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Abstract
The generic text preprocessing pipeline,
comprising Tokenisation, Normalisa-
tion, Stop Words Removal, and Stem-

ming/Lemmatisation, has been implemented
in many ontology matching (OM) systems.
However, the lack of standardisation in text
preprocessing creates diversity in mapping
results. In this paper, we investigate the effect
of the text preprocessing pipeline on OM tasks
at syntactic levels. Our experiments on 8 On-
tology Alignment Evaluation Initiative (OAEI)
track repositories with 49 distinct alignments
indicate: (1) Tokenisation and Normalisation
are currently more effective than Stop Words
Removal and Stemming/Lemmatisation;
and (2) The selection of Lemmatisation and
Stemming is task-specific. We recommend
standalone Lemmatisation or Stemming with
post-hoc corrections. We find that (3) Porter
Stemmer and Snowball Stemmer perform
better than Lancaster Stemmer; and that (4)
Part-of-Speech (POS) Tagging does not help
Lemmatisation. To repair less effective Stop
Words Removal and Stemming/Lemmatisation
used in OM tasks, we propose a novel
context-based pipeline repair approach that
significantly improves matching correctness
and overall matching performance.

1 Introduction

Ontology matching (OM), also known as ontology
alignment, is essential to enable interoperability be-
tween heterogeneous ontologies. An OM process
usually takes two ontologies as input, discovers
mappings between entities, and produces a set of
correspondences (Euzenat et al., 2007). A classical
OM system usually contains syntactic, lexical, and
semantic matching. Syntactic matching captures
“anchor mappings”, providing the foundation for
the latter lexical and semantic matching. This multi-
layer architecture has been implemented in several
successful OM systems, such as LogMap (Jiménez-
Ruiz and Cuenca Grau, 2011; Jiménez-Ruiz et al.,

2011), AgreementMakerLight (AML) (Faria et al.,
2013, 2014), and FCA-Map (Zhao et al., 2018; Li
et al., 2021).

There are many strategies to extract syntactic
information from an ontology entity, including
the older approach of Bag-of-Words (e.g. TF-
IDF Sammut and Webb, 2010), popular word em-
bedding models (e.g. Word2Vec Mikolov et al.,
2013), and state-of-the-art language models (e.g.
BERT Devlin et al., 2019). Despite the diversity
of the models used, they all apply text prepro-
cessing for cleaning the text data before fitting it
into the model. Figure 1 shows an example of us-
ing the text preprocessing pipeline to process the
ontology entity “cmt:reviewerBiddingStartedBy”.
The text preprocessing pipeline consists of a set of
steps to segment, reconstruct, analyse, and process
the information in the text, namely Tokenisation,
Normalisation, Stop Words Removal, and Stem-
ming/Lemmatisation (Anandarajan et al., 2019).
Tokenisation is the process of breaking the text into
the smallest units (i.e. tokens). We use whitespace
to split the tokens in the example. Normalisation is
the process of transforming these different tokens
into a single canonical form. Stop Words Removal
is the process of removing filler words that usually
carry little meaning and can be omitted in most
cases. Stemming/Lemmatisation is used to deal
with the grammatical variation of words, applying
rules to find the simplest common form of the word.
This helps to capture the key information from the
text and therefore improves efficiency.

While a number of OM systems use the text pre-
processing pipeline for syntactic OM, few studies
explain why a specific method is selected for a
certain OM task. Our study tackles the challenge
in two ways. Firstly, we conduct a comprehen-
sive experimental analysis of the text preprocess-
ing pipeline in syntactic OM across a wide range
of domains, aiming to explain the behaviour of
the text preprocessing pipeline in OM tasks at syn-
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Figure 1: An example of the text preprocessing pipeline.

tactic levels. In each phase, a text preprocessing
method is evaluated for its correctness and com-
pleteness. Secondly, we propose a novel context-
based pipeline repair approach for syntactic OM.
The method offers a customised way to fine-tune
the text preprocessing pipeline for each domain-
specific OM task and shows promising results for
repairing false mappings. Specifically, this paper
makes the following contributions:

* We categorise the text preprocessing pipeline
used in syntactic OM into two phases. We find
a significant improvement using Phase 1 text pre-
processing methods. In contrast, Phase 2 text pre-
processing methods are currently less effective. We
compare the performance of (1) Stemming and
Lemmatisation, (2) different stemming methods
(Porter, Snowball, and Lancaster), and (3) Lemma-
tisation and Lemmatisation + Part-of-Speech (POS)
Tagging. We find that inappropriate stop words re-
moval, over-stemming, and over-lemmatisation are
common on 8 Ontology Alignment Evaluation Ini-
tiative (OAEI) (OAEI, 2023) track repositories with
49 distinct alignments.

* We propose a simple and intuitive context-based
pipeline repair method. This method is evalu-
ated on the same OM tasks we analysed, show-
ing promising results to improve the correctness of
syntactic OM when inserted in the pipeline repair
before Phase 2 text preprocessing methods.

* We provide our code and generated alignments
from the experiment (submitted as a single .zip
archive). They can be reused to benchmark new
text preprocessing methods or fine-tune existing
text preprocessing models used in OM systems.

The remainder of the paper is organised as fol-
lows. Section 2 reviews the related work. Section 3
analyses the text preprocessing pipeline used in
OM. Section 4 proposes the context-based pipeline
repair approach and experimentally validates its
performance. Section 5 concludes the paper.

2 Related Work

Syntactic matching considers only the meaning of
the entity’s name or label, ignoring its lexical and
structural context in an ontology (Liu et al., 2021).
Correct syntactic matches are often implicit and
usually require extra human observation and do-
main knowledge. Text preprocessing is introduced
to automate this process.

The use of text preprocessing in syntactic match-
ing can be traced back to the early stages of OM sys-
tems, having been initially developed and widely
used as a basic component to generate linguistic-
based mappings. AgreementMaker (Cruz et al.,
2009) has a normaliser to unify the textual infor-
mation of the entities. SAMBO (Lambrix and Tan,
2006) uses the Porter Stemmer for each word to
improve the similarity measure for terms with dif-
ferent prefixes and suffixes. In RiMOM (Li et al.,
2009), the context information of each entity is
viewed as a document. The text in each document
is preprocessed with tokenisation, stop words re-
moval, and stemming.

Recently, machine learning (ML) models have
emerged for modern OM systems. While text
preprocessing remains useful, its role is more fo-
cused on normalising the text that becomes the
input to the model. For example, BERTMap (He
et al., 2022) uses BERT’s inherent WordPiece to-
keniser (Wu et al., 2016) to build the subword of
each entity. A more recent approach DeepOnto (He
et al., 2023) extends the normalisation to axioms us-
ing EL embedding models (Kulmanov et al., 2019).
The ML extension of LogMap (Chen et al., 2021)
reuses the seed mappings of the traditional sys-
tem, where each entity is split into its component
English word and the mapping is based on their
similarity.

However, to the best of our knowledge, most of
the literature implements a preprocessing method
without explaining why a specific method is chosen,
and no studies have been conducted to evaluate the
effect of text preprocessing on syntactic OM.

3 Analysis of Text Preprocessing Pipeline

3.1 Method

Given a source ontology O, and a target ontol-
ogy O, OM establishes mappings between pairs
of entities drawn from each of two ontologies. A
correspondence (i.e. one instance of mappings) is
defined as a 4-tuple (e1, 9,7, ¢), where e; € O
and ea € Oy. r is the relationship between two



matched entities e; and es, and ¢ € [0, 1] is the con-
fidence for each correspondence. The relationship
r in OM tasks can be equivalence (=), subsump-
tion (Q), disjointness (_L), or other more complex
relationships. In this paper, we focus only on the
equivalence relationship (=) and evaluate the ef-
fect of text preprocessing on syntactic matching to
produce the “anchor mappings” on which to base
any subsequent lexical and semantic matching. We
address only equivalence because subsumption and
disjointness are typically dealt with in a later se-
mantic and structural matching phase of OM. An
alignment (A) is a set of candidate correspondences
generated by tools, while a Reference (R) is a set of
gold standard correspondences verified by domain
experts (i.e. the ground truth alignment).

Figure 2 shows the method used to analyse the
text preprocessing pipeline. Alignment (A) is gen-
erated via the text preprocessing pipeline. Firstly,
for both O, and Oy, we retrieve the entities from the
named classes (i.e. owl:Class) and named proper-
ties (i.e. object properties owl:ObjectProperty and
data type properties owl:DatatypeProperty). For
those ontologies where the names of the concepts
are not textual (e.g. a numerical identifier), instead,
we retrieve the meaningful text from entity labels
(i.e. rdfs:label). Then, we apply the text preprocess-
ing pipeline method f(.) on each entity e; € Os
and ex € Oy. If f(e1) = f(e2), we store the cor-
respondence in the corresponding alignment file.
Finally, we compare the generated Alignment (A)
with Reference (R) to evaluate the performance of
the text preprocessing pipeline on OM tasks.
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Figure 2: Method used to analyse the text preprocessing
pipeline. B-Base Entity without Text Preprocessing, T-
Tokenisation, N-Normalisation, R-Stop Words Removal,

S/L-Stemming/Lemmatisation.

3.1.1 Selected OAEI Track Repositories

The Ontology Matching Evaluation Toolkit
(MELT) (Hertling et al., 2019) is a powerful frame-
work for OM evaluation. We retrieve 17 OAEI
normal track repositories stored in the MELT pub-
lic repository (date accessed: 2024-06-01). The

repositories are categorised as schema matching or
instance matching. 12 of the 17 track repositories
are schema-matching and applicable for evaluating
OM. Only 8 of these track repositories are selected
because the other 4 have noisy data or miss required
files. Specifically, the knowledgegraph repository
contains both schema and instance matching. The
complex repository is primarily focused on detect-
ing complex correspondences, while the multifarm
repository is an extension of the conference reposi-
tory to multilingualism. The laboratory repository
lacks reference files at the time of writing.

Table 1 shows the details of the selected track
repositories. We consider only the equivalence
mappings contained in the reference files. Each
track repository may contain more than one align-
ment corresponding to different pairs of ontologies.
For example, the largebio track repository has 6 ref-
erence files, pairing the whole and small versions of
FMA (Rosse and Mejino, 2003) and NCI (Golbeck
et al., 2003), FMA and SNOMED (Donnelly et al.,
2006), and SNOMED and NCI, respectively. The
number of references for each track repository is
given in the table. There are 49 distinct alignments
evaluated in this study.

Name Domain Number of References
anatomy Human and Mouse Anatomy 1
biodiv Biodiversity and Ecology 9
commonkg | Common Knowledge Graphs 3
conference Conference 24
food Food Nutritional Composition 1
largebio Biomedical 6
mse Materials Science & Engineering 3
phenotype Disease and Phenotype 2

Table 1: Selected OAEI track repositories.

Compound words are frequently used in ontol-
ogy naming conventions. For example, compound
words “art gallery” can be formatted as the Pas-
cal case “ArtGallery” used in YAGO (Suchanek
et al., 2007) or the Snake case “art_gallery” used
in Wikidata (Vrandeci¢ and Krotzsch, 2014). Fig-
ure 3 shows the proportion of compound words
in the selected OAEI track repositories. For com-
parisons between entities with compound words,
one approach is to use their tokens, where “XY” is
equivalent to “YX” because they share the same
concepts X and Y. However, our comparison con-
siders both concepts and their order, so that “XY” is
not equivalent to “YX”. Although concurrent “XY”
and “YX” are rare in the matching process, we as-
sume that it could happen and so we take account
of the order of concepts in compound word names
to ensure a fair comparison in our experiments.



50 50
S 40 S 40
%30 530
8 3
S 20 S 20
(9] 9]
o 10 o 10
o [«

0 1 5 10 0 1 5 10
Number of Words Number of Words
(a) Named Classes (b) Named Properties

Figure 3: The proportion of compound words.
3.1.2 Selected Subtasks of Pipeline Methods

There are a variety of subtasks that can be used
in a general text preprocessing pipeline, but not
all of them are applicable to OM tasks. We select
the following subtasks in each text preprocessing
method:

(1) Tokenisation: includes word tokenisation only.
We do not use sentence tokenisation (also known
as segmentation) because text retrieved from the
entity’s name or label is commonly short.

(2) Normalisation: includes lowercasing, HTML
tags removal, separator formatting, and punctua-
tion removal. Other subtasks that may potentially
change the word semantics, such as removal of
special characters and numbers, are excluded.

(3) Stop Words Removal: includes the most com-
mon English stop words defined in the Natural
Language Toolkit (NLTK) (Bird et al., 2008).

(4) Stemming/Lemmatisation: Stemming methods
include Porter Stemmer, Snowball Stemmer, and
Lancaster Stemmer. Lemmatisation uses the NLTK
Lemmatiser (Bird et al., 2008) based on Word-
Net (Miller, 1995), and the word categorisation
uses POS Tagging.

3.1.3 Selected OM Evaluation Measures

In information retrieval, there are four primitive
measures: true positive (TP), false positive (FP),
false negative (FN), and true negative (TN). In the
context of OM, evaluation compares an alignment
(A) returned by the OM system with a gold stan-
dard reference (R). Figure 4 illustrates that the four
primitive measures in OM can be interpreted as
TP=ANR,FP=A—-R,FN=R—- A, and
TN = (C x C")— (AU R), where C x C" refers
to all possible correspondences € {O;, O;}.
Accuracy (Acc), Specificity (Spec), Precision
(Prec), Recall (Rec), and Fj3 Score (Fjp) are the
most common evaluation measures based on TP, FP,
FN, and TN. In the context of OM, since C' x C” is
extremely large (the Cartesian product of e; € Oy
and es € O,), TN is often much larger than TP,
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Figure 4: OM evaluation measures (Euzenat, 2007).

FP, and FN. This means that Accuracy (Acc) and
Specificity (Spec) are close to 1, and they have
no statistically significant difference across differ-
ent alignments. We note that Precision (Prec) and
Recall (Rec) contribute equally to F3. Therefore,
we choose Precision (Prec), Recall (Rec), and F1
Score (5 = 1) in this study. They are defined as:
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Prec = Rec =
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3.2 Results
3.2.1 Comparison of Pipeline Methods

Figure 5 summarises the comparison of the text
preprocessing methods Tokenization (T), Normali-
sation (N), Stop Words Removal (R), and Stem-
ming/Lemmatisation (S/L). The result indicates
that the vast majority of correct correspondences
are found by T and N. We do not see R and S/L
playing a prime role in the OM tasks. Details can
be found in the Appendix B.1.
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Figure 5: Comparison of the generic text preprocessing
pipeline: Base Entity without Text Preprocessing (B),
Tokenisation (T), Normalisation (N), Stop Words Re-
moval (R), Stemming/Lemmatisation (S/L). The meth-
ods are always applied sequentially in the pipeline.
Three horizontal lines inside each violin plot show
three quartiles: Q1, median, and Q3. The extension
of the curves beyond 0% and 100% is an artefact of the
seaborn (Waskom, 2021) violin plot. (a) Precision: The
median increases with T and N but decreases with R and
S/L. After T, the shape of the distribution is unchanged
by R and S/L. (b) Recall: After T, the median increases
slightly with each of N, R, and S/L. The shape of the
distribution does not change after N. (c) F1 Score: the
median increases with T and N but then decreases with
R and S/L. The shape of the distribution does not change
after N.



3.2.2 Stemming vs. Lemmatisation

Figure 6 compares Stemming (S) and Lemmatisa-
tion (L) on 49 alignments after Tokenisation (T)
and Normalisation (N) have been applied. L is
commonly better than S.
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Figure 6: Comparison of Stemming (S) and Lemmati-
sation (L). (a) Precision: The median after L is greater
than that achieved by S. The shape of the distribution is
slightly different. (b) Recall: The median and the shape
of the distribution are identical after S and after L. (c¢)
F1 Score: The median after L is greater than for S. The
shape of the distribution is identical.

3.2.3 Porter Stemmer vs. Snowball Stemmer
vs. Lancaster Stemmer

Figure 7 compares Porter Stemmer (SP), Snowball
Stemmer (SS), and Lancaster Stemmer (SL) in 49
alignments. SP and SS have been found to perform
better than SL.
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Figure 7: Comparison of different stemmers: Porter
Stemmer (SP), Snowball Stemmer (SS) and Lancaster
Stemmer (SL). (a) Precision: The median number in SP
and SS is greater than that in SL, and there is no differ-
ence between SP and SS. The shape of the distribution is
identical. (b) Recall: The median number and the shape
of the distribution are identical in SP, SS, and SL. (¢) F1
Score: The median number in SP and SS is greater than
that in SL, and there is no difference between SP and
SS. The shape of the distribution is identical.

3.2.4 Lemmatisation vs Lemmatisation + POS
Tagging

Figure 8 summarises the comparison of Lemmati-
sation (L) and Lemmatisation + POS Tagging (LT)
in 49 alignments. The result indicates that POS
Tagging does not help with Lemmatisation in Pre-
cision, Recall, and overall F1 Score in the total of
49 alignments we analysed.
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Figure 8: Comparison of Lemmatisation (L) and Lem-
matisation + POS Tagging (LT). For each of (a) Preci-
sion, (b) Recall and (c) F1 Score, the median and the
shape of the distribution are identical for L and LT.

3.3 Discussion

For syntactic OM, the text preprocessing pipeline
can be categorised into two phases. Phase 1 text
preprocessing pipeline methods contain Normali-
sation and Tokenisation, whereas Stop Words Re-
moval and Stemming/Lemmatisation are assigned
to Phase 2. Phase 1 text preprocessing pipeline
methods do not change word semantics; instead,
they only change syntactic features such as format-
ting and typography. Conversely, in Phase 2 of the
text preprocessing pipeline, words are changed to
better capture semantic similarity, such as remov-
ing prefixes and suffixes or substituting common
etymological roots.

3.3.1 Phase 1 Text Preprocessing Methods

We observe that matching performance usually
increases with each Phase 1 text preprocessing
method, indicating the benefit of these “rules of
thumb” for syntactic OM. If two terms can be
matched using a heuristic or intuitive technique,
there is no need to leverage the more complex
Phase 2 methods.

However, Phase 1 methods could also benefit
from customisation in OM tasks. Some traditional
methods originating for natural language process-
ing (NLP) are not useful for OM and need to
be adjusted. For example, sentence segmentation
(i.e.splitting long text into sentences) is not applica-
ble for ontology entities because they are generally
short text fragments and do not need such opera-
tions. Word tokenisation (i.e. breaking text into
single words) could be rewritten to detect the ab-
breviations that are common practice in ontology
concept names and to tackle the conflicting use of
camel case and snake case.

3.3.2 Phase 2 Text Preprocessing Methods

We observe no benefit from Phase 2 text preprocess-
ing methods. In some cases, Stop Words Removal
and Stemming/Lemmatisation may even hamper



the mapping. There are plausible explanations for
this behaviour arising from the nature of ontologies
as distinct from natural language text, as follows:
(1) Stop Words Removal: “AND” and “OR” are
stop words in English and usually carry little useful
information, whereas these two words express log-
ical operations in ontology entities and therefore
may carry important semantics.

(2) Stemming vs. Lemmatisation: Based on our ex-
periments, Lemmatisation is better than Stemming.
While lemmatisation tends to avoid generating FPs,
it may also miss some implicit TPs. The complex-
ity of finding a missing TP is equal to the size of
(C"). On the other hand, stemming is more aggres-
sive in finding TPs, but the aggression can lead to
more FPs as well. The complexity of finding FPs is
equal to the smaller size of (A). The workload of
discovering FPs after stemming is generally much
lighter than detecting missing TPs after lemmatisa-
tion, but this may also depend on the accuracy of
post-hoc corrections that can be performed.

(3) Porter Stemmer vs. Snowball Stemmer vs.
Lancaster Stemmer: Porter Stemmer and Snow-
ball Stemmer (also known as Porter 2 Stemmer)
have been found to perform better than Lancaster
Stemmer, and we cannot see a significant differ-
ence between Porter and Snowball. Although the
Lancaster Stemmer is more aggressive in detecting
more TPs, it does not lead to performance improve-
ment as more FPs are matched synchronously.

(4) Lemmatisation vs. Lemmatisation + POS Tag-
ging: Lemmatisation + POS Tagging is generally
expected to have better results than Lemmatisation
alone because tagging can help detect more precise
root words. However, we do not observe such a
performance improvement when using POS Tag-
ging in our study. The reason may be that ontology
classes are usually nouns or gerunds, and in such
cases, we could expect the simpler grammatical
assumption to have similar results.

4 Context-based Pipeline Repair

4.1 Motivation

Experimental results demonstrate that only To-
kenisation and Normalisation help with syntac-
tic OM. The use of Stop Words Removal and
Stemming/Lemmatisation does not improve per-
formance and may even have negative impacts.
Phase 1 text preprocessing methods (Tokenisa-
tion and Normalisation) do not change the text
meaning. For example, isReviewing is equivalent

to is_reviewing. This means that applying Phase 1
methods only helps detect TPs, while the number
of FPs remains unchanged. For this reason, Phase 1
methods always have a positive effect on Precision,
Recall, and overall F1 Score.
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In most cases, OM only requires minor prepro-
cessing using Phase 1 text preprocessing methods.
This is because entity names in the ontology are
often compound words that do not occur in natural
language, but they are partially formalised by agree-
ment. There have been well-defined conventions
established over the years, e.g. singularity, posi-
tive names, nouns for classes and verbs for proper-
ties (Schober et al., 2007; Taylor et al., 2015).

Phase 2 text preprocessing methods (Stop Words
Removal and Stemming/Lemmatisation) are actu-
ally relaxations of matching rules in OM tasks.
Moving through the text preprocessing pipeline
tends to detect more TPs and FPs in the derived
alignment (A). For example, isReviewing and is-
ReviewedBy may be object properties with dis-
tinctly different meaning, but removing the com-
mon stop words “is” and “by”, and using Stem-
ming/Lemmatisation to retrieve the same root word
“Review”, could cause a false match. For this rea-
son, Recall is always increasing, but Precision and
overall F1 Score are less reliable.

|AN R TPt
? = =
Prec? ] TP1+FP ] (6)
|[ANR| TP?
Rect = = — @)
|R| |R|
7 2 ®)

~ Prec?-! + Rec -t
If we define AT P and AF P as the increase in

TP and FP for a preprocessing method, then the

threshold to increase Precision and F1 Score is:

TP+ ATP L _ TP ATP TP
TP+ ATP+ FP+AFP ~ TP+ FP  AFP~ FP
In our experiments, we actually observe a re-

duction in Precision and overall F1 Score. This
means that Phase 2 methods produce more FPs
than TPs, and this proportion is less than the origi-
nal number of T'P/F' P. So performance does not
improve, unless the benefit of each TP is consid-




ered more valuable than the disbenefit of each FP.
This could apply, for example, if we are expecting
a post-hoc correction phase where removing FPs is
considered to be an easier human task than adding
missing TPs.

4.2 Method

Phase 2 text preprocessing pipeline methods (Stop
Words Removal and Stemming/Lemmatisation)
have been shown to be less effective in OM tasks,
caused mainly by FPs. We propose a pipeline re-
pair approach that aims to differentiate FPs and
therefore improve Precision and F1 Score.

One critical step in our approach is to retrieve a
reserved word set that may cause FPs after the text
preprocessing, and these words will be excluded
before the text preprocessing. The selection criteria
are based on two widely agreed assumptions: (1)
there are no duplicate entities within a single on-
tology; and (2) ontologies that represent the same
domain knowledge tend to use similar terminolo-
gies (we call our approach context-based here be-
cause pairs of words may have the same or differ-
ent meanings in different contexts). Based on these
two assumptions, we propose a simple and intuitive
Algorithm 1 to retrieve the reserved word set for
context-based pipeline repair. For both Oy and Oy,
the algorithm first iterates on all pairs of entities
e;, e; in each of them. For a specific text prepro-
cessing method f(.), if f(e;) = f(e;), we retrieve
the different words between e; and e; and store
them in the reserved word set. If a word appears
in the reserved set, the text preprocessing pipeline
skips the operation for this word. To simplify the
reserved word set, we also remove the words where
f(w) = w from the final set because either skip-
ping or keeping these words in the reserved word
set would not change the mapping results.

An example of generating and using a simple
reserved word set is illustrated below. (1) Two ob-
ject properties was_a_member_of and has_members
from a single ontology have the same result “mem-
ber” via the traditional text preprocessing. Because
there are no duplicate entities within a single on-
tology, we use a reserved word set in our proposed
pipeline repair approach to determine that they are
distinguishing entities. The initial step (i.e. Phase
1 of Algorithm 1) is to add [“was”, “a”, “member”,
“of”, “has”, “members”] to the reserved word set so
that these two object properties would not have the
same text preprocessing results. was_a_member_of
preprocessed with skipping the reserved word set

Algorithm 1 Finding the reserved words

Input: Source Ontology O, Target Ontology O,
Text Preprocessing Pipeline Method f(x)
Output: Reserved_Word_Set
/* Phase 1: Find duplicates in O; and O; */
/* Phase 1.1: Find duplicates in O5 */
for Entity e;,e; € O, do
if f(ez) = f(e]-) then
Reserved_-Word_Set < dif fer(es, e;)
end if
end for
/* Phase 1.2: Find duplicates in O; */
/* Same procedure applies ...*/
/* Phase 2: Find duplicates in Reserved_Word_Set */
for Word w € Reserved_-Word_Set do
if f(w) = w then
Reserved_-Word_Set — w
end if
end for
return Reserved_Word_Set

is “was a member of”, while has_members prepro-
cessed with the reserved word set is “has members”.
The revision step (i.e. Phase 2 of Algorithm 1) is to
check whether there are duplicates in the reserved
set. We can observe that the word “member” is
a duplicate because it is the same before and af-
ter text preprocessing. Removing this word from
the reserved word set still makes the two object
properties different. Therefore, the final reserved
word set is [“was”, “a”, “of”, “has”, “members”’].
(2) The generated reserved word set can be used
to repair false mappings between entities within
the same domain context but coming from dif-
ferent ontologies. For example, we expect that
the two object properties has_a_steering_committee
and was_a_steering_committee_of are non-identical.
While a false mapping may occur when they both
have the same result “steer committe” after the
traditional text preprocessing, using the reserved
word set can repair this false mapping. As the
words “has”, “a”, “was”, and “of” are listed as
reserved words, these two named properties are
preprocessed as “has a steer committe” and “was a
steer committe of”’, respectively.

4.3 Evaluation

We apply our context-based pipeline repair ap-
proach to the same OAEI track repositories and
alignments as above. Figure 9 compares with and
without context-based pipeline repair in 8 track
repositories with 49 distinct alignments. The text
preprocessing pipeline methods implemented in-
clude all the Phase 2 text preprocessing methods:
Stop Words Removal (R), Porter Stemmer (SP),
Snowball Stemmer (SS), Lancaster Stemmer (SL),
Lemmatisation (L), and Lemmatisation + POS Tag-



ging (LT). We can see that our context-based repair
approach can significantly improve the Precision.
As a trade-off, it may cause a slight decrease in
Recall, but the overall F1 Score is still increasing
in the majority of the alignments. For example, this
repair approach applied to the Materiallnformation-
EMMO alignment using Lancaster Stemmer im-
proved Precision by 8.95%, with only a 3.17%
decrease in Recall, and the overall F1 Score also
increased by 2.92%. Details are in Appendix B.2.
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Figure 9: Testing the context-based pipeline repair ap-
proach on Phase 2 text preprocessing methods (the total
number of each category can appear to be less than 49
when data points overlap).

5 Conclusion

In this paper, we conduct a comprehensive study
on the effect of the text preprocessing pipeline on
syntactic OM. 8 OAEI track repositories with 49

distinct alignments are evaluated. Despite the im-
portance of text preprocessing in syntactic OM, our
experimental results indicate that the text prepro-
cessing pipeline is currently ill-equipped to handle
OM tasks. (1) We find that Phase 1 text prepro-
cessing methods (Tokenisation and Normalisation)
help with both matching completeness (i.e. Re-
call) and correctness (i.e. Precision). Phase 2 text
preprocessing methods (Stop Words Removal and
Stemming/Lemmatisation) are less effective. They
can improve matching completeness (i.e. Recall),
but matching correctness (i.e. Precision) is rela-
tively low. (2) We propose a novel context-based
pipeline repair approach to repair the less effec-
tive Phase 2 text preprocessing methods. By us-
ing a reserved word set to reduce false positive
samples detected, our approach outperforms the
traditional text preprocessing pipeline, in particu-
lar, the matching correctness (i.e. Precision) and
overall matching performance (i.e. F1 Score). Fig-
ure 10 illustrates the mechanisms of two-phase text
preprocessing and how our novel context-based
pipeline repair approach successfully repairs the
Phase 2 text preprocessing methods.

() Alignment (A)
() Reference (R)

Phase 1 gy
(
Text Preprocessing  \ _
Phase 2
Text Preprocessing
Context-based
Pipeline Repair (\
N

Figure 10: Two-phase text preprocessing and our
context-based pipeline repair approach. (1) Phase 1
methods shift Alignment (A) towards Reference (R).
The number of TPs increases, while FPs decrease. (2)
Phase 2 methods expand Alignment (A). The number
of TPs increases, but FPs also increase. (3) Our context-
based pipeline repair approach collapses Alignment

(A). The number of FPs significantly decreases, with a
slight decrease in TPs.

Our future work will focus on handling class
axioms and complex relationships to evaluate the
text preprocessing pipeline for OM tasks. We will
also study the pipeline and pipeline repair approach
working with both traditional knowledge-based
OM systems and modern ML-based OM systems.



Limitations

OAEI track repositories are comprehensive but do
not cover all real-world scenarios. Further, the
reference files contained in the OAEI track reposi-
tories are not “complete” gold standards and some
need further development. For example, in the con-
ference track repository, a pair of exact matches
(cmt:Paper, conference:Paper, =, 1) may be miss-
ing from the Reference (R). In this study, we only
deal with equivalence mappings between named
classes, object properties, and data type proper-
ties. Disjoint mappings are not considered. Find-
ing widely used baseline data with ground truth
matches for subsumptions is empirically difficult.
Only a few OAEI track repositories contain sub-
sumption mappings, and they are not enough to
robustly demonstrate text preprocessing used in
subsumption mappings.

Broader Impacts

Ontologies provide formalised conceptualisations
of knowledge graphs (KGs). Incorporating ontolo-
gies for KG-related NLP tasks can enhance the ca-
pability to handle complex concepts and relations,
thereby enabling accessible KGs from the text (e.g.
Text-to-KG), or coherent text generation from KGs
(e.g. KG-to-Text). However, aligning and integrat-
ing heterogeneous ontologies remains a challenge
when using them for NLP tasks. OM aims to bridge
the gap by capturing similar concepts that occur in
different ontologies.

OM is a complex process that combines syntac-

tic, lexical, and semantic matching. Each level of
matching may use different matching techniques,
for example, text preprocessing for syntactic match-
ing, text vectorisation for lexical matching, and log-
ical reasoning for semantic matching. This paper
concentrates on text preprocessing, a common prac-
tice in syntactic matching. While generic text pre-
processing pipeline methods in syntactic OM are
usually applied on the basis of intuition or extrap-
olation from other experience, this work advances
the state of knowledge towards making design de-
cisions objective and supported by evidence.
(1) Our study shows (i) whether to use, or not
use, and (ii) how to use these text preprocessing
methods. Such experimental results will benefit
decision making when selecting appropriate text
preprocessing methods for syntactic OM. For large-
scale OM, it can significantly reduce unnecessary
trial costs.

(2) Our context-based pipeline repair approach is
proposed to repair the less effective Phase 2 text
preprocessing methods. Its broader value is show-
ing how to maximise true mappings and minimise
false mappings throughout the text preprocessing
pipeline. From a statistical perspective, it is a local
optimisation for syntactic matching that will ben-
efit the global optimisation for OM, as syntactic
matching provides “anchor mappings” for lexical
and semantic matching.

In addition, this study also demonstrates that
the nature of text preprocessing used in NLP ap-
plications can be context-based. Not all pipeline
methods are effective, and some of them may even
hamper the overall performance of downstream
tasks. Modifications are required before applying
text preprocessing to specific NLP tasks.
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In this study, we use the datasets from OAEI track
repositories. According to the OAEI data policy
(date accessed: 2024-06-01), “OAEI results and
datasets, are publicly available, but subject to a
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for TREC. These rules apply to anyone using
these data.” For more details, please check the
official link: https://oaei.ontologymatching.
org/doc/oaei-deontology.2.html
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A Supplementary Material

The experiment code used in this paper has been
submitted as a single .zip archive. The camera-
ready version will use a GitHub link instead.

B Extended Experiment Details

B.1 Analysis of Text Preprocessing Pipeline

Figures 11, 12, 13, and 14 show the details of
the experiment to compare the text preprocessing
pipeline in syntactic OM.

(1) For Phase 1 text preprocessing methods (To-
kenisation and Normalisation), most of the data
points located above the equivalent line in Preci-
sion, Recall, and F1 Score indicate that they help
syntactic OM.

(2) For Phase 2 text preprocessing methods (Stop
Words Removal and Stemming/Lemmatisation):
Some data points are located above the equivalent
line in Recall, but the majority of data points lo-
cated below the equivalent line in Precision and F1
Score indicate that they do not help syntactic OM.
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Figure 11: Comparison of Base Entity without Text
Preprocessing (B) vs. Tokenisation (T).
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Figure 12: Comparison of Tokenisation (T) vs. Normal-

isation (N).
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Figure 13: Comparison of Normalisation (N) vs. Stop
Words Removal (R).
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Figure 14: Comparison of Stop Words Removal (R) vs.
Stemming/Lemmatisation (S/L).

Figure 15 shows the details of the experiment

to compare Stemming (S) and Lemmatisation (L).
Most of the data points located above the L=S line
in Precision and F1 Score indicate that using Lem-
matisation is better than Stemming in syntactic OM
(assuming that the post hoc correction is excluded).
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Figure 15: Stemming vs. Lemmatisation.
Figures 16, 17, and 18 show the details of the
experiment to compare Porter Stemmer, Snowball
Stemmer, and Lancaster Stemmer.
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(1) For Porter Stemmer vs. Snowball Stemmer, all
data points located in the equivalent line indicate
that there is no difference in using Porter Stemmer
and Snowball Stemmer in syntactic OM.

(2) For Porter/Snowball Stemmer vs. Lancaster
Stemmer, most of the data points the data points
located above the equivalent line in Precision and
F1 Score indicate that Porter/Snowball Stemmer is
more effective than Lancaster Stemmer in syntactic
OM.
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Figure 16: Comparison of Porter Stemmer (SP) vs.
Snowball Stemmer (SS).
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Figure 17: Comparison of Porter Stemmer (SP) vs. Lan-
caster Stemmer (SL).
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Figure 18: Comparison of Snowball Stemmer (SS) vs.
Lancaster Stemmer (SL).

Figure 19 shows the details of the experiment to
compare Lemmatisation vs. Lemmatisation + POS
Tagging. All data points located in the equivalent
line indicate that using POS Tagging in Lemmati-
sation does not help syntactic OM.
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Figure 19: Comparison of Lemmatisation (L) vs. Lem-
matisation + POS Tagging (LT).

B.2 Context-based Pipeline Repair

Figures 20, 21, 22, 23, 24, and 25 show the de-
tails of the experiment to consider the benefit of
using context-based pipeline repair in Phase 2 text
preprocessing methods (Stop Words Removal and
Stemming/Lemmatisation).

(1) For Precision, most of the data points are lo-
cated above the equivalent line, indicating that
context-based pipeline repair significantly im-
proves matching correctness.

(2) For Recall, most of the data points are located
in the equivalent line, and only a few data points
are located below the equivalent line, indicating
that context-based pipeline repair slightly reduces
matching completeness.

(3) For F1 Score, most of the data points are lo-
cated above the equivalent line, indicating that
context-based pipeline repair also improves overall
matching performance.

(4) Experimentally, the wider ellipse around the
data points indicates that the matching performance
improvement ranking in Phase 2 text preprocess-
ing methods is Stemming (S) > Lemmatisation
(L) > Stop Words Removal (R).

(5) Experimentally, the wider ellipse around the
data points indicates that the matching performance
improvement ranking in different stemmers is Lan-
caster Stemmer (SL) > Porter Stemmer (SP) =
Snowball Stemmer (SS).

(6) Experimentally, the same ellipse around the
data points indicates that the matching performance
improvement ranking in lemmatisation is Lemma-
tisation (L) = Lemmatisation + POS Tagging (LT).
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Figure 20: Comparison of using and without using
context-based repair in Stop Words Removal (R).

100 | 100 4 100
80 g 80 80
T 60 T 60 T 60
& & &
g g y g
20 200 20
o .

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
SP SP SP

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 21: Comparison of using and without using
context-based repair in Porter Stemmer (SP).



100
80

100-
80

60 60

SS-Repair
SS-Repair
SS-Repair

40
20

40-
20-

b 0l 0.
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
SS Ss Ss

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 22: Comparison of using and without using
context-based repair in Snowball Stemmer (SS).
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Figure 23: Comparison of using and without using
context-based repair in Lancaster Stemmer (SL).
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Figure 24: Comparison of using and without using
context-based repair in Lemmatisation (L).
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Figure 25: Comparison of using and without using
context-based repair in Lemmatisation + POS Tagging
(LD).

C Extended Discussion on LLMs

The use of large language models (LLMs) is a
breakthrough in NLP, but it is not a one-size-fits-all
solution for OM tasks. OM is a complex multi-
level matching mixed with syntactic, lexical, and
semantic matching. LLMs may not outperform tra-
ditional methods in performing these sub-matching
tasks. The development and implementation of an
LLM-based framework that incorporates different
matching techniques is a new research direction for
OM, but it is beyond the scope of this paper. In
some scenarios where the information is sensitive
or domain-specific, the models need to run locally.
LLMs are difficult to run locally and retrain due to
constraints on storage and computational power in
some cases, and constraints on API access in oth-
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ers. Classical and ML-based OM systems (which
can run locally and retrain) are still very useful.
These two types of systems rely heavily on “seed
mappings” produced by syntactic matching using
classical text preprocessing.

C.1 LLMs and OM Text Preprocessing

We observe that some LLLMs can perform syntac-
tic matching without preprocessing, but their ro-
bustness remains questionable. We conduct a pre-
liminary study on the use of LLMs for syntactic
matching with and without text preprocessing. The
experiment settings are described as follows:

(1) We select the same example described in Sec-
tion 3.1.1. The compound word “art gallery” can
have different naming conventions in different on-
tologies. For example, the Pascal case “ArtGallery”
used in YAGO and the Snake case “art_gallery”
used in Wikidata.

(2) We choose 10 LLMs from 4 different fam-
ilies. These include two OpenAl models (gpt-
3.5-turbo and gpt-4-turbo) (OpenAl, 2024), three
Mistral Al models (mistral-large, mistral-medium,
and mistral-small) (Mistral Al, 2024), three An-
thropic Claude models (claude-3-opus, claude-3-
sonnet, and claude-3-haiku) (Anthropic, 2024),
and two open-source Meta Llama models (llama-
3-70b and llama-3-8b) (Meta, 2024). We use
LangChain (LangChain Inc., 2024) to build the
chats with OpenAl, Mistral Al, and Anthropic
Claude models, and Ollama (Ollama, 2024) to ac-
cess Meta Llama models. The versions of LLMs
used in the experiment are listed in Table 2. All
the model temperatures are set to 0 to minimise the
random results generated by LLMs.

Series LLMs Versions

GPT gpt-4-turbo gpt-4-turbo-2024-04-09
gpt-3.5-turbo gpt-3.5-turbo-0125
claude-3-opus | claude-3-opus-20240229

Claude | claude-3-sonnet | claude-3-sonnet-20240229
claude-3-haiku | claude-3-haiku-20240307
mistral-large mistral-large-2402

Mistral | mistral-medium | mistral-medium-2312
mistral-small mistral-small-2402

Llama llama-3-70b date accessed: 2024-06-01
llama-3-8b date accessed: 2024-06-01

Table 2: Versions of LLMs used in the experiment.
(3) We generate the prompt template as “Is Art-
Gallery <KEYWORD> to/with art_galley?” (with-
out text preprocessing) and “Is art galley <KEY-
WORD> to/with art galley?” (with text preprocess-



ing). We only use T and N to preprocess the text
because R and S/L are shown to be less effective in
the main content of the paper, and also R and S/T
needs are not present in the actual naming of the
ontology entities. The <KEYWORD> is a place-
holder for a collection of words that can be used to
describe an equivalence relationship. In this study,
we experiment with three common words namely
“identical”, “interchangeable”, and “equivalent”.
(4) Considering the complexity of prompts, we
also test an additional case where the prompts have
a self-reflection phase (i.e. add “Write a short ex-
planation” to the prompt). We use parentheses to
indicate that the different responses generated by
the prompts have a self-reflection phase.

Table 3 shows the results of using LLMs for syn-
tactic matching without text preprocessing. We
expect the LLMs to generate “Yes” answers for
this TP sample. However, the majority of the
LLMs output the “No” answers (marked with the
red colour in the table) without text preprocessing.
Table 4 shows the results of using LLMs for syn-
tactic matching with text preprocessing. We can
see that the error rate can be significantly reduced,
but some LLMs still continue to produce incorrect
results. The result also shows that LLMs with a
larger number of parameters (e.g. llama-3-70b)
and prompts with a self-reflection phase (labelled
in parentheses) offer “too much of a good thing”.
They do not help with syntactic matching and may
even produce more errors for OM tasks.

This preliminary study does not cover all pos-
sible triggers used in prompt engineering, but it
is adequate to highlight the importance of proper
preprocessing before fitting the text into the LLM:s.
We believe that the classical programming-based
text preprocessing pipeline is more stable and reli-
able than using LLM’s implicit text preprocessing
or prompt-based text preprocessing for OM tasks.

C.2 LLMs and OM Text Preprocessing
Pipeline Repair

Using LLMs for OM text preprocessing is not with-
out merit. With strong background knowledge, they
can be used to facilitate several subtasks in OM.
For example, LLMs can be used as a repair tool for
the text preprocessing pipeline, as an alternative
to the approach we proposed in Section 4.2. The
slight difference is that the context-based pipeline
repair approach is an ad hoc repair prior to syn-
tactic matching, while the LLM-based approach
is a post hoc repair after syntactic matching. We
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LLMs <KEYWORD>
“identical” | “interchangeable” | “equivalent”
gpt-4-turbo No No No
gpt-3.5-turbo No No No
claude-3-opus No Yes Yes
claude-3-sonnet No No No
claude-3-haiku No No No
mistral-large No No Yes
mistral-medium No No No
mistral-small No Yes Yes (No)
1lama-3-70b No No No
1lama-3-8b Yes Yes Yes

Table 3: Using LLMs for syntactic matching without
text preprocessing. Prompt: “Is ArtGallery <KEY-
WORD> to/with art_gallery? Answer yes or no. (Write
a short explanation.)”

LLMs <KEYWORD>
“identical” | “interchangeable” | “equivalent”
gpt-4-turbo Yes Yes Yes
gpt-3.5-turbo Yes Yes Yes
claude-3-opus Yes Yes Yes
claude-3-sonnet | Yes (No) No Yes (No)
claude-3-haiku No No Yes (No)
mistral-large Yes Yes Yes
mistral-medium No Yes Yes
mistral-small Yes Yes Yes
llama-3-70b Yes Yes (No) Yes (No)
1lama-3-8b Yes Yes Yes

Table 4: Using LLMs for syntactic matching with
text preprocessing. Prompt: “Is art gallery <KEY-
WORD> to/with art gallery? Answer yes or no. (Write
a short explanation.)”

conduct a preliminary study on LLMs used in OM
text preprocessing pipeline repair. The experiment
settings are described as follows:

(1) The experiment is set up on the largebio track
repository, a biomedical track repository requires
higher Precision with low rates of FPs. The Lan-
caster Stemmer always shows lower Precision
across 6 pairs of alignments, meaning that the re-
sults contain a significant number of FPs.

(2) We choose the same 10 LLMs used in the pre-
vious experiment in Appendix C.1.

(3) We use the prompt “Is X equivalent to Y?” The
previous experiment in Appendix C.1 shows the
keyword “equivalent” produces fewer errors, and
a self-reflection phase does not help the OM tasks.
We also preprocess the entity names X and Y with
N and T before fitting them into the LLMs.

Figure 26 shows the discovery rate of FPs us-
ing 10 different LLMs. We expect the LLMs to
generate “No” answers for these FP samples. The
GPT model gpt-4-tubo, the Claude model claude-
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Figure 26: The discovery rate of FPs using LLMs on the largebio track repository.

3-haiku, the Mistral model mistral-medium, and
the Llama model llama-3-70b achieve better per-
formance in detecting FPs. For the GPT and Llama
series, LLLMs with a larger number of parameters
perform better than those with a relatively smaller
number of parameters. For the Claude and Mis-
tral series, LLMs with larger parameters do not
improve performance. In the 6 test cases we anal-
ysed, they are even less effective than those with a
relatively smaller number of parameters.

C.3 Implications of LLMs used in OM

LLMs were originally developed for the purpose
of question-answering (QA). OM is not only a QA
task, but also a knowledge-intensive task that re-
lates to a comprehensive understanding and rea-

soning of domain knowledge. The preliminary
studies in this section demonstrate the limitations
and opportunities of using LLMs for OM tasks.
From our experience, we highlight two F&T path-
ways to customise LLM for a new domain task.
One is functional tooling, which refers to teach-
ing LLMs using external tools. In LLM-based text
preprocessing (Appendix C.1), we could package
the programming-based text preprocessing pipeline
as a tool for LLMs to use. Another approach is
fine-tuning, where LLMs are customised with lo-
cal data. In LLM-based text preprocessing repair
(Appendix C.2), we could use human-in-the-loop
to validate the repaired results generated by LLMs
and feed the validated data back into LLMs, so that
they can better understand the context of the task.
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