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Distinct Neuron Types Contribute to Hybrid Auditory
Spatial Coding
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Neural decoding is a tool for understanding how activities from a population of neurons inside the brain relate to the outside world and
for engineering applications such as brain–machine interfaces. However, neural decoding studies mainly focused on different decoding
algorithms rather than different neuron types which could use different coding strategies. In this study, we used two-photon calcium
imaging to assess three auditory spatial decoders (space map, opponent channel, and population pattern) in excitatory and inhibitory
neurons in the dorsal inferior colliculus of male and female mice. Our findings revealed a clustering of excitatory neurons that prefer
similar interaural level difference (ILD), the primary spatial cues in mice, while inhibitory neurons showed random local ILD organi-
zation. We found that inhibitory neurons displayed lower decoding variability under the opponent channel decoder, while excitatory
neurons achieved higher decoding accuracy under the space map and population pattern decoders. Further analysis revealed that
the inhibitory neurons’ preference for ILD off themidline and the excitatory neurons’ heterogeneous ILD tuning account for their decod-
ing differences. Additionally, we discovered a sharper ILD tuning in the inhibitory neurons. Our computational model, linking this to
increased presynaptic inhibitory inputs, was corroborated using monaural and binaural stimuli. Overall, this study provides experimen-
tal and computational insight into how excitatory and inhibitory neurons uniquely contribute to the coding of sound locations.
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Significance Statement

Over the decades, studies have proposed three sound source decoders: the space map decoder (topographically tuned to sound
location), the opponent channel decoder (compares the averaged tuning between two groups of neurons), and the population
pattern decoder (decodes locations by utilizing the diverse tunings across the population). This is the first study that (1) visua-
lizes the local organization of spatial tuning and identifies clusters in a brain area that features an auditory spatial map, (2)
tests the three decoders in a single brain area of the same species and discovers that distinct neuron types favor different
decoders, and (3) reveals the differential spatial coding between excitatory and inhibitory neurons and elucidates this dispar-
ity through a computational model.

Introduction
Neural decoding aims to identify what sensory stimulus or motor
output elicits a particular pattern of neural activity. From neural
activity, one could decode visual motion, natural image, and face

(Jazayeri and Movshon, 2006; Kay et al., 2008; Chang and Tsao,
2017); animal vocalization, phonetic feature, spoken sentence,
and language (Town et al., 2018; Anumanchipalli et al., 2019;
Gwilliams et al., 2022; Liu and Wang, 2022; Tang et al., 2023);
arm, hand, handwriting, and tongue movement (Georgopoulos
et al., 1986; Ofner et al., 2019; Willett et al., 2021; Laurence-
Chasen et al., 2023); and control robotic arm (Hochberg et al.,
2006) and paralyzed muscles (Lorach et al., 2023). Numerous
approaches have been proposed for decoding (Glaser et al.,
2020), such as topographic map (Kaas, 1997; Groh, 2014), pop-
ulation vector (Georgopoulos et al., 1986), maximum likelihood
estimation (MLE; Jazayeri and Movshon, 2006; Williams et al.,
2023), linear regression (Chang and Tsao, 2017; Gwilliams
et al., 2022), linear discriminant analysis (Ofner et al., 2019),
and artificial neural networks (Anumanchipalli et al., 2019;
Willett et al., 2021; Laurence-Chasen et al., 2023). However,
only a few studies examined different neuron types in decoding
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(Berry et al., 2019; Wang et al., 2020). Inhibitory neurons were
either excluded (Liu and Wang, 2022) or were shown to have
similar accuracy to excitatory neurons (Allen et al., 2017;
Najafi et al., 2020).

Decoding sound location is a challenging task for the auditory
system. Unlike the visual and somatosensory systems, where spa-
tial information is topographically organized at peripheral recep-
tors and relayed to the brain, the auditory system maps sound
frequency, not location, in the cochlea. Consequently, sound fre-
quency is topographically organized at each station of the central
auditory pathways (Fig. 1a, left). While the auditory system com-
putes sound location internally without inheriting it from the
sense organ, intriguingly, such maps have been observed in
both the superior colliculus (SC) and inferior colliculus (IC,
Fig. 1a, right). The first auditory spatial map was discovered
nearly half a century ago in the barn owl’s mesencephalicus later-
alis and pars dorsalis (MLd, a homolog of the mammalian IC;
Knudsen and Konishi, 1978) and subsequently confirmed in
the mammalian SC (see review by King, 2004) and IC (Aitkin
et al., 1985; Binns et al., 1992, 1995; Schnupp and King, 1997).
Additionally, spatial cues are also mapped onto the SC (Wise
and Irvine, 1983, 1985; Hirsch et al., 1985; Ito et al., 2020) and
IC (Aitkin et al., 1985; Wenstrup et al., 1985, 1986; Irvine and
Gago, 1990). The fine-scale architecture of auditory spatial or
spatial cues in the colliculi, however, remains unknown due to
the limited spatial resolution of electrophysiological recordings
(Fig. 1b).

In mammalian colliculi, the auditory spatial map in the IC
appears less organized than the multisensory audiovisual map
in the SC (Schnupp and King, 1997). Notably, no spatial or spa-
tial cue maps have been identified in the auditory cortex to date
(see review byMiddlebrooks, 2021). Given this context, how does
the auditory system decode sound location based on a roughmap
or even in the absence of a map? Two main decoders have been
proposed (van der Heijden et al., 2019). The opponent channel
decoder averages responses from two channels of neurons, either
from the opposite sides (contralateral and ipsilateral) or from the
same side of the brain, that prefer either contralateral or ipsilat-
eral sound locations and decodes sound locations based on the
difference between the two channels’ averaged responses
(McAlpine et al., 2001; Groh et al., 2003; Stecker et al., 2005;
Lesica et al., 2010; Młynarski, 2015; Derey et al., 2016; Ortiz-
Rios et al., 2017; Panniello et al., 2018). In contrast, the popula-
tion pattern decoder predicts sound locations based on the tun-
ing of each neuron (Miller and Recanzone, 2009; Day and
Delgutte, 2013, 2016; Goodman et al., 2013; Belliveau et al.,
2014; van der Heijden et al., 2018; Wood et al., 2019).
However, the decoder performance for the excitatory and inhib-
itory neurons is still unknown in any brain area.

In this study, we began by using two-photon calcium imaging
to probe the fine local structure of spatial cue, the interaural level
difference (ILD), in the dorsal IC of awake mice. Notably, the
dorsal IC is the only collicular region that both processes audi-
tory spatial information and is feasible for optical imaging.
Following this, we examined the spatial decoding strategies and
encoding properties in both excitatory and inhibitory neurons.
Subsequently, we constructed a model and varied the number
and strength of presynaptic inhibitory inputs, aiming to explain
the distinct encoding properties of inhibitory neurons. Lastly, we
validated our computational model using monaural (contralat-
eral and ipsilateral) and binaural (diotic) sound stimuli. To the
best of our knowledge, this is the first study to compare multiple
spatial decoding strategies—space map, opponent channel, and

population pattern—in a single animal species or brain region,
and it represents the first exploration of auditory spatial coding
in inhibitory neurons within the colliculi or cortices.

Materials and Methods
Animals and virus injection. All experiments were approved and

conducted in conformity with the Tsinghua University Animal Care
and Use Committee. For all experiments, 10 Vglut2-Cre (JAX: 016963)
and 9 VGAT-Cre (JAX: 016962) adult (2–3 month) mice of both sexes
were used. The mice were group housed with a reversed light cycle
(12 h), and all the awake experiments were performed during the dark
period (12 h).

The mice were intraperitoneally anesthetized with 40 mg/kg pento-
barbital. Three alternative washes of betadine and 70% (vol/vol) alcohol
were applied to the head skin to prevent inflammation. The skin over the
IC was cut by sterile scissors and forceps, after which the animals were
mounted to a stereotaxic holder, and a part of the occipital bone was
thinned ∼1 mm in diameter with a 0.5 mm drill bit. The center of the
thinned skull was ∼0.5 mm from the midline. When the boundary of
the IC could be clearly identified from the transverse sinus, cerebellum,
and superior colliculus, we stopped the drilling and used a 26-gauge nee-
dle to peel off a thinned skull at the desired location for virus injection.
AAV2/1.Syn.Flex.GCaMP6f (UPenn) was diluted 1:1–5 in saline. We
injected virus only into the superficial layer of the IC cortex. We used
the microsyringe pump (Micro4, WPI) and corresponding glass pipette
to inject the virus. In order to penetrate the dura without significant
pushing down the brain, we pulled, cut, and ground the pipettes to a
30 µm inner diameter and 45° inclination angle. After the virus injection,
we sealed the incised skins with cyanoacrylate glue.

The virus expression area barely exceeded ∼500 × 500 µm, and the
centroid was roughly 0.5 mm from the midline. To map the global orga-
nization of ILD uniformly, we have tried two strains of GCaMP trans-
genic mice. One was Thy1-GCaMP3 (JAX: 017893), and the other one
was Ai93 (JAX: 024103). The Ai93 was Cre and tTA dependent; there-
fore, three mouse lines were needed to express the GCaMP6f indicators.
We successfully bred five mice that expressed GCaMP3 in excitatory
neurons (Thy1 promoter) and three mice that expressed GCaMP6f in
excitatory (Vglut2-Cre) and inhibitory (VGAT-Cre) neurons. There
was a high level of GCaMP expression and strong fluorescence changes
only in the cerebral cortex, with almost no expression in the IC and SC.
Thus, we could only map the local instead of the global organization of
cell-type–specific ILD and frequency tunings.

Headcap and window implantation. We implanted the headcap and
window around 10 d after the virus injection surgery. The mouse was
anesthetized, and eye ointment, betadine, and 70% alcohol were applied
as previously described. A large area of skin that covered the dorsal cor-
tex and cerebellum was cut off, and the exposed periosteum was dried by
air and also removed by low-speed drilling. All the exposed skull was cov-
ered by a thin layer of cyanoacrylate glue and dental cement. One tung-
sten head bar was fixed∼2 mm rostral to the lambda point, and the other
tungsten head bar was fixed above the inclined slope of the cerebellum.
We thinned and removed the occipital bone over the IC, namely, the
medial 2/3 part of the exposed IC. The dura above the IC and the caudal
part of the SC were removed with a 25G needle. The dura around the
transverse sinus detached from the IC surface, and there was a large
amount of cerebrospinal fluid below the dura; thus, it was the safest
part to penetrate. After rupturing the dura, the remaining dura was
very easy to peel off with forceps. A tiny cover glass was selected from
the debris of standard 24 × 40 mm cover glass (thickness, 0.15 mm).
Finally, we applied a thin layer of cyanoacrylate glue to the surrounding
area of the cranial window. Mice recovered from anesthesia quickly and
did not show any abnormal behavior.

Closed-field sound stimuli. We generated all the acoustic stimuli with
custom software (LabVIEW, version 8.6) that controlled a data acquisi-
tion card (NI PCIe-6321; analog output sampling rate, 900 kS/s; resolu-
tion, 16 bits). The generated acoustic stimuli were connected to a BNC
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desktop mount terminal block (BNC-2110) and fed to a speaker driver
(ED1, Tucker-Davis Technologies). Two straight silicone tubes (ID
was 1/16′′, OD was 1/8′′, wall thickness was 1/32′′; 5233K51,
McMaster-Carr) of 7 cm length were coupled to two electrostatic speak-
ers (EC1, Tucker-Davis Technologies) along the interaural axis. We
placed the silicone tubes at the entrance of the mouse’s ears to deliver
dichotic sound stimuli. The silicone tubes were glued to the head bar
with cyanoacrylate glue in case of dropping. We calibrated the tube-
coupled speakers with a custom-made coupler and 1/4′′ prepolarized
free-field microphone (40BE, GRAS), amplifier (2610, Brüel & Kjær),
and calibration software and processor (SigCalRP and RZ6, Tucker-
Davis Technologies).

For the spatial sound stimuli, nine logarithmically spaced pure tones
ranging from 3 to 48 kHz (0.5-octave step) were presented at seven
different ILD levels randomly. We used the average binaural level
(ABL) paradigm, i.e., sound level changed in both ears, but the average
level was consistent. ABL of 55, 65, and 75 dB sound pressure levels
(SPL) were used. Most of the FOV was tested with 65 dB SPL ABL.
The sound level of the right/contralateral ear will increase from 50 to
80 dB at a 5 dB step, and the sound level of the left/ipsilateral ear will
decrease from 80 to 50 dB at a 5 dB step. Thus, ILD will change from
−30 to 30 dB at a 10 dB step. The sound duration was 50 ms. Each
stimulus was repeated 10 times with 1 s interstimulus interval (ISI).
Each session has a fixed sound level and required 630 s (9 tones ×
7 ILDs × 1 s ISI × 10 repeats). In addition to pure tone stimuli, broadband
noise (3–48 kHz) was also used for neural decoding analysis. The sound
duration was still 50 ms, and the ABL was 65 dB. Each session only
required 70 s (1 noise × 7 ILDs × 1 s ISI × 10 repeats).

For the binaural sound stimuli, 20 logarithmically spaced pure tones
ranging from 3 to 48 kHz (0.21-octave step) were presented to the con-
tralateral ear, ipsilateral ear, or both ears diotically (same SPL and fre-
quency). The sound duration was 50 ms (5 ms onset and 5 ms offset
ramps), and the sound intensity was 30, 50, and 70 dB SPL. Each stimu-
lus was repeated 10 times with a 1 s interstimulus interval (ISI). Each ses-
sion has a fixed sound level and required 600 s (20 tones × 3 modes × 1 s
ISI × 10 repeats).

Two-photon calcium imaging and acoustic noise. Images were
acquired with a custom-built two-photon microscope that was con-
trolled by open-source ScanImage (version 3.8). A 920 nm excitation
light for GCaMP6f imaging from mode-locked Ti:Sapphire laser (Mai
Tai eHP) was scanned by paired galvanometers (6215H, 3 mm silver
coated mirror) and guided through a water immersion objective
(XLPL25XWMP, 25×, 1.05 NA). The laser power was controlled with
the combination of a half-wave plate and Glan-Laser polarizer which
was frequently calibrated with a laser power meter (PM100D). Since
the imaging depth was <100 µm, the laser power was typically below
30 mW. Emitted fluorescence was collected with a laser block filter,
dichroic mirror (FF665-Di02), bandpass filter (FF01-527/70), and a pho-
tomultiplier tube (R9880). The above detection parts along with the pre-
amplifiers were enclosed within the commercial multiphoton detection
module (2PIMS-2000-40-20). Data acquisition and mirror scanning
were controlled by the NI PCI-6110 and BNC-2090A. The mouse was
head-fixed and placed on a 15 × 10 cm (diameter ×width) cylinder tread-
mill, which was modified from the wire grid treadmill used by pets. The
treadmill was connected to the central rod by two smooth and silent ball
bearings. The mouse locomotion was detected with a rotation decoder in
the central rod of the treadmill.

There are three background noises: femtosecond laser, scanners, and
treadmill. Ambient laser noise was kept low by keeping the laser’s power
supply and cooling unit in a separate room and enclosed within a
sound-attenuation chamber. Compared with high-speed resonant scan-
ners which generated 8 kHz noise, the low-speed galvanometer scanners
we used only generated low-frequency noise (Issa et al., 2014). When the
mouse was running, no noise could be heard in the experimental room
due to our specially designed treadmill. We used our speaker calibration
microphone to measure background noise when the laser was turned on,
the largest FOV was applied (scanners become nosier when driving volt-
age increases), and the mouse was running. Owing to the internal

thermal noise, this 1/4′′ microphone only works for sound levels above
30 dB SPL. We compared the noise level between the noisiest situation
with the quietest situation when the laser and scanners were turned off
and the mouse was removed. We found that the noise level under the
two situations was similar and could not be identified from the baseline
noise level. Furthermore, we put this free-field microphone above mouse
ears instead of within the ear canal which should be quieter during the
experiment. The lowest sound level we used for both binaural and spatial
experiments was 30 dB SPL; therefore, the background noise with no
more than 30 dB under free-field measurement will unlikely affect our
findings.

The image acquisition was triggered by the rising edge of acoustic
stimuli. The acquisition speed was 5 Hz, and the resolution was
256 × 200pixels. The largest field of view (FOV) of the microscope was
320 × 320 µm. Although more neurons could be collected when using a
larger FOV, the pixels assigned to each neuron, and therefore the
signal-to-noise ratio, were lower than with a smaller FOV. In this study,
the FOV size was dynamically adjusted depending on the number of
available neurons and blank area. We used a low magnification air objec-
tive (PLN10X, 10×, 0.25 NA) to determine the position of FOV relative to
the midline, transverse sinus, and sigmoid sinus. We then moved the IC
region with strong fluorescence to the center of the current FOV. We
used a 1 ml syringe to add warm saline before changing to the 25× objec-
tive. When the objective touched the small droplet, strong fluorescence
and many neurons with clear morphology could be observed from the
binocular.

Image data processing. For the calcium imaging data, lateral (x–y)
motion induced by locomotion was corrected with TurboReg, a plugin
of ImageJ (1.48), which was registered (mode, rigid body) to the frames
without any motion effect. Elliptical regions of interest were determined
manually in MATLAB (MathWorks), and the fluorescence signals of
somas were extracted using the custom software modified by Feinberg
and Meister (2015). ROIs were selected by visually inspecting the image
stack based on neural morphology and intensity change. ROIs with filled
nuclei were excluded. Only those ROIs significantly driven by sound or
tuned to specific stimuli were used for later data analysis. We extracted
the neuropil signals which could potentially bias the auditory tunings
of somas. The true fluorescence signals were f=R−r× n, where R was
the raw fluorescence signal, n was the contamination signal (10 µm
ring around the somas), and r was the contamination factor. To deter-
mine the value of r, we identified the horizontal blood vessel (i.e., f= 0)
and recorded the raw signal R and contamination signal n, so the r
was equal to the ratio of R and n, which ranged between 0.5 and 0.7 in
different FOVs. The r values in the Vglut2-Cre and VGAT-Cre mice
were similar. The baseline fluorescence f0 was estimated using the itera-
tion procedure described by Issa et al. (2014). Briefly, we estimated the
mean and standard deviation of each ROI’s spike event, then removed
any data points that were more than 1.5 standard deviations, and
repeated the above procedure until no further deviated points were
found. The ROI traces were normalized with f0, namely, ( f−f0)/f0.
Lastly, the nonnegative deconvolution method (Vogelstein et al., 2010)
was used to estimate the spike events (arbitrary units).

Experimental design and statistical analysis. Our previous studies
showed that the response properties of dorsal IC neurons to spectral
and temporal sound stimuli were highly dependent on the locomotion
of the animals. In this study, we also acquired the locomotion in most
of the sessions and pupil video in some sessions. We did not compare
the ILD tunings under different behavioral or around states partially
because each stimulus only has 10 repeats instead of 30 repeats in previ-
ous studies (Chen and Song, 2019). In addition, our FOVs span various
depths, but each FOV usually has a different horizontal position.
Therefore, we did not examine whether neurons at different depths
have different coding properties.

The imaging acquisition rate used in studies was five frames per sec-
ond, and the resolution of the y-axis was 200 pixels, which equaled
200 ms per image and 1 ms per horizontal line. Thus, when considering
the delays caused by line-by-line scanning and calcium indicator
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(>50 ms), sound-induced responses will be observed in both the first and
second frames. Spike events of the first and second frames will be aver-
aged as sound-evoked responses, whereas spike events of the third to fifth
frames will be averaged as spontaneous responses.

In Figure 2, for cluster analysis, ROIs were included if their ILD or
frequency responses to either contralateral, diotic, or ipsilateral stimuli
were significantly different from each other (one-way ANOVA, α=0.01).
For the ILD stimuli using pure tone, we chose the tone frequency that
evoked the largest responses [i.e., best frequency (BF)]. Therefore, only
70 out of 630 stimuli were chosen. FOV that had <10 significant ROIs
were excluded. In Figure 3, for two decoders, ROIs were included if their
ILD responses using the broadband noise or at the best frequency were
significantly different from each other (one-way ANOVA, α= 0.01).
This resulted in 268 excitatory and 211 inhibitory neurons at the best fre-
quency at 65 dB ABL. In Figure 4 for encoding, we tested two α values
(0.01 and 0.05) and obtained similar results. We only showed the results
with larger α values which resulted in 460 excitatory and 312 inhibitory
neurons at the best frequency at 65 dB ABL. In Figure 5 for comparing
ILD and frequency selectivity, ROIs were included if their ILD and fre-
quency responses (not the 20 frequencies in the binaural stimuli) were
both significantly different from each other (one-way ANOVA, α=0.05).
This resulted in 307 excitatory and 194 inhibitory neurons at 65 dB
ABL. In Figure 6 for binaural gain analysis, our interest was to compare
the response amplitudes that were evoked by the contralateral, diotic,
and ipsilateral stimuli instead of their frequency tunings. Therefore,
ROIs were included if their sound-evoked responses were significantly
different from the spontaneous responses (unpaired t test, α= 0.01).
Furthermore, averaged sound-evoked responses should be larger than
averaged spontaneous responses. ROIs that had nonsignificant responses
relative to the spontaneous responses or were inhibited instead of being
driven by the sound stimuli were not included in this analysis. This
resulted in 381 excitatory and 171 inhibitory neurons at 70 dB SPL.
FOV that had <10 significant ROIs were excluded from the cluster anal-
ysis. Gains of dichotic to contralateral or ipsilateral were calculated based
on the ratio of their corresponding maximum responses. The aural dom-
inance index (ADI) was calculated based on the maximum responses of
contralateral tuning minus the maximum responses of ipsilateral tuning
then divided by the summed responses (Xiong et al., 2013). The cluster
analysis of binaural gain was the same as the ILD and frequency analysis
and was detailed in the next section.

We used MATLAB 2022a for statistical analyses. We used the
“meanEffectSize” function (default parameters, α=0.05, NumBootstraps:
1000) to compute the effect size between excitatory and inhibitory neurons.
We used the “gardnerAltmanPlot” function (Effect=“mediandiff”) to plot
the effect size.

Spatial organization of ILD and frequency encodings. We tested if
neurons that were located proximally had more similar preferences for
ILD or frequency compared with neurons located further apart. To quan-
tify the similarity of ILD or frequency tunings between two neurons, we
used two metrics. One metric was the correlation coefficients between
their mean responses at seven ILDs or 20 frequencies (−1 to 1), and
the other metric was the difference between the best ILD (0–60 dB)
and frequency (0–4 octave). Weighted ILD, also known as the center
of gravity (CoG) of ILD tuning, was used only in Figure 2a. It was the
product of seven ILD values and their corresponding responses then
divided by their summed responses (Panniello et al., 2018). Euclidean
distance between paired neurons was calculated using the centroid of
two selected ROIs.

To quantify the organization of tuning similarity, we fitted the pair-
wise ILD or frequency tuning curve correlation coefficients against
the pairwise Euclidean distance. We got the significance, square root
of explained variance, and slope of the line of best fit from the curve
fitting. To quantify the local organization of tuning similarity, we used
a bootstrapping method to test if neurons that were less than a specific
distance were more similar than neurons that were further apart than
a specific distance (Panniello et al., 2018). We used the correlation
coefficients to quantify the similarity and choose nine equally spaced

distance boundaries (25, 50…, 200, 225 µm). We calculated the ILD or
frequency similarity for all pairs of neurons that were separated by
nine distances. We then calculated the ILD or frequency similarity of
the same number of randomly chosen pairs of neurons that were located
farther than those nine distances (e.g., >50 µm). The mean ILD or
frequency similarity distances from each of 1,000 of such randomly
chosen samples of neuronal pairs served as our bootstrapped estimate
of the ILD or frequency similarity of distant neurons. If the average
ILD or frequency similarity distance for the local pairs of neurons
was below the fifth percentile (α = 0.05) of the bootstrapped values for
distant pairs, then this FOV has a significant spatial clustering of ILD
or tone frequency.

Three ILD decoders. In this study, we have tested three main sound
location decoders: space map, opponent channel (two-channel), and
population pattern (distributed or labeled line). As mentioned earlier,
there were seven ILD responses, and each of them had 10 repetitions.

We implemented our space map decoder following one previous
study that decode the location of visual stimuli from the neural responses
(also calcium imaging) in the optic tectum (a homolog of themammalian
SC) of zebrafish (Avitan et al., 2016). This space map decoder includes
five steps: (1) Build a population vector from all neurons’ XY locations
and responses to one ILD within one field of view (FOV).
R = (r1, r2, . . . , rN ), where N is the number of neurons in one
FOV. There are 70 (seven ILDs by 10 repetitions) population vectors
in each FOV. (2) Calculate the center of mass (CoM) of each population
vector. CoM = ∑N

i=1 ri xyi
��

/
∑N

i=1 ri, where ri is the response of cell i and
xyi
�� is the spatial coordinate of neuron i. (3) Leave one test population
vector out, and calculate the trial-averaged CoM for each ILD in the
remaining 69 training population vectors. (4) Calculate the Euclidian
distance of the test population vector from each of the seven
trial-averaged CoM. (5) Assign the predicted ILD to the test population
vector as the ILD stimulus that has the closest trial-averaged CoM.

Unlike the space map decoder which requires distance information
but does not need repetition-based responses, the opponent channel
and population pattern decoders need diverse tunings from each repeti-
tion. Each neuron has seven ILDs, and each ILD has 10 repetitions. We
randomly selected one repetition (or five repetitions), and we estimated
the mean and standard deviation of the same neuron in response to the
same stimulus based on the remaining nine repetitions (or five repeti-
tions). We assumed the distribution of responses was Gaussian, and
we truncated the distribution at zero (Belliveau et al., 2014). During
each decoding trial (at least 200 trials in total), a fixed number of neurons
were randomly selected from the population. The number of selected
neurons increased gradually until reached the size of the neural
population.

For the opponent channel decoder, we (1) summed the responses of
three ipsilateral ILDs and three contralateral ILDs of each neuron; (2)
divided the neuron into ipsilateral or contralateral channels based on
the difference between two summed responses; (3) selected at least one
neuron from the ipsilateral channel and contralateral channel; (4) aver-
aged the responses of single or multiple neurons in each channel to get
the mean response; and (5) decoded the stimulus (s) based on the largest
probability (p). For a single neuron, the probability p given that a
response r was evoked by an ILD stimulus s was decided by Bayes’ rule
as follows:

p (s|r) = (p(r|s)p(s))/p(r).

where the probability of the presented stimuli p(s) was 1/7 and p(r) does
not affect the selection of the stimulus that maximizes the posterior prob-
ability. Thus, p (s|r) was proportional to p(r|s), i.e., one of the seven sti-
muli that have the highest probability to evoke this response. For
multiple neurons, the joint probability for the total responses in both
channels given the stimulus was computed as the product of probability
within each channel:

p(ripsilateral, rcontralateral|s) = p(ripsilateral|s)× p(rcontralateral|s).
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The probability product of multiple neurons equaled the sum of logarith-
mic probability:

∏n

i=1

p(ripsilateral|s)×
∏m

j=1

p(rcontralateral|s)

=
∑n

i=1

log( p(ripsilateral|s))+
∑m

j=1

log( p(rcontralateral|s)).

The stimulus which has the largest probability was chosen and will be
compared with the real stimulus. The chance level was 14.3%. At each
repetition of a fixed number of neurons, if six out of seven stimuli have
been successfully predicted, the correct percentage should be 85.7%. In
addition to choosing only one repetition from 10 repetitions, we have
also chosen 5 repetitions from 10 repetitions. This strategery could
substantially increase the diversity of test repetitions (from 10 to
252) but reduce the estimation of neural tunings (averaged 5 instead
of 9 repetitions). We found that choosing one or five repetitions
obtained similar decoding accuracy but choosing five repetitions
reduced the standard deviations of both types of neurons. Since the
noise correlation between simultaneously recorded neurons may
affect the decoding performance, we also shuffled and did not
shuffle the 10 repetitions’ responses of each neuron randomly before
running the decoding algorithm. The performance was similar in
two situations.

For the population pattern decoder, the excitatory and inhibitory
neurons were not divided into two channels. Occasionally, the
selected neurons may all come from neurons that preferred the contra-
lateral stimuli. It was a simplified version of the opponent channel
decoder:

p(rn|s) =
∏n

i=1

p(r|s) =
∑n

i=1

log(p(r|s)).

Previous studies have used Bayesian (Fischer and Peña, 2011;
Belliveau et al., 2014; Wood et al., 2019) and maximum likelihood
estimation (MLE; Miller and Recanzone, 2009; Day and Delgutte,
2013, 2016) decoding methods. The key difference between them is
that the Bayesian method assumes Gaussian distributions for
neural responses, while the MLE method assumes Poisson distribu-
tions. We found that Gaussian distributions are more suitable after
looking into the distributions of our calcium imaging data.
Therefore, we only showed the results obtained from the Bayesian
decoding method.

Computational model of tuning selectivity. We used a model neuron
to explain the presynaptic mechanism of ILD and tone frequency selec-
tivity and reproduce the positively correlated ILD and tone frequency
selectivity in the inhibitory neurons. Codes are available at https://
github.com/ccg1988/IC_ILD_Journal_of_Neuroscience_2024.

The membrane potentialVt+1 of a leaky integrate-and-fire (LIF) neu-
ron at the time step Dt was:

Vt+1 = −Dt
C
[get (Vt − Ee)+ git (Vt − Ei)+ grest(Vt − Erest)]+ Vt (1)

get and git was the excitatory and inhibitory synaptic conductance
(Eqs. 2, 3). C, Ee, Ei, Erest, and grest were the membrane capacitance
(0.25 × 10−9 F), excitatory reversal potential (0 V), inhibitory reversal
potential (−0.07 V), resting potential (−0.065 V), and leak conduc-
tance (25 × 10−9 S), respectively. Those values were obtained from
the in vivo whole-cell recording in the auditory cortex of rats and
the inferior colliculus of mice (Wehr and Zador, 2003; Xiong et al.,
2013). Action potential was evoked when the Vt+1 reached the spike
threshold Vspike. Vt+1 was reset to Erest after the action potential.
Vspike is the sum of spike threshold l Vth (0.02 V) above the resting
potential Erest. The time step was 0.1 ms.

Excitatory conductance get and inhibitory conductance git were as
follows:

get = rNeDte
(Dt/t) + scvn (2)

git = NiDte
(Dt/t) + scvn (3)

The temporal delay (2 ms) between excitatory and inhibitory inputs
was fixed in our models (not shown in the above functions). The time
constant t was 5 ms, and conduction noise scvn was added to generate
the spontaneous firing (−2.5 × 10−8 S to +2.5 × 10−8 S). All the excitatory
inputs have the same tuning function, and all the inhibitory inputs have
the same tuning function, but the excitatory inputs have a different tuning
function compared with the inhibitory inputs. For the LogLogistic prob-
ability density function (pdf) used for 30 dB SPL ILD, the mean and stan-
dard deviation are 3.5 and 0.75 for excitatory neurons and 1.5 and 1 for
inhibitory neurons, respectively. For the Gaussian pdf used for frequency
tuning and ILD tuning that does not prefer 30 dB SPL, themean and stan-
dard deviation are 1.5 and 0.5 for excitatory neurons and 3.5 and 1 for
inhibitory neurons, respectively.

To modulate the number of inhibitory inputs, the inhibitory and
excitatory inputs have the same strength, so the inhibitory-to-excitatory
ratio r equal to one, and the number of excitatory inputs Ne and inhib-
itory input Ni was modified or “jittered.” To modulate the strength of
inhibitory inputs, the inhibitory and excitatory inputs have different
strengths, so the inhibitory-to-excitatory ratio r was modified or “jit-
tered,” and the number of excitatory inputs Ne and inhibitory input Ni

was fixed.

Results
Two-photon calcium imaging of spatial cues and binaural
integration in the dorsal IC of awake mice
Sound source localization is based on interaural timing difference
(ITD), interaural level difference (ILD), and direction-dependent
filtering by the trunk, head, and pinnae (spectral cues). Due to
mice’s small head size and lack of low-frequency hearing, ILD
is the primary spatial cue for localizing sound locations in the
horizontal plane, i.e., azimuthal localization (see review by
Grothe et al., 2010, and Yin et al., 2019; but see Day et al.,
2012; Ono et al., 2020; Ito et al., 2020). We presented pure tones
or broadband noises with an ILD of −30, −20, or −10 dB that
favored the ipsilateral ear, 0 dB that was equal between two
ears, and 10, 20, or 30 dB that favored the contralateral ear
(Fig. 1c, left). We injected the AAV-Flex-GCaMP6f virus into
the nonlemniscal dorsal IC of Vglut2- and VGAT-Cre transgenic
mice for targeting the excitatory and inhibitory neurons, respec-
tively (Fig. 1d). We imaged excitatory and inhibitory neurons
within the superficial layer (depth, <100 µm) in the awake,
head-fixed mice that running freely on a treadmill. Figure 1e
shows the fluorescent traces (top) and ILD tunings (bottom) of
one example of excitatory (left) and inhibitory (right) neurons.
We presented each stimulus 10 times at 55, 65, or 75 dB average
binaural levels (ABL). Since 55 or 75 dB ABL was not extensively
tested, we only showed the results using the 65 dB ABL stimuli.
We found that pure tone stimuli evoked stronger and more reli-
able responses than the broadband noise stimuli. Furthermore,
most previous studies measured each neuron’s ILD with its
best frequency (BF, Park et al., 2004; Orton et al., 2016;
Benichoux et al., 2017; but see Panniello et al., 2018).
Therefore, we quantified each neuron’s ILD preferences using
its responses at BF. This example excitatory neuron has a BF at
4.24 kHz and a best ILD at −10 dB that favors the ipsilateral
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sound location near the center. The example inhibitory neuron
has a BF at 6 kHz and a best ILD at 30 dB that favors far contra-
lateral sound location.

We also presented 20 different pure tones only in the left
ear (ipsilateral), only the right ear (contralateral), or two ears
simultaneously (diotic; Fig. 1c, right). Figure 1f shows the
fluorescent traces (top) and binaural tunings (bottom) of the
same example excitatory (left) and inhibitory (right) neurons.
We presented each stimulus 10 times at 30, 50, or 70 dB sound
pressure level (SPL). We only showed the results with 70 dB
SPL in this work as 30 and 50 dB SPL were not extensively tested
and over 80% of neurons were monotonic when tested with
three SPLs. This example excitatory neuron has almost the
same frequency tuning curves for the three conditions. The
stronger responses to diotic than contralateral stimuli and
clear responses to ipsilateral stimuli were consistent with its
ILD tunings (larger responses when ILD close to 0 dB). The
example inhibitory neuron has more strongly suppressed
responses to diotic stimuli than contralateral stimuli and almost
negligible responses to ipsilateral stimuli, which was also consis-
tent with its ILD tunings (smaller responses when ILD was
<10 dB).

In the following five sections, we present the (1) encoding
strategies based on pairwise physical distance in each field of
view (FOV; Fig. 2); (2) decoding strategies based on space map,
opponent channel, and population pattern decoders (Fig. 3);
(3) encoding properties (Fig. 4); (4) correlation of ILD against
tone frequency selectivity and computational model (Fig. 5);
and (5) binaural integration and its relationship with pairwise
distance of neurons (Fig. 6).

Neighboring excitatory neurons have similar ILD tuning
We first leveraged the cellular resolution ability of two-photon
calcium imaging and examined whether neighboring neurons
have similar ILD preferences. Figure 2a shows the weighted
ILDs in two example FOVs for the excitatory (left) and inhibitory
(right) neurons. The excitatory neurons that prefer similar ILDs
(green dots) were in general far away from neurons that prefer
the other ILDs (blue dots). In contrast, the inhibitory neurons
that prefer far ipsilateral ILD (violet dot) were close to two inhib-
itory neurons that prefer far contralateral ILDs (yellow dots). To
quantify the similarity of ILD preference between two neurons,
we used two metrics. One metric was based on the correlation
coefficients between their averaged responses at seven ILDs,

Figure 1. Experimental paradigm and example tuning curves. a, Left panel, Tone frequency is topographically from dorsal to ventral direction in the central inferior colliculus (IC; Schnupp et
al., 2015, their Fig. 3) and from medial to lateral direction in the cortical IC (Wong and Borst, 2019, their Fig. 6). Right panel, Cues for azimuth are topographical from dorsal to ventral direction in
the IC (Wenstrup et al., 1985, their Fig. 2, and Wenstrup et al., 1986, their Figs. 7, 8) and from rostral to caudal direction in the cortical IC (Binns et al., 1992, 1995, and Schnupp and King, 1997,
their Fig. 15) and central IC (Irvine and Gago, 1990, their Fig. 13, and Aitkin et al., 1985) and deep layer of superior colliculus (SC; Ito et al., 2020, their Fig. 2). b, Neighboring neurons may share
(left) or do not share (right) cues or azimuth preference. Different shape indicates different stimulus preferences. c, Left panel, Schematic of interaural level differences (ILD) stimuli in the awake
mouse. Negative ILDs indicated the sound level of the ipsilateral ear was stronger than the contralateral ear. Middle panel, The IC and SC were not covered by the cortex, and neurons from the
superficial IC were imaged using a two-photon microscope. Right panel, Schematic of binaural stimuli. Pure tones are presented only in the left ear (ipsilateral), right ear (contralateral), or two
ears simultaneously (diotic). d, Example field of view (FOV) from Vglut2- (left) and VGAT-Cre (right) mice where only the excitatory and inhibitory neurons expressed the GCaMP6. R, rostral; C,
caudal; L, lateral; M, medial. Scale bar, 25 µm. e, Top panels, Normalized ΔF/F of one example excitatory and inhibitory neuron (color circles in d). Bottom panels, ILD tuning curves of these same
example neurons under nine different pure tone frequencies. Error bars represent the standard error of the mean. f, Top panels, Normalized ΔF/F of the same example neurons is shown in e.
Bottom panels, Corresponding diotic, contralateral, and ipsilateral tuning curves.

6 • J. Neurosci., October 23, 2024 • 44(43):e0159242024 Chen and Song • Neuron Type–Specific Neural Decoding



with 1 indicating fully correlated and −1 indicating fully anticor-
related. The other metric was based on the difference between the
best ILD, with 0 dB indicating the same best ILDs and 60 dB indi-
cating −30 and 30 dB ILDs. The pairwise ILD tuning correlation
coefficients were negatively and significantly correlated with
pairwise distance in the same example FOV of excitatory neurons
(Fig. 2b, left). The inhibitory neurons’ ILD tuning correlation
coefficients were not affected by the pairwise distance (Fig. 2b,
right). For the examined FOVs, we observed negatively and sign-
ificantly correlated pairwise tuning correlation coefficients versus
distance in 7/19 FOVs for excitatory neurons but none for the
inhibitory neurons (Fig. 2c, top). We also observed positively
and significantly correlated best ILD difference versus distance
in 7/18 FOVs for excitatory neurons but none for the inhibitory
neurons (Fig. 2c, bottom). Together, our two metrics both
showed that the neighboring excitatory neurons have more
similar ILD preferences than the excitatory neurons that were
far away.

Previous two-photon calcium imaging studies found that
nearby neurons, either excitatory, inhibitory, or unclassified, all

have heterogeneous but in general more similar BFs than neu-
rons that were far away (Ito et al., 2014; Barnstedt et al., 2015;
Wong and Borst, 2019; Ibrahim et al., 2023). If our two metrics
do reflect the tuning similarity between two neurons, we should
expect to observe a negatively correlated first metric and a posi-
tively correlated second metric between nine tone frequencies
(instead of seven ILDs) and distance. And they should exist in
both excitatory and inhibitory neurons. We indeed observed
those two trends in our experimental findings (Fig. 2d), suggest-
ing that neighboring excitatory neurons have similar ILD and
tone frequency preferences than the excitatory neurons that
were far away whereas neighboring inhibitory neurons were
only similar in tone frequency but not ILD.

Although our previous analysis compared the tuning prefer-
ences between neurons that were nearby versus far away, the
boundary between “nearby” and “far away” has not been defined.
Therefore, we used a bootstrapping method to test if neurons that
were less than a specific distance were more similar to neurons
that were further apart than a specific distance. We used the
first metric (tuning correlation coefficients) to quantify the

Figure 2. Neighboring excitatory neurons have similar ILD preferences. a, Weighted ILD in one example field of view (FOV) for the excitatory (left, 256 × 256 µm) and inhibitory (right, 160 ×
160 µm) neurons. The direction of FOVs is the same as in Figure 1d. b, Pairwise tuning correlation (y-axis) versus distance (x-axis) in the same example FOV for excitatory (left) and inhibitory
(right) neurons. The lines indicate the best linear fit to the data. c, Top panels, Best linear fitted lines of tuning correlation versus distance in all FOVs for the excitatory (left) and inhibitory (right)
neurons. The gray lines indicate the pairwise tuning correlation and distance are not correlated (p< 0.05). Bottom panels, Best linear fitted lines of best ILD difference versus distance in all FOVs.
d, Similar to c but for tone frequency instead of ILD. e, Proportion of FOV that have clusters at different pairwise distances in all FOVs for the excitatory (left) and inhibitory (right) neurons. For
example, when the paired neuron distance is ≤125 µm, clustered and random ILD tunings of excitatory neurons were found in 11 and 7 FOVs, respectively (proportion, 61%). In contrast, ILD
tunings of inhibitory neurons were randomly distributed in all nine FOVs (proportion, 0%). Notice that FOV that had <10 significantly tuned neurons were excluded (see Materials and Methods).
f, Similar to e but for tone frequency instead of ILD.
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similarity and choose nine equally spaced distance boundaries
(25–225 µm). We measured the proportion of FOV (i.e., number
of FOV with clusters divided by the total number of FOV) that
did or did not have a cluster, i.e., more similar tuning preferences
with pairwise distance inside boundaries than those outside. We
found that excitatory neurons formed clusters when the pairwise
distance was larger than 25 µm and had the highest proportion of
clustered FOV when the pairwise distance was 125 µm (Fig. 2e,
left, 62% FOV). In contrast, we only observed a very low propor-
tion of clustered FOV for the inhibitory neurons at farther dis-
tances (Fig. 2e, right). Compared to ILD clusters, over 60% of
excitatory and 40% of inhibitory neurons have tone frequency
clusters across all the distance boundaries (Fig. 2f). Since a glob-
ally organized tone frequency organization (i.e., tonotopy) exists
in both excitatory and inhibitory neurons, it’s expected to find
that nearby excitatory and inhibitory neurons were always
more similar than neurons that were far away.

In summary, our data reveal spatially clustered excitatory
neurons but not inhibitory neurons that encode similar ILD.

Three decoders have different performances for the responses
of excitatory and inhibitory neurons
We wondered whether spatial information contained in the pop-
ulation neural responses contributes to the neural decoding of
ILD. To the best of our knowledge, no previous imaging studies
have leveraged spatial information for decoding ILD (Panniello
et al., 2018) or sound locations (Derey et al., 2016; van der
Heijden et al., 2018). In our space map decoder, we built popula-
tion vectors from all neurons’ responses to each stimulus in the
same FOV. We then used a leave-one-out cross-validation
approach, dividing the set of population vectors into training
and test sets. We calculated the center of mass (CoM) of each
population vector and averaged the CoM of each ILD in the
training sets (Fig. 3a). To test the decoder for a given population

Figure 3. Three decoders have different performances for the responses of excitatory and inhibitory neurons. a–c, Space map decoder for one example FOV (the same as Fig. 2a) and accuracies
for all FOVs. a, CoM (color dots) of 70 (seven ILDs with 10 repetitions) population vector and mean CoM (color diamonds) averaged over 10 repetitions. b, Decoded ILDs (color circles) that
encircled the ground truth ILDs (color dots). In this FOV, the decoding performance is 30%. c, Gardner–Altman plot for two-sample (excitatory vs inhibitory) effect size. FOVs with less than five
ILD-tuned neurons are excluded. The p-value is 0.0019, the effect size is 6.26%, and the 95% confidence interval ranges from 2.44 to 10.07%. d, Schematic of the opponent channel decoder. The
population of neurons was divided into two groups: preferred ipsilateral sound (blue circle) and preferred contralateral sound (red circle). In this example, five neurons will be chosen randomly.
During each trial, at least one neuron (black-filled dot) was chosen from each group or channel. For example, in the third trial, the responses of two neurons that preferred ipsilateral ILD and
three neurons that preferred contralateral ILD were averaged separately (thick blue and red curves, respectively). The tuning curve difference (thick brown curve, contralateral minus ipsilateral
responses) was used to predict the most likely ILDs. e, Performance of opponent channel decoder versus the number of neurons. Only those neurons that were significantly tuned to the ILD
stimuli (ANOVA, p< 0.01; orange, 268 excitatory neurons; green, 211 inhibitory neurons) were included. From the single repetition response of multiple neurons to the same stimulus, we
calculated the probability of each stimulus that could evoke those responses using Bayes’ rule (see Materials and Methods). If the stimulus with the highest probability was the real stimulus, then
this stimulus was predicted correctly. The y-axis showed the percent of correctly predicted stimulus (0/7, 1/7, 2/7,…, 7/7; the dashed line was 1/7 chance level). Among each population size,
200 different combinations were chosen from the neural population. Thus, the thick color lines and error bars indicated the mean and standard error of performance. f, Schematic of population
pattern decoder. Compared with the opponent channel decoder, it is not required to choose at least one neuron from two channels. Thus, the neural population was not grouped, and every
neuron has the same probability to be chosen. Five neural responses from five different neurons (two thin blue and three thin red curves) were used to predict the most likely ILDs.
g, Performance of population pattern decoder versus number of neurons.
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vector, we calculated its CoM and classified it according to the
ILD having the closest average CoM (Fig. 3b). The accuracy of
the space map decoder is higher in the excitatory than inhibitory
neurons (26% vs 21%, Fig. 3c). This is consistent with the spa-
tially clustered ILD tunings observed exclusively in excitatory
neurons.

We next examined the other two decoding strategies that were
independent of pairwise distance: opponent channel and popula-
tion pattern (Fig. 3d–g). In the opponent channel decoder, we
divided neurons into two channels that either preferred ipsilat-
eral or contralateral ILD stimuli (Fig. 3d). During each decoding
trail, we randomly chose at least one neuron from each channel.
The number of successfully decoded stimuli divided by total
stimuli (i.e., seven ILDs) was the percent of correctly decoded
stimuli of a single trial with a chance level of 14% (1/7). At
each fixed number of neurons, we ran two hundred decoding
trials. Consistent with previous studies (Belliveau et al., 2014;
Wood et al., 2019), we found that the percent of correctly
decoded stimuli (i.e., accuracy) increased monotonically with
increasing neuron number (Fig. 3e). We found that the inhibitory
neurons have higher decoding accuracy (73% vs 60%) and lower
decoding variability (7% vs 11% SD) than the excitatory neurons,
suggesting that inhibitory neurons outperform excitatory neurons
in the opponent channel decoder. In the population pattern deco-
der, there were no restrictions when choosing neurons from the
population (Fig. 3f). Surprisingly, excitatory neurons outperformed
the inhibitory neurons with a higher decoding accuracy (Fig. 3g,
86% vs 70%) and a lower decoding variability (10% vs 17% SD).

A comparison of the two decoders revealed that the inhibitory
neurons have a much lower decoding variability under the

opponent channel decoder than the population pattern decoder
(7% vs 17% SD). On the other hand, the excitatory neurons
have a higher decoding accuracy under the population pattern
decoder than the opponent channel decoder (86% vs 60%).
Together, findings from excitatory neurons, which represent
∼80% of neurons in the IC (Beebe et al., 2016; Silveira et al.,
2020), were consistent with previous studies that showed the
best decoding performance in the population pattern decoder
(Day and Delgutte, 2013; Goodman et al., 2013; Belliveau et al.,
2014; Wood et al., 2019). However, the population pattern deco-
der was not the optimal decoder for the inhibitory neurons.

In summary, our data suggest that sound location could be
better decoded from the excitatory neurons using either space
map decoder or population pattern decoder and from inhibitory
neurons using opponent channel decoder.

Excitatory neurons have heterogeneous ILD tuning and
inhibitory neurons have reliable and selective ILD tuning
We sought to understand why excitatory and inhibitory neurons
support a hybrid spatial decoding strategy. To this end, we com-
pared their ILD encoding properties. Figure 4a shows the tuning
curves of excitatory and inhibitory neurons across FOVs. It was
obvious that more excitatory neurons were tuned to ILD that
were near the center (i.e., 0 dB ILD). In contrast, more inhibitory
neurons preferred ILD that were far from the center. For exam-
ple, there were 38% excitatory neurons but only 18% inhibitory
neurons that preferred ILD between −10 and 10 dB, and there
were 56% inhibitory neurons but only 38% excitatory neurons
that preferred 30 dB ILD. Therefore, the higher proportion of
inhibitory neurons preferring off-center ILDs could reduce

Figure 4. Excitatory neurons have heterogeneous ILD tuning and inhibitory neurons have reliable and selective ILD tuning. a, The ILD tuning curves for significantly tuned (ANOVA, p< 0.05)
excitatory (left) and inhibitory (right) neurons. Each row shows the ILD tuning curve for one neuron. All tuning curves were normalized to have the same maximum and minimum for plotting.
Neurons were sorted by best ILD. b, Left panel, Peak normalized ILD tuning curve of example neuron (thin line, individual repetition; thick line, averaged cross 10 repetitions; gray patch, response
area). The responses at seven ILDs are as follows: 0.0000, 0.0368, 0.2387, 0.5725, 0.8091, 1.0000, and 0.8716. The summed responses total 3.5287, which corresponds to a 30 dB tuning area.
Right panel, Fitted ILD tuning curve of example neuron (dot, averaged response to each ILD; solid curve, fitted ILD curve; dashed line, half-peak threshold). The fitted curve has a peak response
slightly <1 (0.88 in this example). We use the intersection of the half-peak threshold on the y-axis of the fitted curve to determine the ILD half-peak value, which corresponds to the x-axis value
of the intersected curve. c, Top, Tuning reliability. The median is 0.21 for excitatory (orange line) and 0.26 for inhibitory neurons (green line). The effect size is −0.061, and the 95% confidence
interval is−0.088 and −0.034. Middle, Response area. The median is 26.5 dB for excitatory neurons and 23.7 dB for inhibitory neurons. The effect size is 0.054, and the 95% confidence interval
is 0.039 and 0.068. Bottom, ILD half-peak value. The median is 11.78 dB for excitatory and 15.51 dB for inhibitory neurons. The effect size is −4.133, and the 95% confidence interval is −6.169
and −2.097. Because we only included neurons that had a peak at 30 dB ILD in the bottom panel, the number of neurons is less than those of the top and middle panels.
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ambiguity when selecting neurons from ipsilateral and contralat-
eral channels separately. This would, in turn, reduce their decod-
ing variability under the opponent channel decoder. On the other
hand, more excitatory neurons that preferred the ILD near the
center provided more distributed and holistic information about
ILD stimuli when choosing neurons freely. This may increase
their decoding accuracy under the population pattern decoder.
This was consistent with previous studies which showed that het-
erogeneous ILD tunings contribute to the superior decoding
accuracy of the population pattern decoder (Day and Delgutte,
2013; Belliveau et al., 2014).

In addition to the best ILDs, we alsomeasured two factors that
contributed to the sound decoding performance: tuning reliabil-
ity and selectivity. Tuning reliability was the averaged correlation
coefficients among paired ILD tuning curves from 10 repetitions
(45 pairs, Fig. 4b, left, gray curves). Tuning reliability close to 1
indicated a highly reliable ILD response. We used the response
area under the peak normalized ILD tuning curves (Fig. 4b,
left) and ILD half-peak value for quantifying the tuning selectiv-
ity (Fig. 4b, right).

A response area close to 60 dB indicated a low ILD selectivity.
For an ILD tuning curve that has a peak at 30 dB, a larger
ILD half-peak value that is close to 25 dB indicates a higher
ILD selectivity. Across all the significantly tuned neurons, the
inhibitory neurons have significantly higher tuning reliability,
smaller response area, and larger ILD half-peak values than
the excitatory neurons (Fig. 4c, rank sum test). Reliable ILD
tunings cause the randomly chosen repetition’s tuning closer
to the averaged tunings of this neuron, thus reducing the
decoding variability. A sharper ILD tuning makes the randomly
chosen repetition’s decoded ILD value more distinct from
the remaining six ILD values, thus increasing the decoding
accuracy. These two properties may contribute to the superior
decoding performance of inhibitory neurons in the opponent
channel decoder.

In summary, analysis of ILD encoding properties suggests
that the heterogenous ILD tunings contribute to the higher accu-
racy of excitatory neurons in the population pattern decoder. In
contrast, the higher tuning reliability and selectivity contribute to
the smaller variability and higher accuracy of inhibitory neurons
in the opponent channel decoder.

A computational model could explain the positively correlated
tone frequency and ILD selectivity in inhibitory neurons by an
increase in the number of their presynaptic inhibitory inputs
The high ILD tuning selectivity of dorsal IC inhibitory neurons
reminded us of a previous study that also showed that inhibitory
neurons have slightly higher tone frequency selectivity (Chen
and Song, 2019).We wondered whether the same inhibitory neu-
rons that were selective for ILD were also selective for tone fre-
quency. If yes, then it implies that the inhibitory neurons may
share similar presynaptic inputs for processing ILD and tone fre-
quency. Figure 5a shows the normalized ILD tuning, tone fre-
quency tuning, and combined tunings of example excitatory
(top) and inhibitory (bottom) neurons.

Similar to the ILD response area, here we used the tone fre-
quency response area to measure the tone frequency selectivity.
Across all the neurons that were significantly tuned to ILD and
tone frequency, we found that ILD tuning and tone frequency
tuning were more strongly correlated in the inhibitory neurons
than the excitatory neurons (Fig. 5b). This also held true for neu-
rons that have a 30 dB best ILD, and therefore the ILD tuning
selectivity was measured with ILD half-peak value (Fig. 5c).

Our results suggest that presynaptic inputs of inhibitory neu-
rons for encoding ILD and tone frequency were similar. There
are two related questions about this hypothesis: is the strength
or the number of inputs similar (Fig. 5d, top)? What is the extent
of input similarity that could explain the experimental findings
(Fig. 5d, bottom)? To answer these two questions, we used a sim-
ple leaky integrate-and-fire (LIF) neuron model and modulated
the strength or number of inhibitory inputs from 10% (weak
inhibition) to 100% (strong inhibition). Figure 5e shows the tun-
ings of two model neurons that preferred 0 and 30 dB ILD, which
were generated by Gaussian and inverse LogLogistic distributed
synaptic inputs to an LIF neuron, respectively.

Increasing the strength or the number of inhibitory inputs
both reduced the neural activities gradually and similarly
(Fig. 5f). However, our model revealed that it was the increase
in the number of presynaptic inhibitory neurons, rather than
an increase in presynaptic inhibition strength that contributed
to tuning selectivity changes (Fig. 5g). This was consistent with
previous rabies tracing studies which showed that inhibitory neu-
rons have muchmore retrogradely labeled presynaptic inhibitory
neurons from the contralateral IC than the excitatory neurons
(Chen et al., 2018).

Our modeling and previous anatomical studies both sug-
gested that the inhibitory neurons received a larger number but
relatively weaker inhibitory inputs instead of a smaller number
but relatively stronger inhibitory inputs. Therefore, we tested
how varying the number of presynaptic inhibitory input neurons
affects the correlated ILD and tone frequency tuning selectivity
(Fig. 5d, bottom). Our model showed that increasing the jitter
number for the two tunings gradually reduced their correlations
(Fig. 5h). We found that 60 and 70% jitter of presynaptic input
neurons could explain the experimental results shown in
Figure 5b and c.

In summary, our models revealed that a larger and relatively
correlated number of presynaptic inhibitory neurons contribute
to the narrower and correlated ILD and tone frequency tunings
observed in the inhibitory neurons.

Inhibitory neurons have a more clustered binaural integration
effect and stronger binaural inhibition
Our models suggest that inhibitory neurons received inhibition
from a large number of inhibitory neurons (Fig. 5). Our experi-
mental data showed that inhibitory neurons preferred the ILDs
off the center (Fig. 4). This evidence suggests that inhibitory neu-
rons received the strongest inhibition when the ILDs were close
to the center, i.e., contralateral and ipsilateral sound levels were
similar. To measure the sign of binaural integration, we pre-
sented the contralateral-only, ipsilateral-only, and diotic (same
tone at two ears) stimuli (Fig. 6a). We quantified the binaural
integration with two gain values: ratio of diotic to contralateral
responses and ratio of diotic to ipsilateral responses. Gain values
larger than 1 indicated the diotic response was stronger than con-
tralateral or ipsilateral responses. Furthermore, we also quan-
tified the monaural response strength using the aural
dominance index (ADI, Xiong et al., 2013). ADI closer to 1 indi-
cated near zero responses to the ipsilateral stimuli. For this exam-
ple neuron, since its diotic and contralateral responses were
similar but both were much stronger than the ipsilateral
response, thus the gain (dio/con) was close to 1, but the gain
(dio/ipsi) was larger than 1.

Figure 6b shows the two gain values and ADI in one example
FOV of excitatory (top) and inhibitory neurons (bottom). In con-
trast to the ILDs shown in Figure 2a, we found that neighboring
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Figure 5. A computational model could explain the positively correlated tone frequency and ILD selectivity in inhibitory neurons by an increase in the number of presynaptic inhibitory inputs.
a, Top panel, Normalized ILD (left) and tone frequency (bottom) tuning curves and ILD-tone frequency combined tunings (top right) of an example excitatory neuron. Bottom panel, An example
inhibitory neuron. Notice that the tone frequency response area (# repeats by 9 Hz) was calculated based on the averaged responses among seven ILDs and the ILD response area (# repeats by 7
ILD) was calculated based on the averaged responses among nine tone frequencies. b, Pairwise ILD response area (y-axis) versus tone frequency response area (x-axis) of excitatory (left) and
inhibitory (right) neurons. c, Pairwise ILD half-peak value (y-axis) versus tone frequency response area (x-axis). d, Top panel, Stronger inhibition could be due to stronger presynaptic inhibition
strength (thick line) and a larger number of presynaptic inhibitory neurons. Bottom panel, Goodness-of-fit or R-squared between ILD selectivity and tone frequency selectivity could be modulated
by the number of their presynaptic neurons. When ILD and tone frequency responses both have five presynaptic inhibitory neurons (jitter, 0%), the R-squared between ILD and tone frequency
selectivity should be highest. Thus, zero jitter indicates that the postsynaptic neurons that exhibit ILD and tone frequency responses either have the same number of presynaptic inhibitory
neurons or have the same strength of presynaptic inhibition. e, Example ILD tuning curves that have the best ILD at the center and far contralateral location. Individual dots represent neural
responses on each ILD value. f, Stronger presynaptic inhibition strength (blue dots) and a larger number of presynaptic inhibitory neurons (red dots) both reduce neural responses. g, Top panel,
ILD half-peak width decreases gradually with an increased number of presynaptic inhibitory neurons but not the strength of presynaptic inhibition. Bottom panel, ILD half-peak value increases
gradually (shift toward larger ILD values) with an increased number of presynaptic inhibitory neurons. h, Top panel, p-values and correlation coefficients (r) from the linearly regressed ILD
selectivity against tone frequency selectivity across six different jitter ranges (0%, 20%…100%). Bottom panel, ILD half-peak value against tone frequency selectivity.
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inhibitory neurons have relatively more similar gain values com-
pared with excitatory neurons. Using the same bootstrapping
method (Fig. 2e,f), we compared the proportion of FOV that
have clusters at different distance boundaries between excitatory
and inhibitory neurons (Fig. 6c).

We found inhibitory neurons were more likely to form clus-
ters that have similar gain values than the excitatory neurons,
regardless of the distance threshold of clusters. Different cluster-
ing tendencies only held true for the gains but not ADI, suggest-
ing that only the strength of binaural integration was more
clustered in the inhibitory neurons. We found that the excitatory
neurons have stronger binaural integration than the inhibitory
neurons (Fig. 6d). The median value of gain (dio/con) in the
inhibitory neurons was <1, indicating that simultaneously pre-
sented ipsilateral stimuli suppressed neural responses to the
contralateral-only stimuli (Fig. 6d, top).

Discussion
Our research revealed that when decoding the spatial cue—inter-
aural level difference (ILD)—inhibitory neurons leverage the
opponent channel decoder which has a lower variability, while
excitatory neurons utilize the spatially organized ILD clusters

and population pattern decoder which has a higher accuracy.
This hybrid decoding strategy primarily stems from the contrast-
ing ILD encoding properties—lateralized in inhibitory neurons
and heterogeneous in excitatory ones. Furthermore, inhibitory
neurons exhibited a positive correlation between ILD and tone
frequency selectivity, an observation we modeled as indicative
of a proportional increase in presynaptic inhibitory neurons.
This model gained support from the more clustered and potent
binaural inhibition received by inhibitory neurons. Taken
together, these findings underscore that inhibitory and excitatory
neurons in the dorsal IC perform distinct yet complementary
roles in the encoding and decoding of sound location.

Until this study, the local organization of ILD in the colliculi had
not been explored, despite a previous study employing two-photon
imaging to investigate the local organization of ILD in the auditory
cortex (Panniello et al., 2018). Using the same bootstrapping
method to identify clusters, we found that approximately 40% of
the field of view in the IC showed clustering of ILD preference in
the excitatory neurons, while no clusters were identified in the audi-
tory cortex. This contrast reflects their global organization of ILD,
as a rough ILDmap is present in the colliculi but absent in the cor-
tex. Additionally, using the same bootstrapping method, IC

Figure 6. Inhibitory neurons have more homogeneous and stronger binaural inhibition. a, Diotic, contralateral, and ipsilateral tuning curve for one example neuron. The maximum activity at
each tuning curve was used to measure three metrics: diotic to contralateral gain, diotic to ipsilateral gain, and aural dominance index (ADI). b, Three metrics in one example field of view (FOV)
for the excitatory (top, 291 × 291 µm) and inhibitory (bottom, 291 × 291 µm) neurons. The direction of FOVs is the same as in Figure 1d. c, Proportion of FOV that have clusters at different
pairwise distances for those three metrics (top, middle, and bottom). The dashed lines indicate median values for the excitatory (orange line) and inhibitory (green line) neurons. d, Top, Diotic to
contralateral gain. The median is 1.07 for excitatory (orange line) and 0.89 for inhibitory neurons (green line). The effect size is 0.048, and the 95% confidence interval is 0.023 and 0.073. Middle,
Diotic to ipsilateral gain. The median is 2.81 for excitatory and 1.96 for inhibitory neurons. The effect size is 0.091, and the 95% confidence interval is 0.046 and 0.136. Bottom, ADI. The median is
0.40 for excitatory and 0.39 for inhibitory neurons. The effect size is 0.018, and the 95% confidence interval is −0.036 and 0.072.
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excitatory neurons formed approximately twice as many clusters
for tone frequency than for ILD. This difference reflects the more
well-organized map of tone frequency compared with ILD.

Clusters of neurons with similar stimulus preferences are a
common characteristic of the colliculi. For example, excitatory
neurons that share tuning sharpness and sweep sensitivity cluster
in the central IC (also called “microdomain”; Ono et al., 2017; Ito,
2020), and there are periodicity clusters rather than a gradient
map in the central IC (Schnupp et al., 2015). Other examples
include multisensory patches in the nonlemniscal IC (Lesicko
et al., 2016) and clusters in the SC formed by neurons that prefer
the same orientation and movement direction (Ahmadlou and
Heimel, 2015; Feinberg and Meister, 2015; de Malmazet et al.,
2018; Li and Meister, 2023). While our study unveiled the local
organization of ILD in the dorsal IC of awake, head-fixed mice,
it does bear several limitations. Firstly, we relied on spatial
cues, specifically ILD, as opposed to spatial location. Our primary
rationale for utilizing ILD through sealed tubes was to alleviate
the effect of the acoustic noise and reflection generated by two-
photon microscopy. Future work could potentially circumvent
this issue by employing virtual auditory space (Ito et al., 2020)
or silent two-photon microscopy (Song et al., 2022) to map spatial
locations. Secondly, despite numerous studies having identified a
coarse spatial or spatial cue map via electrophysiological methods,
we still lack a map that offers both large-scale coverage and cellular
resolution. Future work employing GCaMP6 transgenic mice
could potentially address this gap (Wong and Borst, 2019).

A topographic map is a fundamental organization of the sen-
sory and motor systems across species (Kaas, 1997; Groh, 2014).
Although it may seem straightforward, whether a topographi-
cally organized sensory encoding contributes to sensory decod-
ing remains unclear. If decoding accuracy is the metric, then
the space map decoder is suboptimal. In both the SC and IC,
although the space map decoder performs above chance level,
it is still far worse than the other two decoders (Avitan et al.,
2016, and Fig. 3c). However, it is unknown whether the method
we implemented (minimal distance to trial-averaged center of
mass) is actually utilized by the colliculi. Furthermore, the cur-
rent evaluation of decoding accuracy is biased against the space
map decoder because it can only use neurons from a single
FOV, whereas the other two decoders use many more neurons
from multiple FOVs. If decoding speed is the metric, then the
space map decoder is optimal. It decodes the stimulus in each
trial by simply finding the center of population vectors in the cor-
tex and comparing it against fixed anchors of each stimulus. In
contrast, the other two decoders rely on calculating stimulus
preference and tuning of selected neurons.

In our study, we found that excitatory neurons in the dorsal IC
encode ILD with heterogeneous tuning curves, and the population
pattern decoder has superior decoding accuracy. This enhanced
accuracy allows animals to distinguish between sound locations
in close proximity, a common occurrence in complex acoustic
environments. Comparable encoding and decoding properties
have also been observed in neurons in the auditory cortex
(Belliveau et al., 2014; Wood et al., 2019). Given that top-down
projections primarily target excitatory neurons (Nakamoto et al.,
2013; Chen et al., 2018; Oberle et al., 2023), we posit that the audi-
tory cortex may directly drive the ILD response of excitatory neu-
rons in the superficial layer of the dorsal IC. This hypothesis gains
support from previous studies demonstrating that the auditory
cortex modulates spatial processing in the IC (Zhou and Jen,
2005; Nakamoto et al., 2008; Bajo et al., 2010) and that the sensi-
tivity of the IC neural population to ILD is drastically changed by

the corticofugal pathway (Nakamoto et al., 2008). Furthermore,
analogous to cortical neurons, the spectral and temporal coding
of excitatory, but not inhibitory neurons, is also strongly
influenced by brain state (Chen and Song, 2019). While our
hypothesis seems to conflict with anatomical studies indicating
that the dorsal IC predominantly receives bottom-up rather than
top-down inputs (Chen et al., 2018), as well as two-photon imag-
ing studies demonstrating large response variability in the cortical
projection buttons within the IC (Barnstedt et al., 2015), it is
important to consider certain limitations. For instance, the ana-
tomical studies did not differentiate between the superficial layer
and other layers of the IC, and the imaging studies were performed
on anesthetized animals. Future research, employing simultaneous
inactivation of auditory corticocollicular feedback along with
imaging of excitatory neurons in the dorsal IC in awake animals,
could help further evaluate and potentially validate this hypothesis
(Bajo et al., 2019; Lesicko et al., 2022; Oberle et al., 2022). It is worth
noting that excitatory neurons and inhibitory neurons were
imaged in different animals. Although it is unlikely, the
Vglut2-Cre and VGAT-Cre lines may differ in their coding strat-
egies. A more convincing method would be to perform imaging in
the same animal by expressing a calcium-insensitive fluorophore
in only one population of neurons and a calcium-sensitive fluoro-
phore nonselectively (Ibrahim et al., 2023).

Our findings demonstrate that inhibitory neurons in the dor-
sal IC favor lateralized ILD and the opponent channel decoder
exhibits reduced decoding variability. This diminished variability
allows animals to reliably estimate sound locations, especially in
life-threatening situations and in the presence of noisy sound sti-
muli. Similarly, neurons in the central IC also prefer lateralized
spatial cues, and the accuracy of the opponent channel decoder
is comparable to, or just slightly lower than, the population pat-
tern decoder (Lesica et al., 2010; Belliveau et al., 2014; but see Day
and Delgutte, 2013). These findings suggest that neurons in the
central IC may directly influence the ILD tuning of inhibitory
neurons in the dorsal IC. Additionally, we observed that inhibi-
tory neurons exhibit narrower ILD tuning, more correlated ILD
and frequency tunings (which we modeled as indicative of a
larger number of inhibitory inputs), and stronger binaural inhi-
bition compared with excitatory neurons. We hypothesize that
the ILD tunings of dorsal IC inhibitory neurons are shaped by
a combination of excitatory inputs from the central IC and inhib-
itory inputs from the contralateral dorsal IC. This is supported by
evidence showing that IC neurons maintain a balance between
excitatory and inhibitory synaptic inputs for ILD encoding
(Ono and Oliver, 2014) and that dorsal IC inhibitory neurons
receive three times more inhibitory inputs than excitatory inputs
from the contralateral IC (Chen et al., 2018). Moreover, silencing
of the unilateral dorsal IC leads to a decrease in the inhibitory
synaptic currents of neurons in the contralateral dorsal IC (Liu
et al., 2022). Taken together, these findings suggest that dorsal
IC inhibitory neurons may not only modulate spatial coding in
the forebrain through their feedforward projections to the audi-
tory thalamus (Ito et al., 2009; Geis and Borst, 2013; Silveira et al.,
2020) but also guide an animal away from locations with hazard-
ous stimuli via their extensive feedforward projections to the
superior colliculus and periaqueductal gray (Xiong et al., 2015).

It is worth noting that our study focused on three decoders.
Excitatory and inhibitory neurons might also exhibit distinct
roles using other decoders, such as population vector
(Fitzpatrick et al., 1997; Fischer and Peña, 2011), linear classifier
(Patel et al., 2018, 2022), and artificial neural network
(Middlebrooks et al., 1994; Amaro et al., 2021). An arguably
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more significant question pertains to decoding an animal’s
choices during a sound localization task, rather than interpreting
presented stimuli in passive listening conditions (Town et al.,
2018; Town and Bizley, 2022). Nonetheless, our exploration of
three neural decoders, in combination with neuron type specifi-
city and characterization and modeling of encoding properties,
paves the way for future investigations into the function of the
colliculi during sound localization tasks.
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