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Abstract

Large Language Model (LLM) inference on Central Processing Units (CPU) is
challenging due to the vast quantities of Multiply-Add (MAD) matrix operations
in the attention computations. This paper highlights a rare gem in modern CPUs,
Single-Instruction-Multiple-Data (SIMD) registers, which allows for ultra-low-
latency lookups in a batch. We leverage this unique capability to propose NoMAD-
Attention, an efficient attention algorithm that replaces MAD operations with in-
register lookups. Through hardware-aware algorithmic designs, NoMAD-Attention
achieves the computation of attention scores using repeated fast accesses to SIMD
registers. NoMAD-Attention works with pre-trained attention-based LLMs without
model finetuning. Extensive empirical evaluations demonstrate that NoMAD-
Attention maintains the quality of the original LLMs well and speeds up the 4-bit
quantized LLaMA-7B-based model by up to 2× at 16k context length.

1 Introduction

Auto-regressive transformer-based Large Language Models (LLM) demonstrate remarkable abilities
across a wide range of natural language processing tasks without finetuning [35] and exhibit emergent
abilities [49] for solving complex problems.

The Need for Deploying LLM on CPUs. Despite the potential of LLMs, their deployment is
costly [27]. Serving LLMs with billion-scale parameters requires specialized hardware such as
NVIDIA A100 Graphics Processing Units (GPUs) [55]. However, mainstream personal devices
are predominately equipped with only Central Processing Units (CPUs) [43]. As a result, making
LLM-related services accessible to everyone remains a major challenge. Reducing the LLM inference
latency on CPUs would significantly influence its accessibility and adoption.

Expensive Multiply-add Operations for Attention in LLM Inference. LLM inference on CPUs
is compute-bound, and the primary computational bottleneck is the calculation of attention scores
[21]. Attention, a mechanism that models token interactions through all-pair dot products, heavily
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relies on the multiply-add (MAD) kernel on processors. The MAD operation involves computing
the product of two numbers and adding that product to an accumulator [44]. MAD plays a crucial
role in determining the attention score between tokens and subsequently blending their embeddings
within the attention mechanism. The computational cost of attention grows quadratically with the
sequence length due to the cumulative MAD operations. Since CPUs have limited parallel cores, they
are inefficient for handling highly repetitive and parallel workloads. The extensive MAD operations
required by the attention mechanism thus become the primary bottleneck during inference.

Opportunities and Challenges from Modern CPUs: In-Register Lookups. The memory hierarchy
of modern CPUs has undergone significant evolution, introducing a new type of registers optimized
for Single-Instruction-Multiple-Data (SIMD) operations. The SIMD registers vary in size, ranging
from 128 bits to 512 bits [41], and support specialized SIMD instructions for high-throughput parallel
processing [59]. SIMD registers have become a standard feature in commodity hardware, including
laptops and mobile devices [13]. In this context, an in-register lookup (or shuffle) refers to the
low-latency random access of information stored within SIMD registers. Storing information such as
dot-product lookup tables (LUT) within SIMD registers, as opposed to cache memory, can accelerate
LLM inference [4]. However, the limited size of SIMD registers poses challenges to fitting the
computational paradigm of existing models.

Our Proposal: MAD-Free Attention with In-Register Lookups. Our paper demonstrates a new
approach for speeding up LLM inference by leveraging the unique hardware capability of CPUs.
We show how the vast quantities of MAD operations in attention computation can be replaced with
in-register lookups to mitigate the quadratic computational bottleneck of LLM inference on CPUs.
NoMAD-Attention significantly speeds up LLM inference without sacrificing model quality and is
compatible with pre-trained attention-based transformers without finetuning.

We summarize our contributions as follows:

1. We identify the extensive MAD operations in attention as the bottleneck of CPU LLM inference
and we replace them with fast in-register lookups.

2. We introduce NoMAD-Attention, a MAD-free framework of attention computation for pre-trained
attention-based LLMs. NoMAD-Attention leverages hardware-aware algorithmic designs to
enable accurate and fast in-register lookup-based estimations of query-key dot products despite
the limited capacity of SIMD registers. NoMAD-Attention preserves model quality while yielding
considerable speedups over MAD-based attention.

3. Our extensive experiments demonstrate that NoMAD-Attention achieves up to 2× speedup on
LLaMA-7B-based models with 4-bit weights at a context length of 16k while maintaining the
predictive performance of the original model.

2 LLM Inference on CPUs

This section introduces the attention mechanism used in LLMs and the key-value (KV) caching
technique for avoiding redundant attention computations. We also discuss the CPU memory hierarchy,
which motivates the use of fast in-register lookups.

2.1 LLM Attention

Most LLMs are decoder-only attention-based models that are pre-trained on a next token prediction
objective. LLMs use masked self-attention, which allows LLMs to cache key and value embeddings to
avoid future recomputations. However, this comes at the cost of memory overhead. The autoregressive
generation of LLMs consists of two phases: 1. prompt processing: the sequence of token embeddings
in the prompt is fed through by the model, and their key-value embeddings are cached by the model;
and 2. decoding: a new token is sampled based on the output embedding of the last token, and the
embedding of the new token is fed through the model, the output of which becomes the basis for
sampling the next token. The decoding process continues until an end-of-sequence token <EOS> is
sampled.

At the decoding step t, a single-head masked self-attention computes its output in the following way.
The embedding of the current token et is transformed into key, query, and value embeddings through
distinct transformations kt = fK(et), qt = fQ(e

t), vt = fV (e
t).
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Algorithm 1 Attention Score Computation in LLM

1: Input: query qt, key kt, key cache Kt−1
cache

2: let Kt
cache ←

[
Kt−1

cache
kt

]
▷ Append the current key to key cache

3: return softmax(
qt(Kt

cache)
⊤

√
d

)

Then, the key and value embedding of the current token are appended to the key and value cache,
respectively. The KV cache Kt−1

cache, V
t−1
cache of the step t− 1 contains the key/value embeddings of all

previous tokens, and after appending, the KV cache become

Kt
cache =

[
Kt−1

cache
kt

]
=

k
1

k2

. . .
kt

 , V t
cache =

[
V t−1
cache
vt

]
=

v1

v2

. . .
vt


Finally, the attention output is computed as

attention(et) = softmax

(
qt(Kt

cache)
⊤

√
d

)
V t
cache

where d is the dimensionality of qt. We will refer to the result of softmax( qK
⊤

√
d
) as the attention

scores since they dictate how much “attention” each token pays to other tokens. Computations in
the prompt processing phase are similar to those in the decoding phase, except all the prompt tokens
are computed in batch. LLMs use multi-head attention, which transforms the concatenation of the
outputs of multiple single-head attentions to form an output embedding.

MAD-based Attention. The attention mechanism models the interaction between tokens by perform-
ing all-pair dot products, where each dot product is computed via d Multiply-Add (MAD) operations.
Since attention computes the interaction between all pairs of tokens, the amount of MAD operations
scales quadratically with the sequence length, quickly overwhelming the computing capability of
CPUs. CPUs are designed to handle complex workloads with granular control, while GPUs are opti-
mized for processing simple and repetitive tasks in high throughput. Hence, the success of attention
has largely been fueled by the development of highly parallel throughput-oriented processors, such as
GPUs [12].

MAD-based Attention as Bottleneck of LLM Inference. The computation of attention scores
becomes the bottleneck of LLM inference as the sequence length increases (see our analysis in Figure
4). At the t-th step of the decoding phase, the time complexity of computing attention score with MAD
is O(t) due to t dot products, while all other components of LLMs such as MLP, skip connections,
and normalization have a time complexity of O(1). We will focus on optimizing the efficiency of
attention score computations in our proposed approach. Algorithm 1 presents the pseudocode for
attention score computation, including key caching, for a single-head masked self-attention in LLM.
This algorithm will serve as a point of comparison in our proposed approach.

2.2 Memory Hierarchy of Modern CPUs

CPU memory is organized into a pyramidal hierarchy, as shown in Figure 1, with faster memory
significantly smaller than slower memory. The memory unit with the fastest access speed is the
registers. Each compute core accesses its dedicated registers in just 1–2 CPU cycles, but these registers
are limited in size, usually not exceeding 64 bits. Modern processors include a new type of registers
optimized for Single-Instruction-Multiple-Data (SIMD) operations. These SIMD registers range from
128 bits to 512 bits in size and support a limited set of SIMD instructions for throughput-oriented
parallel processing. SIMD registers are common on commodity hardware, including laptops and
mobile devices. Using SIMD operations can speed up deep learning models on CPUs by parallelizing
matrix multiplications. However, due to the limited number of cores in a CPU, its efficiency in
deep learning is still considerably worse than GPU. Prior works [42, 9] have resorted to sparsity and
sampling-based approaches, but they require training models from scratch and may not apply to all
architectures. Our approach exploits the SIMD registers to shift the computation paradigm from
MAD to in-register lookups, which demonstrates significant speedup over MAD-based models.
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Figure 1: A comparison of memory layouts of the key cache of LLM attention (left) and the key-code
cache of NoMAD-Attention (middle), and an illustration of how attention scores are computed
through in-register lookups in NoMAD-Attention (right).

When describing our proposed algorithm, we assume SIMD registers are 128 bits wide. Some systems
with wider SIMD registers support more parallelism, e.g., 256-bit registers in AVX-2 and 512-bit
registers in AVX-512. However, the most universal form of SIMD registers uses 128 bits, which is
supported by Arm NEON and AVX-compatible processors.

3 Methodology

This section describes our proposed approach, NoMAD-Attention, which replaces MAD operations
with in-register lookups to enable faster attention computations on CPUs. NoMAD-Attention utilizes
three techniques to enable lookup-based attention: 1. transforming dot product computations to
memory lookups through product quantization, 2. compressing lookup tables into SIMD registers for
low-latency access, 3. reorganizing the memory layout of key cache for batch parallel dot product
lookups.

3.1 Transforming Dot-products into Lookups

Previous works have shown that inexact attention scores in transformers work well for sequence mod-
eling [53]. NoMAD leverages Product Quantization (PQ) [23] to compute high-quality estimations of
dot products through in-register lookups. PQ, originally designed for compressing high-dimensional
vectors, quantizes a floating-point vector into discrete codes. It makes use of sub-quantizers; for
a d-dimensional vector space, a vector is divided evenly in dimension into S sub-vectors, where
each sub-vector has dimension dsub = d

S , and each sub-vector space is quantized independently.
We use πs(e), where s ∈ {1 . . . S}, to denote the function that maps a d-dimensional vector e to its
dsub-dimensional sub-vector of the s-th sub-quantizer. Codebooks are used to quantize sub-vectors to
codes, which are collections of cluster centroids learned from a set of calibration vectors. We use
bs,c to denote the c-th centroid in the codebook of the s-th sub-quantizer. For a given vector e, the
product-quantized codes of e, denoted c1, . . . , cS , are the indexes of the nearest centroid of each
sub-quantizer, i.e.,

PQ(e) = [c1 . . . cS ],where cs = argmin
c

∥∥πs(e)− bs,c
∥∥

Once base vectors have been product-quantized to codes, PQ leverages asymmetric distance com-
putation to keep estimation errors low. In the computed distances, the original query vector is used
while the quantized base vectors are used, hence the asymmetry. For a given query q, the distances
to the centroids of each sub-quantizer are computed and stored in a lookup table (LUT). Then, the
corresponding distances in the LUT are looked up based on the codes of base vectors and accumulated
to produce the final distance estimation. More concretely, denoting the distance between query q and
the c-th centroid for the s-th sub-quantizer using LUTs[c] = dist

(
πs(q), bs,c

)
, then the estimated

distance between query q and a product-quantized base vector e, where PQ(e) = [c1 . . . cS ], is

d̃ist(q, e) =

S∑
s=1

LUTs[cs]
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Building upon previous work [7], we employ product quantization to approximate dot products within
the attention mechanism. We product-quantize the key vectors in attention to produce key codes,
which will be stored in place of the key cache of LLM attention. The codebooks are learned by
performing clustering on a set of key vectors from a calibration set. The key vectors are quantized
to the nearest centroid with respect to L2 distance. For a given query, the query-dependent LUT is
computed to hold dot products with respect to centroids. Dot products of sub-vectors are retrieved
from the LUT based on key codes and accumulated to produce the final dot product estimates. This
procedure allows us to compute attention scores through lookups.

3.2 Compressing Lookup Tables into SIMD Registers

Estimating dot products through PQ mostly eliminates the use of MAD kernels in the computation of
attention scores. However, this approach yields limited speedup over dot-product attention since a
high proportion of the CPU cycles are wasted due to cache/memory access stalling. L1-cache-resident
LUT is not enough to offer high-performance PQ [3]. The full potential of lookup-based attention
can only be unlocked by having the LUT stored in registers, which take only 1-2 CPU cycles to
access. However, the highly limited size of registers poses a challenge to fitting the LUT. In PQ, each
sub-quantizer commonly uses 256 centroids, which translates to 8-bit codes. Combined with 32-bit
floating-point (FP32) dot products, the LUT for each sub-quantizer consumes 8192 bits of memory,
while the SIMD registers are only 128 bits wide. We leverage hardware-aware techniques proposed
in [4] to enable low-latency retrieval from register-resident LUT.

8-bit Quantized Dot Products in LUT Due to the 128-bit width of SIMD registers, the FP32
representation of dot product is too costly to store. Adopting FP32 dot products in LUT implies that
each codebook can only contain up to 4 centroids, which will lead to significant quantization errors.
Therefore, we adopt the 8-bit dynamically quantized representation of dot products. Compressing
beyond 8-bit is infeasible since most SIMD instruction sets do not support parallel lookups below 8
bits. The quantization is done dynamically for each query to minimize quantization errors. For a given
query and sub-quantizer, dot products to centroids are first computed in full FP32 precision. Then,
the quantization range is determined by the minimum and maximum dot products to the centroids.
Finally, the range is evenly divided into 28 buckets, and dot products are quantized to the bucket they
fall into. More formally, suppose dpmin = minc(πs(q) · bs,c) and dpmax = maxc(πs(q) · bs,c) are
the minimum and maximum dot products of the query q to the centroids of the s-th sub-quantizer,
then the LUT stores the quantized dot products to centroid c as

LUTs[c] =
⌊ (πs(q) · bs,c)− dpmin

(dpmax − dpmin)/(2
8 − 1)

⌋
(1)

The quantization and de-quantization process can be done efficiently without much computational
overhead, and the quantization error is kept low thanks to dynamic query-dependent quantization (we
analyze its effects in Table 3).

Constrained Codebook Size By adopting 8-bit quantized dot products in LUT, we can fit 16 dot
products on 128-bit SIMD registers. This implies that the codebook size of each sub-quantizer is
constrained to 16 centroids, and evidence suggests this limited size may work well with attention:
it has been shown that the output of attention loses rank extremely quickly [15], implying that the
intermediate embeddings of transformers may exhibit clear clustering structures.

3.3 Reorganizing Key Cache Memory Layout

Quantized dot products and constrained codebooks enable LUT to be stored in SIMD registers, but
the layout format of the key cache needs to be reorganized for SIMD instructions. The original key
cache in LLM attention stores each key vector contiguously in a row to optimize single vector reads.
NoMAD-Attention uses the key-code cache in place of the key cache, which stores the quantized
codes of keys. To allow fast lookups of LUT entries based on key codes, we store the key codes in a
transposed blocked format. A comparison between the LLM key cache and the NoMAD key-code
cache is given in Figure 1.

The storage format of the NoMAD key-code cache is transposed: stored in column-major order
instead of row-major, and blocked: with 32 keys as a block. The SIMD instruction shuffle,
leveraged for performing low-latency batch lookups, takes a batch of byte-size integers as input and
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Algorithm 2 NoMAD-Attention Score Computation

1: Input: query qt, key kt, key-code cache Kt−1
code

2: let cts ← argminc∈{0,...,15}∥πs(k
t), bs,c∥2 for s = 1 . . . S ▷ Compute codes for the current key

3: let Kt
code ← insert cts into Kt−1

code for s = 1 . . . S

▷ Insert codes of the current key into the key-code cache
4: let LUTs[c]← quantize(πs(q

t) · bs,c) for s = 1 . . . S, c = 0 . . . 15

▷ Store 8-bit quantized dot products (Equation 1) in LUT
5: let accu[1 . . . t]← 0 ▷ Initialize accumulators
6: for i← 1 . . . ⌈ t

32
⌉ do ▷ Perform in-register lookups in batch of 32 keys

7: for s← 1 . . . S do
8: simd_load(LUTs) ▷ Load LUT into registers
9: accu[32i− 31 . . . 32i]←

simd_add
(
accu[32i− 31 . . . 32i], simd_shuffle(LUTs,K

32i−31...32i,s
code )

)
10: end for
11: end for
12: return softmax(dequantize(accu[1...t])√

d
)

retrieves the values held in the registers corresponding to the integer indices. The original storage
format of the key cache stores all dimensions of a key contiguously, which precludes efficient use
of shuffle. To maximize the usage of the LUT held in registers, we store key codes belonging
to the same sub-quantizer contiguously in rows of 32 codes. Since shuffle performs lookups in
a batch size of 16, the keys within the same block are stored in alternating order. Each quantized
code occupies half a byte as there are 16 centroids in a codebook, while the shuffle instruction uses
each byte as an input argument. By performing SIMD bit-shifting and bit-masking on a block of
alternating keys, we obtain the key codes in the original order, ready for use with shuffle. Section A
in the Appendix describes additional details on how shuffle is performed on each block of key-code
cache, and provides pseudocode.

3.4 NoMAD-Attention

By combining these three techniques, NoMAD-Attention achieves fast MAD-free attention score
computations through SIMD in-register lookups. For a given query, first, LUTs with 8-bit quantized
dot products are computed for each sub-quantizer. Then, an LUT is loaded into registers, followed by
SIMD shuffle instructions to retrieve dot products in the LUT in batch based on key codes. The
loading and lookup are repeated for all sub-quantizers, and the retrieved dot products are accumulated
in batch through SIMD add. Finally, the quantized dot products accumulated over all sub-quantizers
are de-quantized, scaled, and fed through softmax to produce the attention scores. The pseudocode
for NoMAD-Attention score computations is given in Algorithm 2.

3.5 Learning Key Compression

Compressing each segment of key activation embeddings into 4-bit codes, without degrading model
quality, is challenging. The straightforward approach is to first cache key activation embeddings on a
calibration dataset, and then learn the centroids through k-means clustering [29] on the embeddings.
However, this first-cut approach significantly degrades model quality, especially for dsub > 1
(we analyze its effects in Section 4.2). The first-cut approach performs sub-optimally since it is
uninformed; clustering is performed with the aim to minimize the reconstruction error with all tokens.
However, as shown previously [60, 28], the key cache of certain tokens are more pivotal for preserving
model quality. Therefore, we leverage the Fisher Information Matrix (FIM) to bias the centroids
towards important activations. Specifically, we approximate the Hessian using diagonals of the FIM,
which is the element-wise square of the gradient, and use it to weigh the reconstruction errors. Using
the FIM to minimize reconstruction error was first proposed in [26]. Our optimization objective for
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Table 1: Perplexity on WikiText-2 and C4 and accuracy on 6 benchmarks of LLMs with Attention
and NoMAD-Attention.

WT-2↓ C4↓ SciQ↑ Arc-E↑ Arc-C↑ Hellaswag↑ WinoGrande↑ PIQA↑ Avg.↑

LLaMA-7b

Attention 5.68 7.08 94.6 75.21 41.89 56.93 70.09 78.67 69.57
NoMAD-Attention (dsub = 1) 5.74 7.14 94.9 75.34 41.81 56.57 70.56 78.56 69.62
NoMAD-Attention (dsub = 2) 6.11 7.56 93.3 73.65 38.65 54.45 67.56 77.86 67.58
NoMAD-Attention (dsub = 4) 9.23 12.66 84.4 66.41 32.59 46.74 59.75 74.32 60.70

LLaMA-13b

Attention 5.09 6.61 95.0 77.40 46.42 59.93 72.85 79.16 71.79
NoMAD-Attention (dsub = 1) 5.14 6.65 95.1 77.15 46.67 59.74 72.85 79.22 71.79
NoMAD-Attention (dsub = 2) 5.44 6.96 94.8 76.43 44.37 58.05 71.82 78.18 70.61
NoMAD-Attention (dsub = 4) 8.19 10.66 89.1 73.53 37.71 51.19 60.93 76.71 64.86

LLaMA-2-7b

Attention 5.47 6.97 94.0 76.30 43.43 57.16 69.06 78.07 69.67
NoMAD-Attention (dsub = 1) 5.53 7.02 93.9 75.80 42.92 56.71 69.30 77.97 69.43
NoMAD-Attention (dsub = 2) 5.97 7.54 93.2 73.48 39.76 54.71 67.96 76.93 67.67
NoMAD-Attention (dsub = 4) 10.19 13.24 85.1 68.77 33.70 47.11 56.51 74.27 60.91

LLaMA-2-13b

Attention 4.88 6.47 94.6 79.42 48.46 60.07 72.30 79.00 72.31
NoMAD-Attention (dsub = 1) 4.92 6.50 94.8 79.00 47.87 59.81 71.51 78.94 71.99
NoMAD-Attention (dsub = 2) 5.24 6.85 94.2 77.61 45.39 58.46 70.72 77.75 70.69
NoMAD-Attention (dsub = 4) 8.22 10.86 90.8 72.81 37.80 51.24 55.96 76.33 64.16

learning the centroids for the s-th sub-quantizer is

b⋆s,0 . . . b
⋆
s,15 = argmin

bs,0...bs,15∈Rdsub

15∑
c=0

n∑
i=1

wc
i

∥∥∥πs(ki)− bs,c

∥∥∥2

2
,

where wc
i =


partial sum of diagonals of FIM︷ ︸︸ ︷

grad(πs(ki))
⊤grad(πs(ki)) if c = argmina∥πs(ki)− bs,a∥2

0 otherwise

(2)

where k1 . . . kn are cached key activation embeddings on the calibration dataset. We use weighted
k-means++ [5] to optimize the objective.

4 Experiments

This section evaluates the effectiveness of our proposed NoMAD-Attention in preserving model
quality and speeding up LLM inference on CPUs. We first introduce the software, hardware, models,
benchmarks, and baselines, then provide detailed results and discussions, and finally perform an
ablation study to validate each component of our proposal.

Software and Hardware Our implementation of NoMAD-Attention is built in C and C++, based on
the open-source projects llama.cpp [20] and FAISS [16]. We also built a GPU implementation of
NoMAD-Attention for quick prototyping and key-compression learning, which is based on PyTorch
[33] and HuggingFace Transformers [51]. Experiments for latency and throughput are performed on
a Linux server equipped with an Intel Xeon E5-2695 V3 14-core CPU, which supports AVX2 SIMD
instructions, and 512GB of DDR4 RAM. Experiments for accuracy and perplexity are performed on
two NVIDIA A100-40GB GPUs.

Models and Benchmarks We evaluate the quality of NoMAD-Attention with 4 popular LLMs:
1. LLaMA-7b 2. LLaMA-13b [45] 3. LLaMA-2-7b 4. LLaMA-2-13b [46]. We measure the model
quality with perplexity on WikiText-2 [30] and C4 [14] at the context length of 2048, and zero-shot
accuracy (using the default configurations of lm-evaluation-harness [19]) on SciQ [50], Arc Easy
(Arc-E), Arc Challenge (Arc-C) [11], Hellaswag [54], WinoGrande [38], and PIQA [6]. The centroids
for key compression of NoMAD-Attention are learned on a calibration set of 16 sequences from
WikiText-2, each with 2048 tokens. To test the model efficiency, we benchmark the latency and
throughput of CodeLlama-7b [37] (with 16-bit weights and 4-bit q4_0 quantized weights), which
has a longer context length of 16,384 than the LLaMA family of models. We compare the efficiency
of NoMAD-Attention-based models (with dsub ∈ {1, 2, 4}) against Attention-based models with a
llama.cpp-based implementation.
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Figure 2: Latency and throughput of decoding for CodeLlama-7b (4-bit and 16-bit weights) with
Attention and NoMAD-Attention. NoMAD-Attention achieves 1.78–2.07× higher throughput than
Attention with 4-bit CodeLlama-7b, and 1.46–1.56× higher throughput with 16-bit CodeLlama-7b.
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Figure 3: Time for processing prompts of different lengths for CodeLlama-7b (4-bit and 16-bit
weights) with Attention and NoMAD-Attention. NoMAD-Attention achieves 1.63–1.79× speedup
over Attention to process a prompt of 16k tokens.

4.1 Results

Model Quality Table 1 presents the perplexity and accuracy of NoMAD-Attention on different bench-
marks with comparisons to Attention. NoMAD-Attention (dsub = 1) incurs negligible perplexity and
accuracy loss, dsub = 2 incurs minimal degradation, and dsub = 4 incurs some degradation due to
the high key compression factor.

Decoding Efficiency The latency and throughput for decoding 16,384 tokens for NoMAD-Attention-
based and Attention-based CodeLlama-7b are presented in Figure 2. For 4-bit CodeLlama-7b,
NoMAD-Attention achieves 1.78×, 1.95×, and 2.07× higher throughput (tokens per second) than
Attention for dsub = 1, 2, 4, respectively. For 16-bit CodeLlama, NoMAD-Attention achieves
1.46×, 1.54×, and 1.56× higher throughput (tokens per second) than Attention for dsub = 1, 2, 4,
respectively.

Prompt Processing Efficiency We investigate the efficiency of NoMAD-Attention for prompt
processing. We generate prompts of length 4,000, 8,000, and 16,000 tokens and record the time
until the first token is decoded. Figure 3 presents prompt processing time for CodeLlama-7b. At the
prompt length of 16k tokens, NoMAD-Attention speeds up prompt processing time by 1.63 – 1.78×
for the 4-bit model, and 1.64 – 1.79× for the 16-bit model. Prompt processing times are similar for
16-bit and 4-bit model, since weight quantization is ineffective for speeding up batch processing.

4.2 Ablation Study

We perform a set of ablative experiments to study the latency breakdown, and the effects of FIM-
informed clustering and 8-bit LUT quantization on model quality.

Latency Breakdown We investigate the makeup of latency in each decoding step. Figure 4 presents
the latency breakdown of 4-bit CodeLlama-7b for decoding 16,384 tokens, and Figure 7 in the
appendix shows the latency breakdown for 16-bit CodeLlama-7b. The latency of linear projections
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Figure 4: The breakdown of decoding latency of 4-bit CodeLlama-7b for Attention and NoMAD-
Attention. NoMAD-Attention effectively reduces the latency of computing query-key dot-products
by 5.24–14.77× over Attention.

in MLP and Attention stays constant as context length increases, and the latency of key caching is
insignificant compared to other components. The latency of dot-products between queries and keys,
as well as the multiplications between attention scores and values, grows linearly with increasing
context length. In the original Attention, computing attention scores quickly becomes the latency
bottleneck as context length increases. NoMAD-Attention mitigates this bottleneck by speeding up
query-key dot-product computation by 5.24×, 9.75×, and 14.77× for dsub = 1, 2, 4, respectively.

FIM-Informed Clustering We study the effects of FIM-informed centroid learning for preserving
model quality. Table 2 presents the perplexity of NoMAD-Attention-based LLaMA-7b on WikiText-2
with uninformed centroids and FIM-informed centroids. FIM-informed centroids consistently achieve
better model quality, shown by the lower perplexity.

LUT Quantization We examine the effects of 8-bit quantized dot products in LUT on model quality.
Table 3 presents the perplexity of NoMAD-Attention-based LLaMA-7b on WikiText-2 with 8-bit
quantized LUT and 32-bit unquantized LUT. 8-bit quantization of LUT incurs negligible loss in
perplexity.

Table 2: Ablative experiments on the effects of
FIM-informed centroid learning on the perplex-
ity of LLaMA-7b on WikiText-2.

Perplexity ↓
Uninformed FIM-informed

NoMAD-Attention (dsub = 1) 5.76 5.74
NoMAD-Attention (dsub = 2) 7.05 6.11
NoMAD-Attention (dsub = 4) 21.39 9.23

Attention 5.68

Table 3: Ablative experiments on the effects of
quantized LUT on the perplexity of LLaMA-7b
on WikiText-2.

Perplexity ↓
8-bit LUT 32-bit LUT

NoMAD-Attention (dsub = 1) 5.74 5.74
NoMAD-Attention (dsub = 2) 6.11 6.10
NoMAD-Attention (dsub = 4) 9.23 9.23

Attention 5.68

5 Related Works

Approximate Attention and Efficient Transformer Since the introduction of attention in trans-
formers [47], there has been a body of work on approximating the attention mechanism for efficient
training and inference. Dynamically sparse attention was achieved using LSH [24], Nyström method
[52], and random sampling [53]. Low-rank attention has also been extensively explored [48, 10, 8]
and shown to have compute- and memory-efficiency advantages. Hardware-aware attention mecha-
nisms such as FlashAttention [12] propose to mitigate the IO bottleneck in GPUs. In large language
models, multiple approaches [60, 28, 58] have been proposed to reduce the high memory overhead
of the KV cache. For CPU-only environments, [39] proposes to speed up LLM inference through
weight quantization. Weight quantization [18, 56] is an effective approach for accelerating LLM
inference and fine-tuning [57] by mitigating the IO bottleneck.

Matrix Multiplication Optimization and Compression Approximate matrix multiplication is
applicable in a wide range of computational problems, and its optimization has been a topic of interest
for years [32]. Modern researchers have begun optimizing matrix multiplication around the specific
limitations of computers, including mitigating the IO bottleneck between the CPU and main memory
[25]. Compression techniques were developed to accelerate large-scale matrix multiplications and
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scale up the size of multiplication [31, 7, 25, 1]. However, many of these algorithms still had
limitations that make them too inaccurate or costly for approximating matrix multiplications in LLMs
[7, 25].

6 Conclusion

This study addresses the challenges of large language model inference on Central Processing Units
(CPUs), particularly the difficulties associated with the expensive Multiply-Add (MAD) matrix
operations in attention mechanisms. The investigation highlighted the untapped potential of Single-
Instruction-Multiple-Data (SIMD) registers and their fast in-register lookup capabilities within CPUs.
The proposed NoMAD-Attention algorithm serves as an efficient alternative to traditional MAD-
based approaches, leveraging in-register lookups and optimizing memory access to SIMD registers.
The implementation of NoMAD-Attention resulted in a significant acceleration of LLaMA-7B-based
model inference, achieving up to a 2× speedup on CPUs.

Acknowledgements
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Limitations and Broader Impacts

Our proposed method is targeted towards CPUs with SIMD capabilities, and may not generalize
to other types of processors. We make LLMs more accessible on commodity hardware, which
contributes to the democratization of artificial intelligence and reduces the carbon footprints. Other
than the negative societal impacts already presented by LLMs, we expect no additional negative
impacts from our work.

References
[1] Ahmed F AbouElhamayed, Angela Cui, Javier Fernandez-Marques, Nicholas D Lane, and

Mohamed S Abdelfattah. Pqa: Exploring the potential of product quantization in dnn hardware
acceleration. ACM Transactions on Reconfigurable Technology and Systems, 2024.

[2] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 4895–4901, 2023.

[3] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. Cache locality is not
enough: High-performance nearest neighbor search with product quantization fast scan. In
42nd International Conference on Very Large Data Bases, volume 9, page 12, 2016.

[4] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. Accelerated nearest neighbor
search with quick adc. In Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval, pages 159–166, 2017.

[5] David Arthur, Sergei Vassilvitskii, et al. k-means++: The advantages of careful seeding. In
Soda, volume 7, pages 1027–1035, 2007.

[6] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[7] Davis Blalock and John Guttag. Multiplying matrices without multiplying. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 992–1004. PMLR, 18–24 Jul
2021.

10



[8] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems,
34:17413–17426, 2021.

[9] Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, Anshumali Shrivastava, et al. Slide: In
defense of smart algorithms over hardware acceleration for large-scale deep learning systems.
Proceedings of Machine Learning and Systems, 2:291–306, 2020.

[10] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[11] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[12] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[13] Ganesh Dasika, Mark Woh, Sangwon Seo, Nathan Clark, Trevor Mudge, and Scott Mahlke.
Mighty-morphing power-simd. In Proceedings of the 2010 international conference on Compil-
ers, architectures and synthesis for embedded systems, pages 67–76, 2010.
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Appendix / Supplemental Material

A Details Regarding SIMD Instructions

The SIMD shuffle presented in Algorithm 2 is a simplification of the actual hardware implementa-
tion. We give full details of lines 5 to 11 in Algorithm 2 in Algorithm 3. Keys are stored in blocks
of 32, in which keys are stored in an alternating order (see Figure 1 for an illustration). After a
LUT is loaded into registers, the row of key codes in the block corresponding to the sub-quantizer is
used to perform shuffle. First, each byte in the row is bit-shifted to the right by 4 bits via a SIMD
instruction, which produces the codes of the first 16 keys in the block. The codes are fed to shuffle
to retrieve the quantized dot products of the first 16 keys from the LUT. Then, the first 4 bits of each
byte in the row are masked out via a SIMD instruction, which produces the code of the last 16 keys in
the block. They are similarly used to retrieve the quantized dot products from the LUT. The retrieved
quantized dot products of 32 keys are accumulated in the accumulator. Since quantized dot products
are 8 bits wide, accumulating them in 8-bit accumulators easily results in overflows. Therefore, 16-bit
accumulators are used to accumulate quantized dot products.

Algorithm 3 NoMAD Dot-Product Lookup Accumulation Loop
1: let accu[1 . . . t]← 0 ▷ Initialize 16-bit unsigned accumulators

2: for i← 1 . . . ⌈ t
32
⌉ do

3: for s← 1 . . . S do
4: simd_load(LUTs) ▷ Load LUT into registers

5: let K32i−31...32i−16,s
cache ←simd_bitwise_right_shift(K32i−31...32i,s

cache , 4) ▷ Obtain the first 15
key codes through bit shifting

6: accu[32i− 31 . . . 32i− 16]← simd_add
(

accu[32i− 31 . . . 32i− 16],
simd_shuffle(LUTs,K

32i−31...32i−16,s
cache )

)
7: let K32i−15...32i,s

cache ←simd_bitwise_and(K32i−15...32i,s
cache , 0xf) ▷ Obtain the last 15 key codes

through bitwise and
8: accu[32i− 15 . . . 32i]← simd_add

(
accu[32i− 15 . . . 32i],
simd_shuffle(LUTs,K

32i−15...32i,s
cache )

)
9: end for

10: end for

B Visual Explanations on Kcache and Lookup Table (LUT) Construction

Figure 5 illustrates the process of mapping and compressing key vector kt to construct Kt
cache.

For an input key vector kt, functions πs, where s ∈ 1 . . . S, split the vector into sub-vectors
kt = (π1(k

t), π2(k
t), . . . , πS(k

t)). Subsequently, each sub-quantizer πs(k
t) is mapped to its nearest

centroid cts by referencing the codebook bs, where i ∈ 1 . . . S, among 16 centroids in the codebook.
The resulting values are then stored in the key cache Kt

cache.

Similarly, Figure 6 illustrates the process of mapping and compressing query vector qt to construct
the Look-up Tables (LUT). Given a query vector qt, functions πs, where s ∈ 1 . . . S, first split the
query into sub-queries q = (π1(q

t), π2(q
t), . . . , πS(q

t)). Subsequently, the distances between each
sub-query πs(q

t) and the 16 centroids from the codebook bs are computed and then quantized to
values within the range of 0–255. Lastly, the quantized vectors are converted into 8-bit codes and
stored in LUTt

s.

C Overhead of Centroid Learning and Storage

Table 4 details the time overhead for learning centroids, which involves saving activations and
gradients, and weighted k-means on the saved embeddings. NoMAD-Attention has low learning
overheads and can easily scale to larger models.

15



Map to Closest Centroid

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

Figure 5: Illustration demonstrating the mapping of an input key kt to its s-th sub-quantizer using
πs(k

t), where s ∈ 1 . . . S. Subsequently, each sub-quantizer maps to its closest centroid cti, where
i ∈ 1 . . . S, and the results are stored in the key cache Kt

cache.

Compute distance from the sub-
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Figure 6: Illustration depicting the mapping of a query vector q to its s-th sub-quantizer using πs(q),
where s ∈ 1 . . . S. Subsequently, the distance between πs(q) and 16 centroids is computed. This
distance is quantized to a value within the range of 0-255, and the resulting quantized distance is
further converted into 8-bit codes, which are stored in LUTs.

The learned centroids of NoMAD-Attention introduce a small amount of memory overhead. The
storage overhead of centroids can be calculated as l × h× d× 16× 4 bytes, where l represents the
number of layers, h the number of attention key heads, d the dimensionality of each attention head,
16 the number of centroids, and 4 the number of bytes for storing each centroid parameter. Therefore,
the codebook memory overhead for LLaMA-7b/LLaMA-2-7b with dsub = {1, 2, 4} is 8.4MB, and
the memory overhead for LLaMA-13b/LLaMA-2-13b with dsub = {1, 2, 4} is 13.1MB, which is a
modest memory footprint compared to the overall model size.

Table 4: Overhead of learning centroids for key compression.

Model NoMAD Config. Saving Activations & Gradients Weighted K-means

LLaMA-7b
dsub = 1 4 mins 27 mins
dsub = 2 4 mins 14 mins
dsub = 4 4 mins 7 mins

LLaMA-13b
dsub = 1 8 mins 42 mins
dsub = 2 8 mins 22 mins
dsub = 4 8 mins 11 mins

LLaMA-2-7b
dsub = 1 4 mins 27 mins
dsub = 2 4 mins 14 mins
dsub = 4 4 mins 7 mins

LLaMA-2-13b
dsub = 1 8 mins 42 mins
dsub = 2 8 mins 23 mins
dsub = 4 8 mins 11 mins
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Figure 7: The breakdown of decoding latency of 16-bit CodeLlama-7b for Attention and NoMAD-
Attention. NoMAD-Attention effectively reduces the latency for computing dot-products of queries
and keys.

D Latency Breakdown

Figure 7 presents the latency breakdown of CodeLlama-7b with 16-bit weights.

E Comparison with Integer Quantization

We empircally compare NoMAD-Attention and Attention with integer quantized key cache. We
test the accuracy of LLaMA-7b, using NoMAD-Attention (dsub = 1) and 8-bit and 4-bit integer
quantized key cache (q8_0 and q4_0 in llama.cpp). Furthermore, we test the decoding latency at a
context length of 16K tokens, and measure the speedup compared to the full model. As shown in
Table 5, NoMAD-Attention (dsub = 1) demonstrates better model quality than INT4-quantized key
cache and significantly higher speedup than INT4- and INT8-quantized key cache.

Table 5: Zero-shot accuracy and decoding latency (at a context length of 16K) comparison between
NoMAD-Attention and Attention with integer quantized key cache, for LLaMA-7b.

SciQ Arc-E Arc-C Hellaswag WinoGrande PIQA Avg Latency Per Token (ms) Speedup

Original Attention 94.6 75.21 41.89 56.93 70.09 78.67 69.565 572.497 -

INT8 Key Cache 94.7 75.29 42.15 57.00 70.09 78.63 69.643 562.377 1.018×
INT4 Key Cache 93.6 74.33 41.04 55.34 67.96 77.69 68.327 540.319 1.060×

NoMAD-Attention (dsub = 1) 94.9 75.34 41.81 56.57 70.56 78.56 69.623 391.098 1.464×

F Results on Llama-3

We evaluate the effectiveness of NoMAD-Attention on the Llama-3-8b [17] model, which uses
grouped query attention [2]. Table 6 presents the accuracy of Llama-3-8b with Attention and NoMAD-
Attention across a range of downstream tasks. The results demonstrate that NoMAD-Attention with
dsub = 1 effectively maintains model quality for Llama 3.

Table 6: Accuracy of the Llama-3-8b model with NoMAD-Attention on downstream tasks.

SciQ Arc-E Arc-C Hellaswag WinoGrande PIQA

Attention 96.4 80.09 50.51 60.18 72.77 79.71

NoMAD-Attention (dsub = 1) 96.1 80.05 49.49 59.86 73.16 79.65
NoMAD-Attention (dsub = 2) 94.8 78.32 46.59 57.52 70.17 78.35
NoMAD-Attention (dsub = 4) 86.3 70.08 37.54 47.38 57.38 76.61

G Additional Evaluations

We evaluate NoMAD-Attention on the more challenging MMLU [22], GPQA [36], and MGSM
(English) [40] benchmarks. We use lm-evaluation-harness [19] for accuracy evaluation, and
the task names are mmlu_stem, mmlu_social_sciences, mmlu_humanities, mmlu_other,
gpqa_main_zeroshot, mgsm_direct_en. As shown in Table 7, NoMAD-Attention with dsub =
1 effectively maintains model quality across these diverse challenging tasks.
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Table 7: Accuracy of LLaMA models on the challenging MMLU, GPQA, and MGSM (English)
benchmarks.

Model Method MMLU GPQA MGSMSTEM Social Sciences Humanities Other

LLaMA-7b

Attention 26.39 29.57 29.73 33.15 20.98 4.8
NoMAD-Attention (dsub = 1) 27.31 29.12 29.44 32.8 23.66 4.0
NoMAD-Attention (dsub = 2) 25.25 24.99 26.82 30.09 20.08 2.0
NoMAD-Attention (dsub = 4) 25.21 22.98 24.85 26.94 25.67 1.6

LLaMA-13b

Attention 34.13 44.39 40.60 46.48 28.35 7.2
NoMAD-Attention (dsub = 1) 33.43 43.71 39.57 45.83 28.35 7.6
NoMAD-Attention (dsub = 2) 30.70 37.96 34.39 40.20 27.01 6.8
NoMAD-Attention (dsub = 4) 25.88 25.58 27.46 27.55 25.67 1.2

H Clarification on dsub

NoMAD-Attention achieves speedup relative to full Attention when dsub = 1 primarily due to
two factors: 1. Leveraging Lower-Latency, Higher-Throughput Instructions. Unlike the vanilla
multiply-add attention, which relies on batched multiplication and addition SIMD instructions (e.g.,
_mm256_mul_ps and _mm256_add_ps in AVX2), NoMAD-Attention utilizes the SIMD lookup in-
struction (_mm256_shuffle_epi8). This latter instruction operates on more elements at once (32
elements versus 8) and exhibits lower latency (1 cycle vs. 4 cycles on most architectures) 1, contribut-
ing significantly to the efficiency gains. 2. Minimized Data Movement. The product-quantized key
cache employed in NoMAD-Attention effectively reduces the volume of data transferred between
RAM and registers, hence speeding up computations.

I Generalizing to More Attention Types

NoMAD-Attention can generalize to other pretrained transformer models and attention variants such
as grouped-query attention (GQA) [2] and Attention with Linear Biases (ALiBi) [34]. Given that
GQA employs a shared key head across multiple query heads, we can adapt NoMAD-Attention to
reuse the same key codes for performing in-register lookups. The ALiBi method adds a linear bias
term to the query-key dot products, a process fully compatible with the NoMAD-Attention approach.

1https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
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Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately reflect the scope
and contribution shown in the LLM Inference on CPUs and Methodology sections and are
supported by the Results and Ablation Study in the Experiments sections.
Guidelines:
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made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Answer: [Yes]
Justification: The limitations of our work were made clear throughout the paper, and we
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Guidelines:
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• The paper should point out any strong assumptions and how robust the results are to
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should reflect on how these assumptions might be violated in practice and what the
implications would be.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include any new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All information needed to reproduce the main experimental results, including
the parameters, algorithmic details, software, models, benchmarks, and baselines, are fully
disclosed in the Methodology and Experiments sections.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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to reproduce that algorithm.
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the architecture clearly and fully.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Justification: All training and test details necessary to understand the results are specified in
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Answer: [Yes]

Justification: Error bars or other appropriate information about the statistical significance
are correctly defined wherever applicable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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of Normality of errors is not verified.
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Experiments section details the computer resources needed to reproduce
the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: After reviewing the NeurIPS Code of Ethics, we can confirm that the paper
conforms with the code in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a Limitations and Broader Impacts section to detail the potential
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Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used in the paper were properly credited and their licenses and
terms were listed and respected.
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• The answer NA means that the paper does not use existing assets.
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Answer: [Yes]

Justification: New assets introduced in the paper are documented wherever applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Answer: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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