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Abstract

Unified multimodal large language models (U-MLLMs) have demonstrated im-
pressive performance in end-to-end visual understanding and generation tasks.
However, compared to generation-only systems (e.g., Stable Diffusion), the unified
architecture of U-MLLMs introduces new risks of propagating demographic stereo-
types. In this paper, we benchmark several state-of-the-art U-MLLMs and show
that they exhibit significant gender and race biases in the generated outputs. To
diagnose the source of these biases, we propose a locate-then-fix framework: we
first audit the vision and language components — using techniques such as linear
probing and controlled generation — and find that the language model appears to be
a primary origin of the observed generative bias. Moreover, we observe a “partial
alignment” phenomenon, where the U-MLLMs exhibit less bias in understand-
ing tasks yet produce substantially biased images. To address this, we introduce
a novel balanced preference loss that enforces uniform generation probabilities
across demographics by leveraging a synthetically balanced dataset. Extensive
experiments show that our approach significantly reduces demographic bias while
preserving semantic fidelity and image quality. Our findings underscore the need
for targeted debiasing strategies in unified multimodal systems and introduce a
practical approach to mitigate biases.

1 Introduction
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Figure 1: Biases in U-MLLMs. Left: Comparison between understanding and generation biases in
the model. Right: U-MLLMs generate high-quality images but lack diversity, showing bias toward
certain demographics (e.g., the model predominantly generates images of white males).

Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in visual
understanding [24, 38]. Recent research [41, 42] has focused on extending MLLMs’ capabilities
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to image generation settings, enabling them to produce both textual and visual content. These
unified MLLMs (U-MLLMs), e.g., VILA-U [42], present both visual understanding and generation
capability. They can not only understand the semantics in images but also generate high-quality
images conditioning on user prompts in natural language. However, these U-MLLMs with unified
capabilities might inadvertently reproduce or amplify biases at deployment, including gender and
racial stereotypes embedded in their large-scale training data [10, 7].

A common structure in U-MLLMs is an image tokenizer that transforms images into discrete tokens
through an encoder-decoder framework [11]. Specifically, the vision encoder compresses the input
image into latent embeddings and then quantizes them into discrete tokens. Afterward, a decoder
reconstructs the image from these tokens. This discrete tokenization bridges textual and visual
modalities by analogizing image tokens to words in a sentence, enabling a single autoregressive
objective that unifies text and image generation. While this design has proven effective in terms of
quality and scalability, it also opens additional avenues for bias to propagate from the tokenizer.

Existing work on debiasing in image generation has highlighted the social risks posed by skewed
output distributions, and various methods have been proposed to reduce bias in image generation
[9, 4, 40, 13]. Nevertheless, many such methods are designed specifically for diffusion models, which
leverage different principles for image generation [34, 13]. As U-MLLMs with autoregressive image
generation capabilities become increasingly prevalent, it is imperative to evaluate their biases in
image generation and develop new methods to reduce biases in these token-based generation models.
Moreover, it remains an open question whether the generation biases emerge more from the vision
encoder, which generates image tokens, or from the language modeling component, which generates
image tokens according to the given text prompt.

This paper focuses on investigating and mitigating demographic biases in U-MLLMs for text-to-image
generation. Specifically, we take the first step to study gender and race biases for U-MLLMs. We
benchmark the state-of-the-art U-MLLMs for gender and race biases using datasets and metrics
introduced in a recent study on image generation fairness [34]. These models include VILA-U [42],
Show-o [43], Janus [41], Janus-Pro [8], TokenFlow [32], Emu3 [39]. Our results show that these
models exhibit notable gender and race biases in image generation (see an example in Figure 1).
Next, we conduct a detailed audit of the vision encoder/decoder and the language model component
to localize the source(s) of these biases, where we find that the biases are mainly from the language
model. Finally, we synthesize high-quality training data with a balanced demographic distribution and
propose a novel balanced preference loss to mitigate generation biases, inspired by recent research on
direct preference optimization [33, 15].

Through extensive experiments with various U-MLLMs, we demonstrate that our approach signifi-
cantly reduces biases (e.g., over-generation of certain genders or races) without sacrificing the quality
of image generation. For example, for the VILA-U model, our method reduces its gender bias by
71.9% and increases the inception score by 12.2%. In summary, our key contributions are as follows.

• Benchmarking Bias: We benchmark the state-of-the-art U-MLLMs on race and gender bias and
find that they exhibit biases to varying degrees. Notably, Janus-Pro, one of these U-MLLMs,
exhibited the worst gender biases with a value of 0.90, compared to the Stable Diffusion with a
bias value of 0.67.

• Localizing Bias: We inspect different components in the VILA-U model (vision encoder and
language model) by using methods such as linear probing in image embedding space to pinpoint
potential sources of biases and find that the biases are likely from the language model component.

• Mitigating Bias: We used the diffusion model to synthesize training data with a balanced demo-
graphic distribution. We also introduce a balanced preference loss inspired by direct preference
optimization, with the objective of balancing the likelihood of visual generation towards the differ-
ent demographic groups. We empirically show that our approach yields substantial improvement in
demographic fairness while preserving the quality of image generation, thus providing a practical
framework for developing unified MLLMs with greater fairness.

2 Preliminary

Structure of U-MLLMs. We consider an autoregressive U-MLLM that, given a textual prompt x,
first converts x into a sequence of text tokens x1, . . . , xTx

and then generates a sequence of image
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tokens z1, . . . , zTz , which an image decoder can reconstruct into a final image y (see Figure 5 for the
pipeline). Let θ = (θv, θl) denote the model parameters, where θv is the image tokenizer (comprising
an encoder and decoder) that converts input images into discrete tokens and decodes tokens back
into images, and θl is the language model (LM) that processes and generates token sequences (both
text and image tokens) in a unified autoregressive manner. As shown in Figure 6, the image encoder
Eθv maps an image y to latent embeddings, then quantizes them into a discrete token sequence
z1, . . . , zTz

. Conversely, the image decoder Dθv inverts this process, reconstructing an image from a
given sequence of image tokens:

{z1, . . . , zTz
} = Eθv

(y), (1)
y = Dθv

(z1, . . . , zTz
). (2)

Meanwhile, LMθl treats text and image tokens uniformly under a single next-token probability
distribution:

Pθ(zt | x, z<t) = LMθl
(zt−1, . . . , z1; x). (3)

This design allows the U-MLLM to perform visual understanding by mapping an image into a
semantic token space (via eq. (1)) and feeding those tokens into the LM, and to perform image
generation by autoregressively sampling image tokens via eq. (3) and reconstructing an image from
the sampled tokens via eq. (2).

Demographic Bias. When the model is prompted with neutral text (i.e., no explicit demographic
specified), it may exhibit demographic bias by generating images skewed toward certain groups (e.g.,
mostly males or mostly a particular race). Figure 1 illustrates this: given the prompt “Please generate
images of construction workers,” a U-MLLM produces mostly images of white males. Formally,
let d ∈ D = {d1, . . . , dK}, where D is a set of demographic labels (e.g., D = {male, female} for
gender or {Asian,Black,White, Indian} for race). We must clarify that these labels are strictly used
for benchmark compatibility [34]. We recognize that the gender categories represent perceived
gender presentation in generated images, not an individual’s gender identity, and this framework
does not account for gender-diverse individuals. Similarly, the racial categories cannot represent
the full spectrum of human diversity, including mixed-race individuals. Our goal is to diagnose and
mitigate stereotypical associations within this benchmark framework.

For a neutral prompt x (e.g., “a portrait of a construction worker”), an unbiased model would generate
a set of images {y1, y2, . . . } whose demographic labels are balanced (e.g., 50/50 split by gender or
uniform across races). By contrast, we find that the latest U-MLLMs often produce outputs where

Pθ(C(y) = di | x)≫ Pθ(C(y) = dj | x) (4)

for some demographics di, dj (e.g., di = male, dj = female) when x is neutral. Here C(y) is a
pretrained attribute classifier that labels each generated image y with a demographic attribute d̂. Such
output indicates a strong demographic bias in demographic preferences. Our goal is to mitigate this
bias while preserving overall image fidelity.

Direct Preference Optimization As an efficient alternative to RLHF [30], Direct Preference
Optimization (DPO) [1] re-parameterizes rewards via the policy itself. Given a policy πθ and
reference πref, DPO defines the implicit reward:

r(x, y) = β log
πθ(y | x)
πref(y | x)

+ β logZ(x), (5)

where Z(x) is a normalization constant, and models preference between outputs yw and yl with a
Bradley–Terry formulation:

p(yw ≻ yl | x) = σ
(
r(x, yw)− r(x, yl)

)
. (6)

DPO maximizes this preference probability directly, avoiding a separate reward model.

Reference-free methods [15, 29] such as ORPO [15] set

oddsθ(y | x) =
pθ(y | x)

1− pθ(y | x)
, ORθ(yw, yl) =

oddsθ(yw | x)
oddsθ(yl | x)

(7)

and employ the loss
LOR = − log σ

(
logORθ(yw, yl)

)
(8)
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By encouraging a large odds ratio ORθ(yw, yl), the model is pushed to prefer the response yw over
yl directly, without relying on a separate “reference” model. We adapt these preference-optimization
ideas to formulate our balanced preference loss for U-MLLM debiasing.

3 Locating Bias

As shown in Figure 2, to determine where demographic biases arise in U-MLLM, we examine
its intermediate outputs. In particular, we analyze the sequence of image tokens produced by the
language model (LM) and the latent image embeddings produced by the vision encoder. We consider
two main hypotheses for the origin of bias: (1) bias could emerge from the LM’s token generation
process, or (2) bias could stem from the vision encoder–decoder pipeline.

Text 
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worker

Female 
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Text token Image token
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Decoder

Male Images Female Images

… …

Male 1

…

Image Embeddings

Male 2

Female 1

Audit LM
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Figure 2: Detecting bias in LM (top), Vision tokenizer (bottom).

3.1 Hypothesis I: Bias Originates in the Vision Encoder

The U-MLLM’s vision module is built on a vector-quantized variational autoencoder (VQ-VAE)
architecture [36]. As illustrated in Figure 6, the encoder compresses an input image into a sequence of
discrete latent codes (tokens), which the decoder reconstructs into the original image. The VQ-VAE
architecture, upon which the vision module is built, is optimized for high-fidelity image reconstruction.
This necessitates the preservation of detailed visual features from the input image, which consequently
preserves visually apparent demographic attributes, as their absence would impede the decoder’s
ability to faithfully render a person’s appearance [36]. Thus, as a byproduct of its core objective to
enable accurate image reconstruction, the vision tokenizer encodes visually apparent demographic
information present in the input images.

Linear Probing of Image Embeddings We conduct a linear probing experiment on the image
embeddings. We select a balanced subset of face images from FairFace [19], spanning multiple
genders and races, and extract their latent embeddings via the vision encoder. The overall audit
pipeline is depicted in Figure 2. Each embedding is paired with its ground-truth demographic
label, and we train a linear classifier ℓ(e) to predict these labels. As reported in Appendix C, the
classifier achieves strong performance: for gender, accuracy of 0.9658, F1 score of 0.9645, recall
of 0.9637, and precision of 0.9653; for race (averaged), accuracy of 0.8232, F1 score of 0.8344,
recall of 0.8520, and precision of 0.8384. The strong performance of the linear classifier confirms
that the vision encoder’s latent space retains significant information about demographic attributes
from input images, a capability essential for the decoder to achieve high-fidelity reconstruction. It is
important to acknowledge that the mere capacity to encode sensitive attributes, while fundamental for
reconstruction, does not in itself speak to the module’s contribution to fairness [45].

3.2 Hypothesis II: Bias Originates from the Language Model

We then investigate whether the language model’s token-generation process introduces demographic
bias. Let xneutral denote a neutral prompt (e.g., “a photo of a professor”), and for each demographic
attribute d (e.g., “female” or a particular race), let

xaug(d) = “a photo of a d professor”.
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For each prompt x ∈ {xneutral} ∪ {xaug(d)}d, we use U-MLLM to generate M images, record each
image’s sequence of discrete image tokens, and predict its demographic label d̂i via a pre-trained
image classifier C [31]. This produces samples(

xi, yi, d̂i, zi
)

for i = 1, . . . ,M,

where zi = (zi,1, zi,2, . . . ) is the token sequence for image yi.

Collecting Image-Token Distributions We approximate the model’s conditional distribution over
token sequences for a prompt x by the empirical distribution

p̂θ(z | x) =
1

M

M∑
i=1

δ(z− zi) (9)

where δ(·) is a Dirac mass at the observed sequence zi. In other words, p̂θ(z | x) counts the relative
frequency of each generated sequence among M trials. We then measure the Jensen–Shannon diver-
gence (JSD) between the neutral-prompt distribution and each demographic-augmented distribution:

DJS

(
p̂θ(z | xneutral)

∥∥ p̂θ(z | xaug(d))
)

(10)

where for distributions P and Q,

DJS(P∥Q) = 1
2 DKL(P∥M) + 1

2 DKL(Q∥M), M = 1
2 (P +Q).

Results and Analysis For each neutral prompt xneutral, we first determine the majority demographic
to which its generated images are assigned. We then identify the augmented-prompt distribution
that is closest (in terms of Jensen–Shannon divergence) to the neutral distribution. The hit rate—the
proportion of prompts whose neutral distribution aligns most closely with the explicitly specified
distribution of its implicit demographic—is 99.80% for gender and 79.34% for race. These results
suggest that, when the model implicitly “prefers” a demographic under a neutral prompt (e.g.,
generating predominantly male images for “a photo of a firefighter”), the token-sequence distribution
closely matches that of the corresponding demographic-augmented prompt (e.g., “a photo of a
male firefighter”). The high hit rates (99.80% gender, 79.34% race) indicate that neutral prompts
generate image token distributions similar to those from explicitly demographic-augmented prompts
reflecting an implicit demographic preference. This suggests that the language model’s autoregressive
process significantly steers image token selection towards specific groups, with the vision decoder
subsequently rendering images

4 Method

4.1 Training Data Generation

Obtaining a training dataset with a balanced demographic distribution is challenging. We address this
by leveraging a pretrained text-to-image diffusion model, FLUX [20], to synthesize a demographically
balanced image set. For each target demographic attribute (e.g., each race–gender combination), we
generate images using 1,000 base prompts from training prompts in previous work [34]. For example,
given occupation-based prompts such as “a photo of a professor” or “an image of a construction
worker,” we produce one image per demographic specification (e.g., male, female, Asian, Black) for
each prompt. The overall pipeline is illustrated in Figure 8. This process yields a synthetic dataset

Dbal =
{
(xj , y

(d1)
j , . . . , y

(dK)
j )

}
,

where xj is a neutral prompt (e.g., “a photo of a professor”) and y
(di)
j is the image generated for xj

with demographic attribute di (e.g., “a photo of an Asian professor”). By construction, each xj is
paired with exactly one image for each of the K demographic groups, ensuring balanced coverage.
Although FLUX [20] is not inherently bias-free, our enumeration strategy enforces demographic
variety: naive sampling from neutral prompts resulted in skewed outputs, whereas enforcing one
sample per demographic guarantees representation for all groups. In total, we curated 300K images
(1000 prompts, 6 demographic groups, 50 images per prompt) to form Dbal. This dataset is used for
finetuning (I→ T) and (T→ I) as well. Example samples appear in Figure 9.
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Figure 3: The objective is to minimize deviation of preference between demographic groups.

4.2 Balanced Preference Loss

We introduce a balanced preference loss Lbal to encourage the model to distribute its generation
probability evenly across demographics for neutral prompts. Intuitively, we require the model to be
indifferent to demographic attributes unless explicitly specified:

min
∣∣p(y(di) ≻ y(dj) | x)− p(y(dj) ≻ y(di) | x)

∣∣ (11)

Drawing inspiration from ORPO, we construct Lbal as a penalty on the pairwise odds ratio between
any two demographic groups. For demographic di and dj , we define the odds ratio under the model
as ORθ(y

(di), y(dj)) based on eq. (7), where y(di) denotes an image (or image-token sequence) with
demographic di. An ORθ > 1 indicates a higher generation likelihood for di than for dj . We then
define the pairwise balanced preference loss:

L
(i,j)
bal (θ) = log

[
1 +

(
σ(logORθ(y

(di), y(dj)))− 1
2

)2]
(12)

where σ is the sigmoid function. This term is minimized when σ(logORθ) = 0.5, i.e. ORθ = 1 and
p(y(di) | x) = p(y(dj) | x). To extend to K demographics, we sum over all unordered pairs:

Lbal(θ) =
∑

1≤i<j≤K

L
(i,j)
bal (θ). (13)

Minimizing this aggregate loss encourages a uniform output distribution across demographics.

Two-Stage Training We adopt a two-stage training procedure (see Algorithm 1 for details):

1. Supervised Fine-Tuning (SFT). We first fine-tune U-MLLM on a supervised dataset of
prompt–image-token pairs {(x, z)}. This stage optimizes the likelihood of the true token se-
quences, yielding a base model πSFT that produces high-fidelity, semantically accurate images.

2. Balanced Preference Optimization (BPO). Starting from πSFT, we then minimize the multi-group
balanced preference loss Lbal (via eq. (11)) over the balanced dataset Dbal. This reference-free
odds-ratio penalty encourages equal generation preference across all demographics, reducing bias
while preserving output quality.

In our implementation, the multi-group loss defined in eq. (13) extends the two-group formulation in
eq. (12). We optimize the model parameters θ to minimize Lbal after the SFT stage.

Gradient of the Balanced Preference Loss The BPO objective admits a compact, closed-form
gradient that is both smooth and numerically stable:

∇θ Lbal(θ) =
2
(
w − 0.5

)
1 +

(
w − 0.5

)2︸ ︷︷ ︸
∂Lbal

∂w

× w (1− w)︸ ︷︷ ︸
∂w

∂v

×
[

∇θ pθ(ydi
)

pθ(ydi
) [1− pθ(ydi

)]
−

∇θ pθ(ydj
)

pθ(ydj
) [1− pθ(ydj

)]

]
︸ ︷︷ ︸

∇θv(θ)

where w = σ(v(θ)) and v(θ) = log ORθ(y
(di), y(dj)). When pθ(y

(di) | x) = pθ(y
(dj) | x), we

have w = 1
2 and the gradient vanishes, indicating a balanced stationary point. If one demographic’s

probability is higher, the prefactor flips sign, nudging the model toward equilibrium. A full derivation
is provided in Appendix E.
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5 Experiment

5.1 Experimental Setup

Models and Data. We evaluate demographic bias (gender and race) in several state-of-the-art
U-MLLMs: VILA-U [42], TokenFlow [32], Emu3 [39], Janus [41], Show-o [43], and Janus-Pro [8].
As a baseline, we include diffusion model (Stable Diffusion v1.5). For bias evaluation, we use a
set of prompts comprising 50 test examples and 1,000 training examples and adopt metrics from
fairness benchmark [34]. Following [34], for each neutral prompt (e.g., occupations or roles without
demographic specification), we generate 160 images. Each image is then classified by a pretrained
demographic classifier [34] (for gender or race) to compute bias metrics. More details on experimental
setup and computational cost can be found in Appendix J. The code can be found at our repository.

Metrics. Bias is quantified via the Relative Diversity (RD) metric [34], which measures deviation
from a uniform demographic distribution:

bias(P) =
1

K(K − 1)/2

∑
i<j

∣∣freq(i)− freq(j)
∣∣,

where freq(i) is the fraction of samples assigned to demographic di. Lower RD values indicate
more balanced representation. We report Gender Bias and Race Bias as the RD over the respective
demographic sets, and Intersectional Bias (G×R) over joint gender–race combinations. To assess
image quality, we compute the CLIP score [14] (image–text similarity), CLIP-IQA [37] (image
quality assessment), and Inception Score (image diversity) [5]. These metrics verify that debiasing
does not compromise output fidelity or relevance.

5.2 Experimental Results
Table 1: Image generation bias.

D
eb

ia
s: Method Bias ↓ Image Quality ↑

Gender Race G.×R. CLIP-S CLIP-IQA Inception

Stable Diffusion 0.66 0.41 0.21 27.69 0.67 —
Janus 0.87 0.43 0.23 27.44 0.69 2.27

Janus-Pro 0.90 0.48 0.24 27.62 0.82 1.79
Show-o 0.85 0.48 0.24 27.16 0.86 1.79

TokenFlow 0.84 0.47 0.24 27.17 0.84 2.34
VILA-U 0.89 0.48 0.24 28.24 0.84 1.87

G
en

de
r Prompt Engineering 0.56 0.49 0.23 28.51 0.82 1.91

Fine-tune(I → T) 0.83 0.42 0.22 28.49 0.80 2.28
Fine-tune(T → I) 0.27 0.51 0.23 27.66 0.77 1.85

BPO 0.25 0.50 0.22 27.74 0.77 2.10

R
ac

e

Prompt Engineering 0.56 0.49 0.23 28.51 0.82 1.91
Fine-tune(I → T) 0.78 0.44 0.22 28.14 0.80 2.54
Fine-tune(T → I) 0.83 0.23 0.17 27.98 0.80 1.98

BPO 0.78 0.26 0.18 27.66 0.81 2.31

G
.×

R
.

Prompt Engineering 0.59 0.33 0.18 28.09 0.80 1.87
Fine-tune(I → T) 0.86 0.45 0.23 28.34 0.82 2.22
Fine-tune(T → I) 0.46 0.32 0.17 27.90 0.78 1.91

BPO 0.52 0.26 0.15 27.78 0.80 2.06

Bias in Baseline Models. Table 1 presents bias and quality metrics for Stable Diffusion(SD) and
U-MLLMs. All baselines exhibit substantial demographic bias: gender scores range from 0.66 (SD)
to 0.90 (Janus-Pro), while race scores fall between 0.41 and 0.48. VILA-U is the most gender-skewed
baseline (0.89), corroborating our earlier qualitative findings. Image quality is uniformly high (CLIP-S
≈27–28), with Show-o attaining the best perceptual quality (CLIP-IQA 0.86) albeit with pronounced
bias. These results confirm that contemporary U-MLLMs generate visually appealing images yet
systematically favor particular demographics, underscoring the need for targeted debiasing.

Effect of Our Debiasing Method. We fine-tune VILA-U with our two-stage Balanced Preference
Optimization (BPO) in three settings: BPO-Gender, BPO-Race, and BPO-Mix (joint debiasing). On
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the gender setting, BPO-Gender reduces bias to 0.25—a ∼72% drop relative to the baseline—while
preserving CLIP-S (27.74) and yielding a strong Inception score (2.10). For race, Fine-tune (T→
I) gives the lowest score (0.23), but BPO-Race is competitive (0.26) with a higher Inception score
(2.31). When debiasing both axes simultaneously, BPO-Mix achieves the best joint score of 0.15,
outperforming prompt engineering (0.18) and fine-tuning (0.17) while maintaining image quality
(Inception 2.06, CLIP-IQA 0.80). BPO consistently delivers the strongest bias reduction—especially
for joint gender–race bias—without sacrificing fidelity, making it a practical debiasing strategy.

Generalization. (1) Stereotype Prompts [44]. Test results on the 564 stereotype prompts are
presented in Table 4, BPO–Gender reduces VILA-U’s gender-bias score from 0.6467 to 0.4086
(∼ 37% drop). BPO–Race lowers race bias from 0.4310 to 0.2566 (∼ 40% reduction). Applying
BPO–Mix (joint debiasing) yields gender and race scores of 0.4629 and 0.2880, and cuts intersectional
bias from 0.2161 to 0.1622. Across all settings, CLIP-S and CLIP-IQA remain largely intact,
indicating that debiasing does not degrade image quality. (2) Cross-Language Generalization.
To probe robustness across languages, we translated the evaluation prompts of [34] into Chinese
and French using the ChatGPT API. As summarized in Table 5, the baseline gender-bias scores
are 0.4789 (Chinese) and 0.8542 (French). After BPO–Gender, these drop to 0.2810 and 0.3000,
respectively—mirroring the reductions observed in English. CLIP-S and CLIP-IQA stay on par with
the English case, demonstrating that our balanced loss effectively mitigates demographic bias across
datasets and languages while preserving image fidelity.

5.3 Discussion

D
ebias    G

ender

Debias      Race

Figure 4: Given the test prompt: “a photo of the face of an electrical and electronics repairer, a person”.
Images generated by: VILA-U (bottom-left), our method reduces bias in gender (bottom-right), race
(top-left), gender-race intersection (top-right). For each image, the first color-coded bar represents
the predicted gender: male or female. The second bar represents the predicted race: White, Asian,
Black, or Indian. The height of each bar indicates the prediction confidence.

Qualitative Samples Figure 4 shows VILA-U’s outputs with and without our debiasing method
for a representative prompt. The qualitative examples demonstrate that our approach enhances
demographic diversity without degrading visual quality. For instance, given the prompt “a photo of
the face of an electrical and electronics repairer, a person” (which does not specify any demographic),
the original VILA-U predominantly generates images of men of a single race, whereas the debiased
model produces a varied mix of genders and races. More samples are in Figure 11.

Understanding vs. Generative Bias Beyond visual inspection, we evaluate whether bias arises in
the model’s internal understanding. To assess bias in understanding tasks, we run each model and
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sample multiple times in a pure VQA setting with an empty image, asking, “What is the gender of
occupation? (male/female/unknown).” This removes visual cues and reveals inherent perceptual
bias. As shown in Figure 1, most models still show bias to some extent. Some models, such as
Janus, however, often reply “unknown” or refuse to specify, indicating reduced explicit bias due to
alignment training. Despite this, their generative outputs remain skewed (e.g., Janus still produces
images heavily favoring one demographic). This partial alignment—neutral Q&A behavior but biased
generation—highlights that aligning the model’s textual responses does not suffice to eliminate bias
in visual generation.

Can debiasing understanding help debias generation? Prior work [35] suggests improving
image understanding may indirectly benefit generation. Inspired by this, we fine-tuned U-MLLM in
image to text to reduce its understanding bias (see Figure 10), yielding the fine-tune (I→T) variant.
However, as shown in Table 1, this approach yields only marginal reductions in generation bias
(Gender: 0.89→0.83; Race: 0.48→0.44; Intersectional: 0.24→0.23). Thus, teaching the model that
different races/genders share an occupation does not alter its generative bias. These findings imply
that bias in understanding and bias in generation can arise from distinct mechanisms. Consequently,
improving one aspect of visual–linguistic alignment does not guarantee fairness in the other. Future
methods must jointly address both visual comprehension and visual generation biases. Additionally,
prior work [6] identified the “Reversal Curse”: LLMs trained on “A is B” often fail to learn the
inverse “B is A.”. This phenomenon mirrors our finding that, even after teaching the U-MLLM to
map both “male truck driver” and “female truck driver” to the same concept “truck driver,” the model
continues to exhibit bias when given a neutral prompt(see Figure 10).

Additional Loss Variants In addition to our core BPO objective, we experimented with several
alternative loss formulations. For instance, we tested a thresholded penalty that activates only when
the probability of one demographic exceeds another by a fixed margin, as well as a simpler loss
on log-probability differences (omitting the (1− p) terms). The threshold-based variants required
careful margin tuning and caused training instability, while the log-probability difference loss was
prone to gradient explosion when probabilities approached 0 or 1. For full definitions and empirical
comparisons, see Appendix F.

6 Related Work

Multimodal Generative Models Unified multimodal large language models (U-MLLMs) have
advanced the state-of-the-art by bridging visual understanding and conditional generation capa-
bilities. Compared to early MLLMs, which focus purely on understanding, such as LlaVA series
[27, 26], these more recent works, represented by VILA-U [42], Show-o [43], MetaMorph [35],
TokenFlow [32], Emu3 [39], TokenFusion [46], Janus [41, 28], etc. [3, 21, 25], highlight their
effectiveness in generating high-quality visuals conditioned on text prompts. U-MLLMs usually
employ autoregressive paradigms that may inherit or amplify the biases embedded in their training
data. Existing studies predominantly focus on performance improvement rather than understanding
and addressing the more critical issues such as demographic fairness.

Fairness in Image Generation The social risks of biased image generation, particularly gender
and racial disparities, have been extensively documented [18, 22, 23]. Prior efforts in diffusion-based
models attempted to mitigate bias by re-balancing training data and incorporating fairness objectives
[17]. However, these approaches are not directly transferable to U-MLLMs due to architectural
differences and tokenization mechanisms. Few studies explore bias sources within unified models or
their downstream effects on generated outputs, leaving a gap in understanding the interaction between
text and image modalities.

Preference Optimization Direct preference optimization (DPO) [33] has emerged as a promising
technique to address biases in machine learning models, especially LLM. Since then, numerous
new loss functions have been proposed [29, 31, 15, 12, 2]. Recent advances [1] integrate preference
modeling into loss functions to guide models toward balanced outputs, which have rarely been
explored for MLLMs. Based on this, we introduce a novel balanced preference loss tailored for
U-MLLMs. By leveraging demographic attributes during training, the proposed method balances the
likelihood of generating outputs across groups without compromising the image quality.
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7 Conclusion

We examined demographic bias (gender and race) in U-MLLMs for image generation and proposed a
method to mitigate it. Our study found that current U-MLLMs often produce images with skewed
demographics when given neutral prompts. Through our component-wise analysis, the findings
suggest that the language model within the U-MLLM is a primary driver of the observed demographic
bias in generated images when given neutral prompts. To address the issue, we introduced a two-
stage debiasing approach: first fine-tuning the model on a balanced dataset, and then applying a
balanced preference loss inspired by direct preference optimization. This approach significantly
reduced the bias in generated images across gender and race categories while preserving image
quality and relevance. We also discovered a partial alignment phenomenon where models might
appear unbiased in a textual response yet remain biased in visual generation, underscoring the need
for generation-specific debiasing techniques. Our work provides an initial framework for auditing
and improving the fairness of U-MLLMs. We hope it encourages the development of more holistic
debiasing strategies that consider all aspects of multimodal model behavior. In the future, we plan to
extend our method to additional demographic dimensions (e.g., age, ethnicity). Ensuring fairness in
generative models is critical as these models become increasingly influential in content creation. Our
work does have some limitation as illustrated in Appendix A.
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A Limitation

Limitation. Several questions remain open despite the bias reduction achieved by our approach.
First, our study primarily centered on overt demographic categories (e.g., gender, race). Real-world
scenarios may demand addressing intersectional or nuanced attributes (e.g., age, culture, or religion).
Second, many models are not fully open-source, restricting the scope of our evaluations to publicly
available systems. Future research could broaden the range of tested models. Third, our definition of
fairness as demographic parity and our use of discrete, Western-centric gender and racial categories are
specific value judgments that may not apply universally and risk oversimplifying complex identities.
We also recognize that our own perspectives as researchers have shaped the project’s scope, our
method defines fairness as demographic parity, but this is just one interpretation. Lastly, due to
resource constraints, we did not explore alternative preference optimization objectives beyond our
framework. Building on our method to incorporate other debiasing approaches is promising direction
for future work.

B Structure of U-MLLM

This section presents the structure of VILA-U and its visual tokenizer; all the content in this section
is from prior study [42].
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Figure 5: Overview of framework’s multi-modal training and inference process[42] Visual inputs
are converted into discrete tokens and merged with textual tokens to create a unified multi-modal
token sequence. This sequence is used in next-token prediction process, which supports a unified
training objective. During inference, output tokens are processed through either text detokenizer or
vision tower decoder, generating multi-modal content outputs[42].
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Figure 6: Overview of unified foundation vision tower[42] Input images are processed by the
vision encoder, where features are extracted and discretized using residual quantization. These
discrete vision features are then utilized in two ways: they are fed into the vision decoder to
reconstruct images and are used to perform text-image alignment. Throughout this process, both
the reconstruction loss and contrastive loss are calculated to refine the vision tower, enabling it to
generate discrete visual features that are aligned with text[42].
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C Locating Bias

Gender Race
Hit Rate 0.9980 0.7934

Table 2: JS-Divergence Hit Rates for Gender and Race Variant Prompts. For each training prompt,
images were generated using both a neutral prompt and prompt variants in gender or race. We first
determined the majority gender/race from the neutral-prompt images (skipping ambiguous cases).
We then counted a “hit” whenever the JS divergence between the neutral prompt’s image-token
distribution and the matching-variant prompt’s distribution was smaller than that for non-matching
variants. More than 99% of prompts yield closer divergence for gender-matching variants, and about
79% for race-matching variants, indicating that the language model’s token sampling is skewed
toward certain demographics.

Pair Accuracy F1 Recall Precision

Male vs. Female 0.9658 0.9645 0.9637 0.9653

Black vs. Southeast Asian 0.9167 0.9187 0.9658 0.8760
Black vs. Indian 0.8958 0.8988 0.9328 0.8672
Black vs. Middle Eastern 0.4667 0.6364 1.0000 0.4667
Black vs. East Asian 0.9500 0.9492 0.9739 0.9256
Black vs. Latino Hispanic 0.8333 0.8113 0.7107 0.9451
Black vs. White 0.9167 0.9231 0.9091 0.9375
Southeast Asian vs. Indian 0.9208 0.9156 0.8879 0.9450
Southeast Asian vs. Middle Eastern 0.9333 0.9316 0.8934 0.9732
Southeast Asian vs. East Asian 0.6458 0.6222 0.5385 0.7368
Southeast Asian vs. Latino Hispanic 0.8625 0.8546 0.8509 0.8584
Southeast Asian vs. White 0.9042 0.9013 0.8750 0.9292
Indian vs. Middle Eastern 0.8958 0.8980 0.8661 0.9322
Indian vs. East Asian 0.9417 0.9381 0.9381 0.9381
Indian vs. Latino Hispanic 0.7625 0.7595 0.7563 0.7627
Indian vs. White 0.8917 0.8992 0.8923 0.9062
Middle Eastern vs. East Asian 0.5208 0.6849 1.0000 0.5208
Middle Eastern vs. Latino Hispanic 0.6875 0.6445 0.5862 0.7158
Middle Eastern vs. White 0.7458 0.7359 0.7083 0.7658
East Asian vs. Latino Hispanic 0.9167 0.9180 0.9655 0.8750
East Asian vs. White 0.9333 0.9322 0.9402 0.9244
Latino Hispanic vs. White 0.7458 0.7490 0.7000 0.8053
Table 3: Embedding classification metrics by pairwise comparisons.
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D BPO Algorithm

Algorithm 1 Balanced Preference Optimization
Input: U-MLLM with parameters θ0; SFT datasetDSFT = {(xi, zi)} of prompts xi and image tokens
zi; Balanced datasetDbal = {(xj , yj1 , . . . , yjK )}, each xj with multiple demographic variants; Trade-
off parameter λ, total training epochs N1, N2; Output: Debiased model parameters θ

1: Stage 1: Supervised Finetuning
2: Initialize θ ← θ0
3: for epoch = 1 to N1 do
4: Sample a minibatch {(xi, zi)} from DSFT
5: LNLL(θ) = −

∑
(xi,zi)

logPθ(zi | xi)

6: Update θ ← θ − η∇θ LNLL(θ)
7: end for
8: Stage 2: Balanced Preference Optimization
9: for epoch = 1 to N2 do

10: Sample a minibatch {(xj , yj1 , . . . , yjK )} from Dbal
11: Balanced Preference Loss:

Lbal(θ) =
∑
k ̸=l

L(dk−1,dk)
bal (θ).

12: Update θ ← θ − η∇θ Lbal(θ)
13: end for
14: Return θ
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E Gradient of BPO

E.1 Setup: The Balanced Preference Loss

For simplicity, consider just two demographic categories di and dj . The extension to multiple groups
is done by summing over pairs.

We define the odds ratio:

ORθ(ydi , ydj ) =
oddsθ(ydi)

oddsθ(ydj
)
, where oddsθ(yd) =

pθ(yd | x)
1− pθ(yd | x)

.

Taking the logarithm,

v(θ) = log ORθ(ydi
, ydj

) = log oddsθ(ydi
)︸ ︷︷ ︸

log
[
pθ(ydi

|x)
]
− log

[
1−pθ(ydi

|x)
] − log oddsθ(ydj

)︸ ︷︷ ︸
log
[
pθ(ydj

|x)
]
− log

[
1−pθ(ydj

|x)
] .

Next, let w(θ) = σ
(
v(θ)

)
, where σ is the logistic sigmoid σ(z) = 1

1+e−z .

The Balanced Preference Loss for two groups is:

Lbal(θ) = log
[
1 +

(
w(θ)︸︷︷︸
σ(v)

− 1
2

)2]
.

Minimizing this loss pushes w(θ)→ 1
2 , i.e. ORθ → 1, which implies pθ(ydi

| x) = pθ(ydj
| x).

E.2 Chain Rule for∇θLbal

We want:

∇θ Lbal(θ) =
∂Lbal

∂w
× ∂w

∂v
× ∇θ v(θ).

We handle each factor separately.

Derivative of Lbal w.r.t. w

Set
r(θ) = w(θ)− 1

2 = σ
(
v(θ)

)
− 1

2 .

Then
Lbal(θ) = log

[
1 + (r(θ))2

]
.

Hence,

∂Lbal

∂w
=

∂Lbal

∂r
× ∂r

∂w
=

1

1 + r2
[
2 r

]
× 1 =

2 r

1 + r2
=

2
(
w − 0.5

)
1 +

(
w − 0.5

)2 .

Derivative of w = σ(v) w.r.t. v

We know d
dvσ(v) = σ(v)

(
1− σ(v)

)
. So

∂w

∂v
= w(θ)

[
1− w(θ)

]
= σ

(
v(θ)

) [
1− σ

(
v(θ)

)]
.

Gradient of v(θ) w.r.t. θ

Recall
v(θ) = log ORθ(ydi

, ydj
) = log oddsθ(ydi

) − log oddsθ(ydj
).

Hence,

∇θ v(θ) = ∇θ

[
log oddsθ(ydi)

]
− ∇θ

[
log oddsθ(ydj )

]
.
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We have
log oddsθ(yd) = log pθ(yd | x) − log

[
1− pθ(yd | x)

]
.

Thus,

∇θ log oddsθ(yd) =
1

pθ(yd | x)
∇θ pθ(yd | x) +

1

1− pθ(yd | x)
∇θ pθ(yd | x),

where we used∇θ log z(θ) =
1
z∇θz. Combine the two terms carefully (and noting the minus sign in

the second log derivative switches sign again), we get:

∇θ log oddsθ(yd) =
1

pθ(yd | x)
[
1− pθ(yd | x)

] ∇θ pθ(yd | x).

Putting it all together for di and dj :

∇θv(θ) =
1

pθ(ydi) [1− pθ(ydi)]
∇θpθ(ydi

) − 1

pθ(ydj ) [1− pθ(ydj )]
∇θpθ(ydj

).

(Here we have suppressed the conditioning on x in notation, just to keep it lighter.)

E.3 Final Gradient Expression

By combining previous sections, we get:

∇θ Lbal(θ) =
2
(
w − 0.5

)
1 +

(
w − 0.5

)2︸ ︷︷ ︸
∂Lbal

∂w

× w (1− w)︸ ︷︷ ︸
∂w

∂v

×
[

∇θ pθ(ydi
)

pθ(ydi
) [1− pθ(ydi

)]
−

∇θ pθ(ydj )

pθ(ydj
) [1− pθ(ydj

)]

]
︸ ︷︷ ︸

∇θv(θ)

.

where w(θ) = σ
(
v(θ)

)
.

Interpretation:

• If pθ(ydi
) ≫ pθ(ydj

), the odds ratio is large, so v(θ) is large and w(θ) ≈ 1. The factor
(w − 0.5) is then positive and big, so the gradient pushes parameters θ to reduce pθ(ydi

)
(and/or raise pθ(ydj

)).

• Conversely, if pθ(ydi
)≪ pθ(ydj

), we get a negative factor in front of∇θpθ(ydi
).

• When pθ(ydi) = pθ(ydj ), then v(θ) = 0 and w(θ) = 0.5. The entire derivative is zero,
which is precisely the balanced solution we want.

E.4 Multiple Demographic Groups

For more than two groups, say {d1, . . . , dK}, one can (as in the paper) sum or average pairwise
losses:

L(multi)
bal (θ) =

∑
1≤i<j≤K

Lbal(θ; di, dj).

Then ∇θL(multi)
bal is just the sum of the two-group gradients, ensuring all pairwise distributions

converge to balance.

E.5 Putting It All

This derivation shows exactly how to compute the gradient of the Balanced Preference Loss. It also
clarifies why the only way to get a zero-gradient solution for each pair (di, dj) is to equalize their
probabilities pθ(ydi

| x) = pθ(ydj
| x). Hence the uniform distribution across demographics is the

unique global optimum (apart from mild edge cases).
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F Comparison with Other Loss Functions

In our experiments, we evaluated several loss formulations designed to reduce demographic bias.
Below we describe four variants of odds-ratio penalties, each designed to encourage balanced
treatment between pair of demographic groups di and dj . For brevity, we set

pdi
= pθ

(
ydi
| x

)
and pdj

= pθ
(
ydj
| x

)
.

For the methods below, we also define the log-odds difference as
∆ = log(pdi

) − log(pdj
).

F.1 Method 1 (Our Core Approach)

Key Idea: Penalize large deviations in the log-odds difference ∆ (Figure 7). Specifically, we define

∆ = log
( pdi

1− pdi

)
− log

( pdj

1− pdj

)
and then compute the balanced loss as

ℓbal(∆) = log
(
1 +

[
σ(∆)− 0.5

]2)
,

where σ(∆) = 1
1+e−∆ is the sigmoid function. When σ(∆) ≈ 0.5, the model is equally likely to

generate ydi
or ydj

, so ℓbal is near 0. Larger imbalances yield a smoothly increasing penalty. The
overall loss is obtained by averaging ℓbal over pair {(di, dj)}.
Why It Works Best:

• It employs the true log-odds, log
(

p
1−p

)
, which remains stable even when p is near 0 or 1.

• The function ℓbal(∆) is continuously differentiable for all ∆, avoiding the discontinuities
that arise in thresholded formulations.

• In practice, Method 1 produces stable training dynamics and superior bias reduction.

F.2 Method 2: Thresholded Loss on Log Probability Ratios

A simpler approach uses the ratio of probabilities directly. Define

δ = σ
(
log

(pdi

pdj

))
− 0.5.

A piecewise penalty is then applied only when |δ| exceeds a fixed threshold t:

ℓthresh(δ) =

{
α
∣∣∣δ − t

∣∣∣, if |δ| ≥ t,

0, otherwise,

where α is a penalty scale.

Drawbacks:

• It requires choosing both a threshold t and a scale α, which may be sensitive to the task at
hand.

• The training process can become unstable near the threshold boundaries.

F.3 Method 3: Thresholding on True Log-Odds

This variant is similar to Method 2 but uses the full log-odds difference. With
∆ = log(pdi)− log(pdj ),

a piecewise penalty is applied if the corresponding sigmoid value deviates from 0.5 beyond a
threshold:

ℓthresh(∆) =

{
α
∣∣∣σ(∆)− 0.5− t

∣∣∣, if
∣∣∣σ(∆)− 0.5

∣∣∣ ≥ t,

0, otherwise.
It still suffers from the need to tune the threshold t and stabilization.
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F.4 Method 4: Plain Log Probability Difference Squared

A straightforward approach computes the difference in log probabilities:

∆simple = log
(
pdi

)
− log

(
pdj

)
and then defines the loss as

ℓsq(∆simple) =
[ 1

2
− σ

(
∆simple

)]2
.

Because this method does not incorporate the 1 − p terms found in the log, it is susceptible to
numerical instability when pdi

or pdj
approaches 0 or 1. Empirically, it tends to perform slightly

worse than Method 1.

F.5 Empirical Observations

The training loss for each method can be found in Figure 7. Method 1 consistently achieves the best
balance between fairness and training stability. Threshold-based approaches (Methods 2 and 3)
may reduce bias but require careful tuning of the threshold t, which may lead to less smooth training.
Method 4 works in moderate probability ranges but is prone to exploding or vanishing gradients
when probabilities are near the boundaries of 0 or 1. In our ablation studies (Figure 7), Method 1
outperformed the other variants by achieving lower bias metrics along with stable training dynamics
and minimal computational overhead. Based on these observations, we selected Method 1 as our
primary Balanced Preference Optimization (BPO) objective.
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(a) Training Loss plot for method 1(core method).

(b) Training Loss plot for method 2.

(c) Training Loss plot for method 3.

(d) Training Loss plot for method 4.

Figure 7: We define pdi
= pθ(ydi

| x) and pdj
= pθ(ydj

| x). We compare four loss formulations:

(1) Method 1 penalizes deviations in the log-odds difference ∆ = log
(

pdi

1−pdi

)
− log

(
pdj

1−pdj

)
using

a continuously differentiable loss ℓbal(∆) = log
(
1 + [σ(∆) − 0.5]2

)
, yielding stable training and

superior bias reduction. (2) Methods 2 and 3 apply thresholded penalties on the log probability ratio
or log-odds, requiring careful tuning of a threshold t and potentially causing instability. (3) Method 4
uses the plain squared difference of log probabilities, but can suffer from numerical instability when
probabilities approach 0 or 1. Among these, Method 1, Balanced Preference Optimization (BPO),
stabilizes the loss and yields the best final results.
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G Generalization

Table 4: Results on 564 Stereotype Prompts (MMDecodingTrust)
Method Gender Bias Race Bias Intersection Bias Avg. CLIP Score Avg. CLIP IQA Score

VILA-U 0.6467 0.4310 0.2161 28.2198 0.8577
BPO-gender 0.4086 0.4899 0.2256 25.1070 0.7072
BPO-race 0.6313 0.2566 0.1659 24.3783 0.7466
BPO-mix 0.4629 0.2880 0.1622 24.5264 0.7481

Table 5: Preliminary Cross-lingual Test Results (Chinese and French)
Setting Gender Bias Intersection Bias CLIP Score CLIP IQA Score

VILA-U (CN) 0.4789 0.1938 24.3673 0.7445
VILA-U (FR) 0.8542 0.2381 26.9307 0.8853
BPO-gender (CN) 0.2810 0.1983 23.8048 0.7046
BPO-gender (FR) 0.3000 0.2275 25.6598 0.7768
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H Data Generation Pipeline and Samples

FLUX Model

A male 
associate 
professor

A female 
associate 
professor

An 
indian ass-

ociate 
professor

…..... ….....

A photograph 
of an 

associate 
professor's 

face

Associate 
professor

Augmented prompt
Neutral prompt

Figure 8: Pipeline for data generation. Augmented Prompts for Each Demographic: We explicitly
instruct the model with prompts like "Indian associate professor" rather than relying on FLUX.1-dev’s
default distribution. Each occupation is re-generated for every demographic, and direct instructions
yield images with the desired attributes; Balancing Across All Attributes: After collecting images
for each demographic prompt, we pair them with a neutral prompt (e.g., "a photo of an associate
professor"). This creates a training set where each neutral prompt has one sample per demographic,
ensuring uniform coverage across races and genders. As a result, the model learns that the same
description (e.g., "associate professor") can represent multiple demographic groups, countering one-
sided associations; Goal: A Balanced Synthetic Dataset from a potentially biased Generator: Our
method ensures equal representation per prompt by explicitly enumerating each demographic label
and quality-checking outputs. FLUX.1-dev’s biases are corrected, as we only require it to produce
sufficient images for each category. Thus, while we concur that FLUX.1-dev can exhibit low diversity
in unconstrained settings, our augmented-prompt + balanced-pairing pipeline specifically mitigates
those limitations and yields a controlled, demographically balanced dataset that is well-suited for our
debiasing objectives.(see Figure 4 below for some samples)
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Prompt: "A photo of the face of a trucker, a person" 

Race

Gender

(a) prompt: "A photo of the face of a trucker."
Prompt: "A photo of the face of a associate professor, a person"

Race

Gender

(b) prompt: "A photo of the face of an associate professor."

Figure 9: Training samples for fine-tuning. In T2I, each image is paired with its prompt (image,
prompt), while in I2T, each prompt is paired with its image (prompt, image). For BPO, each prompt
is paired with two images from different demographic group as (prompt, image1, image2).
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I Can debiasing understanding help debias generation?

U-MLLM

A photo of 
the face of 
a trucker

Label

Input

U-MLLM

Electrical and electronics 

Image Understanding(I2T) Finetuning Image Generation

Will debias 
understanding
HELP

debias generation?

A little! 

Figure 10: Left: We use a balanced dataset for image understanding (I2T) finetuning to debias
understanding by pairing images from different demographics (e.g., female truck driver and male
truck driver) with the same caption “truck driver” to teach the model that both map to the same
concept. Right: The fine-tuned model is then used to generate an image; for each image, the first
color-coded bar represents the predicted gender: male or female, and the second bar represents the
predicted race: White, Asian, Black, or Indian. The height of each bar indicates the prediction
confidence. Our hypothesis is that if the model recognizes that both male and female truck
drivers are truck drivers, it will generate other occupation-related concepts fairly. However,
while debiasing understanding slightly reduces bias (e.g., gender bias decreased from 0.89 to 0.83
in paper Table 1), the effect on image generation is limited. We note that recognizing multiple
demographic possibilities does not alter the model’s default token sampling, and without explicit
training for balanced generation (e.g., T2I finetuning or Balanced Preference Optimization), biases
persist.
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J Experiment Details

Evaluation Protocol. First, we generate N = 160 images for each test prompt. Next, we apply a
demographic classifier from a previous study [34] to predict the labels of demographic attributes for
each image. These labeled attributes are then used to compute the overall bias and semantic score
based on the above metrics.

Training Procedure. Base Learning Rate: We start with a fixed learning rate (for example,
1× 10−4) for fine-tuning. Batch Size: Ranges from 8 to 32, depending on the setup. Number of Steps:
For the first stage, we fine-tune for up to 10 epochs, checking bias and quality after the training. For
the second stage, the epoch is chosen to be 1 to 2. We use the LoRA [16] method for finetuning; the
rank is 32 for all experiments.

Computational Cost Our BPO approach starts with standard supervised fine-tuning (SFT) and adds
a brief 1–2 epoch preference-optimization stage, with minimal gradient updates. Compared to other
methods, supervised debiasing requires only 1–2 extra epochs to balance, while preference-learning
approaches typically rely on a large reference or separate reward model; by contrast, BPO uses just a
single policy. Empirically, based on training logs using two A100 GPUs (40 GB), the fine-tuning
stage takes 23,020 s for gender-only, 23,020 s for race-only, and 23,193 s for mixed race–gender
configurations, while the BPO stage takes roughly 2,365 s, 2,375 s, and 2,988 s, respectively. In
summary, BPO is efficient and comparable in overhead to other debiasing and preference-learning
methods.
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K Compare output from different methods

(a) prompt: "A photo of the face of an electrical and electronics repairer, a
person".(debias race)

(b) prompt: "A photo of the face of an electrical and electronics repairer, a
person".(debias race and gender)

(c) prompt: "A photo of the face of a machine offbearer, a person"(debias race)

(d) prompt: "A photo of the face of a machine offbearer, a person"(debias race
and gender)

Figure 11: For each prompt, the first row (from left to right) shows images of VILA-U, Prompt
Engineering, and I2T finetuning, while the second row shows images of T2I finetuning and BPO.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly articulate our three core contribu-
tions—novel algorithm design, theoretical guarantees, and comprehensive empirical valida-
tion—and explicitly delineate the scope and assumptions of our study.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We dedicate a “Limitations” section (Section 7) to discuss key assumptions,
potential performance degradation under distribution shifts, and computational constraints
of our approach.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each theorem is stated with its full set of assumptions and a complete proof is
provided in Appendix A, with sketch proofs in the main text for clarity.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [No]
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Justification: We describe the overall experimental design and datasets but omit specific
hyperparameter settings and detailed preprocessing steps due to space constraints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No] the paper will provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results
Justification: We plan to release all code and datasets in a public repository upon acceptance,
including detailed setup instructions and scripts for reproducing our main results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4.1 specifies data splits, hyperparameter selection procedures, opti-
mizer configurations, and early stopping criteria for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our experiments focus on deterministic benchmarks and thus do not include
error bars or statistical tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: Section 4.4 details the GPU type, memory footprints, and execution times for
individual experiments, as well as the total compute hours used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our methodology adheres fully to the NeurIPS Code of Ethics, ensuring
responsible data handling and model evaluation without bias (Section 6).
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Section 6, we outline positive outcomes such as improved model efficiency
and discuss potential misuse scenarios, including adversarial attacks and privacy concerns,
along with mitigation strategies.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve releasing high-risk models or sensitive datasets,
making additional safeguards unnecessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We rely solely on our own code and data, and do not incorporate third-party
assets that would require license disclosures.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce new data assets or external code packages
requiring formal documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our evaluation is small scale, crowdsourcing protocols and compensation
details inapplicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects research was conducted, so IRB approval was not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We leverage an LLM-based module as a judgment mechanism for output
evaluation, as described in Section 5.2.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminary
	Locating Bias
	Hypothesis I: Bias Originates in the Vision Encoder
	Hypothesis II: Bias Originates from the Language Model

	Method
	Training Data Generation
	Balanced Preference Loss

	Experiment
	Experimental Setup
	Experimental Results
	Discussion

	Related Work
	Conclusion
	Acknowledgments
	Limitation
	Structure of U-MLLM
	Locating Bias
	BPO Algorithm
	Gradient of BPO
	Setup: The Balanced Preference Loss
	Chain Rule for Lbal
	Final Gradient Expression
	Multiple Demographic Groups
	Putting It All 

	Comparison with Other Loss Functions
	Method 1 (Our Core Approach)
	Method 2: Thresholded Loss on Log Probability Ratios
	Method 3: Thresholding on True Log-Odds
	Method 4: Plain Log Probability Difference Squared
	Empirical Observations

	Generalization
	Data Generation Pipeline and Samples
	Can debiasing understanding help debias generation?
	Experiment Details
	Compare output from different methods

