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Abstract

Attention mechanisms play a crucial role in cognitive systems by allowing them to
flexibly allocate cognitive resources. Transformers, in particular, have become a
dominant architecture in machine learning, with attention as their central innova-
tion. However, the underlying intuition and formalism of attention in Transformers
is based on ideas of keys and queries in database management systems. In this
work, we pursue a structural inference perspective, building upon, and bringing
together, previous theoretical descriptions of attention such as; Gaussian Mixture
Models, alignment mechanisms and Hopfield Networks. Specifically, we demon-
strate that attention can be viewed as inference over an implicitly defined set of
possible adjacency structures in a graphical model, revealing the generality of such
a mechanism. This perspective unifies different attentional architectures in machine
learning and suggests potential modifications and generalizations of attention. Here
we investigate two and demonstrate their behaviour on explanatory toy problems:
(a) extending the value function to incorporate more nodes of a graphical model
yielding a mechanism with a bias toward attending multiple tokens; (b) introducing
a geometric prior (with conjugate hyper-prior) over the adjacency structures pro-
ducing a mechanism which dynamically scales the context window depending on
input. Moreover, by describing a link between structural inference and precision-
regulation in Predictive Coding Networks, we discuss how this framework can
bridge the gap between attentional mechanisms in machine learning and Bayesian
conceptions of attention in Neuroscience. We hope by providing a new lens on
attention architectures our work can guide the development of new and improved
attentional mechanisms.

1 Introduction

Designing neural network architectures with favourable inductive biases lies behind many recent
successes in Deep Learning. The Transformer, and in particular the attention mechanism has allowed
language models to achieve human like generation abilities previously thought impossible [1, 2]. The
success of the attention mechanism as a domain agnostic architecture has prompted adoption across a
diverse range of tasks beyond language modelling, notably reaching state-of-the-art performance in
visual reasoning and segmentation tasks [3, 4].

This depth and breadth of success indicates the attention mechanism expresses a useful computational
primitive. Recent work has shown interesting theoretical links to kernel methods [5, 6, 7], Hopfield
networks [8], and Gaussian mixture models [9, 10, 11, 12, 13], however a formal understanding
that captures the generality of this computation remains outstanding. In this paper, we show the
attention mechanism can naturally be described as inference on the structure of a graphical model,
agreeing with observations that transformers are able to flexibly choose between models based on
context [14, 15]. This Bayesian perspective complements previous theory [16, 8, 12], adding new
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methods for reasoning about inductive biases and the functional role of attention variables. Further,
understanding the core computation as inference permits a unified description of multiple attention
mechanisms in the literature as well as narrowing the explanatory gap to ideas in neuroscience.

This paper proceeds in three parts: First in Sec.3, we show that ‘soft’ attention mechanisms (e.g.
self-attention, cross-attention, graph attention, which we call transformer attention hereafter) can be
understood as taking an expectation over possible connectivity structures, providing an interesting
link between softmax-based attention and marginal likelihood. Second in Sec.4, we extend the
inference over connectivity to a Bayesian setting which, in turn, provides a theoretical grounding
for iterative attention mechanisms (slot-attention and block-slot attention) [17, 18, 19], Modern
Continuous Hopfield Networks [8] and Predictive Coding Networks. Finally in Sec.5, we leverage
the generality of this description in order to design new mechanisms with predictable properties.

Intuitively, the attention matrix can be seen as the posterior distribution over edges E in a graph,
G = (K ∪Q,E) consisting of a set of query and key nodes Q,K each of dimension d. Where the
full mechanism computes an expectation of a function defined on the graph V : G → Rd×|G| with
respect to this posterior.

Attention(Q,K, V ) =

p(E | Q,K)︷ ︸︸ ︷
softmax(

QWQW
T
KK

T

√
d

)WVK

= Ep(E|Q,K)[V ]

Crucially, when G is seen as a graphical model, the posterior over edges becomes an inference
about dependency structure and the functional form becomes natural. This formalism provides an
alternate Bayesian theoretical framing within which to understand attention models, shifting the
explanation from one centred around retrieval to one that is fundamentally concerned with in-context
inference of probabilistic relationships (including retrieval). Within this framework different attention
architectures can be described by considering different implicit probabilistic models, by making these
explicit we hope to support more effective analysis and the development of new architectures.

2 Related Work

A key benefit of the perspective outlined here is to tie together different approaches taken in the
literature. Specifically, structural variables can be seen as the alignment variables discussed in
previous Bayesian descriptions [16, 20, 21], on the other hand Gaussian Mixture Models (GMMs)
can be seen as a specific instance of the framework developed here. This description maintains the
explanatory power of GMMs by constraining the alignment variables to be the edges of an implicit
graphical model, while offering the increased flexibility of alignment approaches to describe multiple
forms of attention.

Latent alignment and Bayesian Attention, several attempts have been made to combine the benefits
of soft (differentiability) and stochastic attention, often viewing attention as a probabilistic alignment
problem. Most approaches proceed by sampling, e.g., using the REINFORCE estimator [20] or a
topK approximation [22]. Two notable exceptions are [16] which embeds an inference algorithm
within the forward pass of a neural network, and [21] which employs the re-parameterisation trick for
the alignment variables. In this work, rather than treating attention weights as an independent learning
problem, we aim to provide a parsimonious implicit model that would give rise to the attention
weights. Additionally showing that ‘soft’ attention weights arise naturally in variational inference
from either collapsed variational inference or a mean-field approximation.

Relationship to Gaussian mixture model, previous works that have taken a probabilistic perspective
on the attention mechanism note the connection to inference in a gaussian mixture model [11, 10,
12, 13]. Indeed [23] directly show the connection between the Hopfield energy and the variational
free energy of a Gaussian mixture model. Although Gaussian mixture models, a special case of
the framework we present here, are enough to explain cross attention they do not capture slot or
self-attention, obscuring the generality underlying attention mechanisms. In contrast, the description
presented here extends to structural inductive biases beyond what can be expressed in a Gaussian
mixture model, additionally offering a route to describing the whole transformer block.
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Attention as bi-level optimisation, mapping feed-forward architecture to a minimisation step on
a related energy function has been called unfolded optimisation [24]. Taking this perspective can
lead to insights about the inductive biases involved for each architecture. It has been shown that the
cross-attention mechanism can be viewed as an optimisation step on the energy function of a form of
Hopfield Network [8], providing a link between attention and associative memory. while [25] extend
this view to account for self-attention. Our framework distinguishes Hopfield attention, which does
not allow an arbritary value matrix, from transformer attention. Although there remains a strong
theoretical connection, we interpret the Hopfield Energy as an instance of variational free energy,
aligning more closely with iterative attention mechanisms such as slot-attention.

3 Transformer Attention

3.1 Attention as Expectation

We begin by demonstrating transformer attention can be seen as calculating an expectation over graph
structures. Specifically, let x = (x1, .., xn) be observed input variables, ϕ be some set of discrete
latent variables representing edges in a graphical model of x given by p(x | ϕ), and y a variable
we need to predict. Our goal is to find Ey|x[y], however the graph structure ϕ is unobserved so we
calculate the marginal likelihood.

Ey|x[y] =
∑
ϕ

p(ϕ | x)Ey|x,ϕ[y]

Importantly, the softmax function is a natural representation for the posterior,

p(ϕ | x) = p(x, ϕ)∑
ϕ p(x, ϕ)

= softmax(ln p(x, ϕ))

in order to expose the link to transformer attention, let the model of y given the graph (x, ϕ) be
parameterised by a function Ey|x,ϕ[y] = v(x, ϕ).

Ey|x[y] =
∑
ϕ

softmax(ln p(x, ϕ))v(x, ϕ) = Eϕ|x[v(x, ϕ)] (1)

In general, transformer attention can be seen as weighting v(x, ϕ) by the posterior distribution
p(ϕ | x) over different graph structures. We show Eq.1 is exactly the equation underlying self and
cross-attention by presenting the specific generative models corresponding to them. In this description
the latent variables ϕ are identified as edges between observed variables x (keys and queries) in a
pairwise Markov Random Field, parameterised by matrices WK and WQ, while the function v is
parameterised by WV .

Pairwise Markov Random Fields are a natural tool for modelling the dependencies of random
variables, with prominent examples including Ising models (Boltzmann Machine) and multivariate
Gaussians. While typically defined given a known structure, the problem of inferring the latent graph
is commonly called structural inference.

Formally, given a set of random variables X = (Xv)v∈V with probability distribution [p] and a graph
G = (V,E). The variables form a pairwise Markov Random Field (pMRF) [26] with respect to G if
the joint density function P (X = x) = p(x) factorises as follows

p(x) =
1

Z
exp

(∑
v∈V

ψv +
∑
e∈E

ψe

)
where Z is the partition function ψv(xv) and ψe = ψu,v(xu, xv) are known as the node and edge
potentials respectively. Bayesian structural inference also requires a structural prior p(ϕ) over the
space of possible adjacency structures, ϕ ∈ Φ, of the underlying graph.

Factorisation, without constraints this space grows exponentially in the number of nodes (2|V |

possible graphs leading to intractable softmax calculations), all the models we explore here implicitly
assume a factorised prior1. We briefly remark that Eq.1 respects factorisation of [p] in the following

1Additionally placing zero probability mass on much of the space, for example disconnected graphs.
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sense; if the distribution admits a factorisation (a partition of the space of graphs Φ =
∏

i Φi)
with respect to the latent variables p(x, ϕ) =

∏
i e

fi(x,ϕi) where ϕi ∈ Φi, and the value function
distributes over the same partition of edges v(x, ϕ) =

∑
i vi(x, ϕi) then each of the factors can be

marginalised independently:
Eϕ|x[v(x, ϕ)] =

∑
i

Eϕi|x[vi] (2)

To recover cross-attention and self-attention we need to specify the structural prior, potential functions
and a value function. (In order to ease notation, when Φi is a set of edges involving a common node
xi, such that ϕi = (xi, xj) represents a single edge, we use the notation ϕi = [j], suppressing the
shared index.)

3.2 Cross Attention and Self Attention

We first define the model that gives rise to cross-attention:

• Key nodes K = (x1, .., xn) and query nodes Q = (x′1, ..., x
′
m)

• Structural prior p(ϕ) =
∏m

i=1 p(ϕi), where Φi = {(x1, x′i), .., (xn, x′i)} is the set of edges
involving x′i and ϕi ∼ Uniform(Φi) such that each query node is uniformly likely to
connect to each key node.

• Edge potentials ψ(xj , x′i) = x′Ti W
T
QWKxj , in effect measuring the similarity of xj and x′i

in a projected space.
• Value functions vi(x, ϕi = [j]) =WV xj , a linear transformation applied to the node at the

start of the edge ϕi.

Taking the expectation with respect to the posterior in each of the factors defined in Eq.2 gives the
standard cross-attention mechanism,

Ep(ϕi|Q,K)[vi] =
∑
j

softmaxj(x
′T
i W

T
QWKxj)WV xj

If the key nodes are in fact the same as the query nodes and the prior is instead over a directed graph
we recover self-attention (A.8.1).

4 Iterative Attention

We continue by extending attention to a latent variable setting, where not all the nodes are observed.
In essence applying the attention trick, i.e., a marginalisation of structural variables, to a variational
free energy (Evidence Lower Bound). This allows us to recover models such as slot attention [17]
and block-slot attention [18]. These mechanisms utilise an EM-like procedure using the current
estimation of latent variables to infer the structure and then using the inferred structure to improve
estimation of latent variables. Interestingly, Modern Continuous Hopfield Networks fit within this
paradigm rather than the one discussed in Sec.3; collapsed variational inference produces an identical
energy function to the one proposed by Ramsauer et al. [8].

4.1 Collapsed Inference

We present a version of collapsed variational inference [27], where the collapsed variables ϕ are again
structural, showing how this results in a Bayesian attention mechanism. In contrast to the previous
section, we have a set of (non-structural) latent variables z. The goal is to infer z given the observed
variables, x, and a latent variable model p(x, z, ϕ). Collapsed inference proceeds by marginalising
out the extraneous latent variables ϕ [27]:

p(x, z) =
∑
ϕ

p(x, z, ϕ) (3)

We define a gaussian recognition density q(z) ∼ N(z;µ,Σ) and optimise the variational free
energy F(λ) = Eq[ln qλ(z) − ln p(x, z)] with respect to the parameters, λ = (µ,Σ), of this
distribution. Application of Laplace’s method yields approximate derivatives of the variational
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Figure 1: Comparison of models involved in different attention mechanisms. In each case, the highlighted
edges indicate Φi the support of the uniform prior over ϕi. Attention proceeds by calculating a posterior over
these edges, given the current state of the nodes, before using this inference to calculate an expectation of the
value function v. For iterative attention mechanisms the value function can be identified as the gradient of a
variational free energy, in contrast, transformer attention uses a learnable function.

free energy ∇µF ≈ −∇µ ln p(x, µ) and ∇ΣF ≈ −∇2
µ ln p(x, µ), here we focus on the first order

terms 2. Substituting in Eq.3:

∇µF ≈ −∇µ ln
∑
ϕ

p(x, µ, ϕ) (4)

= − 1∑
ϕ p(x, µ, ϕ)

∑
ϕ

∇µp(x, µ, ϕ) (5)

In order to make the link to attention, we employ the log-derivative trick, substituting p(·) = eln p(·)

and re-express Eq.5 in two ways:

= −
∑
ϕ

softmaxϕ(ln p(x, µ, ϕ))∇µ ln p(x, µ, ϕ) (6)

= Eϕ|x,µ[−∇µ ln p(x, µ, ϕ)] (7)

The first form reveals the softmax which is ubiquitous in all attention models. The second, suggests
the variational update should be evaluated as the expectation of the typical variational gradient (the
term within the square brackets) with respect to the posterior over the parameters represented by
the random variable ϕ. In other words, iterative attention is exactly transformer attention applied
iteratively where the value function is the variational free energy gradient. We derive updates for
a general pMRF before again recovering (iterative) attention models in the literature by specifying
particular distributions.

Free Energy of a marginalised pMRF, recall the factorised pMRF, p(x, ϕ) = 1
Z

∏
i e

fi(x,ϕi). Again,
independence properties simplify the calculation, the marginalisation can be expressed as a product of
local marginals,

∑
ϕ p(x, ϕ) =

1
Z

∏
i

∑
ϕi
efi(x,ϕi). Returning to the inference setting, the nodes are

partitioned into observed nodes, x, and variational parameters µ. Hence the (approximate) collapsed
variational free energy Eq.5, can be expressed as, F (x, µ) = −

∑
i ln
∑

ϕi
efi(x,µ,ϕi) + C and it’s

derivative:
∂F

∂µj
= −

∑
i

∑
ϕi

softmax(fi)
∂fi
∂µj

Finally, we follow [8] in using the Convex-Concave Procedure (CCCP) to derive a simple fixed point
equation which necessarily reduces the free energy.

Quadratic Potentials and the Convex Concave Procedure, assuming the node potentials are
quadratic ψ(xi) = − 1

2x
2
i and the edge potentials have the form ψ(xi, xj) = xiWxj , and define

f̃i =
∑

e∈Φi
ψe . Consider the following fixed point equation,

µ∗
j =

∑
i

∑
ϕi

softmax(f̃i)
∂f̃i
∂µj

(8)

2As the first order terms are independent of the second order ones, see A.7.1 for details.
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since (under mild conditions) node potentials are convex and edge potentials are concave (A.7.1.1),
we can invoke the CCCP [28] to show this fixed point equation descends on the energy F (x, µ∗

j ) ≤
F (x, µj) with equality if and only if µ∗

j is a stationary point of F . We follow Sec.3 in specifying
specific structural priors and potential functions that recover different iterative attention mechanisms.

4.2 Modern Continuous Hopfield Network

Let the observed, or memory, nodes x = (x1, .., xn) and latent nodes z = (z1, .., zm) have the follow-
ing structural prior p(ϕ) =

∏m
i=1 p(ϕi), where ϕi ∼ Uniform{(x1, zi), .., (xn, zi)}, meaning each

latent node is uniformly likely to connect to a memory node. Define edge potentials ψ(xj , zi) = zTi xj .
Application of Eq.8:

µ∗
i =

∑
j

softmaxj(µ
T
i xj)xj

When µi is initialised to some query ξ the system the fixed point update is given by µ∗
i (ξ) =

Eϕi|x,ξ[x[j]]. If the patterns x are well separated, µ∗
i (ξ) ≈ xj′ , where xj′ is the closest vector and

hence can be used as an associative memory.

4.3 Slot Attention

Slot attention [17] is an object centric learning module centred around an iterative attention mecha-
nism. Here we show this is a simple adjustment of the prior beliefs on our edge set. With edge poten-
tials of the form ψ(xj , zi) = zTi W

T
QWKxj , replace the prior over edges with p(ϕ) =

∏n
j=1 p(ϕj),

ϕj ∼ Uniform{(xj , z1), .., (xj , zm)}. Notice, in comparison to MCHN, the prior over edges is
swapped, each observed node is uniformly likely to connect to a latent node, in turn altering the index
of the softmax.

µ∗
i =

∑
j

softmaxi(µ
T
i W

T
QWKxj)W

T
QWKxj

while the original slot attention employed an RNN to aid the basic update shown here, the important
feature is that the softmax is taken over the ‘slots’. This forces competition between slots to account
for the observed variables, creating object centric representations.

4.4 Predictive Coding Networks

Predictive Coding Networks (PCN) have emerged as an influential theory in Computational Neuro-
science [29, 30, 31]. Building on theories of perception as inference and the Bayesian brain, PCNs
perform approximate Bayesian inference by minimising a variational free energy of a graphical model,
where incoming sensory data are used as observations. Typical implementations use a hierarchical
model with Gaussian conditionals, resulting in a local prediction error minimising scheme. The
minimisation happens on two distinct time-scales, which can be seen as E-step and M-steps on
the variational free energy: a (fast) inference phase encoded by neural activity corresponding to
perception and a (slow) learning phase associated with synaptic plasticity. Gradient descent on the
free energy gives the inference dynamics for a particular neuron µi, [32]

∂F
∂µi

= −
∑
ϕ−

kϕϵϕ +
∑
ϕ+

kϕϵϕwϕ

Where ϵ are prediction errors, w represent synaptic strength, k are node specific precisions repre-
senting uncertainty in the generative model and ϕ−, ϕ+ represent pre-synaptic and post-synaptic
terminals resectively. Applying a uniform prior over the incoming synapses results in a slightly
modified dynamics,

∂F
∂µi

= −
∑
ϕ−

softmax(−ϵϕ2)kϕϵϕ +
∑
ϕ+

softmax(−ϵϕ2)kϕϵϕwϕ

where the softmax function induces a normalisation across prediction errors received by a neuron.
This dovetails with theories of attention as normalisation in Psychology and Neuroscience [33, 34, 35].
In contrast previous predictive coding based theories of attention have focused on the precision terms,
k, due to their ability to up and down regulate the impact of prediction errors [36, 37, 38]. Here we
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Figure 2: Multihop Attention: (left) Graphical description of the toy problem, x2 is generated causally from
x1 and x0, which are used to generate y. (centre) Comparison of the attention employed by Multihop which
takes two steps on the attention graph (top) contrasted with Self Attention (bottom). Multihop Attention has the
correct bias to learn the task approaching the performance of two-layer Self Attention, while a single layer of
Self Attention is unable (top right). Empirically examining the attention weights, Multihop Attention is able to
balance attention across two positions, while self-attention favours a single position.

see the softmax terms play a functionally equivalent role to precision variables, inheriting their ability
to account for bottom-up and top-down attention, while exhibiting the fast winner-takes-all dynamics
that are associated with cognitive attention.

5 New Designs

By identifying the attention mechanism in terms of an implicit probabilistic model, we can review
and modify the underlying modelling assumptions in a principled manner to design new attention
mechanisms. Recall transformer attention can be written as the marginal probability p(y | x) =∑

ϕ p(ϕ | x)Ey|x,ϕ[y], the specific mechanism is therefore informed by three pieces of data: (a)
the value function p(y | x, ϕ), (b) the likelihood p(x | ϕ) and (c) the prior p(ϕ). Here, we explore
modifying (a) and (c) and show they can exhibit favourable biases on toy problems.

5.1 Multi-hop Attention

Our description makes it clear that the value function employed by transformer attention can be
extended to any function over the graph. For example, consider the calculation of Ey|x,ϕ[yi] in
transformer attention, a linear transformation is applied to the most likely neighbour, xj , of xi. A
natural extension is to include a two-hop neighbourhood, additionally using the most likely neighbour
xk of xj . The attention mechanism then takes a different form Ep(ϕj |ϕi)p(ϕi|x)[V (xϕi

+ xϕj
)] =

(Pϕ + P 2
ϕ)V X , where Pϕ is the typical attention matrix. While containing the same number of

parameters as a single-layer of transformer attention, for some datasets two-hop attention should be
able to approximate the behaviour of two-layers of transformer attention.

Task Setup We simulate a simple dataset that has this property using the following data generation
process: Initialise a projection matrix Wy ∈ Rd×1 and a relationship matrix Wr ∈ Rd×d. X is
then generated causally, using the relationship xi+1 =Wrxi +N(0, σ) to generate x0, x1 and x2,
while the remaining nodes are sampled from the noise distribution N(0, σ). Finally, the target y is
generated from the history of x2, y = Wy(x1 + x0) and the nodes of X are shuffled. Importantly
Wr is designed to be low rank, such that performance on the task requires paying attention to both x1
and x0, Figure 2.

5.2 Expanding Attention

One major limitation of transformer attention is the reliance on a fixed context window. From
one direction, a small context window does not represent long range relationships, on the other
hand a large window does an unnecessary amount of computation when modelling a short range
relationship. By replacing the uniform prior with a geometric distribution p(ϕ | q) ∼ Geo(q),

7



ϵ ϵ ϵ ϵ ϵ ϵ ϵ x1 x2

y

. . . ϵ ϵ ϵ x1 ϵ ϵ ϵ ϵ x2

y

Shuffle pos(x1) ∼ Geo(p)

Pr
io

r

. . . ϵ ϵ ϵ x1 ϵ ϵ ϵ ϵ x2

Pr
io

r

. . . ϵ ϵ ϵ x1 ϵ ϵ ϵ ϵ x2

Figure 3: Expanding Attention: (left) Graphical description of the toy problem, x2 and y are generated from x1

which is shuffled with a (exponentially decaying) recency bias. (centre) Comparison of the geometric prior, with
different shades of red representing the iterative refinements during inference, used by Expanding and uniform
prior used by Self Attention. (right) The relative number of operations used by Expanding Attention is beneficial
when either the recency bias (1/p) or the number of feature dimensions (d) is large, training curves (overlaid)
across each of these settings remained roughly equivalent.

and a conjugate hyper-prior p(q) ∼ Beta(α, β) we derive a mechanism that dynamically scales
depending on input. We use a (truncated) mean-field variational inference procedure [39] to iteratively
approximate p(ϕ | x) using the updates: 1. qt ← βt

αt+βt
, 2. pt = p(ϕ | x, qt), 3. αt+1 ← αt + 1,

βt+1 ← βt +
∑

<H(qt)
i(pt)i. Where α and β are hyperparameters determining the strength of the

prior and H is the truncation horizon. Since attention dot products can be cached and reused for each
calculation of step 2. the iterative procedure is computationally cheap.

The attention mechanism has asymptotic time complexity O(n2d) where n is the size of the size of
the context window and d is dimension over which the inner product is computed. In comparison,
expanding attention O(n(md+ k)) where m is the size of the window at convergence, and k is the
number of steps to converge. If, as is typical, d is large such that d >> k the time complexity of
expanding attention should be favourable.

Task Setup Input and target sequence are generated similarly to above (without x0). Here x1 is
moved away from x2 according to a draw from a geometric distribution, Figure 3.

6 Discussion

6.1 The Full Transformer Block

Transformer attention is typically combined with residual connections and a feedforward network,
both of which have been shown important in preventing ‘token collapse’. Here we briefly touch upon
how these features might relate to the framework presented here.

Feedforward layer, it has previously been noticed the feedforward component can also be understood
as a key-value memory where the memories are stored as persistent weights [40, 41]. This is due to
the observation ff(x) =W2σ(W1x) is equivalent to attention when the non-linearity σ is a softmax,
although a ReLU is typically used. We speculate the framework presented here could be extended
explain this discrepancy, intuitively the ReLU relates to an edge prior that fully factorises into binary
variables.

Residual connections have been shown to encourage iterative inference [42]. This raises the
possibility transformer attention, rather than having an arbitrary transformation v as presented in
Sec.3, is in fact approximately implementing the iterative inference of Sec.4 through a form of
iterative amortised inference [43]. The view that the transformer is performing iterative refinement is
additionally supported by empirical studies of early-decoding [44].

Temperature and positional encodings, both positional encodings and the temperature scaling can
be seen as adjustments to the prior edge probability. In the case of relative positional encodings, by
breaking the permutation invariance of the prior (A.8.2). While the temperature may be understood
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in terms of tempered (or generalised) Bayesian inference [45], adjusting the strength of the prior
relative to the likelihood.

6.2 Limitations

The connection to structural inference presented here is limited to the attention computation of a
single transformer head, an interesting future direction would be to investigate whether multiple layers
and multiple heads typically used in a transformer can also be interpreted within this framework.
Additionally, the extension to iterative inference employed a crude approximation to the variational
free energy, arguably destroying the favourable properties of Bayesian methods. Suggesting the
possibility of creating iterative attention mechanisms with alternative inference schemes, possibly
producing more robust mechanisms.

6.3 Conclusion

In this paper, we presented a probabilistic description of the attention mechanism, formulating
attention as structural inference within a probabilistic model. This approach builds upon previous
research that connects cross attention to inference in a Gaussian Mixture Model. By considering
the discrete inference step in a Gaussian Mixture Model as inference on marginalised structural
variables, we bridge the gap with alignment-focused descriptions. This framework naturally extends
to self-attention, graph attention, and iterative mechanisms, such as Hopfield Networks. We hope this
work will contribute to a more unified understanding of the functional advantages and disadvantages
brought by Transformers.

Furthermore, we argue that viewing Transformers from a structural inference perspective provides
different insights into their central mechanism. Typically, optimising structure is considered a learning
problem, changing on a relatively slow timescale compared to inference. However, understanding
Transformers as fast structural inference suggests that their remarkable success stems from their
ability to change effective connectivity on the same timescale as inference. This general idea can
potentially be applied to various architectures and systems. For instance, Transformers employ
relatively simple switches in connectivity compared to the complex dynamics observed in the brain
[46]. Exploring inference over more intricate structural distributions, such as connectivity motifs or
modules in network architecture, could offer artificial systems even more flexible control of resources.
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Table 1: Different attention modules

Name Graph (G) Prior (p(ϕ)) Potentials (ψ) Value v(x, ϕ)

Cross Attention Key nodes K, query
nodes Q

Uniform x′Ti W
T
QWKxj V xj

Self Attention K = Q, directed edges Uniform xTi W
T
QWKxj V xj

Graph Attention,
Sparse Attention

K = Q, directed edges Uniform (restricted) xTi W
T
QWKxj V xj

Relative Posi-
tional Encodings

K = Q, directed edges Categorical xTi W
T
QWKxj V xj

Absolute Posi-
tional Encodings

K = Q Uniform x̃i
TWT

QWK x̃j
x̃i = xi + ei

V xj

Classification
Layer

NN output fθ(X),
classes y

Uniform fθ(X)Ti yj yj

MCHN Observed nodes X ,
latent nodes Z

Uniform (observed) zTi W
T
QWKxj

∂F
∂z

Slot Attention Observed nodes X la-
tent nodes Z

Uniform (latent) zTi W
T
QWKxj

∂F
∂z

Block-Slot Atten-
tion

Observed nodes X ,
latent nodes Z, mem-
ory nodes M

Uniform (latent) zTi W
T
QWKxj ,

mT
kW

T
QWKzi

∂F
∂z

PCN Observed nodes X ,
multiple layers of la-
tent nodes {Z(l)}l≤L

Uniform (latent) zTi W
T
QWKxj

∂F
∂z

Multihop Atten-
tion

K = Q, directed edges Uniform xTi W
T
QWKxj V xj + V xk

Expanding Atten-
tion

K = Q, directed edges Geometric x Beta xTi W
T
QWKxj V xj

7 Appendix

Here we include some more detailed derivations of claims made in the paper, and list the hyperparam-
eters used for the experiments.

7.1 Iterative Attention

In this section we provide a more detailed treatment of the Laplace approximation, and provide proper
justification for invoking the CCCP. For both, the following lemma is useful:
Lemma 7.1. The function ln p(x) = ln

∑
ϕ p(x, ϕ) = ln

∑
ϕ expEϕ(x) has derivatives (i)

∂
∂x ln p(x) = Eϕ|x[

∂
∂xEϕ] and (ii) ∂2

∂x2 ln p(x) = V arϕ|x[
∂
∂xEϕ] + Eϕ|x[

∂2

∂x2Eϕ]

Proof. Let E = (Eϕ) the vector of possible energies, and p = (pϕ) = (p(ϕ | x))ϕ the vector of
conditional probabilities. Consider ln p(ϕ | x) written in canonical form,

ln p(ϕ | x) = ⟨Eϕ(x),1ϕ⟩ −A[Eϕ(x)] + h(ϕ)

Where A[E(x)] = lnZ(E) is the cumulant generating function. By well known properties of the
cumulant: ∂A

∂Ei
= p(ϕ = i | x) = pi. Hence by the chain rule for partial derivatives, ∂A

∂x =
∑

ϕ p(ϕ |
x) ∂

∂xEϕ, which is (i).

To find the second derivative we apply again the chain-rule d
dtf(g(t)) = f ′′(g(t))g′(t)2 +

f ′(g(t))g′′(t). Again by properties of the cumulant ∂2A
∂Ei∂Ej

= Cov(1i,1j) = [diag(p)− pT p]i,j =
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Vi,j . Hence the second derivative is

∂2A

∂2x
=
∂E

∂x

T

V
∂E

∂x
+ E[

∂2Eϕ

∂x2
] (9)

Second order Laplace Approximation With these derivatives in hand we can calculate the second
order laplace approximation of the free energy F = Eq[ln qλ(z)− ln p(x, z)].

F ≈ Eq[ln p(µ, x) +
∂

∂z
ln p(µ, x)T (z − µ) + (z − µ)T ∂2

∂z2
ln p(µ, x)(z − µ)] +H[q]

≈ ln p(µ, x) + tr(Σ−1
q V arϕ|µ,x[

∂

∂z
Eϕ]) + tr(Σ−1

q Eϕ|µ,x[
∂2

∂z2
Eϕ]) +

1

2
log | Σq | +C

We can see optimising the first order variational parameter in this approximation is independent of Σq ,
hence we can first find µ and the fill in our uncertainty Σq = ∂2

∂z2 ln p(µ
∗, x) = V arϕ|µ,x[

∂
∂zEϕ] +

Eϕ|µ,x[
∂2

∂z2Eϕ]. Finding this uncertainty can be costly in the general case where the hessian of E is
not analytically available.

As alluded to in the paper, iterative attention mechanisms can also be viewed as an alternating
maximisation procedure, which may provide a route to more general inference schemes:

As Alternating Minimisation Collapsed Inference can also be seen as co-ordinate wise variational
inference [27]. Consider the family of distributions Q = {q(z;λ)q(ϕ | z)}, where q(z;λ) is
parameterised, however q(ϕ) is unconstrained.

F = min
q∈Q

Eq[ln q(z, ϕ)− ln p(x, z, ϕ)]

= min
q∈Q

Eq(z)[Eq(ϕ)[ln q(ϕ)− ln p(x, ϕ | z)] + ln q(z)− ln p(z)]

The inner expectation is maximised for q(ϕ) = p(ϕ | x, z) and the inner expectation evaluates to
− ln p(x | z) which recovers the marginalised objective

min
q∈Q

Eq(z)[q(z)− ln
∑
ϕ

p(x, z, ϕ)]

This motivates an alternate derivation of iterative attention as structural inference which is less reliant
on the Laplace approximation; Consider optimising over the variational family Q = {q(z;λ)q(ϕ)}
coordinate wise:

ln qt+1(ϕ) = Eqt(z;λt)[ln p(ϕ | x, z)] + C

λt+1 = argmin
λ

Eqt(ϕ)[Eq(z;λ)[ln q(z)− ln p(x, z | ϕ)]

= argmin
λ

Eqt(ϕ)[Fϕ]

In the case of quadratic potentials, qt+1(ϕ) = p(ϕ | x, λt), hence the combined update step can be
written

argmin
λ

Ep(ϕ|x,λt)[Fϕ(λ)]

Each step necessarily reduces the free energy of the mean-field approximation, so this process
converges. This derivation is independent of which approximation or estimation is used to minimise
the typical variational free energy.

7.1.1 Convexity details for the CCCP

Given a pairwise pMRF with quadratic potentials ψ(xi) = − 1
2x

2
i and the edge potentials have the

form ψ(xi, xj) = xiWxj and W p.s.d., s.t. ln p(x, ϕ) = − 1
2

∑
v∈G x

2
v + ln

∑
ϕ exp gϕ(x), where

gϕ(x) =
∑

e∈ϕ ψe. We need the following lemma to apply the CCCP:
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Lemma 7.2. ln
∑

ϕ exp gϕ(x) is convex in x.

Proof. We reapply Lemma.7.1, with Eϕ = gϕ(x), hence ∂2

∂x2 ln
∑

ϕ exp gϕ(x) = V arϕ|x[
∂
∂xgϕ] +

Eϕ|x[
∂2

∂x2 gϕ]. The first matrix is a variance, so p.s.d. The second term Eϕ|x[
∑

e∈ϕ
∂2

∂x2ψe] is a convex
sum of p.s.d matrices. Hence both terms are p.s.d, implying ln

∑
ϕ exp gϕ(x) is indeed convex.

7.2 PCN Detailed Derivation

Here we go through the derivations for the equations presented in section 4.4. PCNs typically assume
a hierarchical model with gaussian residuals:

z0 ∼ N(µ̂0,Σ0)

zi+1 | zi ∼ N(fi(zi; θi),Σi)

y | zN ∼ N(fN (zN ; θN ),ΣN )

Under these conditions, a delta approximation of the variational free energy is given by:

F [p, q] = Eq(z;µ)[− ln p(y, z)] +H[q]

F(µ, θ) ≈
N∑
l=0

Σ−1
l ϵ2l

Where ϵl = (µl+1 − fl(µl; θl))
2. The inference phase involves adjusting the parameters, µ in the

direction of the gradient of F , which for a given layer is:

∂F
∂µl

= Σ−1
l−1ϵl−1 − Σ−1

l ϵlf
′(µl) (10)

Here, for ease of comparison, we consider the case where the link functions are linear, fi(·) =Wi(·)
and further the precision matrices are diagonal Σ−1

i = diag(ki). Under these conditions we can
write the derivative component-wise as sums of errors over incoming and outgoing edges :

(
∂F
∂µl

)i = −
∑
ϕ−

kϕϵϕ +
∑
ϕ+

kϕϵϕwϕ

Where ϕ−, ϕ+ represent the set of incoming and outgoing edges respectively, and we redefine
ϵϕ = (µi − µjwij) for an edge ϕ = (zi, zj) and kϕ = K(zj) the precision associated with the node
at the terminus of ϕ.

Now if we instead assume a uniform prior over incoming edges, or concretely;

z0 ∼ N(µ̂0,Σ0)

ϕil ∼ Uniform({(zil+1, z
0
l ), (z

i
l+1, z

1
l ), ...}

zil+1 | zl, ϕil ∼ N(wij
l z

ϕi
l

l , 1/k
i
l)

y | zN ∼ N(fN (zN ; θN ),ΣN )

The system becomes a pMRF with edge potentials given by the prediction errors, recall applying
Eq.4:

∂F

∂µj
= −

∑
i

∑
ϕi

softmax(fi(x, µ, ϕi))
∂fi
∂µj

Here for a node in a given layer, it participates in one Φj
l−1 and all the Φk

l+1 from the layer above,
where every fi(x, µ, ϕi) here is a squared prediction error corresponding to the given edge eijl =
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kijl (zil − w
ij
l z

j
l−1)

2, hence:

∂F

∂µj
=−

∑
i∈Φj

l−1

softmaxi(−(ϵijl−1)
2)ϵijl−1kj

+
∑
k∈[l]

∑
i′∈Φk

l

softmaxi′(−(ϵi
′k
l )2)ϵi

′k
l wi′k

l 1(i′ = j)

∂F

∂µj
=−

∑
i∈Φj

l−1

softmaxi(−(ϵijl−1)
2)ϵijl−1

+
∑
k∈[l]

softmaxi′(−(ϵi
′k
l )2)ϵi

′k
l wi′k

l

Here incoming signals (nodes i) compete through the softmax, whilst the outgoing signal competes
with other outgoing signals from nodes (nodes i′) in the same layer for representation in the next layer
(nodes k), see block-slot attention diagram for intuition. By abuse of notation (reindexing edges as ϕ)

∂F
∂µi

= −
∑
ϕ−

softmax(−ϵϕ2)kϕϵϕ +
∑
ϕ+

softmax(−ϵϕ2)kϕϵϕwϕ

While we derived these equations for individual units to draw an easy comparison to standard
Predictive Coding, we note it is likely more useful to consider blocks of units competing with
each other for representation, similar to multidimensional token representations in typical attention
mechanisms. We also briefly note here, the Hammersley–Clifford theorem indicates a deeper duality
between attention as mediated by precision matrices and as structural inference.

7.3 New Designs

Multihop Derivation Ey|x,ϕ[yi] in transformer attention, a linear transformation is applied to the
most likely neighbour, xj , of xi. A natural extension is to include a two-hop neighbourhood,
additionally using the most likely neighbour xk of xj . Formally, the value function v no longer
neatly distributes over the partition Φi, however the attention mechanism then takes a different form:
Ep(ϕj |ϕi)p(ϕi|x)[V (xϕi

+ xϕj
)] = (Pϕ + P 2

ϕ)V X . Where we use ϕj(i) = ϕj to denote the edge set
of the node at the end of ϕi. To see this note:

Ep(ϕ|x)[V (xϕi
+ xϕj

)] =
∑
ϕ

∏
k

p(ϕk | x)V (xϕi
+ xϕj

)

=
∑
ϕ

∏
k

p(ϕk | x)V (xϕi
+ xϕj

)

=
∑
ϕ

∏
k

p(ϕk | x)V xϕi
+
∑
ϕ

∏
k

p(ϕk | x)V xϕj

by independence properties

=
∑
ϕi

p(ϕi | x)V xϕi
+
∑
ϕi,ϕj

p(ϕi | x)p(ϕj | x)V xϕj

Denoting the typical attention matrix, P , where pij = p(ϕi = [j] | x)

=
∑
k

∑
j

pjkpijV xk +
∑
j

pijV xj

= (Pϕ + P 2
ϕ)V X

Expanding Derivation As in the main text, let p(ϕ | q) ∼ Geo(q) and p(q) ∼ Beta(α, β),
such that we have the full model p(x, ϕ, q;α, β) = p(x | ϕ)p(ϕ | q)p(q;α, β). In order to find
p(ϕ | x) we employ a truncated Mean Field Variational Bayes [39], assuming a factorisation
pt(ϕ, q) = pt(ϕ)pt(q), and using the updates:

ln pt+1(ϕ) = Ept(q)[ln p(x | ϕ) + ln p(ϕ | q)] + C1

ln pt+1(q) = Ept(ϕ)[ln p(ϕ | q) + ln p(q;α, β)] + C2
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By conjugacy the second equation simplifies to a simple update of the beta distribution
=⇒ pt+1(q) = Beta(αt+1, βt+1)

αt+1 = αt + 1

βt+1 = βt + Ept(ϕ)[ϕ]

While the second update can be seen as calculating the posterior given qt = Ept(q)[q],
ln pt+1(ϕ) = ln p(x | ϕ) + Ept(q)[ln p(ϕ | q)] + C2

= ln p(x | ϕ) + ϕEpt(q)[ln q] + C2

= ln p(ϕ | x, qt)
Finally, we use a truncation to approximate the infinite sum Ept(ϕ)[ϕ] =

∑
k pt(ϕ = k)k ≈∑

<H pt(ϕ = k)k. Where we set the horizon according to the current distribution of q. For example
in our experiments we chose H(qt) = ln 0.05/ ln(1− qt) the truncation that would capture 95% of
the probability mass of the prior.

8 Attention Variants

Here we briefly discuss some variants of attention that there wasn’t space for in the paper.

8.1 Self Attention

• Nodes K = Q = (x1, .., xn)

• Structural prior, over a fully connected, directed graph p(
−→
ϕ ) =

∏n
i=1 p(

−→
ϕ i), where

−→
Φ i =

{(x1, xi), .., (xn, xi)} is the set of edges involving xi and
−→
ϕ i ∼ Uniform(

−→
Φ i), such that

each node is uniformly likely to connect to every other node in a given direction.
• Edge potentials ψ(xj , xi) = xTi W

T
QWKxj , in effect measuring the similarity of xj and x′i

in a projected space.
• Value functions vi(x, ϕi = [j]) =WV xj , a linear transformation applied to the node at the

start of the edge ϕi.

Again, taking the posterior expectation in each of the factors defined in two Eq.2 gives the standard
self-attention mechanism

Ep(ϕi|Q)[vi] =
∑
j

softmaxj(x
T
i W

T
QWKxj)WV xj

8.2 Positional Encodings and Graph Neural Networks

In Table.1 we show that positional encodings and graph attention are naturally incorporated in this
framework. Absolute positional encoding as suggested by Vaswani et al. [1] can be seen as modifying
the edge potentials with a vector that depends on position, while relative position encodings can be
seen as a categorical prior, where the prior depends on the relative distance between nodes. Graph
and Sparse attention operate similarly to graph attention, except the uniform prior is restricted to
edges in the provided graph, or according to predefined sparsity pattern.

Relative Position Encodings If the prior over edges is categorical i.e. P (ϕi = [j]) = pi,j , it can be
fully specified by the matrix (P )i,j = pi,j . This leads to the modified attention update∑

j

softmaxj(xiQ
TKxj + ln pij)xj

However this requires local parameters for each node zi. A more natural prior assign a different
probability to the relative distance of i from j. This is achieved with P = circ(p1, p2, .., pn),
where circ is the circulant matrix of (p)i≤n. Due to properties of circulant matrices lnPij can be
reparameterised with the hartley transform

ln pi,j =
∑
k

βk[cos(kθi,j) + sin(kθi,j)] = β · b(i,j)

Where b(i,j)k = cos(k i−j
2πn ) + sin(k i−j

2πn ) can be thought of as a relative position encoding, and β are
parameters to be learnt.
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8.2.1 Block-Slot Attention

Singh et al. [18] suggest combining an associative memory ability with an object-centric slot-like
ability and provide an iterative scheme for doing so, alternating between slot-attention and hopfield
updates. Our framework permits us to flexibly combine different attention mechanisms through
different latent graph structures, allowing us to derive a version of block-slot attention.

In this setting we have three sets of variables X , the observations, Z the latent variables to
be inferred and M which are parameters. Define the pairwise MRF X = {x1, ..., xn}, Z =

{z1, ..., zm} and M = {m1, ...,ml} with a prior over edges p(E) =
∏m

j=1 p(Ej)
∏l

k=1 p(Ẽk),
Ej ∼ Uniform{(xj , z1), .., (xj , zm)}, Ẽk ∼ Uniform{(z1,mk), .., (zm,mk)}, with edge poten-
tials between X and Z given by ψ(xj , zi) = ziQ

TKxj and between Z and M , ψ(zi,mk) = zi ·mk

applying (8) gives

µ∗
i =

∑
j

softmaxi(µiQ
TKxj)Q

TKxj

+
∑
k

softmaxk(µi ·mk)mk

In the original block-slot attention each slot zi is broken into blocks, where each block can access
block-specific memories i.e. z(b)i can has possible connections to memory nodes {m(b)

k }k≤l. Allowing
objects to be represented by slots which in turn disentangle features of each object in different blocks.
We presented a single block version above, however it is easy to see that the update extends to the
multiple block version applying (8) gives

µ∗
i =

∑
j

softmaxi(µiQ
TKxj)Q

TKxj

+
∑
k,b

softmaxk(µ
(b)
i ·m

(b)
k )m

(b)
k

9 Experimental Details

Multihop

Following the notation in the text; data generation parameters:

• Total number of tokens: 10

• Embedding dimension (dimension of each x):10

• Output dimension (dimension of y): 1

• σ2 (autoregressive noise): 1

• Random matrix initialisation was performed with torch.rand

Training parameters (across all models):

• batch size:200

• number of batches: 10

• optimiser: ADAM

• learning rate: 1e− 3

• Number of different random seeds: 10

Model: To make analysis easier, all models were prevented from self-attending to the final token.

Expanding

Following the notation in the text; data generation parameters:

• Total number of tokens: 50
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• Embedding dimension(s) (dimension of each x):[10, 50]
• p the parameter for generating a geometric shuffle:[0.5, .2, .1, .04]
• Output dimension (dimension of y): 1
• σ2 (autoregressive noise): .1
• Random matrix initialisation was performed with torch.rand

Training parameters (across all models):

• batch size:1*
• number of batches: 10000
• optimiser: ADAM
• learning rate: 5e− 4

Model: To make analysis easier, all models were prevented from self-attending to the final token. For
expanding attention the hyperparameters were set as α = .1, β = .9 these were chosen to have a
mean value at roughly a quarter of the (size 50) window.

*Training was performed with single samples, despite the iterative process being completely parallel
(no shared state). Naive parallel implementation of expanding attention would encounter synchronisa-
tion locks, as the fastest samples wait for the longest ones to complete. In order to take full advantage
of a dynamic window over a batch, intelligent asynchronous processing would be necessary.

Algorithm 1 Attention

Require: X,Wq,Wk,Wv

Q←WqX
K ←WkX
V ←WvX
A← softmax(KTQ)
Y ← AV

Algorithm 2 Multihop

Require: X,Wq,Wk,Wv, N
Q←WqX
K ←WkX
V ←WvX
A← softmax(KTQ)
P ←

∑
k<N Ak

Y ← PV

Algorithm 3 Expanding

Require: X,xq,Wq,Wk,Wv, α, β, k = 0
q ←Wqxq
K ←WkX
V ←WvX
while k not converged do

p = α/(α+ β)
k ← ln(.05)/ ln(1− p)
gp[i] = −i/k
A← softmax(qTK[: k, :] + gp)
α← α+ 1
β ← β +

∑
i<k A[i]i

end while
y ← AV
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