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Abstract
Low-Rank Adapters (LoRAs) have transformed
the fine-tuning of Large Language Models
(LLMs) by enabling parameter-efficient updates.
However, their widespread adoption remains lim-
ited by the reliance on GPU-based training. In
this work, we propose a theoretically grounded ap-
proach to LoRA fine-tuning designed specifically
for users with limited computational resources,
particularly those restricted to standard laptop
CPUs. Our method learns a meta-operator that
maps any input dataset, represented as a probabil-
ity distribution, to a set of LoRA weights by lever-
aging a large bank of pre-trained adapters for the
Mistral-7B-Instruct-v0.2 model. Instead of per-
forming new gradient-based updates, our pipeline
constructs adapters via lightweight combinations
of existing LoRAs directly on CPU. While the re-
sulting adapters do not match the performance of
GPU-trained counterparts, they consistently out-
perform the base Mistral model on downstream
tasks, offering a practical and accessible alterna-
tive to traditional GPU-based fine-tuning.

1. Introduction
As models and datasets scale up, full fine-tuning becomes
increasingly unrealistic for most practitioners. The largest
foundation models—often built by tech giants with almost
unlimited compute (Touvron et al., 2023; OpenAI, 2023;
Bai et al., 2023; Qwen et al., 2025; DeepSeek-AI et al.,
2025)—can have hundreds of billions of parameters, making
traditional fine-tuning for individuals prohibitively expen-
sive. Parameter-efficient fine-tuning (PEFT) methods (He
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et al., 2022; Pfeiffer et al., 2020; Ding et al., 2022; Yu et al.,
2022; Han et al., 2024) offer a workaround: instead of updat-
ing all weights, they tweak a small subset, slashing compute
and storage costs while maintaining reasonable performance.
Among these, the Low-Rank Adapter (LoRA) (Hu et al.,
2021) approach has become standard due to combined sim-
plicity and surprisingly powerful effectiveness. Neverthe-
less, for modern massive LLMs, LoRA fine-tuning can still
be long and heavy. Thus, the following question becomes
necessary:

Can one generate new low-rank adapters to fine-tune large
language models on new tasks without the need for GPUs?

We address this concern by introducing a zero-shot LoRA
meta-generation procedure aimed at CPU-only users. Our
approach takes novel datasets, each potentially containing
a variable number of instances, as input. It then outputs
LoRA weights for a pre-trained LLM, where the prediction
relies on a combination of instances from an existing bank
of LoRAs (Gabrielsson et al., 2024). Importantly, the way
in which these combinations are performed is lightweight
enough to be computable on a standard contemporary CPU
in a few minutes (see Table 2 in Appendix C), with no need
for GPU clusters.

Main Contribution Our principled LoRA meta-
generation pipeline provides lightweight, “cheap” LoRAs
that approach the performance of GPU-fine-tuned models
(which are often inaccessible to many) and outperform
the base “non-finetuned” model. These contributions are
theoretically grounded in Proposition 1 and Theorem 1.
Together, these demonstrate that, with high probability,
a ReLU Multi-Layer Perceptron (MLP) architecture,
designed to run efficiently on a CPU, can identify the
optimal coefficients for combining existing LoRAs.
These optimal LoRA mixture coefficients, as defined
in (3) (representing a weighted sum of pre-trained LoRA
parameters), are determined based on the given dataset
alignment features. This process effectively minimizes the
downstream task loss, which quantifies the model’s error on
new, specific tasks. Additionally, our work also provides
nearly-optimal closed-form solutions through lightweight,
neural network-free alternatives (e.g., the Attentional or
Normalized approaches). Interestingly, our experiments
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reveal that the neural network-free variants of our pipeline
perform comparably to the theoretically near-optimal neural
network solution (the MLP-based approach).

Section 2 provides a discussion of related work concern-
ing LoRA. We introduce the preliminaries for formalizing
datasets as probability distributions in Section 3. Section 4
presents our LoRA generation pipelines. Their respective
theoretical guarantees are later detailed in Section 5, and
experimentally validated in Section 6.

2. Related Work
Since its introduction, the utility of LoRA (Hu et al., 2021)
has expanded significantly beyond classical LLM post-
training and language. It is now employed in diverse fields
such as vision language models (Li et al., 2023) and vi-
sion Transformers (Dong et al., 2023). LoRA has also
proven valuable in image generative modeling for rapid
Stable Diffusion fine-tuning and personalization (Rombach
et al., 2022; Gal et al., 2022; Ruiz et al., 2022; Roich et al.,
2022), and for score distillation (Wang et al., 2023), al-
though more principled LoRA-free methods have recently
emerged (Lukoianov et al., 2024). Its application even ex-
tends to fine-tuning base models into reasoning models us-
ing reinforcement learning (Wang et al., 2025), and in the
development of new adapters for Graph Neural Networks
and Graph Transformers (Papageorgiou et al., 2025).

Alongside this expanding applicability, numerous LoRA
variants have emerged, often aiming to further reduce com-
putational overhead. For instance, quantization offers a way
to lower memory consumption both during training (Gho-
lami et al., 2021; Dettmers et al., 2023; Guo et al., 2024)
and after (Yadav et al., 2023). The number of trainable
parameters can also be reduced through adaptive rank allo-
cation (Zhang et al., 2023). Further inspired by ideas around
weight or projection reuse (Frankle and Carbin, 2018; Ra-
manujan et al., 2020), strategies to decrease trainable LoRA
parameters include learning diagonal rescaling of frozen
random B and A matrices (VeRA) (Kopiczko et al., 2024),
deriving B and A from the SVD of the pre-trained W0 and
optimizing a smaller matrix in the resulting space (SVD-
iff) (Han et al., 2023), learning a linear combination of fixed
random matrices (NOLA) (Koohpayegani et al., 2023), and
fine-tuning with orthogonal matrices (BOFT) (Liu et al.,
2024). LoRAs have also been explored from a more the-
oretical viewpoint (Zeng and Lee, 2024; Zhu et al., 2024;
Kratsios et al., 2025).

Note that our focus here is on LoRA generation on CPU,
which none of the aforementioned works explore. We would
like to reiterate that all our pipelines, including those using
artificial neural networks can be trained solely using CPUs.

3. Preliminaries
Datasets as Probability Distributions To describe our
pipeline, we first need a unified framework for datasets with
a varying number of instances. As such, we fix dimensions
d,D ∈ N+. Given our training datasets D1, . . . , DN ⊂ X
for some (non-empty) compact input domain X ⊆ Rd+D
corresponding to one of N possible down-stream tasks
T1, . . . , TN which our Transformer model (Mistral-7B-
Instruct-v0.2) fθ : Rd → RD, whose parameters θ ∈ Rp lie
in a p≫ 0 dimensional Euclidean parameter space. Since
the entries of each dataset are permutation-invariant, then,
following the synthetic data generation literature, e.g. (Za-
manlooy et al., 2024), it is natural to represent each dataset
Dn as an empirical distribution (probability measure) via

PDn
=

1

Nm

∑
(x,y)∈Dm

δ(x,y) (1)

on the domain X where Nm
def.
=#Dn; i.e. PDn =∑Nm

m=1 wmδ(xm,ym) with wm = 1/Nm for each m =
1, . . . , Nm. The support of the measure PDn

, namely,
{(x1, y1), . . . , (xm, ym)} represent instances in Dn and the
weights wm ∈ [0, 1] sum to 1, i.e. w belongs to the Nm sim-
plex ∆Nm

def.
= {u ∈ [0, 1]Nm :

∑Nm

i=1 ui = 1}, and represent
the relative frequency of instance of data-point in Dm. We
denote the set of probability measures on X by P(X ).

Pipeline Inputs and Distributional Alignment Scores
We then choose a data-similarity score where ρ : P(X )×
P(X ) → [0,∞]. For this, we choose a (dis)similarity
metric between probability distributions (measures) on
X , e.g. an information-theoretic divergence such as Kull-
back Leibler (KL) divergence or a metric such as the 1-
Wasserstein distance W1. This dissimilarity score then
allows us to extract alignment scores between any new
dataset D (encoded as a probability measure PD on the
data-domain X ) and every dataset (Dn)

N
n=1 in our database

via align : P(X ) → ∆N

align(PD)
def.
= Softmax

(
(ρ(PD, PDn

)Nn=1

)
. (2)

Once the (softmax-normalized) alignment scores are com-
puted, they are passed to a network, here in our “proof of
concept” we use a simple MLP (trained on CPU), which
yields a set of mixture weights WD ∈ ∆N . These mixture
weights are then used to combine the pre-trained LoRA
weights θ1, . . . , θN , from out database. Note that each
LoRA weight θn was specialized for task Tn and pre-trained
on dataset Dn. The output of our model is thus simply the
mixture of LoRAs

D 7→ PD 7→
N∑
n=1

WD θn (3)

and lies in the convex hull of the pre-trained LoRA weights
θ1, . . . , θN in the parameter space Rp. Therefore, we only
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need to learn (or compute, as we will see in Section 4) the
mapping in (3). Based on this we are able to obtain LoRA
weights with no fine-tuning, directly out-of-the-box.

4. LoRA Generation Pipelines for CPU
We now mathematically formalize our end-to-end cheap
LoRA pipelines. Further details on how these were prac-
tically implemented can be found in Appendix C.1. Our
main theoretical guarantee (Theorem 1) is general enough
to apply not only to LoRAs fed into transformers but also
to nearly any mixture-of-expert-based parameter prediction
pipeline.

4.1. Setup

Let d,D ∈ N+. Let ℓ : RD × RD → [0,∞) be Lips-
chitz. Let f : Rp ×Rd → RD be a locally-Lipschitz model,
mapping the parameters θ ∈ Rp and an input x ∈ Rd to
an output fθ(x) ∈ RD. Also, We are given a pre-trained
model θ0 ∈ Rp. Purely for simplicity, we consider the
standardized data-domain X = [0, 1]d+D. Following (Roth-
fuss et al., 2023). We henceforth fix a task distribution
P ∈ P(S) quantifying the probability of selecting any one
dataset in S at random. We consider a metric space of
datasets D ⊆ P([0, 1]d+D) metrized by ρ, where the topol-
ogy generated by ρ is no coarser than the topology of conver-
gence in distribution. We fix a K ∈ N+ datasets paired with
“fine-tuned” model parameters (D1,∆θ1), . . . (DK ,∆θK)
in D × Rp. Let

co(∆θ) def.
= {ϑ ∈ Rp : (∃w ∈ ∆K)ϑ =

K∑
k=1

wk∆θK}

where ∆K
def.
= {w ∈ [0, 1]K :

∑K
k=1 wk = 1}.

4.2. Very-Cheap LoRAs: Attentional Approach

Consider the following approach which maps any new in-
coming dataset D to the following mixture of LoRAs

CAtt(D) def.
= [softmin ◦ align(D)]⊤︸ ︷︷ ︸

LoRA Alignment Scores

(∆θ1, . . . ,∆θK)︸ ︷︷ ︸
Pre-Trained LoRAs

(4)

We refer to the pipeline in (4) as our attentional approach
since the dataset D1, . . . , DK play a similar role to the keys
in attention mechanisms (Vaswani et al., 2017). The LoRA
alignment scores in (4) are analogous to contextual align-
ment scores, and the pre-trained LoRA parameters play a
similar role to the value matrices in (Vaswani et al., 2017).
The softmin is used instead of a softmax since maximal dis-
tance alignment happens when two datasets have a distance
of 0 from one another, not some arbitrarily large number.
We examine a normalized version of distance vector (4) in
our experiments, see Appendix C.1.4 for details.

4.3. Cheap Nearly-Optimal LoRAs: Neural Approach

Our neural approach injects non-linear flexibility into how
the distances are mapped to the LoRA alignment scores
in (4) using a deep learning model C : D → co(∆θ); in this
paper, this will always be an MLP. This allows our cheap
LoRA approach to learn how to detect and align complicated
non-linear alignments between the new dataset and those
defining each pre-trained task. This neural approach thus
sends any dataset D to the following mixture of LoRAs

C(D) def.
= [softmin ◦f̂ ◦ align(D)]⊤︸ ︷︷ ︸

Neural-LoRA Alignment Scores

(∆θ1, . . . ,∆θK)︸ ︷︷ ︸
Pre-Trained LoRAs

(5)

where f̂ : RK → RK is an MLP with activation function ς ,
and we write align(D) in place of align(PD) understanding
the correspondence D → PD as implicit.

5. Theoretical Guarantees
We now provide guarantees on the optimality of both our
main approaches. We also demonstrate the existence of an
oracle optimizer, yielding the best possible LoRA if the user
had access to complete information on the task distribution.

5.1. Attentional Approach

Our cheapest out-of-the-box LoRA pipeline (4) are optimal
in a PAC-Bayesian sense of (Alquier et al., 2016).

Proposition 1 (Existence: Optimal Oracles for Fine-Tuning).
For every K ∈ N+ and {(Dk,∆θk)}Kk=1 ⊂ D × Rp with
each Dk finite and non-empty. For every α > 0 and each
dataset D ∈ D, the LoRA Alignment Scores in (4) satisfy

softmin ◦ align(D)︸ ︷︷ ︸
LoRA Alignment Scores

∈ argminw∈∆k

1

K

K∑
k=1

wk ρ(D,Dk)︸ ︷︷ ︸
Dataset Alignment

+
1

α

K∑
k=1

wk log(wk)︸ ︷︷ ︸
Entropic Penalty

Proof. See Appendix B.1.

5.2. Neural Approach

The attentional pipeline, in (4), only checks for the align-
ment of a dataset with the datasets previously used for train-
ing the adapters in the bank. In contrast our neural approach,
in (5), optimizes for the downstream performance of the pre-
dicted mixture of LoRA experts. Surprisingly, at least theo-
retically, one only needs a small MLP between the distance
vector and softmin normalization layers to perform this out-
of-the-box downstream (near) optimal LoRA generation.
Our first guarantee for the neural approach demonstrates the
existence of a map, i.e., an oracle predictor, which returns
the best possible downstream optimization.

Proposition 2 (Existence: Optimal Oracles for Fine-Tuning).
For every dataset D ∈ D there exists an oracle parameter
ϑ⋆ ∈ co(∆θ) satisfying

3



LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs

E(X,Y )∼D

[
ℓ(fθ+ϑ⋆(X), Y )

]
︸ ︷︷ ︸

Oracle Error

= inf
∆θ∈co(∆θ)

E(X,Y )∼D

[
ℓ(fθ+∆θ(X), Y )

]
.︸ ︷︷ ︸

Optimal Error

Proof. See Appendix B.2.

Our next and main results show that our pipeline can imple-
ment the optimal downstream mixture of LoRA predictors
to achieve precision. Our result only relies on one struc-
tural regularity condition on our data, guaranteeing that:
the inverse problem of recording a dataset/measure from its
distance measurements to the available datasets/measures is
possible. Effectively, this means that the metric dimension,
in the graph-theoretic sense (see (Tillquist et al., 2023) for
details), of the space D is exactly K.

Assumption 1 (Well-Posed Inverse Problem). Let (D, ρ)
be compact and suppose that ρ metrizes the weak topology
(convergence in distribution) on D. We require that: the
map align : D → [0,∞)K injectively maps any D ∈ D to

align(D) def.
=
(
ρ(D,Dk)

)K
k=1

.

Theorem 1 (ε-Optimal Cheap Fine-tuning). Let ς : R → R
be a Lipschitz activation function which is differentiable
with non-zero derivative at least on point. For every 0 <
ε ≤ 1, there is a MLP C : RK → RK with activation
function ς such that the ϵ-optimal selection property:

E(X,Y )∼D

[
ℓ(fθ+C(D)(X), Y )

]
︸ ︷︷ ︸

Cheap Fine-Tuning

≤ inf
∆θ∈co(∆θ)

E(X,Y )∼D

[
ℓ(fθ+∆θ(X), Y )

]
︸ ︷︷ ︸

Fine-Turning Oracle

+ε

holds with P-probability at-least 1− ε.

Proof. See Appendix B.2.

6. Experimental Results
A comprehensive evaluation was conducted to assess the
performance of three distinct approaches (Attentional, Nor-
malized, and Neural) in conjunction with four established
distance metrics (or divergences): Wasserstein Distance
(WD), Kullback–Leibler (KL) divergence, Jensen-Shannon
(JS) divergence, and Maximum Mean Discrepancy (MMD).
This evaluation aimed to systematically compare the outputs
generated by each combination of approach and metric. The
primary evaluation criterion for the quality of the generated
adapters was Rouge-L, a metric ranging from 0 to 1 that
quantifies similarity based on the overlap of the longest
common subsequences between generated and reference
outputs (Lin, 2004). We also include Exact Match (EM)
results in Appendix D.1.

Our experimental setup utilized the Mistral-7B-Instruct-v0.2
model (Jiang et al., 2023) and a dataset comprising 502 En-
glish dataset-adapter pairs sourced from the Lots-of-LoRAs
HuggingFace repository (Gabrielsson et al., 2024). Further

technical details regarding the implementation are provided
in Appendix C.

Our experimental setup highlighted a key distinction in re-
source usage: the actual computation and adaptation of
the LoRA adapters were performed exclusively on the CPU.
GPUs, however, were essential only for the evaluation phase.
This is because each adapted LLM, after being modified
by our pipeline, needed to be loaded onto a GPU to gener-
ate outputs on its respective test set. To thoroughly assess
the performance of each approach-distance (or divergence)
metric pairing, we executed the entire pipeline twelve times
for each of the 502 datasets. This exhaustive process cov-
ered every unique combination of approaches and distance
metrics. Following the generation of outputs, the Rouge-L
score was calculated for the test set of each dataset, and the
reported values reflect the average of these scores across all
runs.

6.1. Performance Comparison and Analysis

Our work is benchmarked against two key performance indi-
cators. First, the performance of the base foundation model
without any fine-tuning, representing a scenario where an
end-user with limited computational resources applies a
foundation model to a new dataset: this yielded an average
and standard deviation Rouge-L score of 0.192 ± 0.181.
Second, we compare against the performance of a GPU-
fine-tuned model, achieved without hardware limitations,
which obtained an Rouge-L score of 0.746± 0.265. Table
1 presents the average and standard deviation of Rouge-L
performance for all approaches across the four distance (or
divergence) metrics on the downstream task.

The JS divergence-based Normalized approach achieved the
highest score, with an average Rouge-L of 0.520. This repre-
sents an improvement of 0.328 over the base model’s score
of 0.192. It is worth mentioning that even our Attentional
approach, despite its simplicity, significantly outperforms
the base foundation model across all distance metrics. In-
terestingly, the neural approach does not seem to justify the
additional computational cost, as its performance improve-
ment over the Attentional and Normalized approaches is
generally minimal or even worse.

Table 1. Performance of our cheap LoRA pipelines.
Approach WD KL JS MMD

Attentional 0.426 0.501 0.486 0.486
(std. dev.) (±0.290) (±0.272) (±0.270) (±0.270)

Normalized 0.495 0.488 0.520 0.497
(std. dev.) (±0.267) (±0.269) (±0.277) (±0.269)

Neural 0.494 0.482 0.484 0.493
(std. dev.) (±0.265) (±0.268) (±0.272) (±0.270)
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7. Conclusion
In conclusion, our work presents a practical, simple, and
theoretically supported pipeline for generating LoRAs suit-
able for fine-tuning LLMs using only a CPU. This pipeline
significantly reduces the typically required computational
demands, making fine-tuning accessible even to users with
limited hardware resources or on edge devices with privacy
constraints.

We proved the existence of a lightweight ReLU MLP back-
bone, runnable on a CPU, that can reliably approximate
optimal LoRA adapter weights and biases, thereby effec-
tively minimizing downstream task loss in Theorem 1. Sur-
prisingly, the simplest versions of our pipeline (Attentional
and Normalized) achieved performance matching that of the
MLP backbone version, further demonstrating the efficiency
and power of our approach.

Our experiments, using the Mistral-7B-Instruct-v0.2 model
on 502 diverse datasets, demonstrate substantial improve-
ments over the baseline model, with the best configuration
achieving a 0.328 increase in performance (Rouge-L score)
over the base model, bridging more than half of the perfor-
mance gap between the base model and the GPU fine-tuned
reference. While our CPU-generated adapters do not yet
match the performance of GPU-trained adapters, they pro-
vide a compelling alternative in resource-limited settings.

Future work could explore the applicability of these ap-
proaches to other language models as more LoRA adapter
banks become open-source, as well as to tasks beyond NLP.
Likewise, it would be of interest to better understand how
many LoRA adapters would be required to generate new,
high-quality adapters—that is, what size of bank is neces-
sary. We expect this to depend on the task, data modali-
ties, and possibly even the model architecture. Finally, our
method could also potentially be used for LoRA initializa-
tion (pre-heating) before fine-tuning on GPU.
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A. Additional Background
This appendix presents any additional background required for the formulation of our main results, proofs of our guarantees,
and additional experimental details.

A.1. Foundation Model Fine-tuning and Attention Layers

In modern LLMs, fine-tuning all parameters can be computationally expensive and memory-intensive. LoRA (Hu et al.,
2021) provides an efficient alternative by introducing low-rank updates to pre-trained weight matrices, particularly focusing
on attention layers in transformer-based models. Given query Q, key K, and value V matrices, the standard attention
mechanism computes the attention scores

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V, (6)

where dk is the dimension of the keys and queries.

A.2. Low-Rank Adapter (LoRA) Fine-tuning

In large transformers, these weight matrices dominate the parameter count, making them an ideal target for LoRA’s efficient
fine-tuning. By applying low-rank updates to these matrices, LoRA achieves significant savings in memory and computation
without retraining the entire model. Consider a pre-trained weight matrix W0 ∈ Rdout×din , typically representing the
projection matrices in the attention mechanism. Instead of updating the entire matrix, LoRA modifies the weights by adding
a low-rank perturbation:

W =W0 +∆W, (7)

where ∆W is constrained to have rank(∆W ) = r ≤ min(dout, din). To efficiently parameterize ∆W , LoRA decomposes it
as:

∆W = BA, (8)

where B ∈ Rdout×r and A ∈ Rr×din . During fine-tuning, the original weights W0 remain frozen, and only the parameters
in A and B are optimized. In traditional full fine-tuning, the entire weight matrix is updated, requiring dout · din trainable
parameters. In contrast, the LoRA decomposition introduces only r · (din +dout) trainable parameters, which is more efficient
when r ≪ min(dout, din).

A.3. Distance Measures between Probability Distributions

We remind the reader of the necessary definitions required in formulating the distance between datasets, when interpreted as
finitely supported probability measures (distributions). Given two probability distributions P and Q defined on a separable
and complete (Polish) metric space X equipped with its Borel σ-algebra and metrized a metric ρ : X 2 → [0,∞), these
measures of discrepancy (or divergences) are defined as follows:

Wasserstein Distance (WD). For distributions P and Q with cumulative distribution functions FP and FQ respectively,
the 1-Wasserstein distance is defined as:

W1(P,Q) def.
= inf

π

∫
(x,y)∈X 2

ρ(x, y)π(d(x, y)) (9)

where the infimum is taken over all joint probability distributions π on X ×X (with the product σ-algebra) whose marginals
are P and Q.

1https://vectorinstitute.ai/partnerships/current-partners/
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Kullback–Leibler Divergence (KL). The KL divergence measures the relative entropy between two distributions:

DKL(P ∥ Q) def.
=

{∫
logx∈X

dP
dQ (x)P (dx) : if P ≪ Q

∞ : if P ̸≪ Q
(10)

where P ≪ Q denotes the absolute continuity of P with respect to Q, and dP
dQ denotes the Radon-Nikodym derivative, or

probability density, of P with respect to Q.

Jensen–Shannon Divergence (JS). The JS divergence is a symmetrized version of KL divergence:

DJS(P ∥ Q) =
1

2
DKL(P ∥M) +

1

2
DKL(Q ∥M) (11)

where M = 1
2 (P +Q).

Maximum Mean Discrepancy (MMD). If H is a Reproducing Kernel Hilbert Space (RKHS) H of functions over X with
reproducing kernel function k; then we may also define the MMD between P and Q by

MMD2(P,Q) = Ex,x′∼P [k(x, x
′)]− 2Ex∼P,y∼Q[k(x, y)] + Ey,y′∼Q[k(y, y′)]. (12)

If X is Rd and H = L2
γ(Rd) for the standard Gaussian measure γ ∼ N(0, Id), then k is often chosen to be a Gaussian

kernel, i.e., k(x, y) = exp(−∥x−y∥2

2σ2 ).

B. Proofs
We now prove the main result of our paper. We begin with the proof of our simplest result, Proposition 1.

B.1. Proof of Proposition 1

For any dataset D, note that argminw∈∆k

1
K

∑K
k=1 wk ρ(D,Dk) +

1
α

∑K
k=1 wk log(wk). Now, by (Wang et al., 2020,

Proposition 1) its unique minimizer, which we denote by w⋆D, is given by

w⋆D =
e−ρ(D,Dk)∑K
i=1 e

−ρ(D,Di)
= softmin ◦ align(D).

B.2. Simultaneous Proof of Theorem 1 and Proposition 2

We now derive Proposition 2 and Theorem 1 within the same proof, as their derivation is most naturally undertaken together.

Step 1 - Existence of a Measurable Selector
We will first set up the Measurable Maximum Theorem, see e.g. (Aliprantis and Border, 2006, Theorem 18.19). Consider
the constant correspondence

φ : D ↠ 2R
p

D 7→ co(∆θ).

Since co(∆θ) is a closed, non-empty, and bounded set then the Heine-Borel theorem implies that co(∆θ) is compact.
Whence φ is a correspondence with non-empty, compact, and convex values. Let B ⊆ D be a Borel set, then

φ(B) def.
=

⋃
D∈B

φ(D) =
⋃
D∈B

co(∆θ) = co(∆θ). (13)

Since co(∆θ) is closed it is Borel; whence, φ is not only a weakly measurable correspondence (Aliprantis and Border, 2006,
18.1 Definition (1)) but it is also a Borel measurable correspondence (Aliprantis and Border, 2006, 18.1 Definition (3)).
Thus, the correspondence φ satisfies the requirements of (Aliprantis and Border, 2006, Theorem 18.19).
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Next, consider the objective function

L : D × Rp → [0,∞)

(D,B) 7→ E(X,Y )∼D
[
ℓ(fθ+ϑ(X), Y )

]
.

(14)

We will show that L is Carathéodory function by showing it is continuous. Since D × Rp is a product (topological) space,
then (Munkres, 2000, Theorem 19.6) guarantees that f is continuous if and only if each of its component functions is
continuous; we show the latter.

Fix D ∈ D. Since C and the softmax function are locally Lipschitz, and since ℓ is Lipschitz, then their composition is locally
Lipschitz. Whence, for each (x, y) ∈ [0, 1]d+D the map

Λx,y : co(∆θ)) ∋ ϑ 7→ ℓ(Cθ+ϑ(x), y))

is λ-Lipschitz, for some λ ≥ 0. By Jensen’s inequality we have: for each ϑ1, ϑ2 ∈ co(∆θ)∣∣∣E(X,Y )∼D
[
ΛX,Y (ϑ1)

]
− E(X,Y )∼D

[
ΛX,Y (ϑ2)

]∣∣∣
=

∣∣∣E(X,Y )∼D
[
ΛX,Y (ϑ1)− ΛX,Y (ϑ2)

∣∣∣
≤ E(X,Y )∼D

[∣∣ΛX,Y (ϑ1)− ΛX,Y (ϑ2)
∣∣]

≤ λE(X,Y )∼D

[∥∥ϑ1 − ϑ2
∥∥].

Thus, L is locally Lipschitz in its second argument; in particular, it is continuous in its second argument.

Now, we show continuity in its first argument. Fix ϑ ∈ co(∆θ). Let (Dn)
∞
n=1 be a sequence in D converging to some measure

D ∈ D. Since d metrizes the (relative) weak topology in P([0, 1]d+D) relative to D, then by Alexandrov’s Portmanteau
Theorem, see e.g. (Kallenberg, 2021, Theorem 5.25), for every continuous and bounded function g ∈ Cb([0, 1]

d+D) we have

lim
n↑∞

∣∣E(X,Y )∼Dn
[g(X,Y )]− E(X,Y )∼D[g(X,Y )]

∣∣ = 0. (15)

Since λx,y(ϑ) is locally-Lipschitz for each ϑ ∈ co(∆θ) and [0, 1]d+D is compact then (x, y) 7→ λx,y(ϑ) is bounded (and of
course continuous). Thus, we pay pick g in (15) to be (x, y) 7→ λx,y(ϑ); whence,

lim
n↑∞

∣∣E(X,Y )∼Dn
[λX,Y (ϑ)]− E(X,Y )∼D[λX,Y (ϑ)]

∣∣ = 0. (16)

Thus, L is continuous in its first argument as well. Therefore, L is continuous, which implies that it is Carathéodory. This
completes the verification of all the conditions of the Measurable Maximum Theorem, again see (Aliprantis and Border,
2006, Theorem 18.19 (2)), have been verified. Whence: 1) for each D ∈ D the argmin set

M(D) def.
=
{
ϑ ∈ co(∆θ) : E(X,Y )∼D

[
ℓ(fθ+∆θ(X), Y )

]
= ℓ⋆(D)

}
is non-empty; where the corresponding oracle loss is given by

ℓ⋆(D) def.
= inf

∆θ∈co(∆θ)
E(X,Y )∼D

[
ℓ(fθ+∆θ(X), Y )

]
.

This establishes Proposition 2. Moreover, (Aliprantis and Border, 2006, Theorem 18.19 (1) and (3)) further imply that there
exists a measurable selector S : D → co(∆θ); i.e. S is Borel measurable for each D ∈ D the following optimal selection
property holds:

S(D) ∈M(D). (17)
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Step 2 - Change of Domain
Next, we create a “copy” of S in “distance domain” [0,∞)K . By the well-posedness assumption made in Assumption 1,
the map align : D → [0,∞)K is injective. Thus, align is bijective onto its image. Since each component of align is given
by the 1-Lipchitz, and therefore continuous, function D : D 7→ ρ(D,Dk) ∈ [0,∞); then (Munkres, 2000, Theorem 19.6)
implies that align is continuous. Consequentially, align is a measurable bijection onto its image align(D). Thus, (Kechris,
1995, corollary 15.2) implies that align has a measurable inverse ψ : align(D) → D on its image align(D); i.e.

align ◦ψ = 1align(D) and ψ ◦ align = 1D. (18)

Define the map S′ : align(D) → co(∆θ) by composition with ψ via

S′ def.
=S ◦ ψ.

Let S̃ be any measurable extension of S′ to all of RK ; e.g.

S̃ def.
=S′Ix∈align(D) +∆θ1 Ix ̸∈align(D).

By construction: for each D ∈ D
S̃ ◦ align(D) = S(D). (19)

Step 3 - High-Probability of Continuity
Consider the pushforward (probability) measure Q def.

= align♯ P on [0,∞)K , supported on align(D). Now, by Lusin’s
Theorem, as formulated in (Klenke, 2020, Exercise 13.1.3), for every ε ∈ (0, 1] there exists a compact subset Kε ⊂
supp(Q) ⊆ align(D) such that

Q(Kε) ≥ 1− ε and S̃|Kε
∈ C(Kε, co(∆θ)) (20)

where C(Kε, co(∆θ)) denotes the set of continuous functions from Kε to co(∆θ).

Since S̃|Kε
is continuous and its image lies in a closed convex set then the Dugundji-Tietze theorem, see (Dugundji, 1951,

Theorem 4.1), implies that there exists a continuous extension Sε : RK → co(∆θ); i.e.

Sε(x) = S̃(x) (21)

for all x ∈ Kε.

Step 4 - Approximation by Models of the form (5)
Let W : RK−1 → RK be the affine map of (Kratsios and Papon, 2022, Example 13). Then, by nearly identical computation
to (Kratsios and Papon, 2022, Example 13), we find that the map

RK → co(∆θ)

w 7→ softmax(W (w))⊤(L1, . . . , LK)
(22)

also satisfies (Kratsios and Papon, 2022, Assumption 8). Since softmin = softmax(−·); set W̃ def.
= −W , and note that, the

result of (22) can be re-expressed as

RK → co(∆θ)

w 7→ softmin(W̃ (w))⊤(L1, . . . , LK)
(23)

Since S̃ is continuous, Kε ⊂ RK is a non-empty compact set, and ς is a continuous activation function satisfying the
Kidger-Lyons condition, of (Kidger and Lyons, 2020); namely it differentiable with non-zero derivative at at least one point
in R, then (an inconsequential mild variant) of (Kratsios and Papon, 2022, Theorem 37 (ii)) implies that: for every δ > 0 (to
be fixed retroactively) there exists an MLP f̂ : RK → RK with activation function ς such that the map

f̂ def.
= [softmin ◦C(·)]⊤(L1, . . . , LK) : RK → co(∆θ)

12
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satisfies the uniform approximation guarantee

max
x∈Kε

∥∥Fδ(x)− Sε(x)
∥∥ < δ. (24)

Now, by (19), the continuous extension property in (21), and the approximation guarantee in (24) we find that

max
D∈ψ(Kε)

∥∥f̂ ◦ align(D)− S(D)
∥∥ = max

x∈Kε

∥∥f̂ − Sε(x)
∥∥ < δ. (25)

The continuity of L, defined in (14), implies that δ > 0 may be taken to be small enough so that: for each D ∈ ψ(Kε)∣∣L(D, θ + Cδ)− L(D, θ + S(D))
∣∣ < ε. (26)

Step 5 - ϵ-Optimality with high probability
Combining the ε-uniform approximation guarantee in (26) for Cδ ◦ align with the optimality guarantee for S in (17) implies
that: for each D ∈ ψ(Kε)

L(D, θ + Cδ)− ε ≤ L(D, θ + S(D)) = ℓ⋆(D). (27)

Snow, since D 7→ L(D, θ + Cδ) is the composition of continuous functions, it is continuous and therefore measurable;
whence the set

M⋆
ε

def.
=
{
L(D, θ + Cδ)− ε ≤ ℓ⋆(D)

}
is Borel measurable and contains ψ(Kε). In particular, P(M⋆

ε ) is well-defined. Finally, the lower-bound in (20) yields

P(M⋆
ε ) ≥ P(ψ(Kε) ≥ Q(Kε) ≥ 1− ε

which concludes our proof.

C. Implementation Details
In our implementation, we used the Lots-of-LoRAs HuggingFace repository (Gabrielsson, 2025), which contains 502 dataset-
adapter pairs for Mistral-7B-Instruct-v0.2. From these 502 English datasets, 10 are manually selected to ensure diversity of
tasks spanning classification, commonsense reasoning, and question generation domains for evaluation. Additionally, 492
datasets are randomly selected from the 1616 diverse natural language processing (NLP) tasks provided by (Wang et al.,
2022). Each adapter comprises p = 9, 437, 184 parameters, stored as 32-bit floating-point numbers (approximately 36 MB).

To further reduce the computational load of our training procedure, we implemented several critical optimizations in Step 2:

1. Symmetry exploitation: For symmetric difference metrics (WD, JS, and MMD), we calculate only half of the possible
N ×N distances, reusing values obtained from calculations done for pair (i, j), where i < j, as the (j, i) pair as well.

2. Pre-computation of probability distributions: For metrics requiring probability density functions (KL and JS), we
pre-calculate and cache these distributions for all datasets to avoid repeating these costly computations.

3. Parallelization: We also utilize multi-threading capabilities by assigning each distance calculation to a separate CPU
thread, allowing these independent computations to be processed concurrently.

Table 2 reports the time elapsed at each stage of our LoRA generation pipeline, measured on a Dell XPS 15 (Intel i7-13700H,
14 cores, 64 GB RAM). All steps, except for the final inference and adapter loading, were executed using the CPU only
across 502 datasets. Importantly, we ran this benchmark by predicting the adapter for each of the 502 datasets, assuming the
remaining 501 were given, to evaluate the overall performance of our pipeline.

Excluding GPU inference and adapter loading, generating predicted adapters for 502 datasets across 12 methods took roughly
9 hours. In typical use—predicting one adapter using a single variate of our LoRA generation pipeline and metric—runtime
is much lower: generating one adapter from 100 reference pairs takes 10–20 minutes, depending on compute, memory,
network, and dataset size. Runtime scales roughly linearly with the number and size of reference datasets, as most steps run
independently per dataset. However, full experimental runs involving pairwise comparisons (e.g., distance computations)
scale quadratically with the number of datasets.

13



LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs

Table 2. Time elapsed for each step of the pipeline for all 502 datasets at once (CPU only).

Pipeline Step Time

1. Dataset-Adapter pairs gathering:
Downloading raw data 15 min

2. Datasets Pre-processing:
Tokenization 10 min

3. Distribution similarity calculations:
Wasserstein (WD) 3 hours
Kullback–Leibler (KL) 5 min
Jensen–Shannon (JS) 5 min
Maximum Mean Discrepancy (MMD) 1.5 hours

4. Distances Processing (Coefficients):
Base attentional 3 min
Normalized 3 min
MLP-based 45 min

5. Adapter prediction:
Calculating adapters and saving 5 min

C.1. Pipeline Steps

We evaluate three pipelines for predicting LoRA adapter parameters. The Attentional method is lightweight, using only
matrix multiplications with no learned components. The Normalized method standardizes distance values to a normal
distribution to stabilize the SoftMin stage. The Neural method trains a small CPU-based MLP to minimize MSE between
predicted and actual adapter weights and biases.

C.1.1. DATASET-ADAPTER PAIRS GATHERING

Our approach relies on pre-existing fine-tuned adapters and their corresponding datasets. We begin by gathering a set of
N datasets, denoted as {Di}Ni=1, where for each dataset, we also have the optimal adapters, {θn}Nn=1. These adapters are
generated by fine-tuning the same base model, using the same adapter structure, on their respective datasets.

C.1.2. DATASETS PRE-PROCESSING

Next, we tokenize each dataset using the base model’s tokenizer, converting inputs and outputs into integer sequences.
Formally, we apply a tokenizer T : S → Zl×V (where l being the length of the tokenized sequence and V being the
tokenizer’s vocabulary size) to map each string to its sequence of token IDs. The resulting sequences denoted {T (Di)}Ni=1,
contain all the tokenized inputs followed by the outputs for each dataset. This preprocessing step is computationally
efficient and highly parallelizable. We also extract the LoRA adapter parameters (weights and biases) from each fine-tuned
model, reshape them into one-dimensional vectors, and stack them into a matrix θall ∈ RN×p (N being the number of
dataset-adapter pairs, and p the number of parameters per adapter). Thus, each row represents the parameters of a single
adapter.

C.1.3. DISTRIBUTION DISTANCE COMPUTATION

A key step in our pipeline is computing the dissimilarity between datasets, which are treated as probability distribu-
tions over tokenized sequences. Given tokenized datasets {T (Di)}Ni=1, we compute pairwise distances using four estab-
lished measures: the Wasserstein distance, Kullback–Leibler divergence, Jensen–Shannon divergence, and Maximum
Mean Discrepancy, as defined in Appendix A.3. For each tokenized dataset T (Di), we calculate a distance vector
δi = [ρ(T (Di), T (D1)), ρ(T (Di), T (D2)), . . . , ρ(T (Di), T (DN ))], where ρ is the chosen divergence metric. In practice,
we mask the self-distance ρ(T (Di), T (Di)) by assigning it a large value prior to normalization. Note that here we are
emphasizing the tokenization step using the T (Di) notation, whereas in the main text we often omit this.
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C.1.4. DISTANCES PROCESSING (WITH DIFFERENT METHODOLOGIES)

The goal here is to find how close each dataset is to the current dataset and to assign coefficients to them in such a way that
these coefficients increase as the similarity increases.

Attentional Approach In this baseline approach, we directly apply the softmin function to the distance vectors, after
masking the self-corresponding entry. For each dataset Di, we calculate:

wi(j) = softmin(δi(j) | j ∈ 1, 2, ..., N, j ̸= i) (28)

where δi(j) = ρ(T (Di), T (Dj)) represents the distance between the tokenized datasets.

Attentional Approach - With Normalization In this variant, we normalize each distance vector to have zero mean
(µ = 0) and unit variance (σ = 1), effectively applying z-score standardization. This transformation is equivalent to applying
a softmin with an adaptive temperature τi = σi (its own standard deviation). When σi is small, the temperature is low,
leading to sharper, more peaked (i.e., sparse) coefficient distributions. Conversely, larger σi results in flatter distributions.
Empirically, we observe that most σi values are small after masking the self-distance, which leads to sparser weights—and,
interestingly, improved performance.

Neural Approach The third pipeline, justified by Theorem 1, uses a small MLP to map distance values to adapter weights.
It minimizes the MSE between predicted and actual adapter parameters (weights and biases). The MLP used here has three
fully connected layers, with the first two followed by layer normalization and ReLU activations.

h = ReLU(Layer Normalization(W1x+ b1)), h ∈ R4000

ĥ = ReLU(Layer Normalization(W2h+ b2)), ĥ ∈ R4000

ŷ =W3ĥ+ b3, ŷ ∈ R1

(29)

(30)

(31)

where x ∈ R is a single distance value (scalar), W1 ∈ R4000×1, W2 ∈ R4000×4000, and W3 ∈ R1×4000 are weight matrices,
and b1 ∈ R4000, b2 ∈ R4000, and b3 ∈ R1 are bias terms. We apply the MLP to transform all distance values:

wi(j) = softmin(MLP(δi(j)) | j ∈ 1, 2, ..., N, j ̸= i) (32)

C.1.5. ADAPTER PREDICTION

We make our prediction with a straightforward linear combination of existing adapters, weighted by the processed distances:

θ̂i =

N∑
j=1,j ̸=i

wi(j)θj . (33)

This formulation effectively answers the key question: “Based on the distances between a new dataset and each of the
datasets with known adapters, what proportion of information should the new adapters inherit from each of the fine-tuned
(reference) adapters?” The processed distances serve as coefficients determining the knowledge transfer from each source
adapter.

In our study, to make the predictions for all datasets more efficient, we construct a weight (coefficient) matrix W ∈ RN×N

where row i contains the processed distances wi, allowing us to compute all predictions simultaneously by leveraging
hardware acceleration and vectorization.

Deployment and Inference Predicted adapters match the size of flattened fine-tuned adapters and can be reshaped to their
original structure, ensuring full compatibility with existing LoRA inference pipelines. Once generated, they can be directly
loaded for downstream use.

D. Further Experimental Evaluation
This appendix presents a detailed account of our experimental observations.
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D.1. Exact Match Evaluation

In addition to Rouge-L, we evaluate our LoRA generation pipelines using the Exact Match (EM) metric, which measures the
fraction of test samples for which the model’s output exactly matches the expected string. This is a particularly meaningful
complement for classification-style tasks common in our dataset corpus, where outputs are short, well-defined, and often
categorical. Without any fine-tuning, the Mistral model achieved a score of 0.016± 0.069. Ideally, if the user had access to
GPUs, the GPU fine-tuned models would achieve an average exact match score of 0.654± 0.351). As shown in Table 3,
each of our pipelines performs substantially better than the base foundation model, but as expected, it does not achieve the
same predictive power as LLMs with fine-tuned LoRAs. Additionally, note that we observe a strong correlation between
Rouge-L and EM scores across all methods and distance metrics. Both evaluation scores consistently rank the Normalized
approach with JS as the top-performing configuration. While Rouge-L captures partial overlap between generated and
reference sequences, EM provides a stricter binary signal of correctness. Despite this difference in granularity, the relative
performance of the Attentional, Normalized, and Neural approaches remains consistent suggesting that improvements in
soft sequence similarity are accompanied by gains in exact prediction accuracy.

Table 3. Exact match performance of our lightweight LoRA prediction pipelines.
Approach WD KL JS MMD

Attentional 0.288± 0.297 0.344± 0.302 0.328± 0.296 0.327± 0.295

Normalized 0.338± 0.296 0.330± 0.297 0.373± 0.314 0.340± 0.298

Neural 0.338± 0.294 0.323± 0.295 0.325± 0.296 0.337± 0.298

D.2. Coefficient Distribution Analysis

Figures 1a, 1b, and 1c below show the LoRA matrices produced by each approach across each of our datasets. In each
visualization, both the horizontal and vertical axes list the dataset, and each of the (i, j)th pixel darkness indicators how
much of the pre-trained LoRA from dataset i is used to predict the LoRA for dataset j. Darker pixels indicate lower
coefficients, while brighter ones indicate higher weights assigned to a source adapter for each target dataset. Both axes
correspond to dataset indices. Interestingly, the Normalized approach exhibits extreme sparsity: most weights are near zero,
and each prediction is dominated by one or two reference adapters, as evidenced by the presence of isolated bright pixels in
a largely dark matrix. In contrast, the Neural (MLP) and Attentional methods display greater dispersion in the coefficients,
with many rows exhibiting moderate weights across a broader range of source adapters. This reflects a more distributed and
nuanced reuse of prior adapters. Given that the Normalized approach exhibits slightly better performance in practice, this
visualization may suggest that sparsity is important, but further investigation in follow-up work is encouraged.

(a) Attentional (b) Normalized (c) Neural (MLP)

Figure 1. Coefficient distributions for each approach. Each image: Top Left = WD, Top Right = KL, Bottom Left = JS, Bottom Right =
MMD.
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D.3. Sample Outputs Generated by Predicted Models

Below, we have included four randomly selected inputs, expected outputs, and the generated texts by a model with predicted
adapters using our best configurations: the JS-divergence-based Normalized approach.

Input Prompt [Task ID 671]:
"Definition: In this task, you’re given an ambiguous question (which can be answered in more than one way). Your task is to provide
one question which clarifies the input question and it has one unique answer, and also provide an answer to the generated question.
Generated question and answer should be separated with a new line.

Positive Example 1 -
Input: Lucifer how many episodes are in season 3?
Output: How many episodes of season 3 of Lucifer were there, including bonus episodes?
26

Positive Example 2 -
Input: What is the tallest ride at six flags over texas?
Output: What is the tallest roller coaster at six flags over texas 2001?
The Titan

Negative Example 1 -
Input: Lucifer how many episodes are in season 3?
Output: How many episodes of season 3 of Lucifer were there, including bonus episodes? 26

Negative Example 2 -
Input: What is the tallest ride at six flags over texas?
Output: What is the tallest roller coaster at six flags over Texas 2001?

Now complete the following example -
Input: When was season 7 of game of thrones released?
Output:

"

Expected Answer:
"When was season 7, episode 1 of game of thrones released through simulcast?
July 16, 2017"

Model Output:
"When was season 7 of game of thrones released in the US?
July 16, 2017

Input Prompt [Task ID 431]:
"Definition: In this task you are given a sentence. You must judge whether the object of the main clause is singular(like: apple) or
plural(like: apartments). Label the instances as "Singular" or "Plural" based on your judgment.

Positive Example 1 -
Input: They both let out relieved breaths at the doctorś words.
Output: Plural

Positive Example 2 -
Input: He signaled the bartender and ordered one more drink.
Output: Singular

Negative Example 1 -
Input: I collect my painting supplies.
Output: Singular

Negative Example 2 -
Input: I saw the ramp leading back toward the surface.
Output: Plural
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Now complete the following example -
Input: For some unknown reason, that second kiss wreaked more emotional havoc than the first had.
Output:

"

Expected Answer:
"Singular"

Model Output:
"Singular"

Input Prompt [Task ID 322]:
"Definition: In this task, you are given a public comment from online platforms. You are expected to classify the comment into
two classes: threat and non-threat. Threat is a statement that someone will be hurt or harmed, especially if the person does not do
something in particular.

Positive Example 1 -
Input: Comment: Enough already. Cut the head off this snake.
Output: Threat

Positive Example 2 -
Input: Comment: Disgusting comment, I pity anyone who has to live with you.
Output: Non-threat

Negative Example 1 -
Input: Comment: Bravo! Bravo!

Encore!! Encore!! Encore!!
Output: Threat

Negative Example 2 -
Input: Comment: ... after shooting her with her own gun.
Output: Non-threat

Now complete the following example -
Input: Comment: It’s a good thing that right wing illiterates in farms don’t read the newspaper.
Output:

"

Expected Answer:
"Non-threat"

Model Output:
"Non-threat"

Input Prompt [Task ID 1398]:
"Definition: Given a fact, create a question that can be answered using the fact. Construct the question such that it is unambiguous, has
a unique answer and the answer can be given using the fact.

Positive Example 1 -
Input: Fact: deep sea animals live deep in the ocean
Output: Frilled sharks and angler fish live far beneath the surface of the ocean, which is why they are known as?

Positive Example 2 -
Input: Fact: as an object moves , the kinetic energy of that object will increase
Output: An example of lots of kinetic energy would be?
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Negative Example 1 -
Input: Fact: water is often brackish in an estuary
Output: What is the sun made of?

Negative Example 2 -
Input: Fact: if a liquid disappears then that liquid probably evaporated
Output: What happens is water is mopped up?

Now complete the following example -
Input: Fact: as the use of a crop increases , the amount of crops planted will increase
Output:

"

Expected Answer:
"When the demand for corn rises?"

Model Output:
"Which crop is most likely to be planted in large quantities due to its high demand?"
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