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Abstract

Preference-based reinforcement learning (PbRL) has emerged as a promising
paradigm for teaching robots complex behaviors without reward engineering. How-
ever, its effectiveness is often limited by two critical challenges: the reliance on
extensive human input and the inherent difficulties in resolving query ambiguity
and credit assignment during reward learning. In this paper, we introduce PRIMT, a
PbRL framework designed to overcome these challenges by leveraging foundation
models (FMs) for multimodal synthetic feedback and trajectory synthesis. Unlike
prior approaches that rely on single-modality FM evaluations, PRIMT employs a hi-
erarchical neuro-symbolic fusion strategy, integrating the complementary strengths
of large language models and vision-language models in evaluating robot behaviors
for more reliable and comprehensive feedback. PRIMT also incorporates foresight
trajectory generation, which reduces early-stage query ambiguity by warm-starting
the trajectory buffer with bootstrapped samples, and hindsight trajectory augmenta-
tion, which enables counterfactual reasoning with a causal auxiliary loss to improve
credit assignment. We evaluate PRIMT on 2 locomotion and 6 manipulation tasks
on various benchmarks, demonstrating superior performance over FM-based and
scripted baselines. Website at https://primt25.github.io/.

1 Introduction

Reinforcement learning (RL) has shown great success in various robotics domains [1H4], yet it
remains reliant on carefully designed reward functions. In many practical scenarios, designing an
informative reward function is highly challenging, as task objectives are often implicit and multi-
faceted [S]]. Preference-based RL (PbRL) [6H8] has emerged as a promising alternative to address
this challenge by learning reward models from human comparative feedback over robot trajectories,
providing a more intuitive means of aligning robotic systems with human intent [9-12]. Nevertheless,
the extensive human input required for preference labeling restricts the scalability of PbRL [13].

To mitigate this bottleneck, recent work has explored leveraging foundation models (FMs), e.g.,
large language models (LLMs) and vision-language models (VLMs), as synthetic feedback sources,
drawing on their broad world knowledge [[14H17]]. Compared to using FMs to design dense reward
functions [18520] or provide auxiliary contrastive signals [21H24], incorporating them as evaluators
within PbRL offers a potentially more efficient and robust paradigm.
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Figure 1: Overview of PRIMT, comprising two synergistic modules: 1) Hierarchical neuro-symbolic preference
fusion improves the quality of synthetic feedback by leveraging the complementary strengths of VLMs and LLMs
for multimodal evaluation of robot behaviors; and 2) Bidirectional trajectory synthesis mitigates early-stage
query ambiguity through foresight generation and enhances credit assignment in reward learning via hindsight
counterfactual augmentation with a causal auxiliary loss.

However, obtaining reliable and high-quality FM feedback remains challenging, primarily due to
the dominant reliance on single-modality evaluation. LLM-based approaches [15| [16] interpret
structured textual projections of trajectories, such as sequential arrays of state-action pairs, enabling
sophisticated temporal reasoning over procedural logic and motion progression [25} 26]. However,
these textual descriptions can be abstract or incomplete, making LL.Ms prone to hallucinations of
key events, especially when inferring fine-grained spatial interactions [27,[28]. On the other hand,
VLM-based methods [[14]] analyze spatial cues from visual renderings of robot trajectories, such as
final-state images or intermediate frames, effectively capturing spatial goal completion [29]. Yet
these methods often overlook subtle temporal dynamics within the trajectory [30} 31]]. Consequently,
relying on either modality alone risks incomplete or unreliable feedback (see Appendix [A]for more
analysis), highlighting the need for a more comprehensive multimodal evaluation framework.

Furthermore, even if feedback from FMs reaches human-expert-level quality, PbRL still faces two
intrinsic challenges: i) Query ambiguity: trajectory pairs often exhibit uniformly low quality in
early training stages. This happens when they are generated from random or weakly optimized
policies and lack task-relevant variations, making it hard to elicit meaningful preferences [7, 32];
and ii) Credit assignment: even when reliable trajectory-level preferences are available, it often
remains difficult to accurately attribute the observed preference differences to specific states or actions
[33H35]]. Without effective state-action-level credit assignment, the learned reward model may result
in misaligned behaviors in subsequent RL training [33]. Meanwhile, FMs have shown strong abilities
in planning 36} 37]], control [38},39], and causal reasoning [40,41]]. These advances lead us to the
following question: Can FMs move beyond serving as passive preference providers to be actively
leveraged to mitigate query ambiguity and improve credit assignment in PbRL?

In this paper, we propose PRIMT, a foundation model-driven framework for PbRL designed to
address key challenges in synthetic feedback quality, query ambiguity, and credit assignment. PRIMT,
as illustrated in Fig.[I| comprises two core components:

1) Multimodal feedback fusion, which enhances synthetic feedback quality by combining the comple-
mentary advantages of LLM- and VLM-based evaluations. Rather than directly feeding multimodal
trajectory representations into generic multimodal FMs, PRIMT adopts a hierarchical neuro-symbolic
preference fusion strategy. It first performs intra-modal fusion to produce modality-specific labels
and confidence estimations. Then, inter-modal fusion is conducted using probabilistic soft logic
(PSL) [42], which infers the final preference label via structured and interpretable reasoning over
multimodal evaluation outputs and trajectory context, enabling robust aggregation of preference
beliefs from heterogeneous sources.

ii) Bidirectional trajectory synthesis, which leverages FMs to actively enhance reward learning
in PbRL. In the foresight phase, LLMs generate diverse task-aligned trajectories to initialize the



trajectory buffer. Unlike prior work [[16,|36] that assumes FM-generated trajectories are optimal, we
treat them as semantically meaningful anchors for informative comparisons, reducing early-stage
query ambiguity. In the hindsight phase, LLMs are prompted to generate counterfactual trajectories
via causal reasoning based on the structural causal model (SCM) [43]. When a clear preference
is detected, the model identifies causal steps and applies minimal edits to reverse the preference,
producing counterfactuals that highlight critical distinctions. To better exploit these samples for credit
assignment, we introduce a causal-aware auxiliary loss that enforces reward separation at edited
steps while ensuring consistency elsewhere. This enables more precise preference attribution, thereby
improving the efficiency and generalization of the learned reward model in downstream RL training.

Our key contributions are summarized as follows:

* We present PRIMT, a general FM-driven framework for zero-shot PbRL, which leverages founda-
tion models not only as synthetic teachers to eliminate human annotation but also as active agents
to facilitate preference reward learning.

* We introduce a hierarchical neuro-symbolic preference fusion strategy that combines the comple-
mentary strengths of LLMs and VLMs for multimodal evaluation of robot trajectories, improving
the reliability and quality of synthetic feedback.

* We propose foresight trajectory generation to bootstrap early-stage query informativeness, and
hindsight trajectory augmentation via counterfactual reasoning, coupled with a causal auxiliary
loss, to improve credit assignment in reward learning.

* We conduct extensive experiments across 2 locomotion and 6 manipulation tasks from the
DMC [44]], MetaWorld [45]], and ManiSkill [46] benchmarks, demonstrating that PRIMT con-
sistently outperforms state-of-the-art baselines. Ablation studies provide insight into component
effectiveness, and we further validate PRIMT’s real-world applicability on a Kinova Jaco robot.

2 Related Works and Preliminaries

Foundation Models as Rewards for RL.  Foundation models refer to large-scale pre-trained models
with strong generalization and reasoning capabilities across tasks [47]. Recent work has explored
leveraging FMs to address the reward engineering challenge in RL. One line of research uses
coding LLMs to directly generate executable reward functions [[18H20]]. Another employs VLMs as
contrastive reward signals [21-H24]]; for example, RoboCLIP [24] rewards agents by aligning trajectory
images with task descriptions or demonstrations. However, such explicit FM-based reward signals
are often noisy and high-variance [14]. Recent approaches have adopted the PbRL paradigm, using
FMs as synthetic evaluators to generate trajectory-level preference labels and train reward models:
PrefCLM [15] and RL-SaLLLM-F [16] leverage LLMs to analyze numerical state-action sequences,
while RL-VLM-F [14] uses VLMs to assess final-state images of robot trajectories. These approaches
have shown improved performance over FM-generated scalar rewards. Our work builds on this PbRL-
with-FM direction but introduces two key innovations. First, PRIMT adopts a multimodal evaluation
scheme that combines VLM and LLM perspectives via hierarchical neuro-symbolic fusion, improving
the robustness and quality of synthetic supervision. Second, rather than using FMs solely for passive
evaluation, we actively incorporate them to facilitate reward learning via trajectory synthesis.

Preference-based RL  PbRL aims to learn a reward model r,;, from human comparative feedback
over pairs of robot trajectories [7]. A trajectory o is defined as a sequence of states and actions
{(s1,a1)...,(s7,ar)} with alength of T'. The annotator provides a preference label T € {—1,0, 1}
for each pair (64, 0¥), where T = 1 indicates that o is preferred, 0 means o is preferred, and
—1 denotes indecision. A preference predictor is constructed using the Bradley-Terry model [48] to
estimate the preference probabilities. The likelihood that o is preferred over o is computed as:
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The reward model is trained to align with human preferences by minimizing a cross-entropy objective
over a collected preference dataset D = {(¢*, 0%, 1)} as:
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Query Ambiguity PbRL relies on informative preference queries to train effective reward models.
However, trajectory pairs often exhibit low task-relevant diversity, leading to query ambiguity [8].
This ambiguity is especially pronounced in early training stages, when trajectories are uniformly low-
quality and incoherent due to randomly initialized policies [49]. Prior works address this by selecting
maximally distinguishable or uncertain samples [8} 32} |50] or initializing the reward model with
expert demonstrations [51} 52]]. More recent works employ LLMs to revise ambiguous trajectories
during training, assuming that the edited versions are task-complete and preferred [16]]. In contrast,
we proactively initialize the replay buffer with LLM-generated trajectories that are diverse and
task-aligned. Unlike prior work, we do not assume these are optimal, but use them as preference
anchors to support more informative and efficient early-stage evaluation.

Credit Assignment Another core challenge in PbRL is the granularity mismatch between trajectory-
level preference supervision and the desired state-action-level reward signal [33]. This mismatch
introduces uncertainty in attributing credit to specific decisions, impairing both the alignment and gen-
eralization of the learned reward model [53]]. Prior work mitigates this issue by training transformer-
based world models that estimate state importance [33} 54} 55], or by collecting additional human
annotations to highlight key moments [34]. In contrast, our approach requires neither extra supervi-
sion nor architectural changes. Inspired by causal counterfactual reasoning [43} [56H58]], we prompt
LLMs to generate hindsight-based counterfactual trajectories by minimally editing key decision
points in the preferred trajectory to reverse the preference. By asking, “What minimal change would
make this trajectory less preferred?”, we obtain contrastive examples that expose the underlying
reasons for preference. To effectively leverage these counterfactuals in reward learning, we introduce
a causal-aware auxiliary loss. It enforces reward separation at edited points while maintaining
consistency in the unedited parts, leading to more precise credit assignment.

3 Methodology

In this section, we present PRIMT: PReference-based relnforcement learning with Multimodal
feedback and Trajectory synthesis from foundation models. An overview of the PRIMT is illustrated
in Fig.[I] Detailed prompts with example outputs for each component are included in Appendix [C|

3.1 Multimodal Feedback Generation and Fusion

Trajectory Preprocessing Given a trajectory pair (6, 0?) sampled from the trajectory buffer,
we first obtain their textual projections text(c) and text(o?) for LLM-based evaluation, follow-
ing [[16]]. These projections organize each trajectory into dimension-specific sequences, capturing
structured temporal patterns across state and action components in a format that enhances semantic
interpretability. For VLM-based evaluation, instead of using all frames or final-state images as in prior
work [14], we propose a hybrid keyframe extraction method to capture both low-level motion cues
and high-level behavior transitions while avoiding visual overload: i) near-zero velocity detection
identifies frames where the robot motion is minimal, typically marking subgoal completions or transi-
tional pauses [59]; ii) smoothing residual peaks detect high-curvature or abrupt motion transitions
by comparing the raw trajectory to its smoothed version, capturing key motion shifts [60]; and iii)
change point detection segments the trajectory into semantically coherent phases to identify structural
high-level task changes [61]. We take the union of the selected frames from all three methods,
together with the first and last steps of the trajectory, to form the final keyframe sets kvis(c“) and
kvis(o?). Full details are provided in Appendix

Intra-modal Preference Fusion We then query LLM and VLM separately with corresponding
textual projections and keyframe sequences, along with a brief task description, to elicit preference
judgments. Each query follows a structured three-step chain-of-thought (CoT) prompt: i) analyze
each trajectory in terms of its effectiveness in achieving the task goal; ii) based on this analysis, output
a preference label; and iii) verify the decision and assign a confidence score from 0 to 1, reflecting
the preference certainty. To mitigate variance and improve the reliability of intra-modal labels, we
adopt a crowd-check mechanism, querying LLM or VLM multiple times with randomly permuted
trajectory orderings. This produces K predictions from each feedback modality M € {LLM, VLM},

each consisting of a preference label TS\Z) € {—1,0, 1} and a confidence score C](\Z) € [0,1]. We then



aggregate these judgments into a final modality-specific preference label T j; via major voting as:

K
Ty = argmax ZH(TE\? =1) 3)
le{-1,0,1} =1

To estimate and calibrate the confidence Cjs associated with the final label, we compute a weighted

combination of two complementary signals: i) the average confidence Cj; among /N judgments that
agree with the final label, and ii) the label consistency ratio Cj; representing vote agreement:

K K
— 1 k k 3 1 k
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The final confidence Cj, is then computed as:
CMza-C_'M—F(l—OA)-C-M 5)

where « € [0, 1] is a balancing hyperparameter (typically set to 0.5). This formulation ensures that
the final confidence reflects both internal certainty and stability under input perturbations, thereby
improving the robustness of modality-specific confidence estimation.

Inter-modal Preference Fusion The next step is to integrate modality-specific preference labels
into a unified decision. This process is non-trivial, as it must consider multiple factors, including intra-
modal uncertainty, cross-modal conflicts, and trajectory context that reflects the relative difficulty
of visual versus textual evaluation. Intuitively, one might define heuristic rules for each factor, for
example, favoring the VLM label when the visual difference between trajectories is high, or trusting
the label with higher confidence. Yet, such heuristics are brittle and hard to generalize: the conditions
involved are often continuous rather than binary, and the interactions among rules can be complex.

To efficiently model these latent dependency structures among inputs, heuristics, and decisions, we
employ Probabilistic Soft Logic (PSL) [42], a probabilistic framework representing entities of interest
as logical atoms interconnected by weighted first-order logic rules. Specifically, we define four rules
to guide inter-modal preference fusion:

i) Agreement Rule: If the VLM and LLM agree on the same preference label T and at least one
modality reports high confidence, the agreed label is used as the final decision:

VY, M : IsAgree(Y) A ConfHigh(M) — FinalLabel(Y) (6)

Here, IsAgree(Y) is a binary indicator set to 1 if both VLM and LLM predict the same label Y, and
0 otherwise; ConfHigh(M) is a continuous atom representing the modality-specific confidence score
Cy € ]0,1]; and FinalLabel(Y) € [0, 1] is the output atom to be inferred by PSL, representing the
final soft confidence assigned to label Y € {—1,0,1}.

ii) Conflict Resolution Rules: When modality-specific labels conflict, we resolve the disagreement
by considering the associated confidence and trajectory context (detailed rationale can be found in
Appendix[A.2)). Specifically, we prioritize the VLM prediction if the visual discriminability between
trajectories and VLM confidence is high:

VY : —IsAgree(Y) A VLMLabel(T) A ConfHigh(VLM) A VDHighA — FinalLabel(Y) (7)

Likewise, if the LLM predicts a label T with high confidence and the temporal discriminability of
the trajectory pair is high, we prioritize the LLM prediction:

VY : —IsAgree(Y) A LLMLabel(YT) A ConfHigh(LLM) A TDHigh — FinalLabel(Y) (8)

Here, VLMLabel(Y') and LLMLabel(Y') are indicators set to 1 if the modality predicts label T, and 0
otherwise. The atom VDHigh captures the visual discriminability between the two trajectories as:

VDHigh = p (W(f(kvis(c™?)), f(kvis(a?)))) )

where f(-) denotes the CLIP encoder applied to keyframe sets kvis(-), YV denotes the Wasserstein
distance, and p(-) is a sigmoid function used for normalization.

Similarly, TDHigh captures temporal discriminability based on trajectory volatility differences:

TDHigh := p (|Terol(aA) - TI‘jVOl(O’B)D (10)



where TrjVol(-) measures the state-action volatility of a trajectory, defined as the mean L2 norm of
second-order finite differences:

T-1

TrjVol(0) = 7 D (st1s ae1) = 2(se, ) + (-1, ae-1) |l - (11)
t=2

iii) Indecision Rule: When both modalities exhibit low confidence, we assign the indecision label:
—ConfHigh(VLM) A =ConfHigh(LLM) — FinalLabel(—1) (12)

During PSL inference, each logical atom is instantiated with data and grounded into either an observed
input variable X (e.g., IsAgree, ConfHigh, TDHigh) or an output variable Y (e.g., FinalLabel).
Valid substitutions of these atoms within rule templates yield a set of ground rules. Each ground
rule induces one or more hinge-loss potentials, relaxed from the logical clauses using Lukasiewicz
continuous-valued semantics. Formally, each potential takes the form:

¢(Y; X) = [max(0, £(Y; X)) (13)

where £ is a linear function in PSL representing the distance to satisfaction of the corresponding
ground rule, and p € {1,2} controls whether the penalty is linear or quadratic. Given observed
variables X and target variables Y, PSL defines a hinge-loss Markov random field and performs
inference by solving a convex constrained optimization problem (more details of PSL inference are
provided in Appendix [D):

Y* = arg minZwi, o (Y, X) st Z FinalLabel(T) =1 (14)
Y i=1 Te{-1,0,1}

where m is the number of instantiated potentials, ¢; denotes the it potential function, and w; is the
weight assigned to the corresponding rule template. Unlike standard PSL formulations, we impose a
one-hot constraint over the final label atoms to reflect the single-label nature in PbRL. By encoding
structured dependencies among modality-specific outputs and trajectory-level context, PSL facilitates
robust and adaptive integration of complementary cues from multiple feedback modalities, effectively
managing uncertainties and cross-modal conflicts.

3.2 Bidirectional Trajectory Synthesis

Foresight Trajectory Generation Prior to PbRL training, we employ LLMs to generate boot-
strapped trajectories that exhibit diverse, semantically meaningful, and task-aligned behaviors,
providing a warm-start initialization for the trajectory buffer. Inspired by structured code-generation
paradigms [36}138], we adopt a three-step CoT strategy: i) generate a high-level, multi-step action
plan from the task specification; ii) translate each step into executable code snippets that implement
concrete motion primitives; and iii) execute these programs under varied initial conditions (e.g., robot
start positions) and strategy parameters (e.g., height to approach the target) to synthesize a diverse
set of plausible trajectories. Compared to directly prompting LLMs to generate low-level trajectory
arrays [[16], our method improves physical feasibility and semantic coherence by grounding trajectory
synthesis in program logic. The generated trajectories are considered as bootstrapped demonstrations
rather than optimal ones, subsequently evaluated by our multimodal feedback module. Combined
with strategic sampling schemes, such as uncertainty-based sampling [8]], these trajectories serve
as informative preference anchors when paired with exploration trajectories, reducing ambiguity in
early-stage preference queries and accelerating reward learning.

Hindsight Trajectory Augmentation with Causal Auxiliary Loss During PbRL training, when-
ever a clear preference is identified by the multimodal feedback module, we prompt LLMs to perform
hindsight reasoning to generate counterfactual variants of the preferred trajectory. This process
follows a three-step reasoning pattern based on the structural causal model [43]]:

i) Abduction: Identify the causal rationale behind the observed preference by extracting a set of
critical causal steps T in the preferred trajectory o* that contribute to the preference. To assist this
process, we provide the step indices corresponding to keyframes in kvis(c*) as reference candidates,
though the selected causal steps are not necessarily limited to them.



ii) Action: Select a key step t* € T for minimal intervention, generating a counterfactual trajectory
a:f that reverses the original preference. This involves modifying some critical state-action features
at the selected step, such as introducing a small gripper delay or adding a local end-effector position
perturbation. The rest of the trajectory remains identical to the original while we allow the LLMs to
apply light smoothing to the immediate neighbors (e.g., 2-3 steps before and after the intervention) to
ensure physical continuity and avoid abrupt state transitions. Multiple counterfactual variants can
be generated through repeated LLM sampling, providing a diverse set of sub-preferred alternatives.
Following the minimal edit principle [62}63], we filter the generated counterfactuals based on the L1
distance between the edited state-action pairs and the original, ensuring a small deviation threshold.

iii) Prediction: Pair each counterfactual variant with the originally preferred trajectory and feed them
into the LLM-based intra-modal fusion module to verify whether the counterfactual is sub-preferred,
L.e., satisfying the preference condition (6™ - o). Only counterfactuals that meet this criterion are
stored and used for reward learning.

Through this hindsight reasoning process, we now have counterfactual trajectories of the preferred
trajectory that share a common structure except at minimally edited steps, because of which their
preference outcomes diverge. As such, we can assume that the edited steps are responsible for the
observed preference signal, which the reward model should learn to correctly attribute. Given this, we
introduce a causal auxiliary loss that encourages discriminability at the edited steps while maintaining
consistency elsewhere to guide the model to focus on causal differences that drive preferences:

ax = zT:Ht -log (1 + exp (rw(sff) - Tw@?))) +2T:(1 — Hy)- HW(S?) - rw(sff)Hz (15)
t=1

t=1

i) causal contrast loss ii) reward consistency loss

where H, is a binary mask indicating the edited steps, i.e., H; = 1 for edited time steps and H; = 0
otherwise. The first term encourages the model to assign higher rewards to the preferred trajectory at
casual steps, while the second enforces consistent rewards on unchanged regions. This auxiliary loss
is combined with the trajectory-level preference loss as in Eq. 2} forming the final loss for reward
learning with the generated counterfactuals:

['ﬁnal = Cpref + )\cf : i;uflx (16)

where A is a weight used to scale the auxiliary loss to the same magnitude as the primary preference
loss. This integrated loss formulation enables the reward model to capture trajectory-level preferences
while providing more precise state-action-level credit attributions.

4 Experiments

4.1 Setup

We evaluate PRIMT across a diverse set of tasks, including 2 locomotion tasks: Hopper Stand
and Walker Walk from DeepMind Control (DMC) suite [44], as well as 6 articulation or rigid
body manipulation tasks: Button Press, Door Open, and Sweep Into from MetaWorld suite [45]],
and PickSingleYCB, StackCube, and PeglnsertionSide from ManiSkill suite [46]]. Detailed task
descriptions are provided in Appendix [E| We compare PRIMT against the following baselines:

* RL-VLM-F [14]: This baseline utilizes VLM to analyze visual renderings of trajectories to provide
preference labels, representing a state-of-the-art VLM-based method.

* RL-SaLLM-F [16]: This model employs LLM to provide preference labels based on textual
descriptions of trajectories, and to modify ambiguous trajectories by generating self-improved
alternatives, which are assumed to be preferred when paired with the original ones. This denotes a
LLM-based method with trajectory augmentation for addressing query ambiguity.

e PrefCLM [15]]: This baseline leverages crowdsourced LLMs to provide evaluation feedback for
improved feedback quality, presenting another state-of-the-art LLM-based method.

* PrefMul: We build this baseline by directly providing the multimodal trajectory inputs used in
PRIMT to a multimodal FM for evaluation, representing a naive approach to multimodal feedback.
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Figure 2: Learning curves of PRIMT and baseline methods across all tasks, averaged over 5 runs with solid
lines denoting the average and shaded regions representing the standard error. A moving average window of 5
steps for locomotion tasks and 10 steps for manipulation tasks is applied to improve readability.

* PrefGT: This baseline uses expert-designed reward functions provided by the benchmarks in
a scripted teacher manner [§]] to provide preference labels. This should, in theory, serve as an
upper-bound oracle of PbRL performance on each task.

We also build several ablation models to assess the impact of each PRIMT component:

* w/o.Intra: without the crowd-check mechanism and intra-modal preference fusion module.

* w/o.Inter: without the inter-modal preference fusion module, directly selecting the modality-
specific label with highest confidence as the final label.

» w/o.ForeGen: without the foresight trajectory generation module.
* w/o.HindAug: without the hindsight trajectory augmentation module.

* w/o.CauAux: without the causal auxiliary loss for counterfactuals in reward learning.

To eliminate the impact of non-model factors, we use the same trajectory inputs and CoT prompts as
in PRIMT for preference label elicitation across all FM-based baselines and ablation models. The
only exception is PrefCLM, which relies heavily on direct access to the environment code; for this
baseline, we follow the original settings from the source paper. For all FM-based methods, we use
gpt-4o as the LLM backbone. For the PbRL backbone, we use PEBBLE [7] with the uncertainty-
based sampling schedule [8] for all methods, along with a consistent set of hyperparameters for the
RL-based policy learning phase with SAC. This design ensures that the only difference between
methods lies in the preference reward learning, allowing for a more controlled comparison.

We evaluate all baselines across all tasks and conduct ablation studies on the Door Open and PickS-
ingleYCB tasks, each with five random seed runs to ensure statistical robustness. For manipulation
tasks, we report the success rate, whereas for locomotion tasks, we use the episodic return provided
by the benchmarks. Further implementation details are provided in Appendix [F

4.2 Does PRIMT Learn Effective Rewards and Policies that Prompt Task Performance?

We first investigate whether PRIMT

can learn effective reward models that — sivr  — voForGen  — woinm wolnter  —— wioCavAwx  —— wio HindAug
lead to policies capable of solving Dout Open PiekSingle¥CB
complex tasks. Fig.[2]shows the learn- _w = ——

ing curves of all methods across 8
tasks. We observe that PRIMT con-
sistently outperforms all FM-based
baselines that rely on single-modality 0 RN ST LI B
feedback, demonstrating superior fi-
nal performance and faster conver-
gence. However, the naive multi-
modal feedback method, PrefMul, performs poorly. We attribute this to the fact that directly feeding
multimodal trajectory inputs to multimodal FMs without appropriate fusion can overwhelm the

Figure 3: Learning curves of PRIMT and ablation models on the
Door Open and PickSingleYCB tasks.
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Figure 4: Left: Distribution of preference labels, showing the proportion of correct, incorrect, and indecisive
labels across different methods. Right: Reward alignment analysis, comparing the learned reward outputs of
PRIMT, ablations, and baselines against ground-truth rewards. Plots on more tasks are provided in Appendix

models, potentially even degrading performance. This highlights the need for carefully designed
fusion strategies to fully leverage the complementary strengths of multimodal signals, as implemented
in the hierarchical neuro-symbolic fusion strategy of PRIMT. Moreover, each component in this
hierarchical design is crucial: as shown in Fig. 3] removing either intra-modal or inter-modal fusion
significantly degrades task performance. This drop is especially severe when inter-modal fusion is
removed, underscoring the critical role of PSL-based reasoning in PRIMT. Unlike simple rule-based
fusion in w/o.Inter, PSL-based fusion more effectively captures intra-modal uncertainty, cross-modal
conflicts, and the influence of trajectory context, enabling more robust preference integration from
heterogeneous sources.

Notably, PRIMT is competitive with the oracle PrefGT, even surpassing it on the Sweep Into
and Peg Insertion Side tasks, and generally achieving faster early-stage learning, while other FM-
based methods fall behind. This suggests that while PrefGT benefits from fine-grained oracle
preference labels, PRIMT narrows this gap by improving the quality of synthetic feedback and
leveraging trajectory synthesis to address inherent challenges in PbRL. As shown in Fig. [3] foresight
generation appears to contribute more to the acceleration of early-stage learning, as the w/o.ForeGen
variant reaches a similar final performance but learns more slowly in the initial stages. In contrast,
hindsight augmentation plays a critical role in achieving high final performance, as evidenced by the
significant performance drop when either w/o.HindAug or w/o.CauAux is removed. Interestingly,
while w/o.CauAux can still benefit from the counterfactual trajectory augmentation, its performance
is significantly worse, indicating that the causal auxiliary loss we designed can more effectively
leverage these counterfactuals in reward learning, capturing state-action-level preference causation.

4.3 Does PRIMT Improve the Quality of Synthetic Feedback and Mitigate Query Ambiguity?

We next examine the distribution of synthetic feedback generated by PRIMT to assess its impact
on preference label quality and query informativeness. We calculate accuracy by comparing the
synthetic preference labels with those in PrefGT and record the preference decisions. Fig.[d]shows the
percentages of correct labeling, incorrect labeling, and preference indecision for PRIMT, w/o.ForeGen,
w/o.Intra, w/o.Inter, and RL-VLM-F (left to right). We observe that PRIMT consistently produces
more accurate preference labels compared to the baseline and ablations, confirming the effectiveness
of the hierarchical fusion design in improving label quality. Additionally, PRIMT significantly
reduces indecision rates compared to both the baseline and w/o.ForeGen, indicating that foresight
generation effectively mitigates query ambiguity.

It is worth noting that we could not directly compare indecision rates with RL-SalLLM-F, another
method that uses LLMs to address query ambiguity, because it inherently eliminates indecision by
always treating self-augmented trajectories as preferable. However, as shown in Fig. 2] this baseline
struggles with early-stage learning on tasks from the ManiSkill, which involve high-dimensional
state and action spaces. We attribute this to the difficulty of directly generating optimal trajectories at
the low level in such tasks, making the assumption that generated trajectories are always preferable
highly misleading. This highlights the advantages of our foresight generation approach, which
addresses query ambiguity from the outset by initializing diverse, bootstrapped trajectories as potential
preference anchors, and our code-generation paradigm, which improves the trajectory sample quality.

4.4 Does PRIMT Enhance Credit Assignment in the Reward Model?

We further investigate how the learned reward models align with the task progress at state-action
level. Fig. 4] shows the normalized reward outputs from the learned reward models of PRIMT, its two



ablations without full hindsight trajectory augmentation, and the baseline RL-VLM-F, along with the
normalized ground-truth reward values on the same trajectories. We observe that PRIMT produces
more aligned reward patterns that closely reflect task progress, while the baselines and ablations
exhibit either noisy signals or high variance, indicating that their learned reward models struggle to
accurately assign rewards at the state-action level, even if they capture trajectory-level preferences.
This demonstrates that PRIMT, particularly its hindsight augmentation and causal auxiliary loss,
enables more precise state-action-level credit assignment in reward learning. Extra quantitative results
using the R? coefficient are provided in Appendix

4.5 Additional Experimental Results

We conducted additional analyses to provide further validation insights of the proposed framework.
These include: qualitative evaluations of the trajectory synthesis module (Appendices and[G4),
visualization of policy outcomes across different methods (Appendix [G.5), comparison with the
dense-reward RL baseline (Appendix[G.7)), and preliminary experiments on a more complex dual-arm
manipulation task (Appendix [G.6).

We also performed ablation studies on the influence of the foundation model backbone (Appendix|[G.2).
The results show good potential for more accessible deployment with smaller or cheaper foundation
models: with GPT-40-mini, we achieved a 94% reduction in cost with a 16-26% drop in performance,
leading to a 13x improvement in cost—performance efficiency.

4.6 Real-world Deployment

We further demonstrated the effectiveness of PRIMT on a Kinova Jaco robot in block lifting and
stacking tasks (Fig.[5). Detailed experimental settings and results are provided in Appendix[G.9]

Block Lifting Block Stacking

Figure 5: PRIMT successfully completes real-world block lifting and stacking tasks on a Kinova Jaco robot.

5 Conclusion and Future Work

In this work, we presented PRIMT, a method that leverages foundation models for multimodal
synthetic evaluation and trajectory synthesis to reduce human effort and address query ambiguity and
credit-assignment challenges in preference-based reinforcement learning (PbRL). We demonstrated
the advantages of PRIMT across a wide range of locomotion and manipulation tasks, achieving
superior task performance, higher-quality synthetic feedback, and more accurately aligned reward
models.

A limitation of this study involves the increased cost associated with foundation-model usage due to
the multimodal components of the framework. To provide a clearer understanding of the resource
requirements, we conducted a detailed analysis of computational usage and the corresponding
cost—performance trade-offs, presented in Appendix [H.I} We observe that PRIMT strikes a good
balance between performance and cost-effectiveness, providing a practical path toward scalable
preference learning.

Looking forward, while PRIMT was evaluated in single-agent robotic domains, extending its key
components, such as multimodal evaluation and trajectory synthesis, to non-robotic and multi-
agent settings represents an exciting direction for future work. Further discussion of assumptions,
limitations, and broader impacts is provided in Appendix [H]
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The scope of this work is preference-based reinforcement learning (PbRL) for robotics.
The abstract and introduction clearly state our core contributions: (1) introducing PRIMT, a framework
for PbRL enhanced by foundation models; (2) proposing a hierarchical neuro-symbolic fusion strategy
for multimodal feedback integration; and (3) incorporating bidirectional trajectory synthesis to address
query ambiguity and credit assignment. These claims are directly supported by experimental results
across diverse robotic manipulation and locomotion tasks. Key assumptions are explicitly discussed in
both the main paper and appendix.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

» The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses limitations in Section[H]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,

asymptotic approximations only holding locally). The authors should reflect on how these

assumptions might be violated in practice and what the implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For

example, a facial recognition algorithm may perform poorly when image resolution is low or

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide

closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems

of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: This paper does not include formal theoretical results or proofs.
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Guidelines:

* The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the experimental setup, including benchmark
environments, backbone algorithms, and evaluation metrics. We disclose the architecture and training
settings for both the reward model and policy (e.g., SAC), and we include tables listing hyperparameters
for reward learning and query sampling (Appendix [F). The implementation details of each baseline
and ablation component are also explained. While access to specific APIs (e.g., GPT-40) is required,
we provide all prompts and sampling configurations to support reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

¢ Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The benchmarks we have used are all publicly available. We plan to publicly release the
full codebase via GitHub upon acceptance of the paper.

Guidelines:
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* The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/|

guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is

recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide detailed descriptions of the training and evaluation setup in both the main
paper and Appendix[F] Additional tables summarize the settings used for SAC and reward learning
across tasks. These details are sufficient to interpret and reproduce our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance
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A Limitations of Single-Modality Feedback in Robot Trajectory Evaluation

In this section, we provide a detailed analysis of how single-modality evaluation patterns can lead to incomplete
or unreliable feedback in robot trajectory judgment. We also present the rationale behind our hierarchical
neuro-symbolic fusion module design, which addresses these limitations by integrating complementary signals
from VLMs and LLMs.

A.1 Failure Cases of VLM- and LLM-Based Preference Feedback

To illustrate the potential pitfalls of relying solely on VLM or LLM evaluations, we present a series of failure
cases from the Door Open task in the MetaWorld benchmark. These cases highlight situations where either VLMs
or LLMs struggle to provide accurate preference judgments, leading to suboptimal or inconsistent feedback.
For each example, we use structured prompts and trajectory inputs as in PRIMT, with responses obtained by
querying gpt-4o as the representative VLM/LLM.

VLM Limitations and LLM Advantages Figs. [6a] and [6b] present two illustrative cases from the
MetaWorld Door Open task, highlighting the complementary strengths of LLMs and the inherent limitations of
VLMs in trajectory evaluation.

Textual Descriptions Textual Descriptions
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(a) LLM accurately infers task intent from TCP movement (b) LLM captures motion fluency and continuous
patterns, while VLM struggles to distinguish between visu- state transitions, while VLM is misled by similar
ally similar failure cases. frame appearances.

Figure 6: Examples where LLM-based evaluation outperforms VLM-based evaluation, highlighting
the advantages of temporal reasoning and task intent understanding.

In Fig.[6a] both Trajectory A and Trajectory B ultimately fail to open the door, resulting in similar final visual
states. The VLM, relying solely on frame-based image sequences, cannot differentiate the two and returns
an indecisive response. In contrast, the LLM, which processes structured state encodings (e.g., TCP position,
gripper state, object coordinates), explicitly favors Trajectory A. Its response indicates that Trajectory A exhibits
a more consistent progression toward the door handle, reflecting clearer task intent, while Trajectory B lacks
such directed movement. This distinction is critical for evaluating task success, as it captures the underlying
purpose of each motion sequence rather than merely the final outcome.

Fig.[6b] presents a different challenge, where both trajectories successfully complete the task. Despite similar
final visual outcomes, the LLM identifies qualitative differences in the motion patterns, preferring Trajectory A
for its smooth, uninterrupted approach. In contrast, Trajectory B exhibits a brief hesitation and slight backward
drift, disrupting the task’s fluidity. These subtle behavioral cues, emphasized by the green circle in Trajectory A
and the red circle in Trajectory B, are detectable only through temporal reasoning and sequential context, which
are inherently absent from frame-based VLM evaluations.

These examples underscore a fundamental limitation of VLMs: their reliance on discrete visual frames makes
them highly effective at capturing spatial relationships but poorly suited for interpreting task intent, motion
quality, or temporal consistency. Without structured state data, VLMs can be easily misled by visually similar,
yet semantically different, trajectories, leading to indecision or incorrect preferences.

In contrast, LLMs offer a powerful complement by incorporating temporal context, semantic task cues, and
structured state information into their evaluations. This allows them to assess not just where a robot ends up,
but how it arrived there, capturing fine-grained distinctions like hesitation-free execution, consistent approach
angles, and purposeful task progression. These strengths make LLMs an ideal complementary modality for
evaluating complex robotic behaviors, particularly in tasks where motion fluency and goal-directed intent are
critical but difficult to capture through static visual frames alone.
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LLM Limitations and VLM Advantages Figs.[7aand[7b| present two cases from the MetaWorld Door
Open task where VLMs outperform LLMs in preference evaluation. Fig.[7a|highlights a subtle but critical spatial
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where the gripper contacts the hinge side instead of the A successfully opens the door, while the LLM
intended handle region, while the LLM fails to detect this incorrectly infers that both trajectories are equally
misalignment and assigns equal preference. successful.

Figure 7: Examples where VLM outperforms LLM in preference evaluation, highlighting the
advantages of direct visual perception for detecting spatial errors, physical contact quality, and task
success.

distinction. In Trajectory A, the gripper correctly makes contact with the handle at its intended grasp region,
leading to a successful interaction. In contrast, Trajectory B misaligns the gripper with the hinge side of the door,
resulting in a mechanically incorrect grasp. This error is visible in the red-circled region of Trajectory B. The
VLM, grounded in direct visual perception, correctly identifies this spatial discrepancy and selects Trajectory A
as the preferred option. However, the LLM, which relies on abstract state variables such as TCP position, gripper
state, and object coordinates, fails to capture this fine-grained spatial error, instead outputting equal preference
for both trajectories. This occurs because the LLM lacks direct perceptual grounding, making it blind to critical
spatial misalignments that are immediately evident in visual frames.

Fig. [7b] presents a more pronounced failure case. Here, only Trajectory A successfully opens the door, as
indicated by the green circle, while Trajectory B fails to produce any meaningful outcome, as marked by the
red circle. Despite this clear visual difference, the LLM mistakenly infers that both trajectories are equally
successful, likely due to similar coordinate sequences that superficially resemble goal-directed behavior. This
is a classic hallucination error, where the LLM abstracts away from the actual physical outcome, ignoring
critical perceptual cues. In contrast, the VLM, which directly observes the task’s visual consequences, correctly
identifies Trajectory A as superior.

Together, these examples highlight the limitations of relying solely on language-based state representations for
preference evaluation. Without direct visual input, LLMs can miss critical spatial alignments, physical contacts,
and fine-grained task completions, leading to misleading or incorrect preferences. In contrast, VLMs are
inherently suited to capture these spatial relationships, making them indispensable for evaluating precise robotic
interactions. This complementarity underscores the need for a multimodal preference model that integrates the
perceptual grounding of VLMs with the temporal and semantic insights of LLMs, enabling more robust and
context-aware trajectory evaluation.

A.2 Quantitative Analysis of Trajectory Context Influence on Each Modality

From the qualitative examples above, it is clear that each feedback modality has its own potential limitations yet
complementary strengths. We can observe that the reliability of these labels can vary significantly depending
on the specific trajectory context, such as whether the trajectories contain visually distinguishable features or
exhibit meaningful temporal progression.

To fully leverage these complementary capabilities, it is essential to quantitatively analyze how trajectory content
impacts the labeling reliability of each feedback modality. Given our observations that VLMs tend to excel
at analyzing spatial cues from visual renderings, we hypothesize that VLM labels should be more accurate
when the visual discriminability (i.e., spatial differences) between trajectories is higher. Similarly, we expect
LLM labels to be more accurate when the temporal discriminability (i.e., time-dependent behavioral differences)
between trajectories is more pronounced.

To validate these hypotheses, we conducted a quantitative analysis to assess the impact of trajectory context on
labeling accuracy for each modality. Specifically, we examined the correlation between the degree of context
contrast, i.e., VDHigh defined in Eq.[9]for VLMs and TDHigh defined in Eq.[T0|for LLMs, and the corresponding
labeling accuracy.
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Figure 8: Impact of trajectory context on labeling accuracy of each feedback modality.

For this analysis, we sampled 200 trajectory pairs from the Button-press task in the MetaWorld benchmark
and clustered them into 20 groups separately based on their VDHigh and TDHigh values, respectively. We then
collected human expert labels as ground truth and computed the labeling accuracy of both VLMs and LLMs
under varying levels of context contrast. The results are presented in Fig.[8aand Fig. 85

As shown in Fig.[8a] VLM label accuracy generally increases with higher VDHigh, confirming that VLMs benefit
from stronger visual cues when assigning preference labels. Similarly, Fig. [8b]demonstrates that LLM label
accuracy improves as TDHigh increases, supporting our hypothesis that LLMs are more effective at capturing
temporal dependencies in trajectory comparisons.

These results validate the conflict resolution rules in our PSL-based inter-modal fusion, confirming that context-
specific predicates (VDHigh and TDHigh) can enhance preference labeling reliability by aligning each modality
with its respective strengths, in addition to considering modality-specific confidence. This structured approach
not only reduces noise but also improves the overall robustness and interpretability of the inter-modal preference
aggregation process.

B Details of Keyframe Extraction

In this section, we provide details of our hybrid method in extracting keyframes from robot trajectories. Given
a trajectory o, we propose three complementary methods for extracting keyframes. The final keyframe set,
denoted as kvis(o), is formed by taking the union of the selected frames from all three methods along with the
first and last frames of the trajectory. Below, we detail each method:

B.1 Near-Zero Velocity Detection

Near-zero velocity detection aims to identify moments where the agent’s motion is minimal, which often
corresponds to sub-goal completions (e.g., grasping, placing) or phase boundaries in locomotion tasks. This
method leverages the intuition that significant actions or transitions in a task are often preceded or followed
by periods of reduced movement or even complete stillness. In our setting, a robot trajectory is defined as a
sequence of state-action pairs:

o = {(st,ar) H, (17)

where each time step ¢ consists of a state vector s; € R% and an action vector a; € R% . The state vector St
typically encapsulates the environment and robot configuration at time ¢, such as target position, joint angles,
end-effector pose (position and orientation), and potentially other relevant sensor readings. The action vector
a: represents the commands issued to the robot’s actuators, like joint velocities or torques. The combined
observation-action vector is then given by:

ds+d
Xt:[St,at]ER'+ “. (18)
By concatenating the state and action vectors, we create a comprehensive representation of the robot’s instan-

taneous context, capturing both its current configuration and the commands being executed. The L2 velocity
between consecutive frames is defined as:
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ds+da
Ve = ||xe41 — Xe]|2 = Z (T41,i — Te,5)2 (19)

=1

where x; captures both the state and action at each time step. A timestep ¢ + 1 is selected as a keyframe if the
velocity magnitude is below a predefined threshold:

,Czero = {t +1 | v < 51.!} (20)

where d,, is the velocity threshold that controls the sensitivity to small movements. A smaller value of §,, results
in the selection of more keyframes, capturing even subtle pauses in the motion. Conversely, a larger §,, only
identifies keyframes where the robot comes to a more significant halt.

We set §,, to 0.005 for manipulation tasks in MetaWorld, 0.025 for high-dimensional manipulation tasks in
ManiSkill2, and 0.065 for locomotion tasks in DeepMind Control Suite (DMC). These values are chosen based
on task characteristics and observation-action dimensionality across environments. MetaWorld tasks typically
involve smooth, low-dimensional end-effector control, where even small pauses (e.g., before grasping) are
meaningful and should be captured. ManiSkill2 features more complex manipulation scenarios with higher-
dimensional state-action spaces. Therefore, a moderately larger threshold is needed to account for naturally
higher baseline velocities. In contrast, DMC locomotion tasks involve rhythmic, continuous movement patterns
and higher physical velocity variance, requiring a larger threshold to isolate meaningful slowdowns (e.g., stance
phase transitions or contact events).

B.2 Smoothing Residual Peaks

This method aims to identify keyframes that correspond to significant changes in the robot’s motion, such as
sharp turns, sudden accelerations or decelerations, and other high-curvature segments of the trajectory. By
comparing the original, raw trajectory with a smoothed version, we can highlight these abrupt transitions as
deviations with large residual errors. The residual error is computed as:

ds+da

et = ||xe — Xell2 = Z (@40 — Tt,0)? 21

i=1
where X; is the smoothed trajectory point, typically computed using a moving average filter:
k

- 1
Xt = mgz Xt+j (22)

Here, the moving average filter acts as a low-pass filter, effectively smoothing out high-frequency components
in the trajectory that correspond to rapid changes in motion. The smoothing window size is controlled by the
parameter k. A larger k produces a smoother baseline trajectory X;, increasing sensitivity to local spikes in the
raw trajectory x;. The value of k£ should be chosen based on the typical temporal scale of meaningful motion
transitions in the task: short for fine-grained manipulation, longer for rhythmic locomotion.

Frames with the top K largest residual errors are selected:
’Csmooth - TOP_K({et ‘ et > 66}) (23)

where K is the maximum number of keyframes to extract using this method, and J. is a residual error threshold
that filters out minor fluctuations due to noise.

We set k = 2, K = 5, and §. = 0.01 for MetaWorld, reflecting short-horizon, low-frequency transitions
typical of single-object manipulation. For ManiSkill2, which features higher-dimensional and more dynamic
manipulation behaviors, we use a slightly larger window k& = 4, K = 8, and a relaxed threshold J. = 0.02 to
tolerate high-frequency noise. For DMC locomotion tasks, we set k = 6, K = 10, and . = 0.04, as abrupt
transitions (e.g., foot contact, turning) occur at lower frequency but with higher magnitude. These settings
ensure that the residual-based method captures meaningful structure transitions across environments with diverse
temporal dynamics.

B.3 Change Point Detection (CPD)

Change Point Detection (CPD) offers a powerful approach to segment a robot’s trajectory into distinct phases
characterized by different motion dynamics. These phases often correspond to meaningful parts of the task, such
as reaching, grasping, moving, and releasing an object. By identifying the boundaries between these phases, we
can extract keyframes that represent transitions between different stages of the robot’s behavior.
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We implement the Pruned Exact Linear Time (PELT) algorithm using the ruptures libraryﬂ which minimizes
a penalized cost function to efficiently detect change points in the trajectory data:

M

min Clo. . ' ”

1< <...<Tp <T ZO ( Tm~"m+1) + Bum (24)

Here, 7o = 1 and Tar4+1 = T represent the start and end of the trajectory, and 71, . . ., Tas are the detected change

points that segment the trajectory into M + 1 homogeneous phases. The cost function C(-) quantifies intra-
segment consistency, typically using the sum of squared L2 deviations. The penalty term [ controls the trade-off
between segmentation fidelity and the number of segments: larger 5 values lead to coarser segmentations (fewer
change points), while smaller values allow for finer-grained segmentations.

We set 8 = 20 for MetaWorld, which generally contains short-horizon manipulation behaviors with 3-5
semantically distinct phases. For high-dimensional manipulation in ManiSkill2, we use § = 30, reflecting its
more complex task structures with frequent mid-task corrections and multiple contact events. For locomotion
tasks in DMC, we set 8 = 40, as rhythmic gaits tend to repeat smoothly over time, and fewer change points
are expected to capture major phase transitions (e.g., stance-to-swing). These values are chosen to reflect the
temporal structure and motion complexity of each task environment. The resulting change points 75s are used
directly as keyframes:

Kepa = {71, 72,...,7m} 25)

These change points correspond to moments where the motion dynamics of the trajectory undergo a significant
shift, making them valuable for summarizing high-level behavioral transitions during task execution.

B.4 Combining Methods for Keyframe Extraction

To achieve a more comprehensive and robust selection of keyframes, we recognize that each of the aforementioned
methods captures different aspects of salient motion. Near-zero velocity detection identifies periods of stagnation,
smoothing residual peaks highlights abrupt changes, and change point detection pinpoints transitions between
distinct motion phases. By combining the keyframes identified by these complementary approaches, we aim
to obtain a more complete representation of the robot’s task execution. The final set of visually significant
keyframes, denoted as Kyis, is obtained by taking the union of the keyframe sets generated by each individual
method (Kzero, Ksmooth, and Kcpa). Additionally, to ensure that the beginning and the end of the entire
trajectory are always included in our set of keyframes, we explicitly add the first frame (index 1) and the last
frame (index 7") to the combined set:

’Cvis = ’Czcro U ’Csmooth ) ’Ccpd U {1, T} (26)

Empirically, the parameter settings specified above yield about 10-20 keyframes per trajectory on MetaWorld,
15-20 on ManiSkill2, and on DMC, providing a balanced summary without overwhelming the downstream
multimodal evaluator.

C Prompts and Example Outputs

C.1 Synthetic Preference Generation

In this section, we provide prompt templates used to elicit the preference judgments from the VLM and LLM in
Fig.[p] We also provide the details of the {task_description}, which at run-time is filled with the natural-language
goal statement for the current environment, in Table[T]

C.2 Foresight Trajectory Generation

In this section, we provide the prompt template for foresight trajectory generation, Fig. [T0a} as well as example
inputs of the prompt with MetaWorld’s DoorOpen task, as shown in Fig.[T0b] The foundation model is instructed
first to sketch a high-level motion plan, then to translate that plan into executable Python code, and finally to
diversify the result by changing initial conditions and motion parameters. An example of the resulting executable
Python code for the Door Open task, generated using the prompt, is provided in Fig. [TT]

https://github.com/deepcharles/ruptures
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Table 1: Task description for each task used in our experiments.

Task Name Task Description

Button Press
Door Open
Sweep Into
PickSingleYCB

to press a button on a surface

to open a door with a revolving joint.

to sweep the object into the target area

to pick up a random object sampled from the YCB dataset and move it to
a random goal position

to pick up a red cube and stack it on top of a green cube and let go of the
cube without it falling

StackCube

PeglnsertionSide
with a hole in it

Hopper Stand

to pick up an orange-white peg and insert the orange end into the box

to stabilize a planar one-legged hopper initialized in a random pose,

encouraging upright posture with minimal torso height loss

Walker Walk

to control a planar bipedal walker to move forward with a target velocity.

Prompt Template for VLM Evaluation
Initial System:

You are an expert at evaluating the quality of robot trajectories based on a series of
keyframe images, each representing a critical moment in the trajectory.

Inputs:
1. Task description: {task_description}

2. Images of two trajectories, each represented by a set of keyframes:
{kvis (1), kvis(2)}

Step 1: Trajectory Analysis
For each trajectory:

1. Describe the robot behaviors captured in each keyframe
2. Identify critical events.

3. Assess whether the sequence of actions in each trajectory effectively advances toward
the task goal or indicates failure.

Organize your response clearly by trajectory.
Step 2: Preference Label Decision
Based on the previous analysis, compare the two trajectories in terms of goal achievement.

Reply with:
+ 0~ if the goal is better achieved in trajectory 1
« 1-if the goal is better achieved in trajectory 2
« -1~ if both are equal, the difference is unclear, or you are unsure (indecision)

Reply Format
Label: [0 / 1 / -1]

Step 3: Verification and Confldence Score

1. Reflect on the initial analysis and confirm if the chosen label is consistent with the
observed actions and outcomes.

2. Assign a confidence score between 0 and 1, where 1 means full confidence and O means
complete uncertainty.

Reply Format

Final Label: [0 / 1 / -1]

Confidence: [score (0-1)]

Reasoning: [brief explanation of your label and confidence]

(a) lustration of the VLM prompt.

Prompt Template for LLM Evaluation
Initlal System:

You are an expert at evaluating the quality of robot motion trajectories, given structured
data at each time step.

Inputs:
1. Task description: {task_description}

2. Two trajectories, each consisting of {n} steps, formatted as follows:
{text(1), text(2)}

Step 1: TraJectory Analysis
For each trajectory:
1. Describe the behaviors.
2. Identify critical events.
3. Evaluate how effectively each trajectory advances toward the goal or indicates failure.
Organize your response clearly by trajectory.
Step 2: Preference Label Declslon
Based on the previous analysis, compare the two trajectories in terms of goal achievement.
Reply with:
0~ if the goal is better achieved in trajectory 1
« 1~ if the goal is better achieved in trajectory 2

-1~ if both are equal, the difference is unclear, or you are unsure (indecision)

Reply Format
Label: [0 / 1 / -1]

Step 3: Verification and Confidence Score

1. Reflect on the initial analysis and confirm if the chosen label is consistent with the
observed actions and outcomes.

2. Assign a confidence score between 0 and 1, where 1 means full confidence and 0 means
complete uncertainty.

Reply Format

Final Label: [0 / 1 / -1]

Confidence: [score (0-1)]

Reasoning: [brief explanation of your label and confidence]

(b) Iustration of the LLM prompt.

Figure 9: Prompt templates used for synthetic preference generation in PRIMT.

C.3 Hindsight Trajectory Augmentation

The prompt template for counterfactual trajectory augmentation is shown in Fig.[T2] In this template, kvist1,
kvist2 denote the keyframe indices extracted using the methods described in Sectior|B] Examples of the
generated counterfactuals are provided in Fig. 20}

D PSL Inference Details

We provide additional details on the Probabilistic Soft Logic (PSL) inference procedure used in our inter-modal
preference fusion module.
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Foresight Trajectory Generation Prompt Example Inputs and Requirements on MetaWorld

Initial System: Trajectory_Format:
You are a robotics planning agent tasked with generating diverse, semantically meaningful 1. [0:2] - End-effector (TCP) position in Cartesian space,
robot trajectories for simulated manipulation or locomotion tasks. Your goal is to create high- normalized € [0, 1]
quality, task-aligned trajectories that follow physical constraints and can be used for 2. [3] - Gripper opening level: 0 = closed, 1 = open
boostrapping training. 3. [4:6] - Object position (door handle), 3D, normalized € [0,
1]
Inputs: 4. [7:10] - Object orientation (quaternion, 4D)
5. [11:13] - TCP delta action (Ax, Ay, Az)
6. [14] - Gripper torque control (normalized)

1. Task description: { task_description}

2. Trajectory Format and Constraints:

{Trajectory Format}{Trajectory Constraints}
3. Environment Setup: {Environment_Setup}

Trajectory_Constraints:

- Trajectory must contain exactly 100 steps
Step 1: High-Level Motlon Plan Decomposition L. R L

- Each transition must be smooth (no large discontinuities between
Decompose the task into 3-5 discrete high-level phases. For each phase, clearly specify: e ey
— Phase Name. - Avoid collisions with the table (assumed z > 0.05)
- Subgoal: What condition or spatial configuration defines success at this phase?
- Motion Strategy: What type of movement or action is needed?
- Constraint Handling: How to account for physical limits, contact, kinematic constraints, etc.

- Action values [11:14] (TCP deltas and gripper torque) must be
consistent with state changes in [0:3] and [3]

Reply Format Environment_Setup:

Phase Plan =
{“phase”: “subgoal”: ..., “strategy”: ...,
“constraints”: ...},

- Robot: Sawyer arm with a top-down gripper

- Workspace frame:
+ x-axis: left - right
Step 2: Code Translation for Motlon Primitives © YFCEEDE LY o X3
+ z-axis: bottom - top
- Translate the high-level action plan into executable Python code.
- Implement each phase using structured, reusable motion primitives that can adapt to
different task contexts.
- Key considerations:
«  Control Logic: Implement continuous control logic for smooth transitions.
Parameter Flexibility: Allow inputs of different initial conditions and motion strategy
parameters,

Gripper logic:
Open (1.0) during approach
Close (0.0) during interaction
Open again during release

- Initial values provided:

obj_pos_start: Initial object position (3D): [0.1. 0.95, 0.15]

+ obj_ori_start: Initial object orientation (4D): [0, 0, 0, 0]
target_pos: Goal handle position (3D): [-0.2, 0.2, 0.15]

Reply Format
{code_return_format}

Code_Return_Format:

Step 3: Trajectory Diversification and Sampling def generate trajectory(init state, strategy config, env_params):

Generate {n} diverse trajectory samples by varying both: Generate a full trajectory by sequentially composing

. " . functional motion phases.
- Initial Conditions: Sample from a distribution of start states (e.g., different object locations won

or robot poses)
- Strategy Parameters: Adjust trajectory-level control parameters (e.g., approach angle, lift

trajecto: =
height, motion speed) 3 ry = []

Phase 1 ===
traj_phasel = phase_approach(...)
trajectory += traj_phasel

Run the code multiple times to populate the trajectory buffer with diverse samples.

Reply Format
[{
"traj_id": "fore 001", # === Phase N ===

"init_state": {...}, traj_phase_n = phase_release(...)

strategy_config": {...}, trajectory += traj_phase n
"trajectory”: [...]
Hoceall return trajectory
(a) Foresight trajectory generation prompt. (b) Example inputs on the Metaworld environment.

Figure 10: Prompt templates for foresight trajectory generation in PRIMT.

Variables. Let X denote the set of observed atoms, which include modality-specific predictions and trajectory-
level context features, such as VLMLabel(Y'), LLMLabel(Y'), ConfHigh(M), VDHigh, and TDHigh. Let Y
denote the set of target atoms, corresponding to the final preference decision to be inferred: FinalLabel(Y) for
T e{-1,0,1}.

HL-MRF Formulation. PSL defines a hinge-loss Markov random field (HL-MRF) over the target atoms
Y, representing a log-linear probabilistic model:

1 m
P(Y | X) = exp = wi iV, X) |, 27
=1

where w; is the weight assigned to the i-th rule, and ¢; (Y, X) = [max(0, £;(Y, X))]” is the relaxed hinge-loss
potential derived from the rule’s linear distance to satisfaction ¢;. The normalization constant Z integrates over
the feasible soft assignment space:

Z:/ exp —Zwi~q51;(Y,X) dy. (28)
Ye[o,1]™ i=1

Inference is performed via convex optimization over continuous variables Y, subject to any additional linear
constraints.

Fukasiewicz Relaxation. Given two grounded atoms A1, A2 € [0, 1], PSL uses the following relaxation
rules for conjunction, disjunction, and negation:
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Example Python Code for Door-Open Foresight Trajectory Generation

def generate_trajectory(init_state, strategy_config, #
env_params):

Phase 2: Grasp ===

pos=init_state[ )

Generate a full 100-step trajectory for a door-open task

in 15D format. -0,
grip_end=0.0,
The trajectory is composed of 4 motion phases. torque=strategy_config['grip f
1. Approach: Move above the door handle. obj_ori=ini

2. Grasp: Lower gripper and close.
3. Transport: Pull and slightly lift the handle
4. Release: Stop pulling and open gripper

trajectory += traj_phase2

# Phase 3: Transport
Args
init_state (dict): Initial values, including
'tep': (3,) TCP position
grip': float, initial gripper open level (0 or 1)
‘obj_pos" (3,) object (handle) position
‘obj_ori": (4,) object orientation (quaternion)
strategy_config (dict): Motion parameters

strategy_config[ d
strategy_config[
strategy_config[

)

traj_phase:
start=i

state['ob

‘approach_z" height to approach from above goal=pull_target,
"pull_dx" pull distance along x-axis steps=40,
ull_dy" pull distance along y-axis grip=0.0,
‘lift_z"; small vertical lift torque=strategy_configl'qrip_f

‘grip_force’: torque level when gripping
env_params (dict): Optional task-related constants
(unused here)

obj_ori=init_state[

trajectory += traj_phase3

Returns:
trajectory (np.ndarray): Array of shape (100, 15)

traj_phase2 = phase_grasp(

pull_target = init_state['0b_|

# == Phase 4: Release ==
traj_phase4 = phase_release(

pos'] + np.array([

= phase_transport(

def phase_grasp(pos, steps, grip_start, grip_end, torque,
obj_ori):
Stay at position and close gripper smoothly
traj =[]
for i in range(steps):
alpha =i/ (steps - 1)
1 grip = (1 - alpha) * grip_start + alpha * grip_end
tcp = pos.copy()
traj.append (build_step(tcp, grip, pos, obj_ori,
delta=np.zeros(3), torque=torque))
return traj

def phase_transport(start, goal, steps, grip, torque, obj_ori):
"™ Pull the door handle while holding it. ™
return linear_segment(start, goal, steps, grip, torque, goal,
obj_ori)

def phase_release(pos, steps, grip_start, grip_end, torque,
obj_ori):

"™ Stay in place and open the gripper. ™"

return phase_grasp(pos, steps, grip_start, grip_end, torque,
obj_ori)

def linear_segment(start, goal, steps, grip, torque, obj_pos,
obj_ori):

Linearly interpolate TCP between start and goal
calculate delta at each step, and fill full 15D vector.

pos=pull_target, traj =[]
trajectory = [| steps=25, for i in range(steps):
grip_start=0.0, alpha =i / (steps - 1)
—— Phase 1: Approach === grip_end: tep = (1 - alpha) * start + alpha * goal

_phasel = phase_approach( torque=0.0, delta = tcp - traj[-1][0:3] if traj else np.zeros(3)
start=init_state['t obj_ori=init_state[ obj_ori] traj.append (build_step(tcp, grip, obj_pos, obj_ori, delta,
goal=np.array([*init_state[ pos'][:2], ) torque))

strategy_config[ 2, trajectory += traj_phase4 return traj
steps=25,

return np.stack(trajectory, axis=0) #

100, 15) def build_step(tcp, grip, obj_pos, obj_ori, delta, torque):

trajectory += traj_phasel

def phase_approach(start, goal, steps, grip, torque, obj_pos,
obj_ori):
Move from start to goal with open gripper
return linear_segment(start, goal, steps, grip, torque,

Create one 15D timestep with full trajectory format
[0:3] TCP pos, [3] grip, [4:7] obj pos, [7:11] obj ori
[11:14] delta TCP, [14] torque

obj_pos, obj_ori)

step = np.zeros(15)
step[0:3] = tcp

step[3] rip
step[4:7] = obj_pos
step[7:11] bj_ori

step[11:14] = delta
step[14] = torque
return step

Figure 11: An example of the resulting executable Python code for the Door Open task.

Hindsight Trajectory Augmentation Prompt

System:

You are a reasoning agent specialized in analyzing robot trajectories and generating
counterfactual variants based on structural causal reasoning.

Inputs:

1. Task description: {task_description}

2. Trajectory Inputs: {texg(l) . text(2)}

3. Preferred Trajectory: {trj_preferred}

4. Keyframe Indices: {kvist (1), kvist(2)}

5. Preference Reasoning: {LLM_reasoning, VLM reasoning}

Step 1: Abduction - Identify Causal Steps

- Analyze the preferred trajectory and determine which time steps are causally re for

Hindsight Trajectory Augmentation Prompt

Step 2: Action - Generate Counterfactual Variant

Given:
- Preferred Trajectory
- Causal_Steps and Causal_Reasoning

Your Tasks:

- Select one key step from the identified causal steps.

- Generate a counterfactual trajectory by minimally modifying one state-action feature at that
step to reverse the trajectory's preference.

- Light smoothing (2-3 steps before and after) is allowed to maintain continuity.

- All other steps in the trajectory must remain identical to the original.

Reply Format

its being preferred.

- Focus on meaningful, task-relevant changes in state-action behavior that likely influenced
the preference decision.

- You may use the provided keyframe indices as candidates, but you are not limited to them.

Reply Format
Causal_Steps:
trajectory]
Causal_Reasoning: [brief explanation of why these steps are
critical for the preference judgment]

[list of identified step indices in the preferred

Edited Step: [index of the modified step]

Edit_Description: [brief natural language description of the
change]

Counterfactual_Trajectory: [text-format trajectory description
consistent with the original input format]

Figure 12: Prompt template used for counterfactual trajectory augmentation in PRIMT

A1RA,
A1V A,
=A,

max{O, Al =+ A2 — 1}
min{A1 + Az, 1}
1-A4A

These allow soft rules to be represented as continuous linear functions over truth values, enabling efficient

convex inference.

Template Rule Grounding. PSL rules are first written as templates over logical variables (e.g., labels T or
modalities M), and then instantiated into multiple ground rules. For example, the template:

VY, M : IsAgree(Y) A ConfHigh(M) — FinalLabel(Y)
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is expanded into six rules by enumerating all T € {—1,0,1} and M € {VLM, LLM}, such as:

IsAgree(l) A ConfHigh(LLM) — FinalLabel(1)

Example Rule Expansion. Consider the rule:
VLMLabel(1) A ConfHigh(VLM) A VDHigh — FinalLabel(1)
Its logical equivalent is:
—VLMLabel(1) V ~ConfHigh(VLM) V —VDHigh V FinalLabel(1)
Using Lukasiewicz semantics, the corresponding relaxed satisfaction distance is:
{ = VLMLabel(1) + ConfHigh(VLM) + VDHigh — FinalLabel(1l) — 3
and the resulting hinge-loss potential is:

¢ = [max(0, ¢)]” = [max(0, VLMLabel(1) + ConfHigh(VLM) + VDHigh — FinalLabel(1) — 3)]”

E Details on Task Environments

In this section, we provide details on the tasks used in our experiments.

E.1 MetaWorld

Button Press The Button Press task requires the robot to manipulate its end-effector to press a specific
button located on a surface. The goal is to make contact with and depress the button. The reward is typically
sparse, given only when the button is successfully pressed. This task tests the robot’s ability to achieve precise
movements and interact with small objects in the environment, as visualized in Fig. [[3a]

4 A 4

(a) Button Press Task (b) Door Open Task (c) Sweep Into Task

Figure 13: Visualizations of MetaWorld Tasks

Door Open The Door Open task involves the robot grasping the handle of a hinged door and opening it to
a desired angle. The robot must first reach and grasp the handle, then apply the appropriate force and motion
to swing the door open. This task assesses the robot’s ability to perform sequential manipulation actions and
interact with articulated objects, as shown in Fig.[13b]

Sweep Into  The Sweep Into task challenges the robot to use its end-effector (or an object held by it) to sweep
a target object into a designated goal region. This requires the robot to make contact with the object and apply a
sweeping motion to push it into the target. This task evaluates the robot’s ability to perform planar manipulation
and reason about pushing dynamics, illustrated in Fig.[13c]

E.2 ManiSKkill

PickSingleYCB The PickSingle YCB task involves the robot picking up a single object from the YCB object
set. The robot must perceive the object, plan a grasp, execute the grasp, and lift the object to a desired height or
location. This is a fundamental object manipulation task that tests grasping and lifting skills, as visualized in

Fig. [T4a]
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(a) PickSingle YCB Task (b) StackCube Task (c) PeglnsertionSide Task

AN SN

Figure 14: Visualizations of ManiSkill Tasks

StackCube The StackCube task requires the robot to pick up one or more cubes and stack them on top of
each other in a stable configuration. This task builds upon basic picking and placing skills and introduces the
challenge of achieving a stable multi-object arrangement, as shown in Fig.

PegInsertionSide The PeglnsertionSide task involves the robot inserting a peg into a hole on the side of a
surface. This task requires precise alignment and control of the robot’s end-effector to successfully insert the peg
without collision. It tests fine manipulation and spatial reasoning, illustrated in Fig. 14

E.3 DeepMind Control Suite

Hopper Stand The Hopper Stand task from the DeepMind Control (DMC) suite involves a single-legged
hopping robot. The goal is to control the robot to stand upright and maintain its balance without falling. This task
assesses the agent’s ability to learn stable control policies for a dynamically challenging system, as visualized in

Fig. [15a]

(a) Hopper Stand Task (b) Walker Walk Task

Figure 15: Visualizations of DeepMind Control Suite Tasks

Walker Walk The Walker Walk task from the DeepMind Control (DMC) suite features a bipedal walking
robot. The objective is to control the robot to walk forward with a consistent velocity without falling. This
task evaluates the agent’s ability to learn complex locomotion gaits and maintain stability in a more articulated
system, as shown in Fig. [T5b}

F Additional Implementation Details

In this section, we provide further implementation details of our experiments.

F.1 Baselines

We implemented the baselines RL-VLM-F [14]], RL-SaLLM-F [16], and PrefCLM using the source code
released by the authors. To eliminate non-model differences, we replaced the original prompts in RL-VLM-F
and RL-SaLLLM-F with the same three-step chain-of-thought prompt used in PRIMT. This three-step prompt can
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be considered an enhanced version of the two-step reasoning used in their original papers, with an additional
self-verification step. The trajectory inputs are also the same as in PRIMT: kvis(o) for RL-VLM-F and text(o)
for RL-SaLLM-F.

The only exception is PrefCLM. This method assumes access to the environment code, which it uses to generate
diverse evaluation functions by prompting multiple LLMs, and then fuses the resulting preference scores using
Dempster—Shafer theory. Due to its reliance on environment-specific code, we retain its original setup. For
fairness, we evaluate PrefCLM under its zero-shot variant, which does not involve few-shot expert selection of
the generated functions and human-in-the-loop correction. The crowd size is set to 10, following the original
configuration in the paper.

We implemented the PrefMul baseline ourselves by feeding the multimodal trajectory representations, i.e.,
text(o) and kvis(o), into a multimodal LLM (e.g., gpt-40), using the same CoT prompt as PRIMT to elicit
the preference label.

The PrefGT baseline follows the scripted teacher approach introduced in [8]]. It serves as an upper-bound oracle
that has complete access to the benchmark’s ground-truth reward function. Although such access is infeasible
in real-world robotic systems, it provides a useful reference to assess the best possible performance that any
preference-based learning method could achieve.

For any pair of trajectories o and ', the oracle computes their cumulative reward returns:

R(o) = Z r(st,a)

where r(s¢, at) is the environment’s ground-truth reward at time step ¢. The oracle then assigns the preference
label as:

1 if R(c?) > R(cP)
T=140 ifR(c?) < R(c?)
-1 if R(c?) = R(c®)

NV

F.2 Reward Learning

We adopt PEBBLE [[7] as the PbRL backbone for all methods. PEBBLE first performs unsupervised pre-training
to maximize state entropy and initialize the policy, followed by off-policy reinforcement learning using Soft
Actor-Critic (SAC) for policy optimization. During training, all reward values in the replay buffer are relabeled
whenever a new reward model is learned.

For the reward model, we implement the image-based reward network as described in their original paper for
RL-VLM-F. For all other baselines using the standard PEBBLE [7] reward model, we adopt a 3-layer ensemble
architecture following their design.

For selecting informative queries, we adopt an uncertainty-based query selection strategy following [8]]. Specifi-
cally, we measure the uncertainty of preference predictions either by computing the variance across an ensemble
of preference predictors. We then select the top-Nquery trajectory segment pairs with the highest uncertainty as
query candidates to elicit preference labels.

For all experiments conducted in this work, the hyperparameter settings used for reward learning are summarized
in Table

Table 2: Hyperparameters used for reward learning.

Hyperparameter Value
Trajectory segment length 100
Feedback frequency 5000
Maximum feedback samples 20000
Number of foresight trajectories 200

Max counterfactuals per trajectory 5

F.3 Policy Learning

For all methods evaluated in this work, we follow PEBBLE [7] and adopt Soft Actor-Critic (SAC) as the
off-policy reinforcement learning algorithm. To ensure fair comparison, all methods share the same actor-critic
architecture and hyperparameter settings during policy learning.
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Throughout training, we use the same network configurations and learning schedules as those in the original
PEBBLE implementation. A summary of these hyperparameters is provided in Table [3]

All experiments were conducted on a workstation equipped with five NVIDIA RTX 4090 GPUs.

Table 3: Hyperparameters used for SAC.

Hyperparameter Value \ Hyperparameter Value
Initial temperature 0.1 Batch Size 1024
Learning rate 0.0003 Optimizer Adam
Critic target update freq 2 Critic EMA 7 0.005
(B1, B2) (0.9, 0.999) | Discount 0.99

Hidden units per each layer 1024

G Additional Experimental Results

In this section, we provide additional experimental results to further support our main findings. These include:

* More visualizations of label distributions and learned reward outputs across tasks.

* An ablation study on the impact of foundation model (FM) backbone selection.

* Policy visualizations comparing PRIMT and baseline behaviors.

* Qualitative analysis of both the foresight and hindsight trajectory generation modules.

¢ Real-world deployment on a Kinova Jaco robot.

G.1 More Visualizations of Label Distributions and Learned Reward Outputs

We present additional visualizations of label distributions and learned reward outputs on other tasks in Figs.[T6|
and[T7] in addition to those shown in Fig. ]

We observe that PRIMT consistently produces higher-quality synthetic feedback with fewer indecisive labels.
Furthermore, the reward functions learned by PRIMT exhibit more precise state-action-level credit assignment,
resulting in reward patterns that better align with ground-truth task progress.

Correct Labeling Incorrect Labeling No Preference

Button Press PeglnsertionSide Hopper Stand
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Figure 16: Extra visualizations of the distribution of preference labels, showing the proportion of
correct, incorrect, and indecisive labels across different methods.
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Figure 17: Extra visualizations of the reward alignment, comparing the learned reward outputs of
PRIMT, ablations, and baselines against ground-truth reward.

G.2 Ablation Study on FM Backbone Selection

We further conduct an ablation study to investigate the influence of the FM backbone on two representative tasks:
Door Open from the MetaWorld benchmark and PeglnsertionSide from the ManiSkill benchmark. We report the
performance of PRIMT and the best-performing baseline on each task using gpt-4o, and compare it to the same
setup using gpt-4o-mini, a weaker model variant.

As shown in Fig.[T8] both methods experience a performance drop when using gpt-4o-mini, which is expected
due to the reduced reasoning and perception capabilities of the smaller model. However, PRIMT demonstrates
greater robustness, maintaining performance more effectively compared to the best-performing baseline. This
again highlights the benefit of our hierarchical fusion and trajectory synthesis design in improving generalizability
under lower-capacity foundation models.
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Figure 18: Ablation study on FM backbone selection.

G.3 Qualitative Analysis of the Foresight Trajectory Generation Module

To better understand the behaviors produced by our foresight trajectory generation module, we visualize
several examples of LLM-generated trajectories and compare them to early-stage random explorations. The

visualizations are shown in Fig.[T9]



(a) LLM-generated trajectories that successfully complete the task, showing diversity in robot starting positions
(e.g., the first row vs. the other two), and in strategies such as varying gripper height to press the button (second
and third rows).

(b) LLM-generated trajectories that are not task-successful but still semantically meaningful and task-aligned.
Although these examples fail to press the button, they exhibit structured behaviors such as approaching the
button and making plausible press attempts.

(c) Early-stage random exploration trajectories, which are typically noisy and unstructured. Compared to these,
even non-successful LLM-generated trajectories can serve as preference anchors due to their goal-oriented
structure.

Figure 19: Examples of LLM-generated bootstrap trajectories from foresight generation, compared
with random trajectories from early-stage policy rollout.

We observe that the LLM-generated trajectories exhibit two typical patterns. In some cases, as shown in Fig.[T9a]
they successfully complete the task while showing meaningful diversity in execution, such as varying the robot’s
starting position or adjusting the gripper height when pressing the button. In other cases, as shown in Fig. [T9b}
the generated trajectories fail to complete the task but still demonstrate semantically aligned and structured
behaviors, including approaching the button and attempting to press it in a plausible manner.
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In contrast, as shown in Fig. early-stage random exploration trajectories are generally unstructured and
uniformly poor, lacking coherence or goal-directed motion. Notably, even the unsuccessful but structured
LLM-generated samples serve as useful preference anchors when paired with these random trajectories. When
used in combination with uncertainty-based query selection, such pairings are more likely to be selected for
labeling due to their high predictive disagreement across the preference ensemble. This leads to more informative
preference queries in the early stages of reward model training.

G.4 Qualitative Analysis of the Hindsight Trajectory Augmentation Module

To further illustrate how the hindsight trajectory augmentation module operates, we visualize two counterfactual
variants of a preferred trajectory, as shown in Fig. These examples demonstrate how the LLM generates
counterfactual samples by performing minimal interventions at key causal steps.

In Fig.[20a] the LLM introduces a delay by holding the object longer before releasing it, simulating a temporally
adjusted strategy while preserving the rest of the trajectory. In Fig. 20b] the LLM adds a brief hesitation
before grasping the object, representing a minimal behavioral perturbation that weakens the preference without
altering the trajectory’s overall structure. By applying such targeted, minimal edits to causally critical steps, the
preference difference becomes more sharply attributed to specific actions or states, effectively isolating the cause
of preference reversal. This sharpens the causal signal and provides more informative supervision for the reward
model, thereby improving temporal credit assignment and helping the model learn which precise behaviors lead
to better or worse preferences.

Preferred Trajectory
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Hold the cube for a longer period of time before releasing it to the target area

(a) LLM generates a counterfactual trajectory by adding a delay: holding the cube for a longer period of time
before releasing it to the target area, while other steps remain the same as in the preferred trajectory.
Preferred Trajectory

Add a short hesitation before grasping the cube

(b) LLM generates a counterfactual trajectory by inserting a brief hesitation before grasping the cube, while
keeping the other steps identical to those in the preferred trajectory.

Figure 20: Examples of LLM-generated counterfactual trajectories based on minimal intervention at
causally critical steps.
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G.5 Policy Visualizations of Different Methods

To gain more insights into how different methods shape policy behaviors, we visualize the robot behaviors
learned by PRIMT and the best-performing baseline on several representative tasks. The visualizations are
shown in Fig. 2T]and Fig.[22] We observe that PRIMT leads to more efficient and coherent manipulation and
locomotion behaviors, demonstrating better task completion strategies and smoother trajectories compared to the
baseline.

RL-SaLLM-F

PRIMT

(a) Policy Visualizations between PRIMT and RL-SalLLM-F on the Door Open task.
PrefCLM

PRIMT

(b) Policy Visualizations between PRIMT and PrefCLM on the Button Press task.
PrefCLM

(c) Policy Visualizations between PRIMT and PrefCLM on the Sweep Into task.

Figure 21: Examples of policy visualization between different methods in MetaWorld.

G.6 Preliminary Experiments on a Bimanual Manipulation Task

We further conducted preliminary experiments on a more difficult bimanual manipulation task, TwoArmPegIn-
Hole from RoboSuite. As shown in Table[d] PRIMT still significantly outperforms the baseline RL-VLM-F and
approaches the PbRL oracle PrefGT. These results suggest that PRIMT potentially generalizes well to more
complex, high-dimensional settings.

Table 4: Preliminary results on the TwoArmPegInHole task: success rates (%) during training.

Method Max SR (%) Mean SR (%) Final SR (%)
PrefGT 78.40 67.17 78.03
RL-VLM-F 32.66 25.48 32.66
PRIMT 65.06 53.26 64.15
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RL-SaLLM-F

PRIMT

(a) Policy Visualizations between PRIMT and RL-SaLLM-F on the Hopper Stand task.
RL-SalLLM-F

(b) Policy Visualizations between PRIMT and RL-SaLLM-F on the Walker Walk task.

Figure 22: Examples of policy visualization between different methods in DeepMind Control.

G.7 Comparison with Dense-Reward RL

To further evaluate the effectiveness of our method, we introduce a new baseline GT, an RL policy trained using
ground-truth dense rewards provided by the benchmark environments and SAC. This baseline enables a direct
comparison between PRIMT, preference-based learning, and conventional dense-reward RL. Learning curves
are reported in Figure 23] which summarizes the final success rates and episode returns of GT, PrefGT, the
best-performing baseline, and PRIMT across all tasks.
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Figure 23: Learning curves including the ground-truth dense-reward RL baseline.

The results indicate that GT (dense-reward RL) achieves the highest performance across all tasks, as expected
due to its access to dense, step-level supervision. Nonetheless, PRIMT attains between 1.9% and 17.3% of the
performance gap relative to GT, demonstrating that PRIMT effectively approximates the behavior of dense-
reward RL without requiring explicit reward shaping. This highlights PRIMT’s scalability and efficiency in
scenarios where reward engineering or extensive human feedback is infeasible.
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G.8 Qualitative Reward Alignment Analysis

To qualitatively examine the relationship between learned rewards and the ground-truth task rewards shown in
Figure 4} we performed a quantitative analysis using the R> coefficient to measure reward alignment across
different methods. The baseline RL-VLM-F was selected as the reference for comparison. The computed R?
values for each task and method are summarized in Table[3]

Table 5: R? Coefficient Analysis (Reward Alignment with Ground Truth).

Task PRIMT w/o CauAux w/o HindAug RL-VLM-F
PeglInsertionSide 0.56 0.28 0.23 0.37
PickSingleYCB 0.84 0.01 0.34 -0.05
StackCube 0.78 -1.31 -2.28 -1.50
ButtonPress 0.87 0.68 0.53 -0.61
DoorOpen 0.64 -1.19 0.15 -4.72
Sweeplnto 0.88 0.83 0.73 -0.27
WalkerWalk 0.33 0.19 0.02 -2.29

The results show that PRIMT achieves consistently higher R? coefficients compared to other variants and the
baseline RL-VLM-F, indicating stronger alignment between its learned reward signals and ground-truth task
rewards. Both the hindsight augmentation and causal auxiliary loss components contribute positively to this
improvement, suggesting their importance in enhancing credit assignment quality during reward learning.

G.9 Real-world Experiments

We further evaluate our method in the real world on two tasks from the Robosuite benchmark [64]]: Block Lifting
and Block Stacking. In the Block Lifting task, the goal is to control a robotic arm to lift a cube to a certain height.
In the Block Stacking task, the objective is to place one cube on top of another. We adopt PrefCLM [13] as a
real-world baseline.

Policies are first trained in simulation using Robosuite [64]], and then deployed on a physical Kinova Jaco2 robotic
arm. We leverage RoboSuite’s comprehensive sim2real capabilities, which include dynamics randomization and
sensor modeling with realistic sampling rates, delays, and noise corruption.

During training, we closely matched the robot model, camera configuration, and workspace setup with the real
hardware. The control frequency and action space were also kept consistent. To ensure safety during deployment,
we imposed a soft constraint: if the turning angle or acceleration exceeded a threshold, the corresponding action
was discarded. Performance results are shown in Figure[24] We evaluated each model over 10 randomized trials
(e.g., varying initial block positions). PRIMT achieved 7/10 successful lifts and 6/10 successful stacks, whereas
the PrefCLM baseline achieved 4/10 and 2/10 successes, respectively. More videos of real-world experiments
are on our project website.

Block Lifting Block Stacking

PRIMT

PrefCLM

Figure 24: Demos of real-world manipulation experiments on the Block Lifting and Block Stacking
tasks.
H Discussion on Assumptions, Limitations, and Broader Impact

H.1 Assumptions and Limitations

In this work, we make the following assumptions, each grounded in prior work and empirical observations: 1)
We assume that foundation models (FMs), including LLMs and VLMs, are pretrained on large-scale and diverse

39



corpora, enabling generalization across a wide range of environments and tasks; 2) We assume that VLMs are
capable of analyzing sequences of visual inputs to extract spatial and semantic cues, while LLMs can interpret
temporal structures, reason over structured inputs, and generate coherent task-related feedback; 3) We assume
that LL.Ms, when guided by structured prompts and domain-aligned vocabulary, are capable of generating or
editing robot trajectories in a coherent and task-relevant manner. This assumption builds upon recent work
demonstrating the ability of LLMs to plan actions [41]], generate code-based controllers [38]], and perform
trajectory synthesis via natural language [36]]; and 4) We assume that task progress can be inferred at least
partially through either visual sequences (e.g., keyframe differences, spatial transitions) or textual descriptions
(e.g., arrays of actions or states).

Our work is fundamentally built upon FMs, and therefore, like other FM-based methods, it inherits certain
dependencies on the capabilities and limitations of these models. While this reliance is inherent to the design, we
have taken steps to mitigate it: for example, leveraging multimodal feedback to enhance the quality of preference
signals and adopting a structured code-generation paradigm to improve the quality of generated trajectories. As
shown in our ablation study on LLM backbone selection, PRIMT maintains reasonable performance even when
using a weaker model (gpt-4o0-mini), indicating robustness to FM capacity.

Another limitation lies in the cost associated with FM usage. Specifically, our multimodal feedback generation,
fusion module, and bidirectional trajectory synthesis involve multiple FM calls. To provide a clearer picture of
the resource requirements, we present a detailed resource usage comparison in Table[f]and the corresponding
cost-performance trade-offs in Table

We observe that compared to the RL-VLM-F and Se-LLM-F baselines, cost and training time increased
moderately (by 38-47% and 30-69%, respectively). While this increase is notable, performance gains were
substantial (+19-117%), resulting in efficiency improvements of 2.0 and 1.4 X, respectively. This justifies the
additional FM usage in PRIMT, given the performance benefits are notable. More importantly, compared to
the performance achieved by collecting human feedback (represented by PrfSlt) where expert-sourced teachers
provide ground truth preferences, PRIMT achieves comparable performance (within 1-3%) while reducing
estimated human annotation costs by over 92%. (based on 0.05-0.1 per preference label for 20, 000 queries
on platforms such as Prolific and MTurk). This highlights PRIMT’s scalability and practicality as a paramount
step to expensive human-in-the-loop methods. Therefore, we believe PRIMT strikes a good balance between
performance and cost-effectiveness, providing a practical path toward scalable preference learning.

Table 6: Resource usage comparison across different methods and environments

Average Usage Cost ($) Average Training Time (h)

Method MetaWorld / ManiSkill/ DMC ~ MetaWorld / ManiSkill / DMC
RL-VLM-F 84.14 /57.42 /1 84.27 43/51/45
Sa-LLM-F 83.22/55.31/89.69 52/56/52
PRIMT 120.42 /79.73 / 124.01 6.8/73/7.6
Human 1,000-2,000 N/A

- FM cost estimated based on GPT-4o API pricing at the time of experiments
- Human cost estimated from 20,000 preference queries for a task at $0.05-$0.10 per label on platforms like
Prolific and MTurk

Table 7: Cost-performance trade-off comparison of PRIMT against baseline methods

Baseline Cost Time Performance Efficiency
MetaWorld / ManiSkill / DMC

vs RL-VLM-F +43%/+39%/+47%  +58%/+43%/+69%  +95%/+117%/+68% 2.0x

vs Sa-LLM-F +45%/+44%/+38%  +31%/+30%/+46%  +32%/+109%/+19% 1.4x

vs Human (PrefGT) —92%/—95%/—92% ——— —1%/—%/—% 47 %

- [T] Efficiency = Average performance gain / Average resource increase
- Performance is measured using the final return from the learning curves presented in Figure 2
- Values shown are relative changes across MetaWorld / ManiSkill / DMC environments, respectively

H.2 Impact Statement

This work explores the integration of foundation models into preference-based reinforcement learning (PbRL),
which aims to improve learning efficiency and robustness through multimodal feedback and trajectory synthesis.
By leveraging VLMs and LLMs, our approach reduces the need for extensive human supervision, potentially
broadening access to PbRL techniques in domains with limited annotation resources.
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However, the use of FMs raises concerns around data privacy, transparency, and decision-making fairness. As
with other FM-based methods, our system may inherit unintended biases from pretrained models, which could
impact downstream behavior. We encourage future work to explore bias mitigation, model auditing, and safe
deployment strategies, especially in high-stakes or safety-critical applications.

Overall, our work offers a promising step toward scalable and generalizable robot learning systems. Moreover,
the underlying principles, multimodal feedback fusion, and trajectory-level reasoning, can extend beyond
robotics to broader sequential decision-making scenarios in fields such as education, healthcare, and interactive
agents.
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