
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVOPLAN: AGENT-DRIVEN EVOLUTIONARY PLAN-
NING FOR LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiently generating high-quality plans is a critical yet unsolved challenge for
Large Language Model (LLM) agents tackling complex reasoning tasks. Prevailing
search-based planners, such as those employing Monte Carlo Tree Search (MCTS)
or exploring a tree-of-thoughts, are fundamentally bottlenecked by their reliance on
costly, execution-based rollouts to evaluate partial solutions, leading to prohibitive
computational overhead. We introduce a novel agentic planning framework that
circumvents this limitation by replacing expensive execution with efficient, static
evaluation. Our framework employs a duo of specialized LLM critics: a Logical
Consistency Agent to scrutinize a plan’s internal coherence and a Feasibility
Agent to assess its practical executability. These critics provide rich, multi-faceted
feedback that guides a novel evolutionary search algorithm, which iteratively refines
complete candidate plans toward global optimality. On diverse mathematical
reasoning benchmarks (e.g., GSM8K, AIME), our approach surpasses vanilla
MCTS by +8.72pp while using 90% less GPU time, and outperforms LLM-based
search by +7.66pp with 30% fewer search steps. Our work demonstrates that
decoupling plan evaluation from execution through specialized agentic critics
enables a more scalable and effective framework for LLM-based planning and
reasoning.

1 INTRODUCTION

Enabling Large Language Models (LLMs) to solve complex, multi-step problems has driven a
shift from simple auto-regressive generation (Wei et al., 2022) toward deliberate, search-based
planning (Wei et al., 2025; Li, 2025). The current state of the art is dominated by step-level
search methods, which explore a tree of intermediate thoughts. These methods are fundamentally
bottlenecked by their evaluation mechanism: assessing a partial plan’s value requires either noisy
LLM-generated heuristics (Yao et al., 2023; Kambhampati et al., 2024) or costly, execution-based
rollouts (Hao et al., 2024), limiting the search depth and scope.

A more powerful, yet hitherto infeasible, strategy is to reframe planning as a global optimization
problem over complete candidate plans. Evolutionary algorithms offer a natural paradigm for this
global search (Guo et al., 2024; Yang et al., 2024; Wei et al., 2025; Li, 2025), but their application has
been blocked by the prohibitive cost of fitness evaluation. This “evaluation bottleneck (Zhang et al.,
2024b; Wang et al., 2024b; Kambhampati et al., 2024) stems from the same core issue: assessing a
plan’s quality has historically required full, costly execution, making it impossible to evolve a large
population of plans within a reasonable computational budget.

We introduce EvoPlan, a novel agentic planning framework that makes this global optimization
strategy viable. It achieves this by framing LLM planning as an evolutionary search over complete
plans, guided by an efficient, execution-free fitness function. The core of our approach is a
duo of specialized LLM critics that serve as static evaluators: a Logical Consistency Agent to
scrutinize a plan’s internal coherence and a Feasibility Agent to assess its practical executability.
This agentic fitness function circumvents the execution bottleneck, allowing EvoPlan to run a tree-
based evolutionary search that iteratively refines complete plans toward a global optimum, without
performing a single execution during the search phase. Our experiments show this leads to substantial
gains: on GSM8K, EvoPlan surpasses a state-of-the-art MCTS-based planning baseline (RAP (Hao
et al., 2024)) by +8.72pp in accuracy while using 90% less GPU time.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝑆0
0

𝑆0
1 𝑆1

1

𝑆0
2 𝑆1

2 𝑆𝑛
2

𝐶0 𝐶1 𝐶𝑛

𝐶0
2

𝐶𝑏𝑒𝑠𝑡

𝐶1
1

𝐶1
2

𝐶0
1

𝐶0
0

Question: Find the sum of …

Plan 𝑷𝟏
𝟏: we need to find all integer bases

\(b > 9 \) such that the integer …

Logical Consistency: 75.0/100, The plan

does not explicitly define what needs …

Feasibility:85.0/100, The plan can be

more concise and ensure all strategic …

(1) Execution-Based Search (2) Evolutionary Search (Ours)

(2.A) Example of Agentic Fitness Function

𝑆0
0

𝐶0
0

Mid-Step of Plan

Candidate Plan

Searching Expansion

Backpropagation

Population

of plans

Figure 1: EvoPlan solves the evaluation trap by replacing costly execution with lightweight agentic
critique. (1) Execution-Based Search methods like MCTS (Hao et al., 2024) search a tree of intermediate
states (circles, Si). To evaluate a single state, they must perform expensive execution-based rollouts, completing
the plan and running it (squares, Cn). This creates an evaluation trap: the prohibitive cost limits search depth,
leading to many suboptimal branches (gray arrow and nodes). (2) EvoPlan’s Evolutionary Search breaks this
trap by optimizing over a population (marked in green) of complete candidate plans (squares, Ci). The core
innovation is our efficient, execution-free agentic fitness function (2.A). A duo of critic agents provides each
plan with a quantitative fitness score (e.g., Logic: 75.0, Feasibility: 85.0) and qualitative feedback. This rich
signal is backpropagated (red arrow) to guide the evolutionary search toward a globally optimal plan (Cbest). By
decoupling evaluation from execution, EvoPlan enables scalable global optimization.

Figure 1 provides a conceptual overview of the EvoPlan framework. It highlights the decoupled,
agent-driven loop where a Planner agent proposes mutations to a population of plans, a duo of parallel
Critic agents provide a rich fitness score, and a search controller directs the evolution. The single,
most promising plan is then passed to a dedicated Executor. Our contributions are:

1. A novel agentic planning framework, EvoPlan, that reframes LLM reasoning as an evolutionary
search over complete plans to enable global optimization.

2. An efficient, execution-free agentic fitness function composed of specialized LLM critics,
which enables scalable evolutionary search by replacing costly execution-based evaluation with
lightweight static analysis.

3. A novel adaptation of Monte Carlo Tree Search (MCTS) as a plan-level evolutionary engine,
where each node represents a complete plan and the reward signal is derived directly from our
agentic fitness scores.

4. An empirical finding that plan refinement and plan execution are separable reasoning skills
with different capability requirements. This insight, enabled by our framework’s design, provides
a blueprint for more efficient, hybrid-model agent systems.

2 EVOPLAN: AGENT-DRIVEN EVOLUTIONARY PLANNING

EvoPlan reframes LLM reasoning as an evolutionary search process (Zhang et al., 2024b; Li, 2025),
designed to discover globally optimal plans. Its core innovation is an agentic evaluation mechanism
that breaks the computational bottleneck of traditional, execution-based search methods (e.g., Yao
et al., 2023; Hao et al., 2024), as shown in Table 1. This section first formalizes our general framework
for evolutionary planning and then describes its specific instantiation using a novel adaptation of
MCTS.

2.1 A FRAMEWORK FOR EVOLUTIONARY PLANNING VIA AGENTIC JUDGMENT

The objective of EvoPlan is to find an optimal plan C∗ from a space of candidates C that maximizes a
quality function Q(C). Formally, we seek:

C∗ = argmax
C∈C

Q(C). (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Positioning EvoPlan in the landscape of LLM planning frameworks. Our framework decouples
evaluation from execution by using specialized agentic critics, breaking the cost-accuracy trade-off that constrains
prior approaches.

Aspect EvoPlan (Ours) Execution-Based Search Heuristic-Based Search Auto-regressive Gen.

Representative works (this work) RAP (Hao et al., 2024)
MR (Gao et al., 2024)

ToT
Yao et al. (2023)

Plan-and-Solve
(Wang et al., 2023)

Search Algorithm Evolutionary (MCTS) MCTS BFS/DFS None (Greedy)
Primary Evaluation Signal Agentic Critics Full Plan Execution LLM Heuristics / Votes None
Search Granularity Complete Plans Partial States Partial States N/A
Introduces Correction Before Execution During Search During Search No
Computational Cost† 1× 9.17× 1.42× -
†Normalized search cost relative to EvoPlan (lower is better).

We structure this search around three core evolutionary components, each implemented by a dedicated
LLM agent:

• Population and Individuals. The population is a set of complete candidate plans. Each plan, a
sequence of steps C = (s1, . . . , sL), constitutes an individual in the search space.

• Mutation Operator. A Planner Agent (Mp) serves as the mutation operator. It takes a parent plan
C and textual feedback F to generate a set of K refined offspring plans: {C ′

k}Kk=1 = Mp(C,F).
This recasts the LLM as a structured proposal generator, a concept explored in recent work on
LLM-driven optimization (Yang et al., 2024; Guo et al., 2024). Mutations include rewriting steps,
altering granularity, or addressing specific flaws identified by critics.

• Agentic Fitness Function. Our central innovation is an efficient, execution-free fitness function
composed of specialized LLM critics. While the use of LLMs for feedback or verification is an
emerging area (Gero et al., 2023; Lyu et al., 2023; Zhang et al., 2024a), our approach is distinct in
decomposing this judgment into specialized, efficient critics to form a static fitness function for
evolutionary search. The critics are:

1. Logical Consistency Agent (ELC): Scrutinizes the plan for internal contradictions, returning
a soundness score SLC(C) ∈ [0, 1].

2. Feasibility Agent (EF): Assesses whether each step is actionable and coherent, returning a
practicality score SF (C) ∈ [0, 1].

The aggregate fitness score R(C), which serves as the reward signal for the search, is a weighted
combination of these scores:

R(C) = wLCSLC(C) + wFSF (C), (2)

where wLC+wF = 1. The textual outputs of these critics provide the feedback F for the mutation
operator.

A naive evolutionary approach, such as a simple genetic algorithm, would fail to preserve the
relational structure between parent and offspring plans. To efficiently guide the search, it is critical to
track this evolutionary lineage, which motivates a structured, tree-based search algorithm.

2.2 TREE-BASED EVOLUTION VIA MCTS INSTANTIATION

We instantiate the EvoPlan framework with a tree-based evolutionary search, leveraging MCTS for its
principled approach to balancing exploration and exploitation. This approach has proven effective in
domains ranging from classic games (Silver et al., 2016) to LLM reasoning (Hao et al., 2024). In our
formulation, we adapt the four standard MCTS phases (Chaslot et al., 2008) to operate on complete
plans, guided by our agentic fitness function. The full pseudocode is provided in Section 2.2.

Evolutionary Tree Representation. We define a search tree where each node represents a complete
plan (an individual). An edge from a parent node to a child node signifies a mutation event. Thus,
the path from the root to any node represents that plan’s direct evolutionary lineage. This structure
allows the algorithm to credit or discredit entire branches of the evolutionary history, systematically
focusing the search on promising regions of the plan space.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 EvoPlan Framework
Require: Problem P , initial plan C0, LLM-based planner M , evaluators set E, LLM executor L
Ensure: Optimal plan C∗, Solution Y
1: root← Node(C0, 0, 0) ▷ Initialize root node with initial plan, Q=0, N=0
2: leaf_queue← [root] ▷ Initialize leaf queue with the root node
3: while leaf_queue is not empty do
4: path← SelectPromissingPath(root) ▷ Get the path from root to current leaf
5: leaf ← Dequeue(leaf_queue, path) ▷ Get the next leaf node from the queue by path
6: if not IsTerminal(leaf) then ▷ Terminate if the plan is optimal (all eval agents give full score) or reaches the max depth
7: Expand(leaf) ▷ Add child nodes to current leaf
8: for each child in leaf.children do
9: scores, feedback ← Evaluate(child, P,E) ▷ Use LLM Agnet evaluator to review current plan

10: Backpropagate(path, scores) ▷ Update Q and N along the path
11: Enqueue(leaf_queue, child) ▷ Add the new child nodes to the queue
12: end for
13: end if
14: end while ▷ Stop seaching if all plans in search tree has been fully explored
15: C∗ ← SelectBestPlan(root) ▷ Select the plan with highest value
16: Y ← ExecutePlan(P,C∗, L)
17: return C∗, Y

18: function EXPAND(node)
19: modified_plan← ModifyPlan(node.plan, node.feedback,M) ▷ Use LLM to modify plan based on the

feedback
20: new_node← Node(modified_plan, node.problem) ▷ Create a new node based on modified plan
21: node[children]← {new_node, new_node, new_node} ▷ Add the new nodes as children of current node
22: end function

23: function EVALUATE(plan, P,E)
24: scores← {} ▷ Initialize an empty dictionary to store evaluation scores
25: feedback ← [] ▷ Initialize an empty list to store feedback text
26: for each evaluator in E do
27: score, feedback← evaluator.evaluate(P,C) ▷ Get evaluation score and text, as detailed in Section A.4
28: scores[evaluator.class_name]← score ▷ Store the score with evaluator name
29: feedback.append(feedback) ▷ Store the feedback text
30: end for
31: return scores, feedback ▷ Return all scores and feedback
32: end function

Selection. Starting from the root node (an initial plan C0), the algorithm traverses the tree by
recursively selecting the child plan C that maximizes the Upper Confidence Bound 1 (UCB1) score
(Auer, 2000):

UCB1(C) = R̄(C) + cexp

√
lnNp

NC
. (3)

Here, R̄(C) is the plan’s average fitness score from the critic agents (exploitation), NC is its visit
count, Np is its parent’s visit count, and cexp is an exploration hyperparameter. This phase identifies
the most promising evolutionary path to refine.

Expansion and Mutation. The selection process continues until a leaf node CL (a plan not yet
mutated) is reached. The Planner Agent Mp is then invoked to perform targeted mutation, analogous
to the proposal step in LLM-based optimizers (Yang et al., 2024), generating K offspring plans.
These new plans become children of CL in the tree, expanding the search frontier.

Evaluation (Fitness Calculation). Each newly generated child plan C ′
k is evaluated by our duo

of Critic Agents, ELC and EF . This step provides the fitness score R(C ′
k) for the new individual.

This agentic evaluation is the key to EvoPlan’s efficiency. Unlike state-level MCTS methods like
RAP (Hao et al., 2024), which require a costly, execution-based rollout for every evaluation, or
heuristic-based approaches that use noisy LLM votes to guide the search (Yao et al., 2023), our
method uses a small number of parallelizable inference passes over the plan text. This single step
accounts for the order-of-magnitude reduction in computational cost shown in Table 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Accuracy (%) on GSM8K. In a zero-shot setting, EvoPlan’s global plan optimization outperforms
state-level search and MCTS methods evaluated under similar conditions. Results from original publications are
in italics.

Planning Type Method Task Guidance Search Space Granularity Model GSM8K
Sequential
Planning

Plan-and-Solve Kojima et al. (2022) Zero-Shot No search Plan-once GPT-3 56.40

Least-to-Most Zhou et al. (2023) Task Prompt No search Plan-once GPT-3 62.39

LLM-based
Planning

Arrange & Execute Qiu et al. (2024) Task Fine-Tuned Available Thoughts State-Level Qwen2-7B-it 82.11

Meta Reasoning Gao et al. (2024) Task Prompt Available Functions State-Level GPT-4 92.10
Qwen2.5-7B-it 91.02

Tree-of-Thought Yao et al. (2023) Task Prompt Available Thoughts State-Level GPT-4 90.00
Qwen2.5-7B-it 89.95

MCTS-based
Planning

RAP Hao et al. (2024) 4-Shots Available Steps State-Level Llama-33B 48.80
Qwen2.5-7B-it 83.09

EvoPlan (Ours) Zero-Shot Available Plans Plan-Level Qwen2.5-7B-it 91.81

Backpropagation. The fitness score R(C ′
k) for each new child is propagated up its lineage (the

path to the root). The visit counts (NC) and average fitness estimates (R̄(C)) of all ancestor plans
along this path are updated. This process reinforces successful evolutionary trajectories and informs
subsequent selection decisions.

After a predefined search budget, the plan C∗ with the highest visit count is selected as the final,
optimized plan. This plan is then passed to a separate Executor Agent for high-fidelity execution.
This principled decoupling of search and execution, enabled by our agentic fitness function, is
fundamental to EvoPlan’s design and anticipates our findings on the benefits of heterogeneous agent
roles (Zhong et al., 2024; Yao et al., 2025b).

3 EXPERIMENTS

Our experiments are designed to validate EvoPlan by making a three-part argument. We first establish
that our agentic framework successfully circumvents the critical evaluation bottleneck that constrains
prior search methods. We then demonstrate how this efficiency translates into superior plan quality
and task performance. Finally, we leverage EvoPlan’s decoupled architecture as a scientific instrument
to reveal a key insight about the separability of reasoning skills in LLMs. Details on our experimental
setup, including baselines, models, benchmarks, and hyperparameters, are provided in Appendix A.3.

3.1 SOLVING THE EVALUATION BOTTLENECK WITH AN AGENTIC FITNESS FUNCTION

A core claim of our work is that specialized agentic critics can form a valid and highly efficient
substitute for costly, execution-based rollouts. To validate this, we first show that our critic agents
provide a meaningful fitness signal, and second, that this mechanism is orders of magnitude more
efficient than its execution-based counterpart.

The Agentic Fitness Signal is Effective and Non-Redundant. A useful fitness function must
provide an informative signal to guide the evolutionary search. We test this through an ablation
study on Qwen2.5-7B-it, with results in Table 4. Removing either the Logical Consistency (ELC)
or Feasibility (EF) agent from the fitness function leads to a significant performance drop, with
mean accuracy decreasing by 4.09pp and 4.02pp, respectively. The effect is especially pronounced
on complex problems like AIME-24, where accuracy falls by 6.66pp without ELC and 9.16pp
without EF . This provides strong evidence that both critics offer essential and non-redundant signals,
effectively guiding the search towards high-quality plans.

Agentic Evaluation is Dramatically More Efficient. The primary motivation for our agentic
fitness function is to address the prohibitive cost of execution-based rollouts found in standard
MCTS methods like RAP (Hao et al., 2024). Table 3b confirms EvoPlan’s success, showing a
dramatic efficiency improvement on the GSM8K benchmark. Using Qwen2.5-7B-it, EvoPlan attains
a +8.72pp accuracy improvement over RAP while reducing GPU time by 90% (0.71 vs. 7.11 hours).
This efficiency is further compounded by a more focused search; by operating on complete plans,
EvoPlan requires 30% fewer search steps on average than the state-level heuristic search in ToT (Yao

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Comparative efficiency analysis of EvoPlan. (a) EvoPlan’s plan-level search requires 30% fewer
steps on average than ToT’s state-level search. (b) On GSM8K, EvoPlan achieves higher accuracy than Execution-
Based MCTS (RAP) while using 90% less GPU time, demonstrating the efficiency of its agentic evaluation.

(a) Fewer Search Steps vs. State-Level Search.

Method Model Steps # Avg.
State-Level Search

(ToT)
Qwen2.5-7B-it 78351.33
Llama3.1-8B-it 78402.33

EvoPlan Qwen2.5-7B-it 54932.17
Llama3.1-8B-it 54849.33

(b) Reduced GPU Cost vs. Execution-Based MCTS.

Method Model GSM8K GPU Hour Eff. Ratio
Execution-Based MCTS

(RAP)
Qwen2.5-7B-it 83.09 7.11 11.68
Llama3.1-8B-it 75.06 6.47 11.60

EvoPlan Qwen2.5-7B-it 91.81 0.71 129.30
Llama3.1-8B-it 75.42 0.77 97.94

Table 4: Ablation of evaluation agents using Qwen2.5-7B-it. Performance (Accuracy %) drops significantly
when either the Logical Consistency or Feasibility agent is removed, confirming their individual importance as
fitness signals for the evolutionary search.

Evaluator AIME-24 AIME-25 Olympiad AddSub GSM8K SingleEQ Avg.
Feasibility Only 21.67 ±0.41 1.67 ±0.13 24.70 ±0.43 89.81 ±0.30 86.24 ±0.34 94.24 ±0.23 53.05
Logic-Consistency Only 19.17 ±0.40 3.33 ±0.18 24.93 ±0.43 89.62 ±0.31 87.36 ±0.33 94.34 ±0.23 53.12
Combined (EvoPlan) 28.33 ±0.45 6.67 ±0.25 29.81 ±0.46 90.89 ±0.29 91.81 ±0.27 95.32 ±0.21 57.14

Table 5: Generality on Commonsense and Arithmetic Reasoning (Accuracy %). EvoPlan significantly
outperforms a strong baseline across general reasoning tasks, confirming its broad applicability.

Model Method CommonsenseQA MultiArith SVAMP Avg.

Qwen2.5-7B-it Chain-of-Thought (ZS-CoT) 63.72 95.33 83.40 80.82
EvoPlan (Ours) 79.20 98.67 92.90 90.26

Llama3.1-8B-it Chain-of-Thought (ZS-CoT) 63.80 38.17 27.00 42.99
EvoPlan (Ours) 68.57 92.76 81.20 80.84

Avg. Improvement +10.12 +28.97 +31.85 +23.65

et al., 2023), as detailed in Table 3a. These results confirm we have developed an effective and
computationally feasible fitness function, successfully solving the evaluation bottleneck that has
hindered global plan optimization.

3.2 UNLOCKING GLOBAL OPTIMIZATION FOR SUPERIOR PERFORMANCE

Having established an efficient search mechanism, we now investigate whether this enables superior
global optimization, leading to higher accuracy compared to state-level methods. On the widely-used
GSM8K benchmark (Table 2), EvoPlan achieves 91.81% accuracy with Qwen2.5-7B-it in a zero-shot
setting. This outperforms state-level planners like ToT (89.95%) and execution-based MCTS like
RAP (83.09%), demonstrating the tangible benefit of our approach on a standard reasoning task.

To further probe the generality of our framework, we evaluated EvoPlan on standard commonsense
and arithmetic reasoning benchmarks: CommonsenseQA (Talmor et al., 2019), MultiArith (Roy
& Roth, 2015), and SVAMP (Patel et al., 2021). These tasks provide a complementary evaluation
to the complex mathematical challenges. The results, presented in Table 5, show that EvoPlan
consistently and significantly outperforms the zero-shot Chain-of-Thought baseline (Wei et al., 2022).
On average, EvoPlan improves accuracy by +10.12pp on CommonsenseQA, +28.97pp on MultiArith,
and +31.85pp on SVAMP. This demonstrates that the benefits of our evolutionary search, guided by
an execution-free agentic fitness function, are not confined to a single domain. The framework’s
ability to globally optimize complete plans is a general principle that yields substantial performance
gains across a variety of reasoning tasks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 7: Performance and Efficiency of Hybrid Model Configurations with EvoPlan. Using smaller models
for planning/evaluation (1.5B) and a large model for execution (72B) significantly reduces GPU hours while
preserving 93.6% of the accuracy, demonstrating the separability of reasoning skills.

Planner Evaluator Executor AIME-24 AIME-25 Olympiad AddSub GSM8K SingleEQ Avg. GPU Hour Eff. Ratio
1.5B 72B 72B 20.00 6.67 31.41 90.38 90.07 97.83 56.06 14.39 3.89
1.5B 72B 1.5B 13.33 0.00 13.48 70.13 61.33 76.57 39.14 10.41 3.75
1.5B 1.5B 72B 26.67 6.67 30.52 88.61 90.30 97.05 56.63 5.72 9.90
72B 72B 72B 30.00 13.33 36.11 91.58 94.58 97.34 60.49 15.46 3.91

Table 6: Accuracy (%) of EvoPlan vs. Baselines across diverse mathematical benchmarks. EvoPlan
demonstrates superior average performance, with significant gains on complex tasks, underscoring the benefit of
its global, plan-level search. Results are mean accuracy with standard errors; highest values are in bold.

Model Method AIME-24 AIME-25 Olympiad AddSub GSM8K SingleEQ Avg.

Llama3.1-8B-it

Plan and Solve 13.02 ±0.34 0.42 ±0.06 12.87 ±0.33 85.87 ±0.35 72.74 ±0.45 91.67 ±0.28 46.10
Meta Reasoning 13.33 ±0.34 0.00 ±0.00 13.93 ±0.35 86.96 ±0.34 72.78 ±0.45 89.17 ±0.31 46.03
Tree-of-Thought 15.83 ±0.37 0.00 ±0.00 14.04 ±0.35 83.80 ±0.37 66.24 ±0.47 84.30 ±0.36 44.04
EvoPlan (Ours) 15.83 ±0.37 0.00 ±0.00 19.07 ±0.39 87.78 ±0.33 75.42 ±0.43 92.77 ±0.26 48.48

Qwen2.5-7B-it

Plan and Solve 18.75 ±0.39 4.58 ±0.21 26.03 ±0.44 87.89 ±0.33 90.30 ±0.30 94.05 ±0.24 53.60
Meta Reasoning 13.33 ±0.34 0.00 ±0.00 19.41 ±0.40 88.48 ±0.32 90.98 ±0.29 93.11 ±0.25 50.89
Tree-of-Thought 20.00 ±0.40 3.33 ±0.18 28.89 ±0.45 87.59 ±0.33 90.62 ±0.29 93.95 ±0.24 54.06
EvoPlan (Ours) 28.33 ±0.45 6.67 ±0.25 29.81 ±0.46 90.89 ±0.29 91.81 ±0.27 95.32 ±0.21 57.14

3.3 AN EMPIRICAL FINDING: THE SEPARABILITY OF REASONING SKILLS

Finally, we test whether the cognitive skill of iterative plan refinement is fundamentally different
from, and less complex than, the skill of high-fidelity plan execution. EvoPlan’s modular architecture
allows us to probe this question by deploying models of vastly different scales to each role. We assign
small, efficient models (Qwen2.5 1.5B) to the iterative planning and criticism phases, reserving a
large, powerful model (Qwen2.5 72B) only for the final, one-shot execution of the optimized plan.

Table 7 presents the results. The hybrid 1.5B/72B system achieves an average accuracy of 56.63%.
This is a striking result, as it retains 93.6% of the performance of a much more costly system where
the 72B model is used for all stages (60.49% accuracy). This high performance is achieved with a
63% reduction in GPU hours (from 15.46 to 5.72 hours), yielding a 2.5x improvement in the overall
efficiency ratio (pass@1 accuracy per GPU hour).

This is more than a simple efficiency gain; it is a key empirical finding. The ability of a small 1.5B
model to effectively guide the search for a powerful 72B model provides strong evidence that LLM
reasoning is not monolithic. The skills required to compare, critique, and incrementally refine plans
appear separable from, and less computationally demanding than, the skills for flawless execution.
This insight offers a principled path for designing more sophisticated, resource-aware, and scalable
multi-agent reasoning systems.

4 DISCUSSION

Our experimental results validate EvoPlan as a state-of-the-art reasoning framework and, more
importantly, utilize its architecture to uncover a fundamental insight into LLM reasoning. By
reframing planning as an evolutionary process guided by an agentic fitness function, we achieve
significant gains in both accuracy and efficiency. Here, we discuss the primary scientific contribution
enabled by our work, its broader implications for designing agentic systems.

4.1 THE PRIMARY INSIGHT: A DICHOTOMY OF REASONING SKILLS

A key scientific contribution of this work is the first empirical demonstration of a clear dichotomy
between the cognitive skills of plan refinement and plan execution. Current paradigms for LLM
reasoning largely treat these as a monolithic process, often deploying a single, powerful model for all
sub-tasks. Our work provides strong evidence challenging this assumption.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

This separability is most evident in our hybrid model experiment (Table 7). A system using a small
1.5B model for the iterative refinement phase (planning and criticism) and a powerful 72B model
for the final, one-shot execution retained 93.6% of the accuracy of an end-to-end 72B system. This
result is not merely an efficiency gain; it is a scientific finding. It reveals that the abilities required
for iterative comparison, critique, and refinement of plans are computationally less demanding than
the ability for flawless, high-fidelity execution. This dynamic can be conceptualized as a “manager”
versus “expert” relationship: the planner and critic agents act as managers that assess strategy and
direction, a task requiring strong comparative judgment rather than exhaustive domain knowledge. In
contrast, the executor acts as an expert that carries out the final, approved strategy, a task requiring
deep and precise knowledge.

4.2 IMPLICATIONS FOR AGENTIC AI SYSTEM DESIGN

The demonstrated dichotomy provides a new, empirically grounded blueprint for designing the next
generation of multi-agent AI systems. Current approaches that rely on teams of homogeneous,
powerful agents are not only computationally inefficient but also conceptually underdeveloped. Our
findings suggest a more principled path toward agent specialization.

First, this work validates the design of heterogeneous agent teams, where roles are assigned based
on the cognitive complexity of the task at hand. Instead of deploying multiple expensive, generalist
agents, systems can achieve a superior cost-performance trade-off by composing teams of smaller,
specialized “manager” agents to deliberate over strategy, reserving the most powerful “expert” agents
for final execution. Second, our execution-free, agentic fitness function enables what we term scalable
deliberation. By decoupling the cost of evaluating a plan from its execution, an agent system can
explore a vastly larger space of potential strategies within a given computational budget. This allows
for more thorough and robust problem-solving, overcoming the prohibitive cost-per-thought that
constrains existing search methods.

5 RELATED WORK

LLM reasoning research has progressively incorporated search algorithms to overcome the my-
opic, greedy nature of auto-regressive generation. These methods, however, remain fundamentally
constrained by a trade-off between evaluation cost and signal quality, a dilemma EvoPlan resolves
through its unique agentic architecture.

The Cost-Fidelity Dilemma in State-Level Search. To move beyond single-path generation,
methods like Tree-of-Thought (ToT) (Yao et al., 2023) and Meta-Reasoning (MR) (Gao et al., 2024)
employ tree search to explore multiple intermediate reasoning steps. These frameworks operate at
the state-level and fall into two distinct camps. On one end, heuristic-based search methods such
as ToT and its generalization, Graph-of-Thoughts (Besta et al., 2024), rely on an LLM to provide a
cheap but noisy evaluation signal, such as a “value” score or a “vote” on the most promising partial
thought (Yao et al., 2023). While this enables broad exploration, the unreliable signal often leads
to inefficient search. On the other end, execution-based search provides a high-fidelity signal at a
prohibitive cost. For example, RAP (Hao et al., 2024) applies state-level MCTS, but its evaluation
of each node requires a full, execution-based rollout using the LLM as a world model. This strong
reward signal comes at the cost of extreme computational overhead. This cost-fidelity dilemma
creates an “evaluation trap” that has prevented truly global optimization over the complete plan space.

The Bottleneck in Evolutionary Plan Optimization. A compelling alternative is to perform global
optimization over complete plans, a paradigm well-suited for evolutionary algorithms from Genetic
Programming (GP) Xu et al. (2024); Zhang et al. (2024b). This approach has been historically
blocked by the “fitness evaluation bottleneck,” where assessing a large population of candidates is
computationally infeasible (Zhang et al., 2024b; Wang et al., 2024b; Surina et al., 2025). Recent
works have adeptly used LLMs as components in evolutionary systems, for example to evolve
prompts (e.g., EvoPrompt (Guo et al., 2024)), act as optimizers (e.g., OPRO (Yang et al., 2024) and
its successors (Yuksekgonul et al., 2025; Liu et al., 2025; Xiang et al., 2025)), or design reward
functions (e.g., RE-GoT (Yao et al., 2025a)). However, they do not resolve the core bottleneck, as
they typically rely on a single, monolithic, and expensive LLM to judge fitness. EvoPlan directly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

breaks this impasse. Its innovation is not just using agents for evaluation, but using an agentic fitness
function that is decomposed into a duo of lightweight, specialized critics (Logical Consistency and
Feasibility). This design provides the fast and reliable signal required to make evolutionary search a
viable and powerful strategy for global LLM plan optimization.

Architectural Niche in Agentic AI Systems. EvoPlan’s design also carves out a distinct niche
within the landscape of multi-agent AI systems (OpenAI, 2024; Wang et al., 2024a; Wu et al., 2024).
Instead of following the conversational structure of systems like AutoGen (Wu et al., 2024), or
emulating human-centric software development workflows like MetaGPT (Hong et al., 2024) and
ChatDev (Qian et al., 2024), EvoPlan’s architecture is organized around a computational search
paradigm: evolutionary MCTS. This structure enables a mechanism of procedural refinement that
is distinct from the post-hoc, inter-trial learning of frameworks like Reflexion (Shinn et al., 2023).
Rather than learning only after a complete, failed attempt, EvoPlan’s Planner and Critic agents engage
in a continuous, intra-trial refinement loop to optimize a plan before committing to a single execution.
By instantiating this specialized structure, EvoPlan serves as strong empirical validation for the
emerging principle of heterogeneous agent teams (Zhong et al., 2024; Yao et al., 2025b; Chen et al.,
2025), providing a clear architectural blueprint that distinguishes it from both homogeneous agent
systems and those that simply mirror human organizational patterns.

EvoPlan thus provides a unified solution. By introducing an execution-free agentic fitness function, it
makes the previously infeasible strategy of global evolutionary search at the plan-level both practical
and effective. In doing so, our work resolves the cost-fidelity dilemma of state-level search and
provides a new, computationally-grounded architecture for multi-agent reasoning.

6 LIMITATIONS AND FUTURE HORIZONS

The principles and architecture of EvoPlan establish a foundation for several exciting avenues for
future research, highlighting the generality and power of our approach.

First, while we demonstrated EvoPlan’s efficacy in the structured domain of mathematical reasoning,
its architecture serves as a robust testbed for planning in more open-ended domains like software
engineering, scientific discovery, or business strategy. Adapting the critic agents to these new contexts
is a clear and promising direction for extending the framework’s impact.

Furthermore, the performance of EvoPlan is guided by the capabilities of its agentic critics. The
modularity of these critics is a core strength of our framework, as it invites future work on enhancing
their judgment mechanisms. For instance, one could integrate retrieval-augmented generation to
ground their evaluations in external knowledge bases, thereby increasing their robustness and domain-
specific expertise without altering the core evolutionary search algorithm.

Finally, we instantiated our evolutionary framework using a novel adaptation of MCTS, but the central
principle of an agentic fitness function is algorithm-agnostic. This opens a rich research direction for
exploring other evolutionary strategies, such as genetic algorithms or direct policy optimization, to
guide the search over the plan population. EvoPlan thus serves as a general platform for investigating
the intersection of evolutionary computation and agentic LLM reasoning.

7 CONCLUSION

We introduced EvoPlan, a framework that reframes LLM planning as an evolutionary search over
complete plans. Its core mechanism is an execution-free, agentic fitness function that resolves the
evaluation bottleneck of prior search methods. This innovation enables an MCTS-based evolution-
ary search that achieves state-of-the-art accuracy with order-of-magnitude efficiency gains. More
importantly, our decoupled architecture serves as a scientific instrument, revealing a fundamental
dichotomy between the capabilities required for plan refinement and plan execution. EvoPlan thus
offers both a powerful method for robust reasoning and a principled blueprint for designing the next
generation of scalable, agentic AI systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Peter Auer. Using upper confidence bounds for online learning. In Proceedings 41st annual
symposium on foundations of computer science, pp. 270–279. IEEE, 2000.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo tree search: A
new framework for game ai. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 4, pp. 216–217, 2008.

Weize Chen, Ziming You, Ran Li, yitong guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous
agents for collaborative intelligence. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=o1Et3MogPw.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Peizhong Gao, Ao Xie, Shaoguang Mao, Wenshan Wu, Yan Xia, Haipeng Mi, and Furu Wei. Meta
reasoning for large language models, 2024. URL https://arxiv.org/abs/2406.11698.

Zelalem Gero, Chandan Singh, Hao Cheng, Tristan Naumann, Michel Galley, Jianfeng Gao, and
Hoifung Poon. Self-verification improves few-shot clinical information extraction. In ICML
3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH), 2023. URL https:
//openreview.net/forum?id=SBbJICrglS.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=ZG3RaNIsO8.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 8154–8173, Singapore, December 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.507. URL https://aclanthology.org/2023.
emnlp-main.507.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench: A
challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.acl-long.
211/.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VtmBAGCN7o.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to solve
arithmetic word problems with verb categorization. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans (eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 523–533, Doha, Qatar, October 2014. Association for Computational
Linguistics. doi: 10.3115/v1/D14-1058. URL https://aclanthology.org/D14-1058.

10

https://openreview.net/forum?id=o1Et3MogPw
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2406.11698
https://openreview.net/forum?id=SBbJICrglS
https://openreview.net/forum?id=SBbJICrglS
https://openreview.net/forum?id=ZG3RaNIsO8
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://openreview.net/forum?id=VtmBAGCN7o
https://aclanthology.org/D14-1058

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

HuggingFace. Math-verify, 2025. URL https://github.com/huggingface/
Math-Verify.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks, 2024. URL https://arxiv.org/abs/2402.01817.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 22199–22213. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang.
Parsing algebraic word problems into equations. Transactions of the Association for Computational
Linguistics, 3:585–597, 2015.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang,
and Xiaohang Dong. Better zero-shot reasoning with role-play prompting. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 4099–4113, 2024.

Xinzhe Li. A review of prominent paradigms for LLM-based agents: Tool use, planning (including
RAG), and feedback learning. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-
Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), Proceedings of the 31st International
Conference on Computational Linguistics, pp. 9760–9779, Abu Dhabi, UAE, January 2025.
Association for Computational Linguistics. URL https://aclanthology.org/2025.
coling-main.652/.

Fei Liu, Xi Lin, Shunyu Yao, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
Large language model for multiobjective evolutionary optimization. In International Conference
on Evolutionary Multi-Criterion Optimization, pp. 178–191. Springer, 2025.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. Faithful chain-of-thought reasoning. In Proceedings of the 13th International
Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 305–329,
2023.

MAA. The 2024 american invitational mathematics examination (aime’24), 2024. URL https:
//artofproblemsolving.com/wiki/index.php/2024_AIME_I.

MAA. The 2025 american invitational mathematics examination (aime’25), 2025. URL https:
//artofproblemsolving.com/wiki/index.php/2025_AIME_I.

OpenAI. Openai o1 system card, 2024. URL https://cdn.openai.com/
o1-system-card.pdf.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094, 2021.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-
Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 15174–15186, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL
https://aclanthology.org/2024.acl-long.810/.

Yuli Qiu, Jiashu Yao, Heyan Huang, and Yuhang Guo. Optimizing chain-of-thought reasoning:
Tackling arranging bottleneck via plan augmentation, 2024. URL https://arxiv.org/
abs/2410.16812.

11

https://github.com/huggingface/Math-Verify
https://github.com/huggingface/Math-Verify
https://arxiv.org/abs/2402.01817
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://aclanthology.org/2025.coling-main.652/
https://aclanthology.org/2025.coling-main.652/
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf
https://aclanthology.org/2024.acl-long.810/
https://arxiv.org/abs/2410.16812
https://arxiv.org/abs/2410.16812

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 1743–1752, 2015.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
vAElhFcKW6.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets reinforcement
learning, 2025. URL https://arxiv.org/abs/2504.05108.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language mod-
els. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2609–2634, 2023.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level
prompt optimization. In The Twelfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=22pyNMuIoa.

Zeyi Wang, Songbai Liu, Jianyong Chen, and Kay Chen Tan. Large language model-aided evolution-
ary search for constrained multiobjective optimization. In International Conference on Intelligent
Computing, pp. 218–230. Springer, 2024b.

Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, and Fei Liu. PlanGenLLMs: A modern
survey of LLM planning capabilities. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 19497–19521, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.958. URL https://aclanthology.org/2025.acl-long.958/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language mod-
els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversations. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
BAakY1hNKS.

Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Xinbing Liang, Fengwei Teng, Jinhao Tu, Fashen Ren,
Xiangru Tang, Sirui Hong, Chenglin Wu, and Yuyu Luo. Self-supervised prompt optimization,
2025. URL https://arxiv.org/abs/2502.06855.

12

https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://arxiv.org/abs/2504.05108
https://aclanthology.org/N19-1421
https://openreview.net/forum?id=22pyNMuIoa
https://aclanthology.org/2025.acl-long.958/
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=BAakY1hNKS
https://arxiv.org/abs/2502.06855

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang. Genetic programming and reinforce-
ment learning on learning heuristics for dynamic scheduling: A preliminary comparison. IEEE
Computational Intelligence Magazine, 19(2):18–33, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Changwei Yao, Xinzi Liu, Chen Li, and Marios Savvides. Reward evolution with graph-of-thoughts:
A bi-level language model framework for reinforcement learning, 2025a. URL https://arxiv.
org/abs/2509.16136.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 11809–11822. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.

Yuhang Yao, Haixin Wang, Yibo Chen, Jiawen Wang, Min Chang Jordan Ren, Bosheng Ding, Salman
Avestimehr, and Chaoyang He. Toward super agent system with hybrid ai routers, 2025b. URL
https://arxiv.org/abs/2504.10519.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639(8055):609–616, 2025.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2024a. URL https://arxiv.
org/abs/2408.15240.

Rui Zhang, Fei Liu, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. Understanding the
importance of evolutionary search in automated heuristic design with large language models. In
International Conference on Parallel Problem Solving from Nature, pp. 185–202. Springer, 2024b.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.org/
abs/2312.07104.

Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
Heterogeneous-agent reinforcement learning. Journal of Machine Learning Research, 25(32):
1–67, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=WZH7099tgfM.

13

https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2509.16136
https://arxiv.org/abs/2509.16136
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://arxiv.org/abs/2504.10519
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://openreview.net/forum?id=WZH7099tgfM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ETHICS STATEMENT

This research was conducted in accordance with the ICLR Code of Ethics. The study did not involve
human participants or animal subjects. All datasets are publicly available and were handled in strict
compliance with their usage policies and licensing, ensuring no personally identifiable information
was used. Our evaluation protocols were designed to be fair and impartial, centered on objective
performance metrics.

A.2 LLM USAGE

We utilized large language models as assistive tools for manuscript preparation, code debugging, and
literature review. The use of all models complied with their respective terms of service.

A.3 IMPLEMENTATION FOR REPRODUCIBILITY

This appendix provides supplementary details on our experimental setup, hyperparameters, and the
specific prompt templates used to guide our specialized LLM agents.

Reproducibility and Environment. To ensure reproducibility and facilitate fair comparisons,
we have published our implementation and demonstrations in the supplementary material. All
experiments were conducted within the official lmsysorg/sglang Docker container from the
SGLang platform (Zheng et al., 2024), using 8 NVIDIA A100 GPUs.

Code Availability. We attached the demo code as supplementary material for reproducibility.

Evaluation Framework. Our evaluation framework extends the established benchmarking pipeline
from CoT (Wei et al., 2022) and its recent refinements (Kong et al., 2024). For mathematical bench-
marks, we required answers to be formatted within \boxed{} for consistent extraction. We used
Qwen2.5-7B-it as a fallback extractor for any malformed outputs. Answer verification employed
both exact matching and the Math Verify (HuggingFace, 2025) tool, following community best
practices.

Baselines. We integrated several baseline methods into our unified evaluation pipeline to enable
comprehensive comparisons. These included Plan-and-Solve (Wang et al., 2023) and Tree-of-
Thought (ToT) (Yao et al., 2023), which were adapted from their original implementations. We also
implemented Meta Reasoning (Gao et al., 2024) following the descriptions in the official paper. For
the GSM8K-specific comparison, we incorporated RAP (Hao et al., 2024) using the authors’ official
codebase. This unified approach ensures consistent assessment criteria across all methods.

Datasets. We evaluated EvoPlan across a diverse set of benchmarks. For mathematical reasoning,
we used AIME-24 and AIME-25 (MAA, 2024; 2025), Math Olympiad (He et al., 2024), AddSub (Hos-
seini et al., 2014), GSM8K (Cobbe et al., 2021), and SingleEQ (Koncel-Kedziorski et al., 2015). To
test general reasoning skills, we included CommonsenseQA (Talmor et al., 2019), MultiArith (Roy &
Roth, 2015), and SVAMP (Patel et al., 2021).

Hyperparameters. For the EvoPlan framework, the MCTS-based evolutionary search was config-
ured with the following key hyperparameters. The UCB1 exploration constant cexp was set to 1.5.
In the expansion phase, the Planner Agent generated K = 3 offspring plans (mutations) for each
selected leaf node. The total search budget was set to a maximum of 32 evaluation steps per problem.
The agentic fitness score R(C) was computed with equal weights for the critic agents (wLC = 0.5,
wF = 0.5).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 AGENT PROMPT TEMPLATES

The EvoPlan framework is composed of several specialized agent roles, each guided by distinct
system and user prompts. This design ensures reproducibility by providing precise instructions for
each agent’s task. The prompts for the Initial Plan Generator, the Planner (mutation operator), the
Critic agents, and the final Executor are detailed below.

Initial Plan Generator Prompt This prompt is used once at the beginning of the search to generate
the initial plan (C0), which serves as the root node of the MCTS tree. It instructs the LLM to create a
high-level strategic plan without implementation details.

Initial Plan Generator Prompt

User:
Problem
{problem}

Your Task
Create a clear, strategic plan to solve the provided problem. The plan must provide high-level
guidance without diving into implementation details.

Plan Requirements
• Strategic Steps: Each step must be a high-level strategic action that guides toward the solution

without specifying implementation details.
• Clear Numbering: Use proper numbering (1., 2., 3.) and sub-steps when needed (1.1, 1.2,

etc.).
• Logical Sequence: Arrange steps in logical order where each step builds upon previous ones.
• Appropriate Abstraction: Keep steps general and abstract. Avoid specific technical details or

exact procedures.
• Concise but Complete: Include all necessary strategic elements while avoiding redundancy.
• Global Guidance: Focus on what needs to be accomplished rather than how to accomplish it.

Example Format
1. [First strategic objective]
2. [Second strategic objective]
2.1 [Strategic sub-objective if needed]
2.2 [Another strategic sub-objective if needed]
3. [Third strategic objective]

Your output should contain ONLY the numbered plan with no additional commentary or
explanation. Keep it abstract and focused on strategic guidance.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Planner Agent (Mutation) Prompt The Planner Agent acts as the mutation operator. It takes a
plan and feedback from the critic agents to generate a refined offspring plan.

Planner Agent (Mutation) Prompt

System Prompt: You are an expert strategic planner who creates improved, high-level plans based
on feedback.

User Prompt:
Problem
{problem}

Current Plan
{plan}

Feedback to Address
{feedback}

Your Task
Create a significantly improved strategic plan that addresses the identified weaknesses while
maintaining appropriate abstraction and global guidance focus.

Improvement Guidelines:
1. Address Feedback: Carefully review and directly address each piece of feedback provided.
2. Maintain Abstraction: Keep steps at a strategic level. Avoid diving into implementation

specifics or technical details.
3. Improve Structure: Ensure proper numbering (1., 2., 3.) and use sub-steps (1.1, 1.2) where

appropriate.
4. Optimize Flow: Rearrange or modify steps to create a more logical strategic sequence.
5. Eliminate Redundancy: Remove unnecessary or duplicate steps while ensuring strategic

completeness.
6. Enhance Clarity: Make strategic guidance clearer without adding unnecessary implementation

detail.
7. Global Focus: Ensure the plan provides comprehensive strategic direction rather than step-by-

step execution.
Required Output Format
Provide your response as a structured object with two keys:
• plan: The full text of the new, improved strategic plan with proper numbering and high-level,

abstract steps.
• changes_made: A detailed list of the specific structural and content changes you made to

address the feedback while maintaining abstraction.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Logical Consistency Agent Prompt The Logical Consistency Agent (ELC) evaluates a plan’s
internal coherence, providing a key component of the agentic fitness score.

Logical Consistency Agent Prompt

System Prompt: You are an expert plan evaluator specializing in logical consistency and plan
structure.

User Prompt:
Problem Context
{question}

Plan to Evaluate
{plan}

{history_section}
Your Task
Your job is to identify logical flaws, structural issues, and missing steps in the plan. Focus on
ensuring the plan is logically sound and well-structured at a strategic level.

Evaluation Criteria:
1. Logical Flow: Verify that steps follow a logical sequence where each step builds upon the

previous ones and leads naturally to the next.
2. Contradictions: Identify any contradictions, impossible steps, or conflicting instructions within

the plan.
3. Completeness: Check for any critical missing steps or logical gaps that would prevent success-

ful problem resolution.
4. Step Structure: Ensure steps are properly numbered (1., 2., 3.) with sub-steps clearly indicated

(1.1, 1.2, etc.) when needed.
5. Abstraction Level: Verify that the plan maintains appropriate abstraction without diving into

implementation details.
6. Feedback Adherence: If history is provided, verify if the new plan has successfully addressed

the previous logical concerns.
Required Output Format
Provide your evaluation as a structured response with the following keys:
• score: A score from 0 to 100 based on the rubric (scores 0-60 indicate Unacceptable; 60-70

Major Issues; 70-80 Minor Issues; 80-100 Good).
• feedback: A brief, high-level explanation focusing on logical flow and structural soundness.
• suggestions: A list of specific, actionable suggestions to improve logical consistency and

plan structure.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Feasibility Agent Prompt The Feasibility Agent (EF) evaluates a plan’s strategic clarity and
practicality, providing the other component of the fitness score.

Feasibility Agent Prompt

System Prompt: You are an expert plan evaluator specializing in feasibility, strategic clarity, and
practical guidance.

User Prompt:
Problem Context
{question}

Plan to Evaluate
{plan}

{history_section}
Your Task
Your job is to assess if the plan provides clear strategic guidance while maintaining appropriate
abstraction. Focus on ensuring the plan offers comprehensive direction without diving into
implementation details.

Evaluation Criteria:
1. Strategic Clarity: Each step must provide clear strategic direction that guides toward the

solution (avoid implementation details or specific technical execution).
2. Appropriate Abstraction: Steps should offer high-level guidance rather than detailed instruc-

tions. They should be general enough to allow flexible execution.
3. Comprehensiveness: The plan should cover all major strategic aspects needed to solve the

problem without being overly prescriptive.
4. Clarity: Instructions must be unambiguous at the strategic level while avoiding unnecessary

detail.
5. Conciseness: The plan should be as brief as possible while remaining strategically complete.
6. Feedback Adherence: If history is provided, verify if the new plan has successfully addressed

the previous strategic concerns.
Required Output Format
Provide your evaluation as a structured response with the following keys:
• score:A score from 0 to 100 based on the rubric (scores 0-60 indicate Unacceptable; 60-70

Major Issues; 70-80 Minor Issues; 80-100 Good).
• feedback: A brief, high-level explanation focusing on strategic clarity and appropriate

abstraction.
• suggestions: A list of specific suggestions to improve strategic guidance while maintaining

abstraction.

Executor Agent Prompt The Executor Agent is invoked once the search is complete. It takes the
final, optimized plan (C∗) and executes it to produce the final answer.

Executor Agent Prompt

System Prompt: You are a helpful AI assistant.

User Prompt:
Problem
{problem}

Plan to Execute
{plan}

Let’s execute the plan step-by-step to solve the problem.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.5 CASE STUDY: EVOLUTIONARY PLAN REFINEMENT

To provide a concrete illustration of EvoPlan’s dynamics, this section presents a step-by-step walk-
through of the evolutionary search process for a single mathematical problem. We demonstrate how
the framework iteratively refines an initial plan toward an optimal solution, guided by the agentic
fitness function provided by the Logical Consistency and Feasibility critics.

Problem Statement. Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b.

1. Initial Plan Generation (Root Node). The process begins by generating an initial high-level
plan. This plan serves as the root node of the MCTS tree.

Initial Plan (Node: cbd60065...)

To solve the problem, we need to find all integer bases b > 9 such that the integer represented
by 17b divides the integer represented by 97b, and then sum those bases.

This initial plan is then evaluated by the critic agents. The feedback highlights its lack of procedural
detail, which is reflected in a modest score.

Critic Feedback and Scores

Logical Consistency (Score: 75.0/100): The plan has a good logical flow... However, it lacks
the step-by-step process for converting the numbers from base b to base 10 and checking the
divisibility condition.
Feasibility (Score: 85.0/100): The plan provides clear strategic direction... However, it can be
slightly more concise and ensure all major strategic aspects are comprehensively covered.

2. Iterative Refinement via MCTS. The initial feedback guides the Planner Agent (mutation
operator) to generate improved offspring plans. The MCTS algorithm selects promising nodes for
expansion. After several iterations, the search converges on a significantly improved plan. For
instance, the plan at node ‘41530cf8...‘ (depth 3) demonstrates clear evolutionary progress.

Final Optimized Plan (Node: 41530cf8...)

1. Convert the base-b numbers 17b and 97b to their decimal (base-10) equivalents using the
formula: anbn + ...+ a0b

0. For 17b, this becomes 1× b+ 7. For 97b, this becomes 9× b+ 7.
2. Check the divisibility condition: Determine if the decimal equivalent of 97b (i.e., 9b+ 7) is
divisible by the decimal equivalent of 17b (i.e., b+ 7). This involves performing the division
and verifying if the remainder is zero.
3. Identify all bases b > 9 that satisfy the divisibility condition by systematically testing values
starting from b = 10.
4. Sum the valid bases that meet the criteria.
5. Provide the final answer as the sum of all valid bases.

This refined plan receives higher scores from the critics, particularly for its logical consistency,
because it now explicitly outlines the required conversion and verification steps.

Critic Feedback and Scores

Logical Consistency (Score: 88.0/100): The plan is well-structured and logically sound,
addressing the problem effectively. It covers all necessary steps and follows a clear sequence.
Feasibility (Score: 85.0/100): The revised plan effectively addresses the feedback and provides
clear strategic direction. It maintains an appropriate level of abstraction while covering all major
aspects needed to solve the problem.

3. Final Plan Selection and Execution. The MCTS search explores a tree of candidate plans,
using the agentic fitness scores to guide its exploration. Figure 2 visualizes the final search tree and
presents the quantitative analysis that led to the selection of the best plan. The node ‘41530cf8...‘ was
selected due to its highest average reward.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Top 5 Nodes by Average Reward:

1. Node: 41530cf8..., Visits: 1, Avg Reward: 0.865
2. Node: d54426eb..., Visits: 3, Avg Reward: 0.855
3. Node: 9f92b3c5..., Visits: 5, Avg Reward: 0.853
4. Node: 77446f49..., Visits: 1, Avg Reward: 0.850
5. Node: 0b290482..., Visits: 1, Avg Reward: 0.850

MCTS Tree Visualization (Root: [cbd60065 D:0 V:3 Q:0.567])
+-- [cbd60065 D:0 V:3 Q:0.567] To solve the problem, we need...

+-- [77446f49 D:1 V:1 Q:0.850] 1. Convert the numbers...
+-- [9f92b3c5 D:1 V:5 Q:0.853] 1. Convert the base-b...

+-- [0b290482 D:2 V:1 Q:0.850] 1. Convert the base-b...
+-- [d54426eb D:2 V:3 Q:0.855] 1. Convert the base-b...

+-- [0c81408c D:3 V:1 Q:0.850] 1. Convert the base-b...
+-- [41530cf8 D:3 V:1 Q:0.865] 1. Convert the base-b...

Figure 2: MCTS search tree and node analytics. The visualization shows the evolutionary
lineage of plans. Each entry denotes ‘[Node ID (truncated) D:depth V:visits Q:avg_reward]‘. The
search correctly identifies the plan at depth 3 (Node ‘41530cf8...‘) as having the highest reward,
demonstrating effective exploitation of promising evolutionary paths.

Finally, the selected optimal plan is passed to the Executor Agent, which follows the steps to produce
the final, correct solution. This completes the process, showing how execution-free evolutionary
refinement leads to a high-quality plan that enables successful problem solving.

Final Solution from Executor Agent

To solve the problem, we start by converting the base-b numbers... For 9b+ 7 to be divisible by
b+ 7, −56 must be divisible by b+ 7. Therefore, b+ 7 must be a divisor of 56. Since b > 9,
we have b+ 7 > 16. The relevant divisors of 56 greater than 16 are 28 and 56.
• If b+ 7 = 28, then b = 21.
• If b+ 7 = 56, then b = 49.
The valid bases are b = 21 and b = 49. The sum of these bases is 21 + 49 = 70.

70

20

	Introduction
	EvoPlan: Agent-Driven Evolutionary Planning
	A Framework for Evolutionary Planning via Agentic Judgment
	Tree-Based Evolution via MCTS Instantiation

	Experiments
	Solving the Evaluation Bottleneck with an Agentic Fitness Function
	Unlocking Global Optimization for Superior Performance
	An Empirical Finding: The Separability of Reasoning Skills

	Discussion
	The Primary Insight: A Dichotomy of Reasoning Skills
	Implications for Agentic AI System Design

	Related Work
	Limitations and Future Horizons
	Conclusion
	Appendix
	Ethics Statement
	LLM Usage
	Implementation For Reproducibility
	Agent Prompt Templates
	Case Study: Evolutionary Plan Refinement

