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ABSTRACT

Efficiently generating high-quality plans is a critical yet unsolved challenge for
Large Language Model (LLM) agents tackling complex reasoning tasks. Prevailing
search-based planners, such as those employing Monte Carlo Tree Search (MCTS)
or exploring a tree-of-thoughts, are fundamentally bottlenecked by their reliance on
costly, execution-based rollouts to evaluate partial solutions, leading to prohibitive
computational overhead. We introduce a novel agentic planning framework that
circumvents this limitation by replacing expensive execution with efficient, static
evaluation. Our framework employs a duo of specialized LLM critics: a Logical
Consistency Agent to scrutinize a plan’s internal coherence and a Feasibility
Agent to assess its practical executability. These critics provide rich, multi-faceted
feedback that guides a novel evolutionary search algorithm, which iteratively refines
complete candidate plans toward global optimality. On diverse mathematical
reasoning benchmarks (e.g., GSM8K, AIME), our approach surpasses vanilla
MCTS by +8.72pp while using 90% less GPU time, and outperforms LLM-based
search by +7.66pp with 30% fewer search steps. Our work demonstrates that
decoupling plan evaluation from execution through specialized agentic critics
enables a more scalable and effective framework for LLM-based planning and
reasoning.

1 INTRODUCTION

Enabling Large Language Models (LLMs) to solve complex, multi-step problems has driven a
shift from simple auto-regressive generation (Wei et al., 2022) toward deliberate, search-based
planning (Wei et al., 2025; Li, 2025). The current state of the art is dominated by step-level
search methods, which explore a tree of intermediate thoughts. These methods are fundamentally
bottlenecked by their evaluation mechanism: assessing a partial plan’s value requires either noisy
LLM-generated heuristics (Yao et al., 2023; Kambhampati et al., 2024) or costly, execution-based
rollouts (Hao et al., 2024), limiting the search depth and scope.

A more powerful, yet hitherto infeasible, strategy is to reframe planning as a global optimization
problem over complete candidate plans. Evolutionary algorithms offer a natural paradigm for this
global search (Guo et al., 2024; Yang et al., 2024; Wei et al., 2025; Li, 2025), but their application has
been blocked by the prohibitive cost of fitness evaluation. This “evaluation bottleneck (Zhang et al.,
2024b; Wang et al., 2024b; Kambhampati et al., 2024) stems from the same core issue: assessing a
plan’s quality has historically required full, costly execution, making it impossible to evolve a large
population of plans within a reasonable computational budget.

We introduce EvoPlan, a novel agentic planning framework that makes this global optimization
strategy viable. It achieves this by framing LLM planning as an evolutionary search over complete
plans, guided by an efficient, execution-free fitness function. The core of our approach is a
duo of specialized LLM critics that serve as static evaluators: a Logical Consistency Agent to
scrutinize a plan’s internal coherence and a Feasibility Agent to assess its practical executability.
This agentic fitness function circumvents the execution bottleneck, allowing EvoPlan to run a tree-
based evolutionary search that iteratively refines complete plans toward a global optimum, without
performing a single execution during the search phase. Our experiments show this leads to substantial
gains: on GSM8K, EvoPlan surpasses a state-of-the-art MCTS-based planning baseline (RAP (Hao
et al., 2024)) by +8.72pp in accuracy while using 90% less GPU time.
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Figure 1: EvoPlan solves the evaluation trap by replacing costly execution with lightweight agentic
critique. (1) Execution-Based Search methods like MCTS (Hao et al., 2024) search a tree of intermediate
states (circles, Si). To evaluate a single state, they must perform expensive execution-based rollouts, completing
the plan and running it (squares, Cn). This creates an evaluation trap: the prohibitive cost limits search depth,
leading to many suboptimal branches (gray arrow and nodes). (2) EvoPlan’s Evolutionary Search breaks this
trap by optimizing over a population (marked in green) of complete candidate plans (squares, Ci). The core
innovation is our efficient, execution-free agentic fitness function (2.A). A duo of critic agents provides each
plan with a quantitative fitness score (e.g., Logic: 75.0, Feasibility: 85.0) and qualitative feedback. This rich
signal is backpropagated (red arrow) to guide the evolutionary search toward a globally optimal plan (Cbest). By
decoupling evaluation from execution, EvoPlan enables scalable global optimization.

Figure 1 provides a conceptual overview of the EvoPlan framework. It highlights the decoupled,
agent-driven loop where a Planner agent proposes mutations to a population of plans, a duo of parallel
Critic agents provide a rich fitness score, and a search controller directs the evolution. The single,
most promising plan is then passed to a dedicated Executor. Our contributions are:

1. A novel agentic planning framework, EvoPlan, that reframes LLM reasoning as an evolutionary
search over complete plans to enable global optimization.

2. An efficient, execution-free agentic fitness function composed of specialized LLM critics,
which enables scalable evolutionary search by replacing costly execution-based evaluation with
lightweight static analysis.

3. A novel adaptation of Monte Carlo Tree Search (MCTS) as a plan-level evolutionary engine,
where each node represents a complete plan and the reward signal is derived directly from our
agentic fitness scores.

4. An empirical finding that plan refinement and plan execution are separable reasoning skills
with different capability requirements. This insight, enabled by our framework’s design, provides
a blueprint for more efficient, hybrid-model agent systems.

2 EVOPLAN: AGENT-DRIVEN EVOLUTIONARY PLANNING

EvoPlan reframes LLM reasoning as an evolutionary search process (Zhang et al., 2024b; Li, 2025),
designed to discover globally optimal plans. Its core innovation is an agentic evaluation mechanism
that breaks the computational bottleneck of traditional, execution-based search methods (e.g., Yao
et al., 2023; Hao et al., 2024), as shown in Table 1. This section first formalizes our general framework
for evolutionary planning and then describes its specific instantiation using a novel adaptation of
MCTS.

2.1 A FRAMEWORK FOR EVOLUTIONARY PLANNING VIA AGENTIC JUDGMENT

The objective of EvoPlan is to find an optimal plan C∗ from a space of candidates C that maximizes a
quality function Q(C). Formally, we seek:

C∗ = argmax
C∈C

Q(C). (1)
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Table 1: Positioning EvoPlan in the landscape of LLM planning frameworks. Our framework decouples
evaluation from execution by using specialized agentic critics, breaking the cost-accuracy trade-off that constrains
prior approaches.

Aspect EvoPlan (Ours) Execution-Based Search Heuristic-Based Search Auto-regressive Gen.

Representative works (this work) RAP (Hao et al., 2024)
MR (Gao et al., 2024)

ToT
Yao et al. (2023)

Plan-and-Solve
(Wang et al., 2023)

Search Algorithm Evolutionary (MCTS) MCTS BFS/DFS None (Greedy)
Primary Evaluation Signal Agentic Critics Full Plan Execution LLM Heuristics / Votes None
Search Granularity Complete Plans Partial States Partial States N/A
Introduces Correction Before Execution During Search During Search No
Computational Cost† 1× 9.17× 1.42× -
†Normalized search cost relative to EvoPlan (lower is better).

We structure this search around three core evolutionary components, each implemented by a dedicated
LLM agent:

• Population and Individuals. The population is a set of complete candidate plans. Each plan, a
sequence of steps C = (s1, . . . , sL), constitutes an individual in the search space.

• Mutation Operator. A Planner Agent (Mp) serves as the mutation operator. It takes a parent plan
C and textual feedback F to generate a set of K refined offspring plans: {C ′

k}Kk=1 = Mp(C,F ).
This recasts the LLM as a structured proposal generator, a concept explored in recent work on
LLM-driven optimization (Yang et al., 2024; Guo et al., 2024). Mutations include rewriting steps,
altering granularity, or addressing specific flaws identified by critics.

• Agentic Fitness Function. Our central innovation is an efficient, execution-free fitness function
composed of specialized LLM critics. While the use of LLMs for feedback or verification is an
emerging area (Gero et al., 2023; Lyu et al., 2023; Zhang et al., 2024a), our approach is distinct in
decomposing this judgment into specialized, efficient critics to form a static fitness function for
evolutionary search. The critics are:

1. Logical Consistency Agent (ELC ): Scrutinizes the plan for internal contradictions, returning
a soundness score SLC(C) ∈ [0, 1].

2. Feasibility Agent (EF ): Assesses whether each step is actionable and coherent, returning a
practicality score SF (C) ∈ [0, 1].

The aggregate fitness score R(C), which serves as the reward signal for the search, is a weighted
combination of these scores:

R(C) = wLCSLC(C) + wFSF (C), (2)

where wLC+wF = 1. The textual outputs of these critics provide the feedback F for the mutation
operator.

A naive evolutionary approach, such as a simple genetic algorithm, would fail to preserve the
relational structure between parent and offspring plans. To efficiently guide the search, it is critical to
track this evolutionary lineage, which motivates a structured, tree-based search algorithm.

2.2 TREE-BASED EVOLUTION VIA MCTS INSTANTIATION

We instantiate the EvoPlan framework with a tree-based evolutionary search, leveraging MCTS for its
principled approach to balancing exploration and exploitation. This approach has proven effective in
domains ranging from classic games (Silver et al., 2016) to LLM reasoning (Hao et al., 2024). In our
formulation, we adapt the four standard MCTS phases (Chaslot et al., 2008) to operate on complete
plans, guided by our agentic fitness function. The full pseudocode is provided in Section 2.2.

Evolutionary Tree Representation. We define a search tree where each node represents a complete
plan (an individual). An edge from a parent node to a child node signifies a mutation event. Thus,
the path from the root to any node represents that plan’s direct evolutionary lineage. This structure
allows the algorithm to credit or discredit entire branches of the evolutionary history, systematically
focusing the search on promising regions of the plan space.
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Algorithm 1 EvoPlan Framework
Require: Problem P , initial plan C0, LLM-based planner M , evaluators set E, LLM executor L
Ensure: Optimal plan C∗, Solution Y
1: root← Node(C0, 0, 0) ▷ Initialize root node with initial plan, Q=0, N=0
2: leaf_queue← [root] ▷ Initialize leaf queue with the root node
3: while leaf_queue is not empty do
4: path← SelectPromissingPath(root) ▷ Get the path from root to current leaf
5: leaf ← Dequeue(leaf_queue, path) ▷ Get the next leaf node from the queue by path
6: if not IsTerminal(leaf) then ▷ Terminate if the plan is optimal (all eval agents give full score) or reaches the max depth
7: Expand(leaf) ▷ Add child nodes to current leaf
8: for each child in leaf.children do
9: scores, feedback ← Evaluate(child, P,E) ▷ Use LLM Agnet evaluator to review current plan

10: Backpropagate(path, scores) ▷ Update Q and N along the path
11: Enqueue(leaf_queue, child) ▷ Add the new child nodes to the queue
12: end for
13: end if
14: end while ▷ Stop seaching if all plans in search tree has been fully explored
15: C∗ ← SelectBestPlan(root) ▷ Select the plan with highest value
16: Y ← ExecutePlan(P,C∗, L)
17: return C∗, Y

18: function EXPAND(node)
19: modified_plan← ModifyPlan(node.plan, node.feedback,M) ▷ Use LLM to modify plan based on the

feedback
20: new_node← Node(modified_plan, node.problem) ▷ Create a new node based on modified plan
21: node[children]← {new_node, new_node, new_node} ▷ Add the new nodes as children of current node
22: end function

23: function EVALUATE(plan, P,E)
24: scores← {} ▷ Initialize an empty dictionary to store evaluation scores
25: feedback ← [] ▷ Initialize an empty list to store feedback text
26: for each evaluator in E do
27: score, feedback← evaluator.evaluate(P,C) ▷ Get evaluation score and text, as detailed in Section A.4
28: scores[evaluator.class_name]← score ▷ Store the score with evaluator name
29: feedback.append(feedback) ▷ Store the feedback text
30: end for
31: return scores, feedback ▷ Return all scores and feedback
32: end function

Selection. Starting from the root node (an initial plan C0), the algorithm traverses the tree by
recursively selecting the child plan C that maximizes the Upper Confidence Bound 1 (UCB1) score
(Auer, 2000):

UCB1(C) = R̄(C) + cexp

√
lnNp

NC
. (3)

Here, R̄(C) is the plan’s average fitness score from the critic agents (exploitation), NC is its visit
count, Np is its parent’s visit count, and cexp is an exploration hyperparameter. This phase identifies
the most promising evolutionary path to refine.

Expansion and Mutation. The selection process continues until a leaf node CL (a plan not yet
mutated) is reached. The Planner Agent Mp is then invoked to perform targeted mutation, analogous
to the proposal step in LLM-based optimizers (Yang et al., 2024), generating K offspring plans.
These new plans become children of CL in the tree, expanding the search frontier.

Evaluation (Fitness Calculation). Each newly generated child plan C ′
k is evaluated by our duo

of Critic Agents, ELC and EF . This step provides the fitness score R(C ′
k) for the new individual.

This agentic evaluation is the key to EvoPlan’s efficiency. Unlike state-level MCTS methods like
RAP (Hao et al., 2024), which require a costly, execution-based rollout for every evaluation, or
heuristic-based approaches that use noisy LLM votes to guide the search (Yao et al., 2023), our
method uses a small number of parallelizable inference passes over the plan text. This single step
accounts for the order-of-magnitude reduction in computational cost shown in Table 1.
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Table 2: Accuracy (%) on GSM8K. In a zero-shot setting, EvoPlan’s global plan optimization outperforms
state-level search and MCTS methods evaluated under similar conditions. Results from original publications are
in italics.

Planning Type Method Task Guidance Search Space Granularity Model GSM8K
Sequential
Planning

Plan-and-Solve Kojima et al. (2022) Zero-Shot No search Plan-once GPT-3 56.40

Least-to-Most Zhou et al. (2023) Task Prompt No search Plan-once GPT-3 62.39

LLM-based
Planning

Arrange & Execute Qiu et al. (2024) Task Fine-Tuned Available Thoughts State-Level Qwen2-7B-it 82.11

Meta Reasoning Gao et al. (2024) Task Prompt Available Functions State-Level GPT-4 92.10
Qwen2.5-7B-it 91.02

Tree-of-Thought Yao et al. (2023) Task Prompt Available Thoughts State-Level GPT-4 90.00
Qwen2.5-7B-it 89.95

MCTS-based
Planning

RAP Hao et al. (2024) 4-Shots Available Steps State-Level Llama-33B 48.80
Qwen2.5-7B-it 83.09

EvoPlan (Ours) Zero-Shot Available Plans Plan-Level Qwen2.5-7B-it 91.81

Backpropagation. The fitness score R(C ′
k) for each new child is propagated up its lineage (the

path to the root). The visit counts (NC) and average fitness estimates (R̄(C)) of all ancestor plans
along this path are updated. This process reinforces successful evolutionary trajectories and informs
subsequent selection decisions.

After a predefined search budget, the plan C∗ with the highest visit count is selected as the final,
optimized plan. This plan is then passed to a separate Executor Agent for high-fidelity execution.
This principled decoupling of search and execution, enabled by our agentic fitness function, is
fundamental to EvoPlan’s design and anticipates our findings on the benefits of heterogeneous agent
roles (Zhong et al., 2024; Yao et al., 2025b).

3 EXPERIMENTS

Our experiments are designed to validate EvoPlan by making a three-part argument. We first establish
that our agentic framework successfully circumvents the critical evaluation bottleneck that constrains
prior search methods. We then demonstrate how this efficiency translates into superior plan quality
and task performance. Finally, we leverage EvoPlan’s decoupled architecture as a scientific instrument
to reveal a key insight about the separability of reasoning skills in LLMs. Details on our experimental
setup, including baselines, models, benchmarks, and hyperparameters, are provided in Appendix A.3.

3.1 SOLVING THE EVALUATION BOTTLENECK WITH AN AGENTIC FITNESS FUNCTION

A core claim of our work is that specialized agentic critics can form a valid and highly efficient
substitute for costly, execution-based rollouts. To validate this, we first show that our critic agents
provide a meaningful fitness signal, and second, that this mechanism is orders of magnitude more
efficient than its execution-based counterpart.

The Agentic Fitness Signal is Effective and Non-Redundant. A useful fitness function must
provide an informative signal to guide the evolutionary search. We test this through an ablation
study on Qwen2.5-7B-it, with results in Table 4. Removing either the Logical Consistency (ELC)
or Feasibility (EF ) agent from the fitness function leads to a significant performance drop, with
mean accuracy decreasing by 4.09pp and 4.02pp, respectively. The effect is especially pronounced
on complex problems like AIME-24, where accuracy falls by 6.66pp without ELC and 9.16pp
without EF . This provides strong evidence that both critics offer essential and non-redundant signals,
effectively guiding the search towards high-quality plans.

Agentic Evaluation is Dramatically More Efficient. The primary motivation for our agentic
fitness function is to address the prohibitive cost of execution-based rollouts found in standard
MCTS methods like RAP (Hao et al., 2024). Table 3b confirms EvoPlan’s success, showing a
dramatic efficiency improvement on the GSM8K benchmark. Using Qwen2.5-7B-it, EvoPlan attains
a +8.72pp accuracy improvement over RAP while reducing GPU time by 90% (0.71 vs. 7.11 hours).
This efficiency is further compounded by a more focused search; by operating on complete plans,
EvoPlan requires 30% fewer search steps on average than the state-level heuristic search in ToT (Yao
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Table 3: Comparative efficiency analysis of EvoPlan. (a) EvoPlan’s plan-level search requires 30% fewer
steps on average than ToT’s state-level search. (b) On GSM8K, EvoPlan achieves higher accuracy than Execution-
Based MCTS (RAP) while using 90% less GPU time, demonstrating the efficiency of its agentic evaluation.

(a) Fewer Search Steps vs. State-Level Search.

Method Model Steps # Avg.
State-Level Search

(ToT)
Qwen2.5-7B-it 78351.33
Llama3.1-8B-it 78402.33

EvoPlan Qwen2.5-7B-it 54932.17
Llama3.1-8B-it 54849.33

(b) Reduced GPU Cost vs. Execution-Based MCTS.

Method Model GSM8K GPU Hour Eff. Ratio
Execution-Based MCTS

(RAP)
Qwen2.5-7B-it 83.09 7.11 11.68
Llama3.1-8B-it 75.06 6.47 11.60

EvoPlan Qwen2.5-7B-it 91.81 0.71 129.30
Llama3.1-8B-it 75.42 0.77 97.94

Table 4: Ablation of evaluation agents using Qwen2.5-7B-it. Performance (Accuracy %) drops significantly
when either the Logical Consistency or Feasibility agent is removed, confirming their individual importance as
fitness signals for the evolutionary search.

Evaluator AIME-24 AIME-25 Olympiad AddSub GSM8K SingleEQ Avg.
Feasibility Only 21.67 ±0.41 1.67 ±0.13 24.70 ±0.43 89.81 ±0.30 86.24 ±0.34 94.24 ±0.23 53.05
Logic-Consistency Only 19.17 ±0.40 3.33 ±0.18 24.93 ±0.43 89.62 ±0.31 87.36 ±0.33 94.34 ±0.23 53.12
Combined (EvoPlan) 28.33 ±0.45 6.67 ±0.25 29.81 ±0.46 90.89 ±0.29 91.81 ±0.27 95.32 ±0.21 57.14

Table 5: Generality on Commonsense and Arithmetic Reasoning (Accuracy %). EvoPlan significantly
outperforms a strong baseline across general reasoning tasks, confirming its broad applicability.

Model Method CommonsenseQA MultiArith SVAMP Avg.

Qwen2.5-7B-it Chain-of-Thought (ZS-CoT) 63.72 95.33 83.40 80.82
EvoPlan (Ours) 79.20 98.67 92.90 90.26

Llama3.1-8B-it Chain-of-Thought (ZS-CoT) 63.80 38.17 27.00 42.99
EvoPlan (Ours) 68.57 92.76 81.20 80.84

Avg. Improvement +10.12 +28.97 +31.85 +23.65

et al., 2023), as detailed in Table 3a. These results confirm we have developed an effective and
computationally feasible fitness function, successfully solving the evaluation bottleneck that has
hindered global plan optimization.

3.2 UNLOCKING GLOBAL OPTIMIZATION FOR SUPERIOR PERFORMANCE

Having established an efficient search mechanism, we now investigate whether this enables superior
global optimization, leading to higher accuracy compared to state-level methods. On the widely-used
GSM8K benchmark (Table 2), EvoPlan achieves 91.81% accuracy with Qwen2.5-7B-it in a zero-shot
setting. This outperforms state-level planners like ToT (89.95%) and execution-based MCTS like
RAP (83.09%), demonstrating the tangible benefit of our approach on a standard reasoning task.

To further probe the generality of our framework, we evaluated EvoPlan on standard commonsense
and arithmetic reasoning benchmarks: CommonsenseQA (Talmor et al., 2019), MultiArith (Roy
& Roth, 2015), and SVAMP (Patel et al., 2021). These tasks provide a complementary evaluation
to the complex mathematical challenges. The results, presented in Table 5, show that EvoPlan
consistently and significantly outperforms the zero-shot Chain-of-Thought baseline (Wei et al., 2022).
On average, EvoPlan improves accuracy by +10.12pp on CommonsenseQA, +28.97pp on MultiArith,
and +31.85pp on SVAMP. This demonstrates that the benefits of our evolutionary search, guided by
an execution-free agentic fitness function, are not confined to a single domain. The framework’s
ability to globally optimize complete plans is a general principle that yields substantial performance
gains across a variety of reasoning tasks.
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Table 7: Performance and Efficiency of Hybrid Model Configurations with EvoPlan. Using smaller models
for planning/evaluation (1.5B) and a large model for execution (72B) significantly reduces GPU hours while
preserving 93.6% of the accuracy, demonstrating the separability of reasoning skills.

Planner Evaluator Executor AIME-24 AIME-25 Olympiad AddSub GSM8K SingleEQ Avg. GPU Hour Eff. Ratio
1.5B 72B 72B 20.00 6.67 31.41 90.38 90.07 97.83 56.06 14.39 3.89
1.5B 72B 1.5B 13.33 0.00 13.48 70.13 61.33 76.57 39.14 10.41 3.75
1.5B 1.5B 72B 26.67 6.67 30.52 88.61 90.30 97.05 56.63 5.72 9.90
72B 72B 72B 30.00 13.33 36.11 91.58 94.58 97.34 60.49 15.46 3.91

Table 6: Accuracy (%) of EvoPlan vs. Baselines across diverse mathematical benchmarks. EvoPlan
demonstrates superior average performance, with significant gains on complex tasks, underscoring the benefit of
its global, plan-level search. Results are mean accuracy with standard errors; highest values are in bold.

Model Method AIME-24 AIME-25 Olympiad AddSub GSM8K SingleEQ Avg.

Llama3.1-8B-it

Plan and Solve 13.02 ±0.34 0.42 ±0.06 12.87 ±0.33 85.87 ±0.35 72.74 ±0.45 91.67 ±0.28 46.10
Meta Reasoning 13.33 ±0.34 0.00 ±0.00 13.93 ±0.35 86.96 ±0.34 72.78 ±0.45 89.17 ±0.31 46.03
Tree-of-Thought 15.83 ±0.37 0.00 ±0.00 14.04 ±0.35 83.80 ±0.37 66.24 ±0.47 84.30 ±0.36 44.04
EvoPlan (Ours) 15.83 ±0.37 0.00 ±0.00 19.07 ±0.39 87.78 ±0.33 75.42 ±0.43 92.77 ±0.26 48.48

Qwen2.5-7B-it

Plan and Solve 18.75 ±0.39 4.58 ±0.21 26.03 ±0.44 87.89 ±0.33 90.30 ±0.30 94.05 ±0.24 53.60
Meta Reasoning 13.33 ±0.34 0.00 ±0.00 19.41 ±0.40 88.48 ±0.32 90.98 ±0.29 93.11 ±0.25 50.89
Tree-of-Thought 20.00 ±0.40 3.33 ±0.18 28.89 ±0.45 87.59 ±0.33 90.62 ±0.29 93.95 ±0.24 54.06
EvoPlan (Ours) 28.33 ±0.45 6.67 ±0.25 29.81 ±0.46 90.89 ±0.29 91.81 ±0.27 95.32 ±0.21 57.14

3.3 AN EMPIRICAL FINDING: THE SEPARABILITY OF REASONING SKILLS

Finally, we test whether the cognitive skill of iterative plan refinement is fundamentally different
from, and less complex than, the skill of high-fidelity plan execution. EvoPlan’s modular architecture
allows us to probe this question by deploying models of vastly different scales to each role. We assign
small, efficient models (Qwen2.5 1.5B) to the iterative planning and criticism phases, reserving a
large, powerful model (Qwen2.5 72B) only for the final, one-shot execution of the optimized plan.

Table 7 presents the results. The hybrid 1.5B/72B system achieves an average accuracy of 56.63%.
This is a striking result, as it retains 93.6% of the performance of a much more costly system where
the 72B model is used for all stages (60.49% accuracy). This high performance is achieved with a
63% reduction in GPU hours (from 15.46 to 5.72 hours), yielding a 2.5x improvement in the overall
efficiency ratio (pass@1 accuracy per GPU hour).

This is more than a simple efficiency gain; it is a key empirical finding. The ability of a small 1.5B
model to effectively guide the search for a powerful 72B model provides strong evidence that LLM
reasoning is not monolithic. The skills required to compare, critique, and incrementally refine plans
appear separable from, and less computationally demanding than, the skills for flawless execution.
This insight offers a principled path for designing more sophisticated, resource-aware, and scalable
multi-agent reasoning systems.

4 DISCUSSION

Our experimental results validate EvoPlan as a state-of-the-art reasoning framework and, more
importantly, utilize its architecture to uncover a fundamental insight into LLM reasoning. By
reframing planning as an evolutionary process guided by an agentic fitness function, we achieve
significant gains in both accuracy and efficiency. Here, we discuss the primary scientific contribution
enabled by our work, its broader implications for designing agentic systems.

4.1 THE PRIMARY INSIGHT: A DICHOTOMY OF REASONING SKILLS

A key scientific contribution of this work is the first empirical demonstration of a clear dichotomy
between the cognitive skills of plan refinement and plan execution. Current paradigms for LLM
reasoning largely treat these as a monolithic process, often deploying a single, powerful model for all
sub-tasks. Our work provides strong evidence challenging this assumption.
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This separability is most evident in our hybrid model experiment (Table 7). A system using a small
1.5B model for the iterative refinement phase (planning and criticism) and a powerful 72B model
for the final, one-shot execution retained 93.6% of the accuracy of an end-to-end 72B system. This
result is not merely an efficiency gain; it is a scientific finding. It reveals that the abilities required
for iterative comparison, critique, and refinement of plans are computationally less demanding than
the ability for flawless, high-fidelity execution. This dynamic can be conceptualized as a “manager”
versus “expert” relationship: the planner and critic agents act as managers that assess strategy and
direction, a task requiring strong comparative judgment rather than exhaustive domain knowledge. In
contrast, the executor acts as an expert that carries out the final, approved strategy, a task requiring
deep and precise knowledge.

4.2 IMPLICATIONS FOR AGENTIC AI SYSTEM DESIGN

The demonstrated dichotomy provides a new, empirically grounded blueprint for designing the next
generation of multi-agent AI systems. Current approaches that rely on teams of homogeneous,
powerful agents are not only computationally inefficient but also conceptually underdeveloped. Our
findings suggest a more principled path toward agent specialization.

First, this work validates the design of heterogeneous agent teams, where roles are assigned based
on the cognitive complexity of the task at hand. Instead of deploying multiple expensive, generalist
agents, systems can achieve a superior cost-performance trade-off by composing teams of smaller,
specialized “manager” agents to deliberate over strategy, reserving the most powerful “expert” agents
for final execution. Second, our execution-free, agentic fitness function enables what we term scalable
deliberation. By decoupling the cost of evaluating a plan from its execution, an agent system can
explore a vastly larger space of potential strategies within a given computational budget. This allows
for more thorough and robust problem-solving, overcoming the prohibitive cost-per-thought that
constrains existing search methods.

5 RELATED WORK

LLM reasoning research has progressively incorporated search algorithms to overcome the my-
opic, greedy nature of auto-regressive generation. These methods, however, remain fundamentally
constrained by a trade-off between evaluation cost and signal quality, a dilemma EvoPlan resolves
through its unique agentic architecture.

The Cost-Fidelity Dilemma in State-Level Search. To move beyond single-path generation,
methods like Tree-of-Thought (ToT) (Yao et al., 2023) and Meta-Reasoning (MR) (Gao et al., 2024)
employ tree search to explore multiple intermediate reasoning steps. These frameworks operate at
the state-level and fall into two distinct camps. On one end, heuristic-based search methods such
as ToT and its generalization, Graph-of-Thoughts (Besta et al., 2024), rely on an LLM to provide a
cheap but noisy evaluation signal, such as a “value” score or a “vote” on the most promising partial
thought (Yao et al., 2023). While this enables broad exploration, the unreliable signal often leads
to inefficient search. On the other end, execution-based search provides a high-fidelity signal at a
prohibitive cost. For example, RAP (Hao et al., 2024) applies state-level MCTS, but its evaluation
of each node requires a full, execution-based rollout using the LLM as a world model. This strong
reward signal comes at the cost of extreme computational overhead. This cost-fidelity dilemma
creates an “evaluation trap” that has prevented truly global optimization over the complete plan space.

The Bottleneck in Evolutionary Plan Optimization. A compelling alternative is to perform global
optimization over complete plans, a paradigm well-suited for evolutionary algorithms from Genetic
Programming (GP) Xu et al. (2024); Zhang et al. (2024b). This approach has been historically
blocked by the “fitness evaluation bottleneck,” where assessing a large population of candidates is
computationally infeasible (Zhang et al., 2024b; Wang et al., 2024b; Surina et al., 2025). Recent
works have adeptly used LLMs as components in evolutionary systems, for example to evolve
prompts (e.g., EvoPrompt (Guo et al., 2024)), act as optimizers (e.g., OPRO (Yang et al., 2024) and
its successors (Yuksekgonul et al., 2025; Liu et al., 2025; Xiang et al., 2025)), or design reward
functions (e.g., RE-GoT (Yao et al., 2025a)). However, they do not resolve the core bottleneck, as
they typically rely on a single, monolithic, and expensive LLM to judge fitness. EvoPlan directly
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breaks this impasse. Its innovation is not just using agents for evaluation, but using an agentic fitness
function that is decomposed into a duo of lightweight, specialized critics (Logical Consistency and
Feasibility). This design provides the fast and reliable signal required to make evolutionary search a
viable and powerful strategy for global LLM plan optimization.

Architectural Niche in Agentic AI Systems. EvoPlan’s design also carves out a distinct niche
within the landscape of multi-agent AI systems (OpenAI, 2024; Wang et al., 2024a; Wu et al., 2024).
Instead of following the conversational structure of systems like AutoGen (Wu et al., 2024), or
emulating human-centric software development workflows like MetaGPT (Hong et al., 2024) and
ChatDev (Qian et al., 2024), EvoPlan’s architecture is organized around a computational search
paradigm: evolutionary MCTS. This structure enables a mechanism of procedural refinement that
is distinct from the post-hoc, inter-trial learning of frameworks like Reflexion (Shinn et al., 2023).
Rather than learning only after a complete, failed attempt, EvoPlan’s Planner and Critic agents engage
in a continuous, intra-trial refinement loop to optimize a plan before committing to a single execution.
By instantiating this specialized structure, EvoPlan serves as strong empirical validation for the
emerging principle of heterogeneous agent teams (Zhong et al., 2024; Yao et al., 2025b; Chen et al.,
2025), providing a clear architectural blueprint that distinguishes it from both homogeneous agent
systems and those that simply mirror human organizational patterns.

EvoPlan thus provides a unified solution. By introducing an execution-free agentic fitness function, it
makes the previously infeasible strategy of global evolutionary search at the plan-level both practical
and effective. In doing so, our work resolves the cost-fidelity dilemma of state-level search and
provides a new, computationally-grounded architecture for multi-agent reasoning.

6 LIMITATIONS AND FUTURE HORIZONS

The principles and architecture of EvoPlan establish a foundation for several exciting avenues for
future research, highlighting the generality and power of our approach.

First, while we demonstrated EvoPlan’s efficacy in the structured domain of mathematical reasoning,
its architecture serves as a robust testbed for planning in more open-ended domains like software
engineering, scientific discovery, or business strategy. Adapting the critic agents to these new contexts
is a clear and promising direction for extending the framework’s impact.

Furthermore, the performance of EvoPlan is guided by the capabilities of its agentic critics. The
modularity of these critics is a core strength of our framework, as it invites future work on enhancing
their judgment mechanisms. For instance, one could integrate retrieval-augmented generation to
ground their evaluations in external knowledge bases, thereby increasing their robustness and domain-
specific expertise without altering the core evolutionary search algorithm.

Finally, we instantiated our evolutionary framework using a novel adaptation of MCTS, but the central
principle of an agentic fitness function is algorithm-agnostic. This opens a rich research direction for
exploring other evolutionary strategies, such as genetic algorithms or direct policy optimization, to
guide the search over the plan population. EvoPlan thus serves as a general platform for investigating
the intersection of evolutionary computation and agentic LLM reasoning.

7 CONCLUSION

We introduced EvoPlan, a framework that reframes LLM planning as an evolutionary search over
complete plans. Its core mechanism is an execution-free, agentic fitness function that resolves the
evaluation bottleneck of prior search methods. This innovation enables an MCTS-based evolution-
ary search that achieves state-of-the-art accuracy with order-of-magnitude efficiency gains. More
importantly, our decoupled architecture serves as a scientific instrument, revealing a fundamental
dichotomy between the capabilities required for plan refinement and plan execution. EvoPlan thus
offers both a powerful method for robust reasoning and a principled blueprint for designing the next
generation of scalable, agentic AI systems.

9
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A APPENDIX

A.1 ETHICS STATEMENT

This research was conducted in accordance with the ICLR Code of Ethics. The study did not involve
human participants or animal subjects. All datasets are publicly available and were handled in strict
compliance with their usage policies and licensing, ensuring no personally identifiable information
was used. Our evaluation protocols were designed to be fair and impartial, centered on objective
performance metrics.

A.2 LLM USAGE

We utilized large language models as assistive tools for manuscript preparation, code debugging, and
literature review. The use of all models complied with their respective terms of service.

A.3 IMPLEMENTATION FOR REPRODUCIBILITY

This appendix provides supplementary details on our experimental setup, hyperparameters, and the
specific prompt templates used to guide our specialized LLM agents.

Reproducibility and Environment. To ensure reproducibility and facilitate fair comparisons,
we have published our implementation and demonstrations in the supplementary material. All
experiments were conducted within the official lmsysorg/sglang Docker container from the
SGLang platform (Zheng et al., 2024), using 8 NVIDIA A100 GPUs.

Code Availability. We attached the demo code as supplementary material for reproducibility.

Evaluation Framework. Our evaluation framework extends the established benchmarking pipeline
from CoT (Wei et al., 2022) and its recent refinements (Kong et al., 2024). For mathematical bench-
marks, we required answers to be formatted within \boxed{} for consistent extraction. We used
Qwen2.5-7B-it as a fallback extractor for any malformed outputs. Answer verification employed
both exact matching and the Math Verify (HuggingFace, 2025) tool, following community best
practices.

Baselines. We integrated several baseline methods into our unified evaluation pipeline to enable
comprehensive comparisons. These included Plan-and-Solve (Wang et al., 2023) and Tree-of-
Thought (ToT) (Yao et al., 2023), which were adapted from their original implementations. We also
implemented Meta Reasoning (Gao et al., 2024) following the descriptions in the official paper. For
the GSM8K-specific comparison, we incorporated RAP (Hao et al., 2024) using the authors’ official
codebase. This unified approach ensures consistent assessment criteria across all methods.

Datasets. We evaluated EvoPlan across a diverse set of benchmarks. For mathematical reasoning,
we used AIME-24 and AIME-25 (MAA, 2024; 2025), Math Olympiad (He et al., 2024), AddSub (Hos-
seini et al., 2014), GSM8K (Cobbe et al., 2021), and SingleEQ (Koncel-Kedziorski et al., 2015). To
test general reasoning skills, we included CommonsenseQA (Talmor et al., 2019), MultiArith (Roy &
Roth, 2015), and SVAMP (Patel et al., 2021).

Hyperparameters. For the EvoPlan framework, the MCTS-based evolutionary search was config-
ured with the following key hyperparameters. The UCB1 exploration constant cexp was set to 1.5.
In the expansion phase, the Planner Agent generated K = 3 offspring plans (mutations) for each
selected leaf node. The total search budget was set to a maximum of 32 evaluation steps per problem.
The agentic fitness score R(C) was computed with equal weights for the critic agents (wLC = 0.5,
wF = 0.5).
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A.4 AGENT PROMPT TEMPLATES

The EvoPlan framework is composed of several specialized agent roles, each guided by distinct
system and user prompts. This design ensures reproducibility by providing precise instructions for
each agent’s task. The prompts for the Initial Plan Generator, the Planner (mutation operator), the
Critic agents, and the final Executor are detailed below.

Initial Plan Generator Prompt This prompt is used once at the beginning of the search to generate
the initial plan (C0), which serves as the root node of the MCTS tree. It instructs the LLM to create a
high-level strategic plan without implementation details.

Initial Plan Generator Prompt

User:
# Problem
{problem}

# Your Task
Create a clear, strategic plan to solve the provided problem. The plan must provide high-level
guidance without diving into implementation details.

# Plan Requirements
• Strategic Steps: Each step must be a high-level strategic action that guides toward the solution

without specifying implementation details.
• Clear Numbering: Use proper numbering (1., 2., 3.) and sub-steps when needed (1.1, 1.2,

etc.).
• Logical Sequence: Arrange steps in logical order where each step builds upon previous ones.
• Appropriate Abstraction: Keep steps general and abstract. Avoid specific technical details or

exact procedures.
• Concise but Complete: Include all necessary strategic elements while avoiding redundancy.
• Global Guidance: Focus on what needs to be accomplished rather than how to accomplish it.

# Example Format
1. [First strategic objective]
2. [Second strategic objective]
2.1 [Strategic sub-objective if needed]
2.2 [Another strategic sub-objective if needed]
3. [Third strategic objective]

Your output should contain ONLY the numbered plan with no additional commentary or
explanation. Keep it abstract and focused on strategic guidance.
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Planner Agent (Mutation) Prompt The Planner Agent acts as the mutation operator. It takes a
plan and feedback from the critic agents to generate a refined offspring plan.

Planner Agent (Mutation) Prompt

System Prompt: You are an expert strategic planner who creates improved, high-level plans based
on feedback.

User Prompt:
# Problem
{problem}

# Current Plan
{plan}

# Feedback to Address
{feedback}

# Your Task
Create a significantly improved strategic plan that addresses the identified weaknesses while
maintaining appropriate abstraction and global guidance focus.

Improvement Guidelines:
1. Address Feedback: Carefully review and directly address each piece of feedback provided.
2. Maintain Abstraction: Keep steps at a strategic level. Avoid diving into implementation

specifics or technical details.
3. Improve Structure: Ensure proper numbering (1., 2., 3.) and use sub-steps (1.1, 1.2) where

appropriate.
4. Optimize Flow: Rearrange or modify steps to create a more logical strategic sequence.
5. Eliminate Redundancy: Remove unnecessary or duplicate steps while ensuring strategic

completeness.
6. Enhance Clarity: Make strategic guidance clearer without adding unnecessary implementation

detail.
7. Global Focus: Ensure the plan provides comprehensive strategic direction rather than step-by-

step execution.
# Required Output Format
Provide your response as a structured object with two keys:
• plan: The full text of the new, improved strategic plan with proper numbering and high-level,

abstract steps.
• changes_made: A detailed list of the specific structural and content changes you made to

address the feedback while maintaining abstraction.
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Logical Consistency Agent Prompt The Logical Consistency Agent (ELC) evaluates a plan’s
internal coherence, providing a key component of the agentic fitness score.

Logical Consistency Agent Prompt

System Prompt: You are an expert plan evaluator specializing in logical consistency and plan
structure.

User Prompt:
# Problem Context
{question}

# Plan to Evaluate
{plan}

{history_section}
# Your Task
Your job is to identify logical flaws, structural issues, and missing steps in the plan. Focus on
ensuring the plan is logically sound and well-structured at a strategic level.

Evaluation Criteria:
1. Logical Flow: Verify that steps follow a logical sequence where each step builds upon the

previous ones and leads naturally to the next.
2. Contradictions: Identify any contradictions, impossible steps, or conflicting instructions within

the plan.
3. Completeness: Check for any critical missing steps or logical gaps that would prevent success-

ful problem resolution.
4. Step Structure: Ensure steps are properly numbered (1., 2., 3.) with sub-steps clearly indicated

(1.1, 1.2, etc.) when needed.
5. Abstraction Level: Verify that the plan maintains appropriate abstraction without diving into

implementation details.
6. Feedback Adherence: If history is provided, verify if the new plan has successfully addressed

the previous logical concerns.
# Required Output Format
Provide your evaluation as a structured response with the following keys:
• score: A score from 0 to 100 based on the rubric (scores 0-60 indicate Unacceptable; 60-70

Major Issues; 70-80 Minor Issues; 80-100 Good).
• feedback: A brief, high-level explanation focusing on logical flow and structural soundness.
• suggestions: A list of specific, actionable suggestions to improve logical consistency and

plan structure.
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Feasibility Agent Prompt The Feasibility Agent (EF ) evaluates a plan’s strategic clarity and
practicality, providing the other component of the fitness score.

Feasibility Agent Prompt

System Prompt: You are an expert plan evaluator specializing in feasibility, strategic clarity, and
practical guidance.

User Prompt:
# Problem Context
{question}

# Plan to Evaluate
{plan}

{history_section}
# Your Task
Your job is to assess if the plan provides clear strategic guidance while maintaining appropriate
abstraction. Focus on ensuring the plan offers comprehensive direction without diving into
implementation details.

Evaluation Criteria:
1. Strategic Clarity: Each step must provide clear strategic direction that guides toward the

solution (avoid implementation details or specific technical execution).
2. Appropriate Abstraction: Steps should offer high-level guidance rather than detailed instruc-

tions. They should be general enough to allow flexible execution.
3. Comprehensiveness: The plan should cover all major strategic aspects needed to solve the

problem without being overly prescriptive.
4. Clarity: Instructions must be unambiguous at the strategic level while avoiding unnecessary

detail.
5. Conciseness: The plan should be as brief as possible while remaining strategically complete.
6. Feedback Adherence: If history is provided, verify if the new plan has successfully addressed

the previous strategic concerns.
# Required Output Format
Provide your evaluation as a structured response with the following keys:
• score:A score from 0 to 100 based on the rubric (scores 0-60 indicate Unacceptable; 60-70

Major Issues; 70-80 Minor Issues; 80-100 Good).
• feedback: A brief, high-level explanation focusing on strategic clarity and appropriate

abstraction.
• suggestions: A list of specific suggestions to improve strategic guidance while maintaining

abstraction.

Executor Agent Prompt The Executor Agent is invoked once the search is complete. It takes the
final, optimized plan (C∗) and executes it to produce the final answer.

Executor Agent Prompt

System Prompt: You are a helpful AI assistant.

User Prompt:
# Problem
{problem}

# Plan to Execute
{plan}

Let’s execute the plan step-by-step to solve the problem.
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A.5 CASE STUDY: EVOLUTIONARY PLAN REFINEMENT

To provide a concrete illustration of EvoPlan’s dynamics, this section presents a step-by-step walk-
through of the evolutionary search process for a single mathematical problem. We demonstrate how
the framework iteratively refines an initial plan toward an optimal solution, guided by the agentic
fitness function provided by the Logical Consistency and Feasibility critics.

Problem Statement. Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b.

1. Initial Plan Generation (Root Node). The process begins by generating an initial high-level
plan. This plan serves as the root node of the MCTS tree.

Initial Plan (Node: cbd60065...)

To solve the problem, we need to find all integer bases b > 9 such that the integer represented
by 17b divides the integer represented by 97b, and then sum those bases.

This initial plan is then evaluated by the critic agents. The feedback highlights its lack of procedural
detail, which is reflected in a modest score.

Critic Feedback and Scores

Logical Consistency (Score: 75.0/100): The plan has a good logical flow... However, it lacks
the step-by-step process for converting the numbers from base b to base 10 and checking the
divisibility condition.
Feasibility (Score: 85.0/100): The plan provides clear strategic direction... However, it can be
slightly more concise and ensure all major strategic aspects are comprehensively covered.

2. Iterative Refinement via MCTS. The initial feedback guides the Planner Agent (mutation
operator) to generate improved offspring plans. The MCTS algorithm selects promising nodes for
expansion. After several iterations, the search converges on a significantly improved plan. For
instance, the plan at node ‘41530cf8...‘ (depth 3) demonstrates clear evolutionary progress.

Final Optimized Plan (Node: 41530cf8...)

1. Convert the base-b numbers 17b and 97b to their decimal (base-10) equivalents using the
formula: anbn + ...+ a0b

0. For 17b, this becomes 1× b+ 7. For 97b, this becomes 9× b+ 7.
2. Check the divisibility condition: Determine if the decimal equivalent of 97b (i.e., 9b+ 7) is
divisible by the decimal equivalent of 17b (i.e., b+ 7). This involves performing the division
and verifying if the remainder is zero.
3. Identify all bases b > 9 that satisfy the divisibility condition by systematically testing values
starting from b = 10.
4. Sum the valid bases that meet the criteria.
5. Provide the final answer as the sum of all valid bases.

This refined plan receives higher scores from the critics, particularly for its logical consistency,
because it now explicitly outlines the required conversion and verification steps.

Critic Feedback and Scores

Logical Consistency (Score: 88.0/100): The plan is well-structured and logically sound,
addressing the problem effectively. It covers all necessary steps and follows a clear sequence.
Feasibility (Score: 85.0/100): The revised plan effectively addresses the feedback and provides
clear strategic direction. It maintains an appropriate level of abstraction while covering all major
aspects needed to solve the problem.

3. Final Plan Selection and Execution. The MCTS search explores a tree of candidate plans,
using the agentic fitness scores to guide its exploration. Figure 2 visualizes the final search tree and
presents the quantitative analysis that led to the selection of the best plan. The node ‘41530cf8...‘ was
selected due to its highest average reward.
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Top 5 Nodes by Average Reward:

1. Node: 41530cf8..., Visits: 1, Avg Reward: 0.865
2. Node: d54426eb..., Visits: 3, Avg Reward: 0.855
3. Node: 9f92b3c5..., Visits: 5, Avg Reward: 0.853
4. Node: 77446f49..., Visits: 1, Avg Reward: 0.850
5. Node: 0b290482..., Visits: 1, Avg Reward: 0.850

MCTS Tree Visualization (Root: [cbd60065 D:0 V:3 Q:0.567])
+-- [cbd60065 D:0 V:3 Q:0.567] To solve the problem, we need...

+-- [77446f49 D:1 V:1 Q:0.850] 1. Convert the numbers...
+-- [9f92b3c5 D:1 V:5 Q:0.853] 1. Convert the base-b...

+-- [0b290482 D:2 V:1 Q:0.850] 1. Convert the base-b...
+-- [d54426eb D:2 V:3 Q:0.855] 1. Convert the base-b...

+-- [0c81408c D:3 V:1 Q:0.850] 1. Convert the base-b...
+-- [41530cf8 D:3 V:1 Q:0.865] 1. Convert the base-b...

Figure 2: MCTS search tree and node analytics. The visualization shows the evolutionary
lineage of plans. Each entry denotes ‘[Node ID (truncated) D:depth V:visits Q:avg_reward]‘. The
search correctly identifies the plan at depth 3 (Node ‘41530cf8...‘) as having the highest reward,
demonstrating effective exploitation of promising evolutionary paths.

Finally, the selected optimal plan is passed to the Executor Agent, which follows the steps to produce
the final, correct solution. This completes the process, showing how execution-free evolutionary
refinement leads to a high-quality plan that enables successful problem solving.

Final Solution from Executor Agent

To solve the problem, we start by converting the base-b numbers... For 9b+ 7 to be divisible by
b+ 7, −56 must be divisible by b+ 7. Therefore, b+ 7 must be a divisor of 56. Since b > 9,
we have b+ 7 > 16. The relevant divisors of 56 greater than 16 are 28 and 56.
• If b+ 7 = 28, then b = 21.
• If b+ 7 = 56, then b = 49.
The valid bases are b = 21 and b = 49. The sum of these bases is 21 + 49 = 70.

70
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