye open state) 89.521 91.895 89.407 92.203
Epilepsy (eye relaxation) 93.471 94.808 93.786 94.908
Epilepsy (health area) 86.812 88.510 87.317 88.117
Epilepsy (tumor area) 86.524 88.254 85.502 86.888
Epilepsy (seizure) 96.59 97.791 95.29 96.638
GAMEEMO 58.043 56.770 55.771 56.532

EEG Main Tasks Avg. 85.160 86.338 84.512 85.881

ECG-Abnormal 99.085 99.316 98.296 99.041
PPG-BP (HTN) 58.880 55.333 59.230 60.344
PPG-BP (DM) 61.074 48.386 58.896 59.459
PPG-BP (CVA) 56.389 58.472 64.167 70.278
PPG-BP (CVD) 52.572 46.557 55.666 52.596
PhysioNet EMG 85.160 95.490 83.922 98.184

Risk Evaluation Avg. 68.860 67.259 70.030 73.317
Noninvasive-BP 90.124 90.650 91.152 92.470
PPG-Hgb 95.314 95.055 94.713 94.766
Fetal-fPCG 98.630 99.121 98.926 99.088

Vital Signs Avg. 94.689 94.942 94.930 95.441
Micro Avg. 80.526 80.568 81.150 82.833
Macro Avg. 82.284 82.453 83.090 84.450
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Table 9. Performance Comparison Between CWT Scalogram and Raw Time Series as Inputs.

Downstream Tasks Raw Series Input CWT Scalogram Input
WESAD 70.862 75.390

UCI-HAR 97.969 98.928
DriverFatigue 73.854 75.167

Activity Recognition Avg. 80.895 83.162

Epilepsy (eye open state) 91.978 92.203
Epilepsy (eye relaxation) 94.781 94.908

Epilepsy (health area) 88.045 88.117
Epilepsy (tumor area) 85.619 86.888

Epilepsy (seizure) 97.722 96.638
GAMEEMO 54.651 56.532

EEG Main Tasks Avg. 85.466 85.881

ECG-Abnormal 97.701 99.041
PPG-BP (HTN) 52.614 60.344
PPG-BP (DM) 62.012 59.459
PPG-BP (CVA) 56.181 70.278
PPG-BP (CVD) 54.812 52.596
PhysioNet EMG 93.756 98.184

Risk Evaluation Avg. 69.513 73.317

Noninvasive-BP 89.850 92.470
PPG-Hgb 93.832 94.766

Fetal-fPCG 98.977 99.088
Vital Signs Avg. 94.220 95.441

Micro Avg. 80.845 82.833
Macro Avg. 82.523 84.450

Table 10. Performance on various downstream wearable-signal-based health related applications under linear probing evaluation using 5
fold cross validation stratified by subject ID (if provided by the data source). In this table, The classification tasks are solved by Newton’s
method with conjugate gradient, and the AUC ROC are reported. The regression (noninvasive BP estimate) tasks are solved by Cholesky’s
method with closed form solution for ridge regression, and the relative accuracy (1 minus relative error) are reported. All the scores are
the higher the better.

Downstream Tasks Statistical Chronos CLAP TF-C
NormWear-L
(Ours)

WESAD 79.992 +- 0.707 83.332 +- 0.841 87.824 +- 0.463 82.701 +- 0.536 89.585 +- 0.683
UCI-HAR 95.602 +- 0.148 91.956 +- 0.256 96.864 +- 0.175 97.382 +- 0.138 98.179 +- 0.06
DriverFatigue 69.614 +- 1.138 72.48 +- 2.848 66.251 +- 0.471 65.026 +- 1.198 68.971 +- 1.32
GAMEEMO 64.281 +- 1.292 56.694 +- 0.878 64.119 +- 0.543 62.925 +- 0.999 67.863 +- 0.72
Noninvasive 92.83 +- 0.386 92.223 +- 0.356 92.612 +- 0.272 88.707 +- 0.622 93.381 +- 0.516
Avg. 80.464 +- 0.734 79.337 +- 1.036 81.534 +- 0.385 79.348 +- 0.699 83.596 +- 0.660

From Table 11, we observe that demographic information and represenations extracted from wearable signals have their
own strength on different tasks, and most of the time, when we concatenate them together, the overall performance will
be better. The performance drop in some cases after concatenation, which indicate that there might be some confounding
relationship between these two representations, hence further indicated that the information lies in demographic and the
wearable represenation from NormWear are focused on different aspects. Same observation are observed with arbitrary
model checkpoints during pretraining (denoted as Medium and Large marker representing different stage of training when
we do the study on increasing the pretrain size.)
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Table 11. Checking the reliance on demographic information.

Downstream Tasks
Simple Baseline
Mode and Mean

Demographic NormWear-Medium
Demographic +
NormWear-Medium

NormWear-Large
Demographic +
NormWear-Large

WESAD 50.000 49.907 74.227 69.06 76.06 68.755
Noninvasive 92.988 92.954 91.427 90.84 92.42 92.528
PPG-Hgb 94.816 95.634 94.911 95.835 94.632 96.384
Fetal-fPCG 99.033 99.039 98.997 99.001 99.072 99.097
Vital Signs Avg. 95.612 95.876 95.112 95.225 95.375 96.003
PPG-BP (HTN) 50.000 59.899 62.746 64.482 62.341 61.291
PPG-BP (DM) 50.000 47.297 62.613 47.86 55.893 60.135
PPG-BP (CVA) 50.000 81.875 67.639 83.681 70.625 77.847
PPG-BP (CVD) 50.000 71.011 51.504 70.37 51.773 67.466
Risk Evaluation Avg. 50.000 65.021 61.126 66.598 60.158 66.685
Micro Avg. 67.105 74.702 75.508 77.641 75.352 77.938
Macro Avg. 65.204 70.268 76.821 76.961 77.198 77.148

Table 12. Details of Incidental Performance Metrics.

Task Group Methods AUC ROC AUC PR Accuracy Precision Recall F1 Score
Statistical 75.082 63.996 65.298 61.450 61.56 61.034

Activity Chronos 79.935 65.622 66.175 62.044 61.512 60.522
Recognition CLAP 76.897 67.026 66.349 62.790 62.826 62.435

TF-C 77.880 68.228 67.175 64.967 64.798 64.783
NormWear (Ours) 83.102 76.232 75.254 72.606 72.177 72.053
Statistical 79.720 50.172 73.921 63.567 57.529 57.948

EEG Main Chronos 80.677 55.507 75.285 72.442 52.520 47.671
Tasks CLAP 82.100 57.518 76.391 68.506 61.961 62.650

TF-C 84.302 61.864 76.825 71.702 65.517 67.889
NormWear (Ours) 85.883 66.841 79.182 72.485 69.158 69.698
Statistical 71.032 53.783 79.688 52.718 53.235 50.807

Disease Risk Chronos 62.060 40.673 71.910 45.512 43.739 40.569
Evaluation CLAP 66.274 48.232 81.327 53.028 54.721 52.804

TF-C 69.416 46.312 78.929 52.123 52.352 51.349
NormWear (Ours) 73.165 51.666 81.530 54.133 56.314 54.428
Statistical 75.317 51.596 74.503 58.804 56.618 55.709

Micro Chronos 73.082 51.596 72.113 59.590 50.806 47.401
Average CLAP 74.729 55.705 76.357 61.171 59.238 58.669

TF-C 77.063 56.916 75.737 62.523 60.107 60.652
NormWear (Ours) 80.240 62.649 79.336 65.168 64.624 64.061
Statistical 75.278 55.983 72.969 59.245 57.441 56.596

Macro Chronos 74.224 53.934 71.123 59.999 52.590 49.587
Average CLAP 75.091 57.592 74.689 61.441 59.836 59.296

TF-C 77.199 58.801 74.310 62.931 60.889 61.340
NormWear (Ours) 80.717 64.913 78.656 66.408 65.883 65.393

C. Statistical significance on the model comparison
We conduct statistical analysis to check the significance of the difference between models’ performance. We first run
the downstream evaluation 100 times for each model on all the tasks, without fixing random seed. We observed that the
outcomes stay consistent due to the stability of the optimization process.

We then conduct a permutation test, across the results from these 100 runs, to assess whether our method significantly
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outperforms the baselines. We declare the alternative hypothesis as whether the score (AUC ROC) of NormWear is greater
than the baselines in comparison. The reported P value represents the probability of observing a test statistic as extreme as,
or more extreme than, the observed difference under the null hypothesis, assuming that the AUC ROC score of NormWear is
not greater than the baseline. The results indicate that in nearly all cases, the statistical significance (p-value) is less than
0.01, providing statistical significance evidence of the robustness and superiority of our approach. In Table 7, we include the
results from conducting the statistical test across different task groups (the groups were highlighted with different colors in
the tables in main sections) and the total average scores.

We also present the critical difference diagram (CD) to visually compare the performances of multiple models across
datasets, highlighting whether their performance differences are statistically significant. In order to achieve CD diagram, we
first conduct Friedman Chi square test on the scores achieved by the models across all the downstream tasks, and observe
P value of P ¡ .001, making sure all the models’ performance are coming from different distribution. Then we conduct
Conover post hoc test to check the pair-wise model performance difference, where the P values corresponding to NormWear
vs. baselines are presented in the last row of Table 7. Finally, we create CD diagram based on these results, and result in the
diagram shown in Figure 8. Our proposed model, NormWear is far apart from the bar, indicating its statistical significance
against competitive baselines.

Ours/Baselines Stats Chronos CLAP TFC
NormWear - activity P < .01 P < .01 P < .01 P < .01

NormWear - eeg P < .01 P < .01 P < .01 P < .01

NormWear - risk P < .01 P < .01 P < .01 P < .01

NormWear - vital P < .01 P < .01 P < .01 P < .01

NormWear - micro avg. P < .01 P < .01 P < .01 P < .01

NormWear - macro avg. P < .01 P < .01 P < .01 P < .01

Conover post hoc P < .001 P < .001 P < .001 P < .05

Figure 7. Permutation test on models’ performance.
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Critical difference diagram of average score ranks

Figure 8. Critical Difference Diagram

D. Scaling up the Pretraining Data Size

In addition to demonstrating that NormWear outperforms all
strong baselines, we further investigate the effect of varying
pretraining data size on the model’s downstream performance
to examine whether the scaling law applies to our proposed
methodology. As shown in Figure 9, the overall performance
(measured by accuracy) significantly improves as the pretrain-
ing data size increases from approximately 37k (62 hours) to
nearly 2.5M (4000 hours) samples of wearable signal data.
This observation indicates that our model adheres to the scal-
ing law, highlighting its potential scalability and suitability for
future large-scale applications.

10
5

10
6

Dataset Size (Number of Samples)

73

74

75

76

77

78

79

A
cc

ur
ac

y 
(%

)

State Recognition
EEG Task
Diease Risk

Figure 9. Impact of scaling the pretraining dataset on down-
stream tasks. The y-axis represents the average accuracy
across tasks, while the x-axis denotes the size of the pretrain-
ing dataset in terms of the number of samples.
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E. Deployment of NORMWEAR: testing on the edge
As shown in the table 13, the GPU setup on an NVIDIA RTX 3090 significantly outperforms other configurations in
inference speed, achieving an inference time of only 0.18 seconds while maintaining low RAM usage (8.04 MB) and
moderate VRAM requirements (732.82 MB). In contrast, the CPU setup on MacOS M1 requires 4.21 seconds, reflecting a
considerably slower performance despite similar RAM usage (9.12 MB) and no VRAM consumption. On edge devices,
such as the Jetson Nano 4GB, the CPU-based setup exhibits the slowest inference time of 40.69 seconds, while the GPU
variant improves this to 34.87 seconds with a VRAM requirement of 504.46 MB. Storage requirements remain constant
across all configurations at 1.63 GB.

Table 13. Computation resources consumed across various devices, on 6 channels data for 6 seconds.

Dataset/Task Infer time RAM VRAM Storage

CPU (MacOS, M1) 4.21 s 9.12 MB - 1.63 GB
GPU
- Debian GNU/Linux
- NVIDIA-RTX-3090

0.18 s 8.04 MB 732.82 MB 1.63 GB

Edge (Jetson Nano 4GB, CPU) 40.69 s 9.12 MB - 1.63 GB
Edge (Jetson Nano 4GB, GPU) 34.87 s 8.17 MB 504.46 MB 1.63 GB

F. Feature Visualization
F.1. The model is agnostic to the input signals

This section investigates whether, without requiring the signal modality type information as input, NORMWEAR can
effectively distinguish between different signal sources. We randomly sampled 500 samples for each sensor type and fed
them into our pretrained model. We use t-SNE (Van der Maaten & Hinton, 2008), with PCA (Jolliffe & Cadima, 2016)
initialization to visualize the learned representations corresponding to the [CLS] special token at the last layer. The PCA
preserves the global structure, while t-SNE emphasizes local relationships in the data. From Figure 11(a), we observe that
representations from sensors located at the same body position are clustered closely together, while representations from
different body locations are clearly separated. This suggests that our model is signal-agnostic, as it can recognize the signal
type differences, map their representations appropriately in the embedding space, and guide feature extraction within each
Transformer block.

F.2. Waveform visualization

Figure 11 (b) under “Feature Associations” shows the features extracted by our model. Each patch corresponds to a
representation with a vector size of R768. When ordered by time sequence, these representations form 768 waveforms per
layer, representing the model’s extracted features. The figure displays 64 randomly sampled waveforms from a selected
layer. The features highlighted in purple and gray indicate the top 10 patterns positively and negatively associated with the
target task (diabetes classification, in this example), with associations determined by linear regression parameters during
linear probing. Additionally, our relevance-based fusion mechanism identifies the contribution of each time step during
inference, highlighted by red dots in the “Time Step Relevance” section of Figure 11 (b).

Such a visualization pipeline can assist researchers and clinicians by offering insights into how the model reaches its final
predictions. Given the millions of parameters and hundreds of waveform features per layer, visualizing these features
individually is inefficient for understanding the overall behavior of the proposed foundation model. As a result, we use
several techniques in nonlinear dynamic analysis (Thompson et al., 1990) to quantify the overall patterns of these extracted
features, which are discussed in detail in section F.3.

F.3. Quantify the intrinsic behaviors: nonlinear dynamics analysis on the layer-wise waveforms
Understanding the representations extracted by intermediate layers is crucial to interpreting our model’s behavior. To
quantify the meaningfulness of these representations, we conducted a nonlinear dynamics analysis inspired by chaos theory.
This method analyzes the features’ intrinsic behaviors through metrics like the Lyapunov exponent (Wolf et al., 1985)
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(sensitivity to initial conditions), Hurst exponent (Qian & Rasheed, 2004) (self-correlation/seasonality), and persistence
entropy (Yan et al., 2023b) (unpredictability in system states). We obtain the following key observations:

1. Deeper Layers Capture Higher-Order Complexity.
• For signals such as GSR, EEG, and ACC, deeper layers show lower self-correlation (DFA (Hu et al., 2001)) and higher

unpredictability (persistence entropy), indicating a transition to representations that are less periodic and more chaotic.
• The decrease in the Lyapunov exponent across layers suggests reduced variation in extracted features, aligning with the

idea that deeper layers capture more abstract, long-term patterns with broader receptive fields.
2. Modalities with Simpler Dynamics. In contrast, PPG and ECG signals, dominated by regular heart activity, exhibit
more stable patterns across layers. This aligns with their simpler waveform structures and less complex dynamics compared
to signals related to neural and physical activities.

These visualizations reveal that the model progressively transforms raw sensory data into representations aligned with the
complexity of each signal. For GSR and EEG, deeper layers exhibit increased unpredictability and reduced periodicity,
highlighting the extraction of nuanced, higher-order patterns critical for human sensing. In contrast, the stability of
representations for PPG and ECG reflects their simpler dynamics, demonstrating the model’s adaptability to varying signal
characteristics. This analysis confirms that the intermediate representations are purposefully optimized to capture the
temporal and structural nuances of each modality, supporting the conclusion that the model learns meaningful features
tailored to human sensing tasks.
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Figure 10. Nonlinear dynamic analysis on the waveforms extract at different layers of our model.

F.4. T-SNE plot among classes

In this section, we present T-SNE plots of NormWear’s embeddings across different classes to provide insights into their
structure and assess their suitability for sample similarity-based information retrieval. It is important to note that these plots
are exploratory in nature and do not serve as a claim of the embeddings’ superiority. As shown in Figures 12, 13, 14, clear
class separations can be observed in certain scenarios. For example, EEG samples from seizure subjects and normal subjects
are distinctly separated, and physical activity types are well-clustered. For ECG data, abnormal heartbeats tend to form
cohesive clusters. However, it is essential to recognize that these T-SNE plots reduce the latent representations into a 2D
space, which may not fully capture the inherent properties of the embeddings in their original high-dimensional form.
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(a) T-SNE plot of the embeddings of the
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Figure 11. Feature visualization.
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Figure 12. Visualization of embedding on EEG signals.
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Figure 13. Visualization of embedding on signals from IMU sensors.

Normal heart beat
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Figure 14. Visualization of embedding of ECG.
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G. Reconstruction Example

Figure 15. Uncurated random samples on Phyatt scalogram, using a NORMWEAR trained in our training set. The masking ratio is 80%.
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Figure 16. Uncurated random samples on WESAD scalogram, using a NORMWEAR trained in our training set. The masking ratio is
80%. Note that the IMU data are not in the training set and, in general, NORMWEAR is able to reconstruct this with high accuracy.
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