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Abstract

Maritime Capture the Flag (MCTF) is a 3-vs-3 multi-agent
real-time strategy game that utilizes a marine robotics simula-
tor with support for hardware deployment. The game presents
several research challenges in the areas of coordination and
communication of multi-agent teams in adversarial environ-
ments with sparse rewards, and safe autonomy. In this pa-
per, we report our experiences and challenges in deploying
the MCTF game as an open, public challenge as part of the
competition track at the 2024 Autonomous Agents and Multi-
agent Systems (AAMAS) conference. The top performing
teams were also evaluated on unmanned surface vehicles
playing a 3-vs-3 MCTF game in a physical marine environ-
ment. We summarize the techniques used by the top eight
competition entries that featured control algorithms ranging
from multi-agent deep reinforcement learning to heuristic ap-
proaches for path planning and search algorithms. Our anal-
ysis of the competition results reveals a trade off between
winning versus safety, as a key factor differentiating teams’
performance was their agents’ handling of safety behaviors
like collisions with other players. We conclude by highlight-
ing the key research gaps in deploying multi-player game-like
encounters in the real world scenarios.

Introduction
Multi-agent systems research has advanced significantly
over the last three decades. A recent success story of multi-
agent systems and machine learning has been the abil-
ity to develop game-playing agents that can play at lev-
els comparable to human champion players in computer-
based games such as StarCraft II, Chess, Texas hold-em,
Quake-III Capture-the-Flag and Google Research Football
2 (Shao et al. 2019; Jaderberg et al. 2019; Vinyals et al.
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2019; Liu et al. 2022). Most of these techniques have been
developed within computer-based, gaming and simulation
environments. In comparison, there has been limited re-
search on multi-player games where physically embodied
agents strategically make decisions and realize their actions
in a real-life environment. Recently, DARPA’s Alpha Dog-
fight trials (JHU-APL 2020) challenge involved designing
an agent to autonomously control an aircraft in a 1-v-1
engagement against another human-controlled aircraft. Re-
sults were reported initially within a simulation environ-
ment (Pope et al. 2023), followed by deploying the tech-
niques on physical aircrafts (Harper 2024). The Alpha Dog-
fight challenge has shown a promising direction towards
fielding adversarial games in the real world. However, there
are several open questions relevant to fielding adversarial
games between physical agents that are worth investigating.
Some of these include scaling up the game-playing tech-
niques with number of players in each team, coordinating
between teammates and competing with opponent players
in real-time and ensuring safety constraints such as collision
avoidance between physical agents while playing the game.

We propose to address some of these issues through
a multi-player adversarial game called maritime capture-
the-flag (MCTF). In this paper, we report our experiences
with the MCTF game as part of the First Maritime Cap-
ture the Flag competition organized in 2024 (Kliem 2024b).
The competition challenge problem was to develop game-
playing algorithms for a 3-agent team that would play a 3-v-
3 MCTF game against a previously unseen opponent team in
a simulated game environment. Post-competition analysis of
the different submission entries showed that agents that used
AI planning and/or heuristics-based approaches leaning to-
wards defensive tactics were most successful. Reinforce-



ment learning-based approaches were successful in learning
the high-reward task of the game but failed to learn low-
penalty tasks like collision avoidance. The top two teams
from the simulated game were deployed on unmanned sur-
face vehicles (USVs) in a marine environment to play a 3-
v-3 MCTF game. The hardware results highlight the chal-
lenges in the algorithms’ performance under dynamic envi-
ronment conditions such as wind and water currents and the
need for research to bridge the sim-to-real gap.

MCTF Game Description and Competition

Figure 1: 2024 MCTF Pyquaticus Game Field

MCTF is based on the classic capture-the-flag game that
is played between two opposing teams. The simulation and
physical versions of the MCTF game environment was de-
veloped over a period of three years by research teams
spanning three countries. Several incrementally difficult pri-
vate competitions were held between the developer teams
to analyze and refine the game rules and simulator fea-
tures (Spencer et al. 2021; Beason et al. 2024). For the
2024 MCTF competition, we consider a 3-v-3 game, where
a 3-agent team plays against a previously unknown 3-agent
team. The game is played in a 80 × 40 m2 rectangular,
obstacle-free playing field, as shown in Figure 1. Players are
initially not aware of the boundaries of the playing field. The
playing field is divided into two halves, each half is referred
to as a team’s zone. Each team has a base within its zone that
contains the team’s flag. The objective of each team is two-
fold: 1) Pick the flag from the opposing team’s base (called
flag grab) and return with it back to its own base (called flag
capture), without getting tagged by a player of the opponent
team during this process. 2) Tag a player of the opponent
team if it enters into the player’s zone. Each game lasts for
a fixed duration of approximately 10 minutes. To prevent
players from predominantly tagging each other instead of
going for the main game objective of grabbing and capturing
the flag, a post-tag cool-down period was implemented. The
cool-down period was a time delay of 10 seconds which pre-
vented the tagging player from immediately tagging again.

Table 1 gives the points for the self and opponent teams
for MCTF game events. In addition to the points for in-
game events, we also added a collision penalty in the com-
petition scoring to enforce safe USV maneuvers when the
game-playing algorithms are deployed on USVs in a physi-
cal marine environment. A collision occurs if any agent is

within a range rcoll = 2.5 meters of another agent. The
objective of each player is to learn a game-playing strat-
egy that maximizes its team’s primary score in the game
given by: Scorepri = nTFC − nOFC − nTCol, where,
nTFC and nOFC are the number of flag captures by the
self-team and the opposing team respectively, and nTCol is
the number of collisions by the team. Ties in the primary
score were broken by using a secondary score given by:
Scoresec = nTFG + nTT − nOFG − nOT , where nTFG

and nOFG are the number of flag grabs by the self-team and
the opposing team respectively, and, nTT and nOT are the
number of times a player of the team tags and/or gets tagged
by an opponent player.

Table 1: MCTF Game Events and Scores. ∗: For competition
scoring, flag grab points were only used for tie-breaking.

Event Self Pts Opp Pts

Flag Capture +1 −1
Flag Grab∗ +1 −1
Collision −0.025 −0.025

Game Simulation Environment. The MCTF game is
modeled as a perfect information, deterministic, zero-sum
game in the simulation environment. For training and eval-
uating agents we used the Pyquaticus marine robotics CTF
simulator (Serlin et al. 2024). Pyquaticus is built on top of
the PettingZoo environment (Terry et al. 2021) that supports
training and evaluating agents via multi-agent reinforcement
learning. Pyquaticus supports implementations of different
deep RL algorithms including Proximal Policy Optimiza-
tion (PPO) through the Ray RLlib decentralized training li-
brary (Schulman et al. 2017; Liang et al. 2018). Pyquaticus
also provides a bridge to the MOOS-IVP Aquaticus test-
bed that enables directly deploying Pyquatics agents onto
USVs playing the MCTF game in a physical, marine envi-
ronment (Novitzky et al. 2019).

Competition Evaluation. The MCTF competition was
hosted on Codalab (Kliem 2024a). The simulation compe-
tition was organized in two rounds:
• Qualifying Round: Each team played against three hard-

ness levels - easy, medium and hidden, of movement
strategies of a 3-player opponent team. Each player in
a team using the easy strategy would follow a fixed,
pre-determined path - a defending player would circle
around in front of the team’s base. Meanwhile, an at-
tacking player would follow a circular trajectory between
its base, the opponent’s flag, and back. In a team using
the medium strategy, each player used a potential fields-
based reactive strategy on top of the easy strategy. In an
attacker role, a player would get attracted to its oppo-
nent’s flag and repelled by an opponent player; in a de-
fender role a player would get attracted to any opponent
player that entered its zone. The code for both easy and
medium opponent team strategies was made available
to participants to play against, and, refine and fine-tune
their game-playing strategies. The hidden strategy was
not made available to participants. It consisted of three



games in succession- first against a team of 3 medium de-
fenders, then against a team of 3 medium attackers, and
finally, against a team of two attackers and one defender
all set at the medium difficulty.

• Final Round: The top-performing teams from the quali-
fying round advanced to the final round where each team
played against every other team in a round-robin tour-
nament. Scores from successive games of a team were
added cumulatively to determine the rank-ordered per-
formance of the team on the competition leaderboard.

Sample code for training a team of 2 agents via
PPO (Schulman et al. 2017) inside Pyquaticus to play a
2-v-2 MCTF game was provided on the competition Web-
site (Kliem 2024a) to reduce the entry barrier for poten-
tial participants. The challenge was run over a period of 12
weeks and received 15 valid competition entries from teams
across four continents for the qualifying round.

MCTF Competition Algorithms
There were two main categories of algorithms submitted to
the MCTF competition: heuristics-based and machine learn-
ing (ML)-based algorithms. Although some algorithms used
rather simple heuristics, we include these to highlight limi-
tations of some of the ML-based approaches. For legibility,
we denote each team by the last name of the team lead, fol-
lowed by the team’s abbreviated affiliation. Table 2 summa-
rizes each team’s approach and reported development time,
including training time for their MARL algorithm, wherever
applicable.

Table 2: MCTF Competition Teams, Algos and Dev Time

Team Name Algo Type Dev Hrs

Lucas-QMU Stochastic Search ∼ 80
+ heur. plan opt.

Ohto-Indep1 Naive heuristic -
Alamer-EJUST1 Naive heuristic -

Meo-Indep1 Multi-robot task alloc -
+ path de-conflict

Chao-NIWC-PAC PDDL planner ∼ 640
Richley-NIWC-ATL Deep MARL ∼ 160

Crowley-BU-LL Hier. learning + ∼ 160
imitation learning

Jin-Indep1 RL (code not shared) -
Leprell-USMA Deep MARL ∼ 85

1Participants who did not respond to request for approach
description.

Lucas-QMU. The Lucas-QMU team’s main approach
was a stochastic search technique that implemented a multi-
agent version of the Rolling Horizon Evolution (RHE) algo-
rithm (Gaina et al. 2021) called Multi-Unit RHE (MURHE).
RHE is a stochastic search algorithm in the same family
as Monte Carlo Tree Search (MCTS) algorithms. Whereas
MCTS uses selective sampling of next states to expand the
search tree from a state, RHE starts with an initial population

of roll-outs or trajectories that comprises state-action pairs
from the start up to the end of the game or the limits of the
planning horizon. It then uses evolution to improve the tra-
jectories selectively. The fitness function inside the evolution
ranks trajectories based on a multi-objective cost function
that balances expected rewards and possibility of collisions
in the trajectory. The multi-agent version of RHE, MURHE,
evolves trajectories one to a time for each player in the self-
and opponent teams. The trajectories of all players in the
team are then updated to maximize the expected reward for
the team. Safety was considered by including the penalty for
collisions with teammates into the multi-objective cost func-
tion (fitness function) of the trajectories in the MURHE al-
gorithm. The final algorithm of this team refined the plan or
sequence of moves generated by MURHE using heuristics
based on the game scoring rules.

Ohto-Indep., Alamer-EJUST. One of the findings re-
ported by several participating teams was that it was eas-
ier to win by defending to ward off attacks rather than to
attack to try to grab and capture the flag. This was due to
the game rules that penalized agent collisions and getting
tagged by an opponent. In addition, if a player did a tag
closer to its home base it would need a shorter time af-
ter its post-tag cool-down period to get back to defending
its flag. These effects culminated in a naive strategy, where
all the players of a team just remained stationary near their
base to defend against attacks. The Ohto-Indep and Alamer-
EJUST submission entries exploited this aspect of the game
rules in their agent design. The algorithms performing well
against the easy and medium opponent teams in the qualify-
ing round. Although this naive strategy exposed a limitation
of the easy and medium opponent team strategies used in our
evaluations, it also highlighted the need of more complex
opponent strategies to evaluate against and more diversity in
the game such as spawning self and opponent team players at
different locations at the start of the game, and having higher
and/ or gradually increasing post-tag cool-down periods.

Meo-Indep. The Meo team developed a defensive strat-
egy called Man-to-Man defense that allocated each agent in
the team to intercept an attacker agent of the opponent team
using an approach inspired by multi-robot task allocation.
Man-to-Man proceeds in two phases: in the first phase, it cal-
culates the intercept points between every player (defender)
and every other opponent player along with the distances
between each defender and its corresponding set of intercep-
tion points. It then selects the pairing between a defender and
an interception point that minimizes the sum of distances be-
tween defenders and interception points. The action for each
defender is set to the highest speed and bearing to reach its
paired interception point. When a defender reaches its inter-
ception point, it stops (speed set to zero). While defenders
are traveling to their paired interception points, potential in-
tersections between their trajectories are calculated to iden-
tify possible collisions with other teammates. If a potential
collision is detected between defenders, the headings of one
of them is set to the opposite of its selected direction to avoid
collision. This approach too minimizes collisions between
teammates but does not avoid collisions with opponent team
players.



Richley-NIWC-ATL. This team incrementally devel-
oped different MARL algorithms for playing MCTF. Their
first attempt was an n-player version of the COCO-Q al-
gorithm (Sodomka et al. 2013). COCO-Q enables agents
to negotiate with each other via side payments of rewards.
This attempt did show a bit of cooperation between agents
in the same team, but did not converge to a strong policy.
The second attempt used multi-agent PPO with league train-
ing (Vinyals et al. 2019). This resulted in a good strategy
that was heavily focused on grabbing and returning with the
enemy flag, some instances resulted in highly defensive poli-
cies. The third attempt used QMIX that resulted in a nicely
balanced strategy between various roles such as attacker, de-
fender, and mid-fielder (Rashid et al. 2018). Agents would
dynamically switch between these roles depending on their
field positioning. A weakness of this technique was that even
though it did well in grabbing the opponent’s flag, it had not
fully learned how to return with the flag to its base for a
flag capture. The final submission used a mixture of QMIX
and the league-based PPO. An agent used QMIX as its main
game-playing strategy, but as soon as it grabbed the oppo-
nent’s flag, it would switch to the league-based PPO model
to secure a flag capture.

Crowley-BU-LL. This team divided the overall task of
playing the game into a set of behavioral primitives. The
behavioral primitives that were considered were: go to op-
ponent flag region (“attack”), flank opponent flag region
(“flank”), avoid opponents (“avoid”), retreat to own zone
(“retreat”), guard against opponents grabbing and captur-
ing flag (“guard”), tag opponent closest to flag (“tag”), and
do nothing (“no-op”). Each behavioral primitive was repre-
sented as a time extended policy or option using a hierar-
chical learning-based mixture-of-options framework (Hen-
derson et al. 2018). Human players were then assigned to
play the game to determine when to switch between the op-
tions. Each human player was randomly assigned to play
against the easy and medium defender and attacker agent
teams. A total of 47 demonstrations of human game-play
was collected. This dataset was then used for training a
shared policy-over-options via imitation learning. Two key
takeaways from this approach were that learning an options-
level demonstrator policy allowed for good generalization
against different opponent team strategies from few human
demonstrations of game-play, and, using pre-defined intra-
option policies produced more predictable and interpretable
behaviors.

Chao-NIWC-PAC. This team explored multiple methods
including mixed discrete-continuous planning (PDDL+),
discrete planning (PDDL), RL, and centralized and decen-
tralized planning methods for multiple agents. The RL ap-
proach was dropped in favor of a PDDL+ planner called
Nyx (Piotrowski and Perez 2024) which ultimately was
more reliable and converged to a policy with both attack-
ing and defending behaviors. To solve the MCTF game as a
planning problem, the following modifications were made
to the game environment: the RL-based environment was
converted to a planning environment by translating relative
bearing and distance measurements between players to abso-
lute values. The action space was abstracted for higher-level

planning and environment action outcomes were mapped to
corresponding planning actions. The environment was mod-
eled as a non-temporal, 16×8 grid where agents could move
in the four cardinal directions between grid cells. Exogenous
events included undesired collisions and desired flag grabs
and captures. Adversaries were assumed to be static, with
periodic re-planning. PDDL+ problem instances were auto-
generated from observations, and plans were sequentially
executed in the environment. The goal given to the planning-
based agents was to capture the flag or make it back just
inside the team’s zone after grabbing the flag.

Leprell-USMA. The primary approach in this team’s
competition entry was attempting to reduce the uncertainty
experienced by the agents during training. Dense reward
functions resulted in poor convergence of deep RL policies.
To overcome this, sparser rewards were used while only as-
signing rewards for the time-step in which captures or grabs
occurred, resulting in revised scoring scheme of +1/ − 1
(captures), and +0.5/ − 0.5 (grabs). The agents used the
Ray RLlib Proximal Policy Optimization (PPO) algorithm
with the default hyper-parameters (Liang et al. 2018) during
training. Each agent was trained in a decentralized manner
for 17000 episodes, on a system with 18 CPU cores, and an
RTX4090 GPU. The safety aspect (collision avoidance) of
the MCTF game was not considered. Despite this, the DRL
approach remained consistent against the previously unseen
opponents during the final, round robin phase.

Results and Observations

Table 3: MCTF final round team rankings including colli-
sion penalties.

Rank Team Name Score No. Collisions

1 Lucas-QMU −1.0 4
2 Ohto-Indep −3.0 12
2 Alamer-EJUST −3.0 12
3 Meo-Indep −4.25 17
4 Chao-NIWC-PAC −6.75 11
5 Richley-NIWC-ATL −10.0 109
6 Jin-Indep −10.25 226
7 Crowley-BU-LL −15.5 183
8 Leprell-USMA −49.5 153

We report the team scores from the final round of the
MCTF competition (in simulation) in Table 3. The final
round had 72 round robin games featuring the top 9 teams
from the qualifying round2. Each of the 8 teams played ev-
ery other team twice, once on each side of the playing field.
The opponent team’s strategies were not revealed to the team
before the game. Team scores were determined using the
Scorepri metric (discussed in Section 2) that rewarded flag
captures while penalizing collisions. The top scoring algo-
rithm prioritized defensive behaviors via a stochastic search

2The qualifying round results are available at (Kliem 2024a).
They are not analyzed further here as their main purpose was for
participants to refine and fine-tune their algorithms.



algorithm and integrated collision avoidance into its learn-
ing objective function. Submissions ranked 2 − 3 imple-
mented defensive-only behaviors via heuristics without us-
ing machine learning. These algorithms did not explicitly
avoid collisions with teammates. Rather they leveraged the
game scoring rule structure and kept their agents station-
ary just outside their flag base or at the closest point for
intercepting an attacker. The 4-th ranked team used plan-
ning, again with collision avoidance built into the objective
function. Notably, prioritizing defense3 and avoiding colli-
sions turned out be the key factors in the success of the top
5 teams. Also, none of these teams had used an ML- or RL-
only solution. Teams ranked 6− 8 used MARL-based solu-
tions. They mainly lost points due to large number of colli-
sions indicating that the RL algorithm was not able to learn
to avoid collisions when faced with a previously unseen op-
ponent team (that it was not trained against).

Table 4: MCTF final round team rankings without collision
penalties.

Rank Team Name Number of Captures

1 Jin-Indep 31
2 Crowley-BU-LL 19
3 Richley-NIWC-ATL 15
4 Chao-NIWC-PAC 4
5 Leprell-USMA 0 Captures 5 Grabs
6 All Other Teams 0 Captures 0 Grabs

As handling collision avoidance was a problem for most
of the submitted algorithms, we wanted to evaluate how well
the algorithms had learned the main objective of the MCTF
game of capturing the flag. For this, we re-ran all the games
of the round-robin phase for a second time while turning off
the collision penalty in the Scorepri metric. The scores for
these evaluations are reported in Table 4. Interestingly, we
observe a complete reversal in the team’s rankings when col-
lision penalties were ignored. MARL-based algorithms per-
formed much superior, making multiple flag captures while
the non-MARL algorithms, owing to their defense-focused
behaviors ended up with few or zero captures most of the
times. This finding points in the direction that safety con-
straints like collision avoidance might be better off being
implemented as a separate component or control mechanism
instead of integrating it inside the same RL objective func-
tion as the game’s main task.

Competition in Physical Environment. The top team
from each category during the final simulation round, Lucas-
QMU (most captures with collision penalty) and Jin-Indep
(most captures without collision penalty), were deployed
against each other to play a 3-v-3 MCTF game in a physical,
marine environment at Lake Popolopen, West Point, NY4.
The autonomous platform for each player was a SeaRobotics

3In 44% of all games in the final round, a team never attempted
to capture the opponent team’s flag.

4The on-water competition took place 3 months after the simu-
lation competition.

Figure 2: Marine environment used for evaluation of MCTF
competition algorithms deployed on USVs, playing 3-v-3
MCTF game.

Surveyor USV. The playing field size and flag placements
were kept as close possible to the simulation environment. A
snapshot of an on-water MCTF game is shown in Figure 2.
Before deploying the algorithms from the simulation, a few
adjustments were made to the control mechanisms on the
USVs to enable turning at higher speeds and reaching the
maximum speed quickly. The collision avoidance was im-
plemented manually for safety reasons - when the person-
nel managing the on-water game saw that two USVs were
getting close, within ∼ 2.5 m of each other, they manu-
ally overrode the control of each USV to slow them down
and turn away from each other. When the USVs were far-
ther apart, the manual control was relinquished to the au-
tonomous control algorithm. The game was run for ∼ 10
minutes. Differing from the simulation results where Lucas-
QMU’s solution had been successfully able to defend the
flag and achieve highest score, the dynamic conditions in the
marine environment like wind and water currents degraded
their algorithm’s performance in defense. This allowed Jin-
Indep’s ML-based approach to capture the flag successfully
one time and grab Lucas-QMU’s team flag a total of three
times. Similarly differing from simulation was the number
of collisions encountered where Jin’s team required human
collision avoidance twice, and Lucas-QMU’s approach re-
quired four human collision avoidance interactions. This dif-
ference highlights the significant divide while transitioning
algorithms between simulation and real world emphasizing
the need for future research in this direction. As the on-water
competition was not held simultaneously with the simulation
competition, further analysis and explanation of the result
was planned to be done post-hoc, for the next edition of the
competition.

Conclusions and Future Competitions
We reported the different algorithms used in the first
MCTF competition and their performances in a round robin
matchup between the qualifying submitted entries. While
deep RL-based techniques have demonstrated significant
successes in computer-based real-time strategy games, we
saw that for the MCTF game, adding a secondary objec-



tive like a safety constraint degraded the score of MARL-
only approaches. Collision avoidance in an adversarial game
proved to be particularly difficult as players sometimes
needed to proactively avoid collision with another oncom-
ing player that does not implement collision avoidance. In-
tuitively, we felt that most solutions, especially the ones us-
ing MARL lost points on collisions because they had trained
against players that also used collision avoidance. Transi-
tioning some of the competition algorithms to an on-water
3-v-3 MCTF game with USVs highlighted the limitations of
transitioning techniques developed in simulation-only on to
physical systems.

The MCTF simulation environment and competition pro-
vide an accessible and extensible simulation environment
for advancing research on multi-player, real-time, adversar-
ial games. The first competition provided competition or-
ganizers and participants with valuable insights for future
competitions. We are rolling out the next competition with
game rule changes to make the game more interesting and
challenging. Some updates to the game include increasing
the post-tag cool-down period to incentivize attack strategies
and to discourage loitering or standing still near the home
flag base, and adding improved visualization capabilities to
the simulation environment for analyzing and learning from
past game-plays. Future editions of the game will include
harder problems like obstacles in the game field, noisy sen-
sors on the players’ platforms with limited perception range,
heterogeneous autonomous platforms (e.g., aerial and ma-
rine robots) and deceptive play by opponent team players.
The MCTF organizers envisage that lessons learned through
future iterations of simulated and physical MCTF competi-
tions will help us understand the challenges and issues of
deploying multi-player adversarial games in the real world
and bridge the sim-to-real gap.
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