Published in Transactions on Machine Learning Research (09/2025)

Adversarial Robustness of Graph Transformers

Philipp Foth* p.foth@tum.de
School of Computation, Information and Technology
Technical University of Munich

Lukas Gosch* l.gosch@tum.de
School of Computation, Information and Technology € Munich Data Science Institute
Technical University of Munich; Munich Center for Machine Learning (MCML)

Simon Geisler! s.geisler@tum.de
School of Computation, Information and Technology € Munich Data Science Institute
Technical University of Munich

Leo Schwinn l.schwinn@tum.de
School of Computation, Information and Technology & Munich Data Science Institute
Technical University of Munich

Stephan Giinnemann s.guennemann@tum. de
School of Computation, Information and Technology & Munich Data Science Institute
Technical University of Munich; Munich Center for Machine Learning (MCML)

Reviewed on OpenReview: https: //openreview. net/ forum? 1d=4zK0vjzTWL

Abstract

Existing studies have shown that Message-Passing Graph Neural Networks (MPNNs) are
highly susceptible to adversarial attacks. In contrast, despite the increasing importance of
Graph Transformers (GTs), their robustness properties are unexplored. We close this gap and
design the first adaptive attacks for GTs. In particular, we provide general design principles
for strong gradient-based attacks on GTs w.r.t. structure perturbations and instantiate our
attack framework for five representative and popular GT architectures. Specifically, we
study GTs with specialized attention mechanisms and Positional Encodings (PEs) based
on pairwise shortest paths, random walks, and the Laplacian spectrum. We evaluate our
attacks on multiple tasks and perturbation models, including structure perturbations for
node and graph classification, and node injection for graph classification. Our results reveal
that GTs can be catastrophically fragile in many cases. Addressing this vulnerability, we
show how our adaptive attacks can be effectively used for adversarial training, substantially
improving robustness.

1 Introduction

Graphs are fundamental data structures with broad applications across various domains. In recent years,
Graph Neural Networks (GNNs) have become the go-to method for learning on graph-structured data.
Given their growing adoption, numerous studies have explored adversarial attacks on GNNs, revealing
their susceptibility to even minor perturbations of the graph structure (Zigner et al., [2018; [Zigner &
Gunnemann, [2019; |[Ztugner & Giinnemannl [2020). These studies mainly focus on Message-Passing GNNs
(MPNNSs), such as Graph Convolutional Networks (GCNs) (Kipf & Welling), 2017). More recently, Graph
Transformer (GT) models have emerged as a promising alternative, addressing key limitations of MPNNs,

*Equal contribution. Correspondence should be addressed to l.gosch@tum.de.
fNow with Google Research.

https://openreview.net/forum?id=4xK0vjxTWL

Published in Transactions on Machine Learning Research (09/2025)

=% Graphormer -M - GRIT =¥- SAN GPS GPS-GCN ««f= Polynormer GATv2 @~ GAT -4 GCN
s0 & so T8 90 4% B | SO e w—"
T P e v
S 3 : 8047 = N\ ——-fy
2w B I 8 S s = (R LL e e
> W REEL S 70 4 \\\ NSl -m "
2 W= R AN S \
£ X\ Y R SEREN) \
= 40 A AR XS o Yeen ~ - 60 F
g % s ST 60 1 N ~ N,
g . N 40 4 NN 4 N e
< ol SpE— SN Nms Sxo R I8
20 == . sl 504 40 o ST =
B ‘m W TIop
- ~ 8-
T T T T T T 20 = T T T T 40 == T T T T T T T
0 1 2 3 4 5 0 5 10 15 20 0 5 10 15 0 5 10 15

Edge modification budget (%)

(a) CLUSTER.

Edge modification budget (%)

(b) Reddit Threads.

Edge modification budget (%)

(c) UPFD politifact.

Edge modification budget (%)

(d) UPFD gossipcop.

Figure 1: The adversarial classification accuracy for different GNNs with varying (evasion) attack budgets on
four different datasets: CLUSTER - inductive node classification (global structure attack), Reddit Threads -
graph classification (structure attack), UPFD politifact and gossipcop - graph classification (node injection
attack). The strongest attack (out of 9, see Section [5| for more details) for each budget is shown.

such as over-smoothing, over-squashing, and limited receptive fields (Miiller et al., 2024). Despite their
growing popularity, the adversarial robustness of GTs is unexplored and hence, unknown. This gap highlights
a crucial limitation in our understanding of GTs and poses a risk in practical applications where robustness is
critical. However, to understand their robustness, it is not possible to directly apply state-of-the-art attacks
for GNNs, such as PGD and PRBCD (Geisler et al [2021) as GTs employ modified attention
mechanisms and Positional Encodings (PEs) that are not differentiable w.r.t. the input. Consequently, the
lack of good tools to evaluate the robustness of GTs makes it difficult to understand the robustness properties
of different GT models, to determine which models or components are preferable in safety-critical settings,
and to apply state-of-the-art defense mechanisms such as adversarial training (Gosch et al. [2023al).

To address this challenge, we establish general guiding principles for designing differentiable relaxations to
the discrete and non-differentiable components in GTs. In doing so, we provide a general outline on how to
design strong gradient-based adaptive attacks for GTs that can adjust to all relevant architectural details.
Such adaptive attacks are essential for realistic robustness estimates in the vision domain (Athalye et al.|
[2018; |Carlini & Wagner], [2017; |Trameér et all [2020) as well as the GNN domain (Mujkanovic et al., [2022)). We
exemplify our guiding principles by developing specific relaxations for the most widely used GT components
including (a) Shortest Path, (b) Random Walk, and (c) Spectral PEs. Using our relaxations, we
provide the first analysis of the robustness of GTs by applying adaptive gradient-based attacks to five popular
and representative GT architectures: 1) Graphormer (Ying et al., 2021)), 2) Spectral Attention Network
(SAN) (Kreuzer et all [2021)), 3) Graph Inductive bias Transformer (GRIT) (Ma et all, 2023), 4) General,
Powerful, Scalable (GPS) GT (Rampasek et all [2022), and 5) Polynormer (Deng et al., |2024).

Our study reveals that GTs can be catastrophically fragile if evaluated with our adaptive attacks (Fig. [1f).
For example, with our proposed node injection attacks (NIAs), perturbing 2% of the edges can halve the
model’s accuracy (Fig. [Ld & . Consequently, we use our adaptive attacks to devise an effective adversarial
training strategy and show its potential to alleviate the hypersensitivity of GT architectures.

Our main contributions are:

(1) We formulate general guiding principles to relax non-differentiable GT (Graph Transformer) components.
Based on this, we develop the first adaptive gradient-based structure attacks for five representative GT
architectures. Our developed relaxations concern the most common building blocks found in GTs and thus,
can find application across many different GT models.

(2) We conduct the first principled empirical study into the adversarial robustness of GTs and show that they
can suffer from catastrophic vulnerabilities to even minor perturbations of the graph’s structure, in some
cases even worse than traditional message-passing GNNs.

(3) We show how to leverage our adaptive attacks for adversarial training strategies that can result in an
effective defense counteracting GTs’ vulnerabilities. Thus, we establish that the flexibility of GT models can
lead to significantly better robust learning capabilities compared to classic message-passing GNNs.

Published in Transactions on Machine Learning Research (09/2025)

2 Preliminaries

Let G = (V,€) be an undirected attributed graph with n nodes ¥V = {vy,...,v,} and m edges. Let z; € R? be
the feature vector of node v;. Then the graph can be defined as G = (A, X) with its symmetric binary adjacency
matrix A € {0,1}"*" and node feature matrix X € R™"*4. The diagonal degree matrix D with entries
D;; = deg(v;) = Z?Zl A;; and the normalized symmetric graph Laplacian matrix Ly, = I — D '2AD'/?
can both be derived from A. The GNNs considered in this work are functions fy(A, X) with model parameters
6 € RP. We denote the updated hidden node representations after each GNN layer [as H®) with initialization
H© = X. For node-level tasks, we assume that each node should be assigned a class ¢ € {1,..., K} and the
output node representations are directly utilized for the prediction, while for graph-level tasks, a graph-pooling
operation aggregates the node embeddings into a graph embedding before predicting one out of K classes for
the whole graph.

2.1 Structure Attacks

In this work, we focus on untargeted white-box evasion attacks, i.e., an attacker with full knowledge of the
model and data attempts to change the trained model’s prediction to any incorrect class at test time by slightly
perturbing the input graph structure. For node-level tasks we focus on global attacks that minimize the
overall performance metric across all nodes. The attack objective is described by the following optimization
problem: }
Comax Lan(fe(4, X)) 1)
A st ||[A-Allp<A
where fy is the GNN model with fixed parameters 0, A € {0,1}™*™ is the discrete perturbed adjacency
matrix in relation to A with the number of edge flips bounded by the budget A € Ny, and L is a suitable
attack loss function. For node classification, we use the tanh-margin attack loss proposed in [Geisler et al.

(2021). For graph classification, we optimize the unnormalized class logits: Lo = —y + Z#y l., where
l. € R refers to the unnormalized logit of class ¢ € {1,..., K}. It is convenient to model the perturbation as
a function of the binary matrix indicating the edge flips B € {0, 1}"*":

A=A+35A, A=(1,1]-24)0B (2)

with element-wise product ®. Often, the combinatorial problem in Eq. [I| can be optimized more efficiently
using a continuous relaxation B’ € [0, 1]"*" replacing B in Eq. [2 In this setting, the entry Bj; represents
the probability that the edge (v;,v;) is flipped. Then, the discrete perturbation matrix A can be sampled
from the continuous solution. In the continuous relaxation, the budget constraint becomes E[Bernoulli(B’)] =
>.Bj; < A, which can be dealt with by using projected gradient descent (Xu et al., [2019). Note that
a continuous B’ gives rise to a continuous A’ € [0,1]"*™, whose elements A;j can be interpreted as the
probability an edge (7, j) being in A. For large graphs, updating all entries in B’ at once becomes infeasible.
Projected Randomized Block Coordinate Descent (PRBCD) solves this by optimizing over sampled random
blocks of limited size (Geisler et al., [2021)).

2.2 Graph Transformers

Graph transformers (GTs) apply the popular transformer architecture for sequences (Vaswani et al.; [2017)
to arbitrary graphs. A general GT architecture is depicted in Fig. 2] In this work, we focus on GTs that
apply global self-attention, where each node can attend to all other nodes. A “vanilla” structure-unaware
self-attention head is defined as:

(HW,)(HW;)"
Vd

where W, W, W, € R¥*? are the weights for the query, key, and value projections. The individual attention
scores can thus be defined as:

Attn(H) = softmax () (HW,) (3)

evis W] hi- Wk,

Wa Wij = T Ja (4)

a;; = softmax(w;;) =

Published in Transactions on Machine Learning Research (09/2025)

Since this update is independent of the graph structure, many GTs apply a modified
attention mechanism that also depends on the adjacency matrix. Additionally, a crucial

and most common way to add structural information is by adding Positional Encodings Z”ﬁ;’f{;‘i :

(PEs) to the node features: <
H" = X +4(A) (5)

where 1 represents the positional encoding of choice. Some architectures append ¥ (A) 1

to X instead of summing, or otherwise jointly process X and 1)(A). We categorize PEs G

roughly into three main categories: (1) distance encodings, (2) spectral encodings, and Positional

(3) random walk encodings. Some works distinguish between Structural Encodings (SEs)

and PEs, where the term SE is used for encodings that make the GT aware of graph
structure and the term PE for making a node aware of its relative position. However,
there is no formal distinction between SEs and PEs (Miiller et al., |2024) and for the
purpose of this work, we do not semantically distinguish between SEs and PEs and use

the term positional encoding to refer to any encoding based on A. Next, we describe the Figure 2: A
PEs and attention mechanisms of the five representative GT models that we attack. For generic graph
a detailed overview and taxonomy of current GTs we refer to |[Miiller et al.| (2024)). transformer.

Graphormer (Ying et al., 2021). For the PEs, a degree embedding vector z4 € RY is learned for each
discrete node degree value d. The embeddings are added to the node features according to the node degrees:

hEO) =x; + zdeg(vi) (6)

Similarly, a learnable scalar bs € R is assigned to each discrete Shortest Path Distance (SPD) s € Ny. This
value is added to the raw attention scores and results in a re-weighting of the attention weights between two
nodes based on their distance in the graph:

U%j = w;; + bspd(vi,vj)a Qij = softmax(u?ij) (7)

where w;; is set following Eq. @ For graph-level tasks, a virtual node is added to the graph with its own
distinct learnable bias byirtual, which is used as graph representation in the pooling stage.

Spectral Attention Network (SAN) (Kreuzer et al. |2021)). SAN uses learned (spectral) Laplacian-based
PEs that are based on the eigen-decomposition of the Laplacian Lgym = UAUT, where the diagonal entries
of Ay = A; are the eigenvalues of Ly, in ascending order A\; < Ay < ... < A, and the columns of U are
the corresponding eigenvectors. The PEs are computed by a learned transformer encoder that takes the k
smallest eigenvalues, which we denote by Ay € RF** and their corresponding eigenvectors Uy, € R™*F as
input. Concretely, for each node v;, its PEs are initialized as the concatenation of the eigenvalues and the
i-th row of Uy:

P, = [diag(A) || (U)),] € R (8)

Further processing by a transformer encoder results in p; = f(P;) € R%, which is concatenated to the node
features: hz(-o) = x; || pi- Regarding the main graph transformer attention mechanism, it is modified to have
two separate key and query weights for connected and unconnected node-pairs. The attention scores to
the connected nodes and to the unconnected nodes are computed independently, each with a softmax. A
hyperparameter v € RT controls how the two scores are relatively scaled, varying the bias towards sparse or

full attention:

ﬁsoftmaxj\/i (W realhi - Wyl eathtj /Vd) if (v;,v;) is a real edge ()
o =
K ﬁSO&maXV\M (W taehi - W b /v/d) otherwise

where N; is the first-order neighbors of node v; (including v;).

Graph Inductive Bias Transformer (GRIT) (Ma et al.,|2023). GRIT’s PEs are based on random walk
probability matrices for walks of lengths 0 to kK — 1. Concretely, the PEs are based on a 3D tensor:

P=[I,M ,M? . . M1 cR>k with M=D"'A (10)

Published in Transactions on Machine Learning Research (09/2025)

This yields an embedding vector P;; € R* for each of the n? node-pairs (v;, v;). The diagonal vector entries

are transformed to dimension d by a linear layer and added to the node features as PEs: hgo) =x; + g1(Py).
Additionally, all n? vectors are transformed by a separate linear layer and added as node-pair features:
hon) = g2(P;;). The node representations h; and node-pair representations h; ; are updated in each
transformer layer by a modified attention mechanism, which includes an adaptive degree-scaler that is applied
to the node representations:

hi,update = (hl @ 01) =+ IOg(]. + deg(vz)) . (hl @ 02) (11)

where 0,0, € R? are learnable weights.

General, Powerful, Scalable (GPS) Graph Transformer (Rampasek et al., 2022). GPS is a modular
framework that first consists of a positional encoding of choice that is concatenated to the node features and
again processed with an MLP before being passed through L GPS layers. Each GPS layer combines the local
message passing of an MPNN with a global attention update as follows:

feps(H, A) = MLP (fupnn (H, A) + faiobalaten (H)) (12)

There are several different choices of PEs, MPNNs, and global attention mechanisms tested by [Rampasek
et al.| (2022). We consider the configuration with (spectral) Laplacian PEs that are encoded using DeepSet
(Zaheer et al., [2017) (compared to a transformer encoder in SAN), local GatedGCN (Bresson & Laurent),
2018) as an MPNN, and standard transformer global attention (see Eq. , as this configuration choice is the
most common one by Rampasek et al.| (2022).

Polynormer (Deng et all 2024)). In the Polynormer model, the input is first processed by Lj,cq; local
message passing layers and then by Lgopa global attention layers. Notably, PEs are not used. For both
type of layers, the node representation update is defined by a second-degree polynomial equation of the form
(omitting normalizations and activation functions):

Hpgate = (SHW,) © (HW,, + 0 (18")), with attention matrix S =S (A, H) (13)

where o is the sigmoid function and each layer has learnable weights W,, W), € R4 and B € R%. To
calculate S, for local layers, the local attention mechanism from GAT (Velickovi¢ et al., [2018) is used. For
global layers, a linearized global attention mechanism is used based on the kernel trick. Instead of computing
the softmax after the query-key multiplication (Eq. , an element-wise sigmoid function is applied separately
to the queries and keys. Then a simple row-wise normalization ensures that rows sum to one:

where Wy, W}, are the query and key projection matrices. Since the nonlinearity is applied before the
multiplication, the order of operations can be changed to avoid computing the full attention matrix .S,
reducing complexity from O(n?d) to O(nd?). Thus, Polynormer is a type of GT that achieves linear
complezity in the number of nodes.

3 Attacking Graph Transformers

The main obstacles for gradient-based structure attacks on GTs are PEs and attention mechanisms that are
designed to operate on the discrete graph structure. As a result, even if one wants to solve the associated
optimization problem in Eq. [1] for a relaxed continuous adjacency matrix A’, the GT model fy is often
discontinuous and non-differentiable w.r.t. A’, making continuous optimization through gradient-based attacks
inapplicable. Thus, to enable obtaining useful gradients, we need to relax the structure-aware components
such as PEs and specialized attention mechanisms in fy, giving rise to a relaxed GT model fy. For designing
effective continuous relaxations that lead to a useful fy, we identify three main principles:

Published in Transactions on Machine Learning Research (09/2025)

Principle I: Relaxed and target models should coincide for discrete inputs. The prediction
should equal fg(A) = fy(A) for any discrete adjacency matrix A € {0, 1}"*".

Principle II: fg can interpolate between any different discrete graphs. In other words, fe(Al)
should be continuous w.r.t. A’, and it should be differentiable almost everywhere w.r.t. A’.

Principle IIT: The relaxed model fy must be efficient. It is a critical property that the relaxation
does not excessively increase the memory and runtime complexity.

We do not require continuous differentiability in Principle II, as to obtain informative gradients w.r.t. the
input data to effectively optimize the attack loss, we do not need to enforce stronger standards on fg than
imposed by the perhaps most widely used activation function ReLLU, which is also continuous and differentiable
almost everywhere except at 0. We discuss Principle II and the differentiability requirement in more detail in
§[G] Now, below, we develop continuous relaxations for several common GTs that follow the above outlined
principles and thereby, enable the effective application of state-of-the-art gradient-based graph structure
attacks as described in §[f] Next to covering commonly used GT components, the following derivations
should act as guiding examples on how to instantiate the above principles to develop effective continuous
relaxations that enable strong adaptive attacks for a GT architecture or component of choice.

Graphormer. The degree PEs zgeg(v,) in Eq. |§| and SPD biases bgpd(v,,0;) in Eq. [7] are indexed by the
discrete values of the node degrees (# of neighbors) and shortest path distances (# of hops). To enable the
use of continuous degrees, we define a linear interpolation between the PE vectors of the two closest integer
degree values:

Zdeg(vi) =17"2d4+1 Tt (1 —n)- Zd,

15
with d; = |deg(v;)], and n = deg(v;) —d; (15)

Increasing the edge probabilities to a node also increases the expected discrete degree. However, the edge
probabilities are more challenging to interpret for the SPDs. When a very small edge probability lies on a
(simple) shortest path, the path is less likely to exist in the discrete sampled adjacency matrix. Therefore,
low edge probabilities should only marginally affect the original SPDs. To model this relationship, we
use the reciprocal of the adjacency matrix R;; = 1/A;, to find continuous proxy shortest path distances
rspd;; = spd(v;, v;|R). We interpolate between the closest discrete values again and obtain:
bspd(v,-,v,-) =1n- bSLJrl + (1 - 7]) ’ bSl (16)
with s; = [rspd,;], and n=rspd;; —s
Note that for discrete edge probability values 0 and 1, the reciprocal edge weights become —oo and 1,
respectively, yielding the original SPDs. Hence, we do not alter the clean predictions if A = B = 0 (see
Principle I).

SAN. We first discuss how to relax SAN’s attention mechanism before discussing how to tackle relaxing the
spectral PEs. To allow for a smooth transition between SAN’s two separate sparse attention mechanisms
in Eq. [0 we formally convert both to full global attention. Then, the goal of the relaxed sparse attention
mechanisms is to properly weigh the contribution an edge has on the attention score calculation by the
probability /i;j that the corresponding edge is in the final perturbed adjacency matrix. This can be achieved
by adding the log-probabilities of the edges belonging to one of the attention mechanisms in Eq. [9] to the
attention logits, where the corresponding probabilities are p;; = A;j for the sparse attention originally defined

over N, and p;; = 1 — figj for the sparse attention originally defined over V \ AV;, as one obtains
W;j = w;; + log(pi;)
e pijeti (17)
Zk eﬁ/ik Zk} Dik * eWik

As a result, for a discrete connected edge Aéj = 1, the log-probabilities become 0, or —oo respectively. Thus,
such an edge still fully contributes to the connected attention mechanism (over N;), while not affecting the

dij = softmax(i)ij)

Published in Transactions on Machine Learning Research (09/2025)

disconnected one (over V \ N;) — and vice versa for disconnected edges with Agj = 0. Thus, the relaxation
in essence still is a sparse attention mechanism and the discrete output remains unchanged (see Principle
I), while interpolating smoothly between any different discrete graphs (see Principle II). Some care has to
be taken so that the gradient computation w.r.t. A;j is numerically stable, which we discuss in § Here
we want to note that the so-developed sparse attention relaxation can be generally applied to any sparse
attention mechanism used in other GTs, which we demonstrate when deriving a relaxed Polynormer model at
the end of this section.

Now, regarding the spectral PEs, note that the Laplacian matrix itself is a continuous function of the entries
in the adjacency matrix. However, its eigen-decomposition used for the PEs poses some challenges for gradient
computation, especially w.r.t. the eigenvectors. The problems arise because: (a) the choice of direction
(sign) for eigenvectors is arbitrary, (b) the choice of an eigenvector-basis of the eigenspace of a repeated
eigenvalue is arbitrary, thus the gradient is not well defined, (c) for eigenvalues that are close together, the
corresponding eigenvector gradients are numerically unstable. To avoid direct gradient computation, we use
results from matrix perturbation theory (Stewart & Sunl 1990; Bamiehl [2022)) to approximate the perturbed
eigen-decomposition as a simpler function of the input perturbation. We define the perturbation on the
Laplacian as 0 Lgym = iwm — Ly, where isym is the Laplacian of the perturbed continuous adjacency
matrix A’. Following Bamich (2022), the first-order approximations for the eigenvalues and eigenvectors are:

A=A+06A, SA =diag(U" 6Ly, U) (18)
U=U+6U, §U~-U (L6 (U'SLy,, U)) (19)
1 jf Ai # N\
with Hij _ Ai—Aj I 7é J
0 else

However, when repeated eigenvalues are present in the unperturbed Laplacian, special care for the choice of
the eigenvectors in U that span the eigenspaces of the repeated eigenvalues is required. This case is treated
by [Bamieh| (2022) and we show the application to our case in § A different strategy used by e.g. |Lin
et al.| (2022)), consists of adding a bit of random noise to isym in hopes of breaking apart any repeated
eigenvalues, such that is possible to directly backpropagate through the eigen-decomposition. We elaborate
on this strategy and propose our own alternative in § [F.2]

GRIT. Relaxing the perturbed adjacency matrix A to be used in Eq. to be continuous and allowing
for fractional node degrees in Eq. one can see that the so relaxed GRIT model fulfills all three main
principles for continuous relaxations outlined above. Thus, as only GT architecture, GRIT and its used
random walk embeddings do not require special treatment beyond relaxing A to be continuous, to yield an
effective continuous relaxation.

GPS. As GPS’ Laplacian PEs only differ to SAN’s by using a DeepSet encoder instead of a transformer
encoder, we can use the same relaxation as derived for SAN in Eqgs. [18| & Note that Rampasek et al.| (2022)
lists six different categories of PEs, which they group into local, global, and relative positional encodings and
local, global, and relative structural encodings. Most of the example encodings provided for each category
are based on distances (shortest paths), node degrees, spectral decomposition, or random walks. Thus, they
can be directly tackled by the relaxations developed for Graphormer (Egs. |§| & @, SAN (Egs. |18 & , or
GRIT. This highlights the common and widespread usage of distance, spectral, or random-walk encodings
and thus, the broad applicability of our developed PE relaxations to other GT models.

Now, we turn to the GPS layers defined by Eq.[I2] The global attention fGiobalattn requires no modification,
as it does not depend on the adjacency. However, we need to take a closer look at fyipnn for which GPS uses
a GatedGCN. The update of the local GatedGCN step for the embedding of a node i is defined as:

1
hiupdate = hi + p | Wnihi + —© Z Ni; © Waahj |, n; = Z Mij
" v ENiI\{vi} v;ENi\{vi}
with edge gates n;; = 0 (Weirh; + Weah,)

(20)

where W,,1, Wyo, W1, Weo are the learnable parameters and p is the activation function. The edge gates
7i; € R? can be interpreted as per-dimension local attention weights and control the aggregation strength

Published in Transactions on Machine Learning Research (09/2025)

from each neighbor. Thus, to achieve a continuous relaxation, we can define that a node v; € N; if figj >0
and scale the edge gates by the probability that the neighbor node is connected:

flij = Pij Mij» Pij = Al (21)

This is in line with the way how other MPNNs such as a traditional GCN are relaxed to allow for gradient-based
structure attacks (Geisler et al.l [2021)).

Polynormer. The global attention mechanisms defined in Eq. [14]| does not depend on the adjacency. Thus,
relevant to deriving a relaxed model is how the attention matrix S in Eq. [[3]is calculated for the local layers
based on the local (sparse) attention mechanism from GAT. For this, recognize that the i-th row of the result
of the matrix product S H W, that concerns the intermediate embedding fbmpdate for a node i after sparse
aggregation and before the application of the element-wise multiplication in Eq. can be written as:

hi update = p aiijThj , oy = softmaxy;, (wi;), wi; =p (az Wh,; + atT Whj) (22)
vjeNi

where p is an activation function and W, as, a; are the learnable parameters. Now, structure information
enters the sparse attention computation for «;; through attending only to the neighbors N;. To relax
this sparse attention mechanism, we can use the same continuous relaxation derived for SAN’s sparse
attention in Eq. |§| by formally converting the sparse a;; computation (and summation) in Eq. to full
attention and adding log p;; as bias to the attention logits w;; with p;; = Agj. This highlights the general
applicability of the relaxed sparse attention developed in Eq. [0 for SAN to other sparse attention mechanisms
deployed in other GT models. Note that in contrast to relaxing an MPNNs aggregation through scaling each
summation (aggregation) term by Agj, the scaling for the relaxed sparse attention is already included in the
a;; computation. We close this section by noting that Polynormer does not use PEs and hence, we do not
need to develop a relaxation for them.

Computational Complexity. All our relaxations adhere to Principle III of efficiency and do not excessively
increase runtime or memory complexity. In particular, the relaxations do not affect the asymptotic time
complexities w.r.t. the number of nodes or edges of the models. We discuss the computational complexities of
our relaxations in more detail in §[G.3]

4 Node Injection Attack

We also consider the relevant case of inserting nodes into an existing graph structure. In contrast to the
usual framing of Node Injection Attack (NTA), where the attacker also chooses the node features for the new
vicious nodes (Wang et al., |2020]), we connect existing nodes from other graphs of an inductive graph dataset
(excluding their own connections in the other graph). Therefore, the nodes’ features are fixed but physically
realizable even if, e.g., they represent embeddings of natural language. This alleviates us from a somewhat
subjective definition of imperceptibility required to craft the node features in the existing NTA. Hence, our
attack solely focuses on “structure” perturbations and their influence on the PEs, which are of particular
interest for attacking GTs.

We formulate our node injection attack as a structure attack on an augmented graph that includes both the
original nodes and the set of potential injection nodes. This formulation enables the use of the same PRBCD
attack optimization, where the edge flip budget constraint also serves as an upper bound for the number of
nodes that can be injected. We provide the details of extending PRBCD to node injection in § [A]

Node probability for smooth node insertion. The continuous optimization of structure attacks in § [2.1]
assigns probabilities to edges-flips, while nodes are assumed to be part of the graph. In contrast, during NIAs
nodes also have certain probabilities of being included. To approximate these node probabilities from the
edge weights in a general way, we propose a simple iterative computation. We can calculate the probability
p; of v; being connected to the graph, by using the probability of being connected to its neighbors and the
probabilities that these neighbors themselves are connected to the graph. We start with the assumption that

Published in Transactions on Machine Learning Research (09/2025)

all nodes are connected to the graph and update using the edge probabilities:

P =1 = I -4y p"), with p” =1 (23)
v €Ni\{vi}

An illustrative example is shown in §[A71] To ensure that the model output is continuous w.r.t. node injections,
this node probability is used to compute a weighted sum or mean in the graph-pooling for graph level tasks.
Additionally for GTs, we use the node probability to bias the global pairwise attention scores which result
in a continuous weighting of the attention scores analogous to Eq. where the bias probability is set to
the node probability p;; = p;. Notably, this node probability bias can be applied to any global attention
mechanism even when it originally does not depend on the adjacency matrix (as is the case for e.g. GPS and
Polynormer).

5 Evaluation

In what follows we describe the experimental details for our reported results. The code to reproduce our
results can be found at https://github.com/isefos/gt_robustness.

Datasets. We first evaluate our structure attacks on CLUSTER (Dwivedi et al., |2023) which contains
SBM-generated graphs with 6 clusters. A single node in each cluster is labeled and the task is to predict the
cluster of all nodes (inductive node classification). We also consider the graph classification dataset Reddit
Threads (Rozemberczki et al., 2020). It contains many small graphs (without node features) that represent
users that are connected if they directly reply to each other in the thread. The task is to predict whether
the thread is discussion-based or not. For our node injection attacks, we evaluate on the UPFD fake news
detection datasets (Dou et al., 2021). There are 2 datasets: politifact, with political; and gossipcop with
celebrity fake news. The graphs consist of “retweet” trees, where each node contains the user features and
the edges represent retweets. Additionally, the root nodes contain features related to the news content and
are consequently not considered for node injection. We do not perturb the original graph structure and if
node injection does not result in a tree structure, we take the maximum spanning tree to ensure that all
perturbations are valid retweet trees. The task is binary classification of whether the graph contains fake
news or not. Further details of the datasets and splits used are given in § [B]

Due to GTs (usually) quadratic scaling in the number of nodes, their application is limited to smaller graphs.
While GTs are most widely applied to molecule data, adversarial attacks are of little practical relevance in
that domain. Thus, we omit molecular datasets from our evaluations.

Models. We investigate the five representative GT models for which we developed continuous relaxations in
§ B} Graphormer, SAN, GRIT, GPS, and Polynormer. For their model training we do a hyperparameter
search, choosing the model with the highest validation metric and we describe the hyperparamter search and
the final hyperparameters used for the models in § [E]

Attacks. As explained in §[2.1] we study untargeted global evasion attacks. Global applies to the task of node
classification and means that our attacks try to decrease the overall accuracy of all (test) node predictions in
the graph. This is more challenging than local attacks, which only attack a single victim node prediction
such as Nettack (Zigner et all 2018), which cannot be effectively used for a global attack. Evasion means
the graph structure of the test input is modified for a trained model with fixed weights. This is different from
poisoning attacks such as Mettack (Zigner & Giinnemann, 2019), where the victim model is trained on the
perturbed graph. Poisoning is much more relevant for transductive learning tasks (often on a single graph),
for which GTs are rarely used.

We show results for 5 different attack types. Adaptive PRBCD uses our relaxations described in § [3] for a
gradient-based PRBCD attack. Random perturbation is a simple baseline, where a single random perturbation
of the adjacency matrix is used. In contrast, random attack is a brute-force random search that tests many
random perturbations and selects the best. To match the computational budget of the adaptive attacks, it
gets the same number of model evaluations. The GCN PRBCD transfer attack transfers the perturbation
computed from attacking a GCN with an (adaptive) PRBCD attack, to the GT models. This is a relatively
strong baseline attack that follows the same principle as many other established GNN attacks: it is a

https://github.com/isefos/gt_robustness

Published in Transactions on Machine Learning Research (09/2025)

random perturbation -+ random attack -’- GCN PRBCD transfer +-®:+ adaptive PRBCD (ours)
80 80 195 80 80 80 80
f * b P t‘ * . o,
B * B * & i * o
<60 1 ik * 60 1% 60 ik * 60 1% *— 60 11— *< 60 {#*
X 4" X Fan L X 1 b)
[no %k * T E % * . s E *
8 104 | 1014 % 40 t . . 404 ‘ . ~ 40 ik
g 1 $ T i * *
8 N (Y e " H A
< 20 4 .*H -5 20 "o d, 20 it - 20 4 4 - 20 4+3
ol S S SRR | D\ TS S —— Do = TR S ¢4~ 3
© 00 @i ° b ¥ SIS SRR ° Lo O S e o : b-o.....: 4 ..'0'0-. PO bl
0 T T 0 T T 0 - T T 0= T T 0 T T
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)
(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (e) Polynormer. (f) GCN.

Figure 3: Global structure (evasion) attack results for CLUSTER (inductive node classification).

gradient-based attack (PRBCD) on a simpler surrogate (GCN) that gets transferred to the victim model.
Moreover, it is the main (global evasion) attack for non-GCN models proposed and used by |Geisler et al.
(2021)), where it has been shown to be very effective against other GNNs. Finally, we study how the adaptive
attacks for the individual five considered GTs transfer to one another. Fig. [T shows the best out of all applied
attacks (including the individual GT transfers) for each investigated model and dataset.

For all datasets, we evaluate our attacks on the 50 first graphs in the test set and report average and standard
deviation over 4 random seeds. For UPFD node injection, we use a small block size of 1000, which is necessary
due to the quadratic scaling of GTs. We optimize all our adaptive attacks for 125 steps and sample 20
discrete perturbations from the result, of which we take the strongest. For all other attack hyperparameters,
we use default values that performed well in preliminary evaluations. For all main results, we use all of our

continuous relaxations proposed in §[3] We report and discuss ablation results using different combinations
of relaxation in § [C.5]

6 Attack Results

In this section, we present the first principled analysis on the robustness of GTs on five representative
architecture types (Graphormer, GRIT, SAN, GPS, Polynormer) enabled by our developed adaptive attacks
based on our general principles for continuous relaxations outline in §[3] We define different goals for our
evaluation: (A) efficacy of the proposed adaptive attacks, (B) providing an accurate assessment of GT
robustness for relevant real-world tasks. To this end, we perform our evaluation on datasets with varying
complexity. Towards (A) we explore the robustness of GTs on CLUSTER and Reddit Threads, which
comprise simple, interpretable structures. This exploration helps us evaluate the effectiveness of the proposed
relaxations, ideally leading our attacks to target semantically meaningful structures within the dataset. We
address (B) through evaluations on UPFD. Here, we constrain our attack to remain within the predefined tree
structure of the dataset. As a result, the attack represents impersonating an existing user who is retweeting
the respective news article. This evaluation goes beyond previous robustness analyses of citation networks in
GNNs (Ziigner et al., 2018; Geisler et al.l |2021)), offering a more practical use case and semantically meaningful
attacks (Hu et al., |2024; [Wang et al.l 2023b]). We quantify and measure the semantic unnoticability of our
attacks on the UPFD datasets in §[C.6]

CLUSTER. Across all models, our adaptive attacks result in the strongest perturbations except for the
smallest budgets, as shown in Fig. [8] The effectiveness of the random perturbation baseline indicates an
inherent fragility of the data. Intuitively, since only a single node in each cluster is labeled, attacking these
labeled nodes requires little budget and leads to strong attacks. We manually inspected the adaptive attack
perturbations and confirmed that most edge modifications are connected to the labeled nodes. The strength
of the transfer attacks also indicates that the straightforward nature of the task leads to the same type of
semantically meaningful model-independent perturbations. This outcome positively indicates the effectiveness
of our adaptive attacks (A), as they consistently identify meaningful perturbations across all GTs. To avoid
the natural fragility in the data, we also evaluate a constrained attack that prohibits modifying edges to
the labeled nodes, for which results are shown in §[C.1] In §[C.7 we evaluate and show the efficacy of our
adaptive attacks in a local attack setting. The worst-case perturbation results for all models, including GAT

10

Published in Transactions on Machine Learning Research (09/2025)

random perturbation -+ random attack -‘- GCN PRBCD transfer +-®:+ adaptive PRBCD (ours)

80 e 80 Je e X~] 80 It min | 80 Jgkery x| 50 Jaek el

60 4 ‘&:\" 60 4 gt\ A 60 4 “‘:\\.‘ 60 “-r \‘\~ 60 4 i.":
i oL 40 4 LS ~ ; 40 4 Tl + 40 4 "’-Q"

20 4 gl 204 =4 201 b TP ». 20 4

40 4

Accuracy (%)

B
L
L J

-
4

-
v

0= T T t T T 0= T T T
0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)

(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (e) GCN.
Figure 4: Structure (evasion) attack results for Reddit Threads (graph classification).

random perturbation #r+- random attack + GCN PRBCD transfer @+ adaptive PRBCD (ours)
wu«N 1ou~§ﬂ.4 b 100«&.0..;‘_§ e 1ocr~:~“:1 e]] 3 100~“‘.1 e 1
— 804 ‘~;,‘ 8044 809 il B oL TRE 80 43k e 80 188 sod e
S £ ~3e ” ~4 : N ! ok
T 6o 16k . 1a % 1 1% s30T 1 1
Z 60 9% o | 60 18y 60 . 60 17 =4 = 60 60
AT G B | I ~3
§irey SN ¢ °I % 1 v Te
20 20 L R & T 20 o 20 1 207
»..... Ot
ol e YNRSRGY ol | | 0 | 1 0 e i] 0+ T T 04+ T T
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)
(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (e) Polynormer. (f) GCN.

Figure 5: Node injection (evasion) attack results for UPFD gossipcop (graph classification).

and GATv2 (Brody et all |2022), are shown in Fig. For these smaller budgets, the GTs are consistently
more robust than the MPNNs, though their clean accuracies are also higher.

Reddit Threads. Fig. [f] shows that our adaptive attacks are significantly stronger than the baselines.
SAN is the exception, where the adaptive attack is worse than transferring from GCN. This could be due
to the perturbation approximation adding noise to the gradient updates, or because it results in a harder
optimization function. For most models, the adversarial accuracy drops close to zero when up to 80% of the
edges can be modified. This is likely because there are no node features and the prediction relies only on
the graph structure. Interestingly, the random attacks never seem to work well, indicating that the gradient
information provided by our relaxations is extremely helpful for finding good perturbations. Fig. [Ib]shows
a comparison of the models’ robustness for small budgets. While there are differences in robustness, all
models follow a similar trend. Note that for this dataset we were unable to train a comparable Polynormer
model. We hypothesize that this is related to Reddit Threads having no node features. While the other GTs
explicitly include graph structure information through positional encodings, these are missing in Polynormer,
which only implicitly considers graph structure through the sparse attention matrix obtained by employing a
GAT. This may be insufficent graph inductive bias, if node features have no discriminative information.

UPFD. As shown in Fig. [5] for the gossipcop dataset, our adaptive attacks are significantly stronger than
the baselines in most cases, providing the best estimates of the models’ robustness. This highlights the
efficacy and importance of our gradient-based adaptive attacks also for the node injection setting. In contrast
to the results observed for the previous datasets, there are much more differences between models. Fig. [T]
provides a direct model comparison of the worst-case perturbations for smaller budgets. It shows that the
GCN model can exhibit considerably higher robustness than some GTs. The SAN model is the exception, as
it is surprisingly robust for both UPFD datasets. These results reveal that GTs can showcase catastrophic
vulnerabilities to adversarial modifications of the graph structure, even when these changes are constrained
to meaningful perturbations. Results for the politifact dataset are shown in §[C.2]

Transferability. For each of the five GT models, we collect the adversarial examples generated from our
adaptive attack, and transfer them to the other GT models. In Fig. [6] we compare the strongest such transfer
attack (best transfer) with the GCN transfer and adaptive attacks on UPFD gossipcop. The results show
that our GT attack perturbations transfer better than from GCN. This may be because the GT models
are more similar to each other than to a GCN. In some cases, best transfer is the overall strongest attack.

11

Published in Transactions on Machine Learning Research (09/2025)

-.- GCN transfer best transfer +®-+ adaptive
100 gy 100 § 100 <&Q.__‘~ 100 Ty 100 § Py 100 Jmg
50 4 | ".’\ 80 «‘ 80— & Thas 0% 80 «Q %S, 80 by
s e | OIS i e A\ \
= 6043 g 60 1& “ 60 4 ‘ol 60 1 %% e 60 4 ExwER 60 4
3 40 a L sn i~ e of [UONE 0 o] o 4 [. 8.
g w01 e w04 e 1043 10 4 * 40 Wl I
= ", 5 LY 3aes | "
20 20§ : ®gl 204 209 % 20 H— T o 201
... % R IDE -
oh et oy : ok : ook e ¥ ook : ook : :
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)
(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (e) Polynormer. (f) GCN.

Figure 6: Transfer attack results (node injection, evasion) for UPFD gossipcop (graph classification).

100

e -4 normal
80 4 804w hd -’- v. b \
A ¢ \ 80 4 \ ady, 80 4 'l
[\ [adv. b
< 60 LY & 0] X b K
5 \ . % - normal 0] \ adv. b w00
i) ! I} Y 1
3 ('Y g \ adv. b=15%, k=4 g \ ,(K
£ N £ \
= 404 < = 404 A dv. b=15%, k=6
g < g Y v b15%, k=6 \’ 40 T ey % normal
< ¥ < Rt N \\ % adv. b=5%, k=4
] 20 1 ~
20 Ny 20 E T it “ 20 4 > adv. b=10%, k=4
| ot S ‘Q.-______’ adv. b=15%, k=1
0= T T T T + 04+ T T T T T 04 T T T T T 04 T T U
0 20 40 60 80 100 0 20 40 60 80 20 40 80 100 0 20 40 60 100

100 0 60 80

Edge modification budget (%) Edge modification budget (%) Edge modification budget (%) Edge modification budget (%)

(a) GCN, pol. (b) Graphormer, pol. (c) GCN, gos.

Figure 7: Node injection attack results for normally (red lines) and adversarially trained (orange, green, &
yellow lines) GCN and Graphormer on UPFD politifact (pol) and gossipcop (gos) (graph classification).

(d) Graphormer, gos.

However, note that choosing the best from up to eight (adaptively generated) attacks can be considered an
ensemble with high computational cost. However, best transfer can be used as a “unit test” before laboriously
designing adaptive attacks for a new GT architecture. Results of best transfer for other datasets and all
individual transfer results across different GTs are available in § [C:3] & § [C.4] respectively.

7 Adversarial Training

We base our Adversarial Training (AT) implementation on the “Free” adversarial training of
(2019). The main idea is to couple the attack and training optimizations by replaying the same mini-batch
k times. In each replay, both the attack perturbation and the model weights are updated. This approach
allows us to apply stronger perturbations through multi-step optimization, while avoiding the overhead of
only performing a single training update for every k attack steps. In § [D] we provide the pseudocode and
details our modifications to free AT, to make it applicable to our setting.

We explore adversarial training for Graphormer, one of the least robust models in our attack evaluation,
and compare it to adversarially training a GCN as a baseline in a node injection attack scenario on the
UPFD politifact dataset in Figs.[7a] & [7TD] Fig.[7a] shows that a GCN struggles to benefit from adversarial
training, while Fig. [Th] demonstrates that AT significantly improves Graphormer’s robustness, surpassing the
adversarially trained GCN by a large margin. We find that these results are consistent across datasets with
similar results on gossipcop in Figs. [T & [Td] These findings show that the increased flexibility and capacity
of graph transformers can offer significant advantages in learning robust models via adversarial training,
even when the standard (non-adversarially trained) versions of these models are highly vulnerable, as we
establish in §[6] These results complement and support the findings of [Gosch et al] (2023a)), who attribute
the limited success of AT for traditional message-passing GNNs to the lack of their flexibility in adjusting
their message-passing to adversarial examples. While |Gosch et al.| (2023al) establish that the capability of
AT as a defense to structure perturbations can be significantly improved by making message-passing GNNs
more flexible by making the graph filter in a graph convolution learnable, we show that breaking the static
message passing by being able to learn to attend to nodes has a similar effect and is a key enabler for effective
adversarial training.

12

Published in Transactions on Machine Learning Research (09/2025)

8 Related Work

Triggered by the seminal works of [Ziigner et al.| (2018); Dai et al.| (2018]), a research area emerged spanning
attacks, defenses, and certification of message-passing GNNs (Jin et al. {2021} |Giinnemann, 2022; |Guerranti
et al., 2023; (Gosch et all [2023b} [Sabanayagam et al., 2025). However, GTs have been entirely neglected
despite being a very active field of research with demonstrated success on common benchmarks (Miller et al.,
2024). |Zhu et al| (2024) is the sole exception acknowledging this gap. However, they propose their own
transformer-inspired defense component and evaluate it using transfer poisoning attacks. Thus, they do not
shine light on the robustness of the diverse set of GTs nor do they study adaptive attacks. Mujkanovic et al.
(2022)) shows that adaptive attacks are crucial to correctly evaluate the robustness of GNNs. This follows
similar results from the vision domain (Tramer et al., |2020; |Carlini & Wagner, 2017} |Athalye et al., 2018]).

Next to adaptive-attack works, our attack is rooted in the GNN robustness literature. | Xu et al.| (2019) proposes
the first Projected Gradient Descent (PGD) attack for discrete Ly perturbations of the graph structure, with
a focus on message-passing architectures. |Geisler et al.| (2021]) extend this PGD with a randomization scheme
to obtain the efficient (gradient-based) Projected Randomized Block Coordinate Descent (PRBCD) attack.
Gosch et al.| (2023al) extend PRBCD with local constraints to allow for semantically more meaningful attacks,
which is conceptually related to our semantically meaningful node injection attack. Further important related
works are |Lin et al.| (2022)); Zhu et al.| (2018); |Bojchevski & Giinnemann| (2019), where the authors study
similar approximations for perturbations on the eigen-decomposition of the graph Laplacian. Moreover, |Wang
et al| (2023a)) attack message-passing architectures on the UPFD fake news detection using reinforcement
learning. As an entry to Node Insertion Attacks (NIA), we refer to Wang et al.| (2020); Zou et al.| (2021)).

9 Conclusion

We provide the first principled study into the adversarial robustness of graph transformers. Concretely, we
provide effective and general guiding principles for designing adaptive attacks for GTs. Consequently, we
study five representative graph transformers which use three of the most commonly used positional encodings:
random-walk-based, distance-based, and spectral PEs; as well as common sparse-attention mechanisms. Thus,
our developed continuous relaxations for these GT components can find broad application to other GT models.
Furthermore, our study demonstrates that GTs can be catastrophically fragile in many settings and more
robust in others. This diverse picture underlines the importance and need for adaptive attacks to reveal such
nuanced robustness properties. While the comparison of GT’s and traditional GNN’s robustness w.r.t. the
studied attacks does not allow for a conclusion about which architecture is superior in terms of robustness
when applying normal training, our adaptive attacks allow to uncover a strong difference in their robust
learning capabilities. Concretely, we show how to leverage our adaptive attacks for adversarial training with
GTs and that doing so, due to the flexibility of GTs, they have the potential to significantly outperform static
message-passing GNNs in their robust learning performance, alleviating one of the key limitations of classic
GNNs. One interesting direction for future work could be to study the optimality of relaxations, and how to
define, measure, and prove this property.

Broader Impact Statement

While the threat model of attacking fake news detection could have a negative societal impact, our methods
are applicable mostly in a white-box setting and, therefore, are much more useful to those who are developing
fake news detection to probe and improve the robustness of their models. If a model developer has access to
the right tools, we are convinced that the information advantage outweighs the potential negative effects.

Acknowledgements

This paper has been supported by the DAAD programme Konrad Zuse Schools of Excellence in Artificial
Intelligence, sponsored by the German Federal Ministry of Education and Research and by the German
Research Foundation, grant GU 1409/4-1. Leo Schwinn gratefully acknowledges funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - project number 544579844.

13

Published in Transactions on Machine Learning Research (09/2025)

References

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In Proceedings of the 35th International Conference on
Machine Learning, 2018.

Bassam Bamieh. A tutorial on matrix perturbation theory (using compact matrix notation). arXiv preprint
arXiw:22002.05001, 2022.

Aleksandar Bojchevski and Stephan Giinnemann. Adversarial attacks on node embeddings via graph poisoning.
In Proceedings of the 36th International Conference on Machine Learning, pp. 695-704, 2019.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint arXiv:1711.07553, 2018.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In International
Conference on Learning Representations, 2022.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In Proceedings -
IEEE Symposium on Security and Privacy, pp. 39-57, 2017.

Yongqgiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, and James Cheng.
Understanding and improving graph injection attack by promoting unnoticeability. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=wkMG8cdvh7-.

Thomas H. Cormen, Chalres E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 2009.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph
structured data. In Proceedings of the 35th International Conference on Machine Learning, 2018.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer in linear
time. In The Twelfth International Conference on Learning Representations, 2024.

Yingtong Dou, Kai Shu, Congying Xia, Philip S. Yu, and Lichao Sun. User preference-aware fake news
detection. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 2051-2055, 2021.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24(43):1-48, 2023.

Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Ziigner, Aleksandar Bojchevski, and Stephan Giinnemann.
Robustness of graph neural networks at scale. In Proceedings of the 35th International Conference on
Neural Information Processing Systems, 2021.

Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Ziigner, and Stephan Giinnemann.
Adversarial training for graph neural networks: Pitfalls, solutions, and new directions. In Thirty-seventh
Conference on Neural Information Processing Systems (NeurIPS), 2023a.

Lukas Gosch, Daniel Sturm, Simon Geisler, and Stephan Glinnemann. Revisiting robustness in graph machine
learning. In International Conference on Learning Representations (ICLR), 2023b.

Filippo Guerranti, Zinuo Yi, Anna Starovoit, Rafiq Kamel, Simon Geisler, and Stephan Giinnemann. On the
adversarial robustness of graph contrastive learning methods. In NeurIPS Workshop on Graph Learning
Frontiers, 12 2023.

Stephan Giinnemann. Graph Neural Networks: Adversarial Robustness, pp. 149-176. Springer, Singapore,
2022. ISBN 9789811660542.

Bo Hu, Zhendong Mao, and Yongdong Zhang. An overview of fake news detection: From a new perspective.
Fundamental Research, 2024. ISSN 2667-3258.

14

https://openreview.net/forum?id=wkMG8cdvh7-

Published in Transactions on Machine Learning Research (09/2025)

Wei Jin, Yaxin Li, Han Xu, Yigi Wang, Shuiwang Ji, Charu Aggarwal, and Jiliang Tang. Adversarial attacks
and defenses on graphs: A review, a tool and empirical studies. SIGKDD Explor. Newsl., 22:19-34, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. In Proceedings of the 35th International Conference
on Neural Information Processing Systems, 2021.

Lu Lin, Ethan Blaser, and Hongning Wang. Graph structural attack by perturbing spectral distance. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
989-998, 8 2022.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip Torr,
and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In Proceedings of the
40th International Conference on Machine Learning, pp. 23321-23337, 2023.

Felix Mujkanovic, Simon Geisler, Stephan Giinnemann, and Aleksandar Bojchevski. Are defenses for graph
neural networks robust? In Proceedings of the 36th International Conference on Neural Information
Processing Systems, 2022.

Luis Miller, Mikhail Galkin, Christopher Morris, and Ladislav Rampéasek. Attending to graph transformers.
Transactions on Machine Learning Research, 2 2024.

Ladislav Rampaések, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, 2022.

Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: An API Oriented Open-source Python
Framework for Unsupervised Learning on Graphs. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM ’20), pp. 3125-3132. ACM, 2020.

Mahalakshmi Sabanayagam, Lukas Gosch, Stephan Ginnemann, and Debarghya Ghoshdastidar. Exact
certification of (graph) neural networks against label poisoning. In The Thirteenth International Conference
on Learning Representations, 2025.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

G. W. Stewart and Ji-guang Sun. Matriz Perturbation Theory. Academic Press, USA, 1990. ISBN
9780126702309.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to adversarial
example defenses. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, f.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 6000-6010, 2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

Haoran Wang, Yingtong Dou, Canyu Chen, Lichao Sun, Philip S. Yu, and Kai Shu. Attacking fake news
detectors via manipulating news social engagement. In ACM Web Conference - Proceedings of the World
Wide Web Conference, WWW, pp. 3978-3986, 2023a.

15

Published in Transactions on Machine Learning Research (09/2025)

Haoran Wang, Yingtong Dou, Canyu Chen, Lichao Sun, Philip S. Yu, and Kai Shu. Attacking fake news
detectors via manipulating news social engagement. In ACM Web Conference (WWW), 2023b.

Jihong Wang, Minnan Luo, Fnu Suya, Jundong Li, Zijiang Yang, and Qinghua Zheng. Scalable attack on
graph data by injecting vicious nodes. Data Min. Knowl. Discov., 34(5):1363-1389, 9 2020.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin. Topology
attack and defense for graph neural networks: An optimization perspective. In IJCAI’'19: Proceedings of
the 28th International Joint Conference on Artificial Intelligence, pp. 3961-3967, 6 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform bad for graph representation? In Proceedings of the 35th International
Conference on Neural Information Processing Systems, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander
Smola. Deep sets. In Advances in Neural Information Processing Systems, NeurIPS, 2017.

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. High-order proximity preserved embedding
for dynamic networks. IEEE Transactions on Knowledge and Data Engineering, 30:2134-2144, 11 2018.

Yonghua Zhu, Jincheng Huang, Yang Chen, Robert Amor, and Michael Witbrock. A graph transformer
defence against graph perturbation by a flexible-pass filter. Information Fusion, 107, 7 2024.

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang. TDGIA:
Effective injection attacks on graph neural networks. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 2461-2471, 2021.

Daniel Ziigner and Stephan Ginnemann. Adversarial attacks on graph neural networks via meta learning. In
International Conference on Learning Representations, 2019.

Daniel Ziigner and Stephan Giinnemann. Certifiable robustness of graph convolutional networks under
structure perturbations. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1656-1665, 8 2020.

Daniel Ziigner, Amir Akbarnejad, and Stephan Giinnemann. Adversarial attacks on neural networks for
graph data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 28472856, 7 2018.

16

Published in Transactions on Machine Learning Research (09/2025)

A Node Injection Attack Details

Let D = {Gy,...,Gn} be the dataset of all graphs, where each graph G; = (V;,&;) has n; nodes V; =
{vi1,...,Vin, } and a corresponding node feature matrix X; € R™*e The total number of nodes in the
dataset is np = > n;. Let G be the graph that is being attacked. We define the candidate set of injection
nodes as the union of the nodes of all other graphs: V., = UgiED\gatk V;, which contains n.s = np — ngsk
nodes with the corresponding features X ;. It is of course possible to restrict this candidate set if it is not
sensible or feasible to include all nodes.

We can augment the original (connected) graph Gui = (Aqtk, Xatk) by adding the injection candidate set as
isolated nodes:

Xatk

XCS

N ~ 5 A A, 0 npxn %
gatk = (Aatkaxatk)a Aatk = |: Otk 0:| S {071} P Da Xatk = |:

} € Rnoxd (24)

Edge-flip perturbations to this augmented adjacency matrix, A = A—I—(SA, model both structure perturbations
and node injections together. As in Eq. [2 | the perturbation J A can be expressed in terms of a binary edge
flip matrix: A = A + (1,17 — 24) © B, where:

B — |:E.BT E:| e {0 1}7LD><7L’D (25)

Note that the edge flip budget A is also an upper bound for the number of nodes that can be injected:
0 < n;j, < A. Since the attack budget is usually much smaller than the size of the candidate set, i.e. A < neg,
the perturbed augmented graph G = (A, X) still mostly contains isolated nodes. Therefore, we prune away all
disconnected components, which for the unperturbed graph simply reverts the augmentation: prune(g) =g.
However, for a perturbed augmented graph, this results in the perturbed graph that we are seeking:

G =prune(4, X) = (A, X), Ae{0,1}"" X eR" (26)

Here, n;, is the number of injected nodes, and 7 = n + n;, is the total number of nodes of the perturbed
graph. The NIA objective can thus be written as:

A

 max Lae(fo(G)), with G = prune(A + (1,17 —24)® B, X) (27)
B s.t. ||Bllo<A

where, fy is the trained GNN and L, is a suitable attack loss.

Edge block sampling. To optimize the objective, we can apply the relaxation B € [0,1], as shown in

. In this case, PRBCD (Geisler et all [2021)) not only enables more efficient optumzatlon but setting a
smaller block size is crucial to limit the number of connected injection nodes during optimization, since GTs
complexity scales with O(7?). Moreover, random block edge sampling allows us to control which parts of B
in Eq. [25| can be changed, e.g. not sampling in B results in pure node injections without modifying edges in
the original graph. For NIAs with large candidate sets, we only sample from E, as sampling from the n2,
entries of F' results in using most of the budget on disconnected injection node pairs that are later pruned
away.

A.1 Node Probability Example

We provide an illustrative example in Fig. [§ of how the iterative node probability is applied. Each iteration
of Eq. 23] can be thought of as a message passing step to update the node probability approximation based
on the neighbors current approximations:

pgt-‘:—l) -1 — H (1 _ A/j pgt))7 with pEO) -1
vi €N \{vi}

The number of iterations should be set in the order of expected longest chain of added injection nodes.
Therefore, very few iterations (2-5) should suffice for most NTAs.

17

Published in Transactions on Machine Learning Research (09/2025)

0.1 0518F 3 0.028
(c) After 1°¢ iteration. (d) After 2"? iteration.

Figure 8: Node probability example. Dashed lines indicate injection nodes.

B Dataset Details

The inductive node classification dataset CLUSTER (Dwivedi et al., |2023) has 12000 graphs with an average
of 117.2 nodes. We used the standard PyG train/val/test split of 83.3/8.3/8.3% graphs. The binary graph
classification dataset Reddit Threads (Rozemberczki et al., 2020]) contains 203 088 graphs with an average
of 23.9 nodes. We used a stratified random split of 75/12.5/12.5%. The binary graph classification dataset
UPFD gossipcop (Dou et all 2021)) contains 5464 graphs with an average of 58 nodes. We use the standard
PyG split of 20/10/70%. The binary graph classification dataset UPFD politifact (Dou et al., [2021) contains
314 graphs with an average of 131 nodes. We use the standard PyG split of 20/10/70%.

C Additional Attack Results

C.1 CLUSTER Constrained Attack

Fig. [9] shows the attack results for the CLUSTER dataset when constraining edge perturbations such that

edges to the labeled nodes cannot be flipped. As expected, this significantly reduces the attack strength
compared to the unconstrained setting shown in Fig. [3]

random perturbation e random attack "- GCN PRBCD transfer @ adaptive PRBCD (ours)
80 A 80 s 80 4 i 80 4 - 80 A
0 T £ X =
< 60 *.'—% * 60 4% % * 60 | &% ¥ 60 ‘ ~ 60 1 % *
o &%), . ok W * N o " <
401§ % 1044 e 40 .& % 10 1§ 1 w078 " *
z W, 4 e, »] 4 » Yo '
- e.. t N, Y y "
< 20 *Q- -3-"'*:.'.:' 20 ’*Q—'l'-Q--..-,T_.-_:: 20 4 “0.— =g 207 ‘:‘- -4-----% 204 .“-_.-.-Q- vy 20 l.‘
O }/ I IR = D P4 "o, ® O, °
0= T T 0= T T 0= T T 0= T T 0= T T 0= T T
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)
(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (e) Polynormer. (f) GCN.

Figure 9: CLUSTER constrained attack results.

18

Published in Transactions on Machine Learning Research (09/2025)

C.2 UPFD Politifact Node Injection Attack

Fig. [10] shows the attack results for the UPFD politifact dataset. The results are similar to the ones from the
UPFD gossipcop dataset discussed in §[6] and shown in Fig.

=% random perturbation ofe=: random attack + GCN PRBCD transfer @ adaptive PRBCD (ours)

>
] EIC 1Mt IR] e nakaNRNRAN]] Y] PHET I BRFARSEON- 3
K o] o] o ' - ofgt3 1
% 60 3 60 "»Q. W 60 .‘."::7-'-7-::,‘ 60 - 6048
g o e L)
2 40 40 BT 40 40 4 40
< 4 . .
20 1 e 20 4 "~.... 20 4 20 4 20 A 20 4 T,
2 T e B O <
0 T 0+t T T 0= T T 0+t T T 0+ T T 0+t T T
100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)
(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (e) Polynormer. (f) GCN.

Figure 10: Node injection (evasion) attack results for UPFD politifact (graph classification).

C.3 Best Transfer Attacks

Here we provide the results for the best transfer results, analogous to Fig. [6] but for all additional datasets.

Results for CLUSTER are in Fig. for CLUSTER (constrained) in Fig. for Reddit Threads in Fig.
and for UPFD politifact in Fig. [T4]

-4~ GCN transfer =¥ best transfer @ adaptive

80 80 so-T 30-1 80 80
gSU l 60 | 60'L SO'l 6U'T GU'?
b F i 3 i ‘ l‘
g 40 18 40 10 14 40 40 4n-§
< 204 % v 20 1@ 0s- oo ch| 0T o 20 1 S abodot 2| 21 o - 20413
e (X% B SR S8 S "6"-;.:.%'..::-1-?3 '3*%- Er sl é"‘-ﬁ‘?lﬁ.:.’.:j:
B S P R A A M)
Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)
(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (e) Polynormer. (f) GCN.
Figure 11: Best transfer, CLUSTER (inductive node classification), structure attack (global, evasion).
-.- GCN transfer =¥ best transfer @ adaptive
80 80 so-, 80-1 80-’ 80
i *
;‘\?SU * 60 \ 60'* 50" 60 GU'*
=)
4% \ % :
Z 40 0.,. 40 k. 40 4 40 4 3 40 4 3 40 1@
< y e i | B \?;a-xw_ woog|] "‘*ss. =l P11 i "] Sty :f*a.
0 T . o0l T . o0dr T . o0dr T . 0L . . ol . .
0 20 0 0 20 40 0 20 10 0 20 40 0 20 10 0 20 40
Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)
(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (e) Polynormer. (f) GCN.

Figure 12: Best transfer, CLUSTER (inductive node classification), constrained structure attack (global,
evasion).

19

Published in Transactions on Machine Learning Research (09/2025)

Accuracy (%)

Edge mod. budget (%)

(a) Graphormer.

-.- GCN transfer =¥ best transfer @ adaptive
80 1§ 80 14 80
’ % \r
60 60 gt o..... 60 X T
'..\ M ;\ SEERacaT % :\ '
29, N KN SRS
40 EVAREC Y 40 X ~ 40 1
£ .38 ~ho S S
o~ S “x T
20 4 S . 4 20 R 20 4
it e o
s N -
0 T T T 0= T T T 0 - T T T
0 25 50 75 0 25 50 75 0 25 50 75

Edge mod. budget (%)

(b) GRIT.

Edge mod. budget (%)

(c) SAN.

Edge mod. budget (%)

(d) GPS.

0 25
Edge mod. budget (%)

50 75

(e) GCN.

Figure 13: Best transfer, Reddit Threads (graph classification), structure attack (evasion).

4= GCN transfer

=¥ best transfer

adaptive

80 4 80 4 ‘ R 8U'T 80 A 80 o
g {ley LS %
= % !\\ 60 1 60 4 -3 _t s 60 60 f* 60 11— &
Z; 2 NN @Taan '_* .\“ “‘-~_..‘ \‘
g JERAX el -,
] 3 \’C; - 101 10] 10 §--og 104 Sl 10 %y
g LS ¢ 1 s
: i T 20 . 20 20 20 20] & RE S
............ * TR
® g G-~--..T.:~‘
T H ok T = ok T o ot T H ok T H ok T T
50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)

(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (f) GCN.

Figure 14: Best transfer, UPFD politifact (graph classification), node injection attack (evasion).

(e) Polynormer.

C.4 All Transfer Results

Here we provide the detailed attack results including the individual transfer models. Results for Graphormer
are in Fig. for GRIT in Fig. for SAN in Fig. for GPS in Fig. for Polynormer in Fig. [19] and for

GCN in Fig. The results highlight that depending on the dataset, some GT models (e.g., Graphormer
and GRIT) transfer well, while other don’t (e.g., GPS to Graphormer).

]
Edge

(a) CLUSTER (b) CLUSTER con. (c) Reddit Threads (d) UPFD pol.

Figure 15: Graphormer attack results with all transfer models shown.

20

Published in Transactions on Machine Learning Research (09/2025)

Accuracy (%)

W 50 o 0 0])

o 2) o 0 B] 0
Edge modification budget (%) Edge modification budget (%) Edge modification budget (%)

2 Q0 0 0
Edge modification budget (%)

(a) CLUSTER (b) CLUSTER con. (c) Reddit Threads (d) UPFD pol. (e) UPFD gos.
Figure 16: GRIT attack results with all transfer models shown.

2 i o w0
Edge modification budget (%)

] o By B
fi

0 o) @ 0 o @ W W @ W s 0
Edge modification budget. (%)

0 » B @0 » 1 w w0 10 0
Edge modification budget (%) Edge modification budget. (%) Edge modification budet (%)

10

2 I w0 0
Edge modification budget (%)

(a) CLUSTER (b) CLUSTER con. (c) Reddit Threads (d) UPFD pol. (e) UPFD gos.
Figure 17: SAN attack results with all transfer models shown.

o o 20 M 0 EY o w0 0 5 0 B] o 2 0
Edge modification budget (%) Edge modification budget (%) Edge modification budget (%) Edge modification budget (%)

(a) CLUSTER (b) CLUSTER con. (c) Reddit Threads (d) UPFD pol. (e) UPFD gos.
Figure 18: GPS attack results with all transfer models shown.

s i o s 10

0
Edge modification budget (%)

] o Y 0 Q0 5 I 10 2 3 W]

B x o » 0 0 0 100 o x s 100
Edge modification budget (%) Edge modification budget (%)

0 0
Edge modification budget (%) Edge modification budget (%)

(a) CLUSTER (b) CLUSTER con. (c) UPFD pol. (d) UPFD gos.

Figure 19: Polynormer attack results with all transfer models shown.

3 0 EY o 0 ™ B o 0) 0 B W W o 100 0 2 @ w0
Edge modification budget (%) Edge modification budget (%) Edge modification budget. (%) Edge modification budet (%)

o 10
Edge modification budget (%)

(a) CLUSTER (b) CLUSTER con. (c) Reddit Threads (d) UPFD pol. (e) UPFD gos.
Figure 20: GCN attack results with all transfer models shown.

21

Published in Transactions on Machine Learning Research (09/2025)

C.5 Ablations

We enable each of the continuous relaxations individually and together in different combinations. We report
the results for Graphormer in Tab. [I} The node probability relaxation only applies to the node injection
attacks on UPFD. The main insights from the results are: (a) All continuous relaxations individually seem to
give somewhat useful gradients and can be used to get better results than the gradient-free random baseline.
(b) For node injection attacks, using only the node probabilities in the graph pooling and to bias the attention
scores is usually sufficient and leads to some of the strongest attack results. (c) Some relaxations are more
effective than others, and using multiple does not seem to always work better than only one. However, one
is not consistently better than the other. A good approach might be to try the relaxations individually, to
find which are most relevant. Similar effects have been reported by |Tramer et al.| (2020)) (Recurring Attack
Theme T2). We also show ablations for GRIT and SAN components in Tab. [2{and Tab. 3| respectively, from
which we can draw the similar conclusions.

We also check the attack strength for GRIT when enabling or disabling gradient computation through certain
parts of the model and show the results in Tab. [2| It is possible to get strong attacks even without computing
gradients through RRWP, which could be much more efficient computationally, depending on the model and
graph size. For node injection attacks, as for the other models, using only the node probability bias in the
attention scores already leads to the strongest attacks we report.

Ablation on different attack components on SAN are presented in Tab. |3] The colomn ‘Eig. backp. refers
to the alternative method of obtaining gradients through the eigen-decomposition discussed in § [F.2] The
results indicate that both methods seem to work equally well.

Table 1: Ablations for the Graphormer relaxations for a fixed budget of 1% for CLUSTER. without and
with perturbation constraints (c.), and 10% for UPFD politifact (pol.) and gossipcop (gos.). The mean and
standard deviation over 4 runs with different seeds are reported.

Deg. SPD Acc. (%) NO(:)G Acc. (%)
CLUSTER CLUSTER c. prob. UPFD pol. UPFD gos.
v v 52.61 + 0.57 60.00 + 0.42 v 67.0£2.0 38.0 £ 0.0
v 46.78 +0.46 68.45 £ 0.37 v 67.0+£2.0 38.0 £ 0.0
v 50.81 + 0.41 60.66 = 0.21 v 66.5 + 1.9 39.5+1.9
v 66.5 +1.9 385+1.0
v v 80.5 + 3.4 53.5+1.0
random 66.52 + 0.61 70.29 + 0.32 85.0 £ 2.6 61.5+4.1
clean 77.89 77.89 92.0 98.0

Table 2: Ablations for the GRIT relaxations for a fixed budget of 1% for CLUSTER without and with
perturbation constraints (c.), and 10% for UPFD politifact (pol.) and gossipcop (gos.). The mean and
standard deviation over 4 runs with different seeds are reported.

PE Deg. Acc. (%) Node Ace. (%)

grad. grad. CLUSTER CLUSTERc. Prob: UPFD pol. UPFD gos.
v v 44.07 £0.79 65.25 + 0.22 v 34.5+ 1.0 75.0 £ 2.6
v 46.27 £ 0.36 65.70 £ 0.35 v 34.5 £ 1.0 745425
v 49.51 + 0.90 66.49 + 0.49 v 34.5 £ 1.0 73.5+ 1.0
v 34.5+ 1.0 73.5+ 1.0
v v 545+ 1.9 83.0 % 2.0
random 69.13 + 0.10 72.25 £ 0.29 76.0 + 4.3 82.0 0.0

clean 78.98 78.98 98.0 84.0

22

Published in Transactions on Machine Learning Research (09/2025)

Table 3: Ablations for the SAN relaxations for a fixed budget of 1% for CLUSTER without and with
perturbation constraints (c.), and 10% for UPFD politifact (pol.) and gossipcop (gos.). The mean and
standard deviation over 4 runs with different seeds are reported.

nt Lap. Fig. Acc. (%) Node Acc. (%)
- pert. backp. CLUSTER CLUSTER c. prob. UPFD pol. UPFD gos.
v v 54.0 £ 0.6 63.3+0.3 v 83.5£1.0 91.5+4.1
v v 54.44+0.6 62.9 +0.2 v 82.0+2.3 94.0+ 3.0
v 53.9£0.3 63.24+0.1 v 77.5£1.0 91.5£25
v 57.1+0.6 67.24+0.2 v 83.5+1.0 89.5+1.9
v 55.1+1.0 67.3£0.3 v 81.0£1.2 89.5+3.4
v 7T7T.0+£1.2 89.5+ 3.4
v v 86.0 £0.0 90.1 £6.0
v v 86.0 2.3 91.0+5.3
random 65.7+£0.7 68.9+0.3 86.0 £ 0.0 87.5+1.0
clean 76.1 76.1 86.0 98.0

C.6 Unnoticability Results

Here we report the node-centric homophily results as mentioned by |[Chen et al. (2022) as a semantic
unnoticability criteria for node injection attacks. Following |(Chen et al.| (2022), we use the following node
centric homophily measure h,, for a node u:

ha (28)

ry - Xy 1
="t _ = — X
[rell2ll Xull2 Z)\/dj\/du !

JEN (u

where X, is the feature vector of node u. As we work with graph classification datasets, we compute h,, for
every node in every training graph and of the first 50 test graphs. Figure [21} and Figure [22| show the results
for the UPFD gossipcop dataset with an adversarial budget of 5% and 25%, respectively. They highlight
that there is no significant homophily change towards lower homophily values w.r.t. the unperturbed test
graphs or the original training graphs and thus, establishes that our attacks are unnoticable w.r.t. the metric
proposed by (Chen et al.| (2022)). This does not come as a big surprise, because in our node injection attack,
we do not treat the node features as part of the optimization problem and only allow connections to nodes in
other graphs (for our dataset these are other real users), which potentially more resembles a classic graph
modification attack regarding homophily changes (Chen et al., |2022). For Polynormer, one can observe a
slight reduction in the highest homophily values for a stronger attack, interestingly, for the other models,
we find that higher attack budgets increase the overall measured homophily. We think that a potential
explanation lies in the already highly homophilic data. Adding more edges though higher attack budgets
leads to even more averaging of already highly homophilic data. This also indicates that the actual predictive
feature difference in the dataset as used by the GTs is not capturable by node-centric homophily.

Figure 21 and Figure 22] show similar results for the UPFD politifact dataset with an adversarial budget of
5% and 25%, respectively. Here, we observe the same patterns of no big changes to the homophily. However,
the highest homophilic measurements actually slightly decrease as the attack strength increases, whereas
close to highest homophilic measurements increase.

Lastly, we want to note that no perturbed test-graph has a lower homophily score than found in the training
graphs and thus, the trivial defense against node injection attacks proposed by |Chen et al.| (2022)) based on
cutting away all nodes with lower homohpily scores than found in the training data won’t be effective.

23

Published in Transactions on Machine Learning Research (09/2025)

25{ mm Training Graphs

251 mm Training Graphs 25 25
M Test Graphs (unperturbed) B Training Graphs B Training Graphs B Training Graphs
20| = Test Graphs (perturbed) B Test Graphs (unperturbed) B Test Graphs (unperturbed) B Test Graphs (unperturbed) B Test Graphs (unperturbed)
201 m= Test Graphs (perturbed) 20| m Test Graphs (perturbed) 201 e Test Graphs (perturbed) 20{ W Test Graphs (perturbed)
>
2 > > >
G 215 215 215 215
2] 7} @]
g : g £ ¢
o1 Q10 Q1o 010 Q10
s 5 5 5 5
ol ol) ol ol
070 075 080 085 090 095 100 070 075 0.0 085 090 095 100 070 075 080 085 090 095 100 070 075 080 085 090 095 100 070 075 080 085 090 095 100
Hamanhily/

Hamanhily Hamanhily Homanhily Hamanhily

(a) Graphormer (b) GRIT (c) SAN (d) GPS (e) Polynormer
Figure 21: Node-centric homophilies in the training set, unperturbed test set and perturbed test set for
€ = 0.05 in the UPFD gossipcop dataset.

25| MW Training Graphs

35{ EEE Training Graphs 25 25
M Test Graphs (unperturbed) == Training Graphs == Training Graphs == Training Graphs
30 B Test Graphs (unperturbed) W Test Graphs (unperturbed) B Test Graphs (unperturbed) BB Test Graphs (unperturbed)
I Test Graphs (perturbed)
20{ = Test Graphs (perturbed) 20| = Test Graphs (perturbed) 201 B Test Graphs (perturbed) 0] 9 Test Graphs (perturbed)
2z N N 2
=Rt Z g B
2 2 2 2
13 7 3] 15
=3t Q10 =Rt a,

ol
070 075 080 085 090 0.95 1.00
Homanhilv

"T070 075 080 085 0.0 085 100
Hamanhily

070 075 080 085 0.0 085 100
Homaonhily

ol 1
070 075 080 085 090 095 1.00 070 075 080 085 090 095 100
Homaonhily Hamanhily

(a) Graphormer (b) GRIT (c) SAN (d) GPS (e) Polynormer
Figure 22: Node-centric homophilies in the training set, unperturbed test set and perturbed test set for
€ = 0.25 in the UPFD gossipcop dataset.

== Training Graphs
801 mmm Test Graphs (unperturbed) a0] ™= Training Graphs 50| ™= Taining Graphs g0] ™= Training Graphs 0| ™= Training Graphs
W Test Graphs (unperturbed) . Test Graphs (unperturbed) W Test Graphs (unperturbed) W Test Graphs (unperturbed)
W Test Graphs (perturbed)
W Test Graphs (perturbed) o Test Graphs (perturbed) W Test Graphs (perturbed) I Test Graphs (perturbed)

7065 070 0.75 0.0 085 0.90 0.95 1.00
Hamanhily

0.65 0.70 0.75 080 0.85 0.90 0.95 1.00 0,65 0.70 0.75 080 085 0.90 0.95 1.00

7065 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0,85 0.70 0.75 080 085 0.90 0.95 1.00
Hamanhily Hamanhily

(a) Graphormer (b) GRIT (c) SAN (d) GPS (e) Polynormer
Figure 23: Node-centric homophilies in the training set, unperturbed test set and perturbed test set for
€ = 0.05 in the UPFD politifact dataset.

Homanhilv Hamanhily

W Training Graphs
e W Training Graphs W Training Graphs . Taining Graphs 0] ™= Taining Graphs
8 W Test Graphs (unperturbed)

[Test Graphs (perturbed)

BER Test Graphs (unperturbed)

B Test Graphs (unperturbed) 80
B Test Graphs (unperturbed) . Test Graphs (unperturbed)
[Test Graphs (perturbed)

- Test Graph: turbed)
fest Graphs (perturbed) = Test Graphs (perturbed) = Test Graphs (perturbed)

065 0.70 0.75 030 085 0.90 095 1.00 065 070 0.75 0.80 085 0.90 0.95 1.00
Hamanhily

o
0565 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Homonhily

7065 0.70 0.75 080 0.85 0.90 0.95 1.00 065 0.70 0.75 080 085 090 095 1.00
Hamanhilv Homanhily

(a) Graphormer (b) GRIT (c) SAN (d) GPS (e) Polynormer
Figure 24: Node-centric homophilies in the training set, unperturbed test set and perturbed test set for
€ = 0.25 in the UPFD politifact dataset.

nmanhily

24

Published in Transactions on Machine Learning Research (09/2025)

C.7 Local Attack Results

Figures [25] and [26] show the results of applying our adaptive attacks in a local attack setting for CLUSTER.
In Figure we use the constrained setting (see Section @ that prohibits modifying edges to the labeled
nodes, to increase the difficulty of the attack setting. The results highlight the efficacy of our adaptive
attacks, significantly outperforming the random-attack baseline. Importantly, our adaptive attacks show
similar strength w.r.t. the random baseline as PR-BCD does on GCN, which is known to be stronger then
Nettack (Geisler et al., [2021} |Ziigner et all |2018)) in the local attack setting.

To allow comparison with Nettack (Zugner et al.l |2018]), we explore another attack setting, as its threat model
definition does not allow to model the above constrained setting. In particular, Nettack defines a set of attack
nodes A and allows the deletion or addition of an edge (u,v) if either u € A, or v € A. Now, to compare
Nettack with our adaptive attacks, we set A to the 1-hop neighborhood A (u) of the given target node u, and
constrain our adaptive attacks to the same set of adversarial edge modifications. We say an attack budget
is small to moderate if it can perturb at most W edges and is large if it can perturb between W to
| N (u)| edges. Even stronger attacks have high risks of semantic violations (Gosch et al [2023b). On average
on the CLUSTER dataset, the attack budgets we consider of 0.2% and 0.5% correspond to small to moderate
budgets (4 and 10 perturbations), 0.9% and 1.4% to strong budgets (18 and 28 perturbations) and 2% to 40
perturbations. Figure [26] highlights that for small to moderate budgets, our adaptive attacks outperform
Nettack by large margins. This highlights the effectiveness of the gradient signal derived from our relaxations.
For large budgets, our adaptive attacks outperform Nettack for GRIT and GPS, while Nettack gets strong
results for SAN and Polynormer. Note here that the transferability between attacks on CLUSTER is in

general high (see Appendix [C.4)), which benefits transfer attacks like Nettack.

g o d: I] ? o d: I] ? ~@- ads I] o d: I] o d: I] - 12<|])m(
< 0s] sl €0 " €0 € s oot
7 1% ENERE %y g (M AL
£ os gk L | £ 06 TR £ 061y * ! £ 0.6 T et
IR EN IR I
£ 04 % £ 04 S04 v Soad S S pad g +
: “o., : bEC : B : ... g e
g 02 - £ 02 g 02 @ 02 Srus 02 S TTren
= = = e = = e
o0 s 1o o0 s 1o 2 PR R A PR R A PR R A o o
Edge mod. budget (% Edge mod. budget (% Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%
(a) Graphormer (b) GRIT (c) SAN (d) GPS (e) Polynormer (f) GCN

Figure 25: Local adaptive attacks on CLUSTER (constrained setting, see Section @) Edge modification
budgets are shown from 0% to 2%.

¢ random perturbation -+ random attack NETTACK -4~ GCN PRBCD transfer ~ -*® adaptive PRBCD (ours)
_ 80 - = * 80 1 80 4 * me i i i 80 4 ‘ * = * * 80 1 80
¥ 2o I ERasgs! FIE Sk . * * "k * *
60 60 1 60 " * 60 4 1)\ * ol v N ‘i"* I 60 4 Q* s
g 2 2 ™, ESSay o) L
g 40 4 '».’:\ 40 4 40 4 ‘,\ 0 4 A."n\‘\ 40 4 \:\.n“ 0Ty *
Sl | 2 , P, IR o] s A
80 o s I 0 TS M| 0T R 20 g 0 S 20 9
Z mrnag S]] P [s 34 7o
e i IR . E—— P9
04 T T T — 0t T T T — 0 T T T — 0 T T T 0+t T T T 0 T T T T
0.0 0.5 1o 1.5 20 0.0 0.5 10 15 2.0 0.0 0.5 1.0 1.5 20 0.0 0.5 10 15 20 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 20
Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%) Edge mod. budget (%)
(a) Graphormer. (b) GRIT. (c) SAN. (d) GPS. (e) Polynormer. (f) GCN.

Figure 26: Local adaptive attacks on CLUSTER (1-hop neighborhood). Edge modification budgets 0.2% and
0.5% on average correspond to small to medium attack budgets (i.e., the number of edges modifications is
< than half of the victim node’s neighborhood size) with our adaptive attack consistently outperforming
Nettack for these budgets. 0.9% and 1.4% usually correspond to strong attack budgets (between half of the
nodes neighborhood size to the node’s neighborhood size). 2% allows to perturb more edges than the size of
the victim node’s neighborhood.

25

Published in Transactions on Machine Learning Research (09/2025)

D Adversarial Training Algorithm

We based our implementation of the adversarial training on the ‘Free’ adversarial training of |Shafahi et al.
(2019). Pseudocode for our adversarial training is given in Alg. |l The main modifications are that we do two
separate forward and backwards passes for the attack and model respectively. This is because: (1) the attack
and model often have distinct loss functions that they optimize for, and (2) we sample a discrete structure
perturbation for the model, such that the perturbed graph is included in the original valid sample space.
Another difference is that we need to iterate over the graphs in the minibatch separately. This is a limitation
caused by: (1) The attack optimization steps are not trivial to parallelize, especially for our node injection
attacks, and (2) the PE computations (e.g. Laplacian eigen-decomposition) are also not easily parallelizable
and need to re-computed for each new perturbed graph.

Given these limitations, our adversarial training is much less efficient. It requires at least 2 - |B| times more
model evaluations than normal training. Furthermore, for many GTs the PE computation is one of the most
computationally expensive steps. Therefore, PEs are usually precomputed in a pre-processing step. During
adversarial training, we need to compute PEs for new unseen perturbations at each step, which further
increases the overhead. Nonetheless, following the main idea of |Shafahi et al.| (2019) alleviates some of the
overhead and makes it somewhat practically feasible.

Algorithm 1 Our k-step ‘free’ adversarial training

Require: Training dataset 7, model fy, attack budget A, number of steps k, learning rate «
Initialize 0
for epoch = 1...N,,/k do
for minibatch B C 7 do
Initialize perturbations P
for i =1...k do
g9 < 0
for graph G = (A, X,y) € B do
P + PRBCD_ step(fy, X, A, P, A)
A’ + sample_ discrete(A, P)
9o < 9oVoL(fo(A", X),y)

end for
0+—0+a- ﬁ - g
end for
end for
end for

E Hyperparameters

To obtain trained models of comparable performance for each architecture type, we performed a hyperparameter
search for each model and dataset. Because of the large number of experiments and hyperparameters we used
random sampling of hyperparameter values in predetermined ranges. These ranges are defined and available
in the configuration files in our code repository under https://github.com/isefos/gt_robustness. The
final hyperparameters of the best models used for the robustness results are shown for Graphormer in Tab.]
for SAN in Tab. 5] for GRIT in Tab. [f] for Polynormer in Tab.[8] for GPS in Tab.[7] for GCN in Tab. [0} for
GPS-GCN in Tab. [I0] for GAT in Tab.[I]] and for GATv2 in Tab.[12]

26

https://github.com/isefos/gt_robustness

Published in Transactions on Machine Learning Research (09/2025)

Table 4: Hyperparameters for Graphormer.

CLUSTER Reddit Threads UPFD gos. UPFD pol.
Optimizer adam adamW adamW adamW
Learning rate 8.04 x 10~ 1.05 x 1074 3.75 x 107% 1.29 x 10~4
Weight decay 0 1.18 x 106 1.37x 1075 6.7x 1073
PE max. degree 70 42 21 31
SPD max. distance 4 8 8 10
Attention dropout 0.107 0.138 0.382 0
Input dropout 0 0 8.65 x 1073 0
MLP dropout 4.47 x 1072 1.21 x 102 5.37 x 10~2 0
Hidden dimension 60 48 30 40
Layers 15 6 8 6
Attention heads 6 8 3 8

Graph pooling -

virtual node

virtual node

virtual node

Table 5: Hyperparameters for SAN.

CLUSTER Reddit Threads UPFD gos. UPFD pol.
Optimizer adam adamW adam adam
Learning rate 5.0 x 104 5.66 x 104 5.41x107% 1.29 x 10~
Weight decay 0 3.54 x 107 0 1.0 x 103
k (num. eig.) 10 18 24 10
PE dimension 16 8 20 16
PE layers 1 1 2 2
PE heads 4 8 5 4
7 (global/ local) 0.1 5.46 x 10~° 428 x 1073 1.43 x 1072
Dropout 0 7.92 x 1072 1.73 x 1072 0
Hidden dimensions 48 48 80 96
Layers 16 7 3 3
Attention heads 8 8 8 4
Graph pooling - add mean add

Table 6: Hyperparameters for GRIT.

CLUSTER Reddit Threads = UPFD gos. UPFD pol.
Optimizer adamW adamW adamW adamW
Learning rate 1.29 x 1073 8.02 x 10~ 2.24 x 1073 5.61 x 104
Weight decay 4.16 x 10~ 3.05 x 1078 1.2x 1078 2,97 x 1072
RRWP max. steps 4 6 6 9
Attention dropout 0.478 0.28 0.293 0.49
Dropout 1.0 x 1072 1.05 x 1072 5.55 x 1072 0
Hidden dimensions 48 24 18 9
Layers 12 11 6 2
Attention heads 8 8 6 3
Graph pooling - mean add mean

Table 7: Hyperparameters for GPS.

CLUSTER Reddit Threads UPFD gos. UPFD pol.
Optimizer adamW adamW adamW adamW
Learning rate 5.0 x 10~4 3.21 x 1073 428 x 1074 1.18 x 10~2
Weight decay 1.0 x 1075 7.44 x 1073 6.34 x 1078 1.3 x107*
k (num. eig.) 10 13 10 10
PE dimension 16 16 16 16
PE encoder DeepSet DeepSet DeepSet DeepSet
Attention dropout 0.1 9.32 x 1072 0.1 0.1
Dropout 0.1 9.32 x 10~2 0.1 0.1
Hidden dimensions 48 24 40 32
Layers 16 7 5 6
Attention heads 8 8 8 8
Graph pooling - add add add

27

Published in Transactions on Machine Learning Research (09/2025)

Table 8: Hyperparameters for Polynormer.

CLUSTER UPFD gos. UPFD pol.
Optimizer adamW adamW adamW
Learning rate 2.35x 1073 893 x10~* 1.72x10~*
Weight decay 1.0 x 1077 1.0 x 107 1.0 x 10~7
Attention dropout 5.0 x 102 5.0 x 10~2 5.0 x 10~2
Dropout local 0.137 0.149 0.121
Dropout global 5.0 x 102 5.0 x 10~2 5.0 x 10~2
Hidden dimensions 72 48 32
Layers local 16 13 3
Layers global 3 4 1
Attention heads local 8 8 8
Attention heads global 8 8 8
Graph pooling - add add
Table 9: Hyperparameters for GCN.
CLUSTER Reddit Threads UPFD gos. UPFD pol.
Optimizer adam adamW adamW adamW
Learning rate 1.0 x 1073 3.17 x 1073 1.23x107% 5.29 x 1073
Weight decay 0 2.7 x 10~ 2.85 x 1076 2.59 x 102
Dropout 0 3.82 x 1073 0.5 0
Hidden dimension 172 30 105 473
Layers 16 8 3 2
Graph pooling - mean add mean

Table 10: Hyperparameters for

Graph pooling

GPS-GCN. Table 11: Hyperparameters for Table 12: Hyperparameters for
CLUSTER GAT. GATv2.

Optimizer adamW
Learning rate 9.74 x 10~ CLUSTER CLUSTER
Weight decay 1.0 x 108 Optimizer adam Optimizer adam
k (num. eig.) 10 Learning rate 1.0 x 1073 Learning rate 1.0 x 1073
PE dimension 16 Weight decay 0 Weight decay 0
PE encoder DeepSet Dropout 0 Dropout 0
Attention dropout 5.0 x 10~2 Hidden dimension 176 Hidden dimension 120
Dropout 5.0 x 102 Layers 16 Layers 16
Hidden dimensions 40 Attention heads 8 Attention heads 8
Layers 13 Graph pooling - Graph pooling -
Attention heads 8

28

Published in Transactions on Machine Learning Research (09/2025)

F Laplacian Eigen-Decomposition Gradient

F.1 Perturbation Approximation: Repeated Eigenvalues

Unfortunately, Eq. [I8] and [I9] do not hold in general when repeated eigenvalues are present. This is due
to the fact that a small perturbation can separate repeated eigenvalues into distinct eigenvalues. For the
unperturbed graph, the choice of eigenvector basis of the repeated eigenvalue’s eigenspace is arbitrary. In the
perturbed graph, however, the eigenvectors corresponding to the now distinct eigenvalues are uniquely defined
(up to the sign). Thus, a large discontinuous change in the eigenvectors can be caused by an arbitrarily small
input perturbation. For instance, consider the matrix M with repeated eigenvalue 1 and the following valid
eigendecomposition:

C[1oo] T [ro V211
M_[o 1}_UAU’ A‘{o 1]’ U=5 11 1 (29)

As soon as an arbitrarily small perturbation ¢ is added to one of the diagonal entries, the eigenvalues become

distinct and the choice of eigenvectors becomes constrained, which results in a discontinuous change:

10 axer i 10 1o
M‘[o 1+s]_UAU’ A‘[o 1+5}’ U‘[O 1} (30)

However, there is always some valid choice of eigenvectors in the unperturbed graph that leads to a continuous
change with respect to the given perturbation, e.g., in the above example U is also a valid choice for
the eigenvectors U of the unperturbed matrix. With the right choice of unperturbed eigenvectors, the
approximation equations are, therefore, still valid. Here, we provide a procedure to transform arbitrary
eigenvectors into the ones that lead to good perturbation approximations. For the theory showing why this
leads to the correct result, we refer to |Bamieh! (2022).

Let (A, ﬁ) be the output of the eigendecomposition algorithm for the unperturbed Laplacian Ly, containing
repeated eigenvalues. We can write the eigendecomposition in it’s block form:

Ay | |
L.y, =UAUT, A= ., U=\0, --- U, (31)
A \ |
For a simple eigenvalue \;, the block has dimension one, i.e., A; = [)\11 and U; = u;. For a repeated

eigenvalue A; with multiplicity =, it’s corresponding block is A;I, and U; € R*"*". Let P = PT be an
arbitrary symmetric perturbation to the original symmetric Laplacian. We can transform each eigenspace
basis of a repeated eigenvalue U; to the correct choice of eigenvectors as follows:

Ui=U,Q (32)

PU,j = UJTPUJ = QAPQT € R™"
First, we do a basis transformation of the perturbation matrix onto the eigenbasis U. Then we find the
eigendecomposition of the corresponding diagonal block Py, j and use these perturbation eigenvectors to
transform the original Laplacian eigenvectors. This results in a choice of valid eigenvectors U; such that
the approximations in Eq. [I§ and [I9] are valid for repeated eigenvalues and guarantees continuity of the
eigenvalues and vectors with respect to a single perturbation, e.g., when linearly interpolating from the
unperturbed to the fully perturbed matrix.

F.2 Backpropagation: Breaking Up Repeated Eigenvalues

The only thing preventing the use of auto-differentiation to compute gradients through the eigen-decomposition
is the presence of repeated eigenvalues. As a workaround, |Lin et al.| (2022)) propose adding small amplitude
random noise to the entire adjacency matrix. While this usually separates the repeated eigenvalues, it is

29

Published in Transactions on Machine Learning Research (09/2025)

not guaranteed to. We propose a different approach in which the smallest possible perturbation term is
added to the Laplacian matrix, such that the repeated eigenvalues are guaranteed to be separated while the
eigenvectors remain unchanged.

To achieve this, we must first define a minimum eigenvalue distance hyperparameter ¢, which we set to 1074
in our experiments. Then we define eigenvalue separation such that for all perturbed Laplacian eigenvalues
|Ai — Aj| > € must hold. Furthermore, we can define a vector o € R™ such that each entry represents the
offset of the perturbed eigenvalue in relation to the true value:
)\1 + 01
A= = A + diag(o) (33)
>\TL + O"L
In order for the perturbed matrix to have the same eigenvectors as the unperturbed Laplacian, we can define
it by its eigendecomposition:
Loym =UAUT
= U(A + diag(o))UT
= UAU" + Udiag(o)UT
= Ly + Udiag(o)UT

(34)

Consequently, the additive perturbation has the form P = Udiag(o)U", such that it shares the same
eigenvectors as the original Laplacian, and its eigenvalues are exactly the offsets.

Since the Frobenius norm can also be computed using the singular values, finding the perturbation with
minimum norm is equivalent to minimizing the Euclidean norm of the offset vector | P||z = />, 0;2 = ||o]|2.
To ensure that the order of the eigenvalues is not changed we can define the separation constraints for the
consecutive pairs of the perturbed eigenvalues 5\i+1 -\ = (Mit140i+1) — (N\i — 0;) > . The total constrained
optimization problem can be written as:

i ol
min —|lo

o 2702 (35)
subject to 0;41 — 0; > € — (Njp1 — i)

The (n — 1) inequality constraints are linear and can be written in matrix-vector form. To further ensure that
the total range of the eigenvalues is not changed, the equality constraints og = 0,, = 0 can be added. As an
initial guess, the offsets can be set to equally separate the eigenvalues in their range, which is guaranteed to
satisfy all constraints. The optimal solution o* can be calculated efficiently using constrained optimization.

In conclusion, using the slightly perturbed Laplacian isym = Lsym + Udiag(o*)UT as input to the eigen-
decomposition in the forward pass results in usable gradient via back-propagation. Note that to get the
perturbation, the eigendecomposition of the original Laplacian has to be computed. Thus, it can be checked
for the presence of repeated eigenvalues, and a second perturbed eigendecomposition is only computed when
necessary. Tab. 3] includes results using this approach, which seems to work about as well as the perturbation
approximation.

G Further Discussions

G.1 On Principle 1l

As discussed in Section [3| Principle II requires of fp (i) continuity w.r.t. A’, and (i) differentiability almost
everywhere w.r.t. A’. This principle can be better understood by using the ReLU function as an analogy.
The ReLU function satisfies both (¢) and (4¢), but is not continuously differentiable - still, neural networks
employing ReLU can be effectively optimized (i.e., trained) using gradient descent. This is possible as for
any function satisfying (¢) and (ii), the gradient can be computed for all inputs except on a subset having

30

Published in Transactions on Machine Learning Research (09/2025)

measure zero, which for ReLU is {0}. In practice, the non-differentiable points are rarely reached, and if
so, due to the continuity, an informative gradient can be defined at every non-differentiable point xg in a
principled manner, by choosing it to be either the left-sided limit a = lim ey %ﬁéw‘)) or the right-sided

limit b = lim, _, . £(Z=S(z0)

continuous optimization through methods like gradient descent. For ReLLU, the left-sided limit is O and the
right-sided limit is 1, and PyTorch 2.7.1 chooses to return the left-sided limit in case of an input dﬂ

of the function. Thus, the non-differentiability is not interfering with effective

Furthermore, we do require differentiability and not only continuity, as otherwise, gradient-free (black-box)
optimization methods have to be used to solve Equation , which is a complex and NP-hard combinatorial
optimization problem. In fact, the literature on adversarial attacks for GNNs has converged to showing that
the most effective attacks against GNNs are usually gradient-based attacks (Xu et al., 2019; |Geisler et al.l
2021; |Gosch et al.l |2023a)), which is consistent with the image domain (Tramer et al.l [2020)).

G.2 Numerical Considerations on Relaxed Sparse Attention

The computation of &;; = softmax(w;;) with w;; = w;; + log(pi;) itself is numerically stable, even if p;; =0
for some i,j € V. However, to ensure that the gradient-taking w.r.t. fl;j defining the "soft attention mask"
log p;; is also numerically well-behaved, we set the minimum value of p;; to some small € > 0, which is a
hyperparameter that we choose to be 1079 for our experiments. Hence, p;; = 0 implying 1@;; = —oc is never
reached. This follows the strategy employed by the attack framework PR-BCD, which we leverage to execute
our attacks (see Section . For scalability, PR-BCD iteratively samples a batch of edges and only computes
the gradient w.r.t. these edges. It always sets the minimum value of a sampled edge to some small €, to
ensure proper gradients can be calculated, even if the edge does not originally exist in the graph.

G.3 On the Computational Complexity of the Derived Relaxations

In this section, we discuss the computations of the different GT models that dominate their runtime complexity
and how our relaxations affect/change these.

Graphormer. Depending on the concrete implementation and graph characteristics (sparsity), the most
dominant computational step w.r.t. the number n of nodes in the graph in Graphormer is the shortest path
calculation that has to be done for each pair of nodes, or the full-attention calculation also done between
each node. The full node attention calculation is untouched by our relaxation. As the relaxation introduces
continuous edge weights and thereby, during the attack iterations, reduces the sparsity in the graph, this can
slightly increase the time spent for the shortest path calculation, if a shortest path implementation is chosen
that particularly leverages the sparsity in the graph (Cormen et al.l |2009). However, this does not change the
asymptotic time complexity of the shortest path algorithm. As the relaxation otherwise just introduces a
linear interpolation of the PE vectors and the learnable scalars associated to discrete shortest-path distances,
which can be computed in constant time, it does not change the asymptotic runtime of Graphormer. Thus
we can conclude that our relaxation fulfills Principle III.

SAN. SAN has two computations that have the potential to dominate its runtime complexity. First, the
Laplacian PEs require to calculate the eigendecomposition of the Laplacian which can have a cubic worst-case
complexity in the number of nodes. However, only the lowest k eigenvalues and associated eigenvectors are
used where k is a hyperparameter and is usually set to a small value between 10 - 20 (see Table , which
allows for faster computation. Our relaxation performs a first-order approximation of the eigenvalues and
eigenvectors of the perturbed Laplacian (see Equations and) Computing these only requires access
to the original eigendecomposition and thus, does not increase the runtime complexity. In the special case of
repeated eigenvalues (see Appendix , another eigendecomposition has to be computed, but only of the
subblock associated to the repeated eigenvalues. Thus, in the theoretic worst case of all eigenvalues being
repeated, two eigendecompositions instead of one have to be computed. However, this does not change the
asymptotic runtime complexity and in practice, repeated eigenvalues are a rare event occurring seldom if at
all in a graph and thus, has little practical relevance for the runtime. Lastly, SAN employs full node attention
through two sparse attention schemes (see Equation @), one computed over the neighborhood of a node and

1As the ReLU function is also convex, this corresponds to a subderivative of the ReL.U function

31

Published in Transactions on Machine Learning Research (09/2025)

one computed over all non-neighbours and thus, has quadratic complexity w.r.t. the number of nodes. Our
relaxation technically relaxes both sparse attention mechanisms to full attention (see Equation) However,
this does not change the asymptotic complexity, but can have a slight effect on the speed of computing the
attention in practice. Conceptually, it is still a sparse attention mechanism, but due to the continuity of
the adjacency matrix paired with gradient-taking using PR-BCD, more edges (but at most b, where b is the
block-size (Geisler et al.| (2021)) have non-zero values in practice. To conclude, as the asymptotic runtime of
SAN doesn’t changed and the relaxation introduces some but not significant additional computation, we can
conclude that Principle III is satisfied.

GRIT. As for GRIT the relaxation only makes the adjacency matrix continuous without introducing any
other changes and a continuous adjacency matrix does not change any of the involved computations for
GRIT, its runtime complexity is not affected. Thus, Prinple III is satisfied.

GPS. GPS again has two potential dominating computations. First, it uses Laplacian PEs. However, as
discussed for SAN, our relaxation does not affect its runtime complexity. The second is its global attention
module that is not affected by our relaxation and which dominates the relaxed local GatedGCN computation.
Thus, the relaxed GPS also fulfills Principle III.

Polynormer. The only change in computation our relaxation introduces is in the sparse attention computation
of GAT, by adding log p;; to the attention logit computation w;;. Theoretically, this does not change the
asymptotic runtime complexity of the attention computation, because if p;; = 0, i.e., there is no edge (3, j),
there is no contribution of w;; (i.e., node j), to the attention score a;;. lLe., the difference is that the
neighbourhood of the attention is now defined as Aij > 0 instead of fiij =1 in the non-relaxed case. Due to
the continuity of the adjacency matrix paired with gradient-taking using PR-BCD, more edges but at most b,
where b is the block-size (Geisler et al.l [2021)), have non-zero values in practice. Thus, this can have an effect,
though not excessive, on the practical runtime of computing the sparse attention. In our implementation, we
choose to follow the presentation of SAN’s relaxed spare attention and technically implemented the relaxation
as full attention. This can potentially dominate Polynormer’s global attention computation that is O(nd?) if
d? < n. However, we find that this is practically not significant for the datasets we considered and hence,
together with the above theoretic consideration, can conclude that Principle III is satisfied.

32

	Introduction
	Preliminaries
	Structure Attacks
	Graph Transformers

	Attacking Graph Transformers
	Node Injection Attack
	Evaluation
	Attack Results
	Adversarial Training
	Related Work
	Conclusion
	Node Injection Attack Details
	Node Probability Example

	Dataset Details
	Additional Attack Results
	CLUSTER Constrained Attack
	UPFD Politifact Node Injection Attack
	Best Transfer Attacks
	All Transfer Results
	Ablations
	Unnoticability Results
	Local Attack Results

	Adversarial Training Algorithm
	Hyperparameters
	Laplacian Eigen-Decomposition Gradient
	Perturbation Approximation: Repeated Eigenvalues
	Backpropagation: Breaking Up Repeated Eigenvalues

	Further Discussions
	On Principle II
	Numerical Considerations on Relaxed Sparse Attention
	On the Computational Complexity of the Derived Relaxations

