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Abstract

One of the key tasks in graph learning is node classification. While Graph neural networks
have been used for various applications, their adaptivity to reject option settings has not
been previously explored. In this paper, we propose NCwR, a novel approach to node
classification in Graph Neural Networks (GNNs) with an integrated reject option. This
allows the model to abstain from making predictions for samples with high uncertainty. We
propose cost-based and coverage-based methods for classification with abstention in node
classification settings using GNNs. We perform experiments using our method on standard
citation network datasets Cora, CiteSeer, PubMed and ogbn-arxiv. We also model the Legal
judgment prediction problem on the ILDC dataset as a node classification problem, where
nodes represent legal cases and edges represent citations. We further interpret the model by
analyzing the cases in which it abstains from predicting and visualizing which part of the
input features influenced this decision.

1 Introduction

In recent times, we have witnessed a surge of interest in GNNs and their applications in various domains
such as computer vision (Satorras & Estrach, 2018), natural language processing (Schlichtkrull et al., 2017),
and bioinformatics (Xia & Ku, 2021), to name a few. GNNs (Kipf & Welling, 2017) capture structural
aspects of the data in the form of nodes and edges to perform any prediction task. It learns node, edge,
and graph-level embeddings to get high-dimensional features using the message-passing mechanism in the
GNN layer. GNNs are also used in high-risk applications such as legal judgment prediction (Dong & Niu,
2021), disease prediction (Sun et al., 2021), financial fraud prediction (Xu et al., 2021), etc., with a high
cost of incorrect predictions. In such high-risk situations, standard GNN models are ineffective in handling
uncertainty.

Uncertainty estimation approaches measure the prediction uncertainty involved in high-risk applications.
Conformal prediction methods are popular for uncertainty estimation (Gawlikowski et al., 2023; Wang et al.,
2024; Angelopoulos & Bates, 2021).

Another approach to handling the uncertainty in high-risk scenarios is using a reject option in the classifier.
The objective is to avoid making any decisions on difficult and confusing examples. Consider the case of
the diagnosis of a patient for a specific disease. In case of confusion, the physician might choose not to risk
misdiagnosing the patient. She might instead recommend further medical tests to the patient or refer her to
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an appropriate specialist. The primary response in these cases is to "reject" the example. Such flexibility of
the classifier to avoid taking any decision is called the reject option.

Reject option classifiers have been extensively used in various high-risk applications such as healthcare
(Hanczar & Dougherty, 2008; da Rocha Neto et al., 2011), finance (Rosowsky & Smith, 2013) etc. Approaches
for learning reject option classifiers can be divided into two broad classes: (a) cost-based and (b) coverage-
based. In cost-based approaches Kalra et al. (2021); Charoenphakdee et al. (2021); Ramaswamy et al.
(2018); Cao et al. (2022), the goal of the algorithm is to find an optimal classifier by minimizing a loss which
also incorporates the cost of rejection along with the cost of misclassification. On the other hand, in the
coverage-based method Geifman & El-Yaniv (2019; 2017), a coverage parameter is pre-specified, and the
algorithm tries to maintain the fraction of unrejected samples the same as coverage. Both categories try to
reject difficult examples.

In this paper, we propose integrating a reject option in GNNs for the node classification problem. We
propose two variants corresponding to cost-based and coverage-based approaches. We also present how this
method can be used in real-world scenarios by working on prediction tasks of high-risk domains such as
Healthcare and Law. Our contributions in this paper are as follows: i) We extend and generalize GNNs to
train for node features with cost-based and coverage-based abstention models. ii) We perform an empirical
study to evaluate our models on popular benchmark datasets for node classification tasks and compare them
with baseline methods. iii) We show extensive results of our method on the Indian Legal Documents Corpus
(ILDC) dataset for the LJP task. iv) To understand why our model chooses to reject certain cases, we further
examine these cases with the help of Shapley Additive Explanations (SHAP) (Lundberg & Lee, 2017).

2 Related Work

2.1 Node Classification

Node classification is a fundamental task related to machine learning for graphs and network analysis. GNN
methods can be broadly classified into three categories that perform node classification as the primary task.
The first set of models introduced convolution-based GNN architectures by extending original CNNs to
graphs (Scarselli et al., 2008; Defferrard et al., 2016; Hamilton et al., 2017; Kipf & Welling, 2017; Bresson &
Laurent, 2017). Secondly, proposed attention and gating mechanism-based architectures using anisotropic
operations on graphs (Veličković et al., 2018). The third category focuses on the theoretical limitations of
previous types (Xu et al., 2018; Morris et al., 2019; Maron et al., 2019; Chen et al., 2019).

2.2 Reject Option Classification

There are two broad categories of approaches for reject option classifiers: coverage-based and cost-based.
Coverage is defined as the ratio of samples that the model does not reject. For a given coverage, the model
finds the best examples that can give the best performance. SelectiveNet is a coverage-based method proposed
for learning with abstention (El-Yaniv et al., 2010; Geifman & El-Yaniv, 2019). SelectiveNet is a deep neural
network architecture that optimizes prediction and selection functions to model a selective predictor. As
this approach does not consider rejection cost d in their objective function, it can avoid rejecting hazardous
examples.

Cost-based approaches assume that the reject option involves a cost of d. The cost of rejection is much
smaller compared to misclassification. Overall, these approaches aim to minimize the number of rejected
examples as well as minimize the misclassification of unrejected samples. Kalra et al. (2021) propose a
deep neural network-based reject option classifier for two classes that learn instance-dependent rejection
functions. Ramaswamy et al. (2018) multiclass extensions of the hinge-loss with a confidence threshold are
considered for reject option classification. Ni et al. (2019) prove calibration results for various confidence-
based smooth losses for multiclass reject option classification. Charoenphakdee et al. (2021) prove that
K-class reject option classification can be broken down into K binary cost-sensitive classification problems.
They subsequently propose a family of surrogates, the ensembles of arbitrary binary classification losses.
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Cao et al. (2022) propose a general recipe to convert any multiclass loss function to accommodate the reject
option, calibrated to loss l0d1. They treat rejection as another class at the time of prediction.

2.3 Uncertainty Estimation Using Conformal Prediction

Uncertainty in Deep Neural Networks (Gawlikowski et al., 2023) studies the sources of uncertainty, like
data uncertainty and model uncertainty, and the estimation of uncertainty measures to be further used in
high-risk applications. This is further explored in the Graph setting by Wang et al. (2024), exploring both
sources of uncertainty and estimating uncertainty. In the GNN setting, uncertainty measures are further
utilized for downstream tasks like OOD detection, outlier identification and Trustworthy GNNs. Conformal
Prediction (Angelopoulos & Bates, 2021) uses these uncertainty measures to predict an interval instead of
one class, which will have the true label with a fixed probability with statistical guarantees. This setting
uses distribution free uncertainty quantification, which makes it accessible to a wide range of applications.
Huang et al. (2023) propose conformal GNN (CF-GNN), extending conformal prediction to GNNs and node
classification.

3 Method

GNN models like GAT (Veličković et al., 2018) focus on learning effective and efficient representations of
nodes to perform any downstream task. Let X be the instance space and Y ∈ {1, . . . , K} be the label space.
We represent the embedding space learned using GNN by H. GNN treats each instance as a node and learns
an embedding for each node. We used GAT as the base GNN architecture, but our method is model agnostic
and can be replaced with any GNN architecture to learn the node embeddings.

Figure 1: Architecture of NodeCwR-Cov: Coverage based node classifier with rejection.

3.1 NCwR-Cov: Coverage Based Node Classifier With Rejection

NCwR-Cov uses coverage-based logic to learn node classifiers with a reject option. We use similar ideas to
SelectiveNet (Geifman & El-Yaniv, 2019) to learn the coverage-based rejection function. Figure 1 shows the
architecture of NCwR-Cov. Node representations are learned using the first GNN layer and given as input to
the second GNN layer which follows the softmax layer. The second GNN layer and softmax layer combined
learn mapping f : H → ∆K−1 where ∆K−1 is K-dimensional simplex. Function f is used to predict the
class of a node. There are two more fully connected layers after the softmax layer (having 512 nodes and
one node) to model the selection function g : H → {0, 1}. Selection function g decides whether to predict a
given example or not. Selection function g(h) is a single neuron with a sigmoid activation. At the beginning,
a threshold of 0.5 is set for the selection function, which means f(h) predicts h if and only if g(h) ≥ 0.5.
The auxiliary prediction head implements the prediction task a(h) without the need for coverage to get a
better representation of examples with low confidence scores, which are usually ignored by the prediction
head. This head is only used for training purposes. We use cross-entropy loss lce to capture the error made
by the prediction function f(h). The empirical risk of the model is captured as follows.
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r(f , g|Sn) =
1
n

∑n
i=1 l(f(hi), yi)g(hi)

ϕ(g|Sn)

where ϕ(g|Sn) is empirical coverage computed as ϕ(g|Sn) = 1
n

∑n
i=1 g(hi). An optimal selective model could

be trained by optimizing the selective risk given constant coverage. We use the following error function to
optimize f(.) and g(.).

E(f , g) = r(f , g|Sn) + λΨ(c − ϕ(g|Sn))

where Ψ(a) = max(0, a)2 is a quadratic penalty function, c is the target coverage, and λ controls the
importance of coverage constraint. The loss function used at the auxiliary head is standard cross-entropy
loss lce without any coverage constraint. Thus, the empirical risk function corresponding to the auxiliary
head is E(f) = 1/n

∑n
i=1 lce(f(hi), yi). The final error function of NCwR-Cov is a convex combination of

E(f, g) and E(f) as follows, E = αE(f , g) + (1 − α)E(f), where α ∈ (0, 1). When the data is trained over a
training set using a coverage constraint, this constraint is violated on the test set. The constraint requires
the true coverage ϕ(g) to be larger than the given coverage constraint c, which is usually violated. To get
the optimal actual coverage, we calibrate the threshold τ to select the example in g(h′) using this validation
set, which results in coverage as close as possible to the target coverage.

Figure 2: Architecture of NodeCwR-Cost: Cost based node classifier with rejection.

3.2 NCwR-Cost: Cost Based Node Classifier With Rejection

In the cost-based method, the cost of rejection d is pre-specified. The goal here is to learn an optimal node
classifier with rejection for a given d value. The architecture of NCwR-Cost is presented in Figure 2. The first
block in NCwR-Cost consists of two GNN layers. The output of the second GNN layer is fed to a softmax
layer with (K + 1) nodes. Note that we assume rejection as the (K + 1)th class here. The second GNN
layer and softmax layer combined learn prediction function f : H → ∆K where ∆K is (K + 1)-dimensional
simplex. Note that (K + 1)th output corresponds to the reject option in this architecture. Let ej denote
K + 1-dimensional vector such that its jth element is one and other elements are zero. Note that (K + 1)th

element never becomes one as we do not get a rejection label in the training data. We use the following
variant of cross-entropy loss, which also incorporates the cost of rejection (Cao et al., 2022).

ld
ce(f(h), ey) = lce(f(h), ey) + (1 − d)lce(f(h), eK+1) = − log fy(h) − (1 − d) log fK+1(h) (1)

Here fK+1(h) is the output corresponding to the reject option, and fy(h) is the output related to the actual
class. For very small values of d, the model focuses more on maximizing fK+1(h) to prefer rejection over
misclassification. Note that loss ld

ce is shown to be consistent with the l0d1 loss (Cao et al., 2022). For d = 1,
the loss ld

ce becomes the same as standard cross entropy loss lce.

4 Experimental Setup

In this section, we provide the details of the experimental setup.
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4.1 Datatsets Used

We evaluate our model on three standard citation network datasets, Cora, CiteSeer, PubMed (Sen et al.,
2008) and an OGB Dataset ogbn-arxiv Hu et al. (2020). In these datasets, each document is represented by
a node, and the class label represents the category of the document. Citations are represented by undirected
edges. We follow standard practices (Kipf & Welling, 2017; Veličković et al., 2018) for training node classifier.
We use 20 nodes per class for training, 500 nodes for validation and 1000 for testing on the three Planetoid
datasets and the given splits in OGB dataset.

4.2 Base Graph Neural Network Architecture Used

We can use any GNN as the base architecture for both the methods. In our experiment section, we use
GAT as the base architecture due to its effectiveness and popularity. We also note that in our experiments,
changing the base GNN Architectures and their parameters, like the number of layers, did not affect the
results by a lot. We present this analysis in Appendix B.

For the GAT architecture, we closely follow the experimental setup mentioned in Veličković et al. (2018). We
modify the open-source GAT implementation by Antognini (2021) for our approach. We first apply dropout
(Srivastava et al., 2014) on node features with p = 0.6. These node features, along with the adjacency
matrix, are passed through a GAT Layer with 8 attention heads, where each head produces eight features
per node. We use LeakyReLU as the activation function inside the GAT Layer with α = 0.2. These outputs
are concatenated for the first layer (64 features per node). Another dropout layer with the same probability
follows this. This is passed through the final GAT layer with a single attention head, which takes 64 features
per node and outputs k features per node, where k is the number of classes. It is passed to ELU (Clevert
et al., 2015) activation function. The network output is passed through a softmax layer.

4.3 Details of NCwR-Cov Implementation

We use the GAT architecture to integrate the coverage-based reject option into the model as mentioned in
Geifman & El-Yaniv (2019). The output of the final layer is passed through softmax for both prediction
head f and auxiliary head h. It is also passed through a hidden layer with 512 nodes, batch normalization
(Ioffe & Szegedy, 2015), ReLU, an output layer with one node, and sigmoid activation to get a selection
score [0, 1].

The Prediction head and Selection head are concatenated together, and the selective loss is performed on this
output. We set λ = 32 as the constraint on coverage to calculate this loss. Cross-Entropy Loss is performed
on the output of the Auxiliary head but is not used for making predictions. A convex combination of these
two loss values with αl = 0.5 is used for backpropagation. Once the model is trained, the coverage on the test
data set when τ = 0.5 will vary. However, since we have the selection scores of each node in the validation
set, we sort them and select a τ value that matches the expected coverage.

4.4 Details of NCwR-Cost Implementation

We trained NCwR-Cost by changing the output of the GAT network with an extra class in the output
layer. For a k class classification problem, we change the model architecture to have k + 1 outputs and
backpropagate using the CwR Loss (see eq.(1).

4.5 Baselines Used

To the best of our knowledge, we are the first to use reject option classifiers for node classification on high-
risk applications. This makes it tough to compare with existing baselines to show the importance of our
contribution. However, we introduce some changes in existing uncertainty estimation methods to model
them as Reject Option Classifiers and use them as baselines.

• Softmax Response (SR): We treat the Softmax scores of the Vanilla GNN as an uncertainty measure
and reject examples when the predicted class score is lower than some threshold. As we change the
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thresholds, the rejection rate changes. We used the following threshold values to get different reject
option classifiers using Softmax-Response: [0.5, 0.6, 0.7, 0.8, 0.9].

• CF-GNN Huang et al. (2023): Conformal classifier with coverage parameter α predicts a label set
such that the probability of actual label being present in the predicted label set is greater than or
equal to 1 − α. We model the state-of-the-art Conformal Prediction method for GNNs as Reject
Option Classifiers in the following way. For a given value of α, we simply reject those examples
for which the CF-GNN predicts more than one class label. Rejecting such examples makes sense
because of the label ambiguity and it aligns with the basic principles used for rejection. Note that
as we increase the coverage parameter α in the CF-GNN, the predicted label set size will reduce.
For a higher value of α, the CF-GNN predicts smaller label sets. Thus, the rejection rate should
decrease as we increase α. Different α values used are: [0.1, 0.125, 0.15, 0.175, 0.2].

For both baselines, we used the same GAT architecture that we used for NCwR-Cost and NCwR-Cov.

5 Experimental Results

Here, we present experimental results for proposed approaches NCwR-Cost and NCwR-Cov. We also com-
pare them with different baselines to highlight the importance of the proposed approaches. We repeat each
experiment 10 times with random initialization and report the average accuracies.

(a) Cora (b) Citeseer (c) Pubmed

Figure 3: Comparison of NCwR-Cost and NCwR-Cov with baselines.

5.1 Comparison Results with Baselines

Figure 3 shows comparison results with baselines. We observe that NCwR-Cost always outperforms the
Softmax-Response based approach in terms of accuracy on unrejected samples for all coverage values. NCwR-
Cost also outperforms the CF-GNN based approach for all coverage values and for all datasets except for
one case in the Cora dataset. For the Cora dataset, for coverage of 50%, CF-GNN has marginally better
accuracy. Thus, NCwR-Cost is a superior model compared to the baseline models.

We see that NCwR-Cov also outperforms the Softmax-Response based approach for all datasets and coverage
values except for one case with Pubmed dataset (coverage value 60%). For coverage value 60% with the
Pubmed dataset, Softmax-Response has slightly better accuracy than NCwR-Cov. Compared to CF-GNN,
NCwR-Cov always performs better for coverage values greater than 60%. For coverage values smaller than
60%, CF-GNN performs marginally better than NCwR-Cov.

5.2 Results on NCwR-Cov and NCwR-Cost

NCwR-Cov: In Table 1, we report the performance of NCwR-Cov models trained for coverage rates
ranging in [0.5, . . . , 0.9]. Although we can calibrate the threshold to cover any number of examples irrespec-
tive of the training coverage, it is preferred to train the model on the same coverage rates and then calibrate
τ to the same to get the best results. We observe that for all the datasets, as we increase the coverage, the
accuracy on unrejected samples decreases. This pattern is expected as we reject lesser examples, there will
be more difficult examples to classify.
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Coverage Cora CiteSeer PubMed ogbn-arxiv

0.5 93.96 ± 1.45 81.30 ± 2.19 83.20 ± 3.34 79.46 ± 2.16
0.6 92.65 ± 0.50 79.60 ± 2.43 82.60 ± 1.48 77.92 ± 1.73
0.7 91.29 ± 0.45 75.90 ± 2.86 79.80 ± 2.46 75.21 ± 1.41
0.8 89.12 ± 0.80 72.80 ± 1.05 80.90 ± 1.24 73.12 ± 2.25
0.9 86.65 ± 0.70 72.00 ± 0.69 79.70 ± 0.59 72.1 ± 0.63
1.0 81.65 70.12 76.70 69.28

Table 1: Accuracy of NCwR-Cov for various coverage rates.

NCwR-Cost: In Table 2, we report the performance of NCwR-Cost models trained for rejection cost
(d) taking values in [0.5, 0.6, 0.7, 0.8, 0.85]. As the cost of rejection d increases, the rejection rate decreases.
Decreasing the rejection rate will increase coverage. As the coverage increases, the model will misclassify
more samples, which decreases the performance of unrejected samples.

Cora CiteSeer PubMed ogbn-arxiv

d Acc Cov 0-d-1 Acc Cov 0-d-1 Acc Cov 0-d-1 Acc Cov 0-d-1

0.5 95.8
(±0.05)

42.6
(±0.02)

0.305
(±0.11)

91.6
(±0.12)

9.7
(±0.05)

0.460
(±0.04)

88.9
(±0.02)

49.3
(±0.08)

0.309
(±0.16)

81.36
(±0.72)

40.29
(±0.15)

0.693
(±0.25)

0.6 95.0
(±0.04)

53.1
(±0.03)

0.308
(±0.06)

87.9
(±0.09)

17.6
(±0.09)

0.516
(±0.06)

84.6
(±0.05)

67.8
(±0.05)

0.298
(±0.08)

78.02
(±0.52)

58.75
(±0.01)

0.57
(±0.36)

0.7 92.8
(±0.04)

66.3
(±0.08)

0.283
(±0.07)

85.5
(±0.01)

33.5
(±0.02)

0.514
(±0.04)

– – – 75.15
(±0.41)

76.76
(±0.5)

0.446
(±0.62)

0.8 90.1
(±0.08)

83.3
(±0.04)

0.216
(±0.08)

79.5
(±0.11)

57.1
(±0.09)

0.460
(±0.02)

– – – 72.70
(±0.62)

94.15
(±0.13)

0.322
(±0.51)

0.85 87.2
(±0.06)

90.5
(±0.07)

0.196
(±0.06)

75.8
(±1.61)

79.2
(±0.04)

0.368
(±0.15)

– – – 70.63
(±0.34)

98.28
(±0.24)

0.308
(±0.11)

1 81.65 100.0 0.178 70.12 100.0 0.299 76.7 100.0 0.233 69.28 100.0 0.307

Table 2: Accuracy of NCwR-Cost for various cost-of-rejection values. We only present results on PubMed
with d ∈ [0.5, 0.6] as it has k = 3 classes and d < k−1

k .

Comparison: Figure 3 shows the coverage versus accuracy plots for both cost-based and coverage-based
approaches on different datasets. The cost-based approach shows a clear advantage in terms of accuracy for
most coverage rates. The reason is as follows. The coverage constraint in NCwR-Cov does not ensure the
rejection of those examples that are hard to classify correctly. Thus, it may reject some of the easy examples.
Thus, every coverage value may include more hard examples. We also observe a very high standard deviation
in the performance of NCwR-Cov. On the other hand, NCwR-Cost prefers to reject hard examples first by
assigning a cost to rejection. This makes NCwR-Cost perform better than NCwR-Cov.

5.3 Node Embedding Visualization

We plot t-SNE plots to represent the predicted class of each node. It is noticeable in Figure 4 that in both
NCwR-Cost and NCwR-Cov models, the rejected examples (represented using black color) are usually the
nodes that highly overlap between two or more classes. We can also notice that as the model coverage
decreases, the number of examples it rejects increases and covers more overlapping boundaries between
classes. It is worth noting that although the coverage and accuracy are almost comparable in both models,
the examples that each model chooses to reject are from different overlapping classes. NCwR-Cost tries to
reject those examples which are in the overlapping regions of different classes. On the other hand, NCwR-
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Cov sometimes rejects examples which are predominantly from particular classes. For example, for coverage
of 50.4%, NCwR-Cov rejects more examples of classes 3 and 4.

Coverage 50.4% Coverage 69.6% Coverage 82.4%

N
C

w
R

-C
os

t
N

C
w

R
-C

ov

Figure 4: t-SNE plots representing predictions on Cora dataset (black - reject option).

6 Application: Legal Judgment Prediction

Legal judgment prediction (Feng et al., 2022; Cui et al., 2023) is an active area of research in the field of
Machine Learning and Natural Language Processing. Automating the Judgment Prediction Process can be
of huge value for various reasons. While these models already perform extremely well due to the recent
surge in NLP progress, one issue that still remains is the reliability of these models to push to real-world
scenarios. Unlike many current fields where NLP models are automating tasks, Legal Judgment Prediction is
a very high-risk application in which the cost of misclassification is very high. In such high-risk applications,
performing reliably well for a small set of examples is much more valuable than giving a prediction for every
sample.

NCwR-Cost NCwR-Cov

d Acc (%) Cov (%) Acc (%) Cov

0.25 87.24 ± 2.45 67.00 ± 3.30 97.55 ± 0.62 0.5
0.35 82.32 ± 2.72 86.34 ± 4.61 94.94 ± 1.20 0.6
0.40 79.95 ± 1.52 93.44 ± 7.17 90.58 ± 1.24 0.7
0.45 80.38 ± 1.74 97.83 ± 0.76 86.01 ± 1.09 0.8
0.50 79.94 ± 2.09 98.99 ± 0.20 81.87 ± 1.03 0.9

Table 3: Accuracy of NCwR-Cost and NCwR-Cov on ILDC dataset.

Indian Legal Documents Corpus (ILDC) (Malik et al., 2021) Indian Legal Documents Corpus is
a dataset of a collection of case proceedings in English from the Supreme Court of India (SCI), covering
the period from 1947 to April 2020 presented by Malik et al. (2021). The raw dataset poses significant
pre-processing challenges due to unstructured document formats, spelling errors, and the need to remove
meta-information and direct decision statements from the texts. The ILDC dataset is divided into two
subsets: ILDCsingle - single petition cases, and ILDCmulti - cases with multiple petitions leading to different
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decisions. We worked with the ILDCsingle subset for our experimental setting. This subset contains a total
of 7,593 cases, split into train/test/development sets (5,082/1,517/994).

This dataset was expanded by adding another 24, 907 cases without a final verdict and the citations within
these cases with existing cases using ikanoon API by Khatri et al. (2023). This paper presented Legal
Judgment Prediction as a semi-supervised node classification task where each node represents the text of
the case proceedings, and a link represents a citation between cases. The additional cases without a label
essentially enable the model with message passing through citation networks and are not part of the training
set of nodes.

6.1 Experimental Setup

We follow the experimental setup presented in Khatri et al. (2023) and use a pretrained XLNet model from
Malik et al. (2021) to extract language embeddings from all the new cases in the dataset. We formulate a
graph where each node represents a case (Cases part of the ILDC have a label, and additional cases extracted
by Khatri et al. (2023) do not have a label) and the citations between the cases as links. Khatri et al. (2023)
presents that using directed or undirected edges does not affect the model performance by a lot; hence, we
formulate the citations as undirected edges. On this graph, we train the GAT model for node classification
and replicate the result presented in Khatri et al. (2023). On top of this, we perform experiments on this
graph using our architectures. In Table 3 we report the performance for different cost of rejection values and
coverage rates on the ILDC dataset.

6.2 Explainability

Explainability methods in machine learning aim to make model predictions understandable to humans,
especially in high-stakes domains like law. SHAP (Shapley Additive Explanations) (Lundberg & Lee, 2017)
is one of the most reliable and widely used approaches for model interpretability, based on cooperative game
theory and Shapley values. In this work, SHAP is applied to explain predictions for legal judgment tasks,
where understanding which parts of the legal text drive a model’s decision is very useful for transparency.
SHAP provides visual explanations by highlighting portions of the legal text. Specifically, red highlights
indicate text that pushes the model toward a positive outcome (e.g., the model is more confident in its
classification), while blue highlights signify text that supports a negative outcome (e.g., text that contradicts
the model’s classification). The intensity of these colours represents the magnitude of the contribution—the
darker the shade, the stronger the influence of the text segment on the final prediction.

In our experiments, we use the last 512 tokens of a petition in the Supreme Court of India (SCI) Proceedings
between the appellant and respondent, where the ’label’ contains either ’0’ or ’1’. A label of ’0’ represents
petitions that have been rejected, while a label of ’1’ represents petitions that have been accepted.We have
demonstrated two examples below: one where our model is very confident in its prediction and predicts
correctly in Figure 5, and another where the model’s confidence is lower, leading to an incorrect prediction
in Figure 6.

6.2.1 Case 1: Explanation of the SCI Proceedings Where Model is Highly Confident

This case involves an appeal by A2, who was convicted under Section 380 of the Indian Penal Code (IPC) by
the Trial Court for the theft of a gold chain. Two co-accused, A1 and A3, were acquitted of all charges. The
appellant (A2) challenged the conviction in the Sessions Court and High Court, both of which upheld the
conviction. The appellant then approached the Supreme Court, contesting the credibility of the prosecution’s
evidence, including the recovery of the stolen gold chain and the delay in filing the First Information Report
(FIR).

The Supreme Court examined the evidence and found that the prosecution’s case lacked credibility, partic-
ularly due to the significant delay in lodging the FIR (16 days) and the questionable recovery of the chain.
As a result, the Supreme Court acquitted the appellant.

For this example, our model is very confident in its prediction and predicts the label ’1’ correctly. Explanation
from SHAP is given in Figure 5.
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Figure 5: SHAP explanation of Case where model prediction is right and confidence is high.

Figure 6: SHAP explanation of Case where model prediction is wrong and confidence is low.

Sentences Leading to the Decision in Red

• Sentence 1 "It is inconceivable that she would not realize that she had . . ."
Highlights the Court’s scepticism regarding the plausibility of the theft.

• Sentence 2 "As we have already noted that FIR was registered after about . . ."
The Supreme Court found the delay in filing the FIR highly suspicious.

• Sentence 3 "The only evidence against him is the alleged recovery of the gold chain . . ."
The Supreme Court questioned the reliability of the sole evidence used to convict the appellant.

Sentence Contradicting the Decision in blue

• Sentence 3 "The Trial Court further held . . ."
Indicates that the recovery of the chain was crucial in linking the appellant to the crime.

6.2.2 Case 2: Explanation of the SCI Proceedings Where Model is very Low Confident

The case involves a dispute regarding the condition of certain boxes of goods. Mr. Gupta discovered that a
few boxes were damaged, while the rest were intact and marketable. Mr. Banerjee, who was responsible for
handling the boxes, claimed to have opened and repacked all 20 boxes, but his evidence was found unreliable.
He admitted that he only opened a few boxes and fabricated his report on the condition of all 20 boxes. The
Labour Court had previously concluded that the discharge order against Mr. Banerjee was unjustified. The
Supreme Court reviewed the evidence and found Mr. Banerjee’s actions to be questionable. The Supreme
Court’s decision favoured the appellant, overturning the Labour Court’s conclusion that the discharge order
was unjustified.

For this example, our model’s confidence is lower, leading to rejection. Explanations from SHAP for this
example are given in Figure 6, where the explanation is based on a wrong prediction. Below is the explanation
based on the actual label. Thus, red and blue coloured explanations are reversed in Figure 6 with respect
to the actual label.

Sentences Leading to the Decision in Blue
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• Sentence 1 It is clear that the strapping is done . . ."
Highlights the unreliability of Mr. Banerjee’s claim about repacking the boxes.

• Sentence 2 "Mr. Banerjee admitted that he had opened only 5 or 6 . . ."
Directly challenges Mr. Banerjee’s report and supports Mr. Gupta’s statement regarding the con-
dition of the boxes.

• Sentence 3 "Both parties knew that they were talking about the same 20 boxes . . ."
Reinforces the argument that Mr. Banerjee’s report was inaccurate.

Sentence Contradicting the Decision in Red

• Sentence 4 The learned Solicitor-General, however, attempted to argue . . ."
Suggests a possible gap in evidence regarding whether the boxes Mr. Gupta examined were indeed
the same as those reported on by Mr. Banerjee.

• Sentence 5 "It was also suggested on behalf of the respondents that . . ."
Implies that Mr. Gupta might not have acknowledged all relevant correspondence from Mr. Banerjee.

7 Conclusion

We propose NCwR-Cost and NCwR-Cov, novel GNN architectures for integrating reject option in node clas-
sification. These models can reject from making predictions whenever they are not certain about predicting
an example. Our experimental results show that the proposed models perform better than the baseline
methods. Such results show the importance of separate GNN architecture having a reject option integrated
into it. Our results on the LJP task show that these models are very effective in such applications.
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A Applications on medical domain

We added applications on two more tabular health datasets: UCI Thyroid Quinlan (1986) dataset and Pima
Indians Diabetes dataset Smith et al. (1988). Each tabular dataset was transformed into a graph structure
to enable graph-based learning. Initially, the dataset was standardized to normalize the feature values across
samples, facilitating the k-nearest neighbors (KNN) process. Using KNN, an edge was created between each
data point and its closest neighbors in feature space which formed a sparse graph. This approach effectively
connected each node (data point) with a fixed number of neighbors (taken k = 5), creating edges that reflect
the similarity in feature space.

To represent this as a graph, each data point was treated as a node, where its feature vector constituted node
attributes, and the class label served as the target variable. Edges were defined based on KNN relationships,
where nodes shared edges if they were among each other’s nearest neighbors. This graph was then formatted
into a structure suitable for graph neural networks, containing nodes, edges and labels to support message-
passing and learning across connected nodes.

The graph was constructed by concatenating the training (85%) and test (15%) sets, treating them as a
unified structure to facilitate transductive learning. Approximately 10% of the training data was reserved
as a validation set, ensuring a fair evaluation of the model’s performance during training. While the full
graph was available for message passing during training and testing, only the labels of the training nodes
were utilized for model optimization. We have shown the results for NCwR-Cost and NCwR-Cov models on
the UCI Thyroid dataset and Pima Indians Diabetes dataset in Table 4.

NCwR-Cost NCwR-Cov
Dataset d Acc (%) Cov (%) Acc (%) Cov (%)

UCI Thyroid

0.05 96.56 ± 0.68 60.52 ± 9.21 99.66 ± 0.09 0.5
0.10 96.40 ± 0.13 82.37 ± 2.39 99.53 ± 0.06 0.6
0.20 95.29 ± 0.40 94.09 ± 0.84 99.31 ± 0.10 0.7
0.30 94.37 ± 0.21 98.20 ± 0.18 98.75 ± 0.09 0.8
0.40 93.75 ± 0.18 99.76 ± 0.13 97.48 ± 0.04 0.9

Pima Indians Diabetes

0.30 88.54 ± 0.68 64.00 ± 2.57 94.38 ± 1.40 0.5
0.35 87.40 ± 0.13 73.23 ± 2.79 90.77 ± 1.40 0.6
0.40 86.46 ± 0.40 84.00 ± 3.19 88.89 ± 1.57 0.7
0.45 84.11 ± 0.21 92.92 ± 1.75 87.31 ± 1.72 0.8
0.50 81.79 ± 0.18 99.69 ± 0.69 85.86 ± 2.25 0.9

Table 4: Accuracy and coverage for NCwR-Cost (varying cost of rejection d) and NCwR-Cov (varying desired
coverage) on two health datasets.
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B Comparison with different base GNN

We compare the results of our method on various GNN Architectures and Hyperparameters. We show that
our method is GNN agnostic and results in similar performance for most of these architectures. Results are
presented in Table 5.

Coverage GCN GAT GraphSAGE GATv2 GAT (3 layers) GAT (4 layers)

0.7 88.86 88.71 85.86 89.14 88.75 89.21
0.75 88.00 87.73 85.47 88.60 87.35 88.25
0.8 85.62 86.87 84.50 86.37 87.75 86.18
0.85 85.53 85.06 83.06 85.65 85.96 85.81
0.9 83.89 84.67 82.56 84.22 84.45 84.03

Table 5: Accuracy comparison of our method with various base GNN Architectures. Unless mentioned, we
use two GNN layers in each architecture.

C Sensitivity Analysis on λ (in NCwR-Cov)

We analyze the effect of λ parameter on the coverage rates of the model. This constraint will penalize the
model during training whenever the coverage is below the targeted. We present the results of our model
without post-training calibration to measure the impact of λ with a fixed τ = 0.5 and desired coverage is
0.8. Ideally, the model coverage should be > 80% while maintaining the least difference.

λ Accuracy (%) Coverage (%) Coverage Gap (%)

4 92.42 66.34 –13.66
8 91.19 73.25 –6.75
16 89.81 79.11 –0.89
32 88.78 82.42 +2.42
64 88.13 82.13 +2.13

Table 6: Effect of λ on model coverage without post training calibration (target coverage = 80 %).
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