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Abstract

Point cloud completion is essential for robust 3D perception in safety-critical appli-
cations such as robotics and augmented reality. However, existing models perform
static inference and rely heavily on inductive biases learned during training, limit-
ing their ability to adapt to novel structural patterns and sensor-induced distortions
at test time. To address this limitation, we propose PointMAC, a meta-learned
framework for robust test-time adaptation in point cloud completion. It enables
sample-specific refinement without requiring additional supervision. Our method
optimizes the completion model under two self-supervised auxiliary objectives that
simulate structural and sensor-level incompleteness. A meta-auxiliary learning
strategy based on Model-Agnostic Meta-Learning (MAML) ensures that adaptation
driven by auxiliary objectives is consistently aligned with the primary completion
task. During inference, we adapt the shared encoder on-the-fly by optimizing
auxiliary losses, with the decoder kept fixed. To further stabilize adaptation, we in-
troduce Adaptive A-Calibration, a meta-learned mechanism for balancing gradients
between primary and auxiliary objectives. Extensive experiments on synthetic, sim-
ulated, and real-world datasets demonstrate that PointMAC achieves state-of-the-art
results by refining each sample individually to produce high-quality completions.
To the best of our knowledge, this is the first work to apply meta-auxiliary test-time
adaptation to point cloud completion.

1 Introduction

Recent advances in 3D sensing have enabled safety-critical applications in autonomous driving [1],
robotics [2], and AR [3], where reliable 3D perception is fundamental. Point clouds—the direct
output of 3D sensors—are often incomplete due to occlusions, limited coverage, and sensor noise,
severely impairing downstream tasks such as recognition, planning, and interaction. This highlights
the urgent need for robust point cloud completion under diverse, unpredictable conditions.

Existing point cloud completion approaches largely adopt encoder—decoder architectures. Although
recent works have introduced sophisticated decoders [4, 5, 6] with progressive refinement via localized
expansion, performance remains constrained by the expressiveness of extracted features from the
incomplete inputs. This has motivated the development of transformer-based models [7, 8, 9], which
primarily enhance the encoder’s ability to capture rich, contextual features by modeling global context
through attention mechanism. However, despite their improved representation capacity achieved by
scaling up the model, inference remains static at test time, regardless of the specific input point cloud.
This rigidity constitutes a fundamental bottleneck: the inability to adjust internal representations
per input, limiting the model’s ability to leverage visible cues, particularly under novel occlusions
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Figure 1: Existing point cloud completion models operate with fixed inductive biases at inference,
often focusing on structurally stable regions (e.g., the fuselage). When such regions are missing, static
inference hinders reasoning over other parts (e.g., the tail), resulting in generic completions. Instead,
our model applies test-time adaptation using self-supervised signals, enabling dynamic attention to
visible cues and producing sample-specific completions that better match the ground truth.

or sensor-induced distortions. As a result, the model tends to generate what we refer to as generic
completions, which follow training priors and show limited sensitivity to input cues, rather than
sample-specific completions that adapt to unique observations and restore geometry details (see
Fig. 1). The generation of generic completions is further exacerbated by dataset limitations: synthetic
data [4, 10] lacks structural diversity, while real-world scans [11] are limited in scale and coverage.
These constraints reinforce inductive biases, causing the model to over-rely on structural priors and
neglect sample-specific cues, ultimately degrading completion quality.

Motivated by these limitations, we shift from static inference to dynamic, sample-specific adaptation,
enabling the model to refine predictions from each input’s unique geometry and noise, leading
to higher-quality completions. Test-time adaptation (TTA) offers a natural framework for this by
enabling self-adaptation with unlabeled test data, and its effectiveness has been empirically vali-
dated [12, 13]. We thus treat each point cloud as a distinct domain, assuming that each input inherently
reflects its source distribution. To this end, we introduce PointMAC, a TTA framework based on
meta-auxiliary learning that performs per-sample refinement to improve completion accuracy.

First of all, PointMAC considers point cloud completion as the primary task and introduces an
auxiliary branch, Bi-Aux Units, which performs self-supervised spatial-masking reconstruction and
artifact denoising. Unlike conventional TTA methods [12, 13, 14] that optimize auxiliary losses in
isolation, often resulting in misalignment with the primary task [15, 16], we adopt the Model-Agnostic
Meta-Learning framework (MAML) [17] to regularize adaptation. Specifically, the auxiliary branches
are optimized in the MAML inner loop to simulate the sample-specific adaptation, while the primary
point cloud completion task supervises the outer loop to align the adaptation with the main objective.
This meta-learning formulation encourages the model to adapt through optimizing auxiliary tasks in
a way that directly benefits the primary task. At inference time, on-the-fly adaptation is performed by
minimizing self-supervised losses defined using pseudo-labels generated by Bi-Aux Units. These
losses are optimized via backpropagation, allowing the model to refine sample-specific outputs
dynamically and overcome static attention patterns learned during training. To further stabilize
adaptation and prevent task interference, we introduce Adaptive A\-Calibration, which harmonizes
gradient contributions from the primary and auxiliary tasks during meta-training.

Our contributions can be summarized as follows:

* We propose PointMAC, a test-time adaptation method that addresses static encoder rigidity
through sample-specific refinement, leveraging Bi-Aux Units to generate self-supervised
signals under structural incompleteness and sensor noise for self-supervised adaptation.

* We introduce Adaptive \-Calibration, a dynamic gradient balancing mechanism that miti-
gates negative transfer [15] during meta-training and improves test-time stability.

* To the best of our knowledge, this is the first application of meta-auxiliary learning and
test-time adaptation in point cloud completion. PointMAC achieves state-of-the-art re-
sults on synthetic, simulated scanning, and real-world benchmarks, demonstrating strong
generalization and adaptation capabilities across diverse point cloud domains.

2 Related Work

Point Cloud Completion. Recent approaches to point cloud completion have focused on architectural
innovations [18, 5, 6, 9, 19]. However, most methods rely on static encoder features learned from
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Figure 2: Overview of our test-time adaptation method. PointMAC formulates point cloud completion
as the primary task and introduces Bi-Aux Units to provide self-supervised signals for test-time
adaptation. The encoder £%" is shared between primary and auxiliary branches. In the meta-learned
test-time training phase (a), sample-specific parameters are updated in the inner adaptation using
auxiliary losses, while shared parameters are optimized in the outer alignment via the primary
completion loss. In the sample-specific TTA phase (b), adaptation proceeds in three steps: (i) the
meta-learned model produces initial completions; (ii) the shared encoder £ is updated via self-
supervised losses from Bi-Aux Units; (iii) sample-specific completions are generated, adapted to the
unique structure and noise of each input.

biased synthetic datasets [4, 10], leading to inductive biases that generalize poorly to novel occlusions
and sensor noise [11]. Without sample-specific adaptability at inference time, these models often
yield generic completions that overlook input-specific cues and degrade reconstruction quality.

Test-time Adaptation. Test-time adaptation (TTA) addresses domain shift by adapting models
online using unlabeled test data. Prior works have explored TTA across various domains, such as
dynamic scene deblurring [20, 21], optical flow [22], and sequential modeling [23]. By leveraging
self-supervised auxiliary signals from test inputs, TTA has demonstrated improved robustness and
generalization [12, 24]. However, a key challenge lies in the misalignment between auxiliary and
primary tasks, which can lead to unstable or suboptimal adaptation [15, 16]. To address this, we
adopt the Model-Agnostic Meta-Learning (MAML) framework [17] to regularize adaptation.

Meta Learning. Meta-learning methods, such as Model-Agnostic Meta-Learning (MAML) [17],
enable fast adaptation of pre-trained models to individual samples and have shown strong performance
in few-shot learning [25, 26], as well as in auxiliary-task-guided multi-task training [27, 28]. Building
on these advances [29, 30, 31], we incorporate meta-learning into our test-time adaptation framework
to align self-supervised auxiliary objectives with the primary completion task, resulting in higher-
fidelity and structure-aware shape completion.

3 Method

In this section, we introduce the proposed PointMAC method, including the network architecture
and the test-time adaptation framework. As illustrated in Fig. 2, the overall architecture consists
of a shared encoder, a primary decoder for shape reconstruction, and Bi-Aux Units that provide
self-supervised signals by simulating structural occlusions and sensor-induced distortions, detailed in
Sec. 3.1. To train the network, we adopt a meta-auxiliary learning strategy based on MAML to align
the self-supervised auxiliary adaptation with the primary point cloud completion objective, enabling
sample-specific adaptation at test time (detailed in Sec. 3.2).

3.1 Network Architecture
3.1.1 Primary Branch

Given a partial and unordered point cloud P = {p;}, C R3, the goal of the primary task is to
reconstruct a complete point cloud C = {c; }é\le C R3 with N > M. As illustrated in Fig. 2(a),

we adopt a hierarchical encoder £%" inspired by [32, 33], to extract both local and global geometric

features from P, producing a compact shape code, z = £(P; ;};i) . The decoder D takes z as



input and reconstructs the final point cloud C = D(z; gff) using a coarse-to-fine refinement strategy,
following [19]. To supervise the primary task, we adopt the Chamfer Distance (CD) to measure the
discrepancy between the predicted point cloud C and the ground truth G. The CD between two point
sets X, Y C R3 is defined as:

1 . 2 1 . 2
Lep(X,Y) = mg(lyg}llx—yIIQ + mggglly—xllg, (M

where |X| and || denote the number of points in each set. Based on Eq. (1), the primary loss is
defined as Ly = Lcp(C, G), where C and G are the predicted and ground-truth point clouds.

The encoder £ is shared between the primary branch for point cloud completion and the Bi-Aux
Units (Sec. 3.1.2), and its parameters are denoted as ;}r‘i. We denote the full set of parameters for
the primary task as ¢,;. During test-time adaptation, we freeze the decoder D and update only the
shared encoder £" to enable sample-specific feature refinement via auxiliary losses (Sec. 3.2).
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Figure 3: Overview of the proposed Bi-Aux Units, consisting of two self-supervised tasks—Stochastic
Masked Reconstruction (Auz*™) and Artifact Denoising (Aux?®). Both branches share the encoder
& and Token Synergy Integrator Zyg; to ensure consistent feature conditioning, and output features
(FM, RY) that are projected to compute the auxiliary losses £ and £24. .

In addition to the primary branch, we introduce self-supervised Bi-Auxiliary (Bi-Aux) Units, which
generate auxiliary signals to regularize the shared encoder during test-time training. Point cloud
scans—whether synthetic or real—face two major challenges: structural incompleteness and
distortion robustness. While synthetic data often exhibits regular missing patterns, real-world scans
suffer from irregular occlusions and sensor noise, which exacerbate these issues. To address this,
we design Stochastic Masked Reconstruction (Auz®™) and Artifact Denoising (Auz®?) to promote
resilient encoder representations without ground-truth supervision.

Stochastic Masked Reconstruction. To mitigate structural bias in the shared encoder and improve
robustness to diverse missing patterns, we design Stochastic Masked Reconstruction (Auxs™, param-
eterized by ¢5%), which randomly masks spatial regions of the input cloud and trains the model to
recover them.

As shown in Fig. 3, we apply Farthest-Point Sampling (FPS) to extract N centroids Q = {qj }1_,
from the input cloud P, and embed them into region tokens z;, = PFE(qy) € R” using a learnable
positional encoder, while the shared encoder £*" simultaneously generates global feature F from P.

To reduce redundancy and enable parameter sharing across Bi-Aux Units, we introduce a Token
Synergy Integrator (Irsy) with parameters ¢! , which maps F into a group-token matrix 79 €
RN*D via an MLP stack (BN + ReLU) followed by reshaping. The transformation, shared across
auxiliary signals via ¢3! , encourages consistent conditioning across tasks and eliminates redundant
parameterization. This also supports effective test-time adaptation by enforcing shared representation
priors across auxiliary tasks. The resulting group-token matrix 7 is concatenated with region tokens
{2z}, and the combined sequence is fed into dual-masked self-attention [34] to extract context-aware

features:
AttnMask(Q, K, V; M) = Softmax((QKT/\/B) - 1-MYe oo) v, 2)
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where M@ is a binary mask applied to both rows and columns. The output features ™ are aggregated
via max pooling along the token dimension to produce a compact latent vector, which is decoded via

a lightweight [18] to reconstruct the complete point cloud P. The self-supervised loss is defined as:
Lm = Lop(P,P). (see the Supplementary for further architectural details).

aux
Artifact Denoising. Sensor-induced artifacts in real scans impede accurate shape recovery. Artifact
Denoising (Auz®®) mitigates this by corrupting input point clouds with realistic perturbations and
training the model to restore clean geometry. This process encourages the encoder to learn distortion-
resilient representations, enhancing robustness under real-world scanning conditions.

We introduce an auxiliary branch Auz®, parameterized by ¢ , which performs artifact-aware
denoising. This branch learns a mapping function T2 : RM*3 — ReMX3 (with ¢ = 4) to

reconstruct a clean and dense point cloud P = Y% (7P) from a noisy partial input P = P + N(0, o2)
(see Supplementary for details).

Az builds on a shared architecture: it reuses the encoder £ from the primary branch to extract
global features, and employs the shared Token Synergy Integrator Zrg as described above in Auz®™,
to aggregate local context in a unified token space, yielding a refined sequence RY. This design
avoids duplicated learning efforts and facilitates effective cross-task knowledge transfer. Finally, we
integrate the SpatialRefiner module from Dis-PU [35] to decode the features RY back to the original

input point cloud. The output Pis supervised by Chamfer Distance: £ = Lo D(ﬁ, P).

3.2 Model Learning

Given the above network architecture, we will introduce our meta-auxiliary learning framework
that allows sample-specific test-time adaptation in this section. Conventional TTA methods [27, 36]
minimize auxiliary losses at test time, but misalignment with the primary task can lead to negative
transfer [15]. PointMAC addresses this by leveraging first-order MAML [17] to align auxiliary
updates with the primary objective.

Meta-Learned TTA: Training. As illustrated in Fig. 2(a), we enable effective test-time adaptation
by simulating sample-specific encoder updates during training through interleaved meta-inner and
outer loops. In the inner loop, the shared encoder and auxiliary branches are adapted using a single
input point cloud randomly sampled from the training set. The outer loop then updates the full model
to ensure that these auxiliary adaptations contribute to improving performance on the primary task.
The full training procedure is detailed below.

(i) Inner Auxiliary Adaptation: We divide the model parameters into shared weights
{ ;‘;i, sh } and sample-specific weights {¢pi, ¢Smr, ¢4, }. For each auxiliary branch a € {smr, ad},

we perform an inner-loop update at step ¢ by minimizing the auxiliary loss:
G o —a Vot (PO, PO 6. 000 o)
X X AUX X ) » Ppri X X I
(3)
a a ) E Sh 7
D 0 = B Vg L (PO PO 6 60, 0207)

where P and P are outputs of the two auxiliary branches, and «, g are their learning rates.
(ii) Outer Primary Alignment: Given the updated auxiliary task parameters, we align them
with the primary objective by optirnizing the prirnary task loss:

pr1 = Z Eprl a (l)a ¢pri); 4

where T is the batch size, L, denotes the primary task loss function, and ¢p = {gbpn, gﬁf

represents the set of parameters for the primary task. The parameters are updated using gradient
descent over the mini-batch, where ¢ denotes the current update step.

T
1 i i
¢p£1+1 d)prl - v¢r(,:}) (T Z ‘C'Pfi(c( )7 P( ); (br()zrsl))) ) (5)
=1

where +y is the learning rate for the primary task.



Adaptive \-Calibration. Balancing multi-task losses is particularly brittle in test-time adaptation,
where fixed weights can destabilize optimization or suppress the primary objective. While prior
works [27, 29, 37] adopt static or manually tuned weights, such heuristics fail to generalize across
samples or training stages. We propose Adaptive A\-Calibration, a meta-learned, gradient-based
mechanism that dynamically adjusts the auxiliary weights Ay, and \,q during training.

Specifically, the weights are softmax-normalized in logit space (Eq. (6)) and used to compute the
total auxiliary loss in Eq. (7).

Wme = (log(1 4+ A2,p) /[log(1 + A2n) + log(1+ A%)]) ) waa = 1 — W, (6)

Lik = Wsmr - Lok + Waa - Liy- (7

Both the auxiliary branch parameters ¢u = {HSW, ¢4 } and the weighting coefficients A\ €
{Asmr, Aaa } are jointly updated via gradient descent:

Gun = banx = MV Liir A A= mVaALyx. @®)

It jointly optimizes the model parameters of auxiliary branches and their relative weights in a task-
aligned manner, allowing the model to automatically calibrate auxiliary signals based on their utility
to the main objective.

Sample-Specific TTA: Inference. At inference, we perform a few self-supervised gradient steps
on auxiliary losses for each test sample, as shown in Fig. 2(b). The auxiliary branches and their
calibrated weights, learned during meta-training, remain fixed during adaptation. The shared encoder
is refined by minimizing the combined auxiliary loss £242 as summarized in Alg. 1.

aux?

Algorithm 1: Sample-Specific Test-Time Adaptation

Input: Trained parameters ¢ = {G3, Ppri, Pin> D P 1
test input Prey; Step size n; number of steps K
Output: Adapted encoder }S)}r’l

Apply stochastic masking and artifact injection using M and o via Auz*™ and Auz®?;
fort =0to K —1do /* Inner-loop adaptation */

P Auzs™ _Forward(Piey, M; o),

aux
P <+ Aur™ _Forward(Piy, o; ¢ );
E:S; — )\smr : »ngl;(,P, Plest) + )\ad : £2gx (Pa Ptest);

¢;}rli(t+1) — qﬁ;l;i(t) -n- V¢,~h_£§ﬂ§ ; /* Gradient descent on shared encoder */
o

sh(K)

return ¢, ;

These label-free inner-loop updates perform sample-specific test-time adaptation, refining the en-
coder to better capture the visible structure and noise characteristics of each input. This improves
feature quality, reduces completion error, and enhances generalization to novel inputs—all without
supervision or retraining.

4 Experiments

In this section, we evaluate our method on three types of datasets: purely synthetic datasets (ShapeNet
[10], PCN [4]), a high-fidelity simulated scanning dataset (MVP [38]), and a real-world scanned
dataset (KITTI [11]). ShapeNet and PCN provide dense, uniformly sampled synthetic point clouds
with paired ground truth for training and evaluation. MVP is a high-resolution, multi-view rendered
benchmark that closely mimics real-world 3D scanning conditions, including occlusions and view-
point variation. KITTI consists of real LIDAR scans with sparse, uneven points and no paired ground
truth, and is used for evaluation only (see Supplementary for additional details related to Sec. 4).

4.1 Datasets and Evaluation Metric

PCN. The PCN dataset [4] includes 30,974 CAD models across eight categories. We evaluate
reconstruction quality using the ¢;-norm Chamfer Distance and follow prior works [4, 5, 6, 7, 8, 18,
19, 39] by using their released implementations and hyperparameters.
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Figure 4: Visualization results on the PCN and ShapeNet datasets. Our method preserves fine-grained
structures such as the complex geometry of boats and lamps, plane propellers and tails, and chair
back slats, demonstrating strong completion quality and generalization across diverse categories.

Table 1: Quantitative comparison on the PCN dataset (per-point CD-¢; x 1000). Both the output and
ground truth point clouds consist of 16,384 points. (Lower CD is better)

CD-/1(x1000) Plane | Cabinet | Car | Chair | Lamp | Couch | Table | Boat | CD-Avg
FoldingNet [18] 9.49 15.80 | 12.61 | 15.55 | 16.41 | 15.97 | 13.65 | 14.99 14.31

PCN [4] 5.50 2270 | 10.63 | 870 | 11.00 | 11.34 | 11.68 | 8.59 9.64
SnowflakeNet [5] | 4.29 9.16 8.08 | 7.89 | 6.07 9.23 6.55 | 6.40 7.21
PoinTr [7] 4.75 10.47 868 | 939 | 775 | 1093 | 7.78 | 7.29 8.38

SeedFormer [6] 3.85 9.05 8.06 | 7.06 | 5.21 8.85 6.05 | 5.85 6.74
ProxyFormer [8] | 4.01 9.01 788 | 711 | 535 8.77 6.03 | 598 6.77

EINet [39] 3.96 8.81 774 | 693 | 5.03 8.80 6.15 | 5.57 6.63
CRA-PCN [19] 3.59 8.70 750 | 6.70 | 5.06 8.24 572 | 5.64 6.39
Ous 3.54 8.66 744 | 6.65 | 4.98 8.19 5.64 | 557 6.33

ShapeNet-55/34. Both datasets are derived from ShapeNet [10]. ShapeNet-55 provides 41,952
training and 10,518 testing shapes across 55 categories for category-agnostic evaluation. ShapeNet-34
offers 46,765 training shapes and 5,705 testing shapes from 34 categories, split into 3,400 seen-
class and 2,305 unseen-class samples for category-specific generalization. Following standard
protocol, we use Chamfer-¢5 distance and F-Score@1% [40] as evaluation metrics. Prior methods
[4,6,7,8, 18, 19, 39] are re-trained and evaluated under identical settings for fair comparison.

MVP. The MVP dataset [38] is a large-scale simulated scanning benchmark with over 100,000
partial-complete point cloud pairs across 16 categories. Partial shapes are rendered from 26 uniformly
distributed views to simulate realistic occlusions. We use Chamfer-¢5 distance and F-Score @ 1% for
evaluation, and compare with prior methods [4, 19, 38, 41, 42, 43, 44] under their official settings.

KITTI. We evaluate our method on the KITTI dataset [11], which consists of incomplete LiDAR-
scanned car point clouds collected in real-world outdoor environments. Due to the lack of paired
ground-truth shapes, we adopt Fidelity and Minimal Matching Distance (MMD) as evaluation metrics.
Comparisons are conducted against prior methods [4, 6, 7, 8, 18, 39, 41, 45].

4.2 Evaluation on Main Datasets

Results on PCN. In Table 1, PointMAC achieves SOTA performance across all categories. Fig. 4
qualitatively compares our results with leading methods including PoinTr [7], ProxyFormer [8], and
CRA-PCN [19]. Our method consistently generates more structurally coherent and high-fidelity



Table 2: Quantitative comparison on ShapeNet-55. We report CD-/5 scores for the 10 major categories
and the overall average across all 55 categories under three difficulty settings (CD-S, CD-M, CD-H
for small, medium, hard), as well as the average F1 score. (Lower CD and higher F1 are better.)

CD-/5(x1000) Table | Chair | Plane | Car | Sofa Ifoi:(:e Bag | Remote bEZZd Rocket | CD-S | CD-M | CD-H | CD-Avg | Fl

FoldingNet [18] 253 | 2.81 | 1.43 | 198 | 248 | 471 |[279 | 144 1.24 148 | 2.67 | 266 | 4.05 312 | 0.082
PCN [4] 213 | 229 | 1.02 | 1.85 | 206 | 450 | 286 | 133 0.89 1.32 194 | 196 | 4.08 266 | 0.133
PoinTr 7] 0.81 | 095 | 044 | 091 | 079 | 1.86 | 093 | 0.53 038 | 057 0.58 | 0.88 1.79 1.09 | 0.464

SnowflakeNet [5] | 0.75 | 0.84 | 042 | 0.88 | 0.72 | 1.74 | 0.81 0.48 0.36 0.51 0.52 0.80 1.62 0.98 0.477
SeedFormer [6] 0.72 | 0.81 | 0.40 | 0.89 | 0.71 - - - - - 0.50 | 0.77 1.49 0.92 0.472
ProxyFormer [8] 0.70 | 0.83 0.34 | 0.78 | 0.69 - - - - - 0.49 0.75 1.55 0.93 0.483
EINet [39] 0.66 | 0.79 | 041 | 0.84 | 0.69 | 149 | 0.73 0.42 0.33 0.49 0.49 0.75 1.46 0.90 0.432

CRA-PCN [19] 0.66 | 0.74 | 0.37 | 0.85 | 0.66 | 136 | 0.73 0.43 0.35 0.50 0.48 0.71 1.37 0.85 -
Ous 0.65 | 072 | 0.34 | 0.80 | 0.64 | 1.34 | 0.72 | 0.40 0.31 0.47 047 | 0.69 1.34 0.83 0.490

Table 3: Quantitative comparison on Seen ShapeNet-34 test set and Unseen ShapeNet-21 test set.
CD-/5 for small, medium, and hard cases (CD-S, CD-M, CD-H) are reported (lower is better).

34 seen categories 21 unseen categories
CD-£2(x1000) DS DM ChH — CDAvE DS DM COH DAV
FoldingNet [18] 1.86 1.81 3.38 2.35 2776 274 5.36 3.62
PCN [4] 1.87 1.81 2.97 2.22 3.17 3.08 5.29 3.85
PoinTr [7] 0.76 1.05 1.88 1.23 1.60 1.67 3.44 2.05
SeedFormer [6] 0.48 0.70 1.30 0.83 0.61 1.07 2.35 1.34
ProxyFormer [8] 0.44 0.67 1.33 0.81 0.60 1.13 2.54 1.42
EINet [39] 0.46 0.68 1.24 0.79 0.59 1.01 2.19 1.26
CRA-PCN [19] 0.45 0.65 1.18 0.76 0.55 0.97 2.19 1.24
Ours 0.44 0.64 1.14 0.75 0.53 0.96 2.16 1.22

completions, particularly in regions with fine-grained geometry. For instance, PointMAC reconstructs
boats (first row) with smooth, continuous surfaces and clearly defined upper structures, while
competing methods often produce broken or overly smoothed shapes lacking geometric sharpness. In
the case of lamps (second row), our model faithfully recovers thin, articulated components such as
the arm and head with precise alignment, whereas prior approaches frequently exhibit distortions,
discontinuities, or missing parts in these complex areas. These results demonstrate the benefit of
sample-specific refinement for geometric accuracy in challenging regions.

Results on ShapeNet-55/34. As shown in Table 2, PointMAC achieves SOTA performance on
ShapeNet, demonstrating strong generalization across diverse object categories. Fig. 4 (last two
rows) illustrates representative completions. For airplanes (third row), it accurately reconstructs fine
structures such as propeller blades and tail fins, which prior methods often over-smooth or fragment.
In the chair category (last row), our model recovers thin, densely arranged back slats with clear
spacing and uniform thickness, while other approaches yield blurry slat structures and spurious points
in unrelated areas (e.g., seat or legs). We also report results on the 34 seen categories of ShapeNet-34
in Table 3. On the 21 unseen categories, our method achieves the best overall performance. The
consistent improvement across all difficulty levels and both seen and unseen subsets supports the
core motivation of PointMAC: adapting to diverse structures and noise beyond training priors.

Results on MVP. Table 4 presents quantitative results on the MVP simulated scanning dataset. Point-
MAC outperforms all baselines on both CD-¢5 and F-Score metrics. In particular, its advantage over
CRA-PCN [19] suggests more accurate shape reconstruction and finer geometric detail preservation
under realistic occlusions.

4.3 Cross-Dataset Evaluation

Results on KITTI. Since there are no paired groundtruth for KITTI, we train our model on ShapeNet-
Cars [4] and evaluate it on KITTI. As shown in Table 5, PointMAC reduces the fidelity from 0.151 to
0.135 (a 10.6% relative reduction) and simultaneously decreases the MMD from 0.508 to 0.477, un-
derscoring the effectiveness of sample-specific adaptation in handling real-world noise and recovering
fine-grained geometry beyond training priors.

Table 4: Quantitative comparison on MVP dataset. We use CD-f» x 10* and F1 Score for evaluation.

| PCN [4] TopNet[41] MSN[42] CDN [43] ECG [44] VRCNet[38] CRA-PCN[19] | Ours
CD-(3 | 9.77 10.11 7.90 7.25 6.64 5.96 5.33 5.24
F1 71 0.320 0.308 0.432 0.434 0.476 0.499 0.529 0.537




Table 5: Quantitative comparison on the KITTI dataset. We use the Fidelity Distance and Minimal
Matching Distance (MMD) for evaluation metrics. (Lower Fidelity and MMD are better)

PCN [4] FoldingNet [18] TopNet [41] GRNet [45] PoinTr [7] SeedFormer [6] ProxyFormer [8] EINet [39] | Ours
Fidelity | [ 2.235 7467 5.354 0.816 0.000 0.151 0.000 1.48 0.135
MMD | 1.366 0.537 0.636 0.568 0.526 0.516 0.508 0.512 0.477

4.4 Ablation Studies

Impact of Bi-Aux Units. We conduct ab-  Table 6: Ablation study on the PCN and ShapeNet-55
lation studies on the PCN and ShapeNet-55  datasets. (A)—(C) examine the impact of the auxiliary
datasets. As shown in Table 6, (A) denotes  design: (A) is the baseline; (B) adds Bi-Aux Units;
the baseline, while (B) shows that integrating  (C) removes the Token Synergy Integrator. (D) is the
Bi-Aux Units significantly improves perfor-  fyll model without Adaptive A-Calibration. (E) is

mance across both datasets. This suggests  our full framework with test-time adaptation.
that the self-supervised auxiliary tasks pro- Model | PCN ((1) ShapeNet (f2)

vide reliable gradient signals, enabling the

N . (A) Baseline 6.62 0.90
encoder to learn more robust and informative (g w/ Bi-Aux Units 6.42 0.85
features that benefit the primary completion Eg; W/<; Tgléen Synf\rgg {{lgegljator g-;‘g 8-22

- - w/o Adaptive A-Calibration . E
task and enhance overall completion quality. (E) Full Model 633 0.83

We further observe that removing the shared weights in (C) Token Synergy Integrator disrupts the
synergy between the primary and auxiliary tasks, thereby impeding effective information transfer.

Impact of TTA Framework. We evaluate the effectiveness of incorporating TTA with auxiliary
signals. As shown in Table 6 (D), this strategy not only removes the need for costly manual tuning
but also improves overall model performance. Furthermore, our full model (E) incorporates test-time
adaptation with auxiliary signals. During inference, the model performs sample-specific adaptation for
each input sample, enabling personalized predictions that better align with the unique characteristics
of the input, as illustrated in Fig. 5. While jointly training with Bi-Aux Units (B) effectively improves
the overall completion quality, it tends to produce generic completion (e.g., a straight lamp arm)
that may overlook sample-specific completion (e.g., a circular ring). In contrast, our test-time
adaptation strategy personalizes each input by refining the model’s internal representation based on
its unique geometry or noise pattern, moving beyond global statistical priors. This leads to more
detailed and structurally faithful completions. As a result, the model is better able to preserve subtle,
sample-specific structural cues that are often lost under static inference.

Input Baseline w/ Bi-Auxiliary Units Full Model GT

Figure 5: Visualization of the ablation study on different components of our framework.

5 Conclusion

We propose PointMAC, a sample-specific test-time training framework that mitigates the rigidity of
static encoder attention via meta-auxiliary learning. Through dynamic inference refinement and stabi-
lized adaptation, PointMAC effectively adapts to diverse and unseen scenarios. Experiments across
synthetic, simulated, and real-world datasets demonstrate state-of-the-art performance, validating its
robustness under occlusions and sensor noise.

Limitations and Future Work. Our experiments focus on single-object completion, but the frame-
work can naturally extend to scene-level settings. Its label-free adaptation suits real-world scenarios
like robotics and AR, where ground-truth supervision is costly. Future work includes scaling to
complex environments and incorporating multi-modal guidance to enhance completion quality.
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This supplementary document provides additional details to support the main paper.

In Section A, we elaborate on the implementation of our key components, including the stochastic
masked reconstruction, artifact denoising, and the meta-auxiliary training strategy. Section B out-
lines the training configurations, hyperparameters, and implementation details. Section C presents
additional qualitative results to further demonstrate the effectiveness and generalization ability of
our method. Specifically, we include visual comparisons on both the MVP dataset [38] —a high-
resolution, multi-view rendered simulation dataset—and the KITTTI dataset [11], which contains
real-world LiDAR scans without ground-truth supervision. These visualizations highlight the capa-
bility of our test-time adaptation framework to produce accurate, structurally coherent completions
across diverse and challenging domains. Additionally, we provide additional completion examples
on PCN [4] and ShapeNet [10], including zoom-in visualizations of local regions to demonstrate the
ability of our method to recover fine-grained, sample-specific geometric details.

A Method Details

A.1 Details of the Stochastic Masked Reconstruction

A.1.1 Region Token and Global Feature Extraction

We first apply Farthest-Point Sampling (FPS) to the input point cloud P = {p;}*, to extract N
representative centroids Q = {qy }2_,. Each centroid qy, is then embedded into a region token using
a learnable positional encoding module PE|(+):

z, = PE(qi) € R, ©

In parallel, shared encoder £ (-) processes the full input point cloud P to extract per-point features.
These are then aggregated using max pooling to produce a compact global feature vector:

F = MaxPool(£™(P)) . (10)

A.1.2 Token Synergy Integrator

The Token Synergy Integrator (Zysr) is designed to project the global feature vector into a token
sequence that aligns with the spatially sampled region tokens. This transformation bridges global
contextual information and local region-aware representations, enabling consistent conditioning
across auxiliary tasks. The structure of the module is defined as:

Zrsi(x) = Reshape(ReLU (BN (MLP(x)))),

(1D

Tg = ITSI (MaXPOOIdZQ (ESh (P))) .
where MaxPool;—s(+) denotes 2D max pooling over the feature dimension. The MLP consists of
two fully connected layers with intermediate dimensionality 2D, and produces a flattened vector of
length N - D, which is reshaped to form the group-token matrix 79 € RV*P,

Since both auxiliary branches, Auz*™ and Aux®, require task-specific token generators condi-
tioned on the global feature, naively implementing separate modules would introduce redundant
parameterization and potential inconsistency. To address this, we share the Zrs; module across both
auxiliary branches. This design encourages consistent representation learning and facilitates stable
and efficient test-time adaptation. In our ablation studies, we observe that removing Zysy or breaking
the parameter sharing leads to notable performance degradation, underscoring its importance in the
overall framework.

A.1.3 Masked Attention for Group—Region Token Fusion

The attention input is constructed by concatenating the group tokens 79 € RN *P and region tokens
{zx} € RNV*P along the token dimension, forming a sequence of 2N tokens with embedding
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dimension D. All tokens are linearly projected using a shared projection matrix W € RP*P to
obtain the query, key, and value matrices:

Q=K=V=[T%ZW. (12)

where Z = [z1;...;zy]| € RV*P denotes the stacked region tokens.

To control contextual interactions, we follow the dual-masking strategy from [34] and construct a
binary attention mask M9 € {0, 1}2V*2¥ by independently sampling each element from a Bernoulli
distribution. The mask is applied to both the row and column dimensions of the attention matrix and
is shared across all attention heads.

After masked attention, the resulting feature sequence FM € R2V*D is aggregated via max pooling
along the token dimension to produce a compact latent representation fi,en; € R”. This step not only
compresses token-level representations but also reduces the computational load and parameter count
for the subsequent decoder.

A.2 Details of the Artifact Denoising
A.2.1 Noise Injection

To better simulate sensor-induced imperfections observed in real-world 3D scans, we inject point-wise
Gaussian noise into the input sparse point cloud P = {p, }, prior to artifact-aware denoising. For
each point p;, the noise standard deviation o, is independently sampled from a uniform distribution:

op ~ U(0.001,0.005), (13)

representing 0.1% to 0.5% of the normalized coordinate scale. The perturbed point p} is then
computed as:

Pl=pite €~ N0, (14)

where I € R3*3 is the identity matrix, implying isotropic Gaussian noise added independently to
each coordinate axis. To avoid extreme perturbations, each dimension of € is clipped to the range
[—0.02, 0.02]. The resulting noisy input P = {p’}}, is processed by the auxiliary denoising branch
Auz®, which applies the mapping Y3 : RM>*3 — REMX3 g reconstruct a clean and dense point
cloud P = T%(P).

This procedure captures the heterogeneous and spatially varying noise distributions commonly
encountered in practical 3D acquisition scenarios, and supports robust refinement during TTA.

A.3 Details of the Model Learning

A.3.1 Learning a Meta-Initialization via Joint Optimization

Joint training assumes that auxiliary tasks consistently benefit the primary objective. However, under
distribution shift, static optimization can lead to gradient conflict and negative transfer, where updates
from auxiliary tasks misalign with the primary goal. To address this, we adopt MAML [17] to meta-
optimize the shared parameters, ensuring that adaptations guided by auxiliary losses consistently
improve primary performance. Specifically, we first jointly optimize the primary and auxiliary
objectives on source-domain data to obtain a generalizable initialization. Let Ly , £, and £33,
denote the primary and auxiliary task losses, respectively. During this joint training stage, we
simultaneously minimize a weighted sum of the two objectives:

L= ‘Cpri (Ca P; Qb;l;iv ¢pri) +u [‘C;{T){(ﬁv P; gb;l;iv :ﬁx’ :T;) + ‘Cgﬁx(ﬁv P; ¢;?i’ es\?m’ iﬁx) . (15)

where 1 € (0, 1] balances the supervised primary loss and the two self-supervised auxiliary losses.
This process updates all shared parameters to encourage learning representations that are both
effective for the primary task and guided by complementary auxiliary signals.
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The resulting parameters {¢;ﬁ, ¢pri } serve as a warm-start for the subsequent meta-optimization
phase, providing a stable initialization that incorporates task-relevant structures learned from both
objectives.

A.3.2 Meta-Learned TTA: Training Details

To align the auxiliary tasks with the primary objective under distribution shift, we adopt a meta-
auxiliary training procedure that dynamically adjusts the contribution of each auxiliary loss during
training. The goal is to ensure that updates guided by auxiliary signals consistently improve the
primary performance, thereby yielding a better initialization for test-time adaptation.

Let ¢ = {@3%, dpris Paux, P P } denote the full set of parameters, and g3, ¢, denote the task-
specific auxiliary heads for stochastic masked reconstruction and artifact denoising. We initialize the
adaptive auxiliary weights (Agmr, Aag) in logit space and update them jointly with the model parameters
in each iteration. Given a mini-batch {P(*), C(V}T_  we first compute the auxiliary losses £3™ and
L3 . These losses are then combined into a single adaptive auxiliary objective using normalized
task-specific weights, obtained via a softmax-like function. Both the auxiliary network parameters
and the weighting coefficients are updated through gradient-based optimization. Finally, the primary
loss is used to update the full model, ensuring that the shared encoder is guided by auxiliary signals
that consistently support the primary objective. This process produces an initialization better suited

for downstream test-time adaptation. The complete process is illustrated in Alg. 2.

Algorithm 2: Meta-Auxiliary Training

Input: Parameters ¢ = {qﬁgrli, Dpris D, S0 p2d 1; learning rates 14, 7y,

aux? aux’ aux

Output: meta-trained weights ¢, calibrated (Agpr, Aad)

Initialise Agmr, Aag < O (logit space);
while rnot converged do

sample mini-batch {P®), C(O}T_, > auziliary forward
Evaluate the auxiliary losses £3mF, £3d

aux’ aux °

& + log(1 4 A2,,), B < log(1+ A2);

Wemr — exp(@)/(exp(&) + exp(B)), wag < 1 — Wgmrs

> X\ normalisation

ﬁggi — wsm Loy + wadﬁiﬂx ; > update auz branch
Paux — Paux — n¢V¢m£§ﬂ§ ; > update weights
()\smn /\ad) — ()\smra /\ad) - UAVAﬁggi-

G —YVeLlois > outer update

Alg. 2 dynamically calibrates the auxiliary loss weights (Agur, Aag) Via per-iteration normalization
and gradient-based updates. To prevent task misalignment and ensure that auxiliary supervision
consistently benefits the primary task, we embed this process into a meta-learning framework based
on MAML. In this formulation, the primary point cloud completion task supervises the optimization
of auxiliary branches through outer-loop gradients, enabling the model to leverage auxiliary signals
for more effective, sample-specific adaptation.

A.4 Number of Gradient Updates

The number of gradient updates in the inner loop is a critical hyperparameter in our meta-auxiliary
optimization framework. Existing test-time adaptation methods [30] typically adopt a fixed and
limited number of updates without systematically analyzing its impact on adaptation quality. However,
insufficient updates may result in under-adaptation to the target distribution, whereas excessive
updates can lead to overfitting on auxiliary tasks.

To investigate this trade-off, we evaluate our method with different update steps K € {1, 3,5}, and
report the results in Table 7. All experiments are conducted on the PCN [4] and ShapeNet [10]
datasets, with the number of gradient steps kept consistent between training and testing.

As shown in Table 7, our method outperforms state-of-the-art approaches [8, 6, 39, 19] even with
only three gradient updates (X = 3), and further improves with five updates (X = 5). These
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Table 7: Ablation on update steps: performance under different numbers of gradient updates (=
1,3,5) on PCN and ShapeNet. Lower is better.

Model \ PCN (¢1 |) ShapeNet (/5 |)
(A) w/ Bi-Aux Units 6.42 0.85
(B) w/Bi-Aux Units + TTA (K = 1) 6.40 0.84
(C) w/Bi-Aux Units + TTA (K = 3) 6.33 0.83
(D) w/Bi-Aux Units + TTA (K = 5) 6.28 0.81

results underscore the effectiveness of our test-time adaptation strategy in enabling high-quality,
sample-specific completions through minimal per-instance optimization.

To balance accuracy and computational efficiency, we set K = 3 in all subsequent experiments.
Investigation of larger update steps (e.g., i = 7) is left for future work.

B Implementation Details

We train the model for 250 epochs on the PCN [4] and ShapeNet [10] datasets, and for 200 epochs
on MVP [38]. The batch size is set to 40 for PCN, 32 for ShapeNet, and 44 for MVP. During the
joint training phase, we apply equal learning rates for the primary and auxiliary branches, with
a=p8=25x10""°.

In the meta-training and meta-testing stages, we perform 3 inner-loop gradient update steps to
adapt the shared encoder using the auxiliary losses £MF and £ . Optimization is carried out

using Stochastic Gradient Descent (SGD) without momentum or weight decay. All experiments are
conducted on two NVIDIA V100 GPUs.

C Visualization

To further demonstrate the strong generalization ability of our test-time adaptation framework, we
present additional qualitative results on MVP [38] (Fig.6) and KITTI[11] (Fig.7). MVP is a high-
resolution, multi-view rendered benchmark that closely mimics real-world 3D scanning conditions,
while KITTT consists of real-world LiDAR scans without ground-truth supervision.

We compare our method with several state-of-the-art completion approaches, including PoinTr[7],
ProxyFormer [8], and CRA-PCN [19]. Across both datasets, our method consistently produces more
complete and detail-preserving reconstructions. Notably, unlike PoinTr and ProxyFormer, which
often generate over-smoothed outputs and fail to adapt to input-specific cues, our method preserves
fine-grained structures and sharp object boundaries. Compared to CRA-PCN, our approach yields
cleaner contours and fewer noisy artifacts, especially in complex or partially occluded regions. These
results highlight the strength of our dynamic, sample-specific adaptation strategy and its robustness
across both synthetic and real-world domains without relying on ground-truth supervision.

In addition, we provide more completion results on samples from PCN [4] and ShapeNet [10] (Fig. 8),
including zoomed-in visualizations of local regions. These results further demonstrate the capability
of our method to generate sample-specific completions by adapting to the unique structure of each
input. Notably, our approach restores fine-grained details—such as thin bars, wings, and structural
frames—across a wide range of categories, highlighting the benefit of dynamic refinement over static
inference.
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CRA-PCN

Figure 6: Qualitative comparison of point cloud completion results on the MVP dataset [38]. From
left to right: incomplete input, results from CRA-PCN [19], our method, and ground truth. Compared
to CRA-PCN, our completions present clearer structures and finer details with notably less contour
noise. Specifically, our method better reconstructs critical regions across different categories: (row
1) the curved backrest of the chair, (row 2) the trigger area of the gun, (row 3) the complex hull
structure of the boat, (row 4) the fine-grained details of the bench, and (row 5) the geometry of
the lampshade. These results demonstrate the effectiveness of our test-time adaptation approach,
which dynamically extracts sample-specific information to produce structurally accurate and detail-
preserving completions.

17



Input PoinTr ProxyFormer Ours

Figure 7: Qualitative comparison of point cloud completion results on the KITTI dataset [11]. From
left to right: incomplete input, completion by PoinTr [7], ProxyFormer [8], our method, and ground
truth. Among existing methods, ProxyFormer achieves the strongest overall performance; however,
its outputs remain generic and often overly smoothed, obscuring fine-grained structures. PoinTr
similarly struggles to preserve input-specific geometric details. In contrast, our method performs
dynamic, per-sample refinement via test-time adaptation, resulting in more accurate and detailed
completions. Notably, our results retain sharp object boundaries and recover distinctive features
such as car windows and wheels, demonstrating superior geometric fidelity. Importantly, despite
the absence of ground-truth during inference on real-world KITTI data, our approach leverages
self-supervised signals to adapt effectively to each input, producing semantically meaningful and
structurally consistent completions.
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Figure 8: Qualitative results of point cloud completion on samples from the PCN [4] and ShapeNet
[10] datasets. From left to right: incomplete input, our completion result, a zoom-in of the region
highlighted by the purple bounding box, and ground truth. The examples cover diverse categories
such as chairs, cars, airplanes, ships, and lamps. Unlike existing approaches that tend to produce
generic completions, our method dynamically adapts to each input and faithfully reconstructs both
global object structures and fine-grained details—such as the curved backrest bars of chairs, car
rear wings, airplane tails, ship masts, and lamp frames. The zoomed-in views clearly demonstrate
the effectiveness of our test-time adaptation strategy in preserving geometric fidelity and restoring
delicate, sample-specific structural elements.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims stated in the abstract and introduction clearly reflect the
paper’s contributions,

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discusses several limitations
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical components of the paper include a formalization of the meta-
objective and its role in aligning auxiliary and primary task gradients.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The paper provides detailed descriptions of experiments.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code and data processing scripts upon publication.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies all relevant training and test settings.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports mean performance along with standard deviation across
three independent runs with different random seeds.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper reports the type of compute resources used, including NVIDIA
A100 GPUs.

Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our method improves robustness and adaptability in 3D point cloud comple-
tion.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: Our work does not involve models or datasets with high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and codebases used in this paper are publicly available and
properly cited with their corresponding licenses and terms of use. We used ShapeNet and

ScanNet under their respective academic licenses, and all third-party code is credited in the
references or supplemental material.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce any new datasets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve human subjects or participant-based studies.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Large language models (LLMs) are not used as part of the core methodology
in this work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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