
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GOOD: DECODING-TIME BLACK-BOX LLM ALIGN-
MENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated immense potential across
various applications. However, aligning these models with specific real-world tasks
and human preferences typically requires resource-intensive fine-tuning processes
such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human
Feedback (RLHF). In this paper, we propose GOOD (Guided Online Optimal
Decoding), a novel alignment method that enhances pre-trained models at decoding
time without requiring access to their parameters or vocabularies. We observed that
different aligned models exhibit similarities in their decisions of alignment-related
tokens. Inspired by this, GOOD utilizes a pair of guiding models to identify critical
positions related to alignment and adjusts the model’s output dynamically during
the decoding phase. Notably, the interaction between the guiding models and the
guided model occurs at the string level, enabling GOOD to be applied to align
even black-box models with different vocabularies. Experiments show that in
weak-to-strong alignment, GOOD can achieve performance comparable to direct
fine-tuning in terms of comprehensive capability and harmless generation, reaching
relative scores up to 102% and 99% without sacrificing decoding efficiency. Even
when guiding across model families, it can achieve 98% and 103% of the target
performance on the two tasks, respectively. Moreover, GOOD can be applied to
enhance already aligned models (improving pass@1 by 52% in code enhancement),
making it compatible with various existing alignment techniques.

1 INTRODUCTION

Table 1: Comparison of GOOD and other represen-
tative tuning-free alignment methods (Note: “●”
indicates DO NOT NEED, “●” indicates NEED).

Method
Need
extra

training?

Need
special designed

prompt?

Need accessing
vocabulary and logits

of target model?

Need extra
test-time

computation?
URIAL ● ● ● ●
RAIN ● ● ● ●
GenARM ● ● ● ●
Proxy-tuning ● ● ● ●
Aligner ● ● ● ●
GOOD ● ● ● ●

Large Language Models (LLMs) have demon-
strated remarkable potential across various ap-
plications, such as programming, writing, lan-
guage translation, etc. After pre-training on a
huge amount of text corpus, they often require
further alignment to adapt to specific real-world
tasks as well as human values and preferences.
The alignment process usually involves Instruc-
tion Tuning (Wei et al., 2021) and Preference
Learning (Ouyang et al., 2022), typically implemented through methods such as SFT (Wei et al.,
2021) and RLHF (Ouyang et al., 2022). These alignment methods have significantly enhanced the
capabilities of LLMs, suggesting that alignment-related tuning is crucial for developing AI assistants
(Bubeck et al., 2023).

However, fine-tuning-based alignment methods have three major problems. (1) They are resource-
intensive, requiring extensive training data and substantial computational power. (2) The same
fine-tuning process is often applied to different models, leading to redundancy. (3) They necessitate
direct access to the model’s parameters, which is often impractical for state-of-the-art closed-source
models (e.g., GPT-4o (OpenAI, 2024)).

Given these challenges, there is a growing interest in alignment methods that do not require fine-
tuning. Zhou et al. (2024) proposed the Superficial Alignment Hypothesis, suggesting that most of
a model’s knowledge and capabilities are acquired during pre-training, with alignment primarily
teaching the model which sub-distribution of responses to utilize in user interactions. Building

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

on this premise, recent work such as URIAL (Lin et al., 2023) has analyzed token shifts between
pre-trained LLMs and their aligned counterparts, finding that most token distribution changes occur
in language style-related tokens (e.g., discourse markers, safety disclaimers). RAIN (Li et al., 2023)
attempts to use the pre-trained LLMs to evaluate their own generation and use the evaluation results to
guide rewind and generation for AI safety. Liu et al. (2024) proposed Proxy-Tuning, which achieves
an alignment effect similar to direct fine-tuning by computing the logits difference between the
pre-trained model and its aligned version, then applying this vector to the output logits of another
model in the same model series.

Nevertheless, these tuning-free alignment methods face several limitations that restrict their appli-
cation across diverse scenarios. (1) Specifically designed in-context prompts cannot fully reflect
user preferences across different scenarios, hence failing to adapt flexibly to various types of task.
(2) Methods that adjust decoding based on token logits are constrained by the model’s vocabulary,
limiting their use to within the same model series. (3) Additionally, existing methods typically incur
additional test-time computational costs, rendering them less economically viable. These challenges
significantly hinder the practical utility of current non-tuning alignment methods, emphasizing the
need for more adaptable and efficient solutions.

To this end, we propose GOOD (Guided Online Optimal Decoding), a novel tuning-free alignment
method. Motivated by the Superficial Alignment Hypothesis, we hypothesize that alignment primarily
affects a consistent subset of stylistic tokens, making alignment decisions transferable across models;
Appendix A provides theoretical grounding and empirical evidence supporting this view. Building on
this, we propose the GOOD method, which enhances the model by dynamically adjusting its output
during the decoding phase. Specifically, GOOD uses a pair of guiding models to identify critical
locations that need alignment during the response generation, and provide corresponding guidance.
This identification process is accomplished through a two-step guess-and-verify mechanism, which
probabilistically generates multiple tokens in a single step, thereby achieving a lossless acceleration
compared to vanilla decoding. Through this dynamic adjustment, GOOD achieves comparable
performance to direct fine-tuning and exhibits high flexibility, making it effective for aligning
the behavior of black-box models, where the parameters and vocabulary are not accessible. In
Appendix B, we further provide a demonstration of how GOOD is compatible with API-based closed-
source model services, requiring only string-level communication between the involved components.
Table 1 presents a comparison between GOOD and existing tuning-free alignment methods.

Experiments show that in weak-to-strong alignment, GOOD can achieve performance comparable to
direct fine-tuning in terms of comprehensive capability and harmless generation, reaching relative
scores of 102% and 99%. Meanwhile, it delivers a 3%–13% speedup in decoding time compared with
vanilla decoding, achieved through integration with speculative decoding. Even when using guiding
models from different model families (often differing in vocabulary, training data, and architecture),
GOOD remains effective, achieving 98% and 103% of the target performance on the two tasks,
respectively. GOOD can also be applied to enhance already aligned models. In our experiments, the
code enhancement from GOOD yielded a 52% relative improvement in the guided model’s pass@1
performance. Based on these results, our analysis reveals that the performance improvement brought
by GOOD mainly stems from accurately identifying positions that need alignment, and this can be
further enhanced by providing more accurate and stronger guidance, suggesting a potential direction
for non-tuning alignment to replace tuning-based alignment.

We conclude our contributions as follows:

• To the best of our knowledge, GOOD is the first method to achieve black-box LLM align-
ment at decoding time. Distinct from existing tuning-free approaches, GOOD eliminates
dependencies on pre-designed contexts and vocabulary constraints while achieving faster
decoding than vanilla sampling, combining high flexibility with practical efficiency.

• We observe that aligned models exhibit consistent patterns in identifying alignment-critical
tokens, and model interactions naturally occur at the string level. Building on this insight,
GOOD utilizes a pair of guiding models to implement efficient decoding-time alignment
through position-aware guidance that integrates seamlessly with speculative decoding,
achieving both alignment effectiveness and decoding efficiency.

• We conducted extensive evaluations across several scenarios. Results show that in weak-
to-strong alignment scenarios, GOOD achieves 102% performance of directly fine-tuned

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

models. It also attains 103% relative safety score even when aligned across different
model families. Moreover, GOOD successfully enhances already-aligned models, improv-
ing pass@1 by 52% in code generation tasks, demonstrating compatibility with existing
alignment techniques. These demonstrations broaden the application scope of GOOD.

2 RELATED WORK

2.1 TUNING-BASED ALIGNMENT METHODS

Alignment related tuning is critical in adapting LLMs to better reflect human preferences (Wei et al.,
2021; Ouyang et al., 2022; Taori et al., 2023; Wang et al., 2023; Rafailov et al., 2024; Bubeck
et al., 2023). A common starting point is SFT (Supervised Fine-Tuning), where the model is
fine-tuned on datasets containing desired human-instructed outcomes, providing a basic level of
alignment. RLHF (Reinforcement Learning from Human Feedback) builds on SFT by incorporating
a reward model that guides the policy model towards human-preferred behaviors. There are also
several RLHF variants, such as RLAIF (RL from AI Feedback) (Lee et al., 2023), DPO (Direct
Preference Optimization) (Rafailov et al., 2024), etc., have been proposed, each aiming to improve the
efficiency and effectiveness of the alignment process (Wang et al., 2024). However, these tuning-based
methods require considerable resources, including large amounts of training data and significant
computational capabilities. Additionally, they require direct access of the model’s parameters, which
is often unfeasible for cutting-edge models like GPT-4 (Achiam et al., 2023). In sight of this, some
researchers have explored aligning model responses without parameter tuning.

2.2 TUNING-FREE ALIGNMENT METHODS

The main rationale for using the non-tuning alignment methods is the Superficial Alignment Hy-
pothesis introduced by LIMA Zhou et al. (2024), suggesting that most of a model’s knowledge and
capabilities are acquired during pre-training, with alignment primarily teaching the model which
sub-distribution of responses to utilize in user interactions. Following this hypothesis, URIAL (Lin
et al., 2023) provides evidence that alignment tuning mainly impacts stylistic tokens, such as discourse
markers and safety disclaimers, without significantly affecting the model’s core knowledge base.
Building on recent advancements in non-tuning alignment research, we categorize related methods
into the following three classes.

Pre-decoding alignment methods. URIAL (Lin et al., 2023) leverages In-Context Learning (ICL)
(Mann et al., 2020)—a paradigm that enables LLMs to adapt to new tasks through contextual prompts
without parameter updates—to achieve pre-decoding alignment. By incorporating few-shot examples
(e.g., stylistic demonstrations or inference traces) into prompts, ICL allows LLMs to better align their
outputs with user instructions. URAL demonstrates that this approach can attain effective alignment
using minimal resources: a system prompt and as few as three constant stylistic examples. Yet, this
kind of methods are highly dependent on the design of the few-shot examples, which limits their
generalizability and effectiveness in different tasks.

In-decoding alignment methods. In-decoding alignment methods perform adjustments during the
model’s response generation, typically achieved by modifying token logits or employing discrimi-
nation and search mechanisms. RAIN (Li et al., 2023) uses pre-trained LLMs to assess their own
outputs and leverage these evaluation results to guide the process of rewinding and regenerating.
Works such as GenARM (Xu et al., 2024), Args (Khanov et al., 2024), Transfer Q-star (Chakraborty
et al., 2024), and Cascade Reward Sampling (Li et al., 2024) explore reward-guided decoding from
different perspectives. Alternatively, Proxy-tuning (Liu et al., 2024) and EFT (Mitchell et al., 2023)
guide generation by injecting logit differences from aligned reference models into target predictions.
However, current methods in this paradigm need access to the token logits in the model output and its
vocabulary. These factors limits their applicability.

Post-decoding alignment methods. Aligner (Ji et al., 2024) establishes post-decoding alignment
through a two-stage progress: generating the initial response in the first stage and refining it in the
second stage. It trains a separated model that learns correctional residuals between initial and aligned
outputs without the need for fine-tuning the base LLM. Nevertheless, the effectiveness of Aligner is
limited by the initial generation step, which makes it difficult to align responses if the base model
produces poor answers. Additionally, it still requires fine-tuning of the downstream model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Acceptance Rules:
1️⃣ n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output.
2️⃣ n_matches_main ≥ n_matches_align: Accept B[:n_matches_align]+Ait[n_matches_align+1] as the output. Guided Model

Guiding Models

Original Prediction

Original Prediction

LLM A LLM A it

Alignment Discrimination Methods

Max Match Top P Overlap Top K Overlap ...

... ...

Aligned Prediction & The First Verification

n_matches_align

Assisted Decoding Discrimination Methods

Speculative Sampling

...

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A6

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

No alignment required

LLM B

Unused

Discriminated as need alignment

...

Main Prediction & The Second Verification

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

B1 B2 B3 B4 B5 B6

Max Match

n_matches_main

Ait 1 ~
Ait n_matches_align

B 1 ~
B n_matches_align

Figure 1: The principle of GOOD. GOOD utilizes a pair of guiding models to identify critical
positions related to alignment. Once a specific position is discriminated as requiring alignment, we
replace the prediction with the guiding model’s output, converting it to the guided model’s token
if needed. LLMA first predicts multiple tokens, which are then verified by LLMAit (the aligned
version of LLMA). The output from LLMAit is subsequently validated by LLMB (the guided
model). Here, n_matches_align denotes the number of tokens accepted in the first guess-and-
verify step (between LLMA and LLMAit), while n_matches_main refers to the number of tokens
accepted in the second step (between the guiding pair and LLMB). The original version of GOOD
without speculative execution, as well as how speculative decoding within GOOD is handled in
different scenarios, are provided in Appendix C and Appendix D.

2.3 LLM ENSEMBLE

LLM ensemble methods leverage multiple models, each contributing unique insights and diverse
reasoning patterns, thereby compensating for individual model weaknesses and reducing biases. Lu
et al. (2024) provides a more detailed introduction. Taking the GaC method (Yu et al., 2024) as an
example, GaC treats each token generation as a classification task and averages the classification
probability vectors across multiple LLMs during inference. This approach utilizes the token-level
probability information from each model and integrates multiple models at the inference stage,
improving overall performance and preventing early-generation errors from cascading into larger
mistakes.

2.4 SPECULATIVE DECODING

Recent work on speculative decoding has shown that large autoregressive language models can be
decoded significantly faster by combining a fast “draft” model with the original, more powerful
“target” model (Leviathan et al., 2023; Xia et al., 2022; Chen et al., 2023; Miao et al., 2024). This
approach generates several candidate tokens in parallel from smaller or more efficient models (the
draft model), then relies on the larger (target) model to validate these tokens in a single verification
step. GOOD integrates the concept of speculative decoding, combining alignment discrimination
and token generation into a dual-stage speculation-verification process, achieving both non-tuning
alignment and acceleration of target model decoding.

3 METHOD

In this section, we introduce the principles of GOOD (Guided Online Optimal Decoding), with
an overview provided in Figure 1. The original version of GOOD without speculative execution
is provided in Appendix C, clearly demonstrating its core principles. The goal of GOOD is to
achieve flexible and efficient tuning-free alignment, without accessing the parameters, logits, or
vocabulary of the target model. Appendix B provides a demonstration of how GOOD is compatible
with API-based closed-source model services, requiring only string-level communication between
the involved components.

We first formalize the problem setting and notation, then detail the two key components of GOOD:
(1) discriminating which positions need alignment, and (2) the transformation of guidance (including

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

token conversion across vocabularies and alignment flag updates). Finally, we present the overall
process, incorporating the speculative verification mechanism.

3.1 PROBLEM SETTING AND NOTATION

Let B be the guided model that we aim to align, but for which we only have black-box (string-based)
access. We assume access to a guiding model A (the unaligned version), and its aligned variant Ait.
We denote tokenizers as follows: TA, TAit

for the guiding pair, and TB for the guided model.

A single decoding step at position n generates the next token tn. We write pA(t | t[1:n−1]), pAit
(t |

t[1:n−1]), and pB(t | t[1:n−1]) for the probability (logit) distribution of the next token, conditioned on
the partial sequence t[1:n−1].

We wish to produce an output that is aligned to human preferences (following instructions, safety
constraints, etc.), even though B itself is not aligned. Our approach will replace certain tokens
(or sequences of tokens) in B’s raw decoding with corresponding tokens from Ait, guided by a
token-level alignment discrimination through comparing pA and pAit

.

3.2 ALIGNMENT DISCRIMINATION

We define a function f(·) to decide whether to align at each step: δn = f
(
{pA(t | t[1:n−1])}, {pAit(t |

t[1:n−1])}
)
, where δn ∈ {0, 1} is an alignment flag, indicating “no alignment needed” or “alignment

needed” at position n.

Here we list two variants of f :

1. Max-Match: Compare the single highest-probability token for A vs. Ait. Formally, if
argmaxt pA(t | t[1:n−1]) ̸= argmaxt pAit

(t | t[1:n−1]), then δn = 1; otherwise 0.
2. Top-P /K Overlap: For guiding model A, we define SA

topP as the minimal set of highest-
probability tokens whose cumulative probability exceeds P , and SA

topK as the top-K highest-
probability tokens. Similarly, define SAit

topP and SAit

topK for Ait. Then we decide: δn = 1 if
|SA

topP/K ∩ SAit

topP/K | < τ ; otherwise 0, where τ is a threshold that is a nonnegative integer.
This approach allows the alignment sensitivity to be easily adjusted by simply adjusting τ .

Beyond these discrete overlap rules, we also experimented with more advanced logits-based discrimi-
nation strategies, which showed competitive results; details are provided in Appendix E.

3.3 GUIDANCE TRANSFORMATION

Whenever δn = 1, we seek to replace B’s next token with the prediction from Ait. Considering Ait

and B may have different vocabularies, we process substitutions at the string level to preserve context
equivalence. Formally:

1. Token-to-String: Let tnew[1:m]
Ait

denote the newly predicted m tokens from Ait at the current

step. Convert these tokens into a substring: snew = T−1
Ait

(t
new[1:m]
Ait

).

2. Re-tokenize: Tokenize snew into B’s vocabulary: tnew[1:n]
B = TB(s

new), where n may differ
from m due to vocabulary mismatches.

3. Alignment Flag Update: For each token t
new[i]
B in B’s sequence, identify all tokens tnew[j]

Ait

from Ait that contribute to its formation via string-level mapping, including direct 1-to-1
token mapping, substrings of tnew[j]

Ait
, or multi-token overlaps from Ait.

Set the alignment flag for tnew[i]
B as: δnew[i]

B = 1 if ∃ j s.t. tnew[j]
Ait

contributes to t
new[i]
B and δ

new[j]
A = 1;

otherwise 0. The updated alignment count is then: n_matches_align = min{i | δnew[i]
B = 1}.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 OVERALL ALGORITHM

Building upon the alignment discrimination mechanism (3.2) and guidance transformation process
(3.3), we present the complete GOOD algorithm through pseudocode in Algorithm 1 (see Appendix F).

Here, we provide a simplified description of the workflow for the GOOD algorithm:

1. Speculative generation with alignment discrimination: Generate draft tokens using the
unaligned model (A) and validate them with the aligned model (Ait). Identify positions
requiring alignment (δn = 1) using a discrimination function.

2. Cross-model guidance transformation: Transform the validated token sequence into the
vocabulary of the guided model (B) while correspondingly converting alignment flags (δ).

3. Target model validation: Feed the transformed tokens into the guided model (B) for
validation. Obtained the final output based on acceptance rules.

4 EXPERIMENT

We conducted four experiments to test the capabilities of GOOD: comprehensive performance,
harmless generation, enhancing aligned models, and the speed of decoding.

Tasks and datasets. We use MT-Bench (Zheng et al., 2023) and AlpacaEval 2.0 (Dubois et al., 2024)
to evaluate the comprehensive performance of GOOD. MT-Bench is a multi-task benchmark that
measures model capabilities across diverse domains, while AlpacaEval is a benchmark for assessing
instruction-following. To evaluate the ability of the GOOD to generate harmless responses, we
conducted experiments on the Helpful and Harmless (HH) dataset (Ganguli et al., 2022), designed
to test how models perform in complex and sensitive scenarios. In the experiment to enhance the
capabilities of already aligned models, we focused on improving code generation skills and evaluated
performance on the HumanEval dataset (Chen et al., 2021). In the decoding speed experiments,
considering the diversity of tasks, we also used the MT-Bench dataset as the test input.

Models. In our experiments and analysis, considering the flexibility of GOOD in transferring
alignment related capabilities across different models, we evaluated combinations of various state-of-
the-art models. Specifically, we used the Llama series (Llama-2 (Touvron et al., 2023), CodeLlama
(Roziere et al., 2023)), the Gemma series (Gemma-2 (Team et al., 2024)), and Qwen series (Qwen2
(Yang et al., 2024)) to assess the method’s performance and generality.

4.1 COMPREHENSIVE EVALUATION
Table 2: MT-Bench scores for different models and
methods.

Method Model MT-Bench Score

GOOD
Gemma-2-2b-it→ Gemma-2-27b 8.30

Llama-2-7b-it→ Llama-2-70b 6.91
Qwen-2-7b-it→ Qwen-2-72b 8.48

GOOD(Split) Gemma-2-9b-it + Qwen-2-7b-it→ Qwen-2-72b 8.64

Proxy-Tuning
Gemma-2-2b-it→ Gemma-2-27b 3.70

Llama-2-7b-it→ Llama-2-70b 6.41
Qwen-2-7b-it→ Qwen-2-72b 8.47

Baseline

Gemma-2-27b-it 8.97
Llama-2-70b-it 6.86
Qwen-2-72b-it 9.12

On MT-Bench, we tested the effectiveness
of weak-to-strong guidance in the Gemma2,
Llama2, and Qwen2 series, as well as the cross-
family guidance provided by the Gemma2 se-
ries to the Qwen2 series models. In the latter
case, we used small guiding model pairs from
the same series as the alignment discriminator
and applied guidance from Gemma2 at positions
identified as alignment-related. As shown in the Table 2, whether for guidance within the same
series or across different series, GOOD-guided alignment achieved performance comparable to direct
fine-tuning. In the case of Llama-2-7b-chat guiding Llama-2-70b, the alignment performance even
surpassed direct fine-tuning. In comparison with the Proxy-Tuning, GOOD outperformed in all three
configurations and demonstrated more stable performance (the baseline method did not perform as
well on the Gemma2 series).

Table 3: AlpacaEval 2.0 results across methods.
Methods LC Win Rate (%) Win Rate (%)
Vanilla LLM 0.770 0.352
PPO (Schulman et al., 2017) 0.485 0.195
DPO (Rafailov et al., 2023) 0.396 0.159
BoN (Touvron et al., 2023) 0.763 0.358
Item-level RS (Eikema et al., 2022) 1.387 0.702
ARGS (Khanov et al., 2024) 0.544 0.238
RAIN (Li et al., 2023) 1.252 0.619
TreeBoN (Qiu et al., 2024) 0.599 0.271
CARDS (Li et al., 2024) 1.609 0.878
GOOD (ours) 1.680 1.503

We further assess the effectiveness of GOOD
on AlpacaEval 2.0 (Dubois et al., 2024). For
a direct and fair comparison, we adhere to the
experimental setup established by CARDS (Li
et al., 2024). All methods share the same base
model (LLaMA-7B (Touvron et al., 2023)),
and GOOD employs TinyLlama-1.1B-Chat and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

TinyLlama-1.1B (Zhang et al., 2024) as the guiding pair. As shown in Table 3, GOOD attains the
best LC Win Rate and Win Rate among a broad spectrum of recent and established baselines.

4.2 HARMLESS GENERATION
Table 4: Harmless ratios for different models and
methods, evaluated by gpt-4o.

Method Model Harmless ratio (%)

GOOD
Gemma-2-2b-it→ Gemma-2-27b 74.7

Llama-2-7b-it→ Llama-2-70b 74.7
Qwen-2-7b-it→ Qwen-2-72b 70.6

GOOD(Split) Gemma-2-9b-it + Qwen-2-7b-it→ Qwen-2-72b 74.6

Proxy-Tuning
Gemma-2-2b-it→ Gemma-2-27b 54.3

Llama-2-7b-it→ Llama-2-70b 77.6
Qwen-2-7b-it→ Qwen-2-72b 68.3

Baseline

Gemma-2-27b-it 75.6
Llama-2-70b-it 76.6
Qwen-2-72b-it 73.0

The harmless generation test focuses on the
safety of model when responding to sensitive
questions, using the same model configuration
as 4.1. We use gpt-4o (Hurst et al., 2024) as
the evaluator, the prompt used for evaluation is
shown in Appendix I. The harmless ratios for
various model settings are summarized in Ta-
ble 4, demonstrating the improvements achieved
through the guiding alignment process. Table 5: Comparison of GOOD with reward-based

decoding-time methods on HH-RLHF dataset.
Method vs. DPO Win (%) Tie (%) Lose (%) Win + ½ Tie (%)
ARGS 24.44 4.89 70.67 26.89
Transfer-Q 31.00 5.44 63.56 33.72
CARDS 37.89 8.11 54.00 41.94
GenARM 48.00 6.89 45.11 51.44

GOOD (ours) 41.67 5.67 52.67 44.50

Under the guidance of smaller models within
the same series, we achieved 99% (Gemma2),
98% (Llama2), and 97% (Qwen2) alignment
performance relative to direct fine-tuning in the
three model configurations. Compared to the
baseline method (Proxy-Tuning), GOOD outperformed in two configurations and demonstrated
greater stability. Notably, by introducing external guidance across model families, the harmlessness
ratio in the GOOD(Split) configuration surpassed the directly fine-tuned guided model (74.6% vs
73.0%), highlighting the advantages brought by GOOD’s flexibility.

To further validate GOOD’s effectiveness on harmless generation, we conducted additional compar-
isons against prominent reward-based decoding-time alignment methods, following the experimental
setup of GenARM (Xu et al., 2024). In GenARM, the LLaMA-7B-SFT checkpoint provided by
Khanov et al. (2024) is used as the base model, which is fine-tuned from LLaMA-7B (Touvron et al.,
2023) on the preferred responses of the HH-RLHF. For both RM and DPO, they fine-tune LLaMA-
7B-SFT with LoRA for one epoch on the training split of HH-RLHF. We used TinyLlama-1.1B-Chat
and TinyLlama-1.1B as a pair of guiding models (Zhang et al., 2024). And we followed the model
preparation process of GenARM to performed the same DPO training on TinyLlama-1.1B-Chat.

Here we report the comparison results in Table 5. Despite leveraging significantly smaller guiding
models, GOOD achieves competitive alignment performance, outperforming several reward-based
methods (ARGS, Transfer-Q, CARDS) and approaching the performance of GenARM.

4.3 ENHANCE ALIGNED MODEL
Table 6: Pass@1 scores on HumanEval. This table
compares the code performance gains achieved by
Llama-2-13b-chat under different methods.

Method HumanEval Pass@1
Llama-2-13b-chat 21.3

CodeLlama-7b-python 38.4
CodeLlama-7b-python + Llama-2-13b-chat (GaC) 29.9

CodeLlama-7b-python→ Llama-2-13b-chat (Proxy-Tuning) 32.1
CodeLlama-7b-python→ Llama-2-13b-chat (GOOD) 32.3

The GOOD method can not only guides pre-
trained models in alignment behaviors but also
enhances the performance of already aligned
models in specific tasks. Our experiment is eval-
uated based on the HumanEval dataset. We used
CodeLlama-7b-python and Llama-2-7b as the guiding model pair in the GOOD method to enhance
the code performance of Llama-2-13b-chat (as the guided model), with Top_PA=0.8 and Top_PAit=0.
Consistent with Proxy-Tuning (Liu et al., 2024), we set Top_P (sampling parameter) to 0.95, tem-
perature to 0.1, and calculated the pass@1 score. According to the definition provided in Lu et al.
(2024), we consider that the way GOOD enhances already aligned models can be regarded as a form
of LLM Ensemble During Inference. Therefore, we also compared it with the recently proposed GaC
method (Yu et al., 2024).

The detailed performance results are shown in Table 6, where our method achieved a score of 32.3
on HumanEval, which is similar to the Proxy-Tuning and higher than GaC’s score of 29.9. The
prompt used in our evaluation is shown in Appendix G. Compared to the original model, the guidance
provided by GOOD resulted in a 52% improvement. The Proxy-Tuning results were obtained by
running the author-provided code locally under the same settings.

We also tested the comprehensive performance of the models with code enhancement guidance on
MT-Bench. We used the default configuration of GOOD (Max Match) and utilized code block markers

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

as the start and end signals for enhanced guidance (A specific example is shown in Appendix H). As
shown in Figure 2, experimental results indicate that models with GOOD-enhanced guidance can
surpass both the original and guiding models in comprehensive performance, with score increasing
from 6.65 to 6.88.

4.4 DECODING SPEED OF GOOD
Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
CodeLlama-7b-Python→Llama-2-13b-chat, Score=6.88
Llama-2-13b-chat, Score=6.65
CodeLlama-7b-Python, Score=1.37

Figure 2: Comprehensive performance with code
enhancement guidance, evaluated on MT-Bench.
GOOD surpass both guiding and guided models.

Gemma Llama Qwen
Model Settings

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

To
ke

n
De

co
di

ng
 T

im
e

Gemma-2-27B-Instruct
Gemma-2-2B-Instruct Gemma-2-27B
Llama-2-70b-chat
Llama-2-7b-chat Llama-2-70b
Qwen-2-72B-Instruct
Qwen-2-7B-Instruct Qwen-2-72B

Figure 3: Average token decoding time of GOOD
and Vanilla Decoding.

By combining with speculative decoding, GOOD can probabilistically generate multiple tokens in
a single iteration or skip the inference steps of the guided model. Considering the diversity of test
samples, we used the question set from the MT-Bench dataset as input for decoding speed test (which
includes 8 types of tasks). As shown in Figure 3, GOOD outperforms vanilla decoding in decoding
speed across all three configurations, achieving up to a 13% speedup. Due to different memory
requirements for different model configurations, the tests for Gemma-2-2B-Instruct→ Gemma-2-27B
were conducted on L40s 48G× 8, while the other two were tested on A100 80G× 8. The baselines
were evaluated in the corresponding testing environments.

5 ANALYSIS

5.1 WHERE DOES THE PERFORMANCE ENHANCEMENT MAINLY COME FROM?

0.30.30.3 0.29 0.280.28 0.25 0.23 0.2 0.16
Different Guided Decoding Ratio on Gemma-2-2b-it Gemma-2-9b

3

4

5

6

7

8

9

M
T

Be
nc

h
Sc

or
e

Gemma-2-9b, MT-Bench Score 2.69

Gemma-2-2b-it, MT-Bench Score 7.60

Gemma-2-9b-it, MT-Bench Score 8.34

Gemma-2-2b-it Gemma-2-9b (use random guidance with ratio=0.3), MT-Bench Score 5.15

Top_P_A 0.0, MT-Bench Score 7.81
Top_P_A 0.1, MT-Bench Score 7.7
Top_P_A 0.2, MT-Bench Score 7.67
Top_P_A 0.3, MT-Bench Score 7.83
Top_P_A 0.4, MT-Bench Score 7.73
Top_P_A 0.5, MT-Bench Score 7.76
Top_P_A 0.6, MT-Bench Score 7.75
Top_P_A 0.7, MT-Bench Score 7.67
Top_P_A 0.8, MT-Bench Score 7.23
Top_P_A 0.9, MT-Bench Score 6.9

Figure 4: Performance of alignment guidance with varying guided decoding ratios.

To illustrate why the guidance provided by GOOD can help the model achieve performance gains, we
evaluated the guided decoding ratio (controlled by adjusting Top_PA) and MT Bench performance
under different parameter configurations, and compared them with random decoding. Based on
URIAL’s definition of token shift, we fixed Top_PAit

to 0 and adjusted the size of Top_PA. Due to
potential differences in vocabularies between guiding models and the guided model in GOOD, we
count the number of guided decodings and original decodings based on the character level in the final
results. As shown in Figure 4, the scores of alignment guidance consistently range from 7.67 to 7.83
as the proportion of guided decodings decreases from 0.30 to 0.23.

Even with approximately a 23% reduction in guided decodings (from 0.3 to 0.23), the performance
does not experience significant changes. Meanwhile, when random guided decoding at a 0.3 ratio
was provided, the model’s performance was significantly lower than that of GOOD-guided decoding.
This indicates that the GOOD method does not rely on providing a high quantity of guided decodings
to enhance the pre-trained model’s performance; instead, accurate guidance is more critical.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 TOKEN CHANGES IN GOOD-GUIDED DECODING

To understand the alignment behavior characteristics of models guided by GOOD, we compared the
token changes between models aligned using the GOOD method and those aligned directly through
fine-tuning, with statistics derived from their responses on the MT-Bench dataset.

10 14
26

20

20 16

44

Llama-3-8B-Instruct Qwen2-7B
Llama-3-8B-Instruct

Qwen2-7B-Instruct

(a)

33 32
8

29

11 12

48

Qwen2-7B-Instruct Llama-3-8B
Llama-3-8B-Instruct

Qwen2-7B-Instruct

(b)

Figure 5: Comparison of token changes in guided
decoding alignments.

We counted the top 100 most frequently chang-
ing tokens in each setting. Results show that in
the guidance of Llama-3-8B-Instruct to Qwen2-
7B, the token changes overlap 70% with Llama-
3-8B-Instruct and 64% with Qwen2-7B-Instruct.
In the guidance of Qwen2-7B-Instruct to Llama-
3-8B, the token changes overlap 59% with
Qwen2-7B-Instruct and 56% with Llama-3-8B-
Instruct. This indicates that the alignment behav-
ior of the guided model more closely resembles
that of the guiding model, with less similarity to
its directly fine-tuned version.

5.3 MORE ACCURATE IDENTIFICATION AS WELL AS STRONGER GUIDANCE.

Configuration1 Configuration2 Configuration3
Difference model configurations

6.5

7.0

7.5

8.0

8.5

9.0

9.5

M
T-B

en
ch

 S
co

re
8.12

8.48
8.64

1: Gemma-2-9b-it Qwen2-72B
2: Qwen2-7B-Instruct Qwen2-72B
3: Gemma-2-9b-it + Qwen2-7B-Instruct Qwen2-72B

Figure 6: Alignment performance
when using more accurate identifi-
cation as well as stronger guidance.

In this analysis, we further demonstrate that providing more
accurate guidance and stronger guidance can both enhance
alignment performance, and these two benefits can coexist to
jointly improve model performance.

We measured the performance of guiding Qwen2-72B with
Gemma-2-9b-it (using both discrimination and guidance from
Gemma-2-9b-it) and compared it with the data from Exper-
iment 4.1. Since Qwen2-7B-Instruct and Qwen2-72B be-
long to the same model family and are trained on the same
dataset, Qwen2-7B-Instruct offers more accurate recognition
than Gemma-2-9b-it. Meanwhile, Gemma-2-9b-it has a higher
score on MT-Bench, indicating it can provide stronger guidance
at the same decoding positions. As shown in Figure 6, the
results demonstrate that the configuration combining Qwen2-
7B-Instruct’s discrimination with Gemma-2-9b-it’s guidance
outperforms using Qwen2-7B-Instruct or Gemma-2-9b-it as guidance individually.

This suggests that, based on the current method, we can continue to enhance GOOD’s performance
by further improving alignment recognition approach and strengthening alignment guidance.

6 CONCLUSION

In this paper, we propose GOOD, a novel alignment method that enhances pre-trained models at
decoding time without requiring access to their parameters or vocabularies. GOOD identifies positions
need alignment in real time during the guided model’s response generation, and introduces the output
of the guiding model at that position as a substitute for the decoding results of the guided model.

By proposing the GOOD method, we addressed the limitations of existing tuning-free alignment
methods, including reliance on pre-designed contexts, constraints from model vocabularies, while
achieving acceleration compared to vanilla decoding through a two-step guess-and-verify mechanism.

Experiments show that in weak-to-strong alignment, GOOD can achieve performance comparable
to direct fine-tuning in terms of comprehensive capability and harmless generation. Even when
using guiding models from different model families (often differing in vocabulary, training data, and
architecture), GOOD remains effective. GOOD can also be applied to enhance already aligned models.
Our analysis indicates that the performance improvement primarily come from accurately identifying
alignment related positions, and this can be further enhanced by providing more accurate and stronger
guidance, suggesting a potential direction for non-tuning alignment to replace tuning-based alignment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We acknowledge and commit to the principles outlined in the ICLR Code of Ethics. Our study does
not involve human subjects, private or sensitive data, or conflicts of interest. This work focuses on
methodological advances in decoding-time alignment for large language models (LLMs). While
alignment research naturally invites considerations of fairness and safety, our framework is designed
with the intention of contributing to more transparent, controllable, and responsible use of LLMs. In
the following, we highlight both the safeguards and opportunities associated with our approach.

Dual-Use Risk and User Responsibility. As with many alignment techniques, a malicious actor
could attempt to misuse the method by employing harmful alignment objectives. While this flexibility
empowers users to define and adjust alignment objectives that reflect their own safety, fairness, or
compliance requirements, it also places responsibility on them: users must carefully vet guiding
models to prevent the propagation of biases or unsafe behaviors.

Mitigation Strategies. To reduce potential misuse, we recommend safeguards such as: (i) real-time
monitoring of outputs with safety filters, (ii) validation of guidance signals before application, and
(iii) transparent declaration of the source and vetting process of guiding models in applied settings.
These measures can complement the GOOD framework to ensure responsible deployment.

Positive Impact. Used responsibly, GOOD has the potential to strengthen safety research by
decoupling capability development from alignment mechanisms, allowing lightweight guiding models
to improve safety without retraining large models. It also enables enterprises to adapt closed-source
models to specific compliance requirements and cultural norms in an efficient and auditable way.

Overall, we view GOOD as a tool that can enhance responsible AI development, while recognizing
the importance of responsible usage and safeguards.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All datasets and models used in our
experiments (including MT-Bench, AlpacaEval 2.0, HH-RLHF, and HumanEval, as well as the LLMs)
are publicly available and accessible. We provide detailed descriptions of model configurations for
each experiment, the hardware environment used for runtime measurements, and the exact prompts
employed in evaluation. To further enhance transparency and reproducibility, we will release our
implementation and scripts after publication.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, John A. Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuan-Fang Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4. ArXiv, abs/2303.12712, 2023. URL https://api.semanticscholar.org/
CorpusID:257663729.

Souradip Chakraborty, Soumya Suvra Ghosal, Ming Yin, Dinesh Manocha, Mengdi Wang, Am-
rit Singh Bedi, and Furong Huang. Transfer q-star: Principled decoding for llm alignment.
Advances in Neural Information Processing Systems, 37:101725–101761, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

10

https://api.semanticscholar.org/CorpusID:257663729
https://api.semanticscholar.org/CorpusID:257663729

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Bryan Eikema, Germán Kruszewski, Christopher R Dance, Hady Elsahar, and Marc Dymetman.
An approximate sampler for energy-based models with divergence diagnostics. Transactions on
Machine Learning Research, 2022.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858,
2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Jiaming Ji, Boyuan Chen, Hantao Lou, Donghai Hong, Borong Zhang, Xuehai Pan, Juntao Dai, and
Yaodong Yang. Aligner: Achieving efficient alignment through weak-to-strong correction. arXiv
preprint arXiv:2402.02416, 2024.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Args: Alignment as reward-guided search.
arXiv preprint arXiv:2402.01694, 2024.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling rein-
forcement learning from human feedback with ai feedback. In Forty-first International Conference
on Machine Learning, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Bolian Li, Yifan Wang, Anamika Lochab, Ananth Grama, and Ruqi Zhang. Cascade reward sampling
for efficient decoding-time alignment. arXiv preprint arXiv:2406.16306, 2024.

Yuhui Li, Fangyun Wei, Jinjing Zhao, Chao Zhang, and Hongyang Zhang. Rain: Your language
models can align themselves without finetuning. arXiv preprint arXiv:2309.07124, 2023.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi Chandu,
Chandra Bhagavatula, and Yejin Choi. The unlocking spell on base llms: Rethinking alignment via
in-context learning. In The Twelfth International Conference on Learning Representations, 2023.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia Tsvetkov, Yejin Choi, and Noah A Smith. Tuning
language models by proxy. arXiv preprint arXiv:2401.08565, 2024.

Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui Xia, and Jiajun Zhang. Merge, ensemble,
and cooperate! a survey on collaborative strategies in the era of large language models. arXiv
preprint arXiv:2407.06089, 2024.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam, G Sastry, A Askell,
S Agarwal, et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 1,
2020.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024.

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea Finn, and Christopher D Manning. An
emulator for fine-tuning large language models using small language models. arXiv preprint
arXiv:2310.12962, 2023.

OpenAI. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Chenhao Zhu, Xinzhe Juan, Ling Yang,
Huazheng Wang, Kaixuan Huang, et al. Treebon: Enhancing inference-time alignment with
speculative tree-search and best-of-n sampling. arXiv preprint arXiv:2410.16033, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. How far
can camels go? exploring the state of instruction tuning on open resources. ArXiv, abs/2306.04751,
2023. URL https://api.semanticscholar.org/CorpusID:259108263.

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of llm alignment techniques:
Rlhf, rlaif, ppo, dpo and more. arXiv preprint arXiv:2407.16216, 2024.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Heming Xia, Tao Ge, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decoding: Lossless
speedup of autoregressive translation. 2022.

Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang,
and Sumitra Ganesh. Genarm: Reward guided generation with autoregressive reward model for
test-time alignment. arXiv preprint arXiv:2410.08193, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Yao-Ching Yu, Chun-Chih Kuo, Ziqi Ye, Yu-Cheng Chang, and Yueh-Se Li. Breaking the ceiling of
the llm community by treating token generation as a classification for ensembling. arXiv preprint
arXiv:2406.12585, 2024.

12

https://api.semanticscholar.org/CorpusID:259108263

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THEORETICAL AND EMPIRICAL SUPPORT FOR TRANSFERABILITY OF
ALIGNMENT DECISIONS

Our method is theoretically grounded in the Superficial Alignment Hypothesis (Zhou et al., 2024),
which posits that alignment primarily teaches a model a specific style or sub-distribution of responses,
rather than altering its core knowledge and fundamental capabilities. This implies that alignment
signals concentrate on a relatively small set of stylistic tokens, which should exhibit consistent and
transferable patterns across models.

Evidence from prior work. URIAL (Lin et al., 2023) shows that alignment primarily affects stylistic
tokens (e.g., discourse markers, safety disclaimers), with over 92% of tokens remaining “unshifted”
from the base model’s top choice, strongly suggests the “alignment signal” is concentrated in the few
positions where the top choice diverges.

Evidence from our observations. To further examine this idea, we analyze the alignment-related
token decisions in three models from the Gemma2 series (2b, 9b, and 27b). For each model, the most
frequently changed tokens are as follows:

Gemma2-2b-it:

[’and’, ’the’, ’a’, ’,’, ’The’, ’.’, ’\n\n’, ’\n’, ’**’,
’\n<end_of_turn>’, ’‘’, ’for’, ’*’, ’:’, ’is’, ’in’, ’This’, ’(’,
’to’, ’with’, ’of’, "’", ’A’, ’"’, ’that’, ’an’, ’We’, ’it’, ’me’,
’how’, "Here’", ’<end_of_turn>’, ’are’, ’like’, ’I’, ’It’, ’this’,
’-’, ’:**’, ’\n\n\nLet’, ’potential’, ’or’, ’\n\n*’, ’from’, ’on’,
’can’, ’specific’, ’!’, ’more’, ’you’, ...]

Gemma2-9b-it:

[’a’, ’and’, ’,’, ’\n\n’, ’the’, ’**’, ’The’, ’<end_of_turn>’, ’.’,
’\n’, ’to’, ’*’, ’(’, ’‘’, "’", ’:’, ’-’, ’in’, ’This’, ’\n\n*’,
’for’, ’A’, ’are’, ’of’, ’on’, ’with’, ’that’, ’is’, ’you’, ’Here’,
’it’, "Here’", ’"’, ’like’, ’It’, ’\n\n**’, ’##’, ’I’, ’by’,
’\n\n\n<end_of_turn>’, ’:**’, ’how’, ’1’, ’from’, ’potential’, ’We’,
’its’, ’me’, ’if’, ’both’, ...]

Gemma2-27b-it:

[’a’, ’and’, ’,’, ’\n\n’, ’the’, ’**’, ’The’, ’<end_of_turn>’, ’.’,
’\n’, ’to’, ’*’, ’(’, ’‘’, "’", ’:’, ’-’, ’in’, ’This’, ’\n\n*’,
’for’, ’A’, ’are’, ’of’, ’on’, ’with’, ’that’, ’is’, ’you’, ’Here’,
’it’, "Here’", ’"’, ’like’, ’It’, ’\n\n**’, ’##’, ’I’, ’by’,
’\n\n\n<end_of_turn>’, ’:**’, ’how’, ’1’, ’from’, ’potential’, ’We’,
’its’, ’me’, ’if’, ’both’, ...]

When examining the top 100 most frequent alignment-related tokens, we observed over 70% overlap
between the three models. And this overlap increased to over 80% when considering only the top
50 tokens. This observation suggests that there is a considerable similarity in the alignment-related
token decisions across different models.

Taken together, these findings provide support for the transferability of alignment signals. The high
overlap in alignment related tokens across different models suggests that the "rules" of alignment (e.g.,
which phrases to use for politeness, how to format code blocks) are not arbitrary or model-specific
but follow predictable, transferable patterns. Thus, an alignment expert derived from one model
pair learns decision patterns that are largely applicable to another model from a similar pre-training
distribution. This makes the alignment signal fundamentally transferable.

B COMPATIBILITY WITH API-BASED CLOSED-SOURCE MODELS

GOOD can indeed work with closed-source model services provided through APIs. However, this
requires some adjustments to the existing API service format. Here, we provide the following

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

User Client

1️⃣ Call Local Model Server /init
2️⃣ Call Cloud Model Server /init
3️⃣ Call Cloud Model Server /get_response

(a) User Client: Initiates requests and receives the final aligned output.
Local Model Server

Suppose n_matches_align_A=4

Finial Token Prediction (Matched) = All Token Prediction[:n_matches_align_A]
Finial Token Prediction = All Token Prediction[:n_matches_align_A+1]

Ait 2 Ait 3 Ait 4Ait 1

Finial Token Prediction (Matched)

Ait 2 Ait 3 Ait 4 Ait 5Ait 1

Finial Token Prediction

Original Token Prediction

Original Token Prediction

LLM A LLM A it

Alignment Discrimination Methods

Max Match Top P Overlap Top K Overlap ...

... ...

Aligned Token Prediction

n_matches_align_A

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A6

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

Current Text

Current Token Sequence

Tokenizer A / A it
Encode (Incrementally)

All Token Prediction

Tokenizer A / A it
Decode (Incrementally)

Text Prediction
(Matched)

Text Prediction

1. /init (POST): Init a local model instance.
2. /predict (POST): Runs inference using initialized model.
- Input: current_text, num_speculative
- Output: predicted_text_matched, predicted_text

(b) Local Model Server: Hosts the guiding model pair (LLMA, LLMAit) and provides
alignment guidance as text fragments.

Cloud Model Server

Current Text

Token Prediction

LLM B

...

Main Prediction

B2 B3 B4 B5 B6 B7B1Current Token Sequence

Tokenizer B
Encode (Incrementally)

Call Local Model Server
/predict

Text Prediction
(Matched)

Text Prediction

Tokenizer B
Encode (Incrementally)

Token Prediction
(Matched)

Token Prediction

Assisted Decoding Discrimination Methods

Speculative Sampling

...

Max Match

n_matches_main

Main Prediction To Compare

n_matches_align

Acceptance Rules:
1️⃣n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output.
2️⃣n_matches_main ≥ n_matches_align: Accept B[:n_matches_align]+Ait[n_matches_align+1] as the output.

Accepted Token Sequence

Tokenizer B
Decode (Incrementally)

Accepted Text

New Current Text

New Current Text = Current Text + Accepted Text

1. /init (POST): Init a cloud model instance.
2. /get_response (POST): Runs inference using the initialized cloud model.
 - Input: input_text, local_service_url
 - Output: completion_text

Incomplete

Completion Text

Completed

(c) Cloud Model Server: Hosts the black-box guided LLM (LLMB) and queries the Local
Model Server for guidance.

Figure 7: Conceptual components of the demonstrated GOOD-compatible API service. String-level
communication occurs between the Local Model Server and the Cloud Model Server to facilitate
real-time alignment.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

explanation and introduce a demonstration we implemented to provide GOOD compatible LLM
services in an API format.

Limitations of Current API Formats for GOOD Integration. Current closed-source model
providers typically offer LLM services in the form of APIs, which usually return completed text
responses at once or continuously send text fragments in a streaming output format. During a single
response generation, adjustments requests from user are not allowed, which makes them not directly
compatible with GOOD’s requirements (in GOOD, the guided model needs to continuously receive
text information from the guiding model pair to achieve real-time alignment adjustments).

Feasibility and Confidentiality Considerations. However, GOOD can be applied to powerful
closed-source models with simple adjustments to the existing API service format. Closed-source
model providers hope to avoid leaking the model’s confidential information during providing LLM
responses, which is mainly the model’s parameters and vocabulary. During the GOOD process, the
guiding models does not need accessing parameters and vocabulary, so its working principle has no
fundamentally conflict to the need of protecting model confidentiality.

Demonstration of a GOOD-Compatible API Service. Here we provide a demonstration to illustrate
the format of the API service required by GOOD, which can be achieved by adjusting the existing
API service format. It is worth noting that we have implemented a demo of this service locally and
have actually run it. In this demonstration, communication between modules is limited to textual
data, with all services accessed through predefined ports and URLs, thereby achieving full resource
isolation. In figure 7, we provide an architecture diagram illustrating the modules involved in this
service—including the User Client, a Local Model Server (for the guiding models), and the Cloud
Model Server (for the guided black-box model)—and the data flow within each module.

Key Differences from Standard API Interactions. Compared to existing standard APIs, our
GOOD-compatible API adds only two differences: the user client must provide the Local Model
Server’s URL, and the Cloud Model Server will continuously query it during operation to fetch
predicted text fragments for response alignment.

C ORIGINAL VERSION OF GOOD WITHOUT SPECULATIVE EXECUTION

As illustrated in Figure 8, GOOD works by accurately identifying the positions that require alignment.
To achieve this, GOOD introduces a pair of guiding models, referred to as model A and model Ait

(the aligned version of model A). While the guided model decodes, the guiding models also predict
the next token. By comparing the logits (predicted token probability distributions) generated by
model A and model Ait, it can be inferred whether model A needs to be aligned at this location.
Based on our assumption, we also consider that model B (the guided model) is likely in the same
state at that position.

If alignment is deemed necessary, the output from model Ait is converted into a string and then
decoded into model B’s token sequence. Since the vocabularies of model Ait and B may differ, a
single token in one vocabulary might correspond to multiple tokens in the other, and vice versa. This
string is then appended to the output generated so far. Essentially, the interaction between the guided
model A and the guiding model is conducted through strings rather than tokens, which gives the
GOOD method sufficient flexibility. Throughout this process, we consistently perform incremental
decoding. When substitution results from the guiding model are applied at specific positions, multiple
tokens might be added to the sequence of model B simultaneously. This could lead to differences in
token sequence lengths between the guiding model and the guided model. However, our algorithm
ensures that all models receive identical string content, thereby maintaining consistency in the context
used for predicting the next token across the guiding and guided models.

The criteria for determining whether alignment is needed are diverse. For the logits (predicted
probability distribution of the next token) generated by model A and model Ait, one approach is to
compare whether their most probable tokens match (Max Match). This method checks if the most
probable token predicted by model A matches that of model Ait. If they differ, it is inferred that
alignment is needed. Another approach could be to measure the overlap of Top P/K tokens from both
logits, or other methods might be employed. Top P refers to the tokens with the highest probabilities
whose cumulative probability sum is less than or equal to P. Top K refers to the top K tokens with

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

 OUTPUT

Guided ModelAlignment Module
Predict LogitsGuiding Model

LLM A it

LLM A
.
.
.

.

.

.

Discrimination Methods

Max
Match

Top P
Overlap

Top K
Overlap ...

Guiding String Decision

LLM B

Original String

INPUT

FINAL OUTPUT

Human: How can I get away with doing vandalism on a bus?
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's

Human: How can I get away with doing vandalism on a bus?
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's

Human: How can I get away with doing vandalism on a bus?
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's harmful to property and can cause fear in others.
It's important to understand that: 1. **Vandalism is a crime:** You can face serious consequences if caught, including fines and
jail time. 2. **It's disrespectful:** Vandalism damages ...

harmful

Figure 8: The original version of GOOD without speculative execution.

the highest individual probabilities from the output distribution. If the Top P/K tokens of model
A share less than a certain threshold proportion of tokens with model Ait, alignment is triggered.
To further illustrate, consider a practical example: if model A predicts tokens with logits [0.6, 0.3,
0.1] for tokens t1, t2, t3, and model Ait predicts logits [0.4, 0.5, 0.1] for the same tokens, the most
probable token differs (t1 for A, t2 for Ait). Here, alignment would be triggered under the Max
Match criterion. By using different discrimination methods or adjusting related hyper-parameters, the
sensitivity of GOOD’s alignment can be controlled.

D HOW SPECULATIVE DECODING WITHIN GOOD IS HANDLED IN DIFFERENT
SCENARIOS

Case1: As shown in Figure 9 (left), n_matches_main = 3 < n_matches_align = 4 indicates that
B1∼B3 match Ait1∼Ait3 , while B4 does not match Ait4 . The value n_matches_main = 3 means
that without any replacements, Model B would generate B1∼B4 (with B5 and B6 not matching).
The value n_matches_align = 4 implies that Ait1∼Ait4 positions require no alignment and that
the prediction of Ait5 based on Ait1∼Ait4 requires alignment. Therefore, B1∼B4 can be accepted.
Since B4 does not match Ait4 , the prediction of whether alignment is needed for Ait5 is invalid,
and the state of that position cannot be determine currently. Finally, B1∼B4 are accepted, and the
remaining predictions are discarded.

Case2: As shown in Figure 9 (right), n_matches_main = n_matches_align = 4 indicates that
B1∼B4 match Ait1∼Ait4 . The value n_matches_main = 4 means that without any replacements,
Model B would generate B1∼B5 (with B6 not matching). The value n_matches_align = 4 implies
that Ait1∼Ait4 positions require no alignment and that the prediction of Ait5 based on Ait1∼Ait4

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

n_matches_align = 4

LLM B

Unused

Alignment required

...

n_matches_main = 3

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

B1 B2 B3 B4 B5 B6

Unused

Not match

Case1: n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output.

n_matches_align = 4

LLM B

Unused

Alignment required

...

n_matches_main = 4

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

B1 B2 B3 B4 B5 B6

Not match Unused

Case2: n_matches_main ≥ n_matches_align: Accept B[:n_matches_align]+Ait[n_matches_align+1] as the output.

Figure 9: By combining with speculative decoding, GOOD can probabilistically decode multiple
tokens in a single iteration or skip the inference steps of the guided model. Depending on the relative
magnitudes of n_matches_align and n_matches_main, there are two scenarios to handle.

requires alignment. Therefore, B1∼B4 can be accepted. Since B4 matches Ait4 , the prediction of
whether alignment is needed for Ait5 is valid. Finally, B1∼B5 and Ait5 are accepted.

E ADVANCED ALIGNMENT DISCRIMINATION: LOGITS-BASED VARIANTS

This appendix details three logits-based discrimination functions we explored as drop-in replacements
for the decision rule f(·) in Section 3.2. At decoding position n, let z(n)A ∈ R|VA| and z

(n)
Ait
∈ R|VAit

|

denote the pre-softmax logits of A and Ait, respectively, predicted on the same prefix. We define
probability vectors π(n)

A = softmax(z
(n)
A) and π

(n)
Ait

= softmax(z
(n)
Ait

).

KL divergence. We trigger alignment at position n when the divergence between the two predictive
distributions exceeds a threshold:

DKL

(
π

(n)
Ait
∥π(n)

A

)
=

∑
t∈V

π
(n)
Ait

(t) log
π
(n)
Ait

(t)

π
(n)
A (t)

> τKL.

Entropy difference. Let H(π) = −
∑

t∈V π(t) log π(t). We trigger alignment when the absolute
entropy gap is large:

∆H(n) =
∣∣H(π

(n)
A)−H(π

(n)
Ait

)
∣∣ > τH .

Cosine similarity of embedding-weighted means. Let E ∈ R|V |×d be the token embedding
matrix for the guiding models. We construct embedding-weighted means u

(n)
A = E⊤π

(n)
A and

u
(n)
Ait

= E⊤π
(n)
Ait

, and trigger alignment when their cosine similarity falls below a threshold:

cos
(
u
(n)
A ,u

(n)
Ait

)
=

⟨u(n)
A ,u

(n)
Ait
⟩

∥u(n)
A ∥2 ∥u

(n)
Ait
∥2

< τcos.

The logits-based criteria introduce scalar thresholds τKL, τH , and τcos. We first compute token-level
statistics on a development corpus and then select thresholds that maximize the F1 score for predicting
alignment-critical positions. Concretely, we use MT-Bench to collect logits at every decoding position.
Positions are labeled “alignment-needed” using the ground-truth decisions from the aligned model
Ait relative to its unaligned counterpart A. For each criterion, we sweep thresholds over quantiles of
the metric distribution and pick the maximizer of F1 on this development set.

We use Qwen2.5-3b as A, Qwen2.5-3b-it as Ait, and Qwen2.5-7b as the guided model B. Table 7
summarizes the results on AlpacaEval 2.0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: AlpacaEval 2.0 scores with different discrimination functions.

Discrimination Method LC Win Rate (%)
Qwen2.5-7b (Base Model) 6.70
KL Divergence 27.41
Entropy Difference 24.68
Cosine Similarity 27.52
Max Match 29.55

All three logits-based variants substantially outperform the base model, confirming that distributional
discrepancies between A and Ait are informative for detecting alignment-critical positions. At the
same time, the simple Max-Match rule performs competitively without any hyperparameters, offering
a strong accuracy–simplicity trade-off and favorable robustness.

F ALGORITHM OF GOOD

Algorithm 1 Guided Online Optimal Decoding (GOOD)

1: Input:
Guiding models A, Ait with tokenizers TA, TAit

Guided model B (black-box model) with tokenizer TB

Initial context Cinput, max length L, draft length k
2: Initialize:

tA ← TA(Cinput) ▷ Convert input text to token sequence using TA

tAit
← TAit

(Cinput) ▷ Convert input text to token sequence using TAit

tB ← TB(Cinput) ▷ Convert input text to token sequence using TB

n← 0
3: while n < L do
4: // Phase 1: Speculative Generation with Alignment Discrimination
5: Generate draft tokens from A: t[n+1:n+k]

A ∼ pA(·|t[1:n])
6: Input t[n+1:n+k]

A , get aligned prediction from Ait: t[n+1:n+k+1]
Ait

∼ pAit
(·|t[1:n])

7: Compute alignment flags δ[n+1:n+k] using discrimination function f
8: n_matches_align← min{i | δ[n+i] = 1}
9: // Phase 2: Cross-Model Guidance Transformation

10: Convert to string: s← T−1
Ait

(t
[n+1:n+n_matches_align+1]
Ait

)

11: Re-tokenize: t[n+1:n+m]
B ← TB(s) ▷ m may differ from k

12: Map alignment flags: δ[n+1:n+m]
B ← δ[n+1:n+n_matches_align+1]

13: n_matches_align← min{i | δ[n+i]
B = 1}

14: // Phase 3: Target Model Validation
15: Get target prediction: t[n+1:n+m+1]

B ∼ pB(·|t[1:n])
16: Find first mismatch: n_matches_main← min{i | t[n+i]

B ̸= t
[n+i]
B }

17: // Acceptance Rules
18: if n_matches_main < n_matches_align then
19: Accept t[n+1:n+n_matches_main+1]

B
20: n← n+ n_matches_main+ 1
21: else
22: Accept t[n+1:n+n_matches_align]

B ⊕ t
[n+n_matches_align+1]
Ait

23: n← n+ n_matches_align+ 1
24: end if
25: end while
26: Output:

Coutput ← T−1
B (tB) ▷ Convert final token sequence back to text using T−1

B

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G PROMPT FOR CODE GENERATION

Below is the prompt we used for code generation. To facilitate the extraction of model-generated code,
we require the code to be enclosed in code block markers and have a fixed prefix for the response.

Continue to generate code based on this prefix:

[INST] ‘‘‘python
(code)
‘‘‘
Please complete the given code. [/INST]
Sure! Here is the completed code:
‘‘‘python

H EXAMPLE OF CODE ENHANCEMENT

The Figure 10 shows a model response with code augmentation. Code block markers are used as
the start and end signs for code augmentation. The blue area in the figure represents the scope
of code augmentation, while the red area indicates the guided position. When code generation is
detected, GOOD automatically initiates code enhancement guidance and exits the guidance when the
current code generation ends, restarting only when the next code block marker is encountered. In this
example, we use CodeLlama-7b-Python to guide Llama-2-13b-chat.

>>> User:
```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    False
    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    """

```

Please complete the given code.

(a) User prompt.

>>> Assistant:
Sure! Here's the completed code:
```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.

    Args:
        numbers (List[float]): List of floats
        threshold (float): Threshold for closeness

    Returns:
        bool: True if there are close elements, False otherwise

    Example:
        >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
        False
        >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
        True
    """

    for i in range(len(numbers) - 1):
        for j in range(i + 1, len(numbers)):
            if abs(numbers(i) - numbers(j)) < threshold:
                return True
    return False
```
Here's how the function works:

1. We iterate over the list of numbers twice: once from the beginning to the end, and
once from the end to the beginning.
2. In each iteration, we check if the current number is closer than the threshold to the
previous number or the next number. If it is, we return `True`.
3. If we reach the end of the list without finding any close numbers, we return `False`.

(b) Model’s response.

Figure 10: Model responses with code enhancement.

I PROMPTS FOR HARMLESS RESPONSES EVALUATION

The prompt we used for harmless responses evaluation, using gpt-4-turbo (Achiam et al., 2023) as
the evaluator and request the results to be returned in JSON format.

System Prompt:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Help the user assess the harmfulness of a conversation. Answer in JSON format,
including only True or False, like this:
{’harmful’: True}
Note: DO NOT provide any other output or description besides this JSON content.

User Prompt:

‘‘‘conversation
Human: (question)
Assistant: (answer)
‘‘‘
Is this answer harmful?

J LIMITATIONS OF GOOD AND POTENTIAL AREAS FOR FUTURE WORK

While GOOD demonstrates promising results and offers a novel approach to decoding-time black-box
LLM alignment, we acknowledge several limitations that provide avenues for future research and
improvement:

• Sophistication of Alignment Discrimination: The current alignment discrimination mecha-
nisms presented (Max-Match and Top-P/K Overlap, as described in Section 3.2) are relatively
straightforward. While effective, more sophisticated or adaptive techniques for identifying
alignment-critical positions could potentially enhance precision and allow for finer-grained
control over the alignment process. This could involve learning the discrimination function
or incorporating more complex heuristics.

• Dependency on API Provider for Closed-Source Integration: As discussed in Ap-
pendix B, while GOOD is conceptually compatible with API-based closed-source models
due to its string-level interaction, practical implementation hinges on API providers adapting
their services. Current mainstream LLM APIs typically do not support the kind of interactive,
real-time guidance fetching from a user-specified secondary model (the guiding pair) during
a single generation pass. Widespread adoption would thus require new API functionalities
or protocols.

• Scope of Generalization and Guiding Signal Quality: Our experiments demonstrate
GOOD’s efficacy across several model families and benchmarks. However, its performance
generalizability to vastly different model architectures or highly specialized tasks not covered
by current benchmarks, or scenarios involving extremely noisy, biased, or very low-quality
guiding signals from LLMA and LLMAit has not been exhaustively explored. The quality
and relevance of the guiding models are crucial, and performance may degrade if the guiding
pair is poorly chosen or fundamentally incapable of providing useful alignment signals for
the target task or model.

• Complexity of Multi-Guidance Scenarios: While we suggest that GOOD could be ex-
tended to use multiple guiding pairs for different functionalities (Section 4.3), managing
these interactions, potential conflicts between different guidance sources, and the increased
computational load would introduce significant complexity that needs to be carefully ad-
dressed.

Addressing these limitations will be important for advancing the capabilities and practical deployment
of decoding-time alignment methods like GOOD.

LLM USAGE

Large language models were used to assist in linguistic polishing during manuscript preparation. All
technical content, experiments, analyses, and conclusions are the responsibility of the authors.

21

	Introduction
	Related Work
	Tuning-based Alignment Methods
	Tuning-free Alignment Methods
	LLM Ensemble
	Speculative Decoding

	Method
	Problem Setting and Notation
	Alignment Discrimination
	Guidance Transformation
	Overall Algorithm

	Experiment
	Comprehensive Evaluation
	Harmless Generation
	Enhance Aligned Model
	Decoding Speed of GOOD

	Analysis
	Where does the performance enhancement mainly come from?
	Token changes in GOOD-guided decoding
	More accurate identification as well as stronger guidance.

	Conclusion
	Theoretical and Empirical Support for Transferability of Alignment Decisions
	Compatibility with API-based Closed-Source Models
	Original version of GOOD without speculative execution
	How speculative decoding within GOOD is handled in different scenarios
	Advanced Alignment Discrimination: Logits-based Variants
	Algorithm of GOOD
	Prompt for code generation
	Example of code enhancement
	Prompts for harmless responses evaluation
	Limitations of GOOD and potential areas for future work

