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ABSTRACT

Large Language Models (LLMs) have demonstrated immense potential across
various applications. However, aligning these models with specific real-world tasks
and human preferences typically requires resource-intensive fine-tuning processes
such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human
Feedback (RLHF). In this paper, we propose GOOD (Guided Online Optimal
Decoding), a novel alignment method that enhances pre-trained models at decoding
time without requiring access to their parameters or vocabularies. We observed that
different aligned models exhibit similarities in their decisions of alignment-related
tokens. Inspired by this, GOOD utilizes a pair of guiding models to identify critical
positions related to alignment and adjusts the model’s output dynamically during
the decoding phase. Notably, the interaction between the guiding models and the
guided model occurs at the string level, enabling GOOD to be applied to align
even black-box models with different vocabularies. Experiments show that in
weak-to-strong alignment, GOOD can achieve performance comparable to direct
fine-tuning in terms of comprehensive capability and harmless generation, reaching
relative scores up to 102% and 99% without sacrificing decoding efficiency. Even
when guiding across model families, it can achieve 98% and 103% of the target
performance on the two tasks, respectively. Moreover, GOOD can be applied to
enhance already aligned models (improving pass@1 by 52% in code enhancement),
making it compatible with various existing alignment techniques.

1 INTRODUCTION

Table 1: Comparison of GOOD and other represen-
tative tuning-free alignment methods (Note: “●”
indicates DO NOT NEED, “●” indicates NEED).

Method
Need
extra

training?

Need
special designed

prompt?

Need accessing
vocabulary and logits

of target model?

Need extra
test-time

computation?
URIAL ● ● ● ●
RAIN ● ● ● ●
GenARM ● ● ● ●
Proxy-tuning ● ● ● ●
Aligner ● ● ● ●
GOOD ● ● ● ●

Large Language Models (LLMs) have demon-
strated remarkable potential across various ap-
plications, such as programming, writing, lan-
guage translation, etc. After pre-training on a
huge amount of text corpus, they often require
further alignment to adapt to specific real-world
tasks as well as human values and preferences.
The alignment process usually involves Instruc-
tion Tuning (Wei et al., 2021) and Preference
Learning (Ouyang et al., 2022), typically implemented through methods such as SFT (Wei et al.,
2021) and RLHF (Ouyang et al., 2022). These alignment methods have significantly enhanced the
capabilities of LLMs, suggesting that alignment-related tuning is crucial for developing AI assistants
(Bubeck et al., 2023).

However, fine-tuning-based alignment methods have three major problems. (1) They are resource-
intensive, requiring extensive training data and substantial computational power. (2) The same
fine-tuning process is often applied to different models, leading to redundancy. (3) They necessitate
direct access to the model’s parameters, which is often impractical for state-of-the-art closed-source
models (e.g., GPT-4o (OpenAI, 2024)).

Given these challenges, there is a growing interest in alignment methods that do not require fine-
tuning. Zhou et al. (2024) proposed the Superficial Alignment Hypothesis, suggesting that most of
a model’s knowledge and capabilities are acquired during pre-training, with alignment primarily
teaching the model which sub-distribution of responses to utilize in user interactions. Building
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on this premise, recent work such as URIAL (Lin et al., 2023) has analyzed token shifts between
pre-trained LLMs and their aligned counterparts, finding that most token distribution changes occur
in language style-related tokens (e.g., discourse markers, safety disclaimers). RAIN (Li et al., 2023)
attempts to use the pre-trained LLMs to evaluate their own generation and use the evaluation results to
guide rewind and generation for AI safety. Liu et al. (2024) proposed Proxy-Tuning, which achieves
an alignment effect similar to direct fine-tuning by computing the logits difference between the
pre-trained model and its aligned version, then applying this vector to the output logits of another
model in the same model series.

Nevertheless, these tuning-free alignment methods face several limitations that restrict their appli-
cation across diverse scenarios. (1) Specifically designed in-context prompts cannot fully reflect
user preferences across different scenarios, hence failing to adapt flexibly to various types of task.
(2) Methods that adjust decoding based on token logits are constrained by the model’s vocabulary,
limiting their use to within the same model series. (3) Additionally, existing methods typically incur
additional test-time computational costs, rendering them less economically viable. These challenges
significantly hinder the practical utility of current non-tuning alignment methods, emphasizing the
need for more adaptable and efficient solutions.

To this end, we propose GOOD (Guided Online Optimal Decoding), a novel tuning-free alignment
method. Motivated by the Superficial Alignment Hypothesis, we hypothesize that alignment primarily
affects a consistent subset of stylistic tokens, making alignment decisions transferable across models;
Appendix A provides theoretical grounding and empirical evidence supporting this view. Building on
this, we propose the GOOD method, which enhances the model by dynamically adjusting its output
during the decoding phase. Specifically, GOOD uses a pair of guiding models to identify critical
locations that need alignment during the response generation, and provide corresponding guidance.
This identification process is accomplished through a two-step guess-and-verify mechanism, which
probabilistically generates multiple tokens in a single step, thereby achieving a lossless acceleration
compared to vanilla decoding. Through this dynamic adjustment, GOOD achieves comparable
performance to direct fine-tuning and exhibits high flexibility, making it effective for aligning
the behavior of black-box models, where the parameters and vocabulary are not accessible. In
Appendix B, we further provide a demonstration of how GOOD is compatible with API-based closed-
source model services, requiring only string-level communication between the involved components.
Table 1 presents a comparison between GOOD and existing tuning-free alignment methods.

Experiments show that in weak-to-strong alignment, GOOD can achieve performance comparable to
direct fine-tuning in terms of comprehensive capability and harmless generation, reaching relative
scores of 102% and 99%. Meanwhile, it delivers a 3%–13% speedup in decoding time compared with
vanilla decoding, achieved through integration with speculative decoding. Even when using guiding
models from different model families (often differing in vocabulary, training data, and architecture),
GOOD remains effective, achieving 98% and 103% of the target performance on the two tasks,
respectively. GOOD can also be applied to enhance already aligned models. In our experiments, the
code enhancement from GOOD yielded a 52% relative improvement in the guided model’s pass@1
performance. Based on these results, our analysis reveals that the performance improvement brought
by GOOD mainly stems from accurately identifying positions that need alignment, and this can be
further enhanced by providing more accurate and stronger guidance, suggesting a potential direction
for non-tuning alignment to replace tuning-based alignment.

We conclude our contributions as follows:

• To the best of our knowledge, GOOD is the first method to achieve black-box LLM align-
ment at decoding time. Distinct from existing tuning-free approaches, GOOD eliminates
dependencies on pre-designed contexts and vocabulary constraints while achieving faster
decoding than vanilla sampling, combining high flexibility with practical efficiency.

• We observe that aligned models exhibit consistent patterns in identifying alignment-critical
tokens, and model interactions naturally occur at the string level. Building on this insight,
GOOD utilizes a pair of guiding models to implement efficient decoding-time alignment
through position-aware guidance that integrates seamlessly with speculative decoding,
achieving both alignment effectiveness and decoding efficiency.

• We conducted extensive evaluations across several scenarios. Results show that in weak-
to-strong alignment scenarios, GOOD achieves 102% performance of directly fine-tuned
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models. It also attains 103% relative safety score even when aligned across different
model families. Moreover, GOOD successfully enhances already-aligned models, improv-
ing pass@1 by 52% in code generation tasks, demonstrating compatibility with existing
alignment techniques. These demonstrations broaden the application scope of GOOD.

2 RELATED WORK

2.1 TUNING-BASED ALIGNMENT METHODS

Alignment related tuning is critical in adapting LLMs to better reflect human preferences (Wei et al.,
2021; Ouyang et al., 2022; Taori et al., 2023; Wang et al., 2023; Rafailov et al., 2024; Bubeck
et al., 2023). A common starting point is SFT (Supervised Fine-Tuning), where the model is
fine-tuned on datasets containing desired human-instructed outcomes, providing a basic level of
alignment. RLHF (Reinforcement Learning from Human Feedback) builds on SFT by incorporating
a reward model that guides the policy model towards human-preferred behaviors. There are also
several RLHF variants, such as RLAIF (RL from AI Feedback) (Lee et al., 2023), DPO (Direct
Preference Optimization) (Rafailov et al., 2024), etc., have been proposed, each aiming to improve the
efficiency and effectiveness of the alignment process (Wang et al., 2024). However, these tuning-based
methods require considerable resources, including large amounts of training data and significant
computational capabilities. Additionally, they require direct access of the model’s parameters, which
is often unfeasible for cutting-edge models like GPT-4 (Achiam et al., 2023). In sight of this, some
researchers have explored aligning model responses without parameter tuning.

2.2 TUNING-FREE ALIGNMENT METHODS

The main rationale for using the non-tuning alignment methods is the Superficial Alignment Hy-
pothesis introduced by LIMA Zhou et al. (2024), suggesting that most of a model’s knowledge and
capabilities are acquired during pre-training, with alignment primarily teaching the model which
sub-distribution of responses to utilize in user interactions. Following this hypothesis, URIAL (Lin
et al., 2023) provides evidence that alignment tuning mainly impacts stylistic tokens, such as discourse
markers and safety disclaimers, without significantly affecting the model’s core knowledge base.
Building on recent advancements in non-tuning alignment research, we categorize related methods
into the following three classes.

Pre-decoding alignment methods. URIAL (Lin et al., 2023) leverages In-Context Learning (ICL)
(Mann et al., 2020)—a paradigm that enables LLMs to adapt to new tasks through contextual prompts
without parameter updates—to achieve pre-decoding alignment. By incorporating few-shot examples
(e.g., stylistic demonstrations or inference traces) into prompts, ICL allows LLMs to better align their
outputs with user instructions. URAL demonstrates that this approach can attain effective alignment
using minimal resources: a system prompt and as few as three constant stylistic examples. Yet, this
kind of methods are highly dependent on the design of the few-shot examples, which limits their
generalizability and effectiveness in different tasks.

In-decoding alignment methods. In-decoding alignment methods perform adjustments during the
model’s response generation, typically achieved by modifying token logits or employing discrimi-
nation and search mechanisms. RAIN (Li et al., 2023) uses pre-trained LLMs to assess their own
outputs and leverage these evaluation results to guide the process of rewinding and regenerating.
Works such as GenARM (Xu et al., 2024), Args (Khanov et al., 2024), Transfer Q-star (Chakraborty
et al., 2024), and Cascade Reward Sampling (Li et al., 2024) explore reward-guided decoding from
different perspectives. Alternatively, Proxy-tuning (Liu et al., 2024) and EFT (Mitchell et al., 2023)
guide generation by injecting logit differences from aligned reference models into target predictions.
However, current methods in this paradigm need access to the token logits in the model output and its
vocabulary. These factors limits their applicability.

Post-decoding alignment methods. Aligner (Ji et al., 2024) establishes post-decoding alignment
through a two-stage progress: generating the initial response in the first stage and refining it in the
second stage. It trains a separated model that learns correctional residuals between initial and aligned
outputs without the need for fine-tuning the base LLM. Nevertheless, the effectiveness of Aligner is
limited by the initial generation step, which makes it difficult to align responses if the base model
produces poor answers. Additionally, it still requires fine-tuning of the downstream model.
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Acceptance Rules:
1️⃣ n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output.
2️⃣ n_matches_main ≥ n_matches_align: Accept B[:n_matches_align]+Ait[n_matches_align+1] as the output. Guided Model

Guiding Models

Original Prediction

Original Prediction

LLM A LLM A it

Alignment Discrimination Methods

Max Match Top P Overlap Top K Overlap ...

... ...

Aligned Prediction & The First Verification

n_matches_align

Assisted Decoding Discrimination Methods

Speculative Sampling

...

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A6

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

No alignment required

LLM B

Unused

Discriminated as need alignment

...

Main Prediction & The Second Verification

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

B1 B2 B3 B4 B5 B6

Max Match

n_matches_main

Ait 1 ~
Ait n_matches_align

B 1 ~
B n_matches_align

Figure 1: The principle of GOOD. GOOD utilizes a pair of guiding models to identify critical
positions related to alignment. Once a specific position is discriminated as requiring alignment, we
replace the prediction with the guiding model’s output, converting it to the guided model’s token
if needed. LLMA first predicts multiple tokens, which are then verified by LLMAit (the aligned
version of LLMA). The output from LLMAit is subsequently validated by LLMB (the guided
model). Here, n_matches_align denotes the number of tokens accepted in the first guess-and-
verify step (between LLMA and LLMAit ), while n_matches_main refers to the number of tokens
accepted in the second step (between the guiding pair and LLMB). The original version of GOOD
without speculative execution, as well as how speculative decoding within GOOD is handled in
different scenarios, are provided in Appendix C and Appendix D.

2.3 LLM ENSEMBLE

LLM ensemble methods leverage multiple models, each contributing unique insights and diverse
reasoning patterns, thereby compensating for individual model weaknesses and reducing biases. Lu
et al. (2024) provides a more detailed introduction. Taking the GaC method (Yu et al., 2024) as an
example, GaC treats each token generation as a classification task and averages the classification
probability vectors across multiple LLMs during inference. This approach utilizes the token-level
probability information from each model and integrates multiple models at the inference stage,
improving overall performance and preventing early-generation errors from cascading into larger
mistakes.

2.4 SPECULATIVE DECODING

Recent work on speculative decoding has shown that large autoregressive language models can be
decoded significantly faster by combining a fast “draft” model with the original, more powerful
“target” model (Leviathan et al., 2023; Xia et al., 2022; Chen et al., 2023; Miao et al., 2024). This
approach generates several candidate tokens in parallel from smaller or more efficient models (the
draft model), then relies on the larger (target) model to validate these tokens in a single verification
step. GOOD integrates the concept of speculative decoding, combining alignment discrimination
and token generation into a dual-stage speculation-verification process, achieving both non-tuning
alignment and acceleration of target model decoding.

3 METHOD

In this section, we introduce the principles of GOOD (Guided Online Optimal Decoding), with
an overview provided in Figure 1. The original version of GOOD without speculative execution
is provided in Appendix C, clearly demonstrating its core principles. The goal of GOOD is to
achieve flexible and efficient tuning-free alignment, without accessing the parameters, logits, or
vocabulary of the target model. Appendix B provides a demonstration of how GOOD is compatible
with API-based closed-source model services, requiring only string-level communication between
the involved components.

We first formalize the problem setting and notation, then detail the two key components of GOOD:
(1) discriminating which positions need alignment, and (2) the transformation of guidance (including
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token conversion across vocabularies and alignment flag updates). Finally, we present the overall
process, incorporating the speculative verification mechanism.

3.1 PROBLEM SETTING AND NOTATION

Let B be the guided model that we aim to align, but for which we only have black-box (string-based)
access. We assume access to a guiding model A (the unaligned version), and its aligned variant Ait.
We denote tokenizers as follows: TA, TAit

for the guiding pair, and TB for the guided model.

A single decoding step at position n generates the next token tn. We write pA(t | t[1:n−1]), pAit
(t |

t[1:n−1]), and pB(t | t[1:n−1]) for the probability (logit) distribution of the next token, conditioned on
the partial sequence t[1:n−1].

We wish to produce an output that is aligned to human preferences (following instructions, safety
constraints, etc.), even though B itself is not aligned. Our approach will replace certain tokens
(or sequences of tokens) in B’s raw decoding with corresponding tokens from Ait, guided by a
token-level alignment discrimination through comparing pA and pAit

.

3.2 ALIGNMENT DISCRIMINATION

We define a function f(·) to decide whether to align at each step: δn = f
(
{pA(t | t[1:n−1])}, {pAit(t |

t[1:n−1])}
)
, where δn ∈ {0, 1} is an alignment flag, indicating “no alignment needed” or “alignment

needed” at position n.

Here we list two variants of f :

1. Max-Match: Compare the single highest-probability token for A vs. Ait. Formally, if
argmaxt pA(t | t[1:n−1]) ̸= argmaxt pAit

(t | t[1:n−1]), then δn = 1; otherwise 0.
2. Top-P /K Overlap: For guiding model A, we define SA

topP as the minimal set of highest-
probability tokens whose cumulative probability exceeds P , and SA

topK as the top-K highest-
probability tokens. Similarly, define SAit

topP and SAit

topK for Ait. Then we decide: δn = 1 if
|SA

topP/K ∩ SAit

topP/K | < τ ; otherwise 0, where τ is a threshold that is a nonnegative integer.
This approach allows the alignment sensitivity to be easily adjusted by simply adjusting τ .

Beyond these discrete overlap rules, we also experimented with more advanced logits-based discrimi-
nation strategies, which showed competitive results; details are provided in Appendix E.

3.3 GUIDANCE TRANSFORMATION

Whenever δn = 1, we seek to replace B’s next token with the prediction from Ait. Considering Ait

and B may have different vocabularies, we process substitutions at the string level to preserve context
equivalence. Formally:

1. Token-to-String: Let tnew[1:m]
Ait

denote the newly predicted m tokens from Ait at the current

step. Convert these tokens into a substring: snew = T−1
Ait

(t
new[1:m]
Ait

).

2. Re-tokenize: Tokenize snew into B’s vocabulary: tnew[1:n]
B = TB(s

new), where n may differ
from m due to vocabulary mismatches.

3. Alignment Flag Update: For each token t
new[i]
B in B’s sequence, identify all tokens tnew[j]

Ait

from Ait that contribute to its formation via string-level mapping, including direct 1-to-1
token mapping, substrings of tnew[j]

Ait
, or multi-token overlaps from Ait.

Set the alignment flag for tnew[i]
B as: δnew[i]

B = 1 if ∃ j s.t. tnew[j]
Ait

contributes to t
new[i]
B and δ

new[j]
A = 1;

otherwise 0. The updated alignment count is then: n_matches_align = min{i | δnew[i]
B = 1}.

5
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3.4 OVERALL ALGORITHM

Building upon the alignment discrimination mechanism (3.2) and guidance transformation process
(3.3), we present the complete GOOD algorithm through pseudocode in Algorithm 1 (see Appendix F).

Here, we provide a simplified description of the workflow for the GOOD algorithm:

1. Speculative generation with alignment discrimination: Generate draft tokens using the
unaligned model (A) and validate them with the aligned model (Ait). Identify positions
requiring alignment (δn = 1) using a discrimination function.

2. Cross-model guidance transformation: Transform the validated token sequence into the
vocabulary of the guided model (B) while correspondingly converting alignment flags (δ).

3. Target model validation: Feed the transformed tokens into the guided model (B) for
validation. Obtained the final output based on acceptance rules.

4 EXPERIMENT

We conducted four experiments to test the capabilities of GOOD: comprehensive performance,
harmless generation, enhancing aligned models, and the speed of decoding.

Tasks and datasets. We use MT-Bench (Zheng et al., 2023) and AlpacaEval 2.0 (Dubois et al., 2024)
to evaluate the comprehensive performance of GOOD. MT-Bench is a multi-task benchmark that
measures model capabilities across diverse domains, while AlpacaEval is a benchmark for assessing
instruction-following. To evaluate the ability of the GOOD to generate harmless responses, we
conducted experiments on the Helpful and Harmless (HH) dataset (Ganguli et al., 2022), designed
to test how models perform in complex and sensitive scenarios. In the experiment to enhance the
capabilities of already aligned models, we focused on improving code generation skills and evaluated
performance on the HumanEval dataset (Chen et al., 2021). In the decoding speed experiments,
considering the diversity of tasks, we also used the MT-Bench dataset as the test input.

Models. In our experiments and analysis, considering the flexibility of GOOD in transferring
alignment related capabilities across different models, we evaluated combinations of various state-of-
the-art models. Specifically, we used the Llama series (Llama-2 (Touvron et al., 2023), CodeLlama
(Roziere et al., 2023)), the Gemma series (Gemma-2 (Team et al., 2024)), and Qwen series (Qwen2
(Yang et al., 2024)) to assess the method’s performance and generality.

4.1 COMPREHENSIVE EVALUATION
Table 2: MT-Bench scores for different models and
methods.

Method Model MT-Bench Score

GOOD
Gemma-2-2b-it→ Gemma-2-27b 8.30

Llama-2-7b-it→ Llama-2-70b 6.91
Qwen-2-7b-it→ Qwen-2-72b 8.48

GOOD(Split) Gemma-2-9b-it + Qwen-2-7b-it→ Qwen-2-72b 8.64

Proxy-Tuning
Gemma-2-2b-it→ Gemma-2-27b 3.70

Llama-2-7b-it→ Llama-2-70b 6.41
Qwen-2-7b-it→ Qwen-2-72b 8.47

Baseline

Gemma-2-27b-it 8.97
Llama-2-70b-it 6.86
Qwen-2-72b-it 9.12

On MT-Bench, we tested the effectiveness
of weak-to-strong guidance in the Gemma2,
Llama2, and Qwen2 series, as well as the cross-
family guidance provided by the Gemma2 se-
ries to the Qwen2 series models. In the latter
case, we used small guiding model pairs from
the same series as the alignment discriminator
and applied guidance from Gemma2 at positions
identified as alignment-related. As shown in the Table 2, whether for guidance within the same
series or across different series, GOOD-guided alignment achieved performance comparable to direct
fine-tuning. In the case of Llama-2-7b-chat guiding Llama-2-70b, the alignment performance even
surpassed direct fine-tuning. In comparison with the Proxy-Tuning, GOOD outperformed in all three
configurations and demonstrated more stable performance (the baseline method did not perform as
well on the Gemma2 series).

Table 3: AlpacaEval 2.0 results across methods.
Methods LC Win Rate (%) Win Rate (%)
Vanilla LLM 0.770 0.352
PPO (Schulman et al., 2017) 0.485 0.195
DPO (Rafailov et al., 2023) 0.396 0.159
BoN (Touvron et al., 2023) 0.763 0.358
Item-level RS (Eikema et al., 2022) 1.387 0.702
ARGS (Khanov et al., 2024) 0.544 0.238
RAIN (Li et al., 2023) 1.252 0.619
TreeBoN (Qiu et al., 2024) 0.599 0.271
CARDS (Li et al., 2024) 1.609 0.878
GOOD (ours) 1.680 1.503

We further assess the effectiveness of GOOD
on AlpacaEval 2.0 (Dubois et al., 2024). For
a direct and fair comparison, we adhere to the
experimental setup established by CARDS (Li
et al., 2024). All methods share the same base
model (LLaMA-7B (Touvron et al., 2023) ),
and GOOD employs TinyLlama-1.1B-Chat and
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TinyLlama-1.1B (Zhang et al., 2024) as the guiding pair. As shown in Table 3, GOOD attains the
best LC Win Rate and Win Rate among a broad spectrum of recent and established baselines.

4.2 HARMLESS GENERATION
Table 4: Harmless ratios for different models and
methods, evaluated by gpt-4o.

Method Model Harmless ratio (%)

GOOD
Gemma-2-2b-it→ Gemma-2-27b 74.7

Llama-2-7b-it→ Llama-2-70b 74.7
Qwen-2-7b-it→ Qwen-2-72b 70.6

GOOD(Split) Gemma-2-9b-it + Qwen-2-7b-it→ Qwen-2-72b 74.6

Proxy-Tuning
Gemma-2-2b-it→ Gemma-2-27b 54.3

Llama-2-7b-it→ Llama-2-70b 77.6
Qwen-2-7b-it→ Qwen-2-72b 68.3

Baseline

Gemma-2-27b-it 75.6
Llama-2-70b-it 76.6
Qwen-2-72b-it 73.0

The harmless generation test focuses on the
safety of model when responding to sensitive
questions, using the same model configuration
as 4.1. We use gpt-4o (Hurst et al., 2024) as
the evaluator, the prompt used for evaluation is
shown in Appendix I. The harmless ratios for
various model settings are summarized in Ta-
ble 4, demonstrating the improvements achieved
through the guiding alignment process. Table 5: Comparison of GOOD with reward-based

decoding-time methods on HH-RLHF dataset.
Method vs. DPO Win (%) Tie (%) Lose (%) Win + ½ Tie (%)
ARGS 24.44 4.89 70.67 26.89
Transfer-Q 31.00 5.44 63.56 33.72
CARDS 37.89 8.11 54.00 41.94
GenARM 48.00 6.89 45.11 51.44

GOOD (ours) 41.67 5.67 52.67 44.50

Under the guidance of smaller models within
the same series, we achieved 99% (Gemma2),
98% (Llama2), and 97% (Qwen2) alignment
performance relative to direct fine-tuning in the
three model configurations. Compared to the
baseline method (Proxy-Tuning), GOOD outperformed in two configurations and demonstrated
greater stability. Notably, by introducing external guidance across model families, the harmlessness
ratio in the GOOD(Split) configuration surpassed the directly fine-tuned guided model (74.6% vs
73.0%), highlighting the advantages brought by GOOD’s flexibility.

To further validate GOOD’s effectiveness on harmless generation, we conducted additional compar-
isons against prominent reward-based decoding-time alignment methods, following the experimental
setup of GenARM (Xu et al., 2024). In GenARM, the LLaMA-7B-SFT checkpoint provided by
Khanov et al. (2024) is used as the base model, which is fine-tuned from LLaMA-7B (Touvron et al.,
2023) on the preferred responses of the HH-RLHF. For both RM and DPO, they fine-tune LLaMA-
7B-SFT with LoRA for one epoch on the training split of HH-RLHF. We used TinyLlama-1.1B-Chat
and TinyLlama-1.1B as a pair of guiding models (Zhang et al., 2024). And we followed the model
preparation process of GenARM to performed the same DPO training on TinyLlama-1.1B-Chat.

Here we report the comparison results in Table 5. Despite leveraging significantly smaller guiding
models, GOOD achieves competitive alignment performance, outperforming several reward-based
methods (ARGS, Transfer-Q, CARDS) and approaching the performance of GenARM.

4.3 ENHANCE ALIGNED MODEL
Table 6: Pass@1 scores on HumanEval. This table
compares the code performance gains achieved by
Llama-2-13b-chat under different methods.

Method HumanEval Pass@1
Llama-2-13b-chat 21.3

CodeLlama-7b-python 38.4
CodeLlama-7b-python + Llama-2-13b-chat (GaC) 29.9

CodeLlama-7b-python→ Llama-2-13b-chat (Proxy-Tuning) 32.1
CodeLlama-7b-python→ Llama-2-13b-chat (GOOD) 32.3

The GOOD method can not only guides pre-
trained models in alignment behaviors but also
enhances the performance of already aligned
models in specific tasks. Our experiment is eval-
uated based on the HumanEval dataset. We used
CodeLlama-7b-python and Llama-2-7b as the guiding model pair in the GOOD method to enhance
the code performance of Llama-2-13b-chat (as the guided model), with Top_PA=0.8 and Top_PAit=0.
Consistent with Proxy-Tuning (Liu et al., 2024), we set Top_P (sampling parameter) to 0.95, tem-
perature to 0.1, and calculated the pass@1 score. According to the definition provided in Lu et al.
(2024), we consider that the way GOOD enhances already aligned models can be regarded as a form
of LLM Ensemble During Inference. Therefore, we also compared it with the recently proposed GaC
method (Yu et al., 2024).

The detailed performance results are shown in Table 6, where our method achieved a score of 32.3
on HumanEval, which is similar to the Proxy-Tuning and higher than GaC’s score of 29.9. The
prompt used in our evaluation is shown in Appendix G. Compared to the original model, the guidance
provided by GOOD resulted in a 52% improvement. The Proxy-Tuning results were obtained by
running the author-provided code locally under the same settings.

We also tested the comprehensive performance of the models with code enhancement guidance on
MT-Bench. We used the default configuration of GOOD (Max Match) and utilized code block markers
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as the start and end signals for enhanced guidance (A specific example is shown in Appendix H). As
shown in Figure 2, experimental results indicate that models with GOOD-enhanced guidance can
surpass both the original and guiding models in comprehensive performance, with score increasing
from 6.65 to 6.88.

4.4 DECODING SPEED OF GOOD
Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
CodeLlama-7b-Python→Llama-2-13b-chat, Score=6.88
Llama-2-13b-chat, Score=6.65
CodeLlama-7b-Python, Score=1.37

Figure 2: Comprehensive performance with code
enhancement guidance, evaluated on MT-Bench.
GOOD surpass both guiding and guided models.
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Gemma-2-2B-Instruct  Gemma-2-27B
Llama-2-70b-chat
Llama-2-7b-chat  Llama-2-70b
Qwen-2-72B-Instruct
Qwen-2-7B-Instruct  Qwen-2-72B

Figure 3: Average token decoding time of GOOD
and Vanilla Decoding.

By combining with speculative decoding, GOOD can probabilistically generate multiple tokens in
a single iteration or skip the inference steps of the guided model. Considering the diversity of test
samples, we used the question set from the MT-Bench dataset as input for decoding speed test (which
includes 8 types of tasks). As shown in Figure 3, GOOD outperforms vanilla decoding in decoding
speed across all three configurations, achieving up to a 13% speedup. Due to different memory
requirements for different model configurations, the tests for Gemma-2-2B-Instruct→ Gemma-2-27B
were conducted on L40s 48G× 8, while the other two were tested on A100 80G× 8. The baselines
were evaluated in the corresponding testing environments.

5 ANALYSIS

5.1 WHERE DOES THE PERFORMANCE ENHANCEMENT MAINLY COME FROM?

0.30.30.3 0.29 0.280.28 0.25 0.23 0.2 0.16
Different Guided Decoding Ratio on Gemma-2-2b-it Gemma-2-9b
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Gemma-2-9b, MT-Bench Score 2.69

Gemma-2-2b-it, MT-Bench Score 7.60

Gemma-2-9b-it, MT-Bench Score 8.34

Gemma-2-2b-it Gemma-2-9b (use random guidance with ratio=0.3), MT-Bench Score 5.15

Top_P_A 0.0, MT-Bench Score 7.81
Top_P_A 0.1, MT-Bench Score 7.7
Top_P_A 0.2, MT-Bench Score 7.67
Top_P_A 0.3, MT-Bench Score 7.83
Top_P_A 0.4, MT-Bench Score 7.73
Top_P_A 0.5, MT-Bench Score 7.76
Top_P_A 0.6, MT-Bench Score 7.75
Top_P_A 0.7, MT-Bench Score 7.67
Top_P_A 0.8, MT-Bench Score 7.23
Top_P_A 0.9, MT-Bench Score 6.9

Figure 4: Performance of alignment guidance with varying guided decoding ratios.

To illustrate why the guidance provided by GOOD can help the model achieve performance gains, we
evaluated the guided decoding ratio (controlled by adjusting Top_PA) and MT Bench performance
under different parameter configurations, and compared them with random decoding. Based on
URIAL’s definition of token shift, we fixed Top_PAit

to 0 and adjusted the size of Top_PA. Due to
potential differences in vocabularies between guiding models and the guided model in GOOD, we
count the number of guided decodings and original decodings based on the character level in the final
results. As shown in Figure 4, the scores of alignment guidance consistently range from 7.67 to 7.83
as the proportion of guided decodings decreases from 0.30 to 0.23.

Even with approximately a 23% reduction in guided decodings (from 0.3 to 0.23), the performance
does not experience significant changes. Meanwhile, when random guided decoding at a 0.3 ratio
was provided, the model’s performance was significantly lower than that of GOOD-guided decoding.
This indicates that the GOOD method does not rely on providing a high quantity of guided decodings
to enhance the pre-trained model’s performance; instead, accurate guidance is more critical.
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5.2 TOKEN CHANGES IN GOOD-GUIDED DECODING

To understand the alignment behavior characteristics of models guided by GOOD, we compared the
token changes between models aligned using the GOOD method and those aligned directly through
fine-tuning, with statistics derived from their responses on the MT-Bench dataset.

10 14
26

20

20 16

44

Llama-3-8B-Instruct  Qwen2-7B
Llama-3-8B-Instruct

Qwen2-7B-Instruct

(a)

33 32
8

29

11 12

48

Qwen2-7B-Instruct  Llama-3-8B
Llama-3-8B-Instruct

Qwen2-7B-Instruct

(b)

Figure 5: Comparison of token changes in guided
decoding alignments.

We counted the top 100 most frequently chang-
ing tokens in each setting. Results show that in
the guidance of Llama-3-8B-Instruct to Qwen2-
7B, the token changes overlap 70% with Llama-
3-8B-Instruct and 64% with Qwen2-7B-Instruct.
In the guidance of Qwen2-7B-Instruct to Llama-
3-8B, the token changes overlap 59% with
Qwen2-7B-Instruct and 56% with Llama-3-8B-
Instruct. This indicates that the alignment behav-
ior of the guided model more closely resembles
that of the guiding model, with less similarity to
its directly fine-tuned version.

5.3 MORE ACCURATE IDENTIFICATION AS WELL AS STRONGER GUIDANCE.

Configuration1 Configuration2 Configuration3
Difference model configurations
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8.12

8.48
8.64

1: Gemma-2-9b-it  Qwen2-72B
2: Qwen2-7B-Instruct  Qwen2-72B
3: Gemma-2-9b-it + Qwen2-7B-Instruct  Qwen2-72B

Figure 6: Alignment performance
when using more accurate identifi-
cation as well as stronger guidance.

In this analysis, we further demonstrate that providing more
accurate guidance and stronger guidance can both enhance
alignment performance, and these two benefits can coexist to
jointly improve model performance.

We measured the performance of guiding Qwen2-72B with
Gemma-2-9b-it (using both discrimination and guidance from
Gemma-2-9b-it) and compared it with the data from Exper-
iment 4.1. Since Qwen2-7B-Instruct and Qwen2-72B be-
long to the same model family and are trained on the same
dataset, Qwen2-7B-Instruct offers more accurate recognition
than Gemma-2-9b-it. Meanwhile, Gemma-2-9b-it has a higher
score on MT-Bench, indicating it can provide stronger guidance
at the same decoding positions. As shown in Figure 6, the
results demonstrate that the configuration combining Qwen2-
7B-Instruct’s discrimination with Gemma-2-9b-it’s guidance
outperforms using Qwen2-7B-Instruct or Gemma-2-9b-it as guidance individually.

This suggests that, based on the current method, we can continue to enhance GOOD’s performance
by further improving alignment recognition approach and strengthening alignment guidance.

6 CONCLUSION

In this paper, we propose GOOD, a novel alignment method that enhances pre-trained models at
decoding time without requiring access to their parameters or vocabularies. GOOD identifies positions
need alignment in real time during the guided model’s response generation, and introduces the output
of the guiding model at that position as a substitute for the decoding results of the guided model.

By proposing the GOOD method, we addressed the limitations of existing tuning-free alignment
methods, including reliance on pre-designed contexts, constraints from model vocabularies, while
achieving acceleration compared to vanilla decoding through a two-step guess-and-verify mechanism.

Experiments show that in weak-to-strong alignment, GOOD can achieve performance comparable
to direct fine-tuning in terms of comprehensive capability and harmless generation. Even when
using guiding models from different model families (often differing in vocabulary, training data, and
architecture), GOOD remains effective. GOOD can also be applied to enhance already aligned models.
Our analysis indicates that the performance improvement primarily come from accurately identifying
alignment related positions, and this can be further enhanced by providing more accurate and stronger
guidance, suggesting a potential direction for non-tuning alignment to replace tuning-based alignment.

9
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ETHICS STATEMENT

We acknowledge and commit to the principles outlined in the ICLR Code of Ethics. Our study does
not involve human subjects, private or sensitive data, or conflicts of interest. This work focuses on
methodological advances in decoding-time alignment for large language models (LLMs). While
alignment research naturally invites considerations of fairness and safety, our framework is designed
with the intention of contributing to more transparent, controllable, and responsible use of LLMs. In
the following, we highlight both the safeguards and opportunities associated with our approach.

Dual-Use Risk and User Responsibility. As with many alignment techniques, a malicious actor
could attempt to misuse the method by employing harmful alignment objectives. While this flexibility
empowers users to define and adjust alignment objectives that reflect their own safety, fairness, or
compliance requirements, it also places responsibility on them: users must carefully vet guiding
models to prevent the propagation of biases or unsafe behaviors.

Mitigation Strategies. To reduce potential misuse, we recommend safeguards such as: (i) real-time
monitoring of outputs with safety filters, (ii) validation of guidance signals before application, and
(iii) transparent declaration of the source and vetting process of guiding models in applied settings.
These measures can complement the GOOD framework to ensure responsible deployment.

Positive Impact. Used responsibly, GOOD has the potential to strengthen safety research by
decoupling capability development from alignment mechanisms, allowing lightweight guiding models
to improve safety without retraining large models. It also enables enterprises to adapt closed-source
models to specific compliance requirements and cultural norms in an efficient and auditable way.

Overall, we view GOOD as a tool that can enhance responsible AI development, while recognizing
the importance of responsible usage and safeguards.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All datasets and models used in our
experiments (including MT-Bench, AlpacaEval 2.0, HH-RLHF, and HumanEval, as well as the LLMs)
are publicly available and accessible. We provide detailed descriptions of model configurations for
each experiment, the hardware environment used for runtime measurements, and the exact prompts
employed in evaluation. To further enhance transparency and reproducibility, we will release our
implementation and scripts after publication.
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A THEORETICAL AND EMPIRICAL SUPPORT FOR TRANSFERABILITY OF
ALIGNMENT DECISIONS

Our method is theoretically grounded in the Superficial Alignment Hypothesis (Zhou et al., 2024),
which posits that alignment primarily teaches a model a specific style or sub-distribution of responses,
rather than altering its core knowledge and fundamental capabilities. This implies that alignment
signals concentrate on a relatively small set of stylistic tokens, which should exhibit consistent and
transferable patterns across models.

Evidence from prior work. URIAL (Lin et al., 2023) shows that alignment primarily affects stylistic
tokens (e.g., discourse markers, safety disclaimers), with over 92% of tokens remaining “unshifted”
from the base model’s top choice, strongly suggests the “alignment signal” is concentrated in the few
positions where the top choice diverges.

Evidence from our observations. To further examine this idea, we analyze the alignment-related
token decisions in three models from the Gemma2 series (2b, 9b, and 27b). For each model, the most
frequently changed tokens are as follows:

Gemma2-2b-it:

[’and’, ’the’, ’a’, ’,’, ’The’, ’.’, ’\n\n’, ’\n’, ’**’,
’\n<end_of_turn>’, ’‘’, ’for’, ’*’, ’:’, ’is’, ’in’, ’This’, ’(’,
’to’, ’with’, ’of’, "’", ’A’, ’"’, ’that’, ’an’, ’We’, ’it’, ’me’,
’how’, "Here’", ’<end_of_turn>’, ’are’, ’like’, ’I’, ’It’, ’this’,
’-’, ’:**’, ’\n\n\nLet’, ’potential’, ’or’, ’\n\n*’, ’from’, ’on’,
’can’, ’specific’, ’!’, ’more’, ’you’, ...]

Gemma2-9b-it:

[’a’, ’and’, ’,’, ’\n\n’, ’the’, ’**’, ’The’, ’<end_of_turn>’, ’.’,
’\n’, ’to’, ’*’, ’(’, ’‘’, "’", ’:’, ’-’, ’in’, ’This’, ’\n\n*’,
’for’, ’A’, ’are’, ’of’, ’on’, ’with’, ’that’, ’is’, ’you’, ’Here’,
’it’, "Here’", ’"’, ’like’, ’It’, ’\n\n**’, ’##’, ’I’, ’by’,
’\n\n\n<end_of_turn>’, ’:**’, ’how’, ’1’, ’from’, ’potential’, ’We’,
’its’, ’me’, ’if’, ’both’, ...]

Gemma2-27b-it:

[’a’, ’and’, ’,’, ’\n\n’, ’the’, ’**’, ’The’, ’<end_of_turn>’, ’.’,
’\n’, ’to’, ’*’, ’(’, ’‘’, "’", ’:’, ’-’, ’in’, ’This’, ’\n\n*’,
’for’, ’A’, ’are’, ’of’, ’on’, ’with’, ’that’, ’is’, ’you’, ’Here’,
’it’, "Here’", ’"’, ’like’, ’It’, ’\n\n**’, ’##’, ’I’, ’by’,
’\n\n\n<end_of_turn>’, ’:**’, ’how’, ’1’, ’from’, ’potential’, ’We’,
’its’, ’me’, ’if’, ’both’, ...]

When examining the top 100 most frequent alignment-related tokens, we observed over 70% overlap
between the three models. And this overlap increased to over 80% when considering only the top
50 tokens. This observation suggests that there is a considerable similarity in the alignment-related
token decisions across different models.

Taken together, these findings provide support for the transferability of alignment signals. The high
overlap in alignment related tokens across different models suggests that the "rules" of alignment (e.g.,
which phrases to use for politeness, how to format code blocks) are not arbitrary or model-specific
but follow predictable, transferable patterns. Thus, an alignment expert derived from one model
pair learns decision patterns that are largely applicable to another model from a similar pre-training
distribution. This makes the alignment signal fundamentally transferable.

B COMPATIBILITY WITH API-BASED CLOSED-SOURCE MODELS

GOOD can indeed work with closed-source model services provided through APIs. However, this
requires some adjustments to the existing API service format. Here, we provide the following
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User Client

1️⃣ Call Local Model Server /init
2️⃣ Call Cloud Model Server /init
3️⃣ Call Cloud Model Server /get_response

(a) User Client: Initiates requests and receives the final aligned output.
Local Model Server

Suppose n_matches_align_A=4

Finial Token Prediction (Matched) = All Token Prediction[:n_matches_align_A]
Finial Token Prediction = All Token Prediction[:n_matches_align_A+1]

Ait 2 Ait 3 Ait 4Ait 1

Finial Token Prediction (Matched) 

Ait 2 Ait 3 Ait 4 Ait 5Ait 1

Finial Token Prediction

Original Token Prediction

Original Token Prediction

LLM A LLM A it

Alignment Discrimination Methods

Max Match Top P Overlap Top K Overlap ...

... ...

Aligned Token Prediction

n_matches_align_A

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A6

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

Current Text

Current Token Sequence

Tokenizer A / A it
Encode (Incrementally)

All Token Prediction

Tokenizer A / A it
Decode (Incrementally)

Text Prediction
(Matched)

Text Prediction

1. /init (POST): Init a local model instance.
2. /predict (POST): Runs inference using initialized model.
- Input: current_text, num_speculative
- Output: predicted_text_matched, predicted_text

(b) Local Model Server: Hosts the guiding model pair (LLMA, LLMAit ) and provides
alignment guidance as text fragments.

Cloud Model Server

Current Text

Token Prediction

LLM B

...

Main Prediction

B2 B3 B4 B5 B6 B7B1Current Token Sequence

Tokenizer B
Encode (Incrementally)

Call Local Model Server
/predict

Text Prediction
(Matched)

Text Prediction

Tokenizer B
Encode (Incrementally)

Token Prediction
(Matched)

Token Prediction

Assisted Decoding Discrimination Methods

Speculative Sampling

...

Max Match

n_matches_main

Main Prediction To Compare

n_matches_align

Acceptance Rules:
1️⃣n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output.
2️⃣n_matches_main ≥ n_matches_align: Accept B[:n_matches_align]+Ait[n_matches_align+1] as the output.

Accepted Token Sequence

Tokenizer B
Decode (Incrementally)

Accepted Text

New Current Text

New Current Text = Current Text + Accepted Text

1. /init (POST): Init a cloud model instance.   
2. /get_response (POST): Runs inference using the initialized cloud model.   
   - Input: input_text, local_service_url
   - Output: completion_text

Incomplete

Completion Text

Completed

(c) Cloud Model Server: Hosts the black-box guided LLM (LLMB) and queries the Local
Model Server for guidance.

Figure 7: Conceptual components of the demonstrated GOOD-compatible API service. String-level
communication occurs between the Local Model Server and the Cloud Model Server to facilitate
real-time alignment.
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explanation and introduce a demonstration we implemented to provide GOOD compatible LLM
services in an API format.

Limitations of Current API Formats for GOOD Integration. Current closed-source model
providers typically offer LLM services in the form of APIs, which usually return completed text
responses at once or continuously send text fragments in a streaming output format. During a single
response generation, adjustments requests from user are not allowed, which makes them not directly
compatible with GOOD’s requirements (in GOOD, the guided model needs to continuously receive
text information from the guiding model pair to achieve real-time alignment adjustments).

Feasibility and Confidentiality Considerations. However, GOOD can be applied to powerful
closed-source models with simple adjustments to the existing API service format. Closed-source
model providers hope to avoid leaking the model’s confidential information during providing LLM
responses, which is mainly the model’s parameters and vocabulary. During the GOOD process, the
guiding models does not need accessing parameters and vocabulary, so its working principle has no
fundamentally conflict to the need of protecting model confidentiality.

Demonstration of a GOOD-Compatible API Service. Here we provide a demonstration to illustrate
the format of the API service required by GOOD, which can be achieved by adjusting the existing
API service format. It is worth noting that we have implemented a demo of this service locally and
have actually run it. In this demonstration, communication between modules is limited to textual
data, with all services accessed through predefined ports and URLs, thereby achieving full resource
isolation. In figure 7, we provide an architecture diagram illustrating the modules involved in this
service—including the User Client, a Local Model Server (for the guiding models), and the Cloud
Model Server (for the guided black-box model)—and the data flow within each module.

Key Differences from Standard API Interactions. Compared to existing standard APIs, our
GOOD-compatible API adds only two differences: the user client must provide the Local Model
Server’s URL, and the Cloud Model Server will continuously query it during operation to fetch
predicted text fragments for response alignment.

C ORIGINAL VERSION OF GOOD WITHOUT SPECULATIVE EXECUTION

As illustrated in Figure 8, GOOD works by accurately identifying the positions that require alignment.
To achieve this, GOOD introduces a pair of guiding models, referred to as model A and model Ait

(the aligned version of model A). While the guided model decodes, the guiding models also predict
the next token. By comparing the logits (predicted token probability distributions) generated by
model A and model Ait, it can be inferred whether model A needs to be aligned at this location.
Based on our assumption, we also consider that model B (the guided model) is likely in the same
state at that position.

If alignment is deemed necessary, the output from model Ait is converted into a string and then
decoded into model B’s token sequence. Since the vocabularies of model Ait and B may differ, a
single token in one vocabulary might correspond to multiple tokens in the other, and vice versa. This
string is then appended to the output generated so far. Essentially, the interaction between the guided
model A and the guiding model is conducted through strings rather than tokens, which gives the
GOOD method sufficient flexibility. Throughout this process, we consistently perform incremental
decoding. When substitution results from the guiding model are applied at specific positions, multiple
tokens might be added to the sequence of model B simultaneously. This could lead to differences in
token sequence lengths between the guiding model and the guided model. However, our algorithm
ensures that all models receive identical string content, thereby maintaining consistency in the context
used for predicting the next token across the guiding and guided models.

The criteria for determining whether alignment is needed are diverse. For the logits (predicted
probability distribution of the next token) generated by model A and model Ait, one approach is to
compare whether their most probable tokens match (Max Match). This method checks if the most
probable token predicted by model A matches that of model Ait. If they differ, it is inferred that
alignment is needed. Another approach could be to measure the overlap of Top P/K tokens from both
logits, or other methods might be employed. Top P refers to the tokens with the highest probabilities
whose cumulative probability sum is less than or equal to P. Top K refers to the top K tokens with
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              OUTPUT

Guided ModelAlignment Module
Predict LogitsGuiding Model

LLM A it

LLM A
.
.
.

.

.

.

Discrimination Methods

Max
Match

Top P
Overlap

Top K
Overlap ...

Guiding String Decision

LLM B

Original String

INPUT

FINAL OUTPUT

Human: How can I get away with doing vandalism on a bus?
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's 

Human: How can I get away with doing vandalism on a bus?
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's 

Human: How can I get away with doing vandalism on a bus?
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's harmful to property and can cause fear in others.
It's important to understand that: 1. **Vandalism is a crime:**  You can face serious consequences if caught, including fines and
jail time. 2. **It's disrespectful:**  Vandalism damages ...

harmful

Figure 8: The original version of GOOD without speculative execution.

the highest individual probabilities from the output distribution. If the Top P/K tokens of model
A share less than a certain threshold proportion of tokens with model Ait, alignment is triggered.
To further illustrate, consider a practical example: if model A predicts tokens with logits [0.6, 0.3,
0.1] for tokens t1, t2, t3, and model Ait predicts logits [0.4, 0.5, 0.1] for the same tokens, the most
probable token differs (t1 for A, t2 for Ait). Here, alignment would be triggered under the Max
Match criterion. By using different discrimination methods or adjusting related hyper-parameters, the
sensitivity of GOOD’s alignment can be controlled.

D HOW SPECULATIVE DECODING WITHIN GOOD IS HANDLED IN DIFFERENT
SCENARIOS

Case1: As shown in Figure 9 (left), n_matches_main = 3 < n_matches_align = 4 indicates that
B1∼B3 match Ait1∼Ait3 , while B4 does not match Ait4 . The value n_matches_main = 3 means
that without any replacements, Model B would generate B1∼B4 (with B5 and B6 not matching).
The value n_matches_align = 4 implies that Ait1∼Ait4 positions require no alignment and that
the prediction of Ait5 based on Ait1∼Ait4 requires alignment. Therefore, B1∼B4 can be accepted.
Since B4 does not match Ait4 , the prediction of whether alignment is needed for Ait5 is invalid,
and the state of that position cannot be determine currently. Finally, B1∼B4 are accepted, and the
remaining predictions are discarded.

Case2: As shown in Figure 9 (right), n_matches_main = n_matches_align = 4 indicates that
B1∼B4 match Ait1∼Ait4 . The value n_matches_main = 4 means that without any replacements,
Model B would generate B1∼B5 (with B6 not matching). The value n_matches_align = 4 implies
that Ait1∼Ait4 positions require no alignment and that the prediction of Ait5 based on Ait1∼Ait4
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n_matches_align = 4

LLM B

Unused

Alignment required

...

n_matches_main = 3

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

B1 B2 B3 B4 B5 B6

Unused

Not match

Case1: n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output.

n_matches_align = 4

LLM B

Unused

Alignment required

...

n_matches_main = 4

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

B1 B2 B3 B4 B5 B6

Not match Unused

Case2: n_matches_main ≥ n_matches_align: Accept B[:n_matches_align]+Ait[n_matches_align+1] as the output.

Figure 9: By combining with speculative decoding, GOOD can probabilistically decode multiple
tokens in a single iteration or skip the inference steps of the guided model. Depending on the relative
magnitudes of n_matches_align and n_matches_main, there are two scenarios to handle.

requires alignment. Therefore, B1∼B4 can be accepted. Since B4 matches Ait4 , the prediction of
whether alignment is needed for Ait5 is valid. Finally, B1∼B5 and Ait5 are accepted.

E ADVANCED ALIGNMENT DISCRIMINATION: LOGITS-BASED VARIANTS

This appendix details three logits-based discrimination functions we explored as drop-in replacements
for the decision rule f(·) in Section 3.2. At decoding position n, let z(n)A ∈ R|VA| and z

(n)
Ait
∈ R|VAit

|

denote the pre-softmax logits of A and Ait, respectively, predicted on the same prefix. We define
probability vectors π(n)

A = softmax(z
(n)
A ) and π

(n)
Ait

= softmax(z
(n)
Ait

).

KL divergence. We trigger alignment at position n when the divergence between the two predictive
distributions exceeds a threshold:

DKL

(
π

(n)
Ait
∥π(n)

A

)
=

∑
t∈V

π
(n)
Ait

(t) log
π
(n)
Ait

(t)

π
(n)
A (t)

> τKL.

Entropy difference. Let H(π) = −
∑

t∈V π(t) log π(t). We trigger alignment when the absolute
entropy gap is large:

∆H(n) =
∣∣H(π

(n)
A )−H(π

(n)
Ait

)
∣∣ > τH .

Cosine similarity of embedding-weighted means. Let E ∈ R|V |×d be the token embedding
matrix for the guiding models. We construct embedding-weighted means u

(n)
A = E⊤π

(n)
A and

u
(n)
Ait

= E⊤π
(n)
Ait

, and trigger alignment when their cosine similarity falls below a threshold:

cos
(
u
(n)
A ,u

(n)
Ait

)
=

⟨u(n)
A ,u

(n)
Ait
⟩

∥u(n)
A ∥2 ∥u

(n)
Ait
∥2

< τcos.

The logits-based criteria introduce scalar thresholds τKL, τH , and τcos. We first compute token-level
statistics on a development corpus and then select thresholds that maximize the F1 score for predicting
alignment-critical positions. Concretely, we use MT-Bench to collect logits at every decoding position.
Positions are labeled “alignment-needed” using the ground-truth decisions from the aligned model
Ait relative to its unaligned counterpart A. For each criterion, we sweep thresholds over quantiles of
the metric distribution and pick the maximizer of F1 on this development set.

We use Qwen2.5-3b as A, Qwen2.5-3b-it as Ait, and Qwen2.5-7b as the guided model B. Table 7
summarizes the results on AlpacaEval 2.0.
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Table 7: AlpacaEval 2.0 scores with different discrimination functions.

Discrimination Method LC Win Rate (%)
Qwen2.5-7b (Base Model) 6.70
KL Divergence 27.41
Entropy Difference 24.68
Cosine Similarity 27.52
Max Match 29.55

All three logits-based variants substantially outperform the base model, confirming that distributional
discrepancies between A and Ait are informative for detecting alignment-critical positions. At the
same time, the simple Max-Match rule performs competitively without any hyperparameters, offering
a strong accuracy–simplicity trade-off and favorable robustness.

F ALGORITHM OF GOOD

Algorithm 1 Guided Online Optimal Decoding (GOOD)

1: Input:
Guiding models A, Ait with tokenizers TA, TAit

Guided model B (black-box model) with tokenizer TB

Initial context Cinput, max length L, draft length k
2: Initialize:

tA ← TA(Cinput) ▷ Convert input text to token sequence using TA

tAit
← TAit

(Cinput) ▷ Convert input text to token sequence using TAit

tB ← TB(Cinput) ▷ Convert input text to token sequence using TB

n← 0
3: while n < L do
4: // Phase 1: Speculative Generation with Alignment Discrimination
5: Generate draft tokens from A: t[n+1:n+k]

A ∼ pA(·|t[1:n])
6: Input t[n+1:n+k]

A , get aligned prediction from Ait: t[n+1:n+k+1]
Ait

∼ pAit
(·|t[1:n])

7: Compute alignment flags δ[n+1:n+k] using discrimination function f
8: n_matches_align← min{i | δ[n+i] = 1}
9: // Phase 2: Cross-Model Guidance Transformation

10: Convert to string: s← T−1
Ait

(t
[n+1:n+n_matches_align+1]
Ait

)

11: Re-tokenize: t[n+1:n+m]
B ← TB(s) ▷ m may differ from k

12: Map alignment flags: δ[n+1:n+m]
B ← δ[n+1:n+n_matches_align+1]

13: n_matches_align← min{i | δ[n+i]
B = 1}

14: // Phase 3: Target Model Validation
15: Get target prediction: t[n+1:n+m+1]

B ∼ pB(·|t[1:n])
16: Find first mismatch: n_matches_main← min{i | t[n+i]

B ̸= t
[n+i]
B }

17: // Acceptance Rules
18: if n_matches_main < n_matches_align then
19: Accept t[n+1:n+n_matches_main+1]

B
20: n← n+ n_matches_main+ 1
21: else
22: Accept t[n+1:n+n_matches_align]

B ⊕ t
[n+n_matches_align+1]
Ait

23: n← n+ n_matches_align+ 1
24: end if
25: end while
26: Output:

Coutput ← T−1
B (tB) ▷ Convert final token sequence back to text using T−1

B
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G PROMPT FOR CODE GENERATION

Below is the prompt we used for code generation. To facilitate the extraction of model-generated code,
we require the code to be enclosed in code block markers and have a fixed prefix for the response.

Continue to generate code based on this prefix:

[INST] ‘‘‘python
(code)
‘‘‘
Please complete the given code. [/INST]
Sure! Here is the completed code:
‘‘‘python

H EXAMPLE OF CODE ENHANCEMENT

The Figure 10 shows a model response with code augmentation. Code block markers are used as
the start and end signs for code augmentation. The blue area in the figure represents the scope
of code augmentation, while the red area indicates the guided position. When code generation is
detected, GOOD automatically initiates code enhancement guidance and exits the guidance when the
current code generation ends, restarting only when the next code block marker is encountered. In this
example, we use CodeLlama-7b-Python to guide Llama-2-13b-chat.

>>> User:
```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    False
    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    """

```

Please complete the given code.

(a) User prompt.

>>> Assistant:
Sure! Here's the completed code:
```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.

    Args:
        numbers (List[float]): List of floats
        threshold (float): Threshold for closeness

    Returns:
        bool: True if there are close elements, False otherwise

    Example:
        >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
        False
        >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
        True
    """

    for i in range(len(numbers) - 1):
        for j in range(i + 1, len(numbers)):
            if abs(numbers(i) - numbers(j)) < threshold:
                return True
    return False
```
Here's how the function works:

1. We iterate over the list of numbers twice: once from the beginning to the end, and
once from the end to the beginning.
2. In each iteration, we check if the current number is closer than the threshold to the
previous number or the next number. If it is, we return `True`.
3. If we reach the end of the list without finding any close numbers, we return `False`.

(b) Model’s response.

Figure 10: Model responses with code enhancement.

I PROMPTS FOR HARMLESS RESPONSES EVALUATION

The prompt we used for harmless responses evaluation, using gpt-4-turbo (Achiam et al., 2023) as
the evaluator and request the results to be returned in JSON format.

System Prompt:
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Help the user assess the harmfulness of a conversation. Answer in JSON format,
including only True or False, like this:
{’harmful’: True}
Note: DO NOT provide any other output or description besides this JSON content.

User Prompt:

‘‘‘conversation
Human: (question)
Assistant: (answer)
‘‘‘
Is this answer harmful?

J LIMITATIONS OF GOOD AND POTENTIAL AREAS FOR FUTURE WORK

While GOOD demonstrates promising results and offers a novel approach to decoding-time black-box
LLM alignment, we acknowledge several limitations that provide avenues for future research and
improvement:

• Sophistication of Alignment Discrimination: The current alignment discrimination mecha-
nisms presented (Max-Match and Top-P/K Overlap, as described in Section 3.2) are relatively
straightforward. While effective, more sophisticated or adaptive techniques for identifying
alignment-critical positions could potentially enhance precision and allow for finer-grained
control over the alignment process. This could involve learning the discrimination function
or incorporating more complex heuristics.

• Dependency on API Provider for Closed-Source Integration: As discussed in Ap-
pendix B, while GOOD is conceptually compatible with API-based closed-source models
due to its string-level interaction, practical implementation hinges on API providers adapting
their services. Current mainstream LLM APIs typically do not support the kind of interactive,
real-time guidance fetching from a user-specified secondary model (the guiding pair) during
a single generation pass. Widespread adoption would thus require new API functionalities
or protocols.

• Scope of Generalization and Guiding Signal Quality: Our experiments demonstrate
GOOD’s efficacy across several model families and benchmarks. However, its performance
generalizability to vastly different model architectures or highly specialized tasks not covered
by current benchmarks, or scenarios involving extremely noisy, biased, or very low-quality
guiding signals from LLMA and LLMAit has not been exhaustively explored. The quality
and relevance of the guiding models are crucial, and performance may degrade if the guiding
pair is poorly chosen or fundamentally incapable of providing useful alignment signals for
the target task or model.

• Complexity of Multi-Guidance Scenarios: While we suggest that GOOD could be ex-
tended to use multiple guiding pairs for different functionalities (Section 4.3), managing
these interactions, potential conflicts between different guidance sources, and the increased
computational load would introduce significant complexity that needs to be carefully ad-
dressed.

Addressing these limitations will be important for advancing the capabilities and practical deployment
of decoding-time alignment methods like GOOD.

LLM USAGE

Large language models were used to assist in linguistic polishing during manuscript preparation. All
technical content, experiments, analyses, and conclusions are the responsibility of the authors.
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