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Abstract

Medical Visual Language Models have shown great po-001
tential in various healthcare applications, including medi-002
cal image captioning and diagnostic assistance. However,003
most existing models rely on text-based instructions, limit-004
ing their usability in real-world clinical environments es-005
pecially in scenarios such as surgery, text-based interac-006
tion is often impractical for physicians. In addition, current007
medical image analysis models typically lack comprehen-008
sive reasoning behind their predictions, which reduces their009
reliability for clinical decision-making. Given that medi-010
cal diagnosis errors can have life-changing consequences,011
there is a critical need for interpretable and rational med-012
ical assistance. To address these challenges, we introduce013
an end-to-end speech-driven medical VLM, SilVar-Med, a014
multimodal medical image assistant that integrates speech015
interaction with VLMs, pioneering the task of voice-based016
communication for medical image analysis. In addition, we017
focus on the interpretation of the reasoning behind each018
prediction of medical abnormalities with a proposed rea-019
soning dataset. Through extensive experiments, we demon-020
strate a proof-of-concept study for reasoning-driven med-021
ical image interpretation with end-to-end speech interac-022
tion. We believe this work will advance the field of medical023
AI by fostering more transparent, interactive, and clinically024
viable diagnostic support systems. Our code and dataset025
are publicly available at SiVar-Med.026

1. Introduction027

Recently, advancements in Visual Language Models028
(VLMs) have demonstrated the potential of Large Language029
Models (LLMs) to process both images and text at the same030
time [2, 4, 26, 30, 39]. In the medical domain, VLMs031
have gained increasing attention for their ability to facili-032
tate intuitive human-machine interactions such as MedBLIP033
[11], Med-flamingo [33], Llava-Med [25], improving clini-034
cal decision-making and diagnostic assistance. These mod-035

els are particularly valuable for medical imaging analysis, 036
where they can process complex radiological images — 037
such as X-ray [19, 24], MRI, and CT scans [48] — and gen- 038
erate meaningful textual descriptions. By leveraging deep 039
learning techniques, VLMs can assist professionals in in- 040
terpreting medical images, identifying abnormalities, and 041
supporting diagnostic workflows. 042

Despite these advancements, most existing medical 043
VLMs remain limited to text-based interactions, which may 044
not be optimal in time-sensitive clinical settings or for visu- 045
ally impaired users. While some proprietary VLMs, such as 046
GPT-4o [36] and Gemini [43], support speech-driven inter- 047
actions, they are not open-source, restricting fine-tuning for 048
downstream tasks. Recently, SilVar [37], a speech-driven 049
multimodal model for reasoning-based visual question an- 050
swering and object localization, has emerged as a pioneer- 051
ing effort in the field. Despite its potential applications in 052
the medical domain, speech-based medical instruction for 053
VLMs remains underexplored in open-source research, and 054
existing models lack the capability to process and reason 055
through spoken queries effectively. 056

Furthermore, while there are some several benchmarks, 057
have been introduced to evaluate the performance of medi- 058
cal VLMs such as MultiMedEval [41], MultiMedQA [42], 059
OmniMedVQA [18], existing evaluation methods primarily 060
focus on image captioning tasks and are limited in assessing 061
the reasoning behind predictions. In addition, commonly 062
used datasets such as SLAKE [29], VQA-Med [7], VQA- 063
RAD [23], and PathVQA [17] primarily evaluate models 064
using text-based instructions with short-answer responses, 065
often without requiring deeper reasoning or justification. 066
To address this limitation, LLaVA-Med [25] introduced a 067
medical chat assistant capable of answering open-ended re- 068
search questions, but its functionality is restricted to image- 069
text inputs and limited by the number of supported med- 070
ical image modalities. OmniMedVQA [18], on the other 071
hand, aggregates multiple available datasets to create a 072
larger benchmark for multiple-choice question-answering 073
tasks and utilizes LLMs as judges for evaluation. However, 074
both approaches lack a structured framework for evaluat- 075
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ing reasoning abilities in medical VLMs, particularly in the076
context of abnormality detection.077

To bridge this gap, we propose SilVar-Med, an end-to-078
end speech-instructed medical VLM that enables users to079
interact with the model verbally. Our approach not only080
introduces speech-driven interaction but also concentrates081
in reasoning abnormality detection by incorporating struc-082
tured reasoning into predictions. To this end, we intro-083
duce a demonstrated dataset, designed for reasoning abnor-084
mality detection through speech instructions. Additionally,085
we propose a novel evaluation metric that leverages LLMs086
as judges to assess the reasoning capabilities of medical087
VLMs. Our contribution is summarized as follows:088

• We propose SilVar-Med, a speech-driven medical VLM089
that enables intuitive human-machine interaction in090
healthcare.091

• We focus on investigating the model’s reasoning abilities092
behind abnormality detection, addressing the limitations093
of predictions without explanations or short predictions.094

• We introduce a dataset for speech-instructed medical ab-095
normality detection, enhancing multimodal learning in096
medical AI.097

• We propose a comprehensive reasoning evaluation metric098
together with LLMs as judges for medical VLMs.099

2. Related Work100

2.1. Medical Vision Language Models101

Over the past five years, there has been a rapid develop-102
ment of LLMs and VLMs such as Gemini and GPT-4 [1, 9],103
alongside the emergence of open-source models like the104
Llama family [15, 44, 45], Mistral family [20], Qwen fam-105
ily [6, 50], and Vicuna [56]. These models have signifi-106
cantly advanced natural language understanding, but their107
capabilities have been further extended by VLMs, which108
integrate visual and textual modalities [26]. VLMs enable109
models to process both images and text, enhancing appli-110
cations such as visual question answering (VQA), medi-111
cal image interpretation, and image captioning. There are112
many VLMs including Flamingo [2], BLIP [31], MiniGPT-113
v2 [10], MiniGPT-4 [57], LLaVA [30], and InternVL [13],114
which have demonstrated remarkable progress in general-115
domain visual-language tasks.116

Inspired by these advancements, researchers have de-117
veloped domain-specific VLMs for medical applications118
[11, 46, 54]. One of the pioneering studies in this field119
is Med-Flamingo [33], which extends Flamingo to the120
medical domain by pretraining on multimodal knowledge121
sources spanning various medical disciplines. Similarly,122
LLaVA-Med [25] filters image-text pairs from PMC-15M123
[54] to train a biomedical-specialized VLM leveraging124
LLaVA-pretrained parameters. In addition to medical im-125
age report generation and medical image captioning models126

[51], MiniGPT-Med [3] and Lite-GPT [24] extend MiniG- 127
PTs [10, 57] to generate bounding boxes along with pre- 128
dictions, enabling localized abnormality detection. Further- 129
more, Merlin [8] is one of the pioneering models for 3D 130
VLMs, capable of processing 3D medical images alongside 131
their corresponding textual radiology reports, along with 132
RadFM [47]. Other notable studies, such as PubMedCLIP 133
[16], BiomedCLIP [54], and BiomedGPT [53], have also 134
contributed to the adaptation of general-domain VLMs for 135
medical applications. 136

However, most of these work underexplored the reason- 137
ing behind prediction and concentrate on short answer gen- 138
eration or multiple choice, reducing their reliability for clin- 139
ical decision-making. In addition, medical VLMs remain 140
limited to image-text interactions, which may not be conve- 141
nient in scenarios where text input is unavailable or imprac- 142
tical. For example, in surgical environments, speech-based 143
interactions could be more effective, as verbal communica- 144
tion is often preferred over manual text input. 145

2.2. Medical Datasets and Benchmarks 146

In addition to model development, researchers have made 147
efforts to create medical VQA datasets to support the on- 148
going advancements in the field. Several fundamental 149
and widely used medical VQA datasets have been devel- 150
oped, including SLAKE [29], VQA-RAD [23], PathVQA 151
[17], VQA-Med (2018–2021) [7], and PubMedQA [21], 152
EHRXQA [5]. However, these datasets are often limited 153
in size or lack diversity in medical imaging modalities. To 154
address these limitations, recent studies have attempted to 155
scale dataset size using GPT-assisted models and prompt- 156
ing techniques. For example, models such as LLaVA-Med 157
[25] and MedTrinity [48] have leveraged large-scale dataset 158
generation through synthetic data augmentation. Further- 159
more, OmniMedVQA [18] combines both published and 160
restricted datasets to provide a diverse and large-scale medi- 161
cal VQA benchmark, primarily focusing on multiple-choice 162
questions. In addition, PMC-VQA [55] was generated using 163
self-instruction on PMC-OA [28], offering a comprehensive 164
dataset for biomedical VQA tasks. 165

Despite these efforts, current medical VLMs still strug- 166
gle with reasoning-based predictions, resulting in medical 167
VQA models excelling at image captioning tasks but lack- 168
ing structured reasoning mechanisms to justify their out- 169
puts. Moreover, existing evaluation methods primarily fo- 170
cus on text similarity and alignment metrics (n-grams) such 171
as accuracy, BLEU, and ROUGE, without adequately as- 172
sessing the depth of reasoning in model predictions. These 173
metrics may also fail to capture the semantic quality and 174
logical coherence of the model’s reasoning process. 175

To address these challenges, in this work, we propose 176
SilVar-Med, an end-to-end speech-instructed medical VLM 177
that enhances multimodal interactions and supports struc- 178
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tured reasoning for abnormality detection. In addition, we179
focus on reasoning-based abnormality detection that im-180
proves model transparency and decision-making reliabil-181
ity. To this end, we introduce a demonstration dataset for182
reasoning-based abnormality detection. In term of evalua-183
tion, we propose using LLMs as a judge framework with a184
focus on reasoning responses.185

3. Data Processing186

3.1. Reasoning Abnormality Dataset187

To achieve our study’s objective - developing a medical as-188
sistant that understands medical images and enables users to189
interact with it through voice queries - we created a demo190
dataset addressing two key challenges: (1) understanding191
the reasoning behind each abnormality detection and (2)192
enabling voice-based instructions or queries. Particularly,193
we focus on abdominal and thoracic abnormalities detec-194
tion across three imaging modalities: MRI, CT, and X-ray.195
Our dataset includes abnormalities in six organs, including196
heart, liver, kidney, lung, spleen, because they align well197
with the expertise of the physicians on our team.198

Recognizing the ability of large language models199
(LLMs) to effectively learn from visual features in images200
and their corresponding reasoning descriptions, we inten-201
tionally created a small, specialized dataset tailored for our202
downstream task. We manually selected abnormal sam-203
ples from the SLAKE dataset [29] and then constructed our204
explainable abnormality detection dataset. Initially, three205
medical image analysis specialists from our team manu-206
ally annotated the dataset. However, after annotating a sub-207
stantial number of samples, we found that we could lever-208
age GPT-4o with Chain-of-Thought (CoT) prompting, com-209
bined with our medical expertise, to enhance quality and210
efficiency. Eventually, the annotation process is described211
into four steps as follows:212

• Data Selection: Identifying and verifying abnormal sam-213
ples extracted from the SLAKE dataset. Following the214
initial annotation, we select samples that exhibit abnor-215
malities and confirmed disease diagnoses.216

• Annotation & Labeling: After selecting the desired sam-217
ples, we identify bounding boxes and label abnormali-218
ties directly on the images. Then, we leverage GPT-4o219
and CoT prompting to generate preliminary annotations220
as mentioned above. The purpose of this step is to lever-221
age the knowledge of GPT-4o to assist in labeling.222

• Specialists Validation: Using the original labels and pre-223
liminary annotations, our team of three medical image224
analysis specialists manually reviewed and relabeled the225
data to generate high-quality annotations, ensuring the226
correctness of all labels (866 samples).227

• Synthetic Voice Generation: We normalize the text in228
the questions to ensure that it generates smooth, natu-229

ral speech outputs, enhancing the clarity and coherence 230
of the spoken content before using Google Cloud APIs 231
to generate synthetic voice. Regarding the naturalness of 232
the sound, we believe it is more related to sentiment and 233
emotional recognition, which is beyond the scope of this 234
study. Therefore, we assume that the nuance and tone 235
of the synthetic voice do not significantly affect our task, 236
abnormality prediction. 237

Finally, our dataset has the following imaging modality dis- 238
tribution: MRI (22.4%, 194 samples), CT (16.5%, 143 sam- 239
ples), and X-ray (61.1%, 529 samples). The dataset is split 240
into training and testing sets: train (162 MRI, 122 CT, 432 241
X-ray) and test (32 MRI, 21 CT, 97 X-ray). 242

The dataset is designed to support reasoning-based abnormal-
ity detection, with questions structured to extract meaningful
insights about abnormalities in an organ.
Example questions include:
• What diseases are present in the image?
• Does the specific organ appear normal or abnormal?
• Is the specific organ healthy?
• Are there any abnormalities in this image?
• Which organ is abnormal: {specific organ} or {specific or-

gan}?
For the answer structure, we ensure that:
• The first sentence directly answers the question.
• The subsequent sentences provide reasoning, explaining the

signs of abnormality.
243

Sample 1: No abnormality detection.

Question: Is the lung healthy?

Answer: The lung appears healthy
based on the provided imaging. There
are no visible signs of abnormalities
such as lesions, fluid accumulation, or
structural changes. The lung fields are
clear, indicating normal function and
absence of disease.

Sample 2: Abnormality detection.

Question: What diseases are included
in the picture?

Answer: The image indicates the pres-
ence of lung cancer, characterized by
abnormal growths in the lung tissue.
The CT scan shows potential lesions or
nodules that may suggest malignancy.

Table 1. Examples of reasoning abnormal detection.

3



ICCV
#2873

ICCV
#2873

ICCV 2025 Submission #2873. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Dataset Train Validation Test

VQA-RAD [23] 1.7k None 451
SLAKE (English)[29] 4.9k 1k 1k
VQA-Med 2019 [7] 12.7k 2k 500
SilVar-Med (ours) 716 - 150

Table 2. Summary of Medical VQA Datasets.

3.2. Data Collection244

Recognize the size limitation of our reasoning dataset, we leverage245
some published datasets including SLAKE [29], VQA-RAD [23],246
VQA-Med 2019 [7] to enhance its learning knowledge. For these247
dataset, we follow the synthetic voice generation pipeline as men-248
tioned in Sec. 3.1. For the SLAKE dataset, we use only english249
samples.250

4. Reasoning Abnormality Detection251

4.1. Speech-Driven Medical VLM252

Our SilVar-Med is a multimodal model built upon to SilVar [37],253
for medical abnormality detection by integrating speech and image254
inputs. Unlike traditional medical visual language models that rely255
on text-based instructions, SilVar-Med introduces an end-to-end256
speech-driven approach, making it more suitable for real-world257
clinical environments where text interaction is impractical, such258
as in surgical settings. Inherit from the flexibility of the mod-259
ules in the SilVar model, we designed the model with three key260
components: an audio encoder that extracts speech features, a vi-261
sual encoder that processes medical images, and a large language262
model that fuses multimodal inputs to generate reasoned text re-263
sponses for abnormality detection. In addition, we modified the264
vision encoder with PubMedCLIP [16], and the language model265
with Deepseek R1 (Distill-8B-Llama) [14], a rising star for reason-266
ing response. By combining speech and vision-based reasoning,267
SilVar-Med enhances interpretability in medical image analysis,268
providing a more interactive and transparent diagnostic support269
system.270

4.2. Training Pipeline271

The training of SilVar-Med follows a two-stage process, as shown272
in Fig. 1. In the first stage, general-to-medical adaptation, we train273
the Whisper [38] model with a speech-to-text task in the medical274
domain to ensure it effectively extracts meaningful features from275
spoken instructions. Once trained, the Whisper encoder is inte-276
grated into SilVar-Med, where it works alongside the medical vi-277
sual encoder and language model to process multimodal inputs.278
After that, we train the SilVar-Med with 19.5k English medical279
VQA samples as we mentioned in Tab. 2. In the second stage,280
we continue trainning the model with our dataset, specializing in281
medical abnormality detection and reasoning-based medical im-282
age interpretation.283

In terms of training configuration, we conducted experiments284
with the Tiny and Small Whisper models for 20 epochs using a285
batch size of 8. For SilVar-Med, we employ a weight decay of 0.05286
and train the model for 20 epochs, with each epoch consisting of287
177 iterations. The learning rate is set to 1e-5 and remains constant288

throughout training, with both the minimum and warmup learning 289
rates also set to 1e-5. Each training batch consists of four samples, 290
and the training utilizes two workers to optimize computational 291
efficiency. This structured training approach ensures that SilVar- 292
Med effectively learns from diverse medical datasets and refines 293
its reasoning capabilities through targeted fine-tuning. 294

5. Evaluation Metrics and Reasoning Criteria 295

To evaluate the performance of SilVar-Med, we used both tradi- 296
tional text-based evaluation metrics and a novel LLM-as-Judge 297
assessment. Traditional metrics include BLEU, ROUGE, and 298
BERTScore, which measure the textual similarity between the 299
model’s generated responses and ground truth references. How- 300
ever, these methods may not fully capture the accuracy and rea- 301
soning quality of medical abnormality detection. 302

To address this limitation, we propose an LLM-as-Judge eval- 303
uation framework to evaluate the reasoning of SilVar-Med’s per- 304
formance in medical domain. To make the justification clear and 305
consistent, we define two key criteria: (1) the accuracy of abnor- 306
mality predictions and (2) the reasoning behind each prediction. 307
Here, we measure two factors which are the structure of the an- 308
swer and the accuracy of the answer. In terms of accuracy, the 309
framework categorizes model responses into four levels: 310

0: Completely Incorrect – The prediction fails to answer the
question, is off-topic, or entirely unrelated to the ground truth.

1: Significantly Incorrect – The prediction attempts to answer
the question but does not match the ground truth in terms of
understanding, terminology, or core explanation.

2: Partially Correct – The prediction directly answers the ques-
tion and provides an explanation. Both the answer and the ex-
planation reflect a reasonable understanding of the main idea,
though they contain minor irrelevant or incorrect information.

3: Fully Correct – The prediction completely aligns with
the ground truth, providing both a clear answer and a well-
reasoned explanation.

311

By adopting this approach, we move beyond a strict 312
right/wrong classification and enable medical professionals to in- 313
terpret model outputs, particularly in cases where the model ex- 314
hibits uncertainty. To implement this evaluation, we use several 315
commercial large language models including GPT-4o and Gem- 316
ini Flash 1.5, to assess the responses. We then compute Pearson 317
Correlation and Spearman Correlation to analyze the consistency 318
between the LLM-based assessments and traditional metrics. 319

Beyond automated evaluations, three medical imaging special- 320
ists from our team independently assess SilVar-Med’s predictions. 321
We then compare their evaluations with the results obtained from 322
GPT-4o and Gemini, ensuring a comprehensive assessment that 323
combines both expert judgment and automated analysis. 324

6. Experimental Result 325

6.1. Speech-To-Text Quality 326

Before integrating Whisper to SilVar-Med, we fine-tuned it using 327
a combination of the VQA-RAD, English SLAKE, and VQA-Med 328
2019 datasets, as outlined in Sec. 4.2. It is important to note that 329
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Figure 1. SilVar-Med training pipline.

we convert the questions of these datasets to speech to train the330
model because we want to maximize the performance of audio331
encoder in the medical domain. Here, we evaluate the perfor-332
mance of two Whisper models (Tiny and Small) using Word Error333
Rate (WER) and Character Error Rate (CER), which are standard334
benchmarks for speech-to-text accuracy [12, 34].335

Models WER CER

train test train test

Whisper Tiny 2.01 2.67 2.01 2.99
Whisper Small 2.02 4.57 1.59 3.50

Table 3. Evaluation of audio encoder baselines (Whisper Tiny and
Whisper Small) using WER and CER on the combined dataset
(VQA-RAD, English SLAKE, and VQA-Med 2019).

The results, presented in Tab. 3, indicate that Whisper Tiny336
and Whisper Small achieve comparable performance, with varia-337
tions across WER and CER metrics. Specifically, Whisper Tiny338
achieves a WER of 2.01% (train) and 2.67% (test), along with a339
CER of 2.01% (train) and 2.99% (test). Whisper Small, on the340
other hand, reports a WER of 2.02% (train) and 4.57% (test), with341
a CER of 1.59% (train) and 3.50% (test).342

Interestingly, while Whisper Small attains a lower CER during343
training (1.59% vs. 2.01%), it exhibits a significantly higher WER344
on the test set (4.57% vs. 2.67%), suggesting that it may be more345
prone to overfitting compared to Whisper Tiny. This discrepancy346
indicates that while the Small model has better character-level ac-347
curacy in training, its generalization to unseen test data is weaker.348
Given this observation, the Whisper Tiny model appears to be the349
more stable choice, balancing both WER and CER more consis-350
tently across training and testing phases. Moreover, since Whis-351
per Tiny has a smaller number of parameters compared to Whis-352
per Small, it is computationally more efficient. This makes it a353
more practical choice for our end-to-end fine-tuning process, as it354
reduces training time and resource consumption while still main-355
taining strong performance. Furthermore, these results reinforce356
the feasibility of using Google Cloud APIs to generate synthetic357
voice data without considering emotional expressiveness, as the358
overall error rates remain relatively low.359

6.2. Speech-Driven Medical VLMs 360

To evaluate SilVar-Med’s performance, we evaluated it on the test 361
set using BERTScore, BLEU, and ROUGE as standard text gen- 362
eration metrics. Since there are no established benchmarks for 363
speech-driven VLMs in the medical domain and only a few ex- 364
isting speech-driven VLM models, we compared SilVar-Med’s 365
performance against SilVar and commercial speech-driven vision- 366
language models (VLMs), including GPT-4o Mini and Gemini 367
Flash 1.5. Unlike SilVar-Med, which is an end-to-end speech- 368
driven VLM, GPT-4o Mini and Gemini Flash 1.5 follow a cas- 369
caded approach, requiring an intermediate step to convert audio 370
into text before processing. 371

Models BertScore BLEU ROUGE

SilVar-Med (Llama 3.1) 0.82 20.87 % 55.18 %
GPT-4o mini 0.76 7.25 % 46.33 %
Gemini Flash 1.5 0.75 3.32 % 34.07 %

Ablation study with different language models for SilVar-Med

SilVar-Med (Deepseek) 0.81 20.43 % 54.45 %

Table 4. Comparison between the SilVar-Med and speech-driven
VLMs on the test set.

The results, summarized in Tab. 4, indicate that SilVar-Med 372
consistently outperforms GPT-4o mini and Gemini Flash 1.5 373
across all evaluated metrics. With a BERTScore of 0.82, SilVar- 374
Med demonstrates a stronger semantic alignment with ground 375
truth responses compared to GPT-4o mini (0.76) and Gemini Flash 376
1.5 (0.75), reflecting its ability to generate contextually accurate 377
medical explanations. In terms of BLEU, SilVar-Med achieves 378
20.87%, significantly surpassing GPT-4o mini (7.25%) and Gem- 379
ini Flash 1.5 (3.32%), indicating superior syntactic and lexical ac- 380
curacy in structured medical reasoning. Additionally, SilVar-Med 381
attains the highest ROUGE score of 55.18%, outperforming GPT- 382
4o mini (46.33%) and Gemini Flash 1.5 (34.07%). This suggests 383
that SilVar-Med more effectively captures key phrases and main- 384
tains coherence with reference texts. 385

Overall, these findings indicate that SilVar-Med’s domain- 386
specific fine-tuning enables it to generate clinically relevant and 387
semantically precise explanations, making it highly suitable for 388
medical VQA tasks with end-to-end speech queries. 389
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6.3. Reasoning Ability and Human Evaluation390

GPT4o Gemini Exp. 1 Exp. 2 Exp. 3

143/148 145/148 146/148 145/148 145/148

Table 5. Evaluation of the prediction structure of SilVar-Med mod-
els using GPT-4o mini, Gemini 1.5 Flash, and human experts (de-
noted as Exp. in the table).

To evaluate SilVar-Med’s reasoning capabilities, we evaluate391
its response structure and reasoning accuracy of predictions us-392
ing the LLM-as-Judge framework (GPT-4o and Gemini Flash 1.5)393
together with expert evaluations. For structural responses, we394
first analyze whether SilVar-Med’s responses follow a coherent395
and structured format, as this is essential for medical interpretabil-396
ity. The results is shown in Tab. 5, in which, the scores of GPT-4o397
mini and Gemini Flash 1.5 are 143/148 and 145/148, respectively.398
In addition, our expert evaluations further reinforce these findings,399
with scores reaching 146/148, 145/148, and 145/148, indicating400
that the model generally maintains a structured response format401
that aligns with human expectations.402

Reasoning
accuracy Exp 1 Exp 2 Exp 3 GPT4o Gemini

SilVar-Med with the langue module of Llama 3.1 8B

Completely
Incorrect

11 6 13 39.00 22.00

Significantly
Incorrect

28 30 33 9.67 23.67

Partially
Correct

13 15 28 39.67 54.00

Fully
Correct 96 97 74 59.67 48.33

Ablation studies of SilVar-Med with the langue module of
Deepseek R1 Distill 8B

Completely
Incorrect

12 10 10 40.00 20.67

Significantly
Incorrect

39 41 47 8.67 23.00

Partially
Correct

13 11 21 41.00 52.67

Fully
Correct 84 86 70 58.33 51.67

Table 6. Assessment of SilVar-Med’s reasoning accuracy behind
abnormality prediction. The table compares expert evaluations
(Exp. 1–3) with LLM-as-Judge assessments (GPT-4o and Gem-
ini Flash 1.5). It is important to note that, Fully Correct denotes
predictions that are both accurate and well-explained.

To assess the reasoning accuracy of SilVar-Med, we evaluate403
how well the model provides observations and justifications for its404
predictions. The reasoning accuracy is categorized into four lev-405
els: Completely Incorrect, Significantly Incorrect, Partially Cor-406
rect, and Fully Correct, as shown in Tab. 6. A model is considered407

capable of reasoning-based abnormality detection if it can accu- 408
rately respond to speech-driven medical queries while providing 409
a coherent and justifiable explanation. Given the inherent vari- 410
ability in text generation by GPT-4o mini and Gemini Flash 1.5, 411
we conducted three independent evaluation rounds per model and 412
averaged the results to ensure consistency. In addition, three ex- 413
perts independently assessed the model outputs to provide a hu- 414
man benchmark for comparison. 415

Table 6 indicates notable discrepancies between expert eval- 416
uations and LLM-based assessments. Experts rate more re- 417
sponses as Fully Correct (74–97 for Llama 3.1 and 70–86 for 418
Deepseek R1 Distill) compared to GPT-4o (59.67–58.33) and 419
Gemini (48.33–51.67). Gemini is more conservative, labeling a 420
higher number of responses as Partially Correct, while GPT-4o as- 421
signs more Completely Incorrect ratings. Overall, Table 6 shows 422
that SilVar-Med demonstrates strong reasoning accuracy, effec- 423
tively answering speech-driven medical queries with high predic- 424
tion accuracy and well-structured explanations. 425

Despite the self-corrected and distilled learning in the gen- 426
eral domain of Deepseek R1 8B Distill, we found that it achieves 427
modest performance when integrated into SilVar-Med for medical 428
abnormality detection. Additionally, the inconsistencies between 429
GPT-4o, Gemini, and expert evaluations highlight the limitations 430
of the LLM-as-Judge framework. While automated assessments 431
provide useful insights, expert evaluation remains essential to en- 432
sure a balanced and clinically relevant assessment. 433

6.4. Evaluation on image-text VLMs Benchmarks 434

While SilVar-Med is a speech-driven medical VLM, no medi- 435
cal speech-driven VLMs currently exist for direct comparison. 436
Our objective in this evaluation is not to achieve SOTA perfor- 437
mance but rather to demonstrate the potential of voice-based med- 438
ical communication with VLMs. To provide context for SilVar- 439
Med’s performance, we compare it with existing text-based med- 440
ical VLMs across multiple datasets, including SLAKE, VQA- 441
RAD, and Medical VQA 2019. Although our primary focus is 442
on developing a speech-driven instruction-based medical VLM, 443
we also include comparisons with its text-based counterparts. The 444
evaluation results are presented in Tab. 7 and Tab. 8. 445

Performance on SLAKE: SilVar-Med (Llama 3.1-8B, speech- 446
based) achieves an accuracy of 74.08% on SLAKE (Open QA) and 447
79.44% on SLAKE (Closed QA). Compared to LLaVA-Med++ 448
(Medtrinity), which achieves 86.2% (Open) and 89.2% (Closed), 449
SilVar-Med still has room for improvement, particularly in open- 450
ended responses. However, the gap is smaller when comparing 451
against LLaVA-Med, where SilVar-Med’s performance remains 452
competitive. It is important to note that most of the models in 453
Tab. 7 are text based, and not able to generate reasoning behind 454
prediction. Additionally, we also use text as direct input for lan- 455
guage models. As a result, there is a small performance gap when 456
using text-based input versus audio-based input for SilVar-Med. 457

Performance on VQA-RAD: Similarly, SilVar-Med achieves 458
an accuracy of 55.34% on VQA-RAD (Open QA) and 62.56% on 459
VQA-RAD (Closed QA). Compared to LLaVA-Med++ (Medtrin- 460
ity), which achieves 77.1% (Open) and 86.0% (Closed), SilVar- 461
Med exhibits lower performance, particularly in open-ended re- 462
sponses. However, when compared to earlier LLaVA-Med mod- 463
els, such as LLaVA-Med (BioMed CLIP) with 64.75% (Open) 464
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Models Instruction SLAKE VQA-RAD

Ref Open Closed Ref Open Closed

Representatives of existing studies in the literature

LLaVA [30] Text 78.18 63.22 50.0 65.07
LLaVA-Med (From LLaVA) [25] Text 83.08 85.34 61.52 84.19
LLaVA-Med (BioMed CLIP) [25] Text 87.11 86.78 64.75 83.09
LLaVA-Med++ (w/ Medtrinity) [48] Text 86.20 89.20 77.10 86.00
LLaVA-Med++ (w/o Medtrinity) [48] Text 79.30 84.00 64.60 77.00
MMBERT General [22] Text - - 63.10 77.90
MEVF+SAN [35] Text - - 40.70 74.10
CR [52] Text - - 60.00 79.30
Q2ATransformer [32] Text 79.19 81.20
PubMedCLIP [16] Text 78.40 82.50 60.10 80.00
BiomedCLIP [54] Text 82.05 89.7 67.60 79.80
M2I2 [27] Text 74.70 91.10 66.50 83.50

SilVar-based studies with our own experiment

SilVar-Med 3.1 8B (Llama 3.1-8B) Speech 74.08 79.44 55.34 62.56
SilVar-Med 3.1 8B (Llama 3.1-8B) Text 74.32 80.03 55.21 60.86

Ablation studies of SilVar-Med using different language models for the decoder

SilVar-Med DR8B (Deepseek R1 Distill-Llama-8B) Speech 76.50 83.80 58.85 68.35
SilVar-Med DR8B (Deepseek R1 Distill-Llama-8B) Text 77.12 82.11 60.31 67.98
SilVar-Med 2 7B (Llama 2) Speech 73.23 76.34 54.75 57.77
SilVar-Med 2 7B (Llama 2) Text 64.21 75.54 55.65 75.78

Table 7. Comparison of SilVar-Med with various text-based medical VLMs on the SLAKE and VQA-RAD datasets. Results are reported
for both open-ended and closed-ended questions, with reference-based scores where applicable. LLaVA-based and other state-of-the-art
(SoTA) models rely on text input, while SilVar-Med processes speech-driven queries.

and 83.09% (Closed), the performance gap is narrower. Notably,465
SilVar-Med’s performance surpasses several traditional VLMs,466
such as MEVF+SAN and is competitive with models like CR.467

Performance on Medical VQA 2019: For the Medical468
VQA 2019 dataset (Tab. 8), SilVar-Med achieves an accuracy469
of 64.99%, outperforming models like ImageCLEF (62.4%) and470
VGG16+BERT (62.4%), while being competitive with MMBERT471
(67.2%). In terms of BLEU score (62.24), SilVar-Med performs472
comparably to other models, indicating strong textual coherence.473
The BERT similarity score (0.80) is higher than MedVINT (0.63)474
and Med-Flamingo (0.65), suggesting that SilVar-Med’s responses475
are more semantically aligned with the ground truth. These re-476
sults demonstrate that SilVar-Med’s performance is strong among477
speech-based models and is comparable to leading text-based478
models. The inclusion of a speech interface provides additional479
usability advantages in medical applications where hands-free in-480
teractions are crucial.481

7. Ablation Study482

We conducted experiments with the language models in SilVar-483
Med by using different models, including Llama 2 and DeepSeek484
R1 (Distill-Llama-8B), to analyze their impact on SilVar-Med’s485
performance. By testing SilVar-Med with multiple LLMs, we aim486
to identify the optimal configuration for medical abnormality de-487
tection and reasoning tasks. We evaluate the model’s performance488

Models Accuracy BLEU Bert-sim

Representatives of existing studies in the literature
ImageCLEF [7] 62.4 % 64.4 % -
MedVINT [55] 0.63
Med-Flamingo [33] 0.65
MMBERT [22] 67.2 % 69.0 %
CGMVQA [40] 60.0 % 61.9 %
VGG16+BERT [49] 62.4 % 64.4 %

SilVar-based studies with our own experiment

SilVar-Med 3.1 8B (speech) 64.99% 62.24 % 0.80
SilVar-Med 3.1 8B (text) 66.10% 63.11% 0.80

Ablation studies

SilVar-Med DR8B (speech) 68.03% 69.12% 0.80
SilVar-Med DR8B (text) 68.77% 68.34% 0.81
SilVar-Med 2 7B (speech) 66.36% 61.93% 0.79
SilVar-Med 2 7B (text) 67.02% 59.17% 0.80

Table 8. Evaluation results of SilVar-Med with different text-based
medical VLMs on the Medical VQA 2019 dataset.

on both our dataset and published datasets, as shown in Tab. 6, 489
Tab. 7, and Tab. 8. 490
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Example 1: Abnormality detection.

Does the lung look abnormal?

Grounth truth: Yes, the lung appears abnormal as there are irregularities in the lung fields
that may indicate potential pathology. The presence of unusual opacities or changes in the lung
structure can suggest conditions such as infection, inflammation, or other lung diseases.

SilVar-Med (Llama 3.1): Yes, the lung appears abnormal due to the presence of irregularities in the lung fields, which may indicate
potential pathology such as infection, inflammation, or other lung conditions. The overall lung structure shows signs of asymmetry or
density changes that deviate from normal anatomy. These findings warrant further investigation to determine the underlying cause.

GPT-4o mini: The lung appears to be within normal limits based on the provided X-ray image. There are no obvious signs of abnor-
malities such as masses, infiltrates, or significant opacities. The lung fields are clear, and the vascular markings are normal, indicating
healthy lung tissue. However, a definitive assessment should be made by a qualified radiologist for a comprehensive evaluation.

Gemini 1.5 Flash: Based on the provided chest X-ray, the lungs appear normal. There is no visible evidence of infiltrates, masses, or
pneumothorax. The lung fields demonstrate normal aeration and the heart size appears within normal limits. Further evaluation may be
necessary depending on the clinical presentation.

Table 9. Comparison of prediction between our models and the other speech-driven model on the reasoning abnormal detection. Unlike
GPT-4o and Gemini 1.5 Flash, our SilVar-Med is an end-to-end speech-driven VLM. For more demonstration, please visit SilVar-Med.

In Tab. 6, there is a small discrepancy between the performance491
of SilVar-Meds when using Llama 3.1 and DeepSeek R1 (Distill-492
8B), despite DeepSeek’s distilled knowledge and reasoning ability493
in the general domain. In addition, the performance of SilVar-Med494
with Llama 2 is competitive compared to DeepSeek and Llama 3.1495
on the Slake, VQA-RAD, and VQA 2019 datasets, as shown in496
Tab. 7 and Tab. 8. Compared to direct text input, the audio-driven497
approach achieves comparable performance or performs on par,498
despite challenges related to speech conversion errors, variations499
in spoken queries, and audio embeddings. These results highlight500
the robustness and adaptability of SilVar-Med, demonstrating its501
effectiveness across different language models and datasets.502

Prompts Reasoning Accuracy BERTScore BLEU
GPT4o Gemini

Zero-shot 58.33 51.67 0.80 21.43%
COT 61 50 0.81 22.16%
TOT 59 47 0.80 21.44%

Table 10. Comparison of SilVar-Med using different prompts.

Furthermore, to investigate the reasoning ability of SilVar-503
Med in medical reasoning tasks, we conduct an ablation study by504
employing Chain-of-Thought (CoT) and Tree-of-Thought (ToT)505
prompting techniques. As shown in Tab. 10, we use GPT-4o and506
Gemini Flash 1.5 to evaluate the model’s performance. The results507

indicate that structured reasoning techniques such as CoT and ToT 508
might improve the model’s performance compared to zero-shot 509
prompting, although not significantly in our study. 510

8. Conclusion 511

In this study, we demonstrate a proof-of-concept study for speech- 512
driven medical VLMs, focusing on reasoning for abnormality de- 513
tection and interpretable AI assessments. We address two key 514
challenges: (1) enabling voice communication in medical VLMs 515
and (2) providing reasoning for each abnormality prediction. To 516
this end, we also introduce a reasoning dataset for training and 517
testing. The result is evaluated by three physicians along with a 518
proposed LLM-as-Judge evaluation framework to assess both the 519
accuracy and reasoning quality of its predictions. 520

Our experiments with reasoning interpretation, demonstrate the 521
effectiveness of SilVar-Med in generating structured, accurate, and 522
interpretable medical responses. Despite the challenge of speech- 523
driven input, the model performs on par with other models. In 524
terms of reasoning, although our work is limited by the dataset 525
and the MRI, CT, and X-ray modalities, it provides reliable rea- 526
soning and demonstrates its potential in the medical domain, ad- 527
dressing the weaknesses of SOTA models. We also demonstrate 528
that by minimizing speech-to-text errors, the model yields high- 529
quality audio embeddings, leading to performance comparable to 530
text-based models. Additionally, we found a lack of available 531
speech-driven datasets benchmark for medical VLMs, highlight- 532
ing a critical gap in the advancing field. 533
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