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Figure 1. Video2Game takes an input video of an arbitrary scene and automatically transforms it into a real-time, interactive, realistic and
browser-compatible environment. The users can freely explore the environment and interact with the objects in the scene.

Abstract

Creating high-quality and interactive virtual environ-001
ments, such as games and simulators, often involves com-002
plex and costly manual modeling processes. In this paper,003
we present Video2Game, a novel approach that automati-004
cally converts videos of real-world scenes into realistic and005
interactive game environments. At the heart of our sys-006
tem are three core components: (i) a neural radiance fields007
(NeRF) module that effectively captures the geometry and008
visual appearance of the scene; (ii) a mesh module that dis-009
tills the knowledge from NeRF for faster rendering; and (iii)010
a physics module that models the interactions and physical011
dynamics among the objects. By following the carefully de-012
signed pipeline, one can construct an interactable and ac-013
tionable digital replica of the real world. We benchmark our014
system on both indoor and large-scale outdoor scenes. We015
show that we can not only produce highly-realistic render-016
ings in real-time, but also build interactive games on top.017

018

1. Introduction019

Crafting a visually compelling and interactive environment020
is crucial for immersive experiences in various domains,021

such as video games, virtual reality applications, and self- 022
driving simulators. This process, however, is complex and 023
expensive. It demands the skills of experts in the field and 024
the use of professional software development tools [21, 24]. 025
For instance, Grand Theft Auto V [23], known for its in- 026
tricately detailed environment, was one of the most expen- 027
sive video games ever developed, with a budget over $265 028
million primarily for asset creation. Similarly, the develop- 029
ment of the CARLA autonomous driving simulator [19] in- 030
volves a multidisciplinary team of 3D artists, programmers, 031
and engineers to meticulously craft and texture the virtual 032
cityscapes, creating its lifelike environments. 033

An appealing alternative to extensive manual modelling 034
is creating environments directly from the real world. For 035
instance, photogrammetry, a technique for constructing dig- 036
ital replicas of objects or scenes from overlapping real- 037
world photographs, has been utilized for environment cre- 038
ation [52, 53]. Success stories also span various games 039
and simulators. However, most use cases are limited 040
to creating object assets and necessitate significant post- 041
processing, such as material creation, texturing, and geom- 042
etry fixes [66]. People thus turns to neural radiance fields 043
(NeRFs) [46], as it offers a more promising approach to 044

1



CVPR
#

CVPR
#

CVPR 2024 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Single video Textured and collision-

enabled Mesh

Large-scale NeRF

Feature 

texture

MLP 

Shader

Interactive environment

Neural Textured MeshRigid-body DynamicsBase NeRFInput Video

Feature texture
MLP Shader

Game Interactive Environment

View

Figure 2. Overview of Video2Game: Given multiple posed images from a single video as input, we first construct a large-scale NeRF
model that is realistic and possesses high-quality surface geometry. We then transform this NeRF model into a mesh representation with
corresponding rigid-body dynamics to enable interactions. We utilize UV-mapped neural texture, which is both expressive and compatible
with game engines. Finally, we obtain an interactive virtual environment that virtual actors can interact with, can respond to user control,
and deliver high-resolution rendering from novel camera perspectives – all in real-time.

modeling large scenes. With careful design [13, 22, 39, 48,045
61], NeRF is able to render free-viewpoint, photo-realistic046
images efficiently. However, crafting an interactive environ-047
ment entails more than just creating a visually high-fidelity048
digital twin; it also involves building a physically plau-049
sible, immersive, real-time and importantly, interactive050
world tailored to user experiences. Furthermore, we expect051
such a virtual world to be compatible with real-time inter-052
action interfaces such as common game engines. Despite053
its promise, the use of NeRF to create interactive environ-054
ments from real-world videos remains largely unexplored.055

In this paper, we introduce Video2Game, a novel ap-056
proach to automatically converting a video of a scene into a057
realistic and interactive virtual environment. Given a video058
as input, we first construct a NeRF that can effectively cap-059
ture the geometric and visual information of a large-scale,060
unbounded) scene. Then we distill the NeRF into a game061
engine-compatible, neural textured mesh. This significantly062
improves the rendering efficiency while maintains the over-063
all quality. To model the interactions among the objects,064
we further decompose the scene into individual actionable065
entities and equip them with respective physics model. Fi-066
nally, we import our automatically generated assets into a067
WebGL-based game engine and create a playable game.068
The resulting virtual environment is photo-realistic, inter-069
active, and runs in real-time. See Fig. 1 for demonstration.070
In summary, our key contributions are:071

• A novel 3D modeling algorithm for real-time, free-072
viewpoint rendering and physical simulation, surpassing073
state-of-the-art NeRF baking methods with added rigid-074
body physics for enhanced simulation.075

• An automated game-creation framework to transform a076
scene video into an interactive, realistic environment,077
compatible with current game engines.078

2. Related Works 079

Given a single video, we aim to create a real-time, interac- 080
tive game where the agents (e.g., the character, the car) can 081
navigate and explore the reconstructed digital world, inter- 082
act with objects in the scene (e.g., collision and manipulate 083
objects), and achieve their respective tasks (e.g., collecting 084
coins, shooting targets). We draw inspirations from multi- 085
ple areas and combine the best of all. In this section, we 086
will briefly review those closely related areas which forms 087
the foundation of our work. 088

Novel view synthesis (NVS): Our work builds upon the 089
success of novel view synthesis [14, 25, 35, 62], which 090
is crucial for our game since it enables the agents to 091
move freely and view the reconstructed world seamlessly 092
from various perspectives. Among all these approaches 093
[26, 60, 68, 85, 86], we exploit neural radiance field (NeRF) 094
[46] as our underlying representation. NeRF has emerged as 095
one of the most promising tools in NVS since its introduc- 096
tion [49–51], and has great performance across a wide range 097
of scenarios [36, 56, 75, 81]. For instance, it can be easily 098
extended to handle various challenging real-world scenar- 099
ios such as learning from noisy camera poses [38, 70], re- 100
flectance modeling for photo-realistic relighting [69, 83], 101
and real-time rendering [16, 39, 55, 65, 76]. In this work, 102
we combine recent advances in NeRF with physics mod- 103
eling to build an immersive digital world from one single 104
video, moving from passive NVS to our complete solution 105
for embodied world modeling where agents can actively ex- 106
plore and interact with the scene. 107

Controllable video generation: Using different control 108
signals to manipulate the output of a visual model has gar- 109
nered great interest in the community. This has had a pro- 110
found impact on content creation [57, 58], digital editing 111
[11, 34], and simulation [30, 31, 40]. One could also lever- 112
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age large foundation models to control video content using113
text [57, 58]. However, they lack fine-grained and real-time114
control over the generated content. Alternatively, training115
(conditional) generative models for each scene enables bet-116
ter disentanglement of dynamics (e.g., foreground vs. back-117
ground) and supports better control. For instance, one can118
represent a self-driving scene [31] or a Pacman game [30] as119
latent codes and generate video frames based on control in-120
puts with a neural network. One can also learn to control the121
players within tennis games [44, 45, 79, 80]. Our work falls122
under the second line of research, where the model takes123
user control signals (e.g., a keystroke from the keyboard)124
as input and responds by rendering a new scene. However,125
instead of focusing on a specific scene (e.g., tennis games),126
we have developed a pipeline that allows the creation of127
a playable environment from a single video of a generic128
scene. Additionally, we model everything in 3D, which129
enables us to effectively capture not only view-dependent130
appearance but also physical interactions among rigid-body131
equipped objects. Importantly, we adopt a neural represen-132
tation compatible with graphics engines, enabling users to133
play the entire game in their browser at an interactive rate.134
Data-driven simulation: Building a realistic simulation135
environment has been a longstanding challenge. [19, 29,136
67, 71]. While it’s promising, we come close to mirror the137
real world only in recent years [10, 15, 42, 43, 59, 74, 75].138
The key insight of these work is to build models by lever-139
aging real-world data. Our work closely aligns with this140
line of research on building high-fidelity simulators from141
real-world data, with a few key differences. First, exist-142
ing works mainly focus on offline training and evaluation143
[10, 43, 74, 75], whereas our system runs at an interactive144
rate and allows for online, real-time control. Second, some145
existing works[41, 43, 72, 87] need additional data modality146
like LiDAR point clouds for geometry reconstruction, but147
RGB video is all we need. Third, most photo-realistic sim-148
ulators don’t model physical interactions. However, we sup-149
ports various physics modeling and allows agents to interact150
with the environment. Last, existing simulators are typi-151
cally resource-intensive , while our system is lightweight152
and can be easily accessible in common engines.153

3. Video2Game154

Given a sequence of images or a video of a scene, our goal155
is to construct an interactable and actionable digital twin,156
upon which we can build real-time, interactive games or re-157
alistic (sensor) simulators. Based on the observations that158
prevalent approaches to constructing digital replica mainly159
focus on visual appearance and ignore the underlying phys-160
ical interactions, we carefully design our system such that161
it can not only produce high-quality rendering across view-162
points, but also support the modeling of physical actions163
(e.g., navigation, collision, manipulation, etc). At the heart164

Figure 3. Visualization of automatically computed collision ge-
ometry: Sphere collider (green), box collider (yellow), convex
polygon collider (purple) and trimesh collider (red).

of our systems is a compositional implicit-explicit 3D rep- 165
resentation that is effective and efficient for both sensor and 166
physics simulation. By decomposing the world into indi- 167
vidual entities, we can better model and manipulate their 168
physical properties (e.g., specularity, mass, friction), and 169
simulate the outcomes of interactions more effectively. 170

We start by introducing a NeRF model that can effec- 171
tively capture the geometric and visual information of a 172
large-scale, unbounded scene (Sec. 3.1). Next, we present 173
an approach to convert the NeRF into a game-engine com- 174
patible mesh with neural texture maps, significantly im- 175
proving the rendering efficiency while maintaining the qual- 176
ity (Sec. 3.2). To enable physical interactions, we further 177
decompose the scene into individual actionable entities and 178
equip them with respective physics models (Sec. 3.3). Fi- 179
nally, we describe how we integrate our interactive environ- 180
ment into a WebGL-based game engine, allowing users to 181
play and interact with the virtual world in real time on their 182
personal browser. Fig. 2 provides an overview of our pro- 183
posed framework. 184

3.1. Large-scale NeRF 185

Preliminaries: Instant-NGP [48] is a notable variant of 186
NeRF, which represents the radiance field with a combi- 187
nation of spatial hash-based voxels and neural networks: 188
c, σ = Fθ(x,d; Φ) = MLPθ(It(x,Φ),d). Given a 3D 189
point x ∈ R3 and a camera direction d ∈ R2 as in- 190
put, Instant-NGP first interpolate the point feature It(x,Φ) 191
from the adjacent voxel features Φ. Then the point feature 192
and the camera direction are fed into a light-weight multi- 193
layer perception (MLP) to predict the color c ∈ R3 and den- 194
sity σ ∈ R+. To render the scene appearance, we first cast a 195
ray r(t) = o+td from the camera center o through the pixel 196
center in direction d, and sample a set of 3D points {xi} 197
along the ray. We then query their respective color {ci} 198
and density {σi} and obtain the color of the pixel through 199
alpha-composition: CNeRF(r) =

∑
i wici. Similarly, the 200
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Figure 4. Qualitative comparisons among NeRF models. The rendering quality of our base NeRF is superior to baselines, and with
leveraging monocular cues, we substantially improve rendered geometry compared to other baselines. This significantly facilitates NeRF
baking in subsequent stages. Here we consider depths measured by LiDAR point cloud in KITTI-360 and compute normals based on it.

expected depth can be computed by: DNeRF(r) =
∑

i witi.201
Here, wi indicates the blending weight that is derived from202
the densities {σi}. We refer the readers to [46] for more de-203
tails. To learn the voxel features Φ and the MLP weights θ,204
we compute the difference between the ground truth color205
and the rendered color: Lrgb =

∑
r∥CGT(r)−CNeRF(r)∥22.206

Large-scale NeRF: While Instant-NGP [48] has shown207
promising results on densely observed and bounded scenes,208
its performance starts to degrade when extending to209
sparsely-captured, large-scale, unbounded environments.210
To mitigate these issues, we propose several enhancements:211

212
c, σ, s,n = Fθ(x,d; Φ) = MLPθ(It(Ct(x),Φ),d). (1)213

First of all, we exploit the contraction function Ct(x) [12]214
to map the unbounded coordinates into a bounded region.215
In addition to radiance and density, we predict the seman-216
tics s and the surface normal n of the 3D points, guided with217
2D priors to better regularize the scene geometry. Further-218
more, we divide large-scale scenes into several blocks [63]219
to capture the fine-grained details. We now describe these220
enhancements in more details.221
Depth: High-quality geometry is critical for model-222
ing physical interactions. Inspired by MonoSDF [78], we223
leverage off-the-shelf monocular depth estimators [20, 27]224
to guide and improve the underlying geometry. We first225
predict the depth of the scene from rendered RGB im-226
ages. Then we minimize the discrepancy between the227
rendered depth and the predicted depth via Ldepth =228 ∑

r ∥(aDNeRF(r) + b)−Dmono(r)∥22, where a and b are the229
scale and shift that aligns the two distribution [54].230

Surface normals: Similar to depth, we encourage the231
normal estimated from NeRF to be consistent with the nor-232
mal predicted by the off-the-shelf estimator [20, 27]. The233
normal of a 3D point xi can be either analytically derived234
from the estimated density ni = (1 − ∇xσi

∥∇σi∥ ), or pre-235

dicted by the MLP header as in Eq. 1. We could aggre-236
gate them via volume render: N(r) =

∑
i wini. Em-237

pirically we find that adopting both normals and promot- 238
ing their mutual consistency works the best, since the MLP 239
header offers more flexibility. We thus employ Lnormal = 240
∥Nmlp(r)−Nmono(r)∥22 + ∥Nmlp(r)−Ndensity(r)∥22. 241

Semantics: We also predict semantic logits for each sam- 242
pled 3D points with our MLP. This helps us capture the cor- 243
relation between semantics and geometry [36, 84]. We ren- 244
der the semantic map with volume rendering SNeRF(r) = 245∑

i wisi and compute the cross-entropy with that of a 2D 246
segmentation model Lsemantics = CE (Smono,SNeRF) . 247

Regularization: We additionally adopt two regulariza- 248
tion terms. To reduce floaters in the scene, for each ran- 249
domly sampled 3D point x, we penalize its density by 250
Lsp =

∑
1 − exp(−ασ(x)), where α > 0 [77]. For each 251

sky pixel (which we derived from the semantic MLP), we 252
encourage its depth DNeRF(r

sky) to be as far as possible. 253
The loss is defined as: Lsky =

∑
rsky exp(−DNeRF(r

sky)). 254

Blocking: Capitalizing on a single Instant-NGP to cover 255
an extraordinarily large scene such as KITTI-360 [37] 256
would often lead to inferior results. We thus adopt a strat- 257
egy akin to BlockNeRF [63] where we divided the whole 258
scene into numerous blocks and model each region with a 259
separate Instant-NGP. Adjacent regions maintain substan- 260
tial overlaps to ensure smooth transition. 261

Learning: We jointly optimize the voxel feature Φ and 262
the MLP weights θ by minimizing the following loss: 263

LNeRF
total = Lrgb+Lnormal+Lsemantics+Ldepth+Lsky+Lsp (2) 264

3.2. NeRF Baking 265

We aim to create a digital replica that users (or agents) 266
can freely explore and act upon in real time. Although 267
our large-scale NeRF effectively renders high-quality im- 268
ages and geometry, its efficiency is limited by the compu- 269
tational costs associated with sampling 3D points. The un- 270
derlying volume density representation further complicates 271
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Method Representation KITTI-360 Gardenvase Interactive Compatibility
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Real time Rigid-body physics Scene decomposition

InstantNGP [48]
Volume

27.46 0.853 0.165 25.90 0.757 0.191 ✗ ✗ ✗
Nerfacto [64] 23.20 0.763 0.238 22.16 0.517 0.283 ✗ ✗ ✗
Video2Game 27.62 0.871 0.131 26.57 0.815 0.143 ✗ ✗ ✗

Gauss. Spl. [28] Points 17.85 0.615 0.428 27.50 0.858 0.099 ✓ ✗ ✗

MobileNeRF [16]
Mesh

19.67 0.627 0.452 22.80 0.505 0.365 ✓ ✗ ✗
BakedSDF* [76] 22.37 0.757 0.302 22.68 0.514 0.369 ✓ ✓ ✗
Video2Game 23.35 0.765 0.246 22.81 0.508 0.363 ✓ ✓ ✓

Table 1. Quantitative results on novel view synthesis and interactive compatibility analysis. Video2Game produces better or compa-
rable results across scenes, suggesting the effectiveness of our NeRF and mesh model. The performance improves the most when tackling
unbounded, large-scale scenes in KITTI-360. We note that existing NeRFs cannot reach the interactive rate required for real-time games.
While point-based rendering significantly improves the speed, it does not support rigid body physics. BakedSDF [76] represents the whole
scene with one single mesh, thus does not support object-level interactions.

the problem. For instance, it’s unclear how to define phys-272
ical interaction with such a representation (e.g., defining273
collision). The representation is also not compatible with274
common graphics engines. While recent software, such as275
the NeRFStudio Blender plugin and LumaAI Unreal add-276
on, has made some strides, their interaction capabilities and277
scene geometry quality are still not optimal for real-time278
user engagement, especially when the scene is large and279
the observations are relatively sparse. To overcome these280
challenges, we draw inspiration from recent NeRF meshing281
advancements and present a novel NeRF baking framework282
that efficiently transforms our NeRF representation into a283
game-engine compatible mesh. As we will show in Sec. 4,284
this conversion greatly enhances rendering efficiency while285
preserving quality and facilitates physical interactions.286

Mesh representation: Our mesh M = (V,F,T) com-287
prises vertices V ∈ R|V |×3, faces F ∈ N|F |×3 and a UV288
neural texture map T ∈ RH×W×6. Following [65], we289
store the base color in the first three dimension of T, and290
encode the specular feature in the rest. The initial mesh291
topology are obtained by marching cubes in the NeRF den-292
sity field. We further prune the invisible faces. conduct293
mesh decimation and edge length regularization. The UV294
coordinate of each vertex is calculated via xatlas [7].295

Rendering: We leverage differentiable renderers [33] to296
render our mesh into RGB images CR and depth maps DR.297
Specifically, we first rasterize the mesh into screen space298
and obtain the UV coordinate for each pixel i. Then we299
sample the corresponding texture feature Ti = [Bi;Si] and300
feed it into our customized shader. Finally, the shader com-301
putes the sum of the view-independent base color Bi and302
the view-dependent MLP MLPshader

θ (Si,di):303

CR = Bi + MLPshader
θ (Si,di). (3)304

The MLP is lightweight and can be baked in GLSL.305

Learning: We train the shader MLP MLPshader
θ and the306

neural texture map T by minimizing the color difference307

between the mesh and the ground truth, and the geometry 308
difference between the mesh and the NeRF model: 309

Lmesh
T,θ =

∑
r

∥CR(r)−CGT(r)∥+ ∥DR(r)−DNeRF(r)∥. (4) 310

Anti-aliasing: Common differentiable rasterizers only 311
take the center of each pixel into account. This may lead 312
to aliasing in the learned texture map. To resolve this issue, 313
we randomly perturb the optical center of the camera by 0.5 314
pixels along each axis at every training step. This ensure all 315
the regions within a pixel get rasterized. 316

Relationship to existing work: Our approach is closely 317
related to recent work on NeRF meshing [16, 55, 65, 76], 318
but there exist key differences. While MobileNeRF [16] 319
also adopts an explicit mesh with neural textures, they 320
mainly capitalize on planar primitives. The quality of the 321
reconstructed mesh is thus inferior. BakedSDF [76] of- 322
fers excellent runtime and rendering quality, but their vertex 323
coloring approach has limited resolution for large scenes. 324
NeRF2Mesh [65] lacks depth distillation and doesn’t adopt 325
contraction space for unbounded scenes. They also have a 326
sophisticated multi-stage training and multi-resolution re- 327
finement process. Finally, MeRF [55], though efficient, still 328
relies on volume-rendering. 329

3.3. Representation for Physical Interaction 330

Our mesh model facilitates efficient novel-view rendering 331
in real time and allows for basic rigid-body physical inter- 332
actions. For example, the explicit mesh structure permits an 333
agent to “stand” on the ground. Nevertheless, beyond nav- 334
igation, an agent should be capable of performing various 335
actions including collision and manipulation. Furthermore, 336
a scene comprises not only the background but also inter- 337
actable foreground objects, each possessing unique phys- 338
ical properties. For instance, a street-bound car is much 339
heavier than a flower vase. When struck by another object, 340
a car may barely move but the vase may fall and shatter. 341
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To enhance physical interaction realism, we decompose the342
scene into discrete, actionable entities, each endowed with343
specific physical characteristics (e.g., mass, friction). This344
approach, in conjunction with rigid-body physics, allows345
for the effective simulation that adheres to physical laws.346

Scene decomposition: Directly editing and decompos-347
ing a mesh is extremely difficult due to topology change.348
Fortunately, neural fields are inherently compositional in349
3D. By identifying the objects each spatial region belongs350
to, we can use neural fields to guide the decomposition of351
the mesh. Specifically, we sample a 3D point xi within each352
voxel i and determine its semantic category either through353
the predicted semantic logits si or by verifying whether the354
point is within a specified bounding box. The process is re-355
peated for all voxels to segment the entire scene. Then, for356
each object, we perform NeRF meshing individually, setting357
the density of the remaining areas to zero. The intersec-358
tions between objects are automatically resolved by march-359
ing cube. Finally, we initialize the neural texture of these360
new, individual meshes from the original mesh model. For361
newly created faces, we employ nearest neighbor inpainting362
on the neural texture map, which empirically yields satis-363
factory results. Fig. 1 shows an example where a vase is364
separated from a table. The middle of the table is original365
occluded yet we are able to maintain high-quality rendering.366

Physical parameters reasoning: The next step is to367
equip decomposed individual meshes with various physics-368
related attributes so that we can effectively model and sim-369
ulate their physical dynamics. In this work, we focus on370
rigid body physics, where each entity i is represented by371
a collision geometry coli, mass mi, and friction parameters372
fi. We support fours types of collision geometry with differ-373
ent levels of complexity and efficiency: box, sphere, convex374
polygon, and triangle mesh. Depending on the object and375
the task of interest, one can select the most suitable collision376
check for them. For other physical parameters (e.g. mass,377
friction), one can either set them manually or query large378
language models (LLMs) for an estimation.379

Physical interactions: Rigid body dynamics, while sim-380
ple, can support a variety of interactions. With the collision381
check, an user/agent can easily navigate through the envi-382
ronment while respecting the geometry of the scene. The383
agents will no longer be stuck in a road or cut through a384
wall. It also allows the agent to interact with the objects in385
the scene. For instance, one can push the objects towards386
the location of interest. The object movement will be deter-387
mined by its mass and other physical properties such as the388
friction. We can also manipulate the objects by adopting a389
magnet grasper, following AI2-Thor [32]. This opens the390
avenue towards automatic creation of realistic, interactive391
virtual environment for robot learning.392

3.4. Interactive Environment 393

We deploy our interactive environment within a real-time, 394
browser-based game engine. We manage the underlying 395
logic and assets using Sketchbook [3], a Game Engine 396
based on Three.js that leverages WebGL [4] for rendering. 397
This combination ensures high efficiency while offering the 398
flexibility and sophistication required for intricate render- 399
ing tasks. It also allows us to easily integrate content from 400
different scenes together. We have further extended Sketch- 401
book’s capabilities by implementing a GLSL-based shader 402
[2]. This enables real-time computation of our MLP-based 403
specular shader during deployment. For physics simula- 404
tion, we use Cannon.js [1], which assures realism and ef- 405
ficiency in the motion within our interactive environment. 406
It supports not only rigid body dynamics but also more so- 407
phisticated modeling techniques. For example, we can pre- 408
compute the fracturing effect for dynamic objects. Upon 409
experiencing a significant force, these objects are realisti- 410
cally simulated by the real-time physics engine, which han- 411
dles the interactions between the fractured pieces and the 412
rest of the scene, such as their falling and settling on the 413
ground. Besides browser-based engine, the virtual environ- 414
ments from Video2Game pipeline could be also integrated 415
into both Blender [17] and Unreal engines [21] (see Fig. 6). 416

4. Experiments 417

We begin by presenting our experimental setup, followed by 418
a comparison of our model with state-of-the-art approaches. 419
Next, we conduct an extensive analysis of our model’s dis- 420
tinctive features and design choices. Then we demonstrate 421
how we constructed a web browser-compatible game capa- 422
ble of delivering a smooth interactive experience exceed- 423
ing 100 frames per second (FPS), all derived from a single 424
video source. Finally, we showcase the capabilities of our 425
model in robot simulation through two demonstrations. 426

4.1. Setup 427

Dataset: We evaluate the effectiveness of Video2Game 428
across three distinct scenes in various scenarios, includ- 429
ing “Gardenvase” [12], an outdoor object-centric scene; 430
the KITTI-360 dataset [37], a large-scale self-driving scene 431
with a sequence that forms a closed loop, suitable for car- 432
racing and Temple Run-like games; and finally, an indoor 433
scene from the VR-NeRF [73] dataset, showcasing the po- 434
tential for robot simulations. 435
Metrics: To evaluate the quality of the rendered im- 436
ages, we adopt PSNR, SSIM, and LPIPS [82]. For geome- 437
try reconstruction, we evaluate with LiDAR point cloud in 438
KITTI-360 dataset. Root mean square deviation (RMSE), 439
mean absolute error (MAE), and outlier rate are applied to 440
measure the disparity existing in estimated geometry. 441
Our model: For NeRF, we adopt hashgrid encoding [47] 442
and two-layer MLP for each header. For textured mesh, 443
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Figure 5. Qualitative comparisons among mesh models. We compare our mesh rendering method with others in Garden scene [12].

Blender Unreal

Figure 6. Video2Game in Blender and Unreal Engine.

Method Outlier-%↓ RMSE↓ MAE↓
Instant-NGP [48] 22.89 4.300 1.577
Nerfacto [64] 50.95 8.007 2.863
Gauss. Spl. [28] 91.08 11.768 8.797
BakedSDF* (offline) [76] 43.78 5.936 2.509
Video2Game (Our NeRF) 13.23 3.028 1.041

Table 2. Quantitative evaluation on NeRF geometry. Our NeRF
renders significantly more accurate depth compared with the base-
lines. The unit is meter and the outlier threshold is 1.5 meters.

Method Volume Rendering Mesh Rastization
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Vanilla NGP 27.46 0.853 0.165 22.54 0.716 0.350
+ Regularization terms 27.52 0.861 0.157 22.97 0.732 0.303
+ Monocular cues 27.62 0.871 0.131 23.35 0.765 0.246

Table 3. Ablation studies on KITTI-360.

we conduct marching cubes on the NeRF and post-process444
it to a fixed precision. We set the texture image size to445
4096x4096. For GLSL shader, we design a light-weight446
two-layer MLP, which enables efficient real-time rendering.447
For KITTI-360 (see Sec. 3.1), we divide the whole scene448
into 16 blocks and create a skydome mesh for the sky.449

Baselines: To evaluate the visual and geometry quality450
of our model, we compare against SOTA approaches in451
neural rendering and neural reconstruction. Instant-NGP452
[48] is a NeRF-based method that exploits multi-resolution453

hashing encoding. Nerfacto [64] extends the classic NeRF 454
with learnable volumetric sampling and appearance embed- 455
ding. 3D Gaussian Splatting [28] leverages 3D Gaus- 456
sians and achieves fast training and rendering. MobileN- 457
eRF [16] adopts a hybrid NeRF-mesh representation. It can 458
be baked into a texture map and enable real-time rendering. 459
BakedSDF [76] adopts a volume-surface scene representa- 460
tion. It models view-dependent appearance efficiently by 461
baking spherical Gaussians into the mesh. 462

4.2. Experimental results 463

Novel view synthesis: Tab. 1 shows the rendering perfor- 464
mance and interactive compatibility of our model against 465
the baselines on KITTI-360 [37] and Gardenvase [12]. Our 466
NeRF achieves superior performance when compared to 467
state-of-the-art neural volume render approaches across dif- 468
ferent scenes. Though [28] performs best in Gardenvase, 469
it fails to handle the sparse camera settings in KITTI-360, 470
where it learns bad 3D orientations of Gaussians. Our baked 471
mesh outperforms other mesh rendering baselines signifi- 472
cantly in KITTI-360 and performs similarly in Gardenvase 473
as shown in Fig. 5. Additionally, our pipeline has the high- 474
est interactive compatibility among all baselines. 475

Geometry reconstruction: Our model performs signifi- 476
cantly better than the baseline regarding geometry accuracy 477
(see Tab. 2). We provide some qualitative results in Fig. 478
4, demonstrating that our model can generate high-quality 479
depth maps and surface normals, whereas those produced 480
by the baselines contain more noise. 481

Ablation study: To understand the contribution of each 482
component in our model, we begin with the basic Instant- 483
NGP [48] and sequentially reintroduce other components. 484
The results in Tab. 3 show that our regularization and 485
monocular cues improve the quality of both volume render- 486
ing in NeRF and mesh rasterization. Additionally, we do 487
observe a decline in rendering performance when convert- 488
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ing NeRF into game engine-compatible meshes.489

4.3. Video2Game490

We have shown our approach’s effectiveness in rendering491
quality and reconstruction accuracy across various setups.492
Next, we demonstrate the construction of a web browser-493
compatible game enabling player control and interaction494
with the environment at over 100 FPS.495

Data preparation: We build our environments based on496
videos in Gardenvase [12], KITTI-360 [37] and VR-NeRF497
[73] mentioned in Sec. 4.1, using our proposed approach.498
The outcomes include executable environments with mesh499
geometry, materials, and rigid-body physics, all encoded in500
GLB and texture files.501

Game engine: We build our game based on several key502
components in our game engine mentioned in Sec. 3.4. By503
leveraging them, our game generates a highly realistic vi-504
sual rendering as well as physical interactions (see Fig. 1)505
and runs smoothly at an interactive rate across various plat-506
forms, browsers, and hardware setups (see Tab. 4). As for507
other game engines (see Fig. 6), in Blender [17] we show-508
case the compatibility of our exported assets with other509
game engines. For Unreal [21], we further demonstrate a510
real-time game demo where a humanoid robot can freely511
interact within the Gardenvase scene, such as standing on512
the table and kicking off the central vase. These prove the513
compatibility of our proposed pipeline.514

Interactive game features: Movement in games: Agents515
can navigate the area freely within the virtual environment516
where their actions follow real-world physics and are con-517
strained by collision models. Shooting game: For realistic518
shooting physics, we calculated the rigid-body collision dy-519
namics for both the central vase and the surrounding scene520
(see Fig. 3), separated using mesh semantic filtering. We521
used a box collider for the vase and convex polygon collid-522
ers for the background. The player shoots footballs with a523
sphere collider at the vase on the table, causing it to fly off524
and fall to the ground (see Fig. 1). Temple-Run like game:525
The agent collects coins while running in the KITTI Loop526
composed of four streets in KITTI-360. Obstructive chairs527
on the road can be smashed thanks to pre-computed fracture528
animations. The agent can also drive and push roadside ve-529
hicles existing in the scene forward by crashing into them.530
This interactivity is achieved through rigid-body dynamics531
simulation and collision modeling.532

Robot simulation: We demonstrate the potential of lever-533
aging Video2Game for robot simulation using the VRNeRF534
dataset. We reconstruct the scene and segment simulatable535
rigid-body objects (e.g., the fruit bowl on the table). We536
show two demos in Fig. 7: a Stretch Robot pushing the537
bowl off the table and a Fetch Robot performing pick-and-538
place actions. We employ PyBullet [18] to simulate the un-539
derlying physics with the help of corresponding collision540

Platform FPS (hz) CPU-Usage (%) GPU-Usage (%)

Mac M1 Pro Mac OS, Chrome 102 34 70
Intel Core i9 + NV 4060 Windows, Edge 240 6 74
AMD 5950 + NV 3090 Linux, Chrome 144 20 40

Table 4. Runtime Analysis. Our interactive environment can run
in real-time across various hardware setup and various platforms.
User actions may slightly vary, which could lead to minor varia-
tions in runtime.

push fall

pick place

Figure 7. Robot simulation in VRNeRF [73] dataset. We
demonstrate the possibility of conducting robot learning in our vir-
tual environments using Stretch Robot [6] and Fetch Robot [5].

models. Since real-time grasping simulation is challenging, 541
following existing robot simulation frameworks [8, 9, 32], 542
objects near the Fetch gripper are automatically picked up. 543
This demonstrates our model’s ability to convert a real-time 544
video stream into a virtual environment, allowing robots to 545
rehearse before acting in the real environment. 546

5. Conclusion 547

We present a novel approach to converting real-world 548
video footage into playable, real-time, and interactive game 549
environments. Specifically, we combine the potential of 550
NeRF modeling with physics modeling and integrate them 551
into modern game engines. Our approach enables any in- 552
dividual to transform their surroundings into an interactive 553
digital environment, unlocking exciting possibilities for 3D 554
content creation, with promising implications for future 555
advancements in digital game design and robot simulation. 556

557
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