
How does a text preprocessing pipeline affect ontology matching?

Anonymous ACL submission

Abstract
The generic text preprocessing pipeline,001
comprising Tokenisation, Normalisa-002
tion, Stop Words Removal, and Stem-003
ming/Lemmatisation, has been implemented004
in many ontology matching (OM) systems.005
However, the lack of standardisation in text006
preprocessing creates diversity in mapping007
results. In this paper, we investigate the effect008
of the text preprocessing pipeline on OM tasks009
at syntactic levels. Our experiments on 8 On-010
tology Alignment Evaluation Initiative (OAEI)011
track repositories with 49 distinct alignments012
indicate: (1) Tokenisation and Normalisation013
are currently more effective than Stop Words014
Removal and Stemming/Lemmatisation;015
and (2) The selection of Lemmatisation and016
Stemming is task-specific. We recommend017
standalone Lemmatisation or Stemming with018
post-hoc corrections. We find that (3) Porter019
Stemmer and Snowball Stemmer perform020
better than Lancaster Stemmer; and that (4)021
Part-of-Speech (POS) Tagging does not help022
Lemmatisation. To repair less effective Stop023
Words Removal and Stemming/Lemmatisation024
used in OM tasks, we propose a novel025
context-based pipeline repair approach that026
significantly improves matching correctness027
and overall matching performance.028

1 Introduction029

Ontology matching (OM), also known as ontology030

alignment, is essential to enable interoperability be-031

tween heterogeneous ontologies. An OM process032

usually takes two ontologies as input, discovers033

mappings between entities, and produces a set of034

correspondences (Euzenat et al., 2007). A classical035

OM system usually contains syntactic, lexical, and036

semantic matching. Syntactic matching captures037

“anchor mappings”, providing the foundation for038

the latter lexical and semantic matching. This multi-039

layer architecture has been implemented in several040

successful OM systems, such as LogMap (Jiménez-041

Ruiz and Cuenca Grau, 2011; Jiménez-Ruiz et al.,042

2011), AgreementMakerLight (AML) (Faria et al., 043

2013, 2014), and FCA-Map (Zhao et al., 2018; Li 044

et al., 2021). 045

There are many strategies to extract syntactic 046

information from an ontology entity, including 047

the older approach of Bag-of-Words (e.g. TF- 048

IDF Sammut and Webb, 2010), popular word em- 049

bedding models (e.g. Word2Vec Mikolov et al., 050

2013), and state-of-the-art language models (e.g. 051

BERT Devlin et al., 2019). Despite the diversity 052

of the models used, they all apply text prepro- 053

cessing for cleaning the text data before fitting it 054

into the model. Figure 1 shows an example of us- 055

ing the text preprocessing pipeline to process the 056

ontology entity “cmt:reviewerBiddingStartedBy”. 057

The text preprocessing pipeline consists of a set of 058

steps to segment, reconstruct, analyse, and process 059

the information in the text, namely Tokenisation, 060

Normalisation, Stop Words Removal, and Stem- 061

ming/Lemmatisation (Anandarajan et al., 2019). 062

Tokenisation is the process of breaking the text into 063

the smallest units (i.e. tokens). We use whitespace 064

to split the tokens in the example. Normalisation is 065

the process of transforming these different tokens 066

into a single canonical form. Stop Words Removal 067

is the process of removing filler words that usually 068

carry little meaning and can be omitted in most 069

cases. Stemming/Lemmatisation is used to deal 070

with the grammatical variation of words, applying 071

rules to find the simplest common form of the word. 072

This helps to capture the key information from the 073

text and therefore improves efficiency. 074

While a number of OM systems use the text pre- 075

processing pipeline for syntactic OM, few studies 076

explain why a specific method is selected for a 077

certain OM task. Our study tackles the challenge 078

in two ways. Firstly, we conduct a comprehen- 079

sive experimental analysis of the text preprocess- 080

ing pipeline in syntactic OM across a wide range 081

of domains, aiming to explain the behaviour of 082

the text preprocessing pipeline in OM tasks at syn- 083

1

Figure 1: An example of the text preprocessing pipeline.

tactic levels. In each phase, a text preprocessing084

method is evaluated for its correctness and com-085

pleteness. Secondly, we propose a novel context-086

based pipeline repair approach for syntactic OM.087

The method offers a customised way to fine-tune088

the text preprocessing pipeline for each domain-089

specific OM task and shows promising results for090

repairing false mappings. Specifically, this paper091

makes the following contributions:092

• We categorise the text preprocessing pipeline093

used in syntactic OM into two phases. We find094

a significant improvement using Phase 1 text pre-095

processing methods. In contrast, Phase 2 text pre-096

processing methods are currently less effective. We097

compare the performance of (1) Stemming and098

Lemmatisation, (2) different stemming methods099

(Porter, Snowball, and Lancaster), and (3) Lemma-100

tisation and Lemmatisation + Part-of-Speech (POS)101

Tagging. We find that inappropriate stop words re-102

moval, over-stemming, and over-lemmatisation are103

common on 8 Ontology Alignment Evaluation Ini-104

tiative (OAEI) (OAEI, 2023) track repositories with105

49 distinct alignments.106

• We propose a simple and intuitive context-based107

pipeline repair method. This method is evalu-108

ated on the same OM tasks we analysed, show-109

ing promising results to improve the correctness of110

syntactic OM when inserted in the pipeline repair111

before Phase 2 text preprocessing methods.112

• We provide our code and generated alignments113

from the experiment (submitted as a single .zip114

archive). They can be reused to benchmark new115

text preprocessing methods or fine-tune existing116

text preprocessing models used in OM systems.117

The remainder of the paper is organised as fol-118

lows. Section 2 reviews the related work. Section 3119

analyses the text preprocessing pipeline used in120

OM. Section 4 proposes the context-based pipeline121

repair approach and experimentally validates its122

performance. Section 5 concludes the paper.123

2 Related Work 124

Syntactic matching considers only the meaning of 125

the entity’s name or label, ignoring its lexical and 126

structural context in an ontology (Liu et al., 2021). 127

Correct syntactic matches are often implicit and 128

usually require extra human observation and do- 129

main knowledge. Text preprocessing is introduced 130

to automate this process. 131

The use of text preprocessing in syntactic match- 132

ing can be traced back to the early stages of OM sys- 133

tems, having been initially developed and widely 134

used as a basic component to generate linguistic- 135

based mappings. AgreementMaker (Cruz et al., 136

2009) has a normaliser to unify the textual infor- 137

mation of the entities. SAMBO (Lambrix and Tan, 138

2006) uses the Porter Stemmer for each word to 139

improve the similarity measure for terms with dif- 140

ferent prefixes and suffixes. In RiMOM (Li et al., 141

2009), the context information of each entity is 142

viewed as a document. The text in each document 143

is preprocessed with tokenisation, stop words re- 144

moval, and stemming. 145

Recently, machine learning (ML) models have 146

emerged for modern OM systems. While text 147

preprocessing remains useful, its role is more fo- 148

cused on normalising the text that becomes the 149

input to the model. For example, BERTMap (He 150

et al., 2022) uses BERT’s inherent WordPiece to- 151

keniser (Wu et al., 2016) to build the subword of 152

each entity. A more recent approach DeepOnto (He 153

et al., 2023) extends the normalisation to axioms us- 154

ing EL embedding models (Kulmanov et al., 2019). 155

The ML extension of LogMap (Chen et al., 2021) 156

reuses the seed mappings of the traditional sys- 157

tem, where each entity is split into its component 158

English word and the mapping is based on their 159

similarity. 160

However, to the best of our knowledge, most of 161

the literature implements a preprocessing method 162

without explaining why a specific method is chosen, 163

and no studies have been conducted to evaluate the 164

effect of text preprocessing on syntactic OM. 165

3 Analysis of Text Preprocessing Pipeline 166

3.1 Method 167

Given a source ontology Os and a target ontol- 168

ogy Ot, OM establishes mappings between pairs 169

of entities drawn from each of two ontologies. A 170

correspondence (i.e. one instance of mappings) is 171

defined as a 4-tuple (e1, e2, r, c), where e1 ∈ Os 172

and e2 ∈ Ot. r is the relationship between two 173

2

matched entities e1 and e2, and c ∈ [0, 1] is the con-174

fidence for each correspondence. The relationship175

r in OM tasks can be equivalence (≡), subsump-176

tion (⊆), disjointness (⊥), or other more complex177

relationships. In this paper, we focus only on the178

equivalence relationship (≡) and evaluate the ef-179

fect of text preprocessing on syntactic matching to180

produce the “anchor mappings” on which to base181

any subsequent lexical and semantic matching. We182

address only equivalence because subsumption and183

disjointness are typically dealt with in a later se-184

mantic and structural matching phase of OM. An185

alignment (A) is a set of candidate correspondences186

generated by tools, while a Reference (R) is a set of187

gold standard correspondences verified by domain188

experts (i.e. the ground truth alignment).189

Figure 2 shows the method used to analyse the190

text preprocessing pipeline. Alignment (A) is gen-191

erated via the text preprocessing pipeline. Firstly,192

for both Os and Ot, we retrieve the entities from the193

named classes (i.e. owl:Class) and named proper-194

ties (i.e. object properties owl:ObjectProperty and195

data type properties owl:DatatypeProperty). For196

those ontologies where the names of the concepts197

are not textual (e.g. a numerical identifier), instead,198

we retrieve the meaningful text from entity labels199

(i.e. rdfs:label). Then, we apply the text preprocess-200

ing pipeline method f(.) on each entity e1 ∈ Os201

and e2 ∈ Ot. If f(e1) = f(e2), we store the cor-202

respondence in the corresponding alignment file.203

Finally, we compare the generated Alignment (A)204

with Reference (R) to evaluate the performance of205

the text preprocessing pipeline on OM tasks.206

Figure 2: Method used to analyse the text preprocessing
pipeline. B-Base Entity without Text Preprocessing, T-
Tokenisation, N-Normalisation, R-Stop Words Removal,
S/L-Stemming/Lemmatisation.

3.1.1 Selected OAEI Track Repositories207

The Ontology Matching Evaluation Toolkit208

(MELT) (Hertling et al., 2019) is a powerful frame-209

work for OM evaluation. We retrieve 17 OAEI210

normal track repositories stored in the MELT pub-211

lic repository (date accessed: 2024-06-01). The212

repositories are categorised as schema matching or 213

instance matching. 12 of the 17 track repositories 214

are schema-matching and applicable for evaluating 215

OM. Only 8 of these track repositories are selected 216

because the other 4 have noisy data or miss required 217

files. Specifically, the knowledgegraph repository 218

contains both schema and instance matching. The 219

complex repository is primarily focused on detect- 220

ing complex correspondences, while the multifarm 221

repository is an extension of the conference reposi- 222

tory to multilingualism. The laboratory repository 223

lacks reference files at the time of writing. 224

Table 1 shows the details of the selected track 225

repositories. We consider only the equivalence 226

mappings contained in the reference files. Each 227

track repository may contain more than one align- 228

ment corresponding to different pairs of ontologies. 229

For example, the largebio track repository has 6 ref- 230

erence files, pairing the whole and small versions of 231

FMA (Rosse and Mejino, 2003) and NCI (Golbeck 232

et al., 2003), FMA and SNOMED (Donnelly et al., 233

2006), and SNOMED and NCI, respectively. The 234

number of references for each track repository is 235

given in the table. There are 49 distinct alignments 236

evaluated in this study. 237
Name Domain Number of References

anatomy Human and Mouse Anatomy 1

biodiv Biodiversity and Ecology 9

commonkg Common Knowledge Graphs 3

conference Conference 24

food Food Nutritional Composition 1

largebio Biomedical 6

mse Materials Science & Engineering 3

phenotype Disease and Phenotype 2

Table 1: Selected OAEI track repositories.

Compound words are frequently used in ontol- 238

ogy naming conventions. For example, compound 239

words “art gallery” can be formatted as the Pas- 240

cal case “ArtGallery” used in YAGO (Suchanek 241

et al., 2007) or the Snake case “art gallery” used 242

in Wikidata (Vrandečić and Krötzsch, 2014). Fig- 243

ure 3 shows the proportion of compound words 244

in the selected OAEI track repositories. For com- 245

parisons between entities with compound words, 246

one approach is to use their tokens, where “XY” is 247

equivalent to “YX” because they share the same 248

concepts X and Y. However, our comparison con- 249

siders both concepts and their order, so that “XY” is 250

not equivalent to “YX”. Although concurrent “XY” 251

and “YX” are rare in the matching process, we as- 252

sume that it could happen and so we take account 253

of the order of concepts in compound word names 254

to ensure a fair comparison in our experiments. 255

3

(a) Named Classes (b) Named Properties
Figure 3: The proportion of compound words.

3.1.2 Selected Subtasks of Pipeline Methods256

There are a variety of subtasks that can be used257

in a general text preprocessing pipeline, but not258

all of them are applicable to OM tasks. We select259

the following subtasks in each text preprocessing260

method:261

(1) Tokenisation: includes word tokenisation only.262

We do not use sentence tokenisation (also known263

as segmentation) because text retrieved from the264

entity’s name or label is commonly short.265

(2) Normalisation: includes lowercasing, HTML266

tags removal, separator formatting, and punctua-267

tion removal. Other subtasks that may potentially268

change the word semantics, such as removal of269

special characters and numbers, are excluded.270

(3) Stop Words Removal: includes the most com-271

mon English stop words defined in the Natural272

Language Toolkit (NLTK) (Bird et al., 2008).273

(4) Stemming/Lemmatisation: Stemming methods274

include Porter Stemmer, Snowball Stemmer, and275

Lancaster Stemmer. Lemmatisation uses the NLTK276

Lemmatiser (Bird et al., 2008) based on Word-277

Net (Miller, 1995), and the word categorisation278

uses POS Tagging.279

3.1.3 Selected OM Evaluation Measures280

In information retrieval, there are four primitive281

measures: true positive (TP), false positive (FP),282

false negative (FN), and true negative (TN). In the283

context of OM, evaluation compares an alignment284

(A) returned by the OM system with a gold stan-285

dard reference (R). Figure 4 illustrates that the four286

primitive measures in OM can be interpreted as287

TP = A ∩ R, FP = A− R, FN = R − A, and288

TN = (C ×C ′)− (A ∪R), where C ×C ′ refers289

to all possible correspondences ∈ {Os, Ot}.290

Accuracy (Acc), Specificity (Spec), Precision291

(Prec), Recall (Rec), and Fβ Score (Fβ) are the292

most common evaluation measures based on TP, FP,293

FN, and TN. In the context of OM, since C ×C ′ is294

extremely large (the Cartesian product of e1 ∈ Os295

and e2 ∈ Ot), TN is often much larger than TP,296

Figure 4: OM evaluation measures (Euzenat, 2007).

FP, and FN. This means that Accuracy (Acc) and 297

Specificity (Spec) are close to 1, and they have 298

no statistically significant difference across differ- 299

ent alignments. We note that Precision (Prec) and 300

Recall (Rec) contribute equally to Fβ . Therefore, 301

we choose Precision (Prec), Recall (Rec), and F1 302

Score (β = 1) in this study. They are defined as: 303

Prec =
|A ∩R|
|A| Rec =

|A ∩R|
|R| (1) 304

F1 =
2

Prec−1 +Rec−1
(2) 305

3.2 Results 306

3.2.1 Comparison of Pipeline Methods 307

Figure 5 summarises the comparison of the text 308

preprocessing methods Tokenization (T), Normali- 309

sation (N), Stop Words Removal (R), and Stem- 310

ming/Lemmatisation (S/L). The result indicates 311

that the vast majority of correct correspondences 312

are found by T and N. We do not see R and S/L 313

playing a prime role in the OM tasks. Details can 314

be found in the Appendix B.1. 315

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 5: Comparison of the generic text preprocessing
pipeline: Base Entity without Text Preprocessing (B),
Tokenisation (T), Normalisation (N), Stop Words Re-
moval (R), Stemming/Lemmatisation (S/L). The meth-
ods are always applied sequentially in the pipeline.
Three horizontal lines inside each violin plot show
three quartiles: Q1, median, and Q3. The extension
of the curves beyond 0% and 100% is an artefact of the
seaborn (Waskom, 2021) violin plot. (a) Precision: The
median increases with T and N but decreases with R and
S/L. After T, the shape of the distribution is unchanged
by R and S/L. (b) Recall: After T, the median increases
slightly with each of N, R, and S/L. The shape of the
distribution does not change after N. (c) F1 Score: the
median increases with T and N but then decreases with
R and S/L. The shape of the distribution does not change
after N.

4

3.2.2 Stemming vs. Lemmatisation316

Figure 6 compares Stemming (S) and Lemmatisa-317

tion (L) on 49 alignments after Tokenisation (T)318

and Normalisation (N) have been applied. L is319

commonly better than S.320

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 6: Comparison of Stemming (S) and Lemmati-
sation (L). (a) Precision: The median after L is greater
than that achieved by S. The shape of the distribution is
slightly different. (b) Recall: The median and the shape
of the distribution are identical after S and after L. (c)
F1 Score: The median after L is greater than for S. The
shape of the distribution is identical.

3.2.3 Porter Stemmer vs. Snowball Stemmer321

vs. Lancaster Stemmer322

Figure 7 compares Porter Stemmer (SP), Snowball323

Stemmer (SS), and Lancaster Stemmer (SL) in 49324

alignments. SP and SS have been found to perform325

better than SL.326

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 7: Comparison of different stemmers: Porter
Stemmer (SP), Snowball Stemmer (SS) and Lancaster
Stemmer (SL). (a) Precision: The median number in SP
and SS is greater than that in SL, and there is no differ-
ence between SP and SS. The shape of the distribution is
identical. (b) Recall: The median number and the shape
of the distribution are identical in SP, SS, and SL. (c) F1
Score: The median number in SP and SS is greater than
that in SL, and there is no difference between SP and
SS. The shape of the distribution is identical.

3.2.4 Lemmatisation vs Lemmatisation + POS327

Tagging328

Figure 8 summarises the comparison of Lemmati-329

sation (L) and Lemmatisation + POS Tagging (LT)330

in 49 alignments. The result indicates that POS331

Tagging does not help with Lemmatisation in Pre-332

cision, Recall, and overall F1 Score in the total of333

49 alignments we analysed.334

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 8: Comparison of Lemmatisation (L) and Lem-
matisation + POS Tagging (LT). For each of (a) Preci-
sion, (b) Recall and (c) F1 Score, the median and the
shape of the distribution are identical for L and LT.

3.3 Discussion 335

For syntactic OM, the text preprocessing pipeline 336

can be categorised into two phases. Phase 1 text 337

preprocessing pipeline methods contain Normali- 338

sation and Tokenisation, whereas Stop Words Re- 339

moval and Stemming/Lemmatisation are assigned 340

to Phase 2. Phase 1 text preprocessing pipeline 341

methods do not change word semantics; instead, 342

they only change syntactic features such as format- 343

ting and typography. Conversely, in Phase 2 of the 344

text preprocessing pipeline, words are changed to 345

better capture semantic similarity, such as remov- 346

ing prefixes and suffixes or substituting common 347

etymological roots. 348

3.3.1 Phase 1 Text Preprocessing Methods 349

We observe that matching performance usually 350

increases with each Phase 1 text preprocessing 351

method, indicating the benefit of these “rules of 352

thumb” for syntactic OM. If two terms can be 353

matched using a heuristic or intuitive technique, 354

there is no need to leverage the more complex 355

Phase 2 methods. 356

However, Phase 1 methods could also benefit 357

from customisation in OM tasks. Some traditional 358

methods originating for natural language process- 359

ing (NLP) are not useful for OM and need to 360

be adjusted. For example, sentence segmentation 361

(i.e.splitting long text into sentences) is not applica- 362

ble for ontology entities because they are generally 363

short text fragments and do not need such opera- 364

tions. Word tokenisation (i.e. breaking text into 365

single words) could be rewritten to detect the ab- 366

breviations that are common practice in ontology 367

concept names and to tackle the conflicting use of 368

camel case and snake case. 369

3.3.2 Phase 2 Text Preprocessing Methods 370

We observe no benefit from Phase 2 text preprocess- 371

ing methods. In some cases, Stop Words Removal 372

and Stemming/Lemmatisation may even hamper 373

5

the mapping. There are plausible explanations for374

this behaviour arising from the nature of ontologies375

as distinct from natural language text, as follows:376

(1) Stop Words Removal: “AND” and “OR” are377

stop words in English and usually carry little useful378

information, whereas these two words express log-379

ical operations in ontology entities and therefore380

may carry important semantics.381

(2) Stemming vs. Lemmatisation: Based on our ex-382

periments, Lemmatisation is better than Stemming.383

While lemmatisation tends to avoid generating FPs,384

it may also miss some implicit TPs. The complex-385

ity of finding a missing TP is equal to the size of386

(C ′). On the other hand, stemming is more aggres-387

sive in finding TPs, but the aggression can lead to388

more FPs as well. The complexity of finding FPs is389

equal to the smaller size of (A). The workload of390

discovering FPs after stemming is generally much391

lighter than detecting missing TPs after lemmatisa-392

tion, but this may also depend on the accuracy of393

post-hoc corrections that can be performed.394

(3) Porter Stemmer vs. Snowball Stemmer vs.395

Lancaster Stemmer: Porter Stemmer and Snow-396

ball Stemmer (also known as Porter 2 Stemmer)397

have been found to perform better than Lancaster398

Stemmer, and we cannot see a significant differ-399

ence between Porter and Snowball. Although the400

Lancaster Stemmer is more aggressive in detecting401

more TPs, it does not lead to performance improve-402

ment as more FPs are matched synchronously.403

(4) Lemmatisation vs. Lemmatisation + POS Tag-404

ging: Lemmatisation + POS Tagging is generally405

expected to have better results than Lemmatisation406

alone because tagging can help detect more precise407

root words. However, we do not observe such a408

performance improvement when using POS Tag-409

ging in our study. The reason may be that ontology410

classes are usually nouns or gerunds, and in such411

cases, we could expect the simpler grammatical412

assumption to have similar results.413

4 Context-based Pipeline Repair414

4.1 Motivation415

Experimental results demonstrate that only To-416

kenisation and Normalisation help with syntac-417

tic OM. The use of Stop Words Removal and418

Stemming/Lemmatisation does not improve per-419

formance and may even have negative impacts.420

Phase 1 text preprocessing methods (Tokenisa-421

tion and Normalisation) do not change the text422

meaning. For example, isReviewing is equivalent423

to is reviewing. This means that applying Phase 1 424

methods only helps detect TPs, while the number 425

of FPs remains unchanged. For this reason, Phase 1 426

methods always have a positive effect on Precision, 427

Recall, and overall F1 Score. 428

Prec ↑= |A ∩R|
|A| =

TP

TP + FP
= 1− FP

TP ↑ +FP
(3) 429

Rec ↑ = |A ∩R|
|R| =

TP ↑
|R| (4) 430

F1 ↑=
2

Prec ↑−1 +Rec ↑−1
(5) 431

In most cases, OM only requires minor prepro- 432

cessing using Phase 1 text preprocessing methods. 433

This is because entity names in the ontology are 434

often compound words that do not occur in natural 435

language, but they are partially formalised by agree- 436

ment. There have been well-defined conventions 437

established over the years, e.g. singularity, posi- 438

tive names, nouns for classes and verbs for proper- 439

ties (Schober et al., 2007; Taylor et al., 2015). 440

Phase 2 text preprocessing methods (Stop Words 441

Removal and Stemming/Lemmatisation) are actu- 442

ally relaxations of matching rules in OM tasks. 443

Moving through the text preprocessing pipeline 444

tends to detect more TPs and FPs in the derived 445

alignment (A). For example, isReviewing and is- 446

ReviewedBy may be object properties with dis- 447

tinctly different meaning, but removing the com- 448

mon stop words “is” and “by”, and using Stem- 449

ming/Lemmatisation to retrieve the same root word 450

“Review”, could cause a false match. For this rea- 451

son, Recall is always increasing, but Precision and 452

overall F1 Score are less reliable. 453

Prec ? =
|A ∩R|
|A| =

TP ↑
TP ↑ +FP ↑ (6) 454

Rec ↑ = |A ∩R|
|R| =

TP ↑
|R| (7) 455

F1 ? =
2

Prec ?−1 +Rec ↑−1
(8) 456

If we define ∆TP and ∆FP as the increase in 457

TP and FP for a preprocessing method, then the 458

threshold to increase Precision and F1 Score is: 459

TP + ∆TP

TP + ∆TP + FP + ∆FP
>

TP

TP + FP
⇒

∆TP

∆FP
>

TP

FP
(9) 460

In our experiments, we actually observe a re- 461

duction in Precision and overall F1 Score. This 462

means that Phase 2 methods produce more FPs 463

than TPs, and this proportion is less than the origi- 464

nal number of TP/FP . So performance does not 465

improve, unless the benefit of each TP is consid- 466

6

ered more valuable than the disbenefit of each FP.467

This could apply, for example, if we are expecting468

a post-hoc correction phase where removing FPs is469

considered to be an easier human task than adding470

missing TPs.471

4.2 Method472

Phase 2 text preprocessing pipeline methods (Stop473

Words Removal and Stemming/Lemmatisation)474

have been shown to be less effective in OM tasks,475

caused mainly by FPs. We propose a pipeline re-476

pair approach that aims to differentiate FPs and477

therefore improve Precision and F1 Score.478

One critical step in our approach is to retrieve a479

reserved word set that may cause FPs after the text480

preprocessing, and these words will be excluded481

before the text preprocessing. The selection criteria482

are based on two widely agreed assumptions: (1)483

there are no duplicate entities within a single on-484

tology; and (2) ontologies that represent the same485

domain knowledge tend to use similar terminolo-486

gies (we call our approach context-based here be-487

cause pairs of words may have the same or differ-488

ent meanings in different contexts). Based on these489

two assumptions, we propose a simple and intuitive490

Algorithm 1 to retrieve the reserved word set for491

context-based pipeline repair. For both Os and Ot,492

the algorithm first iterates on all pairs of entities493

ei, ej in each of them. For a specific text prepro-494

cessing method f(.), if f(ei) = f(ej), we retrieve495

the different words between ei and ej and store496

them in the reserved word set. If a word appears497

in the reserved set, the text preprocessing pipeline498

skips the operation for this word. To simplify the499

reserved word set, we also remove the words where500

f(w) = w from the final set because either skip-501

ping or keeping these words in the reserved word502

set would not change the mapping results.503

An example of generating and using a simple504

reserved word set is illustrated below. (1) Two ob-505

ject properties was a member of and has members506

from a single ontology have the same result “mem-507

ber” via the traditional text preprocessing. Because508

there are no duplicate entities within a single on-509

tology, we use a reserved word set in our proposed510

pipeline repair approach to determine that they are511

distinguishing entities. The initial step (i.e. Phase512

1 of Algorithm 1) is to add [“was”, “a”, “member”,513

“of”, “has”, “members”] to the reserved word set so514

that these two object properties would not have the515

same text preprocessing results. was a member of516

preprocessed with skipping the reserved word set517

Algorithm 1 Finding the reserved words
Input: Source Ontology Os, Target Ontology Ot,

Text Preprocessing Pipeline Method f(x)
Output: Reserved Word Set

/* Phase 1: Find duplicates in Os and Ot */
/* Phase 1.1: Find duplicates in Os */
for Entity ei, ej ∈ Os do

if f(ei) = f(ej) then
Reserved Word Set← differ(ei, ej)

end if
end for
/* Phase 1.2: Find duplicates in Ot */
/* Same procedure applies ...*/
/* Phase 2: Find duplicates in Reserved Word Set */
for Word w ∈ Reserved Word Set do

if f(w) = w then
Reserved Word Set→ w

end if
end for
return Reserved Word Set

is “was a member of”, while has members prepro- 518

cessed with the reserved word set is “has members”. 519

The revision step (i.e. Phase 2 of Algorithm 1) is to 520

check whether there are duplicates in the reserved 521

set. We can observe that the word “member” is 522

a duplicate because it is the same before and af- 523

ter text preprocessing. Removing this word from 524

the reserved word set still makes the two object 525

properties different. Therefore, the final reserved 526

word set is [“was”, “a”, “of”, “has”, “members”]. 527

(2) The generated reserved word set can be used 528

to repair false mappings between entities within 529

the same domain context but coming from dif- 530

ferent ontologies. For example, we expect that 531

the two object properties has a steering committee 532

and was a steering committee of are non-identical. 533

While a false mapping may occur when they both 534

have the same result “steer committe” after the 535

traditional text preprocessing, using the reserved 536

word set can repair this false mapping. As the 537

words “has”, “a”, “was”, and “of” are listed as 538

reserved words, these two named properties are 539

preprocessed as “has a steer committe” and “was a 540

steer committe of”, respectively. 541

4.3 Evaluation 542

We apply our context-based pipeline repair ap- 543

proach to the same OAEI track repositories and 544

alignments as above. Figure 9 compares with and 545

without context-based pipeline repair in 8 track 546

repositories with 49 distinct alignments. The text 547

preprocessing pipeline methods implemented in- 548

clude all the Phase 2 text preprocessing methods: 549

Stop Words Removal (R), Porter Stemmer (SP), 550

Snowball Stemmer (SS), Lancaster Stemmer (SL), 551

Lemmatisation (L), and Lemmatisation + POS Tag- 552

7

ging (LT). We can see that our context-based repair553

approach can significantly improve the Precision.554

As a trade-off, it may cause a slight decrease in555

Recall, but the overall F1 Score is still increasing556

in the majority of the alignments. For example, this557

repair approach applied to the MaterialInformation-558

EMMO alignment using Lancaster Stemmer im-559

proved Precision by 8.95%, with only a 3.17%560

decrease in Recall, and the overall F1 Score also561

increased by 2.92%. Details are in Appendix B.2.562

(a) R-Stop words Removal (b) SP-Porter Stemmer

(c) SS-Snowball Stemmer (d) SL-Lancaster Stemmer

(e) L-Lemmatisation (f) LT-L + POS Tagging
Figure 9: Testing the context-based pipeline repair ap-
proach on Phase 2 text preprocessing methods (the total
number of each category can appear to be less than 49
when data points overlap).

5 Conclusion563

In this paper, we conduct a comprehensive study564

on the effect of the text preprocessing pipeline on565

syntactic OM. 8 OAEI track repositories with 49566

distinct alignments are evaluated. Despite the im- 567

portance of text preprocessing in syntactic OM, our 568

experimental results indicate that the text prepro- 569

cessing pipeline is currently ill-equipped to handle 570

OM tasks. (1) We find that Phase 1 text prepro- 571

cessing methods (Tokenisation and Normalisation) 572

help with both matching completeness (i.e. Re- 573

call) and correctness (i.e. Precision). Phase 2 text 574

preprocessing methods (Stop Words Removal and 575

Stemming/Lemmatisation) are less effective. They 576

can improve matching completeness (i.e. Recall), 577

but matching correctness (i.e. Precision) is rela- 578

tively low. (2) We propose a novel context-based 579

pipeline repair approach to repair the less effec- 580

tive Phase 2 text preprocessing methods. By us- 581

ing a reserved word set to reduce false positive 582

samples detected, our approach outperforms the 583

traditional text preprocessing pipeline, in particu- 584

lar, the matching correctness (i.e. Precision) and 585

overall matching performance (i.e. F1 Score). Fig- 586

ure 10 illustrates the mechanisms of two-phase text 587

preprocessing and how our novel context-based 588

pipeline repair approach successfully repairs the 589

Phase 2 text preprocessing methods. 590

Figure 10: Two-phase text preprocessing and our
context-based pipeline repair approach. (1) Phase 1
methods shift Alignment (A) towards Reference (R).
The number of TPs increases, while FPs decrease. (2)
Phase 2 methods expand Alignment (A). The number
of TPs increases, but FPs also increase. (3) Our context-
based pipeline repair approach collapses Alignment
(A). The number of FPs significantly decreases, with a
slight decrease in TPs.

Our future work will focus on handling class 591

axioms and complex relationships to evaluate the 592

text preprocessing pipeline for OM tasks. We will 593

also study the pipeline and pipeline repair approach 594

working with both traditional knowledge-based 595

OM systems and modern ML-based OM systems. 596

8

Limitations597

OAEI track repositories are comprehensive but do598

not cover all real-world scenarios. Further, the599

reference files contained in the OAEI track reposi-600

tories are not “complete” gold standards and some601

need further development. For example, in the con-602

ference track repository, a pair of exact matches603

(cmt:Paper, conference:Paper, ≡, 1) may be miss-604

ing from the Reference (R). In this study, we only605

deal with equivalence mappings between named606

classes, object properties, and data type proper-607

ties. Disjoint mappings are not considered. Find-608

ing widely used baseline data with ground truth609

matches for subsumptions is empirically difficult.610

Only a few OAEI track repositories contain sub-611

sumption mappings, and they are not enough to612

robustly demonstrate text preprocessing used in613

subsumption mappings.614

Broader Impacts615

Ontologies provide formalised conceptualisations616

of knowledge graphs (KGs). Incorporating ontolo-617

gies for KG-related NLP tasks can enhance the ca-618

pability to handle complex concepts and relations,619

thereby enabling accessible KGs from the text (e.g.620

Text-to-KG), or coherent text generation from KGs621

(e.g. KG-to-Text). However, aligning and integrat-622

ing heterogeneous ontologies remains a challenge623

when using them for NLP tasks. OM aims to bridge624

the gap by capturing similar concepts that occur in625

different ontologies.626

OM is a complex process that combines syntac-627

tic, lexical, and semantic matching. Each level of628

matching may use different matching techniques,629

for example, text preprocessing for syntactic match-630

ing, text vectorisation for lexical matching, and log-631

ical reasoning for semantic matching. This paper632

concentrates on text preprocessing, a common prac-633

tice in syntactic matching. While generic text pre-634

processing pipeline methods in syntactic OM are635

usually applied on the basis of intuition or extrap-636

olation from other experience, this work advances637

the state of knowledge towards making design de-638

cisions objective and supported by evidence.639

(1) Our study shows (i) whether to use, or not640

use, and (ii) how to use these text preprocessing641

methods. Such experimental results will benefit642

decision making when selecting appropriate text643

preprocessing methods for syntactic OM. For large-644

scale OM, it can significantly reduce unnecessary645

trial costs.646

(2) Our context-based pipeline repair approach is 647

proposed to repair the less effective Phase 2 text 648

preprocessing methods. Its broader value is show- 649

ing how to maximise true mappings and minimise 650

false mappings throughout the text preprocessing 651

pipeline. From a statistical perspective, it is a local 652

optimisation for syntactic matching that will ben- 653

efit the global optimisation for OM, as syntactic 654

matching provides “anchor mappings” for lexical 655

and semantic matching. 656

In addition, this study also demonstrates that 657

the nature of text preprocessing used in NLP ap- 658

plications can be context-based. Not all pipeline 659

methods are effective, and some of them may even 660

hamper the overall performance of downstream 661

tasks. Modifications are required before applying 662

text preprocessing to specific NLP tasks. 663

Ethical Considerations 664

In this study, we use the datasets from OAEI track 665

repositories. According to the OAEI data policy 666

(date accessed: 2024-06-01), “OAEI results and 667

datasets, are publicly available, but subject to a 668

use policy similar to the one defined by NIST 669

for TREC. These rules apply to anyone using 670

these data.” For more details, please check the 671

official link: https://oaei.ontologymatching. 672

org/doc/oaei-deontology.2.html 673

Acknowledgements 674

Not available during the review process. 675

References 676

Murugan Anandarajan, Chelsey Hill, and Thomas 677
Nolan. 2019. Text Preprocessing, pages 45–59. 678
Springer International Publishing, Cham. 679

Anthropic. 2024. Claude Models. 680

Steven Bird, Ewan Klein, Edward Loper, and Jason 681
Baldridge. 2008. Multidisciplinary Instruction with 682
the Natural Language Toolkit. In Proceedings of 683
the Third Workshop on Issues in Teaching Compu- 684
tational Linguistics, pages 62–70, Columbus, Ohio. 685
Association for Computational Linguistics. 686

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, 687
Denvar Antonyrajah, Ali Hadian, and Jaehun Lee. 688
2021. Augmenting Ontology Alignment by Seman- 689
tic Embedding and Distant Supervision. In The Se- 690
mantic Web, pages 392–408, Cham. Springer Interna- 691
tional Publishing. 692

Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin 693
Stroe. 2009. AgreementMaker: Efficient Matching 694

9

https://trec.nist.gov/results.html
https://trec.nist.gov/results.html
https://trec.nist.gov/results.html
https://oaei.ontologymatching.org/doc/oaei-deontology.2.html
https://oaei.ontologymatching.org/doc/oaei-deontology.2.html
https://oaei.ontologymatching.org/doc/oaei-deontology.2.html
https://doi.org/10.1007/978-3-319-95663-3_4
https://docs.anthropic.com/en/docs/models-overview
https://aclanthology.org/W08-0208
https://aclanthology.org/W08-0208
https://aclanthology.org/W08-0208
https://doi.org/10.1007/978-3-030-77385-4_23
https://doi.org/10.1007/978-3-030-77385-4_23
https://doi.org/10.1007/978-3-030-77385-4_23
https://doi.org/10.14778/1687553.1687598
https://doi.org/10.14778/1687553.1687598

for Large Real-World Schemas and Ontologies. Proc.695
VLDB Endow., 2(2):1586–1589.696

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and697
Kristina Toutanova. 2019. BERT: Pre-training of698
Deep Bidirectional Transformers for Language Un-699
derstanding. In Proceedings of the 2019 Conference700
of the North American Chapter of the Association for701
Computational Linguistics: Human Language Tech-702
nologies, Volume 1 (Long and Short Papers), pages703
4171–4186, Minneapolis, Minnesota. Association for704
Computational Linguistics.705

Kevin Donnelly et al. 2006. SNOMED-CT: The706
advanced terminology and coding system for707
eHealth. Studies in health technology and informat-708
ics, 121:279.709

Jérôme Euzenat. 2007. Semantic precision and recall710
for ontology alignment evaluation. In Proc. 20th711
International Joint Conference on Artificial Intelli-712
gence (IJCAI), pages 348–353. AAAI Press.713

Jérôme Euzenat, Pavel Shvaiko, et al. 2007. Ontology714
Matching, volume 18. Springer-Verlag, Berlin, Hei-715
delberg.716

Daniel Faria, Catia Pesquita, Emanuel Santos, Isabel F717
Cruz, and Francisco M Couto. 2014. AgreementMak-718
erLight 2.0: Towards Efficient Large-Scale Ontology719
Matching. In ISWC (Posters & Demos), pages 457–720
460, Cham. Springer International Publishing.721

Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo722
Palmonari, Isabel F. Cruz, and Francisco M Couto.723
2013. The AgreementMakerLight Ontology Match-724
ing System. In On the Move to Meaningful Internet725
Systems: OTM 2013 Conferences, pages 527–541,726
Berlin, Heidelberg. Springer.727

Jennifer Golbeck, Gilberto Fragoso, Frank Hartel, Jim728
Hendler, Jim Oberthaler, and Bijan Parsia. 2003. The729
National Cancer Institute’s thesaurus and ontology.730
Journal of Web Semantics First Look 1 1 4.731

Yuan He, Jiaoyan Chen, Denvar Antonyrajah, and Ian732
Horrocks. 2022. BERTMap: A BERT-Based Ontol-733
ogy Alignment System. Proceedings of the AAAI734
Conference on Artificial Intelligence, 36(5):5684–735
5691.736

Yuan He, Jiaoyan Chen, Hang Dong, Ian Horrocks,737
Carlo Allocca, Taehun Kim, and Brahmananda Sap-738
kota. 2023. DeepOnto: A Python Package for Ontol-739
ogy Engineering with Deep Learning.740

Sven Hertling, Jan Portisch, and Heiko Paulheim. 2019.741
MELT - Matching Evaluation Toolkit. In Semantic742
Systems. The Power of AI and Knowledge Graphs,743
pages 231–245, Cham. Springer International Pub-744
lishing.745

Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. 2011.746
LogMap: Logic-Based and Scalable Ontology Match-747
ing. In The Semantic Web – ISWC 2011, pages 273–748
288, Berlin, Heidelberg. Springer.749

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Yu- 750
jiao Zhou. 2011. LogMap 2.0: Towards Logic-Based, 751
Scalable and Interactive Ontology Matching. In Pro- 752
ceedings of the 4th International Workshop on Seman- 753
tic Web Applications and Tools for the Life Sciences, 754
SWAT4LS ’11, page 45–46, New York, NY, USA. 755
Association for Computing Machinery. 756

Maxat Kulmanov, Wang Liu-Wei, Yuan Yan, and Robert 757
Hoehndorf. 2019. EL Embeddings: Geometric con- 758
struction of models for the Description Logic EL ++. 759

Patrick Lambrix and He Tan. 2006. SAMBO—A sys- 760
tem for aligning and merging biomedical ontologies. 761
Journal of Web Semantics, 4(3):196–206. Semantic 762
Web for Life Sciences. 763

LangChain Inc. 2024. LangChain. 764

Guoxuan Li, Songmao Zhang, Jiayi Wei, and Wenqian 765
Ye. 2021. Combining FCA-Map with representa- 766
tion learning for aligning large biomedical ontologies. 767
In OM@ ISWC, pages 207–208, Berlin, Heidelberg. 768
Springer. 769

Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. 2009. Ri- 770
MOM: A Dynamic Multistrategy Ontology Align- 771
ment Framework. IEEE Transactions on Knowledge 772
and Data Engineering, 21(8):1218–1232. 773

Xiulei Liu, Qiang Tong, Xuhong Liu, and Zhihui Qin. 774
2021. Ontology Matching: State of the Art, Future 775
Challenges, and Thinking Based on Utilized Infor- 776
mation. IEEE Access, 9:91235–91243. 777

Meta. 2024. Meta Llama 3 Models. 778

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey 779
Dean. 2013. Efficient Estimation of Word Represen- 780
tations in Vector Space. 781

George A. Miller. 1995. WordNet: A Lexical Database 782
for English. Commun. ACM, 38(11):39–41. 783

Mistral AI. 2024. Mistral AI Models. 784

OAEI. 2023. Ontology Alignment Evaluation Initiative. 785

Ollama. 2024. Ollama. 786

OpenAI. 2024. OpenAI Models. 787

Cornelius Rosse and José L.V. Mejino. 2003. A refer- 788
ence ontology for biomedical informatics: the Foun- 789
dational Model of Anatomy. Journal of Biomedical 790
Informatics, 36(6):478–500. 791

Claude Sammut and Geoffrey I. Webb, editors. 2010. 792
Encyclopedia of Machine Learning. Springer US, 793
Boston, MA. 794

Daniel Schober, Waclaw Kusnierczyk, Suzanna E Lewis, 795
Jane Lomax, et al. 2007. Towards naming conven- 796
tions for use in controlled vocabulary and ontology 797
engineering. In The 10th Annual Bio-Ontologies 798
Meeting. 799

10

https://doi.org/10.14778/1687553.1687598
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.2139/ssrn.3199007
https://doi.org/10.2139/ssrn.3199007
https://doi.org/10.2139/ssrn.3199007
https://doi.org/10.1609/aaai.v36i5.20510
https://doi.org/10.1609/aaai.v36i5.20510
https://doi.org/10.1609/aaai.v36i5.20510
http://arxiv.org/abs/2307.03067
http://arxiv.org/abs/2307.03067
http://arxiv.org/abs/2307.03067
https://doi.org/10.1007/978-3-030-33220-4_17
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1145/2166896.2166911
https://doi.org/10.1145/2166896.2166911
https://doi.org/10.1145/2166896.2166911
http://arxiv.org/abs/1902.10499
http://arxiv.org/abs/1902.10499
http://arxiv.org/abs/1902.10499
https://doi.org/10.1016/j.websem.2006.05.003
https://doi.org/10.1016/j.websem.2006.05.003
https://doi.org/10.1016/j.websem.2006.05.003
https://www.langchain.com/
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/ACCESS.2021.3057081
https://doi.org/10.1109/ACCESS.2021.3057081
https://doi.org/10.1109/ACCESS.2021.3057081
https://doi.org/10.1109/ACCESS.2021.3057081
https://doi.org/10.1109/ACCESS.2021.3057081
https://llama.meta.com/llama3/
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://docs.mistral.ai/getting-started/models/
http://oaei.ontologymatching.org/
https://ollama.com/
https://platform.openai.com/docs/models
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1016/j.jbi.2003.11.007
https://doi.org/10.1007/978-0-387-30164-8_832

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard800
Weikum. 2007. Yago: a core of semantic knowledge.801
In Proceedings of the 16th International Conference802
on World Wide Web, WWW ’07, page 697–706, New803
York, NY, USA. Association for Computing Machin-804
ery.805

Kerry Taylor, Simon Cox, and Linda van den Brink.806
2015. Spatial Data on the Web Working Group: On-807
tology Design Principles.808

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-809
data: a free collaborative knowledgebase. Commun.810
ACM, 57(10):78–85.811

Michael L. Waskom. 2021. seaborn: statistical data812
visualization. Journal of Open Source Software,813
6(60):3021.814

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,815
Mohammad Norouzi, Wolfgang Macherey, Maxim816
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff817
Klingner, Apurva Shah, Melvin Johnson, Xiaobing818
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,819
Taku Kudo, Hideto Kazawa, Keith Stevens, George820
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason821
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,822
Greg Corrado, Macduff Hughes, and Jeffrey Dean.823
2016. Google’s Neural Machine Translation Sys-824
tem: Bridging the Gap between Human and Machine825
Translation.826

Mengyi Zhao, Songmao Zhang, Weizhuo Li, and827
Guowei Chen. 2018. Matching biomedical ontolo-828
gies based on formal concept analysis. Journal of829
biomedical semantics, 9(1):1–27.830

A Supplementary Material831

The experiment code used in this paper has been832

submitted as a single .zip archive. The camera-833

ready version will use a GitHub link instead.834

B Extended Experiment Details835

B.1 Analysis of Text Preprocessing Pipeline836

Figures 11, 12, 13, and 14 show the details of837

the experiment to compare the text preprocessing838

pipeline in syntactic OM.839

(1) For Phase 1 text preprocessing methods (To-840

kenisation and Normalisation), most of the data841

points located above the equivalent line in Preci-842

sion, Recall, and F1 Score indicate that they help843

syntactic OM.844

(2) For Phase 2 text preprocessing methods (Stop845

Words Removal and Stemming/Lemmatisation):846

Some data points are located above the equivalent847

line in Recall, but the majority of data points lo-848

cated below the equivalent line in Precision and F1849

Score indicate that they do not help syntactic OM.850

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 11: Comparison of Base Entity without Text
Preprocessing (B) vs. Tokenisation (T).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 12: Comparison of Tokenisation (T) vs. Normal-
isation (N).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 13: Comparison of Normalisation (N) vs. Stop
Words Removal (R).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 14: Comparison of Stop Words Removal (R) vs.
Stemming/Lemmatisation (S/L).

Figure 15 shows the details of the experiment 851

to compare Stemming (S) and Lemmatisation (L). 852

Most of the data points located above the L=S line 853

in Precision and F1 Score indicate that using Lem- 854

matisation is better than Stemming in syntactic OM 855

(assuming that the post hoc correction is excluded). 856

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 15: Stemming vs. Lemmatisation.

Figures 16, 17, and 18 show the details of the 857

experiment to compare Porter Stemmer, Snowball 858

Stemmer, and Lancaster Stemmer. 859

11

https://doi.org/10.1145/1242572.1242667
https://www.w3.org/2015/spatial/wiki/Ontology_Design_Principles
https://www.w3.org/2015/spatial/wiki/Ontology_Design_Principles
https://www.w3.org/2015/spatial/wiki/Ontology_Design_Principles
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

(1) For Porter Stemmer vs. Snowball Stemmer, all860

data points located in the equivalent line indicate861

that there is no difference in using Porter Stemmer862

and Snowball Stemmer in syntactic OM.863

(2) For Porter/Snowball Stemmer vs. Lancaster864

Stemmer, most of the data points the data points865

located above the equivalent line in Precision and866

F1 Score indicate that Porter/Snowball Stemmer is867

more effective than Lancaster Stemmer in syntactic868

OM.869

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 16: Comparison of Porter Stemmer (SP) vs.
Snowball Stemmer (SS).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 17: Comparison of Porter Stemmer (SP) vs. Lan-
caster Stemmer (SL).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 18: Comparison of Snowball Stemmer (SS) vs.
Lancaster Stemmer (SL).

Figure 19 shows the details of the experiment to870

compare Lemmatisation vs. Lemmatisation + POS871

Tagging. All data points located in the equivalent872

line indicate that using POS Tagging in Lemmati-873

sation does not help syntactic OM.874

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 19: Comparison of Lemmatisation (L) vs. Lem-
matisation + POS Tagging (LT).

B.2 Context-based Pipeline Repair 875

Figures 20, 21, 22, 23, 24, and 25 show the de- 876

tails of the experiment to consider the benefit of 877

using context-based pipeline repair in Phase 2 text 878

preprocessing methods (Stop Words Removal and 879

Stemming/Lemmatisation). 880

(1) For Precision, most of the data points are lo- 881

cated above the equivalent line, indicating that 882

context-based pipeline repair significantly im- 883

proves matching correctness. 884

(2) For Recall, most of the data points are located 885

in the equivalent line, and only a few data points 886

are located below the equivalent line, indicating 887

that context-based pipeline repair slightly reduces 888

matching completeness. 889

(3) For F1 Score, most of the data points are lo- 890

cated above the equivalent line, indicating that 891

context-based pipeline repair also improves overall 892

matching performance. 893

(4) Experimentally, the wider ellipse around the 894

data points indicates that the matching performance 895

improvement ranking in Phase 2 text preprocess- 896

ing methods is Stemming (S) > Lemmatisation 897

(L) > Stop Words Removal (R). 898

(5) Experimentally, the wider ellipse around the 899

data points indicates that the matching performance 900

improvement ranking in different stemmers is Lan- 901

caster Stemmer (SL) > Porter Stemmer (SP) = 902

Snowball Stemmer (SS). 903

(6) Experimentally, the same ellipse around the 904

data points indicates that the matching performance 905

improvement ranking in lemmatisation is Lemma- 906

tisation (L) = Lemmatisation + POS Tagging (LT). 907

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 20: Comparison of using and without using
context-based repair in Stop Words Removal (R).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 21: Comparison of using and without using
context-based repair in Porter Stemmer (SP).

12

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 22: Comparison of using and without using
context-based repair in Snowball Stemmer (SS).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 23: Comparison of using and without using
context-based repair in Lancaster Stemmer (SL).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 24: Comparison of using and without using
context-based repair in Lemmatisation (L).

(a) Precision (%) (b) Recall (%) (c) F1 Score (%)
Figure 25: Comparison of using and without using
context-based repair in Lemmatisation + POS Tagging
(LT).

C Extended Discussion on LLMs908

The use of large language models (LLMs) is a909

breakthrough in NLP, but it is not a one-size-fits-all910

solution for OM tasks. OM is a complex multi-911

level matching mixed with syntactic, lexical, and912

semantic matching. LLMs may not outperform tra-913

ditional methods in performing these sub-matching914

tasks. The development and implementation of an915

LLM-based framework that incorporates different916

matching techniques is a new research direction for917

OM, but it is beyond the scope of this paper. In918

some scenarios where the information is sensitive919

or domain-specific, the models need to run locally.920

LLMs are difficult to run locally and retrain due to921

constraints on storage and computational power in922

some cases, and constraints on API access in oth-923

ers. Classical and ML-based OM systems (which 924

can run locally and retrain) are still very useful. 925

These two types of systems rely heavily on “seed 926

mappings” produced by syntactic matching using 927

classical text preprocessing. 928

C.1 LLMs and OM Text Preprocessing 929

We observe that some LLMs can perform syntac- 930

tic matching without preprocessing, but their ro- 931

bustness remains questionable. We conduct a pre- 932

liminary study on the use of LLMs for syntactic 933

matching with and without text preprocessing. The 934

experiment settings are described as follows: 935

(1) We select the same example described in Sec- 936

tion 3.1.1. The compound word “art gallery” can 937

have different naming conventions in different on- 938

tologies. For example, the Pascal case “ArtGallery” 939

used in YAGO and the Snake case “art gallery” 940

used in Wikidata. 941

(2) We choose 10 LLMs from 4 different fam- 942

ilies. These include two OpenAI models (gpt- 943

3.5-turbo and gpt-4-turbo) (OpenAI, 2024), three 944

Mistral AI models (mistral-large, mistral-medium, 945

and mistral-small) (Mistral AI, 2024), three An- 946

thropic Claude models (claude-3-opus, claude-3- 947

sonnet, and claude-3-haiku) (Anthropic, 2024), 948

and two open-source Meta Llama models (llama- 949

3-70b and llama-3-8b) (Meta, 2024). We use 950

LangChain (LangChain Inc., 2024) to build the 951

chats with OpenAI, Mistral AI, and Anthropic 952

Claude models, and Ollama (Ollama, 2024) to ac- 953

cess Meta Llama models. The versions of LLMs 954

used in the experiment are listed in Table 2. All 955

the model temperatures are set to 0 to minimise the 956

random results generated by LLMs. 957

Series LLMs Versions

GPT
gpt-4-turbo gpt-4-turbo-2024-04-09
gpt-3.5-turbo gpt-3.5-turbo-0125

Claude
claude-3-opus claude-3-opus-20240229
claude-3-sonnet claude-3-sonnet-20240229
claude-3-haiku claude-3-haiku-20240307

Mistral
mistral-large mistral-large-2402
mistral-medium mistral-medium-2312
mistral-small mistral-small-2402

Llama
llama-3-70b date accessed: 2024-06-01
llama-3-8b date accessed: 2024-06-01

Table 2: Versions of LLMs used in the experiment.

(3) We generate the prompt template as “Is Art- 958

Gallery <KEYWORD> to/with art galley?” (with- 959

out text preprocessing) and “Is art galley <KEY- 960

WORD> to/with art galley?” (with text preprocess- 961

13

ing). We only use T and N to preprocess the text962

because R and S/L are shown to be less effective in963

the main content of the paper, and also R and S/T964

needs are not present in the actual naming of the965

ontology entities. The <KEYWORD> is a place-966

holder for a collection of words that can be used to967

describe an equivalence relationship. In this study,968

we experiment with three common words namely969

“identical”, “interchangeable”, and “equivalent”.970

(4) Considering the complexity of prompts, we971

also test an additional case where the prompts have972

a self-reflection phase (i.e. add “Write a short ex-973

planation” to the prompt). We use parentheses to974

indicate that the different responses generated by975

the prompts have a self-reflection phase.976

Table 3 shows the results of using LLMs for syn-977

tactic matching without text preprocessing. We978

expect the LLMs to generate “Yes” answers for979

this TP sample. However, the majority of the980

LLMs output the “No” answers (marked with the981

red colour in the table) without text preprocessing.982

Table 4 shows the results of using LLMs for syn-983

tactic matching with text preprocessing. We can984

see that the error rate can be significantly reduced,985

but some LLMs still continue to produce incorrect986

results. The result also shows that LLMs with a987

larger number of parameters (e.g. llama-3-70b)988

and prompts with a self-reflection phase (labelled989

in parentheses) offer “too much of a good thing”.990

They do not help with syntactic matching and may991

even produce more errors for OM tasks.992

This preliminary study does not cover all pos-993

sible triggers used in prompt engineering, but it994

is adequate to highlight the importance of proper995

preprocessing before fitting the text into the LLMs.996

We believe that the classical programming-based997

text preprocessing pipeline is more stable and reli-998

able than using LLM’s implicit text preprocessing999

or prompt-based text preprocessing for OM tasks.1000

C.2 LLMs and OM Text Preprocessing1001

Pipeline Repair1002

Using LLMs for OM text preprocessing is not with-1003

out merit. With strong background knowledge, they1004

can be used to facilitate several subtasks in OM.1005

For example, LLMs can be used as a repair tool for1006

the text preprocessing pipeline, as an alternative1007

to the approach we proposed in Section 4.2. The1008

slight difference is that the context-based pipeline1009

repair approach is an ad hoc repair prior to syn-1010

tactic matching, while the LLM-based approach1011

is a post hoc repair after syntactic matching. We1012

LLMs
<KEYWORD>

“identical” “interchangeable” “equivalent”

gpt-4-turbo No No No

gpt-3.5-turbo No No No

claude-3-opus No Yes Yes

claude-3-sonnet No No No

claude-3-haiku No No No

mistral-large No No Yes

mistral-medium No No No

mistral-small No Yes Yes (No)

llama-3-70b No No No

llama-3-8b Yes Yes Yes

Table 3: Using LLMs for syntactic matching without
text preprocessing. Prompt: “Is ArtGallery <KEY-
WORD> to/with art gallery? Answer yes or no. (Write
a short explanation.)”

LLMs
<KEYWORD>

“identical” “interchangeable” “equivalent”

gpt-4-turbo Yes Yes Yes

gpt-3.5-turbo Yes Yes Yes

claude-3-opus Yes Yes Yes

claude-3-sonnet Yes (No) No Yes (No)

claude-3-haiku No No Yes (No)

mistral-large Yes Yes Yes

mistral-medium No Yes Yes

mistral-small Yes Yes Yes

llama-3-70b Yes Yes (No) Yes (No)

llama-3-8b Yes Yes Yes

Table 4: Using LLMs for syntactic matching with
text preprocessing. Prompt: “Is art gallery <KEY-
WORD> to/with art gallery? Answer yes or no. (Write
a short explanation.)”

conduct a preliminary study on LLMs used in OM 1013

text preprocessing pipeline repair. The experiment 1014

settings are described as follows: 1015

(1) The experiment is set up on the largebio track 1016

repository, a biomedical track repository requires 1017

higher Precision with low rates of FPs. The Lan- 1018

caster Stemmer always shows lower Precision 1019

across 6 pairs of alignments, meaning that the re- 1020

sults contain a significant number of FPs. 1021

(2) We choose the same 10 LLMs used in the pre- 1022

vious experiment in Appendix C.1. 1023

(3) We use the prompt “Is X equivalent to Y?” The 1024

previous experiment in Appendix C.1 shows the 1025

keyword “equivalent” produces fewer errors, and 1026

a self-reflection phase does not help the OM tasks. 1027

We also preprocess the entity names X and Y with 1028

N and T before fitting them into the LLMs. 1029

Figure 26 shows the discovery rate of FPs us- 1030

ing 10 different LLMs. We expect the LLMs to 1031

generate “No” answers for these FP samples. The 1032

GPT model gpt-4-tubo, the Claude model claude- 1033

14

(a) Small version of FMA-NCI alignment (b) Whole version of FMA-NCI alignment

(c) Small version of FMA-SNOMED alignment (d) Whole version of FMA-SNOMED alignment

(e) Small version of SNOMED-NCI alignment (f) Whole version of SNOMED-NCI alignment
Figure 26: The discovery rate of FPs using LLMs on the largebio track repository.

3-haiku, the Mistral model mistral-medium, and1034

the Llama model llama-3-70b achieve better per-1035

formance in detecting FPs. For the GPT and Llama1036

series, LLMs with a larger number of parameters1037

perform better than those with a relatively smaller1038

number of parameters. For the Claude and Mis-1039

tral series, LLMs with larger parameters do not1040

improve performance. In the 6 test cases we anal-1041

ysed, they are even less effective than those with a1042

relatively smaller number of parameters.1043

C.3 Implications of LLMs used in OM1044

LLMs were originally developed for the purpose1045

of question-answering (QA). OM is not only a QA1046

task, but also a knowledge-intensive task that re-1047

lates to a comprehensive understanding and rea-1048

soning of domain knowledge. The preliminary 1049

studies in this section demonstrate the limitations 1050

and opportunities of using LLMs for OM tasks. 1051

From our experience, we highlight two F&T path- 1052

ways to customise LLM for a new domain task. 1053

One is functional tooling, which refers to teach- 1054

ing LLMs using external tools. In LLM-based text 1055

preprocessing (Appendix C.1), we could package 1056

the programming-based text preprocessing pipeline 1057

as a tool for LLMs to use. Another approach is 1058

fine-tuning, where LLMs are customised with lo- 1059

cal data. In LLM-based text preprocessing repair 1060

(Appendix C.2), we could use human-in-the-loop 1061

to validate the repaired results generated by LLMs 1062

and feed the validated data back into LLMs, so that 1063

they can better understand the context of the task. 1064

15

	Introduction
	Related Work
	Analysis of Text Preprocessing Pipeline
	Method
	Selected OAEI Track Repositories
	Selected Subtasks of Pipeline Methods
	Selected OM Evaluation Measures

	Results
	Comparison of Pipeline Methods
	Stemming vs. Lemmatisation
	Porter Stemmer vs. Snowball Stemmer vs. Lancaster Stemmer
	Lemmatisation vs Lemmatisation + POS Tagging

	Discussion
	Phase 1 Text Preprocessing Methods
	Phase 2 Text Preprocessing Methods

	Context-based Pipeline Repair
	Motivation
	Method
	Evaluation

	Conclusion
	Supplementary Material
	Extended Experiment Details
	Analysis of Text Preprocessing Pipeline
	Context-based Pipeline Repair

	Extended Discussion on LLMs
	LLMs and OM Text Preprocessing
	LLMs and OM Text Preprocessing Pipeline Repair
	Implications of LLMs used in OM

