Under review as a conference paper at ICLR 2026

EVOPLAN: AGENT-DRIVEN EVOLUTIONARY PLAN-
NING FOR LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiently generating high-quality plans is a critical yet unsolved challenge for
Large Language Model (LLM) agents tackling complex reasoning tasks. Prevailing
search-based planners, such as those employing Monte Carlo Tree Search (MCTS)
or exploring a tree-of-thoughts, are fundamentally bottlenecked by their reliance on
costly, execution-based rollouts to evaluate partial solutions, leading to prohibitive
computational overhead. We introduce a novel agentic planning framework that
circumvents this limitation by replacing expensive execution with efficient, static
evaluation. Our framework employs a duo of specialized LLM critics: a Logical
Consistency Agent to scrutinize a plan’s internal coherence and a Feasibility
Agent to assess its practical executability. These critics provide rich, multi-faceted
feedback that guides a novel evolutionary search algorithm, which iteratively refines
complete candidate plans toward global optimality. On diverse mathematical
reasoning benchmarks (e.g., GSM8K, AIME), our approach surpasses vanilla
MCTS by +8.72pp while using 90% less GPU time, and outperforms LLM-based
search by +7.66pp with 30% fewer search steps. Our work demonstrates that
decoupling plan evaluation from execution through specialized agentic critics
enables a more scalable and effective framework for LLM-based planning and
reasoning.

1 INTRODUCTION

Enabling Large Language Models (LLMs) to solve complex, multi-step problems has driven a
shift from simple auto-regressive generation (Wei et al., |2022) toward deliberate, search-based
planning (Wei et al., 2025} [Li, 2025). The current state of the art is dominated by step-level
search methods, which explore a tree of intermediate thoughts. These methods are fundamentally
bottlenecked by their evaluation mechanism: assessing a partial plan’s value requires either noisy
LLM-generated heuristics (Yao et al.| 2023} [Kambhampati et al., [2024) or costly, execution-based
rollouts (Hao et al.,|2024)), limiting the search depth and scope.

A more powerful, yet hitherto infeasible, strategy is to reframe planning as a global optimization
problem over complete candidate plans. Evolutionary algorithms offer a natural paradigm for this
global search (Guo et al.| [2024; [Yang et al., 2024} Wei et al., [2025; L1l |2025)), but their application has
been blocked by the prohibitive cost of fitness evaluation. This “evaluation bottleneck (Zhang et al.,
2024b; Wang et al.| [2024b; [Kambhampati et al., [2024) stems from the same core issue: assessing a
plan’s quality has historically required full, costly execution, making it impossible to evolve a large
population of plans within a reasonable computational budget.

We introduce EvoPlan, a novel agentic planning framework that makes this global optimization
strategy viable. It achieves this by framing LLM planning as an evolutionary search over complete
plans, guided by an efficient, execution-free fitness function. The core of our approach is a
duo of specialized LLM critics that serve as static evaluators: a Logical Consistency Agent to
scrutinize a plan’s internal coherence and a Feasibility Agent to assess its practical executability.
This agentic fitness function circumvents the execution bottleneck, allowing EvoPlan to run a tree-
based evolutionary search that iteratively refines complete plans toward a global optimum, without
performing a single execution during the search phase. Our experiments show this leads to substantial
gains: on GSMS8K, EvoPlan surpasses a state-of-the-art MCTS-based planning baseline (RAP (Hao
et al.| 2024))) by +8.72pp in accuracy while using 90% less GPU time.

Under review as a conference paper at ICLR 2026

Population Question: Find the sum of ...
@ of plans co Plan P%: we need to find all integer bases
0 \(b >9)) such that the integer ...
N 7N
st clL cl Logical Consistency: 75.0/100, The plan
1 © i does not explicitly define what needs ...
74 N\ N Va Feasibility:85.0/100, The plan can be
52 @ s2 c? c? more concise and ensure all strategic ...
A H A 2 (2.A) Example of Agentic Fitness Function
: v : v
Co ¢ c, Cbest Mid-Step of Plan 1 Searching Expansion

)) Candidate Plan 1 Backpropagation
(1) Execution-Based Search (2) Evolutionary Search (Ours)

Figure 1: EvoPlan solves the evaluation trap by replacing costly execution with lightweight agentic
critique. (1) Execution-Based Search methods like MCTS (Hao et al.| 2024) search a tree of intermediate
states (circles, S;). To evaluate a single state, they must perform expensive execution-based rollouts, completing
the plan and running it (squares, Cy,). This creates an evaluation trap: the prohibitive cost limits search depth,
leading to many suboptimal branches (gray arrow and nodes). (2) EvoPlan’s Evolutionary Search breaks this
trap by optimizing over a population (marked in) of complete candidate plans (squares, C;). The core
innovation is our efficient, execution-free agentic fitness function (2.A). A duo of critic agents provides each
plan with a quantitative fitness score (e.g., Logic: 75.0, Feasibility: 85.0) and qualitative feedback. This rich
signal is backpropagated (red arrow) to guide the evolutionary search toward a globally optimal plan (C*"). By
decoupling evaluation from execution, EvoPlan enables scalable global optimization.

Figure [I] provides a conceptual overview of the EvoPlan framework. It highlights the decoupled,
agent-driven loop where a Planner agent proposes mutations to a population of plans, a duo of parallel
Critic agents provide a rich fitness score, and a search controller directs the evolution. The single,
most promising plan is then passed to a dedicated Executor. Our contributions are:

1. A novel agentic planning framework, EvoPlan, that reframes LLM reasoning as an evolutionary
search over complete plans to enable global optimization.

2. An efficient, execution-free agentic fitness function composed of specialized LLM critics,
which enables scalable evolutionary search by replacing costly execution-based evaluation with
lightweight static analysis.

3. A novel adaptation of Monte Carlo Tree Search (MCTS) as a plan-level evolutionary engine,
where each node represents a complete plan and the reward signal is derived directly from our
agentic fitness scores.

4. An empirical finding that plan refinement and plan execution are separable reasoning skills
with different capability requirements. This insight, enabled by our framework’s design, provides
a blueprint for more efficient, hybrid-model agent systems.

2 EVOPLAN: AGENT-DRIVEN EVOLUTIONARY PLANNING

EvoPlan reframes LLM reasoning as an evolutionary search process (Zhang et al.| [2024bj Li, 2025)),
designed to discover globally optimal plans. Its core innovation is an agentic evaluation mechanism
that breaks the computational bottleneck of traditional, execution-based search methods (e.g.,|Yao
et al.}|2023; Hao et al.| [2024), as shown in Tablem This section first formalizes our general framework
for evolutionary planning and then describes its specific instantiation using a novel adaptation of
MCTS.

2.1 A FRAMEWORK FOR EVOLUTIONARY PLANNING VIA AGENTIC JUDGMENT

The objective of EvoPlan is to find an optimal plan C* from a space of candidates C that maximizes a
quality function Q(C). Formally, we seek:

C* = arglélgé(Q(C). (1

Under review as a conference paper at ICLR 2026

Table 1: Positioning EvoPlan in the landscape of LLM planning frameworks. Our framework decouples
evaluation from execution by using specialized agentic critics, breaking the cost-accuracy trade-off that constrains
prior approaches.

Aspect EvoPlan (Ours) Execution-Based Search Heuristic-Based Search Auto-regressive Gen.
Representative works (this work) RAP (Hao et al.|[2024) ToT ‘ Plan-and-Solve ‘

h . i MR (Gao et al.||2024) Yao et al.|(2023) (Wang et al..|2023)
Search Algorithm Evolutionary (MCTS) MCTS BFS/DFS None (Greedy)
Primary Evaluation Signal Agentic Critics Full Plan Execution LLM Heuristics / Votes None
Search Granularity Complete Plans Partial States Partial States N/A
Introduces Correction Before Execution During Search During Search No
Computational Cost! 1x 9.17x 1.42x -

TNormalized search cost relative to EvoPlan (lower is better).

We structure this search around three core evolutionary components, each implemented by a dedicated
LLM agent:

¢ Population and Individuals. The population is a set of complete candidate plans. Each plan, a
sequence of steps C' = (s1, ..., sr), constitutes an individual in the search space.

Mutation Operator. A Planner Agent (1,,) serves as the mutation operator. It takes a parent plan
C and textual feedback F to generate a set of K refined offspring plans: {C}}X_, = M,(C, F).
This recasts the LLLM as a structured proposal generator, a concept explored in recent work on
LLM-driven optimization (Yang et al., 2024; Guo et al., [2024). Mutations include rewriting steps,
altering granularity, or addressing specific flaws identified by critics.

Agentic Fitness Function. Our central innovation is an efficient, execution-free fitness function
composed of specialized LLM critics. While the use of LLMs for feedback or verification is an
emerging area (Gero et al.,[2023; [Lyu et al.} 2023 |[Zhang et al.l|2024a)), our approach is distinct in
decomposing this judgment into specialized, efficient critics to form a static fitness function for
evolutionary search. The critics are:

1. Logical Consistency Agent (F'1): Scrutinizes the plan for internal contradictions, returning
a soundness score Spc(C) € [0,1].

2. Feasibility Agent (E'r): Assesses whether each step is actionable and coherent, returning a
practicality score Sp(C') € [0, 1].

The aggregate fitness score R(C'), which serves as the reward signal for the search, is a weighted
combination of these scores:

R(C) =wreSLe(C) +wpSr(C), 2)

where wrc +wr = 1. The textual outputs of these critics provide the feedback F’ for the mutation
operator.

A naive evolutionary approach, such as a simple genetic algorithm, would fail to preserve the
relational structure between parent and offspring plans. To efficiently guide the search, it is critical to
track this evolutionary lineage, which motivates a structured, tree-based search algorithm.

2.2 TREE-BASED EVOLUTION VIA MCTS INSTANTIATION

We instantiate the EvoPlan framework with a tree-based evolutionary search, leveraging MCTS for its
principled approach to balancing exploration and exploitation. This approach has proven effective in
domains ranging from classic games (Silver et al., 2016) to LLM reasoning (Hao et al., [2024). In our
formulation, we adapt the four standard MCTS phases (Chaslot et al., 2008)) to operate on complete
plans, guided by our agentic fitness function. The full pseudocode is provided in Section 2.2}

Evolutionary Tree Representation. We define a search tree where each node represents a complete
plan (an individual). An edge from a parent node to a child node signifies a mutation event. Thus,
the path from the root to any node represents that plan’s direct evolutionary lineage. This structure
allows the algorithm to credit or discredit entire branches of the evolutionary history, systematically
focusing the search on promising regions of the plan space.

Under review as a conference paper at ICLR 2026

Algorithm 1 EvoPlan Framework

Require: Problem P, initial plan Cy, LLM-based planner M, evaluators set £/, LLM executor L
Ensure: Optimal plan C*, Solution Y’

1: root < NOde(Co, 0, 0) D> Initialize root node with initial plan, Q=0, N=0
2: leaf_queue — [root] D> Initialize leaf queue with the root node
3: while lea f_queue is not empty do
4: path < SelectPromissingPath(root) > Get the path from root to current leaf
5: leaf — Dequeue(leaf_queue, path) D> Get the next leaf node from the queue by path
6: if not IsTerminal(l 6af) then ©> Terminate if the plan is optimal (all eval agents give full score) or reaches the max depth
7: Expand(leaf) D> Add child nodes to current leaf
8: for each child in lea f.children do
9: scores, feedback — Evaluate(child, P, E) D> Use LLM Agnet evaluator to review current plan
10: Backpropagate(path, scores) > Update Q and N along the path
11: Enqueue(leaf_queue, Chlld) > Add the new child nodes to the queue
12: end for
13: end if
14: end while B> Stop seaching if all plans in search tree has been fully explored
15: C* + SelectBestPlan(root) D> Select the plan with highest value

16: Y <« ExecutePlan(P, C*, L)
17: return C*, Y

18: function EXPAND(node)

19: modi fied_plan < ModifyPlan(node.plan, node. feedback, M) 1> Use LLM to modify plan based on the
feedback

20: new_node — Node(modified_plan, node.problem) D> Create a new node based on modified plan

21: node[children] < {new_node, new_node, new_node} > Add the new nodes as children of current node

22: end function

23: function EVALUATE(plan, P, E)

24 scores <— {} > Initialize an empty dictionary to store evaluation scores
25: feedback — [] D> Initialize an empty list to store feedback text
26: for each evaluator in E do

27: score, feedback < evaluator.evaluate(P,C) 1> Get evaluation score and text, as detailed in Section
28: scores[evaluator.class_name] <— score [> Store the score with evaluator name
29: feedback.append(feedback) > Store the feedback text
30: end for

31: return scores, feedback D> Return all scores and feedback

32: end function

Selection. Starting from the root node (an initial plan Cy), the algorithm traverses the tree by
recursively selecting the child plan C' that maximizes the Upper Confidence Bound 1 (UCB1) score

(Auer, [2000):
UCBI(C) = R(C) + cexpy/ In N, 3)
N¢

Here, R(C) is the plan’s average fitness score from the critic agents (exploitation), N¢ is its visit
count, IV, is its parent’s visit count, and cexp, is an exploration hyperparameter. This phase identifies
the most promising evolutionary path to refine.

Expansion and Mutation. The selection process continues until a leaf node C', (a plan not yet
mutated) is reached. The Planner Agent 1/, is then invoked to perform targeted mutation, analogous
to the proposal step in LLM-based optimizers (Yang et al.| [2024)), generating K offspring plans.
These new plans become children of C7, in the tree, expanding the search frontier.

Evaluation (Fitness Calculation). Each newly generated child plan C}, is evaluated by our duo
of Critic Agents, Erc and Er. This step provides the fitness score R(C},) for the new individual.
This agentic evaluation is the key to EvoPlan’s efficiency. Unlike state-level MCTS methods like
RAP (Hao et al., [2024), which require a costly, execution-based rollout for every evaluation, or
heuristic-based approaches that use noisy LLM votes to guide the search (Yao et al., [2023), our
method uses a small number of parallelizable inference passes over the plan text. This single step
accounts for the order-of-magnitude reduction in computational cost shown in Table

Under review as a conference paper at ICLR 2026

Table 2: Accuracy (%) on GSM8K. In a zero-shot setting, EvoPlan’s global plan optimization outperforms
state-level search and MCTS methods evaluated under similar conditions. Results from original publications are
in italics.

Planning Type Method Task Guidance Search Space Granularity Model GSMSK

Sequential Plan-and-Solve Kojima et al.|(2022) Zero-Shot No search Plan-once GPT-3 56.40

Planning Least-to-Most Zhou et al.|(2023) Task Prompt No search Plan-once GPT-3 62.39

Arrange & Execute Qiu et al.|(2024) Task Fine-Tuned Available Thoughts State-Level Qwen2-7B-it 82.11

LLM-based . 1 . . GPT-4 92.10

Planning Meta Reasoning Gao et al.|(2024) Task Prompt Available Functions State-Level Qwen2.5-7B-it 91.02

Tree-of-Thought|Yao et al.|(2023) Task Prompt Available Thoughts State-Level ng;?—?B»it gggg

MCTS-based ~ RAP|Hao et al.|(2024) 4-Shots Available Steps State-Level Q\I;/{ca;gaé-j’;g»it gggg
Planning . .

EvoPlan (Ours) Zero-Shot Available Plans Plan-Level Qwen2.5-7B-it 91.81

Backpropagation. The fitness score R(C},) for each new child is propagated up its lineage (the
path to the root). The visit counts (N¢) and average fitness estimates (R(C’)) of all ancestor plans
along this path are updated. This process reinforces successful evolutionary trajectories and informs
subsequent selection decisions.

After a predefined search budget, the plan C* with the highest visit count is selected as the final,
optimized plan. This plan is then passed to a separate Executor Agent for high-fidelity execution.
This principled decoupling of search and execution, enabled by our agentic fitness function, is
fundamental to EvoPlan’s design and anticipates our findings on the benefits of heterogeneous agent
roles (Zhong et al., 2024} Yao et al.,|2025b).

3 EXPERIMENTS

Our experiments are designed to validate EvoPlan by making a three-part argument. We first establish
that our agentic framework successfully circumvents the critical evaluation bottleneck that constrains
prior search methods. We then demonstrate how this efficiency translates into superior plan quality
and task performance. Finally, we leverage EvoPlan’s decoupled architecture as a scientific instrument
to reveal a key insight about the separability of reasoning skills in LLMs. Details on our experimental
setup, including baselines, models, benchmarks, and hyperparameters, are provided in Appendix

3.1 SOLVING THE EVALUATION BOTTLENECK WITH AN AGENTIC FITNESS FUNCTION

A core claim of our work is that specialized agentic critics can form a valid and highly efficient
substitute for costly, execution-based rollouts. To validate this, we first show that our critic agents
provide a meaningful fitness signal, and second, that this mechanism is orders of magnitude more
efficient than its execution-based counterpart.

The Agentic Fitness Signal is Effective and Non-Redundant. A useful fitness function must
provide an informative signal to guide the evolutionary search. We test this through an ablation
study on Qwen2.5-7B-it, with results in Table[d] Removing either the Logical Consistency (Er¢)
or Feasibility (Er) agent from the fitness function leads to a significant performance drop, with
mean accuracy decreasing by 4.09pp and 4.02pp, respectively. The effect is especially pronounced
on complex problems like AIME-24, where accuracy falls by 6.66pp without Erc and 9.16pp
without E'r. This provides strong evidence that both critics offer essential and non-redundant signals,
effectively guiding the search towards high-quality plans.

Agentic Evaluation is Dramatically More Efficient. The primary motivation for our agentic
fitness function is to address the prohibitive cost of execution-based rollouts found in standard
MCTS methods like RAP (Hao et al.l [2024). Table @] confirms EvoPlan’s success, showing a
dramatic efficiency improvement on the GSM8K benchmark. Using Qwen2.5-7B-it, EvoPlan attains
a +8.72pp accuracy improvement over RAP while reducing GPU time by 90% (0.71 vs. 7.11 hours).
This efficiency is further compounded by a more focused search; by operating on complete plans,
EvoPlan requires 30% fewer search steps on average than the state-level heuristic search in ToT (Yao

Under review as a conference paper at ICLR 2026

Table 3: Comparative efficiency analysis of EvoPlan. (a) EvoPlan’s plan-level search requires 30% fewer
steps on average than ToT’s state-level search. (b) On GSMS8K, EvoPlan achieves higher accuracy than Execution-
Based MCTS (RAP) while using 90% less GPU time, demonstrating the efficiency of its agentic evaluation.

(a) Fewer Search Steps vs. State-Level Search. (b) Reduced GPU Cost vs. Execution-Based MCTS.
Method Model Steps # Avg. Method Model GSM8K GPU Hour Eff. Ratio
State-Level Search Qwen2.5-7B-it 78351.33 Execution-Based MCTS ~ Qwen2.5-7B-it 83.09 7.11 11.68
(ToT) Llama3.1-8B-it 78402.33 (RAP) Llama3.1-8B-it 75.06 6.47 11.60
IR Qwen?2.5-7B-it 91.81 0.71 129.30
EvoPlan Qwen2.5-7B-it 54932.17 EvoPlan Llama3.1-8B-it 7542 0.77 97.94

Llama3.1-8B-it 54849.33

Table 4: Ablation of evaluation agents using Qwen2.5-7B-it. Performance (Accuracy %) drops significantly
when either the Logical Consistency or Feasibility agent is removed, confirming their individual importance as
fitness signals for the evolutionary search.

Evaluator AIME-24 AIME-25 Olympiad AddSub GSMS8K SingleEQ Avg.

Feasibility Only 21.67 4041 1.67 +013 24.70 +043 89.81 4030 86.24 +034 94.24 +023 53.05
Logic-Consistency Only 19.17 040 3.33 +o18 24.93 +043 89.62 +031 87.36 +033 94.34 +023 53.12
Combined (EvoPlan) 28.33 045 6.67 +025 29.81 046 90.89 +020 91.81 +027 95.32 1021 57.14

Table 5: Generality on Commonsense and Arithmetic Reasoning (Accuracy %). EvoPlan significantly
outperforms a strong baseline across general reasoning tasks, confirming its broad applicability.

Model Method CommonsenseQA MultiArith SVAMP Avg.
. Chain-of-Thought (ZS-CoT) 63.72 95.33 83.40 80.82
Qwen25-7B-it g\ plan (Ours) 7920 98.67 9290 9026
.~ Chain-of-Thought (ZS-CoT) 63.80 38.17 2700 42.99
Llama3.1-8B-it gy pan (Ours) 68.57 9276 8120 80.84
Avg. Improvement +10.12 +28.97 +31.85 +23.65

et al., [2023)), as detailed in Table @ These results confirm we have developed an effective and
computationally feasible fitness function, successfully solving the evaluation bottleneck that has
hindered global plan optimization.

3.2 UNLOCKING GLOBAL OPTIMIZATION FOR SUPERIOR PERFORMANCE

Having established an efficient search mechanism, we now investigate whether this enables superior
global optimization, leading to higher accuracy compared to state-level methods. On the widely-used
GSMSK benchmark (Table [Z), EvoPlan achieves 91.81% accuracy with Qwen2.5-7B-it in a zero-shot
setting. This outperforms state-level planners like ToT (89.95%) and execution-based MCTS like
RAP (83.09%), demonstrating the tangible benefit of our approach on a standard reasoning task.

To further probe the generality of our framework, we evaluated EvoPlan on standard commonsense
and arithmetic reasoning benchmarks: CommonsenseQA (Talmor et al., [2019), MultiArith (Roy
& Roth, [2015)), and SVAMP (Patel et al.,|2021)). These tasks provide a complementary evaluation
to the complex mathematical challenges. The results, presented in Table [5} show that EvoPlan
consistently and significantly outperforms the zero-shot Chain-of-Thought baseline (Wei et al., [2022).
On average, EvoPlan improves accuracy by +10.12pp on CommonsenseQA, +28.97pp on MultiArith,
and +31.85pp on SVAMP. This demonstrates that the benefits of our evolutionary search, guided by
an execution-free agentic fitness function, are not confined to a single domain. The framework’s
ability to globally optimize complete plans is a general principle that yields substantial performance
gains across a variety of reasoning tasks.

Under review as a conference paper at ICLR 2026

Table 7: Performance and Efficiency of Hybrid Model Configurations with EvoPlan. Using smaller models
for planning/evaluation (1.5B) and a large model for execution (72B) significantly reduces GPU hours while
preserving 93.6% of the accuracy, demonstrating the separability of reasoning skills.

Planner Evaluator Executor AIME-24 AIME-25 Olympiad AddSub GSMSK SingleEQ Avg. | GPU Hour Eff. Ratio
1.5B 72B 72B 20.00 6.67 31.41 90.38 90.07 97.83 56.06 14.39 3.89
1.5B 72B 1.5B 13.33 0.00 13.48 70.13 61.33 76.57 39.14 10.41 3.75
1.5B 1.5B 72B 26.67 6.67 30.52 88.61 90.30 97.05 56.63 5.72 9.90
72B 72B 72B 30.00 13.33 36.11 91.58 94.58 9734 6049 | 1546 391

Table 6: Accuracy (%) of EvoPlan vs. Baselines across diverse mathematical benchmarks. EvoPlan
demonstrates superior average performance, with significant gains on complex tasks, underscoring the benefit of
its global, plan-level search. Results are mean accuracy with standard errors; highest values are in bold.

Model Method AIME-24 AIME-25 Olympiad AddSub GSMS8K SingleEQ Avg.
Plan and Solve 13.02 +034 0.42 +006 12.87 +033 85.87 +035 72.74 +045 91.67 +028 46.10

Llama3.1-8B-it Meta Reasoning 13.33 4034 0.00 000 13.93 +035 86.96 +034 72.78 +045 89.17 +031 46.03
’ Tree-of-Thought 15.83 +037 0.00 £0.00 14.04 +035 83.80 £037 66.24 +047 84.30 +036 44.04
EvoPlan (Ours) 15.83 +037 0.00 +000 19.07 +039 87.78 +033 75.42 +043 92.77 +026 48.48

Plan and Solve 18.75 039 4.58 021 26.03 +044 87.89 +£033 90.30 030 94.05 +024 53.60

Qwen2.5-7B-it Meta Reasoning 13.33 4034 0.00 +0.00 19.41 +040 88.48 +032 90.98 +029 93.11 +025 50.89
’ Tree-of-Thought 20.00 040 3.33 0.8 28.89 +045 87.59 033 90.62 +029 93.95 024 54.06
EvoPlan (Ours) 28.33 +045 6.67 +025 29.81 +046 90.89 +029 91.81 +027 95.32 +021 57.14

3.3 AN EMPIRICAL FINDING: THE SEPARABILITY OF REASONING SKILLS

Finally, we test whether the cognitive skill of iterative plan refinement is fundamentally different
from, and less complex than, the skill of high-fidelity plan execution. EvoPlan’s modular architecture
allows us to probe this question by deploying models of vastly different scales to each role. We assign
small, efficient models (Qwen2 .5 1.5B) to the iterative planning and criticism phases, reserving a
large, powerful model (Qwen2 .5 72B) only for the final, one-shot execution of the optimized plan.

Table[7] presents the results. The hybrid 1.5B/72B system achieves an average accuracy of 56.63%.
This is a striking result, as it retains 93.6% of the performance of a much more costly system where
the 72B model is used for all stages (60.49% accuracy). This high performance is achieved with a
63% reduction in GPU hours (from 15.46 to 5.72 hours), yielding a 2.5x improvement in the overall
efficiency ratio (pass@1 accuracy per GPU hour).

This is more than a simple efficiency gain; it is a key empirical finding. The ability of a small 1.5B
model to effectively guide the search for a powerful 72B model provides strong evidence that LLM
reasoning is not monolithic. The skills required to compare, critique, and incrementally refine plans
appear separable from, and less computationally demanding than, the skills for flawless execution.
This insight offers a principled path for designing more sophisticated, resource-aware, and scalable
multi-agent reasoning systems.

4 DISCUSSION

Our experimental results validate EvoPlan as a state-of-the-art reasoning framework and, more
importantly, utilize its architecture to uncover a fundamental insight into LLM reasoning. By
reframing planning as an evolutionary process guided by an agentic fitness function, we achieve
significant gains in both accuracy and efficiency. Here, we discuss the primary scientific contribution
enabled by our work, its broader implications for designing agentic systems.

4.1 THE PRIMARY INSIGHT: A DICHOTOMY OF REASONING SKILLS

A key scientific contribution of this work is the first empirical demonstration of a clear dichotomy
between the cognitive skills of plan refinement and plan execution. Current paradigms for LLM
reasoning largely treat these as a monolithic process, often deploying a single, powerful model for all
sub-tasks. Our work provides strong evidence challenging this assumption.

Under review as a conference paper at ICLR 2026

This separability is most evident in our hybrid model experiment (Table[7). A system using a small
1.5B model for the iterative refinement phase (planning and criticism) and a powerful 72B model
for the final, one-shot execution retained 93.6% of the accuracy of an end-to-end 72B system. This
result is not merely an efficiency gain; it is a scientific finding. It reveals that the abilities required
for iterative comparison, critique, and refinement of plans are computationally less demanding than
the ability for flawless, high-fidelity execution. This dynamic can be conceptualized as a “manager”
versus “expert” relationship: the planner and critic agents act as managers that assess strategy and
direction, a task requiring strong comparative judgment rather than exhaustive domain knowledge. In
contrast, the executor acts as an expert that carries out the final, approved strategy, a task requiring
deep and precise knowledge.

4.2 IMPLICATIONS FOR AGENTIC AI SYSTEM DESIGN

The demonstrated dichotomy provides a new, empirically grounded blueprint for designing the next
generation of multi-agent Al systems. Current approaches that rely on teams of homogeneous,
powerful agents are not only computationally inefficient but also conceptually underdeveloped. Our
findings suggest a more principled path toward agent specialization.

First, this work validates the design of heterogeneous agent teams, where roles are assigned based
on the cognitive complexity of the task at hand. Instead of deploying multiple expensive, generalist
agents, systems can achieve a superior cost-performance trade-off by composing teams of smaller,
specialized “manager” agents to deliberate over strategy, reserving the most powerful “expert” agents
for final execution. Second, our execution-free, agentic fitness function enables what we term scalable
deliberation. By decoupling the cost of evaluating a plan from its execution, an agent system can
explore a vastly larger space of potential strategies within a given computational budget. This allows
for more thorough and robust problem-solving, overcoming the prohibitive cost-per-thought that
constrains existing search methods.

5 RELATED WORK

LLM reasoning research has progressively incorporated search algorithms to overcome the my-
opic, greedy nature of auto-regressive generation. These methods, however, remain fundamentally
constrained by a trade-off between evaluation cost and signal quality, a dilemma EvoPlan resolves
through its unique agentic architecture.

The Cost-Fidelity Dilemma in State-Level Search. To move beyond single-path generation,
methods like Tree-of-Thought (ToT) (Yao et al., 2023) and Meta-Reasoning (MR) (Gao et al., [2024)
employ tree search to explore multiple intermediate reasoning steps. These frameworks operate at
the state-level and fall into two distinct camps. On one end, heuristic-based search methods such
as ToT and its generalization, Graph-of-Thoughts (Besta et al., 2024), rely on an LLM to provide a
cheap but noisy evaluation signal, such as a “value” score or a “vote” on the most promising partial
thought (Yao et al.l|2023). While this enables broad exploration, the unreliable signal often leads
to inefficient search. On the other end, execution-based search provides a high-fidelity signal at a
prohibitive cost. For example, RAP (Hao et al.,2024) applies state-level MCTS, but its evaluation
of each node requires a full, execution-based rollout using the LLM as a world model. This strong
reward signal comes at the cost of extreme computational overhead. This cost-fidelity dilemma
creates an “evaluation trap” that has prevented truly global optimization over the complete plan space.

The Bottleneck in Evolutionary Plan Optimization. A compelling alternative is to perform global
optimization over complete plans, a paradigm well-suited for evolutionary algorithms from Genetic
Programming (GP) Xu et al.|(2024); Zhang et al.| (2024b). This approach has been historically
blocked by the “fitness evaluation bottleneck,” where assessing a large population of candidates is
computationally infeasible (Zhang et al., 2024bj [Wang et al., 2024bj [Surina et al.| [2025). Recent
works have adeptly used LLMs as components in evolutionary systems, for example to evolve
prompts (e.g., EvoPrompt (Guo et al.,[2024))), act as optimizers (e.g., OPRO (Yang et al.,2024) and
its successors (Yuksekgonul et al., [2025; [Liu et al., [2025} Xiang et al., [2025)), or design reward
functions (e.g., RE-GoT (Yao et al.,|2025a)). However, they do not resolve the core bottleneck, as
they typically rely on a single, monolithic, and expensive LLM to judge fitness. EvoPlan directly

Under review as a conference paper at ICLR 2026

breaks this impasse. Its innovation is not just using agents for evaluation, but using an agentic fitness
function that is decomposed into a duo of lightweight, specialized critics (Logical Consistency and
Feasibility). This design provides the fast and reliable signal required to make evolutionary search a
viable and powerful strategy for global LLM plan optimization.

Architectural Niche in Agentic AI Systems. EvoPlan’s design also carves out a distinct niche
within the landscape of multi-agent Al systems (OpenAll 2024; Wang et al.| [2024a; [Wu et al., [2024).
Instead of following the conversational structure of systems like AutoGen (Wu et al., [2024)), or
emulating human-centric software development workflows like MetaGPT (Hong et al., 2024) and
ChatDev (Qian et al., [2024)), EvoPlan’s architecture is organized around a computational search
paradigm: evolutionary MCTS. This structure enables a mechanism of procedural refinement that
is distinct from the post-hoc, inter-trial learning of frameworks like Reflexion (Shinn et al.,2023]).
Rather than learning only after a complete, failed attempt, EvoPlan’s Planner and Critic agents engage
in a continuous, intra-trial refinement loop to optimize a plan before committing to a single execution.
By instantiating this specialized structure, EvoPlan serves as strong empirical validation for the
emerging principle of heterogeneous agent teams (Zhong et al.| |2024; [Yao et al.,2025b; (Chen et al.|
2025)), providing a clear architectural blueprint that distinguishes it from both homogeneous agent
systems and those that simply mirror human organizational patterns.

EvoPlan thus provides a unified solution. By introducing an execution-free agentic fitness function, it
makes the previously infeasible strategy of global evolutionary search at the plan-level both practical
and effective. In doing so, our work resolves the cost-fidelity dilemma of state-level search and
provides a new, computationally-grounded architecture for multi-agent reasoning.

6 LIMITATIONS AND FUTURE HORIZONS

The principles and architecture of EvoPlan establish a foundation for several exciting avenues for
future research, highlighting the generality and power of our approach.

First, while we demonstrated EvoPlan’s efficacy in the structured domain of mathematical reasoning,
its architecture serves as a robust testbed for planning in more open-ended domains like software
engineering, scientific discovery, or business strategy. Adapting the critic agents to these new contexts
is a clear and promising direction for extending the framework’s impact.

Furthermore, the performance of EvoPlan is guided by the capabilities of its agentic critics. The
modularity of these critics is a core strength of our framework, as it invites future work on enhancing
their judgment mechanisms. For instance, one could integrate retrieval-augmented generation to
ground their evaluations in external knowledge bases, thereby increasing their robustness and domain-
specific expertise without altering the core evolutionary search algorithm.

Finally, we instantiated our evolutionary framework using a novel adaptation of MCTS, but the central
principle of an agentic fitness function is algorithm-agnostic. This opens a rich research direction for
exploring other evolutionary strategies, such as genetic algorithms or direct policy optimization, to
guide the search over the plan population. EvoPlan thus serves as a general platform for investigating
the intersection of evolutionary computation and agentic LLM reasoning.

7 CONCLUSION

We introduced EvoPlan, a framework that reframes LLM planning as an evolutionary search over
complete plans. Its core mechanism is an execution-free, agentic fitness function that resolves the
evaluation bottleneck of prior search methods. This innovation enables an MCTS-based evolution-
ary search that achieves state-of-the-art accuracy with order-of-magnitude efficiency gains. More
importantly, our decoupled architecture serves as a scientific instrument, revealing a fundamental
dichotomy between the capabilities required for plan refinement and plan execution. EvoPlan thus
offers both a powerful method for robust reasoning and a principled blueprint for designing the next
generation of scalable, agentic Al systems.

Under review as a conference paper at ICLR 2026

REFERENCES

Peter Auer. Using upper confidence bounds for online learning. In Proceedings 41st annual
symposium on foundations of computer science, pp. 270-279. IEEE, 2000.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17682—-17690, 2024.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo tree search: A
new framework for game ai. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 4, pp. 216-217, 2008.

Weize Chen, Ziming You, Ran Li, yitong guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous
agents for collaborative intelligence. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=o0lEt3MogPw.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168!

Peizhong Gao, Ao Xie, Shaoguang Mao, Wenshan Wu, Yan Xia, Haipeng Mi, and Furu Wei. Meta
reasoning for large language models, 2024. URL https://arxiv.org/abs/2406.11698\

Zelalem Gero, Chandan Singh, Hao Cheng, Tristan Naumann, Michel Galley, Jianfeng Gao, and
Hoifung Poon. Self-verification improves few-shot clinical information extraction. In JICML
3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH), 2023. URL https:
//openreview.net/forum?id=SBbJICrglS.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.
URLhttps://openreview.net/forum?id=2G3RaNIsO8\

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 8154-8173, Singapore, December 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.507. URL https://aclanthology.org/2023|
emnlp-main.507.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench: A
challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828-3850, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.acl-long,
211/L

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jirgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VtmBAGCN7o.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to solve
arithmetic word problems with verb categorization. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans (eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 523533, Doha, Qatar, October 2014. Association for Computational
Linguistics. doi: 10.3115/v1/D14-1058. URL https://aclanthology.org/D14-1058.

10

https://openreview.net/forum?id=o1Et3MogPw
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2406.11698
https://openreview.net/forum?id=SBbJICrglS
https://openreview.net/forum?id=SBbJICrglS
https://openreview.net/forum?id=ZG3RaNIsO8
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://openreview.net/forum?id=VtmBAGCN7o
https://aclanthology.org/D14-1058

Under review as a conference paper at ICLR 2026

HuggingFace. Math-verify, 2025. URL https://github.com/huggingface/
Math-vVerifyl

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks, 2024. URL https://arxiv.org/abs/2402.01817.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 22199-22213. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/8bb0d291acd4acf06ef112099cl6f326-Paper—-Conference.pdf.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang.
Parsing algebraic word problems into equations. Transactions of the Association for Computational
Linguistics, 3:585-597, 2015.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang,
and Xiaohang Dong. Better zero-shot reasoning with role-play prompting. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 4099-4113, 2024.

Xinzhe Li. A review of prominent paradigms for LLM-based agents: Tool use, planning (including
RAG), and feedback learning. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-
Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), Proceedings of the 31st International
Conference on Computational Linguistics, pp. 9760-9779, Abu Dhabi, UAE, January 2025.
Association for Computational Linguistics. URL https://aclanthology.org/2025|
coling-main.652/l

Fei Liu, Xi Lin, Shunyu Yao, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
Large language model for multiobjective evolutionary optimization. In International Conference
on Evolutionary Multi-Criterion Optimization, pp. 178—191. Springer, 2025.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. Faithful chain-of-thought reasoning. In Proceedings of the 13th International
Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 305-329,
2023.

MAA. The 2024 american invitational mathematics examination (aime’24), 2024. URL https:
//artofproblemsolving.com/wiki/index.php/2024_AIME_TI.

MAA. The 2025 american invitational mathematics examination (aime’25), 2025. URL https
//artofproblemsolving.com/wiki/index.php/2025_ATIME_T.

OpenAl. Openai ol system card, 2024. URL https://cdn.openai.com/
ol-system—card.pdfl

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2080-2094, 2021.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-
Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 15174-15186, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL
https://aclanthology.org/2024.acl-1ong.810/L

Yuli Qiu, Jiashu Yao, Heyan Huang, and Yuhang Guo. Optimizing chain-of-thought reasoning:
Tackling arranging bottleneck via plan augmentation, 2024. URL |https://arxiv.org/
abs/2410.16812.

11

https://github.com/huggingface/Math-Verify
https://github.com/huggingface/Math-Verify
https://arxiv.org/abs/2402.01817
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://aclanthology.org/2025.coling-main.652/
https://aclanthology.org/2025.coling-main.652/
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf
https://aclanthology.org/2024.acl-long.810/
https://arxiv.org/abs/2410.16812
https://arxiv.org/abs/2410.16812

Under review as a conference paper at ICLR 2026

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 1743—-1752, 2015.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
vAE1hFcKW6.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with 1lms: Evolutionary search meets reinforcement
learning, 2025. URL https://arxiv.org/abs/2504.05108,

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149-4158, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421|

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language mod-
els. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2609-2634, 2023.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level
prompt optimization. In The Tielfth International Conference on Learning Representations, 2024a.
URLhttps://openreview.net/forum?id=22pyNMuloal

Zeyi Wang, Songbai Liu, Jianyong Chen, and Kay Chen Tan. Large language model-aided evolution-
ary search for constrained multiobjective optimization. In International Conference on Intelligent
Computing, pp. 218-230. Springer, 2024b.

Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, and Fei Liu. PlanGenLLMs: A modern
survey of LLM planning capabilities. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 19497-19521, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.958. URL https://aclanthology.org/2025.acl-long. 958/l

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language mod-
els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24824-24837. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/fi1e/9d5609613524ecfd4fl5af0f7b3labcad-Paper-Conference.pdfl

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversations. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
BAakY1hNKS.

Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Xinbing Liang, Fengwei Teng, Jinhao Tu, Fashen Ren,

Xiangru Tang, Sirui Hong, Chenglin Wu, and Yuyu Luo. Self-supervised prompt optimization,
2025. URL https://arxiv.org/abs/2502.06855.

12

https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://arxiv.org/abs/2504.05108
https://aclanthology.org/N19-1421
https://openreview.net/forum?id=22pyNMuIoa
https://aclanthology.org/2025.acl-long.958/
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=BAakY1hNKS
https://arxiv.org/abs/2502.06855

Under review as a conference paper at ICLR 2026

Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang. Genetic programming and reinforce-
ment learning on learning heuristics for dynamic scheduling: A preliminary comparison. /[EEE
Computational Intelligence Magazine, 19(2):18-33, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Tielfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELTI.

Changwei Yao, Xinzi Liu, Chen Li, and Marios Savvides. Reward evolution with graph-of-thoughts:
A bi-level language model framework for reinforcement learning, 2025a. URL https://arxivl
org/abs/2509.16136.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 11809—11822. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/271db9922b8d1lf4dd7aaef84ed5ac703-Paper—Conference.pdfl

Yuhang Yao, Haixin Wang, Yibo Chen, Jiawen Wang, Min Chang Jordan Ren, Bosheng Ding, Salman
Avestimehr, and Chaoyang He. Toward super agent system with hybrid ai routers, 2025b. URL
https://arxiv.org/abs/2504.105109.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639(8055):609-616, 2025.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2024a. URL https://arxiv,
org/abs/2408.15240.

Rui Zhang, Fei Liu, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. Understanding the
importance of evolutionary search in automated heuristic design with large language models. In
International Conference on Parallel Problem Solving from Nature, pp. 185-202. Springer, 2024b.

Lianmin Zheng, Liangsheng Yin, Zhiqgiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL |https://arxiv.org/
abs/2312.07104.

Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
Heterogeneous-agent reinforcement learning. Journal of Machine Learning Research, 25(32):
1-67, 2024.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=WZH7099tgfM.

13

https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2509.16136
https://arxiv.org/abs/2509.16136
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://arxiv.org/abs/2504.10519
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://openreview.net/forum?id=WZH7099tgfM

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ETHICS STATEMENT

This research was conducted in accordance with the ICLR Code of Ethics. The study did not involve
human participants or animal subjects. All datasets are publicly available and were handled in strict
compliance with their usage policies and licensing, ensuring no personally identifiable information
was used. Our evaluation protocols were designed to be fair and impartial, centered on objective
performance metrics.

A.2 LLM USAGE

We utilized large language models as assistive tools for manuscript preparation, code debugging, and
literature review. The use of all models complied with their respective terms of service.

A.3 IMPLEMENTATION FOR REPRODUCIBILITY

This appendix provides supplementary details on our experimental setup, hyperparameters, and the
specific prompt templates used to guide our specialized LLM agents.

Reproducibility and Environment. To ensure reproducibility and facilitate fair comparisons,
we have published our implementation and demonstrations in the supplementary material. All
experiments were conducted within the official 1msysorg/sglang Docker container from the
SGLang platform (Zheng et al.,2024), using 8 NVIDIA A100 GPUs.

Code Availability. We attached the demo code as supplementary material for reproducibility.

Evaluation Framework. Our evaluation framework extends the established benchmarking pipeline
from CoT (Wei et al.}[2022) and its recent refinements (Kong et al., 2024). For mathematical bench-
marks, we required answers to be formatted within \boxed{} for consistent extraction. We used
Qwen2.5-7B-1it as a fallback extractor for any malformed outputs. Answer verification employed
both exact matching and the Math Verify (HuggingFacel 2025) tool, following community best
practices.

Baselines. We integrated several baseline methods into our unified evaluation pipeline to enable
comprehensive comparisons. These included Plan-and-Solve (Wang et al., |2023) and Tree-of-
Thought (ToT) (Yao et al.,2023)), which were adapted from their original implementations. We also
implemented Meta Reasoning (Gao et al.|, [2024) following the descriptions in the official paper. For
the GSM8K-specific comparison, we incorporated RAP (Hao et al.||2024) using the authors’ official
codebase. This unified approach ensures consistent assessment criteria across all methods.

Datasets. We evaluated EvoPlan across a diverse set of benchmarks. For mathematical reasoning,
we used AIME-24 and AIME-25 (MAAL[2024;[2025), Math Olympiad (He et al.,[2024), AddSub (Hos
seini et al.| [2014), GSM8K (Cobbe et al.,|2021), and SingleEQ (Koncel-Kedziorski et al.,[2015). To
test general reasoning skills, we included CommonsenseQA (Talmor et al.l 2019), MultiArith (Roy &
Rothl [2015)), and SVAMP (Patel et al., 2021)).

Hyperparameters. For the EvoPlan framework, the MCTS-based evolutionary search was config-
ured with the following key hyperparameters. The UCB1 exploration constant cey, was set to 1.5.
In the expansion phase, the Planner Agent generated K = 3 offspring plans (mutations) for each
selected leaf node. The total search budget was set to a maximum of 32 evaluation steps per problem.
The agentic fitness score R(C') was computed with equal weights for the critic agents (wc = 0.5,
Wgp = 05)

14

Under review as a conference paper at ICLR 2026

A.4 AGENT PROMPT TEMPLATES

The EvoPlan framework is composed of several specialized agent roles, each guided by distinct
system and user prompts. This design ensures reproducibility by providing precise instructions for
each agent’s task. The prompts for the Initial Plan Generator, the Planner (mutation operator), the
Critic agents, and the final Executor are detailed below.

Initial Plan Generator Prompt This prompt is used once at the beginning of the search to generate
the initial plan (Cy), which serves as the root node of the MCTS tree. It instructs the LLM to create a
high-level strategic plan without implementation details.

Initial Plan Generator Prompt

User:
Problem
{problem}

Your Task
Create a clear, strategic plan to solve the provided problem. The plan must provide high-level
guidance without diving into implementation details.

Plan Requirements
* Strategic Steps: Each step must be a high-level strategic action that guides toward the solution
without specifying implementation details.

¢ Clear Numbering: Use proper numbering (1., 2., 3.) and sub-steps when needed (1.1, 1.2,
etc.).

¢ Logical Sequence: Arrange steps in logical order where each step builds upon previous ones.

* Appropriate Abstraction: Keep steps general and abstract. Avoid specific technical details or
exact procedures.

* Concise but Complete: Include all necessary strategic elements while avoiding redundancy.

¢ Global Guidance: Focus on what needs to be accomplished rather than how to accomplish it.
Example Format
1. [First strategic objective]
2. [Second strategic objective]
2.1 [Strategic sub-objective if needed]
2.2 [Another strategic sub-objective if needed]
3. [Third strategic objective]

Your output should contain ONLY the numbered plan with no additional commentary or
explanation. Keep it abstract and focused on strategic guidance.

15

Under review as a conference paper at ICLR 2026

Planner Agent (Mutation) Prompt The Planner Agent acts as the mutation operator. It takes a
plan and feedback from the critic agents to generate a refined offspring plan.

Planner Agent (Mutation) Prompt

System Prompt: You are an expert strategic planner who creates improved, high-level plans based
on feedback.

User Prompt:
Problem
{problem}

Current Plan
{plan}

Feedback to Address
{feedback}

Your Task
Create a significantly improved strategic plan that addresses the identified weaknesses while
maintaining appropriate abstraction and global guidance focus.

Improvement Guidelines:
1. Address Feedback: Carefully review and directly address each piece of feedback provided.

2. Maintain Abstraction: Keep steps at a strategic level. Avoid diving into implementation
specifics or technical details.

3. Improve Structure: Ensure proper numbering (1., 2., 3.) and use sub-steps (1.1, 1.2) where
appropriate.

4. Optimize Flow: Rearrange or modify steps to create a more logical strategic sequence.

5. Eliminate Redundancy: Remove unnecessary or duplicate steps while ensuring strategic
completeness.

6. Enhance Clarity: Make strategic guidance clearer without adding unnecessary implementation
detail.

7. Global Focus: Ensure the plan provides comprehensive strategic direction rather than step-by-
step execution.
Required Output Format
Provide your response as a structured object with two keys:
e plan: The full text of the new, improved strategic plan with proper numbering and high-level,
abstract steps.

* changes_made: A detailed list of the specific structural and content changes you made to
address the feedback while maintaining abstraction.

16

Under review as a conference paper at ICLR 2026

Logical Consistency Agent Prompt The Logical Consistency Agent (Er¢) evaluates a plan’s
internal coherence, providing a key component of the agentic fitness score.

Logical Consistency Agent Prompt

System Prompt: You are an expert plan evaluator specializing in logical consistency and plan
structure.

User Prompt:
Problem Context
{question}

Plan to Evaluate
{plan}

{history_section}

Your Task

Your job is to identify logical flaws, structural issues, and missing steps in the plan. Focus on
ensuring the plan is logically sound and well-structured at a strategic level.

Evaluation Criteria:
1. Logical Flow: Verify that steps follow a logical sequence where each step builds upon the
previous ones and leads naturally to the next.

2. Contradictions: Identify any contradictions, impossible steps, or conflicting instructions within
the plan.

3. Completeness: Check for any critical missing steps or logical gaps that would prevent success-
ful problem resolution.

4. Step Structure: Ensure steps are properly numbered (1., 2., 3.) with sub-steps clearly indicated
(1.1, 1.2, etc.) when needed.

5. Abstraction Level: Verify that the plan maintains appropriate abstraction without diving into
implementation details.

6. Feedback Adherence: If history is provided, verify if the new plan has successfully addressed
the previous logical concerns.
Required Output Format
Provide your evaluation as a structured response with the following keys:
e score: A score from 0 to 100 based on the rubric (scores 0-60 indicate Unacceptable; 60-70
Major Issues; 70-80 Minor Issues; 80-100 Good).

* feedback: A brief, high-level explanation focusing on logical flow and structural soundness.

* suggestions: A list of specific, actionable suggestions to improve logical consistency and
plan structure.

17

Under review as a conference paper at ICLR 2026

Feasibility Agent Prompt The Feasibility Agent (Er) evaluates a plan’s strategic clarity and
practicality, providing the other component of the fitness score.

Feasibility Agent Prompt

System Prompt: You are an expert plan evaluator specializing in feasibility, strategic clarity, and
practical guidance.

User Prompt:
Problem Context
{question}

Plan to Evaluate
{plan}

{history_section}

Your Task

Your job is to assess if the plan provides clear strategic guidance while maintaining appropriate
abstraction. Focus on ensuring the plan offers comprehensive direction without diving into
implementation details.

Evaluation Criteria:
1. Strategic Clarity: Each step must provide clear strategic direction that guides toward the
solution (avoid implementation details or specific technical execution).

2. Appropriate Abstraction: Steps should offer high-level guidance rather than detailed instruc-
tions. They should be general enough to allow flexible execution.

3. Comprehensiveness: The plan should cover all major strategic aspects needed to solve the
problem without being overly prescriptive.

4. Clarity: Instructions must be unambiguous at the strategic level while avoiding unnecessary
detail.

5. Conciseness: The plan should be as brief as possible while remaining strategically complete.

6. Feedback Adherence: If history is provided, verify if the new plan has successfully addressed
the previous strategic concerns.
Required Output Format
Provide your evaluation as a structured response with the following keys:
e score:A score from 0 to 100 based on the rubric (scores 0-60 indicate Unacceptable; 60-70
Major Issues; 70-80 Minor Issues; 80-100 Good).

* feedback: A brief, high-level explanation focusing on strategic clarity and appropriate
abstraction.

* suggestions: A list of specific suggestions to improve strategic guidance while maintaining
abstraction.

Executor Agent Prompt The Executor Agent is invoked once the search is complete. It takes the
final, optimized plan (C*) and executes it to produce the final answer.

Executor Agent Prompt

System Prompt: You are a helpful Al assistant.

User Prompt:
Problem
{problem}

Plan to Execute
{plan}

Let’s execute the plan step-by-step to solve the problem.

18

Under review as a conference paper at ICLR 2026

A.5 CASE STUDY: EVOLUTIONARY PLAN REFINEMENT

To provide a concrete illustration of EvoPlan’s dynamics, this section presents a step-by-step walk-
through of the evolutionary search process for a single mathematical problem. We demonstrate how
the framework iteratively refines an initial plan toward an optimal solution, guided by the agentic
fitness function provided by the Logical Consistency and Feasibility critics.

Problem Statement. Find the sum of all integer bases b > 9 for which 17, is a divisor of 97,,.

1. Initial Plan Generation (Root Node). The process begins by generating an initial high-level
plan. This plan serves as the root node of the MCTS tree.

Initial Plan (Node: cbd60065...)

To solve the problem, we need to find all integer bases b > 9 such that the integer represented
by 17, divides the integer represented by 97;, and then sum those bases.

This initial plan is then evaluated by the critic agents. The feedback highlights its lack of procedural
detail, which is reflected in a modest score.

Critic Feedback and Scores

Logical Consistency (Score: 75.0/100): The plan has a good logical flow... However, it lacks
the step-by-step process for converting the numbers from base b to base 10 and checking the
divisibility condition.

Feasibility (Score: 85.0/100): The plan provides clear strategic direction... However, it can be
slightly more concise and ensure all major strategic aspects are comprehensively covered.

2. Iterative Refinement via MCTS. The initial feedback guides the Planner Agent (mutation
operator) to generate improved offspring plans. The MCTS algorithm selects promising nodes for
expansion. After several iterations, the search converges on a significantly improved plan. For
instance, the plan at node ‘41530cf8...¢ (depth 3) demonstrates clear evolutionary progress.

Final Optimized Plan (Node: 41530cf8...)

1. Convert the base-b numbers 17; and 97, to their decimal (base-10) equivalents using the
formula: a,,b” + ... + aob®. For 17,, this becomes 1 x b + 7. For 97,, this becomes 9 x b + 7.
2. Check the divisibility condition: Determine if the decimal equivalent of 97, (i.e., 9b 4 7) is
divisible by the decimal equivalent of 17, (i.e., b 4+ 7). This involves performing the division
and verifying if the remainder is zero.

3. Identify all bases b > 9 that satisfy the divisibility condition by systematically testing values
starting from b = 10.

4. Sum the valid bases that meet the criteria.

5. Provide the final answer as the sum of all valid bases.

This refined plan receives higher scores from the critics, particularly for its logical consistency,
because it now explicitly outlines the required conversion and verification steps.

Critic Feedback and Scores

Logical Consistency (Score: 88.0/100): The plan is well-structured and logically sound,
addressing the problem effectively. It covers all necessary steps and follows a clear sequence.
Feasibility (Score: 85.0/100): The revised plan effectively addresses the feedback and provides
clear strategic direction. It maintains an appropriate level of abstraction while covering all major
aspects needed to solve the problem.

3. Final Plan Selection and Execution. The MCTS search explores a tree of candidate plans,
using the agentic fitness scores to guide its exploration. Figure [2] visualizes the final search tree and
presents the quantitative analysis that led to the selection of the best plan. The node ‘41530cfS...* was
selected due to its highest average reward.

19

Under review as a conference paper at ICLR 2026

Top 5 Nodes by Average Reward:

1. Node: 41530cf8..., Visits: 1, Avg Reward: 0.865
2. Node: db4426eb..., Visits: 3, Avg Reward: 0.855
3. Node: 9f92b3c5..., Visits: 5, Avg Reward: 0.853
4. Node: 77446f49..., Visits: 1, Avg Reward: 0.850
5. Node: 0b290482..., Visits: 1, Avg Reward: 0.850

MCTS Tree Visualization (Root: [cbd60065 D:0 V:3 Q:0.567])

+-—— [cbd60065 D:0 V:3 Q:0.567] To solve the problem, we need...
+—— [77446£f49 D:1 V:1 Q:0.850] 1. Convert the numbers...
+—— [9f92b3c5 D:1 V: 0.853] 1. Convert the base-b...
+-— [0b290482 D 1 0:0.850] 1. Convert the base-b...

+-— [d54426eb D:
+-— [0c81408

0.
1
35
32
2
@
+—— [41530cf8

Q:

V:

V:3 Q0:0.855] 1. Convert the base-b...

D:3 V:1 Q:0.850] 1. Convert the base-b...
D:3 V:1 Q0:0.865] 1. Convert the base-b...

Figure 2: MCTS search tree and node analytics. The visualization shows the evolutionary
lineage of plans. Each entry denotes ‘[Node ID (truncated) D:depth V:visits Q:avg_reward]‘. The
search correctly identifies the plan at depth 3 (Node ‘41530cf8...) as having the highest reward,
demonstrating effective exploitation of promising evolutionary paths.

Finally, the selected optimal plan is passed to the Executor Agent, which follows the steps to produce
the final, correct solution. This completes the process, showing how execution-free evolutionary
refinement leads to a high-quality plan that enables successful problem solving.

Final Solution from Executor Agent

To solve the problem, we start by converting the base-b numbers... For 9b 4 7 to be divisible by
b+ 7, —56 must be divisible by b 4 7. Therefore, b + 7 must be a divisor of 56. Since b > 9,
we have b + 7 > 16. The relevant divisors of 56 greater than 16 are 28 and 56.

e If b+ 7 =28, then b = 21.

e If b+ 7 =56, then b = 49.

The valid bases are b = 21 and b = 49. The sum of these bases is 21 + 49 = 70.

20

	Introduction
	EvoPlan: Agent-Driven Evolutionary Planning
	A Framework for Evolutionary Planning via Agentic Judgment
	Tree-Based Evolution via MCTS Instantiation

	Experiments
	Solving the Evaluation Bottleneck with an Agentic Fitness Function
	Unlocking Global Optimization for Superior Performance
	An Empirical Finding: The Separability of Reasoning Skills

	Discussion
	The Primary Insight: A Dichotomy of Reasoning Skills
	Implications for Agentic AI System Design

	Related Work
	Limitations and Future Horizons
	Conclusion
	Appendix
	Ethics Statement
	LLM Usage
	Implementation For Reproducibility
	Agent Prompt Templates
	Case Study: Evolutionary Plan Refinement

