
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

TRADING COMPLEXITY FOR EXPRESSIVITY:
THEORETICAL EXPLORATION OF LINEAR & CAUSAL
TOKEN MIXING STRATEGIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We revisit token mixing in sequence models through a unified, causal linear frame-
work that separates two effects: (i) direct one-step influence of inputs on outputs
and (ii) recurrent propagation of information through past outputs. This perspec-
tive encompasses major architectures – including attention, state-space models,
and hybrids – while exposing simple design parameters that govern efficiency and
expressivity. We show that every causal linear mixer can be written in this form,
where computation reduces to solving a triangular system with well-understood
numerical properties. The framework generalizes the recurrence equations of
SSMs and linear attention by allowing each state to depend on multiple past states
rather than only the immediate predecessor. This unlocks new tradeoffs between
decoding speed, cache size, and ability to model long-range dependencies. Build-
ing on this view, we design structured recurrence patterns that provably achieve
any desired complexity – trading runtime for expressivity in a principled way.
Together, these results provide a unified toolkit for understanding and designing
efficient, expressive token mixers across model families.

1 INTRODUCTION AND RELATED WORKS

Token mixing – the mechanism by which sequence models exchange information across positions
– is the central design axis of modern architectures. Early recurrent neural networks (RNNs) mod-
eled sequences by passing information forward one step at a time, but their inherent sequentiality
limited parallelism and made long-range dependencies difficult to capture. Transformers replaced
recurrence with content-based self-attention, enabling global one-hop interactions and massive par-
allelism, and quickly became the backbone of large language models (Vaswani et al., 2017; Devlin
et al., 2019; Brown et al., 2020). Yet their quadratic cost in sequence length remains a bottleneck as
context windows scale toward hundreds of thousands or even millions of tokens.

In response, the field has diversified into alternative mixers. Low-rank and kernelized forms of
linear attention approximate the softmax operator while reducing cost (Katharopoulos et al., 2020;
Choromanski et al., 2020; Wang et al., 2020). State space models (SSMs) reinterpret token mixing
as structured linear recurrences, with certain formulations (Gu et al., 2022) reducible to fast convo-
lutions and others designed for recurrent or scan-friendly execution (Gu & Dao, 2024; Dao & Gu,
2024a), achieving strong performance on long-range benchmarks. Increasingly, hybrid models com-
bine these mechanisms – mixing SSMs with local or sparse attention, or alternating different mixer
types across layers – to balance expressivity, efficiency, and cache size (De et al., 2024; Zancato
et al., 2024; NVIDIA et al., 2025; Team et al., 2025).

This growing diversity underscores a key challenge: token mixing is no longer embodied by a sin-
gle operator but by a toolbox of mechanisms, each making distinct trade-offs between complexity,
expressivity, and execution mode. One underexplored but related dimension is the order of recur-
rence: whereas classical RNNs and most SSMs propagate information through a single previous
state, higher-order recurrences allow dependence on multiple past states, offering richer expressiv-
ity at the cost of more complex updates. While this idea has received limited attention, a few notable
efforts include log-linear attention (Guo et al., 2025), which induces a logarithmic-order recurrence,
and ChaCAL (Fagnou et al., 2024), which formalizes an infinite-order recurrence.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

In this work, we provide a unifying framework for token mixing. We show that every causal linear
mixer can be decomposed into (i) direct one-step input influence and (ii) recurrent propagation
through past outputs. This structured recurrence view covers attention, SSMs, and linear attention,
while exposing how design parameters control complexity, cache size, and long-range capacity.

Our contributions are the following:

• We introduce a general framework for causal linear token mixing that captures attention,
SSMs, and their hybrids as special cases.

• We provide theoretical insights into the trade-offs between computational complexity and
expressive power.

• We construct token mixers spanning a controlled range of complexities, from O(n) and
O(n log n) up to O(n3/2) and O(n2).

• We empirically validate these designs on synthetic benchmarks and language modeling
pre-training tasks.

Taken together, our results offer a principled lens for analyzing and designing efficient, expressive
token mixers, providing conceptual clarity across diverse architectures.

2 RELATED WORKS

Attention and efficient variants. Transformers popularized global attention, but its quadratic com-
plexity has motivated numerous efficiency improvements. One line of work retains exact softmax
attention while optimizing CUDA kernels (e.g., FlashAttention (Dao et al., 2022; Dao, 2023)). An-
other line alters the operator itself: sparse and local attention restrict interactions while preserving
long-range connectivity (Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020), while low-
rank or kernelized linear attention formulations reduce complexity via feature maps or projections
(Katharopoulos et al., 2020; Choromanski et al., 2020; Wang et al., 2020; Xiong et al., 2021).

State Space Models (SSMs). An alternative approach frames token mixing as a linear dynamical
system. HiPPO-based methods project sequences onto orthogonal polynomial bases to retain long-
range history (Gu et al., 2020), while S4 and successors use diagonal-structured operators that can be
implemented efficiently, either as convolutions or through parallel scan algorithms (Gu et al., 2022;
Smith et al., 2022). Adaptive variants, such as Mamba (Gu & Dao, 2024), introduce input-dependent
gating to handle more complex sequence patterns, and Mamba-2 (Dao & Gu, 2024a) streamlines the
recurrence while providing theoretical connections to linear attention: its structured recurrence is
equivalent to a 1-semiseparable transformation matrix, linking SSMs with masked linear attention
and other gated linear attention variants.

Theoretical limitations of SSMs and Transformers. SSMs provide efficient linear recurrences, but
their memory of past inputs decays exponentially with distance (Wang et al., 2025b), limiting long-
range dependencies. Transformers, in contrast, can attend globally but lack recurrence, making tasks
like entity tracking or copying challenging (Jelassi et al., 2024; Fagnou et al., 2024), and hindering
generalization to longer sequences than seen in training (Beck et al., 2024).

Hybrids. Many contemporary models combine mixers to exploit complementary strengths. For ex-
ample, Griffin interleaves gated linear recurrence with local attention (De et al., 2024), and B’MOJO
integrates SSMs, local, and sparse attention in a single layer (Zancato et al., 2024). Larger systems,
such as Nemotron-H and Gemma 3, mix SSM and attention layers across the network to balance
efficiency and expressivity (NVIDIA et al., 2025; Team et al., 2025). Other works systematically
explore combinations of attention and SSM-like operators (Waleffe et al., 2024; Wang et al., 2025a;
Arora et al., 2024b; Thomas et al., 2025). These hybrid designs motivate frameworks that can de-
scribe multiple token mixing mechanisms within a single mathematical form.

Higher-order recurrence. Beyond first-order recurrences, a few works explore multi-step or
infinite-order dependencies. Higher-order RNNs were studied classically (Hush et al., 1991; Soltani
& Jiang, 2017). More recently, log-linear attention exhibits a logarithmic-order recurrence (Guo
et al., 2025), while ChaCAL implements an infinite-order recurrence with explicit causal structure
(Fagnou et al., 2024). These examples motivate our generalization of recurrence patterns beyond the
standard first-order view.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 FRAMEWORK

We cast token mixing as a causal linear operator that cleanly separates (i) direct, single-hop contri-
butions from inputs and (ii) recursive, multi-hop contributions propagated through past outputs.

3.1 RECURRENCE AND MATRIX FORMS

For token embeddings {xi}Li=1 and outputs {yi}Li=1, we write the per-position recurrence

yi =

i∑
j=1

αij xj︸ ︷︷ ︸
present/past inputs (direct mixing)

+

i−1∑
j=1

βij yj︸ ︷︷ ︸
past outputs (recurrent mixing)

. (1)

Here αij = 0 for j > i and βij = 0 for j ≥ i enforce causality. Stacking coefficients into
lower-triangular matrices A = [αij], B = [βij], and stacking tokens as x = [x⊤

1 · · · x⊤
L]

⊤, y =
[y⊤1 · · · y⊤L]⊤, yields the compact form

y = Ax+B y ⇐⇒ y = (I −B)−1 Ax, (2)

which we refer to as the general recurrent token mixing framework. When B is strictly lower-
triangular (zero diagonal), (I − B) is always invertible and (I − B)−1 =

∑L−1
k=0 Bk (finite-depth

solve). Expanding (I − B)−1A = A + BA + B2A + · · · reveals a path-sum interpretation: one
first attaches to inputs through A, then accumulates multi-hop contributions via B.

3.2 RELATION TO PRIOR UNIFYING VIEWS

Our formulation relates to recent efforts to unify attention and state-space models (SSMs) while
remaining distinct. Most relevant is the Structured State-Space Duality (SSD) of Dao & Gu (2024b),
which ties SSM sequence maps to (sequentially) semiseparable matrix mixers and shows that certain
SSMs admit both linear (recurrent) and quadratic (attention-like) evaluation via structured masked
attention (SMA). In SSD, attention appears as a quadratic form and efficiency comes from block
decompositions exploiting low-rank off-diagonal structure, motivating Mamba-2 and its SSD kernel.

Methodologically, SSD studies the global transformation T (its semiseparable structure, block low-
rank properties, fast matvecs). We instead factor T = (I − B)−1A, separating a direct channel A
(one-hop input mixing) from a recursive channel B (multi-hop output coupling). Working at the
level of B gives precise control over causality, locality, and path length: sparsity in B (as studied
in Section 4) directly determines recurrent receptive-field, while A independently sets instantaneous
mixing. This primitives-first view defines a design space over lower-triangular pairs (A,B), rather
than properties of a fixed global T .

Unlike SSD, we do not assume semiseparable structure. Varying sparsity in B and patterns in A
smoothly spans attention (B=0), many recurrent and SSM layers, and rational/resolvent mecha-
nisms within a single recurrence/matrix statement. A detailed discussion of the examples encom-
passed by the framework is given in Appendix B. SSD’s duality is recovered when its structural
assumptions hold while our analysis and design rules apply more broadly.

SSD’s architectural choices instantiate specific neighborhoods in our template: diagonal A,
strictly lower B, factorizations of (I−B)−1, and structured masks correspond to constrained di-
rect/recursive channels. We thus provide an operator-level framing that puts attention and SSMs on
equal footing, with minimal algebra that subsumes SSD’s equivalences and adds interpretability and
controllability via the structured recurrence B.

4 PATTERN DESIGN

An advantage of representing token mixing with Equation 2 is that we can enforce structure on A
and B while still maintaining good expressivity. Indeed even if B is very sparse (e.g. diagonal
SSMs), the inverse (I − B)−1 will be a dense lower-triangular matrix which may model complex
behaviors. In this section we explore how the structure of A and B influence time and memory
complexity, as well as measures of expressivity. All proofs can be found in the Appendix.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

4.1 TRANSLATION INVARIANT PATTERNS

We start by investigating the class of attention patterns that are invariant by translation. They come
as a simple choice, as they can be represented by a single strictly increasing function f : N → N∗,
such that the token at position t will pay attention to tokens at positions t− f(0), t− f(1), . . .
Proposition 4.1 (Time complexity). The token mixing layer induced by f has a time complexity in
O(g(n)) for decoding the n-th token, where: g(n) = max{i ∈ N s.t. f(i) < n}.

If f can be extended to an invertible real function R → [1,∞) then the complexity is in O(f−1(n)).
We will assume this is the case in the rest of the paper for simplicity.

For example we may choose f to be linear, quadratic or exponential, which will imply a time com-
plexity respectively linear, square-root, and logarithmic.

In addition, we may want f to satisfy a few other properties:

• f(0) = 1 ensures that all tokens have access to the previous token, and guarantees at least
the same expressivity as a diagonal SSM,

• f being convex, which means the attention pattern gets sparser and sparser the further we
are from the current token. This makes sense since closer tokens are usually more important
than those far away.

4.1.1 SHORTEST INFORMATION PATH

One metric for measuring expressivity in such models is the shortest path that information can follow
from a token i to a token j > i. Indeed, while in an attention layer all tokens are directly connected
(distance of 1), recurrent models struggle at capturing long-range dependencies (Wang et al., 2025b),
since information has to be stored in memory for a long period of time. The longer the information
path is, the harder it is to learn, especially because of vanishing gradient effects.
Proposition 4.2 (Shortest path). Given two positions i < j, the length of the shortest path from
token i to token j is:

d(i, j) = min

{
d ∈ N s.t. ∃ a ∈ Nd,

d∑
k=1

f(ak) = j − i

}
(3)

That is, the length depends on how many values of f are needed to decompose the integer j − i.
Corollary 4.3. While Equation 3 is a complex problem to solve, simple choices for f lead to closed-
form solutions:

• If f(i) = 2i, then d(i, j) is the number of ones in the binary representation of j − i. This
gives the bound d(i, j) ≤ log2(j − i).

• If f(i) = i2 + 1, then by Lagrange’s four-square theorem, we find that d(i, j) ≤ 4.

4.1.2 CONGESTION

A major problem of standard recurrent models is that all past information is compressed into a
single vector, which makes it impossible to recall large pieces of information (Jelassi et al., 2024).
By introducing additional connections to older hidden states, we aim at alleviating this bottleneck.

We formalize this via graph congestion, in a setup similar to Jelassi et al. (2024). The model is tasked
with copying a sequence of length n from input positions 1, . . . , n to output positions n+1, . . . , 2n.
Consider a single token-mixing layer that defines a directed graph G over these 2n nodes according
to its update patterns (A and B).

Let P be a set of n directed paths in G, where the i-th path connects input node i to output node
i+ n. We define the congestion of the layer as the maximum number of paths passing through any
single node:

C(G) := max
1≤i≤2n

#{ p ∈ P | i ∈ p }. (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Intuitively, C(G) measures the largest number of information flows that must pass through a single
hidden state. Standard recurrent models induce high congestion, since all paths must pass through
the single hidden vector, whereas higher-order recurrences can reduce C(G) by distributing infor-
mation across multiple states.
Proposition 4.4 (Lower bound on congestion). If we know that the shortest path between token i
and i+ n is at least d long, for all 1 ≤ i ≤ n, then we get:

C(G) ≥ d+ 1

2
(5)

Proposition 4.5 (Upper bound on congestion). If the pattern is translation invariant, and we know
that the shortest path between token i and i+ n is at most D long, for all 1 ≤ i ≤ n, then we get:

C(G) ≤ D (6)

Corollary 4.6. Combining Corollary 4.3 with Proposition 4.5, we get that:

• If f(i) = 2i, then C(G) ≤ log2(n).

• If f(i) = i2 + 1, then C(G) ≤ 4.

Together, Propositions 4.4 and 4.5 suggest a direct link between shortest information path and con-
gestion.

Table 1: Properties of token mixing strategies using different structures.

Structure Time per token KV cache size Shortest path
between tokens Max congestion

Attention O(n) O(n) 1 1
Local attention O(k) O(k) ∞ 1

Diagonal SSM O(1) O(1) n n
Local recurrence O(k) O(k) n

k
n
k

General O(n) O(n) 1 1

f(i) = 2i O(log2 n) O(n) log2 n ≤ log2 n
+ cache-efficient O(log2 n) O(log2 n)

f(i) = i2 + 1 O(
√
n) O(n) 4 ≤ 4

+ cache-efficient O(
√
n) O(

√
n)

4.2 CACHE-EFFICIENT TRANSFORMATION

One drawback of the patterns considered above is that the KV-cache size remains in O(n) despite
the time complexity being much better. This is due to the past indices being offset by 1 at each step.
We propose a simple algorithm for generating cache-efficient patterns.

The idea is that at time t we only reuse indices from time t − 1. Instead of attending to the past
index jt(i) = t− f(i) for i ∈ N, we look for the closest j′ ≥ jt(i) that was used at time t− 1. This
ensures that any token attended was already in the cache. Surprisingly, this leads to a very structured
pattern.
Proposition 4.7. Using the cache-efficient pattern induced by the function f , the token at time t will
attend to the positions pt(i) for i ∈ N (with f(i) < t) with:

pt(i) = ai

⌊
t− f(i)

ai

⌋
+ (ai − 1) (7)

where a0 = 1 and ai+1 = ai

⌈
f(i+1)−f(i)

ai

⌉
.

We show visualizations of such patterns in Figure 1. We observe a periodic structure, where the
indices associated with f(i) increase by ai every ai timesteps.
Proposition 4.8. The cache-efficient version has a decoding time and cache size both in O(f−1(n)).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Dense f(i) = 2i f(i) = i2 + 1

Banded f(i) = 2i (cache-efficient) f(i) = i2 + 1 (cache-efficient)

Figure 1: Illustration of different matrix structures, where non-zero entries are colored. The time
and space complexity of the layer depends on the properties of the sparsity pattern.

5 EXPERIMENTS

We validate our claims with two sets of experiments. First, we use synthetic tasks to isolate and
probe specific capabilities of token-mixing layers under controlled conditions. These tasks are de-
signed to stress the theoretical knobs introduced in our framework (path length, congestion, cache
structure). Second, we assess end-to-end performance on real-world data by training language mod-
els on OpenWebText. Together, the results test whether the theoretical predictions survive contact
with training dynamics and natural language statistics.

5.1 MODELS

We base our architecture on the standard transformer, and in particular on GPT-2 (Radford et al.,
2019), with the exception that we use RoPE positional embedding (Su et al., 2024) instead. The
attention layer is swapped for one of the token-mixing layers studied in this paper, all implemented
within the same backbone (same depth/width schedule, normalization, MLP blocks) so that compar-
isons isolate the effect of token mixing. For reference, we include full attention and local attention
with window size w=8 as baselines.

Within our framework, we compare several (A,B) structures (shared sparsity for A and B unless
otherwise noted): dense (lower-triangular) A with strictly lower-triangular B (full resolvent mixer),
banded with bandwidth w=8, and two translation-invariant families controlled by stride functions
f : exponential f(i)=2i and quadratic f(i)=i2+1. When relevant, we also evaluate cache-efficient
variants (Section 4.2), which sparsify the working set while preserving the induced access pattern.
Practical aspects (normalization of A and B, conditioning of (I−B), and implementation details)
are discussed in Appendix A.

5.1.1 SETUP

We consider three canonical sequence problems adapted from prior work, chosen to stress different
aspects of path geometry and memory pressure:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

1. Copy: The model must copy an input sequence of size L (Arjovsky et al., 2016; Jelassi
et al., 2024). This task measures the ability of the model to memorize the sequence, and
directly measures the congestion in the token mixing layers.

2. Associative recall: A similar yet more challenging task, where the model is given a series
of key-value pairs that it must memorize. Then, when queried the keys, it must output
the corresponding values. This measures whether the mixer can maintain a structured,
addressable memory and isoften used to benchmark SSM-like models (Arora et al., 2024a;
Dao & Gu, 2024a).

3. Multi-hop recall: Inspired from Fagnou et al. (2024), this task requires the model to solve
a chain of associative recalls, which is particularly difficult for non-recurrent models. We
modify the associative recall task by replacing some values by keys, that the model must
then recursively lookup. This measures the state-tracking ability of the models.

To avoid overfitting to a single length scale, we randomize sequence lengths per batch. All models
consist of two Transformer blocks; the first serves to preprocess the token stream into a represen-
tation amenable to the mixer, and the second performs the task-specific transport. Training, opti-
mization, and sampling protocols are kept identical across models. Full hyperparameters and setup
details are given in Appendix C.

5.1.2 RESULTS

We report the results for the synthetic tasks in Table 5.1.2.

Only the most general formulation with A and B dense is able to perfectly solve all tasks. While
standard attention works as well for the copy and associative recall tasks, it struggles on multi-hop
recall, which is expected (Fagnou et al., 2024). Local attention performs poorly across all settings.

The banded structure performs relatively well but falls behind patterns that involve more long-
distance connections. Between f(i) = 2i and f(i) = i2+1, the difference is slim but the exponential
pattern is slightly worse, especially on the copy task.

The results appear especially encouraging for the cache-efficient variants. They even outperform
their original counterparts, which is surprising. Still, this suggests that sparsifying the cache does
not reduce the expressivity of the layer.

Table 2: Accuracy of diverse token mixing layers on the synthetic tasks. Results are averaged over
3 runs.

Model Copy Associative recall Multi-hop recall
Attention 99.79% ± 0.09 100.00% ± 0.0 39.21% ± 1.54
Local attention (w = 8) 21.41% ± 0.06 26.20% ± 0.05 23.59% ± 0.59

Dense A and B 100.00% ± 0.0 99.99% ± 0.00 99.80% ± 0.07
Banded (w = 8) 48.96% ± 1.93 41.12% ± 9.65 39.08% ± 1.50

f(i) = 2i 52.03% ± 0.21 49.03% ± 0.21 34.85% ± 0.11
+ cache-efficient 60.99% ± 2.56 52.59% ± 1.79 38.63% ± 0.62

f(i) = i2 + 1 59.88% ± 1.13 53.61% ± 1.10 35.68% ± 0.33
+ cache-efficient 60.31% ± 4.90 54.56% ± 1.43 38.02% ± 1.27

5.2 LANGUAGE MODELING

In this section we evaluate the models on a language modeling task using the OpenWebText dataset
(Gokaslan & Cohen, 2019). The goal is to confirm that the theoretical insights, and the results on
synthetic tasks, can transfer to real natural language. We train small transformers with 6 layers,
while replacing attention with various token mixing layers. The models are trained for 100k steps
with a context size of 512. The full experimental setup is detailed in Appendix C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Results Analysis Here, we analyze the results presented in Figure 2, first by comparing results
inside each class and then comparing every trained models’ performance.

Comparison inside each class.

1. O(n) time. Within the full-complexity regime, the resolvent mixer (I−B)−1A with dense
lower-triangular A and strictly lower-triangular B consistently sits below the standard full-
attention cluster, achieving lower perplexity at comparable per-token complexity. This
advantage is obtained with only a modest parameter increase (about +7% in our configura-
tions), pointing to a structural benefit rather than a brute-force capacity effect. Intuitively,
strictly lower-triangular B accumulates causal summaries; the resolvent (I−B)−1 expands
them into a dense, geometry-aware receptive field; A then reprojects, yielding more effec-
tive long-range mixing than dot-product attention for the same compute class.

2. Sublinear variants (O(
√
n)–O(log n)). First, we observe that the O(

√
n) model gives the

better results in this bracket, corroborating with its denser B matrix. Among structured
sublinear designs, we observe a tight low-perplexity frontier, with two distinct behaviors.
The strongest O(

√
n) instance beats by more than a point its cache-efficient variant, while

the other sublinear propositions give performance very close to the ones of their cache-
efficient versions. Lastly, in this setting, it is interesting to note that the standard attention-
based model (local attention) is largely beaten (almost 10 PPL points) by its recurrent
counterparts in O(k).

3. Recurrent O(1). Constant-time models cluster at higher perplexities with comparatively
small spread. This aligns with the congestion view: compressing the entire past into a
single evolving state under-exploits long-range dependencies at a 512-token context under
the given budget. This proposition still however beats the local attention method by around
8 PPL point.

Comparison across classes: the Pareto frontier. Taken together, the points trace a clear
speed–accuracy Pareto curve. Large gains occur when moving off O(1) to sublinear access; by
O(log n), diminishing returns appear, with several cache-efficient models matching the attention
band – thus recovering most of attention’s accuracy at substantially lower theoretical cost. If O(n)
is affordable, the resolvent mixer “wins the bracket,” surpassing standard attention without a ma-
terial parameter increase; if not, well-designed O(

√
n) or O(log n) caches provide near-attention

perplexity at a fraction of per-token complexity.

Time complexity per token

28

30

32

34

36

38

40

42

P
er

p
le

x
it

y

O(n)O(k)O(1) O(
√
n)

O(log2 n)

Attention-based

Recurrent models

Cache-efficient variants

Figure 2: OpenWebText perplexity (lower is better) versus per-token time complexity for all trained
6-layer models. Points correspond to attention-based, recurrent, and cache-efficient variants; the
x-axis annotates canonical regimes O(1), O(k), O(log2 n), O(

√
n), and O(n).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

6 DISCUSSION

Our factorization y = (I − B)−1Ax gives a primitives-first view of causal token mixing where
A is an instantaneous input channel and B a recursive multi-hop channel. Varying their sparsity
and structure continuously spans families often treated as disjoint, while keeping triangular solves
and strict causality explicit. The translation-invariant constructions parameterized by a strictly in-
creasing f make complexity and geometry analyzable: decoding cost O(f−1(n)), shortest-path
lengths tied to integer decompositions of j−i, and congestion bounds that diagnose memory bottle-
necks. Choices like f(i)= 2i (log-time, logarithmic depth) or f(i)= i2+1 (square-root time, con-
stant depth) demonstrate that “global vs. local” is not a binary; it is a tunable Pareto surface where
hop depth, connectivity, and cache size are jointly controlled by (A,B) and the pattern f .

Empirically, this lens explains and organizes results across complexity “brackets.” Cache-efficient
variants – attending only to indices already present in the previous step’s cache – retain the same
O(f−1(n)) budget for both time and memory and often match (or only slightly degrade over) their
non-cache counterparts, suggesting that structured B acts as a useful inductive bias rather than
a restriction. Aggregating models yields a clear speed–accuracy frontier: moving from O(1) to
sublinear access brings large gains; by O(log n), the proposed designs close most of the gap to
attention. If O(n) is permissible, the fully general resolvent mixer (I−B)−1A with dense lower-
triangular A and strictly lower-triangular B clearly outperforms standard full attention at comparable
per-token cost with only a marginal parameter increase. Practically, this suggests a design recipe:
(i) select the target complexity class from systems constraints, (ii) pick f to set hop geometry and
congestion, (iii) enforce cache efficiency for memory locality, and (iv) tailor A’s parameterization
to balance capacity and stability.

Limitations and systems implications follow directly. Our experiments use small models and un-
optimized kernels; realizing end-to-end speedups requires specialized block-triangular forward-
substitution kernels with regular memory access that exploit the periodic structure of cache-efficient
patterns. While we discuss several practical considerations in Appendix A, there remain challenges
to solve to make such token mixing layers scale efficiently and compete against other models. Stabil-
ity and optimization might depend on parameterizations that preserve simple invariants ; alternative
parameterizations could change training dynamics. Scaling studies at longer contexts and larger
model sizes, heterogeneous layers mixing different (A,B) structures, principled initializations for
B (for example inspired by the works on structured initializations for SSM (Gu et al., 2021)), and
parameter-efficient factorizations for A and B (low-rank, semiseparable, or Toeplitz) are natural
next steps to test whether the observed Pareto frontier persists at LLM scale.

7 CONCLUSION

This work reframes causal token mixing as a small set of explicit, controllable design choices, turn-
ing “which architecture?” into “which geometry and budget?”. Rather than reiterating the factoriza-
tion or translation-invariant analysis, we emphasize the shift in practice: pick a target complexity
class, shape hop geometry to manage path lengths and congestion, and deploy cache-aware imple-
mentations that honor those choices. Our experiments – both synthetic probes and OpenWebText –
anchor the theory by showing that sublinear access captures most of the accuracy of dense mixing at
far lower budget, and that within the O(n) bracket a resolvent-style mixer can outperform standard
attention with only marginal parameter overhead.

Looking forward, two tracks are most promising. On the systems side, specialized triangular-
solve kernels and cache layouts are the lever to translate asymptotic gains into latency/throughput
improvements at long context. On the modeling side, relaxing strict translation invariance to-
ward learned, data-dependent patterns while preserving analyzable path and cost guarantees could
broaden the design space without losing clarity. Our aim is not to crown a single mixer, but to
provide a principled toolkit – geometry, capacity, and conditioning knobs – through which future
architectures can be designed, analyzed, and engineered coherently.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, pp. 1120–1128. JMLR.org, 2016.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Re. Zoology: Measuring and improving recall in efficient language
models. In The Twelfth International Conference on Learning Representations, 2024a. URL
https://openreview.net/forum?id=LY3ukUANko.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff. arXiv:2402.18668, 2024b.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. In Thirty-eighth Conference on Neural Information Processing Systems,
2024. URL https://arxiv.org/abs/2405.04517.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and et al. Language models
are few-shot learners. In Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 33, pp. 1877–1901, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: generalized models and efficient algorithms through
structured state space duality. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024a.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024b.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Des-
jardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and
Caglar Gulcehre. Griffin: Mixing gated linear recurrences with local attention for efficient lan-
guage models, 2024. URL https://arxiv.org/abs/2402.19427.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Erwan Fagnou, Paul Caillon, Blaise Delattre, and Alexandre Allauzen. Chain and causal
attention for efficient entity tracking. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 13174–13188, Miami, Florida, USA, November 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.731. URL
https://aclanthology.org/2024.emnlp-main.731/.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus.
http://Skylion007.github.io/OpenWebTextCorpus, 2019.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selec-
tive state spaces. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=tEYskw1VY2.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
tured state spaces. In International Conference on Learning Representations (ICLR), 2022.
arXiv:2111.00396.

Han Guo, Songlin Yang, Tarushii Goel, Eric P. Xing, Tri Dao, and Yoon Kim. Log-linear attention,
2025. URL https://arxiv.org/abs/2506.04761.

Don Hush, Chaouki Abdallah, and William Horne. High order recursive neural networks. Vibra-
tional Spectroscopy - VIB SPECTROSC, 01 1991.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: trans-
formers are better than state space models at copying. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In Proceedings of the 37th Interna-
tional Conference on Machine Learning (ICML), pp. 5156–5165, 2020.

NVIDIA, :, Aaron Blakeman, Aarti Basant, Abhinav Khattar, Adithya Renduchintala, Akhiad
Bercovich, Aleksander Ficek, Alexis Bjorlin, Ali Taghibakhshi, Amala Sanjay Deshmukh,
Ameya Sunil Mahabaleshwarkar, Andrew Tao, Anna Shors, Ashwath Aithal, Ashwin Poojary,
Ayush Dattagupta, Balaram Buddharaju, Bobby Chen, Boris Ginsburg, Boxin Wang, Brandon
Norick, Brian Butterfield, Bryan Catanzaro, Carlo del Mundo, Chengyu Dong, Christine Har-
vey, Christopher Parisien, Dan Su, Daniel Korzekwa, Danny Yin, Daria Gitman, David Mosal-
lanezhad, Deepak Narayanan, Denys Fridman, Dima Rekesh, Ding Ma, Dmytro Pykhtar, Dong
Ahn, Duncan Riach, Dusan Stosic, Eileen Long, Elad Segal, Ellie Evans, Eric Chung, Erick
Galinkin, Evelina Bakhturina, Ewa Dobrowolska, Fei Jia, Fuxiao Liu, Gargi Prasad, Gerald Shen,
Guilin Liu, Guo Chen, Haifeng Qian, Helen Ngo, Hongbin Liu, Hui Li, Igor Gitman, Ilia Kar-
manov, Ivan Moshkov, Izik Golan, Jan Kautz, Jane Polak Scowcroft, Jared Casper, Jarno Seppa-
nen, Jason Lu, Jason Sewall, Jiaqi Zeng, Jiaxuan You, Jimmy Zhang, Jing Zhang, Jining Huang,
Jinze Xue, Jocelyn Huang, Joey Conway, John Kamalu, Jon Barker, Jonathan Cohen, Joseph
Jennings, Jupinder Parmar, Karan Sapra, Kari Briski, Kateryna Chumachenko, Katherine Luna,
Keshav Santhanam, Kezhi Kong, Kirthi Sivamani, Krzysztof Pawelec, Kumar Anik, Kunlun Li,
Lawrence McAfee, Leon Derczynski, Lindsey Pavao, Luis Vega, Lukas Voegtle, Maciej Bala,
Maer Rodrigues de Melo, Makesh Narsimhan Sreedhar, Marcin Chochowski, Markus Kliegl,
Marta Stepniewska-Dziubinska, Matthieu Le, Matvei Novikov, Mehrzad Samadi, Michael Ander-
sch, Michael Evans, Miguel Martinez, Mike Chrzanowski, Mike Ranzinger, Mikolaj Blaz, Misha
Smelyanskiy, Mohamed Fawzy, Mohammad Shoeybi, Mostofa Patwary, Nayeon Lee, Nima
Tajbakhsh, Ning Xu, Oleg Rybakov, Oleksii Kuchaiev, Olivier Delalleau, Osvald Nitski, Parth
Chadha, Pasha Shamis, Paulius Micikevicius, Pavlo Molchanov, Peter Dykas, Philipp Fischer,
Pierre-Yves Aquilanti, Piotr Bialecki, Prasoon Varshney, Pritam Gundecha, Przemek Tredak,
Rabeeh Karimi, Rahul Kandu, Ran El-Yaniv, Raviraj Joshi, Roger Waleffe, Ruoxi Zhang, Sabrina
Kavanaugh, Sahil Jain, Samuel Kriman, Sangkug Lym, Sanjeev Satheesh, Saurav Muralidha-
ran, Sean Narenthiran, Selvaraj Anandaraj, Seonmyeong Bak, Sergey Kashirsky, Seungju Han,
Shantanu Acharya, Shaona Ghosh, Sharath Turuvekere Sreenivas, Sharon Clay, Shelby Thomas,
Shrimai Prabhumoye, Shubham Pachori, Shubham Toshniwal, Shyamala Prayaga, Siddhartha
Jain, Sirshak Das, Slawek Kierat, Somshubra Majumdar, Song Han, Soumye Singhal, Sriharsha

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Niverty, Stefania Alborghetti, Suseella Panguluri, Swetha Bhendigeri, Syeda Nahida Akter, Szy-
mon Migacz, Tal Shiri, Terry Kong, Timo Roman, Tomer Ronen, Trisha Saar, Tugrul Konuk,
Tuomas Rintamaki, Tyler Poon, Ushnish De, Vahid Noroozi, Varun Singh, Vijay Korthikanti,
Vitaly Kurin, Wasi Uddin Ahmad, Wei Du, Wei Ping, Wenliang Dai, Wonmin Byeon, Xiaowei
Ren, Yao Xu, Yejin Choi, Yian Zhang, Ying Lin, Yoshi Suhara, Zhiding Yu, Zhiqi Li, Zhiyu Li,
Zhongbo Zhu, Zhuolin Yang, and Zijia Chen. Nemotron-h: A family of accurate and efficient
hybrid mamba-transformer models, 2025. URL https://arxiv.org/abs/2504.03624.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Rohollah Soltani and Hui Jiang. Higher order recurrent neural networks, 2017. URL
https://openreview.net/forum?id=ByZvfijeg.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Ro-
former: Enhanced transformer with rotary position embedding. Neurocomputing, 568:
127063, 2024. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2023.127063. URL
https://www.sciencedirect.com/science/article/pii/S0925231223011864.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.

Armin W Thomas, Rom Parnichkun, Alexander Amini, Stefano Massaroli, and Michael Poli. STAR:
Synthesis of tailored architectures. In The Thirteenth International Conference on Learning Rep-
resentations, 2025. URL https://openreview.net/forum?id=HsHxSN23rM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 30, 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Anand Korthikanti, Tri
Dao, Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha,
Vartika Singh, Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An
empirical study of mamba-based language models. ArXiv, abs/2406.07887, 2024. URL
https://api.semanticscholar.org/CorpusID:270391285.

Dustin Wang, Rui-Jie Zhu, Steven Abreu, Yong Shan, Taylor Kergan, Yuqi Pan, Yuhong Chou,
Zheng Li, Ge Zhang, Wenhao Huang, and Jason Eshraghian. A systematic analysis of hybrid
linear attention, 2025a. URL https://arxiv.org/abs/2507.06457.

Peihao Wang, Ruisi Cai, Yuehao Wang, Jiajun Zhu, Pragya Srivastava, Zhangyang Wang, and Pan
Li. Understanding and mitigating bottlenecks of state space models through the lens of recency
and over-smoothing. In The Thirteenth International Conference on Learning Representations,
2025b. URL https://openreview.net/forum?id=pymXpl4qvi.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 14138–14148, 2021.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Luca Zancato, Arjun Seshadri, Yonatan Dukler, Aditya Golatkar, Yantao Shen, Benjamin
Bowman, Matthew Trager, Alessandro Achille, and Stefano Soatto. B’MOJO: Hybrid
state space realizations of foundation models with eidetic and fading memory. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=RnQdRY1h5v.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A PRACTICAL CONSIDERATIONS

A.1 PARAMETRIZATION OF A AND B

Our framework does not make any assumption on how the coefficients αij and βij are computed.
That is, they could be constant (Katharopoulos et al., 2020), depend on the input (Dao & Gu, 2024a;
Yang et al., 2023) or not (Gu et al., 2022), the distance (Sun et al., 2023), etc.

In an effort to bridge the gap between attention and SSMs, in all our experiments we choose
attention-like coefficients for both αij and βij . That is, A and B are computed like two independent
attention matrices, only with a modified normalization scheme (see Section A.2). We find this to be
the most general way of parameterizing them, however more parameter-efficient choices should be
considered in future work and may improve the overall efficiency.

A.2 NORMALIZATION

A recurring problem in recurrent models is vanishing or exploding gradient. To prevent such phe-
nomenon, one ought to carefully normalize the weights in A and B. This is key for allowing the
model to learn meaningful representations.

From Equation 1, we can see that if we assume that all ||xj || ≤ C, and ||yj || ≤ C for j < i, we get:

||yi|| ≤ C

 i∑
j=1

αij +

i−1∑
j=1

βij

 (8)

We then only need to ensure that
∑i

j=1 αij+
∑i−1

j=1 βij = 1, or in matrix notations: (A+B)1 = 1.
In practice this can be done by modifying slightly the softmax equation. Note that this choice is
similar to the gating mechanisms in GRUs for instance, while also matching exactly the attention
softmax when B = 0.

However, one could also apply a softmax normalization to the full transformation matrix T = (I −
B)−1A. As discussed in Dao & Gu (2024a), this can be achieved by computing the forward pass
Tx without normalizing, while computing T 1 at the same time and using it to normalize the output.
Unfortunately, while this is mathematically sound, in the general case values skyrocket and overflow,
causing numerical errors. We leave solving this numerical stability problem for future work.

A.3 WEIGHT SHARING

While A and B play different roles, we could still expect them to be correlated. In this section we
investigate the effect of a weight sharing of the form:

A = BD +D′ (9)

where D and D′ are diagonal matrices. This is similar yet more general than Fagnou et al. (2024).
Note that all the previous theoretical results still stand, since there was no assumption on A and B
other than their sparsity pattern.

It turns out that the forward equation simplifies nicely:

y := (I −B)−1(BD +D′)x

= (I −B)−1(D +D′)x−Dx (10)

Since addition and multiplication of diagonal matrices is linear and negligible, the only costly oper-
ation that remains is the multiplication by (I −B)−1, and the multiplication by A disappeared.

Looking now at the recursive form, by introducing the variable zi := yi + dixi, we obtain:

zi =

i−1∑
j=1

βijzi + (di + d′i)xi (11)

The recurrence got much simpler, and in particular the cache size is reduced since we only need to
store the useful past zj , instead of both the xj and yj in the general case.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.4 EFFICIENT IMPLEMENTATIONS

While implementing a custom CUDA kernel to perform the sparse triangular solves efficiently is out
of the scope of this paper (we used the native torch function with is always quadratic) we discuss
practical implementations in this section.

The causal token-mixing operators we study induce lower-triangular matrices M ∈ Rn×n with
sparse, repetitive structure. Forward substitution on such matrices has complexity proportional to
the number of nonzeros. If each row has at most w nonzeros, then solving Mx = b requires O(nw)
operations, compared to O(n2) for dense triangular solves.

Block forward substitution. Because the sparsity patterns we consider are periodic along the
diagonal (see Proposition 4.7), the system can be naturally partitioned into blocks, where each block
shares the same nonzero structure. This allows the solve to be reorganized into a sequence of block
updates:

x(k) = M−1
kk

(
b(k) −

∑
ℓ<k

Mkℓx
(ℓ)

)
,

where Mkk denotes the k-th diagonal block. Each block update involves small dense solves (with
identical shape across blocks), which can be vectorized and batched efficiently on GPUs.

Parallelism. While the numerical entries of M vary, the periodicity ensures that the memory ac-
cess pattern and dependency graph repeat exactly. This enables highly regular parallel implemen-
tations: a single kernel can encode the substitution pattern once, and apply it across all blocks with
different coefficients. Such regularity improves cache efficiency and load balancing compared to
generic sparse triangular solvers.

Recursive structure. If the sparsity pattern itself is recursive (e.g., defined hierarchically or via
dilation), then one could further apply divide-and-conquer strategies, solving the system by recur-
sively eliminating larger and larger blocks. This approach can reduce synchronization costs and
naturally exposes parallelism across scales, complementing the block forward substitution scheme.

B EXAMPLES ENCOMPASSED BY THE FRAMEWORK

To make the framework concrete, we instantiate equations equation 1 and equation 2 on several
familiar layers. The goal is not to commit to a particular parameterization of A or B (their structure
is discussed later), but to show how widely used mixers drop out as simple choices of the direct
channel A and the recursive channel B. Read the second column as the per-token scalar recurrence;
the last two columns display the corresponding matrix choices. This allows an apples-to-apples
comparison of mechanisms that are usually presented as unrelated (attention vs. SSMs vs. hybrids),
by expressing them in the same causal linear template.

Layer Scalar recurrence A B

Causal attention yt =
t∑

j=1

αtjxj A (row-stochastic) 0

Diagonal SSM yt = a xt + b yt−1 a I strictly subdiagonal b
Mamba / minGRU (scalar gates) yt = atxt + btyt−1 diag(a1, . . . , aL) strictly subdiagonal (bt)
Conv + SSM block conv then SSM Toeplitz (from conv) strictly lower
ChaCAL (damped, causal) yt = (1− γ)

∑
j≤t

αtjxj + γ
∑
j<t

αtjyj (1− γ)A γ (A⊙ (1− I))

Table 3: Common layers as instances of the causal recurrent mixing template y = (I − B)−1Ax.
“Direct” mixing lives in A; “recursive” coupling lives in B. For ChaCAL the diagonal of A is zeroed
to ensure strict causality and invertibility of (I −B).

A few remarks help interpret the rows. Causal attention fits by setting B = 0, so all mixing is
instantaneous and one-hop; A is row-stochastic (softmax over scores) and provides global context
in a single step. Diagonal SSMs and minGRU/Mamba-style scalar-gated recurrences correspond

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

to a strictly subdiagonal B (one-step feedback) with either a constant or time-varying diagonal A;
this yields linear-time decoding with a local, stepwise propagation of information. Conv+ SSM
blocks can be seen as a Toeplitz A (the convolution) followed by a strictly lower B (the recurrent
accumulator), combining short-range pattern extraction with causal memory. Finally, ChaCAL-type
rational mechanisms use A twice – once as direct mixing and once inside the recursion – so that
(I − B)−1A explicitly sums multi-hop paths; damping and a zero diagonal in B keep the operator
strictly causal and numerically well-behaved.

Beyond taxonomy, the table also signals design levers that we analyze elsewhere: sparsifying or
banding B controls hop depth and per-token work (triangular solves rather than dense matvecs),
while choosing A to be row-stochastic, diagonal, Toeplitz, or low-rank sets the one-hop mixing
pattern and parameter-efficiency. In this sense, familiar architectures are not endpoints but particular
coordinates in a larger space defined by the pair (A,B).

C EXPERIMENTAL DETAILS

C.1 DATASETS

Synthetic tasks. All three synthetic datasets are generated on the fly during training, such that
there is no overfitting problem. We employ some form of curriculum training as in (Dao & Gu,
2024a), with the training being split into 4 phases which divide the sequence length (and other
task-specific parameters if suited) by respectively 8, 4, 2 and 1.

Copy. The copy task is adapted from Arjovsky et al. (2016) and Jelassi et al. (2024). The model
must copy sequences with length up to L = 128. The beginning and end of the input sequence are
marked by special tokens.

Associative recall. We adapt this task from Arora et al. (2024a). We use up to 64 key-value pairs,
and sequences up to 256 long. We additionally randomize more the position of the keys and values
to prevent any bias favoring a specific attention pattern.

Multi-hop. We use the same setup as the associative recall task, but each value has a probability
p = 0.5 to be replaced by a preceding key. Since the task is harder to learn, we also add labels to
the intermediary keys to help the model learn.

OpenWebText. This dataset was build to replicate the (undisclosed) training dataset of GPT-2
(Radford et al., 2019). It contains 38GB of text data from 8,013,769 documents. We use the same
tokenizer as GPT-2.

C.2 TRAINING SETUP

Training is performed on single NVIDIA V100 GPUs for the synthetic tasks, and pairs of NVIDIA
A100 GPUs for language modeling. We use mixed precision with FP16.

All runs use a linear warmup for the learning rate, followed by a cosine scheduler.

C.3 HYPERPARAMETERS

We report all hyperparameters in Table C.3

D PROOFS

D.1 PROOF OF PROPOSITION 4.1

The result is relatively straightforward. At time n, we attend the past indices n − f(0), n − f(1),
. . . , n− f(i), as long as n− f(i) > 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 4: Hyperparameters used in the different experiments.
Name Synthetic tasks Language modeling

train steps 20k 100k
warmup steps 2k 4k

lr 3e-3 4e-5
batch size ≥ 1024 256

weight decay 0.1 0.1
β1 0.9 0.9
β2 0.98 0.98

grad max norm 1.0 1.0

vocab size 8,192 50,257
context length ≤ 256 512

num layers 2 6
dim 256 512

ff dim 1024 2048
head dim 64 64

The number kn of past tokens attended is:

kn := #{i ∈ N | 0 < n− f(i)} (12)
= 1 +max{i ∈ N | 0 < n− f(i)} (13)
= 1 +max{i ∈ N | f(i) < n} (14)
= 1 + g(n) (15)
= O(g(n)) (16)

If f can be extended to an invertible real function R → [1,∞), then we have by definition of g that:

f(g(n)) ≤ n (17)

⇐⇒ g(n) ≤ f−1(n) (18)

and hence kn = O(f−1(n)).

D.2 PROOF OF PROPOSITION 4.2

Given two positions i < j, we denote d(i, j) the length of the shortest path from token i to token j.

We can consider the underlying directed acyclic graph of the pattern: each token is a node, and there
is an edge i → j iff ∃ k ∈ N, f(k) = i− j.

d(i, j) = min
{
k | ∃ v ∈ [1, i]k−1, i → v1 → · · · → vk−1 → j

}
(19)

= min
{
k | ∃ v ∈ [1, i]k−1, u ∈ Nk, f(u1) = v1 − i, . . . , f(uk) = j − vk−1

}
(20)

= min

{
k | ∃ u ∈ Nk,

k∑
p=1

f(up) = j − i

}
(21)

D.3 PROOF OF COROLLARY 4.3

While the shortest path is a nontrivial quantity in the general case, we can find exact values for
simple choices for f :

Exponential f(i) = 2i: A key observation is that the shortest path does not involve two edges
that share the same power of 2 – otherwise they could have been replaced by a single edge uses the
next power of two. Hence we are looking for a way to decompose j− i into a sum of unique powers
of two. The only solution is given by its binary representation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Quadratic f(i) = (i + 1)2: Lagrange’s four-square theorem tells us that every natural number
can be written as the sum of at most 4 squares. First, we can see that when j − i ≤ 3 this is trivially
true. Consider the number m = j − i − 4. By Lagrange’s four-square theorem it can be written as
m = a2 + b2 + c2 + d2. And hence j − i = (a2 + 1) + (b2 + 1) + (c2 + 1) + (d2 + 1).

Note: while it is surprising to get a constant value, remind that exponential f gives a logarithmic
bound. Having a denser attention pattern should get a much better bound than logarithmic, which at
our scale would appear constant.

D.4 PROOF OF PROPOSITION 4.4

Suppose we have n directed paths in a graph G, each of length at least d edges. Let the graph have
2n nodes (for the copy task setup). By definition, a path of length d edges visits d+ 1 nodes, so the
total number of node visits across all paths is at least:

total visits ≥ n · (d+ 1) (22)

Let C(G) denote the maximum number of paths passing through any single node. Since each node
can be traversed by at most C(G) paths, the total number of visits is also upper bounded by:

total visits ≤ 2n · C(G) (23)

Combining these inequalities, we obtain:

n · (d+ 1) ≤ 2n · C(G) (24)

=⇒ C(G) ≥ d+ 1

2
(25)

D.5 PROOF OF PROPOSITION 4.5

Consider n paths of length at most D edges, where the token mixing pattern is translation-invariant:
the path for input i+ 1 is a shift of the path for input i.

In this case, each node is visited by at most D paths simultaneously, which occurs in the overlapping
region of consecutive paths. Hence, the maximum congestion satisfies:

C(G) ≤ D (26)

D.6 PROOF OF PROPOSITION 4.7

If we note pi(t) the index we obtain by increasing t − f(i) until reaching a cached token (with
t ≥ f(i)), we can write:

pi(t) =

{
pi(t− 1) if 0 < t− f(i) ≤ pi(t− 1)

pi−1(t− 1) else.
(27)

= pi−1(f(i)− 1) + (pi−1(f(i)− 1) + 1)

 t− f(i)

pi−1(f(i)− 1) + 1︸ ︷︷ ︸
ai

 (28)

= ai

(
1 +

⌊
t− f(i)

ai

⌋)
− 1 (29)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

We can use this equation to find a recursive relation for pi−1(f(i)− 1):

ai := pi−1(f(i)− 1) + 1 (30)

= ai−1 + ai−1

⌊
f(i)− f(i− 1)− 1

ai−1

⌋
(31)

= ai−1

(
1 +

⌊
f(i)− f(i− 1)− 1

ai−1

⌋)
(32)

= ”the largest multiple of ai−1 that is strictly greater than f(i)− f(i− 1)− 1” (33)
= ”the largest multiple of ai−1 that is greater or equal to f(i)− f(i− 1)” (34)

= ai−1

⌈
f(i)− f(i− 1)

ai−1

⌉
(35)

E PYTHON CODE FOR GENERATING MATRICES

1 def get_A(n, func, cache_efficient=False):
2 A = torch.zeros((n, n), dtype=torch.bool)
3 for i in range(n):
4 A[i, i] = True
5

6 for k in range(n):
7 j = i - func(k)
8 if j < 0:
9 break

10

11 if cache_efficient:
12 # increase to closest next index in the cache
13 while A[i-1, j] == 0:
14 j += 1
15

16 A[i, j] = True
17 return A

19

