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A B S T R A C T

Mouse dynamics, information on user’s interaction with a computer mouse, are in vogue in machine learning
for purposes such as recommendations, personalization, prediction of user characteristics and behavioral
biometrics. We point out a blind spot in current works involving mouse dynamics that originates in
underestimating the gravity of the characteristics of the mouse device and configuration on the data that
mouse dynamics are inferred from. In a controlled study with 𝑁 = 32 participants, across three kinds of mouse
interaction activities, we collect data for mouse dynamics utilizing a variety of mouse parameter configurations.
We show that mouse dynamics commonly used in studies can be significantly altered by differences in
mouse parameters. Out of 108 evaluated mouse dynamics metrics, 95 and 84 are affected between two
conducted studies. A machine learning model’s performance can be warped by the mouse parameters being
used. We demonstrate on a prediction task that mouse parameters cannot be approached uniformly and without
consideration. We discuss methodological implications — how mouse dynamics studies should account for the
diversity of mouse-related conditions.
1. Introduction

A significant portion of human lives in the 21st century takes
place online, with productive-age people spending 6 h 37 min of their
day online.1 Among other activities, users engage with the Web to
read news, study, enjoy entertainment or pay their bills. Each user
comes into this digital environment with a different set of knowledge,
background, skills, experiences, literacy (computer or domain-specific),
needs, interests and intents (long-term and short-term). Today’s apps
and websites are often intelligent systems — capable of personalizing
user interfaces, making recommendations or otherwise adapting to the
specifics of a particular user.

When inferring information about users on the Web, there are a
multitude of sources of data that current approaches make use of.
Among them is the data that traces movements of a cursor controlled
by a user with a mouse device. A type of information that can be
extracted from these are the user’s mouse dynamics. Though the usage
of mobile touch devices (where there can be no mouse dynamics to
speak of) is booming worldwide, desktop devices continue to comprise
a sizeable portion of the web traffic market share.2 The persistence of
desktop computers can be attributed to the higher degree of control

∗ Corresponding author at: Faculty of Informatics and Information Technologies, Slovak University of Technology, Ilkovicova 2, Bratislava, 84216, Slovakia.
E-mail address: eduard.kuric@stuba.sk (E. Kuric).

1 DATAREPORTAL 2022 October Global Statshot Report: https://datareportal.com/reports/digital-2022-october-global-statshot.
2 Statcounter desktop vs. mobile vs. tablet market share statistics: https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet.

that they grant the end user. Such fine control may be unnecessary for
casual browsing, but remains preferable for tasks of greater weight such
as office work, shopping, banking or trading. The pursuit of studying
mouse dynamics can be expected to maintain its relevance into the
future.

Mouse dynamics are features of the user. They characterize how
the user operates a computer mouse — what shape are the trajectories
of their mouse movements, how they click, how accurate they are,
etc. Since each user of a computer mouse has their unique upper
limb movements, the mouse dynamics differ from user to user. Cur-
rently, mouse dynamics are widely inferred for user modeling with a
variety of purposes, from prediction of user intent [1–3], user experi-
ence [4,5], the user’s characteristics such as gender or age [6–9], for
authentication [10–13] or for personalized recommendations [14,15].

One of the known problems of mouse tracking, according to Schoe-
mann et al. [16], is that a variety of study design features can affect
mouse tracking data. This includes the mouse sampling rate, cursor
speed and training (warm-up) activities. According to Kieslich et al.
[17], there are no guidelines available for how mouse devices should
be configured for experiments that involve mouse tracking. Only 5% of
vailable online 4 March 2024
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current mouse tracking studies state all the design features described
by Schoemann et al. [16], whether explicitly or indirectly. Cursor speed
and mouse sampling rates are among the least reported study design
features.

Failure to transparently report information about mouse configu-
ration may present an obstacle for the experiment’s reproducibility,
and in some cases, raise concerns about validity. Certain approaches in
research methodology (within-subject design, data normalization) may
alleviate concerns by mitigating the impact of mouse configuration. It is
not the intent of this paper to directly invalidate any previous research.
Rather, better understanding of the impacts of mouse configuration
may lead to better understanding of existing knowledge, improvements
in methodology and pursuit of ecological validity. Works that pay
less attention addressing variability in mouse configurations can be
reasonably expected to be impacted more severely.

To the best of our knowledge, there is currently no research ded-
icated specifically to investigating the effects that the selection of a
mouse device and its settings has on the properties of mouse tracking
data and mouse dynamics features. The lack of a firm standard presents
an issue for designing mouse tracking experiments, where the results
are inherently linked to the parameters of the mouse configuration
used, no matter whether research design is controlled or uncontrolled,
in what domain and for what purpose. The question of whether results
are actually dependent or independent on the mouse parameters is
itself unknown. Some degree of relation has been observed, with Free-
man and Ambady [18] finding that high cursor speed (sensitivity)
can alter mouse trajectory data, while Grage et al. [19] tie increased
cursor speed to an adaptation of the hand/cursor movement ratio,
accompanied by increased frequency of sudden high-speed ‘‘changes
of mind’’. Works that perform normalization of mouse dynamics to
account for mouse configuration variability are scarce, mostly focused
on personal user differences or noise reduction within the same user.
Investigation of whether normalization is also needed to account for
mouse configuration differences is lacking.

This leads us to the question of whether – and to what extent –
mouse dynamics are dependent on the properties of the mouse setup on
a computer (the mouse device itself, along with its configuration). Does
diversity of mouse configurations plausible in real-world conditions
cause differences in raw mouse interaction data? What does a change
on mouse parameters mean for the validity of the results from a study
investigating mouse dynamics, or for the reported performance of a
method (i.e., machine learning) that has mouse dynamics as its inputs?
If users are given a mouse configuration that they are unfamiliar with,
do they adapt to it in a way that significantly affects their behavior?
For more methodically sound research of users’ mouse behavior, we see
demand for answering these questions.

The primary contributions of this paper are:

• Statistical evaluation of the effect of mouse devices and their con-
figurations on mouse dynamics metrics. In a comprehensive list
of metrics utilized in research, most are shown to be significantly
altered by the mouse parameters (95/108 in one study, 84/108
in a second study).

• Using classification of the user’s biological sex as an example of
a method involving mouse dynamics, the comparison of perfor-
mances between samples collected with different mouse configu-
rations demonstrates that performance is worse when the user’s
mouse configuration is not included in the training set.

• Discussion of methodological considerations accounting for mouse
parameter configuration in research involving mouse dynam-
ics, given its potential impact on representations of user mouse
behavior.

• A three-stage experiment design for obtaining a dataset that
allows for comparing mouse dynamics between different mouse
2

configurations. m
2. Background and literature review

2.1. Computer mouse parameters

A number of mouse configuration parameters affect the user’s expe-
rience with a mouse and the properties of mouse inputs harnessed from
user–computer interaction. Some of these parameters are the physical
attributes of the mouse itself (e.g., the resolution of the sensor), while
others are software settings (e.g., the mouse sensitivity setting in the
operating system). Below is a (nonexhaustive) list of mouse parameters
that can be conceived as impactful on the reliability of mouse tracking
data3:

Resolution. Measured in – and commonly only referred to as –
Counts Per Inch (CPI), resolution of a mouse is the number of distinct
steps that the sensor can divide the distance of one inch (2.54 cm)
into, so that it can distinguish between individual steps. Some mouse
manufacturers use Dots Per Inch (DPI) as a synonym for CPI. However,
DPI as a term has origins in printers and is inaccurate when describing
mouse devices. DPI is primarily used as a marketing term, for customers
who are familiar with it, commonly gamers. In gaming, lower CPI
is preferable for tasks requiring higher precision, while higher CPI is
recommended when interacting with distant targets to reduce the size
of necessary motions, even if at the cost of precision [20].

Sensitivity. Operating systems provide sensitivity as a setting that
acts as a multiplier of the CPI, software-wise adjusting the ratio of
mouse movement to movement on the screen. Microsoft Windows
provides 20 sensitivity options from 1 to 20.4 Games and other software
applications may offer their own independent sensitivity setting.

Effective CPI. eCPI (commonly referred to as eDPI, see Resolution)
s calculated as CPI multiplied by sensitivity, acting as a measure
f the real sensitivity collectively for a mouse device and software
onfiguration setup.
Tracking speed. There is a limit to the movement speed that a

ouse may reliably detect. The unit used to measure tracking speed of
mouse is Inch Per Second (IPS). The IPS is determined by the frame

ate of the sensor — the frequency at which the sensor captures a frame
image) of the surface. To accurately determine mouse movements of a
pecific speed, the device needs to be able to calculate distance traveled
y calculating the position of each frame in reference to the previous
ne.
Polling rate. The rate (measured in Hz) that signifies how many

imes per second a USB mouse reports its position to the computer
commonly 125–1000 Hz, but can go as high as 8000 Hz). This is
eparate from the frame rate of the sensor, which is commonly higher
han the polling rate, meaning reported position may be calculated
rom multiple frames. Polling rate is responsible for the perceived
esponsiveness of the mouse.
Acceleration. Operating under the premise that faster mouse move-

ents indicate when the user is aiming to travel a longer distance
ith the cursor, mouse acceleration is a function that alters mouse

ensitivity depending on the speed of movements. Effectively, faster
ovements of the mouse cause the cursor to travel a longer distance

han slower more careful movements of the mouse device traveling
he same distance. When found as a software feature in an operating
ystem, it may be enabled/disabled. The primary use case for mouse
cceleration is standard desktop computer use, where it allows for
oving the cursor across the full screen without lifting the mouse.
ue to acceleration’s interference with developing muscle memory for
recision mouse aiming, some users prefer to disable it while gaming.5

3 Mouse buyer’s guide of mouse physical attributes: https://sensor.fyi/info/.
4 Liquipedia mouse settings guide: https://liquipedia.net/counterstrike/
ouse_Settings#Windows_Sensitivity.
5 Guide to mouse settings: https://www.techspot.com/article/2556-master-

ouse-settings/.

https://sensor.fyi/info/
https://liquipedia.net/counterstrike/Mouse_Settings#Windows_Sensitivity
https://liquipedia.net/counterstrike/Mouse_Settings#Windows_Sensitivity
https://www.techspot.com/article/2556-master-mouse-settings/
https://www.techspot.com/article/2556-master-mouse-settings/
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The screen resolution, while not a literal parameter of the mouse but
rather the screen, can also directly impact the mouse dynamics due to
the size of the overall space available for a cursor to move in Freeman
and Ambady [18]—how many pixels a mouse movement may cover
in its path at maximum and what relative percentual distance on
the screen the same movement will cover at the same eCPI. Other
examples of circumstances within the environment that may impact
mouse behavior in real-world conditions include the surface beneath
the mouse (friction and optical properties), the ergonomy and the
weight of the mouse.

2.2. Mouse dynamics features

To model mouse movement behavior of users during specific tasks,
metrics or other representations are calculated from raw mouse log data
obtained by mouse tracking software, such as UXtweak6 and Mouse-
Tracker.7 Typically, metrics that serve as input into machine learning
algorithms are inferred from coordinates along the x and y axis, logged
as discrete points on a timeline demarcated by their corresponding
timestamps [2–4,8,9,11,13,15,18,21–27]. Aside from calculating met-
rics, mouse coordinate data can be clustered [28] or passed as an input
to neural networks directly [29–32].

According to Balen et al. [9], metrics that represent mouse dynamics
can be grouped into three categories: temporal, spatial and accuracy
metrics. Temporal metrics are bound to cursor velocity, ballistic com-
ponent (phase of cursor acceleration and deceleration during the initial
cursor movement), reaction time, movement correction and button
press times. Spatial metrics include mouse trajectory lengths, direction
changes and movement variability — all related to the distances be-
tween consecutive points. Movement accuracy metrics include metrics
related to errors while clicking on the action stimulus.

Across literature, most common features used to describe user be-
havior on the web are cursor velocity, acceleration, duration, distance,
straightness of the cursor path and deviation from the ideal path. A
compilation of mouse dynamics metrics described in literature can
be found in Table 1. This includes elementary metrics, as well as
aggregation variations – e.g., velocity mean, maximum, minimum – and
logical variants — e.g., 2-dimensional or separately along the x and y
axis. See Table 2 for a summary of works where the individual metrics
were deployed.

2.3. User modeling and behavioral research

User modeling is a technique for capturing information about the
user [36]. It can support personalization of user interfaces and content
(e.g., rearrangement of navigation, display of messaging respective to
knowledge) or recommendations, making it fruitful in many domains,
including education apps, ecommerce, online libraries and encyclope-
dias, virtual assistants, e-government sites and others. The information
used to build (and update) a user model may be gathered either from
explicit feedback (information submitted directly by users, commonly
via a form) or implicit feedback (observation of users). Implicit and
explicit feedback can also be combined (e.g., recommendations based
on the user’s favorite product categories and search history).

Data sources employed by user modeling can be limited in the infor-
mation that they can provide. Server logs are one such common source
of data. Some aspects of the user’s path on the web (e.g., scanning over
the page with a mouse cursor) cannot be traced in high-level server
logs. Some research refers to pageviews data as ‘‘click events’’ or ‘‘click

6 UXtweak platform for user experience research, containing tools that
nable remote mouse tracking via installed snippet or web browser extension:
ttps://www.uxtweak.com/.

7 MouseTracker software package for mouse movement research, capable of
ecording mouse data on a computer locally: http://www.mousetracker.org/.
3

streams’’ [37–39], even though they do not provide data on actual
clicks (e.g., which element was clicked). Higher granularity of data can
capture the full interaction (e.g., cursor movements, scrolling, inputs).
Mouse dynamics modeled from mouse tracking data have been shown
to boost performance in a behavioral prediction task [1].

A variety of published works conduct research utilizing mouse
interaction data. Their topics commonly pertain to machine learning
classification and extraction of features for the formation of prediction
models. These works commonly do not pay attention to mouse param-
eter configurations, e.g., not listing utilized CPI or mouse sensitivity in
experiment specification, or conducting a controlled experiment using
a singular mouse parameter configuration while ignoring the diversity
of mouse configurations present in data from real users. There exists a
valid concern about the methods and techniques covered.

If mouse dynamics are dependent on mouse parameter configu-
ration (as investigated in this paper), the implications on research
would be multi-fold, whether experiments are conducted in controlled
or uncontrolled environments. Result reproducibility and transparency
can be cited as primary concerns. Validity of research outcomes doc-
umented in works may potentially be compromised or be interpreted
incorrectly due to the lack of full context (e.g., whether a new method
is an actual improvement over the state of the art can become unclear).
The role of mouse parameter configuration may become a relevant
question (e.g., the robustness of prediction models to changes in mouse
configuration). In case of between-subjects research design (where
comparisons are performed between different participants, compris-
ing the majority of reviewed research employing mouse dynamics),
hidden variables of mouse configuration may render comparison of
independent groups invalid.

Within-subject research can be considered as resistant to concerns
about its validity or reproducibility due to a neglect of mouse configu-
ration. Here, the typical premise is that conditions where participant
behavior is observed and compared are consistent as they are ob-
tained from the same participant. As such, if mouse configurations
exert a meaningful effect on mouse dynamics, within-subject research
can benefit from more holistic addressing of mouse configuration to
further enhance the robustness and rigorousness of its methodology.
For illustration, Cai et al. [13] refer to the use of multiple worksta-
tions over multiple sessions, during an experiment involving what is
described succinctly as an HP optical mouse. An explicit assurance can
be preferred over an implicit assumption, that all these mouse devices
are identical over all sessions, as is the mouse sensitivity setting in the
operating system (i.e., that participants were not allowed to change it
to their preference).

Applicability is another potential concern. Let us consider an ecom-
merce website, where a prediction model classifies anonymous visitors
into age categories according to their mouse dynamics. A recommen-
dation algorithm then takes the age category as a parameter for rec-
ommending products to the user. When trained on data gathered
in laboratory settings where users all use the same mouse, mouse
movement speed may be found as an effective feature for predicting
age. However, it is questionable whether this would still be true in
real conditions, where parameters such as mouse CPI, tracking speed,
material properties of the surface beneath the mouse or the size of the
screen are unknown variables.

The lack of proper examination of mouse parameter configuration
may be impactful in a diversity of research domains. Despite their
contributions, which we do not aim to discount, works listed below
illustrate various degrees of cases where caring to explicitly incorporate
the aspect of mouse configuration into methodology, or accounting for
it further, may be beneficial. See also Table 8 for a structured overview
of research designs employed and approaches to mouse configuration
taken.

Recommendations and personalization are two very common as-
pects of intelligent information systems, intended for serving users in-

formation relevant to them and in a personally-tailored fashion. Social

https://www.uxtweak.com/
http://www.mousetracker.org/
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Table 1
Overview of mouse-movement-inferred features (mouse dynamics) across literature. Conceptually related metrics that appear with varied mutations are grouped together, aggregates
and variants listed.

Feature Description Aggregates Variants

Temporal features

Velocity Change in distance over time Min, max, mean, sd, min–max difference x-axis, y-axis, smoothed
Acceleration Change in velocity over time Min, max, mean, sd, min–max difference x-axis, y-axis, positive, negative
Jerk Change in acceleration over time Mean, sd Positive, negative
Snap Change in jerk over time Mean, sd Positive, negative
Angular velocity Change of angle over time Mean, sd –
Movement duration Time between clicks – Total
Reaction time Time until response – –
Initiation time Time until mouse movement – –
Pause Idle cursor time Count, sum –

Spatial features

Movement distance Path length – Smoothed, total
Straightness Path length ratio to ideal path Mean, sd –
Path deviation Perpendicular distance to ideal path Max AUC
Jitter Smoothed to real path length ratio – –
Angle Current movement direction – –
Flips Movement directional changes Count x-axis, y-axis
Path crossings Intersections of path and ideal path Count –
Curvature Change of angle over distance Mean, sd –
Inflection points Curvature changes, flex points Count –

Stimuli interaction features

Clicks Number of stimuli presses Count –
Hold time Stimuli press duration – –
Click error Stimuli center and press distance – x-axis, y-axis, absolute
Time to click Stimuli hover to press time – –
Scroll Page scrolling – Horizontal, vertical
Table 2
Overview of mouse-movement-inferred features (mouse dynamics) with recent sources. A multitude of works utilizes varied sets of mouse
dynamics.

Feature References

Temporal features

Velocity Monaro et al. [2], Guo and Agichtein [3], Fernández-Fontelo et al. [4], Pentel [7], Balen
et al. [9], Antal and Egyed-Zsigmond [11], Cai et al. [13], Hucko et al. [15], Freeman and
Ambady [18], Kratky and Chuda [21], Freihaut and Göritz [22], Pepa et al. [23], Maldonado
et al. [25], Zheng et al. [27], Shen et al. [33]

Acceleration Guo and Agichtein [3], Fernández-Fontelo et al. [4], Antal and Egyed-Zsigmond [11], Hucko
et al. [15], Freeman and Ambady [18], Kratky and Chuda [21], Freihaut and Göritz [22],
Pepa et al. [23], Maldonado et al. [25], Shen et al. [33]

Jerk Antal and Egyed-Zsigmond [11], Hucko et al. [15], Freihaut and Göritz [22]
Snap Freihaut and Göritz [22]
Angular velocity Kratky and Chuda [21]
Movement duration Balen et al. [9], Antal and Egyed-Zsigmond [11], Hucko et al. [15], Kratky and Chuda [21],

Freihaut and Göritz [22], Shen et al. [26], Seelye et al. [34]
Reaction time Monaro et al. [2], Fernández-Fontelo et al. [4], Balen et al. [9], Freeman and Ambady [18]
Initiation time Guo and Agichtein [3], Fernández-Fontelo et al. [4], Antal and Egyed-Zsigmond [11],

Freeman and Ambady [18]
Pause Cai et al. [13], Kratky and Chuda [21], Pepa et al. [23], Seelye et al. [34]

Spatial features

Movement distance Fernández-Fontelo et al. [4], Gardey et al. [5], Balen et al. [9], Antal and Egyed-Zsigmond
[11], Cai et al. [13], Sulikowski et al. [14], Hucko et al. [15], Kratky and Chuda [21],
Freihaut and Göritz [22], Seelye et al. [34]

Straightness Pentel [7], Balen et al. [9], Antal and Egyed-Zsigmond [11], Freeman and Ambady [18],
Kratky and Chuda [21], Freihaut and Göritz [22]

Path deviation Yamauchi et al. [8], Antal and Egyed-Zsigmond [11], Freeman and Ambady [18], Kratky and
Chuda [21], Freihaut and Göritz [22], Shen et al. [26]

Jitter Kratky and Chuda [21]
Angle Pentel [7], Yamauchi et al. [8], Antal and Egyed-Zsigmond [11], Freihaut and Göritz [22],

Zheng et al. [27]
Flips Pentel [7], Balen et al. [9], Kratky and Chuda [21], Freihaut and Göritz [22]
Path crossings Balen et al. [9]
Curvature Antal and Egyed-Zsigmond [11], Kratky and Chuda [21], Seelye et al. [34]
Inflection points Kratky and Chuda [21]

Stimuli interaction features

Clicks Kuric et al. [1], Cai et al. [13], Kratky and Chuda [21], Pepa et al. [23], Khan et al. [35]
Hold time Balen et al. [9], Cai et al. [13], Pepa et al. [23], Shen et al. [26]
Click error Balen et al. [9]
Time to click Balen et al. [9], Zheng et al. [27]
Scroll Sulikowski et al. [14]
4
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media and video sharing platforms utilize recommendation algorithms
to suggest posts and new content creators in the feed. Online stores
recommend products of potential interest. Personalization is intelligent
adaptation of a system to its user, e.g., search results ordered depending
on the user’s profile. Accommodating complex search tasks attempted
by users is a multidimensional challenge, where mouse movements
serve as common predictors of task dimensionality [40]. Sulikowski
et al. [14] use fuzzy modeling on purchase intent regarding recommen-
dations. A dataset containing mouse tracking data within the Document
Object Model (DOM) of 5 ecommerce sites was recorded via a browser
extension. No reference to mouse configuration is made. Hucko et al.
[15] present a personalized onboarding tool where assistive messages
are displayed when confusion is detected from mouse dynamics. The
precision of achieved prediction is 63%. Whether the mouse parameter
configurations are identical across all 20 working stations in the lab, or
what are the exact configurations, is unknown.

User experience is the overall cognitive and emotional effect that
product, service or company has on the user who interacts with

t [41]. Gardey et al. [5] evaluate UX of particular elements in web
orms, namely by predicting their interaction effort. De Santana et al.
42] predict interaction with explainable AI elements using high-
ranularity interaction data (including mouse interaction data) in a
emote uncontrolled study. A LSTM proposed by Chen et al. [43]
redicts search engine satisfaction based on relationships of movements
etween regions. In either work, mouse configuration is not referenced
s a subject of consideration.
Affective computing is the interdisciplinary field of study dedicated

o detection, interpretation and simulation of affective states that are
ied to human emotions. Pepa et al. [23] detect the stress of users via
lassification, utilizing 22 mouse dynamics and 15 keyboard features.
he experiment involves 4 tasks (2 difficulty variants each), chosen for
heir ability to invoke stress. Participants used their own computer and
ouse during the experiment to simulate real conditions. However, no

ttention is given to mouse configuration on the participants’ end. Khan
t al. [35] point to the possibility of predicting personality traits of
sers based on mouse and keyboard events. They utilize data from
wo studies — one collecting logs of real user activity over a period
f several days, the second involving participants engaged in program-
ing tasks while listening to mood-evoking music. The authors make
o mention of what mouse devices were used or how they were set up.
Prediction of user characteristics such as sex or age can provide

rofiling/statistical data about anonymous website visitors to help
roduct, research or marketing teams better understand their existing
udiences. Predicting characteristics also has direct applications for
aking systems react appropriately to actions made by users. User

ehavior may give away information about the user’s innate charac-
eristics, without the need of any explicit action on the user’s part. An
xemplary use case is in preventing minor children from accessing age-
estricted content. Pentel [7] extracts features from standard keyboard
nd mouse use to classify the user’s age and sex. Six datasets are
sed — 2 from real system use, 4 harnessed in experiments for other
ouse tracking studies. No mentions account for mouse selection or

onfiguration.
Fernandez-Lanvin et al. [6] demonstrate that men and women, as

ell as different age groups, can be differentiated by mouse movements
hile performing simple mouse actions such as pointing and clicking,
ragging and dropping, and selecting items. Yamauchi et al. [8] dis-
overed significant differences between mouse dynamics of men and
omen in an experiment with a simple decision task. The six work

tations used for the experiment utilize the same optical mouse model
nd have mouse sensitivity set to medium. Authors admit the lack of
alidation on different input devices as a limitation. Kratky and Chuda
21] utilize mouse movement coordinate data from a real website to
alculate metrics from individual distances, times and angles. These
eatures are used as inputs to classification algorithms predicting the
5

ge and gender of participants, the resulting F-score being 60%. Used
mouse configurations are unknown and presumably varied since data
was obtained from real webpage users. Balen et al. [9] also classified
the gender of 94 participants solely from mouse dynamics features with
the accuracy of 76%. The sole mention of mouse configuration is that
the used mouse’s approximate polling rate is 100 Hz.

Accessibility is the domain of human–computer interaction con-
cerned with making user experiences more easily approachable by more
people, particularly persons faced with challenges in everyday life due
to a physical or a mental disability. Seeking to make a contribution
in the creation of user interfaces for users with cerebral palsy, Almanji
et al. [44] assess how mouse dynamics in the categories of rapidity and
accuracy reflect the user’s arm dexterity. The sole reference to mouse
parameters used is that all participants interacted with a ‘‘standard’’
mouse and that the polling frequency of mouse movement positions
was 100 Hz.

Behavioral biometrics, the pursuit of identifying individuals unob-
trusively based on indicators describing their behavior, has thoroughly
explored mouse dynamics as a means of differentiating between hu-
mans. Several attempts [31,32] were made towards authenticating
users in pre-existing datasets with different use contexts where no
information on mouse configuration has been provided. Shen et al.
[26] authenticate users by recording mouse movements in a short
predetermined task while Cai et al. [13] tackle the issue of variability
of mouse dynamics during regular usage. In both cases, identical but
further unspecified mouse configuration parameters are used, leaving
the authentication performance under realistic conditions as an open
question. Siddiqui et al. [10] employ mouse dynamics from people
playing the game Minecraft as biometrics, with the hardware and
software configuration identical for all participants, documented except
the characteristics of the mousepad (although default game settings
are mentioned, parameters such as mouse sensitivity are not further
specified).

Zheng et al. [27] admit potential unreliability of mouse dynamics
for authentication across different computers due to a variety of factors,
including mouse brand, sensitivity and mousepad. Mouse dynamics
have been used to detect impostors [11] or distinguish humans from
bots [12]. Antal et al. [45] provide a mouse dynamics dataset collected
on participant’s own devices with unknown mouse configurations, eval-
uated using convolutional neural networks. This dataset can be used to
train systems for authentication, detection of bots or training human-
like mouse trajectory generative models [46]. Shen et al. [33] show
that in the domain of mouse dynamics authentication, the variability
of mouse dynamics (caused by factors such as usage of a new mouse,
GUI settings, usage scenario, emotional and physical state) found in
data collected over longer periods of time leads to lower performance
of the prediction of identity, but reduction of dimensionality leads to
significantly improved results. The authors also found that motor-skill
features (e.g., the time elapsed during a single click) are less liable to
being affected by variability than schematic features (e.g., the mouse
action histogram). Mouse parameters may be considered as precursors
of variability of mouse dynamics, which are owed further research.

User intent prediction is a collective term for approaches that
seek to automatically recognize what the user aims to do, whether
to capitalize on those intents and provide better customer service, or
to spot malicious intent and take appropriate preventative measures.
User intent has been predicted from mouse dynamics and without
attention being paid to mouse parameter configuration [47] in cases
such as likelihood of returning as a customer [1] or readiness to make
a purchase [3] in ecommerce, or the intent to lie [2] in personality
questionnaires.

User attention prediction evaluates how users visually scan user
interfaces or which elements capture their focus, a potentially valuable
source of feedback [48]. While not a replacement for true gaze tracking,
it can serve as a viable substitute in conditions where eye-tracking is
unavailable, since eye-tracking technology requires dedicated hardware

and as such is challenging to scale. Arapakis and Leiva [30] predict
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interest in ads in search engine results with mouse dynamics features
non-specific to any particular web page design, but no mentions of
accounting for heterogeneous mouse configurations are made.

Cognitive assessment is a domain that finds promise in mouse
dynamics’s ability to reflect human cognitive processes and the mental
capabilities of human subjects. Seelye et al. [34] predict mild cognitive
impairments in older people, which correspond with less efficient
mouse movements with more frequent pauses in day-to-day computer
use. Maldonado et al. [25] detect changes in decisions, which manifest
as changes in mouse trajectory. Neither comment on the mouse config-
urations used during their experiments, nor the concern that a different
configuration may affect interpretation of mouse data.

Notably, it is precisely for the above flexibility in predicting all
kinds of facts about the user that privacy and ethical concerns have
already been raised about the use of mouse tracking technology. Leiva
et al. [29] present a method for decreasing the effectiveness of machine
learning profiling based on mouse dynamics by introducing noise into
mouse tracking data, thus granting users recourse against potentially
invasive and undesirable tracking.

2.4. Normalization of mouse dynamics features

Among works utilizing mouse dynamics, in the context of potential
implications of inconsistent mouse configuration, special attention is
owed to methods that involve feature normalization. If mouse dynamics
are meaningfully impacted by mouse configuration (as this paper aims
to validate), normalization may be a methodologically essential step for
eliminating mouse configuration variables and utilizing mouse dynam-
ics to achieve more reliable research results. A survey of related works
at the time of writing reveals that normalization of mouse dynamics
features is rare — see Table 8.

Two normalization approaches are found in research that may mit-
igate the effects of mouse configuration. Their distinction — whether
the normalization baseline originates in statistical norm (average) be-
havior, or reference observations of specific behavior that is considered
normal.

Statistical norm baseline. Wilson et al. [49] predict whether an
essay is genuine or plagiarism generated by a large language model
tool, based on mouse dynamics collected as the user answers follow-up
questions about the essay’s contents. Mouse parameter configurations
are not controlled during the experiment. Z-score normalization is
used within-participant to account for individual differences between
participants, calculated from both experimental conditions (essay writ-
ten by the participant and generated by AI). Cai et al. [13] perform
normalization and feature reduction for a user authenticity task, to
eliminate noise present in mouse dynamics present even when the same
users perform the same actions.

Reference observation baseline. Fernández-Fontelo et al. [4] re-
search the possibility of employing mouse dynamics for prediction
of the difficulty of individual multiple-choice questions in a survey,
which may enable reactive modifications of the survey for respondents
who are struggling. Participants use their own unknown equipment
(including a computer mouse) to complete the survey. The authors
propose two personalization methods to correct mouse dynamics to the
compound of personal differences between participants (e.g., habits)
and the hardware they are using. Behavior in survey questions where
questions are not manipulated to be more difficult serves as the base-
line.

Normalization may have the potential to control mouse parameter
configuration, with additional aspects to consider:

• In problems investigated by within-subject research, the require-
ment of a suitable baseline may pose a challenge for ecological
validity of findings outside the lab. For illustration, detection of
stress in controlled conditions may be improved by normalization,
6

using mouse dynamics from controlled non-stressful conditions as
a baseline. In real-world environments (e.g., e-commerce, bank-
ing, e-health, education), interrupting the user’s natural activity
to artificially induce a peaceful state may not be an option or
could induce further stress if perceived as intrusive. Depending
on the nature (e.g., stressfulness) of the uncontrolled environment
and individual user differences (e.g., anxiousness), a statistical
norm is also not guaranteed to present a suitable baseline.

• In between-subject research design, creating a baseline that elim-
inates the effects of unknown mouse configuration, yet preserves
other unknown distinctions between participants may not be
viable. This presents a challenge for research problems that do not
lend themselves to within-subject research design, such as pre-
diction of user characteristics that are fixed (e.g., sex, permanent
health impairment) or impractical to control within-participant
(e.g., age). Alternative normalization approaches, such as ma-
chine learning prediction of mouse configuration serving as the
input of a correction method may be more applicable.

• Current mouse dynamics normalization approaches have been
designed and evaluated primarily to correct personal differences
between users [4,49] or variability between sessions of the same
user [13]. In real-world conditions, mouse configuration should
not be conflated with individual differences, since users may
swap devices or change mouse configurations. The specifics of
the interaction between normalization and variable mouse con-
figurations remain an open question. Further validation can be
seen as warranted regarding its effectiveness and potential risks
(e.g., feature homogenization).

Normalization of mouse dynamics to account for variability in
mouse configuration parameters is a complex yet under-explored issue.
This could be attributed to a lack of research investigating the effects of
mouse configuration, potentially resulting in underestimation of their
significance for mouse dynamics. Aiming to address this, it is not in
the intended scope of this work to propose a mouse configuration nor-
malization method for any specific mouse-dynamics-related research
problem, but rather to validate pursuit of designing normalization
methods that would tackle the challenges illustrated above.

3. Aim of the study

The parameters of a computer mouse directly impact how the mouse
behaves when a user interacts with it. Thus, configurations of mouse
parameters can impact the resulting mouse dynamics. In this work, we
aim to investigate what effects the mouse parameter configurations can
have on properties of mouse dynamics and their usefulness in machine
learning prediction tasks. Among the parameters of mouse configura-
tion, we choose to focus on CPI and sensitivity (and by extension their
product, eCPI), to mirror heterogeneous mouse devices and sensitivity
settings on real-world computers belonging to the end users. Relevant
research reports these parameters as potentially having the greatest
impact [18,19]. The following research questions are postulated:

RQ1: What effect do different mouse eCPI configurations have on met-
rics calculated from raw mouse interaction data? Our goal is to determine
whether eCPI – as a defining characteristic of the mouse – affects mouse
dynamics metrics and if so, which metrics are affected the most by the
differences in mouse configurations. We hypothesize the majority of
features will be affected in some manner. Notably, mutations in both
temporal and spatial metrics were expected, namely to metrics that
model velocity and shape of the cursor trajectory, since higher eCPI
causes the cursor to move faster and become more unwieldy, hence
difficult to aim accurately.

RQ2: What amount of mouse activity do users need to adapt to a
new mouse, so that differences in mouse dynamics metrics can be safely

compared between adapted users? When participants are given a mouse
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Fig. 1. Diagram of the experiment for acquiring data for mouse dynamics in 3 types of tasks under 5 different mouse parameter configurations from every participant.
they are not used to (with different eCPI making the cursor move slower
or faster than a reference device), participants can be expected to take
some time to adapt to the new mouse. Adaptation can be reasonably
thought to lead to the emergence of changes in mouse dynamics when
represented on a learning curve. Differences in mouse dynamics metrics
between individual mouse parameter configurations can be caused not
only by the congenital traits of the configuration, but also by the user
being unaccustomed to the mouse and other settings. It is therefore
desirable to understand how users accustom themselves to a new mouse
and from what point in the interaction can their mouse dynamics be
relevantly compared.

RQ3: What is the effect of different mouse eCPI configurations on
the performance of prediction using mouse dynamics features? If there
are significant differences in mouse dynamics depending on the mouse
parameter configuration, it can be questioned how this affects perfor-
mance in prediction tasks that adopt mouse dynamics as features. The
task of classifying the user’s biological sex is chosen to examine whether
prediction performance varies when different mouse parameter config-
uration samples are used for training and testing.

4. Methods

To investigate how mouse configuration can translate into changes
in mouse dynamics information, an experiment was conducted to com-
pare varied mouse configurations (see Fig. 1). Obtained information is
analyzed statistically and indirectly through performance of machine
learning algorithms utilizing them as input.

4.1. Procedure

The experiment consists of three mouse-focused activities (see 4.2
Materials) where the user’s mouse movements are tracked. The three
activities are completed five times, each iteration being structurally
identical, but utilizing a different eCPI configuration. The activity is
altered between iterations to assure that participants are moving the
cursor naturally, relying on visual inputs instead of their memory to
solve tasks. A web application was created for the purpose of guiding
participants through the experiment and collecting task and mouse
tracking data, based on the UXtweak8 mouse event data collector
software. The changing of mouse parameter configurations (which in-
cludes swapping of hardware) is handled by the moderator. Participants
complete tasks in either ascending or descending eCPI order, with
either of these options selected randomly for every participant, while
assuring an even ratio of the two orders.

8 UXtweak Session Recording tool capable of capturing mouse tracking data
on the web: https://www.uxtweak.com/session-recording-tool.
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4.2. Materials

The experimental activity repeated by participants with multiple
mouse parameter configurations is internally divided into three stages:
the target shooting minigame activity, the numbered points clicking
activity and the website prototype interaction activity. The purpose
of this division of activities is to collect mouse interaction data under
different contextual conditions, which are further elaborated on in the
specification of individual activities.

4.2.1. Target shooting minigame activity
Each iteration starts with a gamified mouse-intensive activity to

let participants get accustomed to a new mouse configuration and to
decrease the impact of the previously used mouse configuration on
their modus of operating the mouse. Post-game, the participant’s mouse
dynamics should represent normal mouse behavior, rather than mouse
behavior influenced by switching between mouse configurations. The
participants’ capacity of adapting to the mouse (see RQ2) is investi-
gated during this activity. The secondary purpose of the game is to
render the lengthy experiment more enjoyable for the participants.

Participants are asked to shoot targets within a time limit by click-
ing them to earn a high score (see paper’s data repository for full
instructions). As an added motivation to perform well in the game,
participants can see the top three highest scores achieved by pre-
vious players (see paper’s data repository for the points calculation
algorithm).

In each iteration, the minigame is played in three 15-second rounds.
The game is split into multiple rounds to measure improvements in
game performance between rounds. The game is also split into rounds
for consideration of the participants’ ability to achieve a higher degree
of focus if partaking in shorter game intervals interspersed with breaks,
rather than in a single long and cohesive time interval. A new round is
triggered via the explicit click of a button.

During a round, targets are displayed within a 1000x600 pixel
(px) area (see Fig. 2). The position of targets is random, with the
minimum distance from the previous target being one eighth of the
full width on the x axis (125 px) and one eighth of the full height on
the y axis (75 px). The random positioning of targets makes the game
unlike the other two mouse tracking activities where the intended click
positions are predetermined to allow for direct comparison between
mouse dynamics of mouse parameter configuration samples. This al-
lows the game to serve as a varied warm-up where participants cannot
be construed as conditioned to any specific mouse movement patterns.
Due to the differences in the expected mouse movement lengths and
directions of individual participants, the data from this minigame is not
used for evaluation of mouse dynamics metrics in relation to mouse
configurations. As such, the rest of the experiment evaluates mouse

https://www.uxtweak.com/session-recording-tool
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Fig. 2. First of three activities in the experiment is a target shooting minigame task,
to help participants get accustomed to new mouse configurations. Targets appear in
random locations, earning participants points depending how fast or close to the center
they click.

dynamics from users who have had the opportunity to get used to their
current mouse parameter configuration.

A new target is displayed during the minigame immediately after
the previous target has been clicked. If the target is missed, nothing
happens — the participant may retry shooting the same target. The
target circle’s radius is 30 px, with two smaller concentric circles inside
(radiuses 20 px and 10 px), dividing the target into zones. Over the
period of 2 s after appearing, the target gradually expands from its
center until its radius reaches 1.5 times its original length.

4.2.2. Numbered points clicking activity
The second activity in the experiment has two goals. It is to generate

mouse interaction data where:

• There is equal representation of diverse classes of mouse move-
ments from all participants and in all observed mouse parameter
configurations.

• The ideal paths are the same for all mouse parameter config-
urations (or as similar as possible) to support comparisons of
mouse dynamics metrics between configurations (see RQ1) and of
prediction performance depending on the configurations included
in training (see RQ3).

The activity designed for this purpose is inspired by a similar game
described by Pentel [24]. Participants are asked to click squares in
a grid in the same order as they are numbered in (see paper’s data
repository for full instructions).

The area where the participants complete the clicking activity (see
Fig. 3) has the dimensions of 1000 × 600 px. This area is covered by a
10 × 6 grid (60 tiles in total) that is invisible to the participants. The
numbered squares that the participants are asked to click in a specified
order are sized 50 × 50 px. Each clickable square occupies one tile in
the grid by itself. The square may be located in the center of a tile,
or be anchored in any of the tile’s corners. This method of positioning
is adopted so that the clickable squares themselves do not have the
appearance of a grid, having multiple possible positions even within
the same column or row.

The activity is split into multiple rounds, with each round starting
when the participant clicks the Next button in a popup window. The
popup is used to assure that the cursor of all participants starts in ap-
proximately the same position. The activity consists of 6 rounds in total,
each involving a sequence of 8 numbered rectangles. These numbers
can be determined as the smallest number meeting the requirement
to cover all types of mouse movements (lengths, directions) intended
8

Fig. 3. Grid for generating tile patterns in numbered points clicking activity, portraying
a sample tile sequence. The grid is not shown to the participants. The tile that a square
is placed in within a sequence is consistent for all mouse parameter configurations.

to track, while obfuscating the repetition of patterns between mouse
configurations via a method designed for the experiment.

To classify the types of mouse movements, two key aspects are de-
fined that characterize a mouse movement — its direction and length.
The direction of each movement is classified into one of 8 directions
— cardinal (north, south, west, east) and intercardinal (northwest,
northeast, southwest, southeast). By their length, movements belong
into one of three categories — short, medium and long. Combining each
direction and length once, there have to be 24 mouse movements. This
can be structured as 3 rounds, each involving a sequence of 8 numbered
clickable rectangles.

Maintaining consistent sequences of tiles across different mouse
parameter configurations can allow for more exact comparison of the
effects that the mouse configurations have on mouse dynamics. How-
ever, it also creates the risk of participants training themselves on
repeating sequence patterns, becoming more efficient in later iterations
of the activity. To avoid this, the number of rounds is doubled to
the final total of six. Three sequences of squares have the exact same
appearance for every mouse configuration while the other three are
semi-randomized — the tile patterns remain fixed but the position of
squares within the tiles is randomized, giving the sequences a differ-
ent appearance. By also presenting the six sequences to participants
in random order, the fact that the sequences repeat themselves is
obscured.

4.2.3. Website prototype interaction activity
The third observed activity has the same goals as the second, but

with the added aspect that the sequence is clicked by participants
to solve a realistic task in the interactive prototype of a website.
Effectively, the task is designed for the clicking behavior to be similar
to a usability test. This is to allow for the analysis of the effects of
mouse parameter configurations in a more practical scenario on top
of the abstract numbered point clicking task.

As a requirement for comparing mouse parameter configurations,
the ideal mouse movements in prototype interactions needed to be
essentially the same for each configuration. To minimize the chance
that participants would train themselves on the same sequence by
completing the same task multiple times, similarity of mouse move-
ments is obscured by presenting tasks with different meanings. At least
one task variant was needed for each of the five mouse parameter
configurations.

Two website prototypes were designed — one of an ecommerce
website, the other of a coupon website. Three task variants were created
for both sites. In each variant, the context of the task provided within
the instructions is different. Labels within the prototypes are adjusted
during each task to adapt to its context. Between the six task variants
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Fig. 4. Last of three activities in the experiment is an interaction with a prototype. Variant prototypes have different appearance and tasks, but identical positions of clickable
elements.
in total, the ideal mouse paths (layout of elements and the positions of
buttons to be clicked) are either completely identical (within the same
prototype) or with negligible differences (between the prototypes). The
ideal mouse movements have the same length and direction between
the two prototypes, only being distinguished by a small number of
pixels for the sake of granting prototypes distinct appearances). The
study moderator assigns tasks in a deterministic order so that each
task is completed by participants an even number of times with each
configuration. See Fig. 4 for illustration of prototypes and paper’s data
repository for full instructions.

To prevent participants from getting lost within the prototype, at
any moment during the task, only a single button in it is clickable.

4.3. Data collection and measures

In a controlled experiment, mouse tracking data was obtained for
a selection of mouse configurations. Each participant completed the
procedure with every mouse parameter configuration. CPI (Count Per
Inch) and sensitivity settings in the operating system were chosen as
the primary independent variables (collectively making up the eCPI
variable by multiplication). CPI was chosen as an inherent property of
the physical device owned by the user that is potentially but not always
adjustable, while the sensitivity setting in the operating system is a
commonly used option for modifying the speed of cursor movements.
To ensure that the eCPI is the sole variable responsible for potential
differences between samples, the aim was to minimize the impact
of outside factors of the environment by conducting the experiment
presentially in laboratory conditions.

4.3.1. Mouse parameter configurations
To render comparisons between mouse parameter configurations

feasible, specific mouse parameter configurations are granted focus.
Web browsers throttle the frequency of mouse events due to perfor-
mance reasons. A full list of mouse events used to calculate aggregate
events may be accessed,9 but for the purposes of this work, mouse
events are observed at a consistent polling frequency of 60 Hz, as
returned by the V8 JavaScript engine in Google Chrome Browser.

In total, three computer mouse devices are used for the experiment,
chosen to represent a scale of common mouse devices,10 including
average, above-average and gaming-mouse grade CPI (1000, 2400 and
4800 respectively). The typical CPI range for a non-gaming mouse is
between 800 and 1600, while a gaming mouse commonly provides

9 Raw mouse events are accessible in a web browser as coalesced events:
https://www.w3.org/TR/pointerevents3/#dfn-coalesced-events.

10 Patriot Group (computer hardware manufacturer) blog article — ‘‘Gaming
Mouse DPI: Is it Important?’’: https://store.patriotmemory.com/blogs/news/
gaming-mouse-dpi-is-it-important.
9

multiple CPI settings. The default mouse sensitivity of the Windows
operating system (10) was used for all devices. With the 2400 CPI
mouse, the experiment was also conducted on system sensitivity levels
5 and 18, to achieve the effect where the mouse cursor moves with
the perceived speed closer to the low and high CPI mouse devices.
See Table 3 for summary of configurations with corresponding eCPI11

values.

4.3.2. Mouse dynamics metrics
Mouse movement metrics are calculated from pairs of consecu-

tive mouse tracking data points — their coordinates along horizon-
tal/vertical axis and corresponding timestamps. Among others, base
metrics include distance, time and angle differences. One hundred
twenty-one (121) mouse movement metrics are resolved in total by ag-
gregating the base metrics per round, calculating their means, standard
deviations, etc., (see Table 4). The list of all formulas corresponding
with all the metrics is found in Appendix B.

Specific mouse dynamics of temporal and spatial nature were picked
from related works according to plausible expectations for how they
may be affected by mouse configuration. Multiple aggregates are de-
ployed at once, since each of them represents a different aspect of
mouse dynamics, some of which may be affected by changes in mouse
configuration, while others may not. For example, the 5th percentile
may be more informative for some metrics than the minimum value.

4.3.3. Questionnaire
To collect additional information about the participants and the

research activity, a questionnaire appears before every activity iter-
ation. This questionnaire is divided into two blocks — the profiling
questionnaire and the meta information questionnaire.

The profiling block of the questionnaire is filled in by the par-
ticipants only before the first experiment iteration, enabling analysis
of the sample’s demographics and computer literacy. Questions in
the questionnaire include the participant’s age, sex (male, female and
intersex), computer expertise, computer use frequency and employment
status. The moderator handles noting down the currently set up mouse
parameter configuration.

4.4. Participants

In total, 32 participants (𝑀𝑎𝑔𝑒 = 31.3, 𝑆𝐷𝑎𝑔𝑒 = 13) have completed
participation in the controlled experiment. Average length of the ex-
periment is 22 min (𝑚𝑖𝑛 = 17, 𝑚𝑎𝑥 = 28). There is an equal 16-to-16
ratio of the binary sexes (no intersex answers were received), the age
distribution between the sex groups being similar (𝑀𝑓 = 33.44, 𝑆𝐷𝑓 =

11 eCPI calculation verified via eDPI calculator by Omni Calculator: https:
//www.omnicalculator.com/other/edpi.

https://www.w3.org/TR/pointerevents3/#dfn-coalesced-events
https://store.patriotmemory.com/blogs/news/gaming-mouse-dpi-is-it-important
https://store.patriotmemory.com/blogs/news/gaming-mouse-dpi-is-it-important
https://www.omnicalculator.com/other/edpi
https://www.omnicalculator.com/other/edpi
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Table 3
Five mouse configurations utilized by participants during the experiment.

Config. no. Mouse model CPI Sensitivity (OS Windows) eCPI

#1 Microsoft Wireless Mobile Mouse 1850 1000 10 10,000
#2 Dell wm116p 1850 2400 5 12,000
#3 Dell wm116p 1850 2400 10 24,000
#4 Dell wm116p 1850 2400 18 43,200
#5 Trust GXT 101 GAV 4800 10 48,000
Table 4
Mouse dynamics metrics evaluated for impact of mouse configuration.

Feature name Aggregates Feature description

distance Mean, sd, median, min, max, Q5, Q95, sum Distance between consecutive points
flip_x Count x-axis movement direction change
flip_y Count y-axis movement direction change
duration Sum Movement time between consecutive points
velocity Mean, weight. mean, sd, median, min, max, Q5, Q95 Cursor distance over time
velocity_x Mean, weight. mean, sd, median, min, max, Q5, Q95 Cursor distance over time (x-axis)
velocity_y Mean, weight. mean, sd, median, min, max, Q5, Q95 Cursor distance over time (y-axis)
velocity_smooth Mean, weight. mean, sd, median, min, max, Q5, Q95 Smoothed cursor distance over time
pace Mean, weight. mean, sd, median, min, max, Q5, Q95 Time over cursor distance
acceleration Mean, weight. mean, sd, median, min, max, Q5, Q95 Cursor velocity over time
acceleration_x Mean, weight. mean, sd, median, min, max, Q5, Q95 Cursor velocity over time (x-axis)
acceleration_y Mean, weight. mean, sd, median, min, max, Q5, Q95 Cursor velocity over time (y-axis)
acceleration_positive Mean, weight. mean, sd, median, min, max, Q5, Q95 Cursor velocity over time (positive)
acceleration_negative Mean, weight. mean, sd, median, min, max, Q5, Q95 Cursor velocity over time (negative)
angle Mean, sd, median, min, max, Q5, Q95 Current cursor movement direction
corner Count Orthogonal angle change
velocity_angular Mean, weight. mean, sd, median, min, max, Q5, Q95 Movement direction difference over time
curvature Mean, sd, median, min, max, Q5, Q95 Angle change over distance
deviation Mean, sd, median, max, Q5, Q95 Perpendicular distance to ideal path
straightness – Ratio of ideal path to the movement one
s
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14.30,𝑀𝑚 = 29.19, 𝑆𝐷𝑚 = 11.70). Majority of participants (84%) use
the computer at least once a day. Men in the sample report using
the internet more often than women, and express higher confidence
with using a computer (𝑀𝑓 = 6.94, 𝑆𝐷𝑓 = 2.62,𝑀𝑚 = 8.44, 𝑆𝐷𝑚 =
1.60). This is in general alignment with known statistics, such as that
internet usage is more widespread among men.12 Groups of each sex
contain representatives of varied (primarily white-collar) professions;
participants who are students pursue a variety of fields.

A pilot experiment was conducted beforehand with a single par-
ticipant and conditions identical to the genuine participation phase.
No significant findings impacting the experiment design were made
during the pilot. Inspection of mouse interaction data revealed mouse
movements corresponding with relevant mouse targets, qualifying the
experiment design as collecting the required data.

4.5. Data processing and analysis

Mouse tracking data is aggregated into mouse dynamics metrics (see
Table 4) within the scope of each participant’s completion of a task
using a given mouse parameter configuration.

The Shapiro test is used to assess the normality of calculated met-
rics. For assessing differences between mouse configurations and be-
tween the sexes, paired and unpaired tests are used depending on
the sample: paired non-parametric Friedman tests with Kendall’s W
effect size, non-parametric Kruskal–Wallis tests with 𝜂2 effect size or
Mann–Whitney U nonparametric tests with the r effect size. Out of
the total 123 features (121 mouse dynamics metrics plus mouse CPI
and sensitivity), 108 were selected as informative and used in further
analysis. Remaining 15 features with zero variance were discarded.

12 Statista - Internet usage penetration ratios among genders as of Oc-
ober 2023: https://www.statista.com/statistics/1387693/penetration-rate-of-
he-internet-by-gender/.
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4.6. Dataset

The processed dataset (available in the paper’s data repository)
consists of the full sample obtained from the three experiments, each
instance containing a vector of 123 features. For clarity, the dataset is
divided by the experiment activity where its data originates from:

Target shooting minigame dataset. While the mouse dynamics from
warm-up activity are not utilized directly for analysis of results, feature
sets are calculated for the sake of completeness and transparency. The
sample size is 480 — the product of the number of participants (32),
the number of mouse configurations (5) and the number of minigame
rounds (3).

Numbered points clicking dataset. Records of participants clicking on
equences of points with varied mouse configuration. The number of
nstances in the dataset (958), is the product of the number of partic-
pants (32), the number of mouse configurations (5) and the number
f rounds involving clicked point sequences (6). Two instances are
ubtracted due to missing data caused by technical malfunction during
he experiment involving two participants — #7 (female) and #15
male). These participants are excluded from statistical analysis which
ntails paired tests, but are kept as valid inputs for the classification
ask.
Website prototype interaction dataset. 160 instances that capture 32

articipants’ interactions with website prototypes using 5 different
ouse configurations. Utilized in statistical analysis.

.7. Prediction method

The prediction task of classifying biological sex is understood as a
inary classification, simplified compared to real-world biological sex
y containing no intersex option. For machine learning application,
etrics are standardized and transformed using a Yeo–Johnson trans-

ormer. Six machine learning models are used — Logistic regression,
upport vector machine (SVM), Random forest, XGBoost, Catboost, and
ightGBM.

To assess whether the mouse configuration differences have actual
mpact on sex classification performance, classification models are

https://www.statista.com/statistics/1387693/penetration-rate-of-the-internet-by-gender/
https://www.statista.com/statistics/1387693/penetration-rate-of-the-internet-by-gender/
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trained on data from a conjunction of a subset of the five tested
mouse configurations. The conjunction of the training set from multiple
configurations is done to assure sufficient size of the training sample.
The model was trained either on the mouse configurations with the
lowest eCPI (#1, #2, #3), or with the highest eCPI (#3, #4, #5).
To assess differences, prediction was tested on unseen users using the
same configuration as the training sample, or those using the remaining
configurations (#4 and #5 for the first training group and #1 and #2
for the second one respectively).

Identifying a concern that the training and testing datasets would
not contain data from the same participants (even though they are
using different mouse configurations) the sample is split for the predic-
tion task. The training sample contains data from 24 participants (12
women, 12 men) and a testing sample from 8 participants (4 women, 4
men). All machine learning performance metrics are calculated as the
mean of 10 trials, with the participants split into different testing and
training sets randomly for each trial (the same 10 splits utilized for
every machine learning method).

Feature selection is performed by choosing statistically significant
features determined by the Mann Whitney U-test, followed by scikit-
learn’s13 SelectFromModel feature selection. Optimization of prediction
s achieved via randomized grid search for hyperparameter tuning, with
weaking of the cutoff threshold value using AUC scores (the best true
ositive to false positive ratio). Accuracy (ACC), recall (R), precision
P), F1 score (F1) and AUC score (AUC) are observed as performance
etrics.

. Results

.1. Mouse parameter impact on mouse dynamics (RQ1)

RQ1: What effect do different mouse eCPI configurations have on metrics
alculated from raw mouse interaction data?

To assess the impact of individual mouse configurations, employing
he Friedman test, differences between five mouse configurations are
auged by calculating mouse dynamics metrics using data from the
umbered points clicking and prototype interaction activities. The full
ist with all affected metrics can be found in Table 9.

During the numbered points clicking activity, mouse sensitivity
ignificantly affects 83 out of 108 calculated metrics. Among the five
ost affected are the median of positive acceleration, 𝜒2(2, 𝑁 = 480) =
50.81, 𝑝 < .001,𝑊 = .42, mean of positive acceleration, 𝜒2(2, 𝑁 =
480) = 133.30, 𝑝 < .001,𝑊 = .37, maximum velocity, 𝜒2(2, 𝑁 = 480) =
115.88, 𝑝 < .001,𝑊 = .32, median of negative acceleration, 𝜒2(2, 𝑁 =
480) = 115.14, 𝑝 < .001,𝑊 = .32 and mean of regular acceleration,
𝜒2(2, 𝑁 = 480) = 112.30, 𝑝 < .001,𝑊 = .31.

During the prototype activity, 73 out of 108 metrics are significantly
affected by mouse sensitivity, most among them the fifth percentile of
acceleration, 𝜒2(2, 𝑁 = 480) = 37.56, 𝑝 < .001,𝑊 = .59, 95th percentile
of acceleration, 𝜒2(2, 𝑁 = 480) = 36.19, 𝑝 < .001,𝑊 = .57, fifth
percentile of acceleration along the y axis, 𝜒2(2, 𝑁 = 480) = 36.19, 𝑝 <
.001,𝑊 = .57, 95th percentile of positive acceleration, 𝜒2(2, 𝑁 = 480) =
35.69, 𝑝 < .001,𝑊 = .56 or mean of negative acceleration, 𝜒2(2, 𝑁 =
480) = 34.56, 𝑝 < .001,𝑊 = .54.

CPI has a significant impact on 89 out of 108 mouse dynamics
metrics during the numbered points activity. The highest impact was
discovered to be on the median of positive acceleration 𝜒2(2, 𝑁 =
480) = 208.21, 𝑝 < .001,𝑊 = .58, median of negative acceleration
𝜒2(2, 𝑁 = 480) = 207.74, 𝑝 < .001,𝑊 = .58, mean of positive
acceleration 𝜒2(2, 𝑁 = 480) = 178.01, 𝑝 < .001,𝑊 = .49, 5th percentile
of acceleration, 𝜒2(2, 𝑁 = 480) = 174.98, 𝑝 < .001,𝑊 = .49 or total
duration, 𝜒2(2, 𝑁 = 480) = 169.88, 𝑝 < .001,𝑊 = .47.

13 Scikit-Learn, python library with machine learning tools: https://scikit-
earn.org/stable/.
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During the prototype activity, CPI affected 76 out of 108 features.
Metrics such as mean of acceleration, 𝜒2(2, 𝑁 = 480) = 34.31, 𝑝 <
001,𝑊 = .54, 95th percentile of positive acceleration, 𝜒2(2, 𝑁 = 480) =
33.25, 𝑝 < .001,𝑊 = .52, mean of positive acceleration, 𝜒2(2, 𝑁 =
480) = 32.25, 𝑝 < .001,𝑊 = .50, mean of acceleration along the y
axis, 𝜒2(2, 𝑁 = 480) = 31.94, 𝑝 < .001,𝑊 = .50 or 95th percentile of
regular acceleration, 𝜒2(2, 𝑁 = 480) = 31.94, 𝑝 < .001,𝑊 = .50 were
significantly affected.

In all cases, among the most impacted metrics are the aggregates
of acceleration, velocity and distance, although each feature group
(e.g., acceleration related metrics, velocity related metrics) contains
significantly affected aggregates. When participants are divided into
five groups by eCPI (product of CPI and mouse sensitivity), eCPI affects
95 out of 108 features in the numbered points clicking activity and 84
out of 108 in the prototype activity.

5.2. Adjustment to new mouse configuration (RQ2)

RQ2: What amount of mouse activity do users need to adapt to a new
mouse, so that differences in mouse dynamics between adapted users can be
safely compared?

During each iteration’s target shooting minigame, when participants
first start using a new mouse configuration, according to the Friedman
test, there are significant differences between the three consecutive
rounds in terms of game performance, evaluated as target hits for the
whole sample, 𝜒2(2, 𝑁 = 495) = 77.46, 𝑝 < .001,𝑊 = .24.

When evaluating differences in game performance for individual
mouse configurations in a specific order of iterations (ascending or
descending eCPI), a significant difference between consecutive rounds
of the minigame is present only for the highest eCPI configuration
when it is presented as first, 𝐻(2, 𝑛 = 48) = 10.21, 𝑝 = .006, 𝜂2 =
.18 (Kruskal–Wallis test). When the order of iterations is discounted,
significant differences between rounds are present solely for the highest
eCPI configuration. Following post hoc tests in both cases show that
differences are pronounced only between the first and the third (last)
round (𝑝 = .002).

Conducting comparison between different placements of the same
mouse configuration depending on the iteration order, significant dif-
ferences are found for the high eCPI configurations #4 and #5. For
the second-highest eCPI configuration #4, depending on whether it
was presented during the second or the fourth iteration, significant
differences in game performance exist during the first round, 𝑧 =
−1.98, 𝑝 = .045, 𝜂2 = −.35 (Mann Whitney test). For the highest eCPI
configuration #5, depending on whether it was presented during the
first or the last iteration, significant differences manifest between both
the first round, 𝑧 = −3.13, 𝑝 = .002, 𝑟 = −.55, and the second round, 𝑧 =
−2.02, 𝑝 = .042, 𝑟 = −.36. These differences can be further highlighted
by observing that when the activity starts with highest eCPI, target hits
improve between rounds the most significantly (𝑀𝑟1 = 10.13,𝑀𝑟2 =
11.81,𝑀𝑟3 = 13.06), while during the last iteration the target hits are
more consistent (𝑀𝑟1 = 13.38,𝑀𝑟2 = 13.63,𝑀𝑟3 = 13.94).

5.3. Mouse parameter impact on classification of sex (RQ3)

RQ3: What is the effect of different mouse eCPI configurations on the
performance of prediction using mouse dynamics features?

Prediction of biological sex is developed to illustrate the prospect of
eCPI influencing a machine learning model’s accuracy. Since innovation
or optimization to achieve the best prediction of biological sex are
not part of the focus of this work, standard methods and models are
employed in a straightforward manner. To apply machine learning to
mouse dynamics features for the task of predicting the user’s biological
sex, relevant mouse dynamics features are selected according to their
statistical significance, as calculated by the Mann–Whitney U test.
Features in the prediction are resolved from the data obtained as part
of the numbered points clicking activity.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Table 5
Before the tuning, prediction of biological sex using mouse dynamics data from all mouse configurations yields the best results for Logistic
regression, Random Forest and CatBoost. *After tuning, the most accurate model is CatBoost, achieving the F1-score of .625.

Model Sensitivity & CPI info Features Accuracy Precision Recall F1 score AUC score

CatBoost – 15 .587 .588 .587 .587 .635
Included 17 .590 .591 .590 .589 .635

LightGBM – 15 .584 .584 .584 .583 .614
Included 17 .571 .571 .571 .570 .605

Logistic Regression – 15 .608 .608 .608 .608 .643
Included 17 .606 .606 .606 .606 .641

Random Forest – 15 .591 .592 .591 .591 .627
Included 17 .587 .587 .587 .586 .628

SVM – 15 .534 .536 .535 .533 .554
Included 17 .529 .531 .529 .526 .546

XGBoost – 15 .567 .567 .566 .566 .601
Included 17 .585 .586 .585 .584 .607
Table 6
Best performing models after hyperparameter tuning, feature selection and ROC threshold optimization.

Tuned model Accuracy Precision Recall F1 score AUC score

CatBoost .612 .639 .616 .592 .621
Logistic Regression .6 .619 .6 .575 .585
Random Forest .610 .626 .610 .585 .6
Sex differences significantly affect 61 out of 108 mouse dynamics
features according to Mann Whitney tests. The most impacted features
include standard deviation of curvature, 𝑧 = 6.01, 𝑝 < .001, 𝑟 = .20,
negative weighted mean of acceleration, 𝑧 = −5.46, 𝑝 < .001, 𝑟 = −.18,
the 95th percentile of curvature, 𝑧 = 5.4, 𝑝 < .001, 𝑟 = .18, mean
of curvature, 𝑧 = 5.39, 𝑝 < .001, 𝑟 = .18 and the 5th percentile of
negative acceleration, 𝑧 = −5.15, 𝑝 < .001, 𝑟 = −.17. Overall, the most
affected features are related to curvature, acceleration and velocity,
even though there is at least one aggregate in each feature group that
is affected. Corresponding to the size of the sample, the top 15 most
affected features were selected as the input for machine learning. The
full list with all affected features is found in Table 9.

To validate classification of biological sex based on mouse dynamics
features as a suitable representation of a prediction task where the
impact of mouse configuration can be explored, machine learning
models were trained using data from all mouse configurations in the
numbered points clicking activity. A version of each model is also
trained with additional features explicitly containing information on
mouse sensitivity and CPI to assess their potential role in prediction.
See Table 5 to see the performance metrics of all models before the
tuning.

Before performance metrics of the prediction methods are reported,
note that the objective of this work is not present a novel model with
remarkable performance. Rather, it is to show how performance metrics
can be changed by difference in mouse dynamics. Among the baseline
models, the best is Logistic Regression, (𝐹1 = .608, 𝐴𝑈𝐶 = .627)
without CPI and sensitivity features and (𝐹1 = .606, 𝐴𝑈𝐶 = .628)
and with the same features. Direct addition of CPI and sensitivity
features does not significantly impact the classification performance
metrics. Furthermore, feature selection did not select CPI and mouse
sensitivity as relevant features. Three best-performing algorithms –
CatBoost, Random Forest and Logistic Regression – were tuned for final
classification of biological sex. After hyperparameter tuning, feature
selection and choosing an optimized classification probability threshold
in accordance with the ROC curve (see Fig. 5) the final best performing
model is CatBoost that classifies unseen participants’ sex with 𝐴𝐶𝐶 =
.612, 𝐹1 = .592, 𝐴𝑈𝐶 = .621 (see Table 6).

With classification of biological sex based on mouse dynamics
proven as viable through a selection of multiple machine learning
methods, the prerequisite condition for assessing the impact of mouse
configuration on a realistic case of classification has been satisfied. To
investigate the answer to the research question, prediction performance
12
Fig. 5. ROC curve (average) of final CatBoost predictive models with the F1 score of
.592, used for the model optimization.

is assessed separately for seen and unseen mouse configurations (see
4.7 Prediction method). Resulting performance metrics (see Table 7)
show that when the models are tested with mouse dynamics obtained
with the same mouse configuration, overall, the performance metrics
achieve better results than with other unseen configurations (even if
sometimes the size of the difference is small). Similar result differences
are also visible in AUC scores. Answer to research question RQ3
follows: evaluation with different mouse eCPI configurations can result
in non-negligible differences in prediction performance.

6. Discussion

Learnability of mouse control (see RQ2) presents itself as a valid
concern for experiment design, particularly in experiments with users
asked to work with high-eCPI mouse devices. Findings presented here
can be attributed to the effect of mouse configurations themselves,
rather than the temporary effects of the participants adapting to the
mouse configuration. This is courtesy of the target shooting minigame
activity, which precedes the other activities involved with evaluation
of the effects of mouse configurations on mouse dynamics and machine
learning prediction featuring them (RQ1 and RQ3 respectively). The
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Table 7
Comparison of performances of classification models according to the source of mouse dynamics features used for training and testing. Datasets #1 to #5 group mouse dynamics
from five mouse parameter configurations in ascending order of eCPI (1 - lowest, 5 - highest). When trained on low eCPI and tested on high eCPI, or the exact opposite, prediction
performance metrics drop.

Model Trained on Tested on Accuracy Precision Recall F1 score AUC score

CatBoost #1, #2, #3 #1, #2, #3 .553 .553 .553 .550 .596
#4, #5 .576 .578 .576 .574 .605

#3, #4, #5 #3, #4, #5 .587 .588 .587 .586 .636
#1, #2 .574 .575 .574 .572 .608

LightGBM #1, #2, #3 #1, #2, #3 .554 .553 .552 .551 .576
#4, #5 .526 .526 .526 .526 .557

#3, #4, #5 #3, #4, #5 .568 .570 .570 .567 .605
#1, #2 .563 .565 .563 .561 .572

Logistic Regression #1, #2, #3 #1, #2, #3 .601 .601 .601 .600 .638
#4, #5 .575 .575 .575 .574 .609

#3, #4, #5 #3, #4, #5 .620 .620 .620 .619 .646
#1, #2 .583 .583 .583 .583 .606

Random Forest #1, #2, #3 #1, #2, #3 .562 .562 .563 .560 .595
#4, #5 .541 .541 .541 .540 .576

#3, #4, #5 #3, #4, #5 .606 .609 .607 .605 .646
#1, #2 .572 .573 .572 .569 .608

SVM #1, #2, #3 #1, #2, #3 .614 .615 .615 .613 .639
#4, #5 .576 .576 .576 .575 .608

#3, #4, #5 #3, #4, #5 .612 .611 .611 .610 .643
#1, #2 .577 .577 .577 .577 .599

XGBoost #1, #2, #3 #1, #2, #3 .562 .563 .562 .560 .580
#4, #5 .547 .548 .547 .547 .575

#3, #4, #5 #3, #4, #5 .586 .586 .586 .585 .627
#1, #2 .571 .572 .570 .568 .567
difference in game performance between rounds 1 and 3 being no
longer present between rounds 2 and 3 attests to the participants grow-
ing accustomed to the mouse configuration in the course of the game.
Achieving more consistent game performance exclusively in instances
of users wielding a mouse with high eCPI, confirms that the user has
adapted to mouse configuration, not only the task (game) itself. Because
participants may be used to different mouse configurations, in experi-
ments where participants are not using their own devices, a warm-up
activity of similar intensity to the target-shooting minigame should be
employed, letting participants adapt to the mouse configuration to a
sufficient degree. In within-subject research methods, this may be seen
as needed, to prevent the acclimatization to a mouse configuration from
having an effect on user behavior during the initial condition.

According to our analysis of the answer to RQ1, the majority of
mouse dynamics metrics evaluated are significantly affected by mouse
configuration. Among the top affected features are primarily the ones
related to acceleration and velocity, but there are significantly affected
metrics in all assessed metric groups. The evaluated metrics were all
adopted in reference to existing research on mouse dynamics, which to
various degrees neglects to address mouse parameter configuration (see
2.2 Mouse dynamics features). Thus, the sets of mouse configuration
parameters utilized in research design (whether specified implicitly
or explicitly) should be considered a key design variable. This claim
does not seek to invalidate any previous research that employs mouse
dynamics without fully addressing mouse configuration, but rather to
contextualize it. More transparent and thorough reporting of mouse
configuration can prevent potential methodological concerns about
the presence of unaccounted-for third variables. Broader discussion
about ecological validity can be opened about methods and techniques
to be used in uncontrolled environments, where mouse configuration
parameters may vary between different users in real-world conditions,
but also between interactions by the same user.

Commonly used mouse dynamics depend on both the counts per
inch (CPI) of the mouse device and the sensitivity setting in the
operating system. CPI and sensitivity act as variables in the function
mapping the speed of the physical mouse device to the effective speed
of the virtual mouse cursor. Reports of controlled experiments linked
to mouse dynamics should state the details of the mouse configuration
13

being used to ensure the experiment’s reproducibility, in agreement
with Schoemann et al. [16], so that future research is comparable
to the state of the art. Without information on mouse configuration,
results achieved by research have ambiguous meaning (eCPI could be
the hidden variable that caused any differences). The information that
research should report includes the mouse CPI and sensitivity set in the
operating system or application. The state of the acceleration setting
being turned on or off should be reported as well, since it also affects
the mutual relation of hand speed and cursor speed.

Aforementioned differences in mouse dynamics caused by the mouse
configuration are observed not only in the more abstract numbered
points clicking activity, but also in the website prototype interaction
activity. Mouse dynamics’ adjustment to mouse parameters may there-
fore be reasonably expected in realistic mouse interaction scenarios,
such as internet browsing. Discrepancies in which of the specific mouse
dynamics are affected between the two activities can be explained
by differences in the activity context (task, user interface layout).
The numbered points clicking task is cognitively linear, engaging only
the pre-school level ability to count to 8. By contrast, in the task
of visually scanning the user interface of a website and determining
the strategy to solve a problem (the meaning of which is also more
open to personal interpretation than straightforward counting), the
participant’s reasoning skills enter the equation. Mouse dynamics may
manifest differently due to variable type of cognitive activity.

When high eCPI is presented to participants as the first mouse
configuration, learning (witnessed via the improvement in game per-
formance between rounds) is significant. By comparison, if participants
are exposed to high eCPI during the latter half of the experiment, there
is a comparatively notable lack of similar performance growth. This
suggests that the act of learning to use a specific mouse configuration
can warp mouse behavior further, particularly during tasks that users
are unfamiliar with. When a participant is learning in multiple aspects
at the same time — mastering an unfamiliar mouse configuration while
also completing a research task that they have just been introduced to,
this can be expected to multiplicatively increase the steepness of the
learning curve.

Notably, the target shooting minigame designed for our experi-
ment is a mouse-interaction-heavy activity, with the 15-second rounds
having a low level of granularity for the marking of changes in per-

formance. It is possible that a certain degree of learning is needed to
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become accustomed to eCPI values other than the highest eCPI, but
this was not captured due to the granularity level. The target shooting
minigame seen in the study is intensive enough to arguably enable
fast learning, within the scope of a single round. If interactions that
are more sparse on mouse movements were presented without even
a single round of a similar warm-up, mouse dynamics may continue
being affected by continuous learning. Further research on this topic is
warranted.

The machine learning task of predicting the user’s sex based on
mouse dynamics features shows a significant impact of mouse config-
uration on prediction performance (see RQ3). The final tuned model
is able to detect the user’s sex with the F1 score of .592. However,
investigation shows that prediction performance does tend to drop
when the classified input uses a mouse configuration with an eCPI that
was not part of the training sample. Because of the significant statistical
effect of mouse configuration on most mouse dynamics, we posit that
the differences in performance caused by mouse configuration could
potentially even be higher in prediction models that are more effective
than the model used in the case study. A model that is seemingly
well-adjusted to solving its particular prediction task could behave in
unexpected ways when exposed to data retrieved from unknown mouse
configurations. This bears significant implications on methodological
credibility of any past and future works that use mouse dynamics as
the basis of making predictions. Without accounting for varied mouse
configurations, there are limitations to understanding the meaning of
results achieved via mouse-dynamics-based methods, their replication
and comparison with other methods.

The fact that mouse parameters used as explicit features are found
irrelevant for prediction may appear counterintuitive at first, given the
above findings about mouse configuration impacting mouse dynamics
and prediction performance. However, this can be interpreted as the
information about eCPI already being encoded in the mouse dynam-
ics that it affects, thus making a further explicit declaration or the
parameters redundant information for classification purposes.

Differences between the mouse dynamics of the biological sexes
(a prerequisite for successful classification) could be caused by a va-
riety of factors, including physiological, psychological, social or be-
havioral. Because of people’s individual differences, while some fac-
tors may be inherently linked with biological sex, others may merely
have some degree of correlation without being definitive indicators
(e.g., male/female stereotypical habits such as gaming with preferences
for specific genres or platforms could impact typical mouse behavior).
Identifying, understanding and controlling these variables may lead
to more effective classification of the biological sex. Since the reason
for the use of classification in this research is to explore how classifi-
cation results can be affected by alterations to mouse configurations
(the primary controlled conditions), rather than the development of
classification itself, consideration of these aspects is out of scope of this
paper.

In the more website prototype interaction activity, reduced dif-
ferences between the sexes may be explained by higher cognitive
complexity of the task. Explorative analysis shows that mouse tra-
jectories are considerably more different in this task, as participants
actively look for the solution (instead of simply visually scanning for a
number in the numbered points clicking activity). This is true for both
observed sexes. Different methods of aggregating mouse dynamics may
be suitable to identify sex differences in website interaction.

7. Implications

The following implications can be drawn for practical application
in mouse dynamics research:

• Methodologies for conducting controlled experiments to obtain
data for mouse dynamics should report the parameters of the
mouse configuration being used (CPI, sensitivity at minimum).
14
In within-subject research, explicit attention should be paid to
mouse configuration being consistent between condition environ-
ments. For examples of impacted research, see: Monaro et al. [2],
Yamauchi et al. [8], Balen et al. [9], Siddiqui et al. [10], Hucko
et al. [15], Almanji et al. [44].

• To achieve more flexible machine learning models, multiple var-
ied mouse configurations should be deployed in parallel as part
of data collection methods.

• If the source of mouse dynamics is an uncontrolled experiment
where reporting the parameters of the observed mouse con-
figurations is not feasible, the methods utilizing thus obtained
datasets should be validated on a testing sample representing
varied mouse configurations. For examples of impacted research,
see: Kuric et al. [1], Fernández-Fontelo et al. [4], Gardey et al.
[5], Sulikowski et al. [14], Pepa et al. [23], Arapakis and Leiva
[30], De Santana et al. [42].

• For mouse dynamics to mirror natural mouse behavior, they
should be harnessed from eCPI that the participants are used to,
either by verifying the participant’s native mouse configuration,
or exposing them to the new configuration via sufficient warm-up.

• Mouse dynamics normalization approaches (as covered in 2.4
Normalization of mouse dynamics features) may have value (or
could be seen as imperative) for methodologically correct use of
mouse dynamics in real-world conditions where consistent mouse
configuration is not guaranteed.

8. Limitations and future work

Conducting a controlled experiment involving multiple different
mouse configurations from the same users is time-taxing. Although the
obtained dataset is of suitable size to answer our research questions,
a more rich dataset could help answer followup questions, such as
how mouse dynamics change when the user is adjusting to a new
mouse configuration. It may be desirable to conduct an experiment with
known information about mouse parameter configuration over longer
periods of time, with more participants and involving real usage of
a computer (e.g. internet browsing). A bigger dataset could provide
additional variability that may contribute to more highly accurate
predictive models and statistical results.

All participants in the experiment use mouse configurations in one
of two predetermined orders (ascending and descending eCPI) rather
than a different (e.g. fully randomized order). This means that the
dataset does not contain data on swaps between mouse configurations
that might be valuable for further analysis of user adaptation to a
different mouse configuration. Future research dedicated to mouse
learnability may be inclined to accentuate its focus on the order in
which mouse devices are presented.

Of all the mouse configuration parameters, two were assessed in
this study — the CPI of the mouse hardware and the mouse sensitivity
setting via software. The acceleration setting in the operating system
was not assessed by this work. This setting (as explained in 2.1 Com-
puter mouse parameters) causes the cursor to move longer distances the
faster the mouse movements are and vice versa. This could potentially
have an impact on the mouse dynamics features as well, as well as
other factors such as mouse polling frequency, weight, ergonomics,
screen size and physical properties of the mousepad/surface beneath
the mouse.

Normalization of participants’ game performance between rounds
of the initial target shooting minigame when the mouse eCPI is high
shows that users learn to use the new mouse configuration. Due to
the low granularity of the rounds, the experiment does not prove
or disprove whether more nuanced deviation in eCPI also leads to
temporary abnormalities in mouse behavior of a smaller scope. It is
possible that the user may quickly adapt to small eCPI changes during
a fast-paced game, where there is ample opportunity to practice their
aim. Meanwhile, during less aim-focused interactions, mouse behavior
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abnormalities may be diffused into mouse dynamics over the length
of a longer interaction. Assessment of differences in initial mouse
movements after changing mouse eCPI in realistic usage conditions
could justify or repudiate the need for a warm-up task when tracing
the usage of a mouse that the user is unfamiliar with.

Given that the inclusion of a mouse configuration in the training
set increases the likelihood that samples using this configuration will
be classified correctly, this raises the question about the relation-
ship between the number of mouse parameter configurations used
for training and prediction performance. More representative training
set could simply mean more accurate prediction, or there could be a
tradeoff between the number of mouse configurations and the accuracy
of the prediction model. Future research could design methods for
optimization of threshold on the number of mouse configurations, or for
selection of the most effective mouse configurations to train prediction
models on.

The role that mouse configuration plays for mouse dynamics may be
more crucial in use cases like biometric authentication. In comparison
to predictions of more general phenomena, such as user characteristics,
intent, attention or emotion, identification of a specific user is at severe
risk of becoming unreliable if mouse dynamics are highly dependent on
what mouse parameter configuration the individual user is currently
on.

9. Conclusion

Are mouse dynamics a credible source of information that can
drive unobtrusive user modeling, recommendations, or authentication?
A conclusion can be drawn that they still probably can be. But a
methodology supporting the usage of mouse dynamics also needs to
acknowledge that the mouse at the user’s disposal is not always the
same device. Mouse dynamics obtained with each individual mouse
are ruled by a unique set of technological and environmental circum-
stances, introducing an additional layer of variability to account for.
Contemporary classification methods demonstrably perform worse on
unseen mouse configurations. At the same time, it is common for works
focusing on mouse dynamics to lack proper reporting on the mouse
parameters used and/or to not evaluate how different mouse parameter
configuration may affect its results. With this work, we hope to open
up a discussion that will lead to improvement of future methodologies
involving mouse dynamics and to advancement in ecological validity
of related methods.
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Appendix A. Research utilizing mouse dynamics

Mouse dynamics as utilized for varied purposes in literature, struc-
tured by type of research and how mouse configurations is addressed,
available in Table 8.

Appendix B. Mouse dynamics metrics formulas

Assuming 𝛥𝑥 = 𝑥𝑖+1 − 𝑥𝑖, 𝛥𝑦 = 𝑦𝑖+1 − 𝑦𝑖 and 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖 (coordinate
and time differences between consecutive data points), list of derived
metrics is available below. These metrics are further aggregated as
counts, means, etc.

The distance is an euclidean distance between two consecutive
points:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
√

(𝛥𝑥)2 + (𝛥𝑦)2 (1)

The flip is a change in direction. Direction is a binary variable of
value 1 if the distance change of the coordinate is positive (movement
to the right for flip_x or down for flip_y), otherwise it is −1:

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑥 =

⎧

⎪

⎨

⎪

⎩

+1 𝛥𝑥 > 0
−1 𝛥𝑥 < 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

𝑓𝑙𝑖𝑝_𝑥 =

⎧

⎪

⎨

⎪

⎩

1 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑥𝑖 = 1 ∧ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑥𝑖−1 = −1
1 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑥𝑖 = −1 ∧ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑥𝑖−1 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑦 =

⎧

⎪

⎨

⎪

⎩

+1 𝛥𝑦 > 0
−1 𝛥𝑦 < 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

𝑓𝑙𝑖𝑝_𝑦 =

⎧

⎪

⎨

⎪

⎩

1 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑦𝑖 = 1 ∧ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑦𝑖−1 = −1
1 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑦𝑖 = −1 ∧ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑦𝑖−1 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

The duration is simply the time difference between consecutive
points:

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝛥𝑡 (6)

The velocity is a change of distance over duration. When considering
individual axes, only the distance in that particular axis comes into the
equation for velocity_x and velocity_y :

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(7)

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑥 = 𝛥𝑥
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(8)

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑦 =
𝛥𝑦

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
(9)

The velocity_smooth is a change in distance calculated from smoothed
coordinates with Savitzky–Golay filter over duration:

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑠𝑚𝑜𝑜𝑡ℎ =

√

(𝛥𝑥𝑠𝑎𝑣𝑔𝑜𝑙)2 + (𝛥𝑦𝑠𝑎𝑣𝑔𝑜𝑙)2

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
(10)

The pace is a change of duration over the distance:

𝑝𝑎𝑐𝑒 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(11)

http://github.com/micemicsresearch/mouse-dynamics-data-credibility
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Table 8
Overview of research utilizing mouse dynamics. The majority of experiment design is between-subject, which is more vulnerable to differences in mouse configuration. Normalization
approaches that may mitigate the effects of mouse configuration have been tackled, but are rare.

Source Area of research Experiment design Environment Mouse configuration User differences normalization

Sulikowski et al.
[14]

E-commerce
recommendations

Between-subject Remote uncontrolled Unspecified None

Hucko et al. [15] Confusion detection Between-subject Laboratory controlled Unspecified None
De Santana et al.
[42]

XAI interaction prediction Between-subject Remote uncontrolled Unspecified None

Chen et al. [43] Search engine satisfaction
prediction

Between-subject Laboratory controlled Unspecified None

Khan et al. [35] Personality traits
measurement

Between-subject Remote uncontrolled Unspecified None

Pentel [7] Age and gender
prediction

Between-subject Remote uncontrolled Unspecified None

Fernandez-Lanvin
et al. [6]

Age and gender
personalization

Between-subject Remote uncontrolled Unspecified None

Yamauchi et al. [8] Gender differences Between-subject Laboratory controlled Dell 0C8639 USB 2
Button Scrollwheel
Optical Mouse,
pointer speed set to
medium

None

Kratky and Chuda
[21]

Gender classification Between-subject Remote uncontrolled Unspecified None

Balen et al. [9] Gender classification Between-subject Laboratory controlled Unspecified Not of individual differences, based on target
parameters (e.g,, distance, size)

Almanji et al. [44] Effects of cerebral palsy
impairment

Between-subject Laboratory controlled Lenovo M/N:
LXH-MOAFUO USB -
PN 25007694

Not of individual differences, spatially
normalized measures

Chong et al. [31] User authentification Between-subject Remote uncontrolled Unspecified Not of individual differences, standardization
to 0-1 interval

Hu et al. [32] User authentification Between-subject Remote uncontrolled Unspecified None
Siddiqui et al. [10] User authentification Between-subject Laboratory controlled Dell MS116 USB

Optical Mouse
None

Zheng et al. [27] User authentification Between-subject Laboratory controlled
and remote
uncontrolled

Unspecified None

Antal and
Egyed-Zsigmond [11]

Intrusion detection Between-subject Remote uncontrolled Unspecified None

Chu et al. [12] Bot detection Between-subject Remote uncontrolled Unspecified None
Antal et al. [45] Dataset for user

authentification
Between-subject Remote uncontrolled Unspecified None

Antal et al. [46] Creating human like
trajectories

Between-subject Remote uncontrolled Unspecified None

Shen et al. [33] User authentification Between-subject Remote uncontrolled Unspecified None
Martín-Albo et al.
[47]

User intent detection Between-subject Remote uncontrolled Unspecified None

Kuric et al. [1] Repeat purchase
prediction

Between-subject Remote uncontrolled Unspecified None

Monaro et al. [2] Fake response detection Between-subject Laboratory controlled Unspecified Not of individual differences, linear
interpolation of trajectory points (spatial
normalization)

Leiva and Huang
[48]

Mouse-dynamics data
compression

Between-subject Laboratory controlled
and remote
uncontrolled

Unspecified None

Arapakis and Leiva
[30]

User attention prediction Between-subject Remote uncontrolled Unspecified Not of individual differences, interpolation by
the size of viewport

Seelye et al. [34] Cognitive impairment
prediction

Between-subject Remote uncontrolled Unspecified None

Maldonado et al.
[25]

Cognitive processes
prediction

Between-subject Remote uncontrolled Unspecified None

Grage et al. [19] Mouse-tracking design Between-subject Laboratory controlled Logitech RX1500,
sampling rate 92 Hz,
resolution 1000 dpi

None

Fernández-Fontelo
et al. [4]

Survey question difficulty
prediction

Between-subject Remote uncontrolled Unspecified Personalization (normalization) method that
adjusts for respondents’ baseline mouse
behavior observed while answering questions
without manipulated higher difficulty.

Leiva et al. [29] Web browsing privacy Between-subject and
within-subject

Remote uncontrolled Unspecified None

Shen et al. [33] User authentification Between-subject and
within-subject

Remote uncontrolled Unspecified None

Cai et al. [13] Mouse feature variability
assessment

Between-subject and
within-subject

Laboratory controlled USB HP optical
mouse, further
unspecified

Normalization and feature reduction to
mitigate noise, improving performance in
authentication task. Unknown whether the
approach may effectively normalize mouse
configuration differences in addition to
between-session noise — lab experiment
utilizes further unspecified HP optical mouse.

Gardey et al. [5] Interaction effort
prediction

Within-subject Remote uncontrolled Unspecified None

Pepa et al. [23] Stress detection Within-subject Remote uncontrolled Unspecified None
Guo and Agichtein
[3]

Web searcher goals
prediction

Within-subject Remote uncontrolled Unspecified None

Freihaut and Göritz
[22]

Stress measurement Within-subject Laboratory controlled Logitech B100,
optical USB mouse
with 800 dpi

Not of individual differences, linear
interpolation of trajectory points (spatial
normalization)

Wilson et al. [49] Plagiarism detection Within-subject Remote controlled Unspecified Z-score normalization method between samples
where participant answers follow-up questions
about an essay they authored and an
AI-generated essay.
16
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𝑎

Table 9
Statistical tests results for differences between mouse configurations (Sensitivity and CPI - Friedman test) and sexes (Mann Whitney test) during individual activities.

Feature group Feature name Points clicking activity Website prototype activity

Sensitivity CPI Sex Sensitivity CPI Sex
𝜒2(2, 𝑁 = 480) 𝜒2(2, 𝑁 = 480) 𝑧(𝑁 = 900) 𝜒2(2, 𝑁 = 480) 𝜒2(2, 𝑁 = 480) 𝑧(𝑁 = 900)

Acceleration acceleration_max 53.58*** 33.08*** 1.37 18.81*** 11.44** −0.6
acceleration_mean 107.03*** 67.41*** 1.19 16.19*** 34.31*** −0.67
acceleration_mean_weighted 1.96 0.01 0.54 1.31 0.56 −0.7
acceleration_median 9.06* 55.31*** 0.7 7.6* 29.11*** 2.02*
acceleration_min 27.23*** 7.54* −2.59* 21.0*** 12.25** −0.53
acceleration_q5 35.73*** 174.98*** −5.02*** 37.56*** 25.0*** 0.86
acceleration_q95 88.04*** 128.81*** 3.79*** 36.19*** 31.94*** −0.84
acceleration_std 83.81*** 63.74*** 3.14** 31.69*** 17.06*** −0.34

Negative acceleration acceleration_negative_max 4.05 5.46 −0.86 1.69 9.81** 0.13
acceleration_negative_mean 85.28*** 138.01*** −4.6*** 34.56*** 16.19*** 0.34
acceleration_negative_mean_weighted 4.74 149.21*** −5.46*** 13.19** 7.75* −0.13
acceleration_negative_median 115.14*** 207.74*** −1.38 28.94*** 31.69*** 0.8
acceleration_negative_min 27.23*** 7.54* −2.59* 21.0*** 12.25** −0.53
acceleration_negative_q5 23.41*** 86.93*** −5.15*** 19.0*** 12.44** 0.27
acceleration_negative_q95 5.68 34.88*** 0.17 5.69 8.06* 0.38
acceleration_negative_std 31.51*** 24.58*** 4.24*** 25.0*** 13.19** 0.06

Positive acceleration acceleration_positive_max 53.58*** 33.08*** 1.37 18.81*** 11.44** −0.6
acceleration_positive_mean 133.3*** 178.01*** 3.3*** 33.06*** 32.25*** −0.84
acceleration_positive_mean_weighted 97.34*** 107.88*** 3.62*** 25.19*** 10.75** 0.08
acceleration_positive_median 150.81*** 208.21*** 3.01** 30.44*** 28.31*** −0.99
acceleration_positive_min 0.11 4.9 0.28 6.44* 6.72* 1.25
acceleration_positive_q5 10.68** 26.21*** −1.25 13.0** 4.56 −0.47
acceleration_positive_q95 79.54*** 118.18*** 3.77*** 35.69*** 33.25*** −1.45
acceleration_positive_std 72.74*** 75.03*** 2.47* 20.44*** 15.25*** −0.5

Acceleration X acceleration_x_max 71.71*** 27.41*** 1.72 17.31*** 4 0.43
acceleration_x_mean 112.3*** 80.48*** 1.11 13.19** 22.94*** −0.26
acceleration_x_mean_weighted 5.13 1.82 −0.73 0.5 1.76 1.67
acceleration_x_min 28.54*** 2.47 −3.66*** 16.75*** 9.19* −1.37
acceleration_x_q5 19.14*** 161.81*** −5.09*** 24.19*** 23.31*** 0.46
acceleration_x_q95 89.21*** 136.9*** 4.31*** 30.44*** 23.69*** −0.45
acceleration_x_std 81.23*** 74.01*** 4.16*** 26.31*** 10.56** 0.22

Acceleration along Y axis acceleration_y_max 29.01*** 38.81*** 0.35 10.69** 14.31*** −1.19
acceleration_y_mean 88.08*** 51.41*** 0.62 19.19*** 31.94*** −0.64
acceleration_y_mean_weighted 4.87 4.65 −0.89 2.25 0.45 2.07*
acceleration_y_min 11.57** 25.83*** −1.12 11.44** 8.69* 1.89
acceleration_y_q5 57.1*** 150.83*** −3.41*** 36.19*** 18.06*** 0.87
acceleration_y_q95 93.23*** 131.21*** 2.42* 33.81*** 21.81*** −0.92
acceleration_y_std 67.51*** 80.01*** 1.31 21.44*** 21.44*** −0.94

Angle angle_mean 11.51** 7.08* 2.03* 1.31 0.81 1.61
angle_median 3.61 6.22* 0.64 1.52 0.78 1.22
angle_min 0.22 3.56 2.39* 2.87 3.83 0.18
angle_q5 3.94 1.94 0.36 4.87 2.32 0.19
angle_q95 6.23* 24.72*** 2.08** 2.11 2.35 0.75
angle_std 10.54** 3.48 3.05** 9.81** 5.69 0.86

Corner corner_count 39.63*** 42.33*** 3.16** 3.65 2.05 1.42

Curvature curvature_max 2.01 0.3 2.39* 1.86 1.08 2.51*
curvature_mean 11.91** 5.54 5.39*** 2.69 1.75 4.54***
curvature_min 1.54 32.73*** −1.5 2 1.73 1.5
curvature_q5 1.98 13.75** −3.1** 2.44 3.3 −2.03*
curvature_q95 3.55 36.24*** 5.44*** 7.63* 3.42 3.1**
curvature_std 0.71 38.21*** 6.01*** 3.56 3.94 1.55

Deviation deviation_max 24.84*** 45.48*** 0.07 5.81 13.0** −1.05
deviation_mean 14.21*** 12.74** −0.42 7.94* 2.44 −1.88
deviation_median 2.41 4.41 0.15 1.69 0.56 −1.96
deviation_q5 10.83** 1.23 −2.78** 0.06 0.81 −2.08*
deviation_q95 16.14*** 20.54*** 0.2 3.81 7.75* −1.45
deviation_std 11.88** 42.43*** 0.31 5.69 13.19** −0.85

Distance distance_max 89.64*** 48.34*** 1.16 26.06*** 25.75*** −0.29
distance_mean 67.9*** 60.81*** 2.16* 23.69*** 17.31*** −1.48
distance_median 76.45*** 109.0*** −2.25* 19.9*** 7.82* −2.2*
distance_q5 6.8* 39.69*** −2.22* 4.67 4 −0.13
distance_q95 10.84** 67.54*** 3.47*** 10.56** 18.81*** −1.35
distance_ratio 38.43*** 96.4*** −1.1 10.69** 7.94* 1.25
distance_std 70.93*** 74.34*** 3.29*** 25.75*** 30.06*** −0.64
distance_sum 37.74*** 84.63*** 1 16.94*** 7.0* −1.49

(continued on next page)
𝑎

i

𝑎

The acceleration is a change of velocity over duration. Similarly to
velocity, acceleration is also separately calculated for x and y axes as
acceleration_x and acceleration_y. Additionally, positive acceleration_pos
and negative acceleration_neg acceleration are reported separately:

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝛥𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(12)

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑥 =
𝛥𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑥
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(13)

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑦 =
𝛥𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑦
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(14)

𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑠 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛; {𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 0} (15)
17
𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑛𝑒𝑔 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛; {𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 0} (16)

The angle is the current angle of mouse movement represented as
nverse of tangent of coordinate change proportion:

𝑛𝑔𝑙𝑒 = 𝑡𝑎𝑛−1
𝛥𝑦
𝛥𝑥

(17)

The velocity_angular is the change of angle over duration:

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = 𝛥𝑎𝑛𝑔𝑙𝑒 (18)

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
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Table 9 (continued).
Feature group Feature name Points clicking activity Website prototype activity

Sensitivity CPI Sex Sensitivity CPI Sex
𝜒2(2, 𝑁 = 480) 𝜒2(2, 𝑁 = 480) 𝑧(𝑁 = 900) 𝜒2(2, 𝑁 = 480) 𝜒2(2, 𝑁 = 480) 𝑧(𝑁 = 900)

Duration duration_sum 77.68*** 169.88*** −3.44*** 1.31 3.81 −1.05

Flip flip_x_count 42.02*** 10.06** 2.36* 0.34 1.46 −0.32
flip_y_count 26.0*** 49.26*** 0.86 1.78 3.32 0.35

Pace pace_max 15.22*** 38.49*** −1.43 3 22.75*** −1.15
pace_mean 7.54* 75.63*** 0.76 7.75* 22.94*** −0.69
pace_mean_weighted 22.8*** 28.31*** −0.82 8.06* 15.25*** −1.31
pace_median 103.08*** 112.73*** 0.82 17.31*** 13.65** 2.28*
pace_q5 18.4*** 40.62*** −2.98** 6.92* 20.69*** 0.21
pace_q95 49.11*** 20.43*** 2.04* 3.42 0.19 1.28
pace_std 40.13*** 43.01*** −1.17 4.75 19.0*** −1.23

Angular velocity velocity_angular_max 5.24 9.64** −0.12 1.19 1.73 0.32
velocity_angular_mean 4.48 0.9 −0.68 0.44 0.25 −2.4*
velocity_angular_mean_weighted 1.2 5.45 1.05 3.25 0.56 −0.75
velocity_angular_min 6.88* 6.79* −1.04 1.94 2.44 −0.7
velocity_angular_q5 59.12*** 8.33* −4.5*** 6.75* 12.43** −2.37*
velocity_angular_q95 44.39*** 13.35** 4.8*** 20.46*** 12.11** 2.17*
velocity_angular_std 16.31*** 12.21** 3.04** 1.19 13.56** 2.09*

Velocity velocity_max 115.88*** 33.41*** 2.55* 30.06*** 21.81*** 0.7
velocity_mean 59.34*** 57.34*** 2.26* 23.25*** 16.19*** −1.39
velocity_mean_weighted 2.8 0.23 4.3*** 13.56** 16.19*** −0.48
velocity_median 76.14*** 125.35*** −2.2* 18.0*** 8.6* −2.31*
velocity_q5 20.18*** 45.69*** −2.32* 0.44 3.06 −0.1
velocity_q95 3.74 56.14*** 3.41*** 12.56** 19.75*** −1.44
velocity_std 60.3*** 64.63*** 3.93*** 21.81*** 27.44*** −0.29

Smooth velocity velocity_smooth_max 23.01*** 30.71*** 1.11 33.25*** 23.69*** 0.34
velocity_smooth_mean 40.68*** 46.71*** 2.45* 20.44*** 24.25*** −1.55
velocity_smooth_mean_weighted 12.14** 2.34 4.57*** 14.25*** 15.25*** −0.4
velocity_smooth_median 110.53*** 110.81*** −0.46 19.0*** 12.25** −2.05*
velocity_smooth_q5 3.34 75.21*** 1.53 9.0* 8.69* −1.83
velocity_smooth_q95 11.08** 57.41*** 3.31*** 9.44** 20.31*** −1.38
velocity_smooth_std 24.7*** 55.21*** 3.31*** 25.0*** 28.56*** −0.79

Velocity along X axis velocity_x_max 94.02*** 27.88*** 2.42* 20.44*** 13.56** 1.33
velocity_x_mean 30.53*** 30.18*** 2.81** 15.75*** 14.81*** −0.98
velocity_x_mean_weighted 2.23 0.83 4.4*** 11.31** 12.25** −0.26
velocity_x_median 36.17*** 35.3*** −2.81** 5.52 3.18 −1.77
velocity_x_q95 2.41 24.23*** 4.09*** 12.25** 21.87*** −0.73
velocity_x_std 43.68*** 38.81*** 4.58*** 20.25*** 28.0*** 0.2

Velocity along Y axis velocity_y_max 32.41*** 48.87*** −0.01 12.25** 15.44*** −1.44
velocity_y_mean 46.43*** 44.88*** 1.37 19.75*** 21.44*** −1.88
velocity_y_mean_weighted 1.9 3.6 3.01** 11.44** 17.06*** −1.03
velocity_y_median 34.46*** 63.67*** −0.91 15.71*** 12.35** −2.25*
velocity_y_q95 17.82*** 38.53*** 1.8 14.6*** 14.33*** −1.41
velocity_y_std 39.41*** 64.81*** 1.28 20.31*** 18.25*** −1.78

*** 𝑝 < .001.
* 𝑝 < .01.
𝑝 < .05.
R
The curvature is the change of angle over distance:

𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
𝛥𝑎𝑛𝑔𝑙𝑒
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(19)

The deviation is the current perpendicular distance to the ideal path,
ssuming (𝑥𝑠, 𝑦𝑠) and (𝑥𝑒, 𝑦𝑒) are the ideal path starting and ending
oints:

𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
|

|

|

|

|

|

(𝑥𝑒 − 𝑥𝑠, 𝑦𝑒 − 𝑦𝑠) × (𝑥 − 𝑥𝑠, 𝑦 − 𝑥𝑠)
√

(𝑥𝑒 − 𝑥𝑠)2 + (𝑦𝑒 − 𝑦𝑠)2

|

|

|

|

|

|

(20)

The straightness is a ratio of ideal path length to the total distance,
assuming (𝑥𝑠, 𝑦𝑠) and (𝑥𝑒, 𝑦𝑒) are the ideal path starting and ending
points. It is calculated for the whole movement at once as:

𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =

√

(𝑥𝑒 − 𝑥𝑠)2 + (𝑦𝑒 − 𝑦𝑠)2
∑

𝑥,𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
(21)

The corner is a binary variable representing whether the current
ngle of a movement is more or less than 90 degrees.

𝑜𝑟𝑛𝑒𝑟 =

{

1 𝛥𝑎𝑛𝑔𝑙𝑒 > 𝜋
2

0 𝛥𝑎𝑛𝑔𝑙𝑒 ≤ 𝜋
2

(22)

ppendix C. Statistical tests

Statistical tests results for differences between mouse configurations
nd sexes can be found in Table 9.
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