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Abstract

Large Language Models (LLMs) have demonstrated strong generative capabilities
but remain prone to inconsistencies and hallucinations. We introduce Peer Elicita-
tion Games (PEG), a training-free, game-theoretic framework for aligning LLMs
through a peer elicitation mechanism involving a generator and multiple discrim-
inators instantiated from distinct base models. Discriminators interact in a peer
evaluation setting, where utilities are computed using a determinant-based mutual
information score that provably incentivizes truthful reporting without requiring
ground-truth labels. We establish theoretical guarantees showing that each agent,
via online learning, achieves sublinear regret in the sense their cumulative perfor-
mance approaches that of the best fixed truthful strategy in hindsight. Moreover,
we prove last-iterate convergence to a truthful Nash equilibrium, ensuring that the
actual policies used by agents converge to stable and truthful behavior over time.
Empirical evaluations across multiple benchmarks demonstrate significant improve-
ments in factual accuracy. These results position PEG as a practical approach for
eliciting truthful behavior from LLMs without supervision or fine-tuning.

1 Introduction

LLMs have achieved remarkable progress in natural language generation, reasoning, and few-shot
learning [62, 1, 37, 32]. Despite these advances, they remain fundamentally limited by hallucina-
tion—the generation of outputs that are inconsistent with previous responses or factually incorrect
[40, 3, 26, 25]. A common failure mode is inconsistency: LLMs may produce different answers
to semantically equivalent prompts due to stochastic decoding or sensitivity to minor variations in
phrasing [61, 40, 19, 12].Another major challenge is lack of truthfulness, where outputs are not
semantically accurate or aligned with verifiable facts, even when the relevant knowledge is implicitly
encoded in the model [3, 17]. These limitations are particularly concerning in high-stakes domains
such as scientific discovery, education, and decision-making, where outputs must be both consistent
and truthful [59, 25]. This motivates a central question: How can we reliably elicit consistent and
truthful behavior from LLMs?

To address this question, a growing line of work has explored post-training alignment techniques,
such as supervised fine-tuning and reinforcement learning with human feedback [4, 52, 54]. While
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these methods can be effective, they are typically computationally intensive, require extensive human
annotation, and lack theoretical guarantees of truthful behavior [31, 47, 52]. Their dependence on
model internals also limits their scalability and transferability across different LLMs [9, 61].

An alternative line of research draws on game-theoretic frameworks that aim to improve LLM
reliability through structured multi-agent interactions [13, 27]. These approaches offer the advantage
of training-free alignment using only black-box access to LLMs. For example, the consensus game
aligns a generator and a discriminator by rewarding agreement between their outputs [27]. However,
because the objective is based on mutual agreement, it can lead to uninformative or collusive equilibria,
where agents reinforce each other’s responses even when those responses are factually incorrect.

We propose Peer Elicitation Games (PEG), a training-free, game-theoretic framework for aligning
LLMs through structured peer evaluation. In PEG, a generator produces candidate responses to
prompts, and multiple independently instantiated LLMs act as discriminators. Each discriminator
assesses the generator’s output and is, in turn, evaluated by the other discriminators—who serve as
peer referees. This mutual evaluation mechanism assigns utilities based on the level of agreement
among discriminators, encouraging truthful reporting without relying on ground-truth labels. This
incentive structure ensures that truthful behavior by each discriminator constitutes a Nash equilibrium,
while discouraging collusion or uninformative consensus. To implement the framework, we apply
the online mirror descent algorithm to iteratively update each discriminator’s policy, enabling the
system to converge toward equilibrium through repeated, utility-driven interaction. The majority vote
among discriminators is then returned to the generator, serving as a feedback signal for improving
future generations. The design of PEG—introducing multiple LLM discriminators and rewarding
them through peer evaluation—is inspired by renowned concepts in biology, including cognitive
synergy [38, 55] and collective intelligence [64, 7], where diverse agents, each holding partial or
noisy information, can collectively arrive at judgments that surpass what any individual could achieve
alone. PEG enables language models to self-organize toward truthful and stable outputs using only
local incentives. This collective dynamic offers a scalable and supervision-free approach to building
more trustworthy LLM systems.

To summarize, the main contribution of our work is as follows:

• We propose PEG, a training-free framework for eliciting truthful behavior from LLMs,
without relying on ground-truth labels or model fine-tuning. The framework casts the
interaction between a generator and multiple heterogeneous discriminators as a multi-agent
peer evaluation game as depicted in Figure 1.

• We provide theoretical guarantees showing that PEG promotes truthful reporting as a Nash
equilibrium. Furthermore, when each discriminator updates its policy using online mirror
descent, the system achieves sublinear regret and converges to a truthful Nash equilibrium
over repeated interactions.

• Through experiments on a range of benchmarks, including ARC, MMLU, and GPQA, we
demonstrate that PEG improves factual accuracy by over 10% compared to existing methods.
Additionally, our results show that smaller models (e.g., 7B parameters) using PEG can
match or outperform much larger models (e.g., 65B).

Related Work. This work relates to several lines of research. First, game-theoretic frameworks
have been explored to improve reasoning and alignment in LLMs through structured interactions
[13]. Most relevant is the Consensus Game framework [27], which promotes self-consistency
by reconciling the outputs of a generator LLM and a discriminator LLM through game-theoretic
interaction. Follow-up studies extend this perspective to decoding [11], federated learning with
competing interests [65], and embodied tasks like vision-language navigation [67]. Our work builds
on this foundation by introducing a multi-agent formulation with explicit peer interaction and a
utility mechanism that promotes truthful reporting rather than mere agreement. Second, a growing
body of research demonstrates that multi-agent systems of LLMs can collaborate through debate
and cooperation to enhance factuality and task performance [36, 15, 44]. Our approach draws
on this idea by coordinating multiple LLMs through structured peer evaluation. Third, our work
connects to the literature on learning Nash equilibria in multi-agent systems, particularly no-regret
learning in general-sum games [24, 60, 8] and preference-based learning frameworks such as Nash
learning from human feedback [41] and direct preference optimization [58]. We contribute to this
literature by showing how no-regret learning dynamics converge to truthful equilibria in a structured,
incentive-compatible setting. Finally, PEG builds on peer prediction mechanisms [43, 39], which
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Question :  What is the capital of France?
A. Beijing B. London C. Paris D. New York

Plesese provide a Correct answer.

Generator: "I think the capital of 
France is London!"

Agreed but Incorrect Answer

Truthful and Correct Answer!

Consensus Game (Single Agent)
Discriminator: "I guess the capital is Paris 
so the answer is incorrect. But if I try to 
align with the corretness label, I can 
receive a utility."

Peer Elicitation Game (Multi Agent)

Multiple Discriminators: "My utility is based 
on mutual evaluation with a random referee. 
The optimal strategy is to report truthfully 
without alignment."

Figure 1: Comparison of the consensus game and PEG: when multiple discriminator LLMs indepen-
dently evaluate the generator’s output and are rewarded based on mutual agreement, their collective
judgment aligns more closely with true answers.

have been extended to handle complex settings [63, 46, 68, 49]. We adapt these ideas to LLM agents
by extending multi-task peer prediction mechanisms [2, 33] to a setting where multiple LLMs jointly
evaluate responses via mutual scoring and incentive-aligned interaction.

2 Methodology

This section introduces the key components of PEG including a formal definition of truthfulness and
an overview of the interactions between the generator and multiple discriminator agents.

2.1 Truthfulness as Incentive Compatibility

We adopt the concept of incentive compatibility (IC) from mechanism design [42] to define the
truthfulness. IC ensures that each agent maximizes its utility by reporting its true private information.
Specifically, let ci denote the true private information of agent i, and ri a possible report. In our
setting, the agents are discriminators, each independently evaluating a generated response. The true
private information ci ∈ {0, 1} refers to the agent’s truthful judgment on whether the response is
factually correct (ci = 1) or incorrect (ci = 0). The report ri ∈ {0, 1} is the label that the agent
chooses to submit to the system based on (or possibly deviating from) this truthful judgment. Let
c−i represent the truthful information of all other agents, The mechanism assigns utility ui(ri, r−i)
to agent i based on its own report and the reports of all other agents. A mechanism is said to be
incentive compatible (IC) if, for all agents i, all ci, c−i, and all possible reports ri,

ui(ci, c−i) ≥ ui(ri, c−i). (1)

The consensus game framework [27] involves one LLM generator and one LLM discriminator, aiming
to improve consistency by rewarding agreement between agents. However, this structure does not
guarantee truthfulness, as agents are rewarded only for agreement rather than accuracy and may
benefit from reporting false but mutually agreeable outputs. For example, the generator produces an
incorrect answer to a question when tasked with generating a correct one. The discriminator, whose
truthful evaluation would be to mark the answer as incorrect (ci = 0), may instead receive a higher
utility for agreeing with the generator by reporting it as correct (ri = 1). In such a scenario, the utility
of truthful reporting is lower than that of misreporting, i.e., ui(ci, c−i) < ui(ri, c−i), which creates a
clear incentive for the discriminator to misreport. This violates the IC property defined in Eq. (1),
highlighting a fundamental limitation of consensus-based approaches..

In contrast, recent studies have shown that multi-agent debates can better integrate the diverse
perspectives of multiple models, leading to more accurate and reliable outputs [10, 15]. Motivated
by these findings, we propose PEG in which multiple discriminator agents independently evaluate
each generated response. In this setup, each discriminator is rewarded based on agreement with its
peer discriminators. We show that when all other discriminators report truthfully, the best response
for any individual discriminator is also to report truthfully—thus, truthful reporting becomes a Nash
equilibrium. That is, PEG achieves IC property defined in (1), where no agent can improve its utility
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by deviating unilaterally. Figure 1 illustrates a key distinction between our PEG and the consensus
game, where the generator and a single discriminator are incentivized to align with each other, which
can lead to consistent but incorrect outputs. In contrast, PEG relies on independent mutual evaluations
from multiple discriminators, promoting outputs that are not only consistent but also correct outputs.

2.2 Peer Elicitation Games (PEG)

We consider a generator G and a set of n discriminators D1, D2, . . . , Dn. Each generator and
discriminator maintains a probabilistic policy. At each round t ∈ {1, 2, . . . , T}, the system assigns a
set of tasks indexed by kt = 1, 2, . . . ,Kt, where Kt is the number of tasks in round t. For each task
(t, kt), the generator receives an input question Xt,kt along with a correctness label Vt,kt ∈ {0, 1},
and produces a response Yt,kt according to its probabilistic policy. The generator’s policy is a
conditional distribution over responses given the input and target label:

πG(Yt,kt | Xt,kt , Vt,kt) = P(Yt,kt | Xt,kt , Vt,kt ; θG),

where θG denotes the generator’s parameters.

Each discriminator Di observes Xt,kt
and the corresponding generator response Yt,kt

, and outputs a
predicted label Vi,t,kt

∈ {0, 1} according to its policy:

πDi
(Vi,t,kt

| Xt,kt
, Yt,kt

) = P(Vi,t,kt
| Xt,kt

, Yt,kt
;ϕi),

where ϕi denotes the parameters of discriminator Di.

The goal is to generate responses that are both consistent and truthful. Our method achieves this by
aligning the generator’s output with the majority judgment of discriminators, while incentivizing
truthful evaluation from discriminators through peer evaluation. The overview of our method is
illustrated in Figure 2. The left branch (in red) corresponds to the supervised alignment goal of
imitating majority vote labels, while the right branch (in blue) depicts the PEG that ensures incentive
compatibility among discriminators.

Correctness Label v

Generator 

                  Goal: Align with Majority Vote                    Goal: Incentive Compatibility      

Input Question x

Step2:
Peer Elicitation Game

Step3: Policy Update  Answer y

Judgement v1, v2, ..., vn

Answer y

 Majority Vote v'

Step1: Response Generation and Discriminator Evaluation

Questions List

Step4: Generator Update

        Round t:
Assign Kt Tasks

Figure 2: Overview of our method: multiple discriminators independently evaluate the response
provided by the generator, while each discriminator is rewarded based on mutual agreement with
peers via PEG. This setup incentivizes truthful reporting for discriminators and aligns the generator
without requiring ground-truth labels.

Step 1: Response Generation and Discriminator Evaluation. At each round, given an input ques-
tion Xt,kt

and a correctness label Vt,kt
, the generator produces a response Yt,kt

∼ πG(·|Xt,kt
, Vt,kt

).
Each discriminator independently evaluates the response based on the question and outputs a correct-
ness report Vi,t,kt

∼ πDi
(·|Xt,kt

, Yt,kt
).

Step 2: Peer Elicitation Games. To incentivize truthful reporting, the discriminator agents engage
in a peer elicitation game, where the utility of each agent is based on a mutual evaluation. Impor-
tantly, this utility requires only reports from discriminators and does not rely on access to ground
truth. Assume that in round t, all discriminators are assigned Kt tasks. For each task kt ∈ [Kt],
discriminator i privately observes a signal Ci,t,kt

∈ {0, 1} and submits a report Vi,t,kt
∈ {0, 1}. The

task set {1, . . . ,Kt} is arbitrarily partitioned into two disjoint subsets K1,t and K2,t. For every pair
of distinct agents i ̸= j ∈ [n], we construct two 2 × 2 co-report matrices Mij

1,t and Mij
2,t, one for
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each subset Kℓ,t where ℓ = 1, 2. Each entry of Mij
ℓ,t(c, c

′) counts the number of tasks kt ∈ Kℓ,t for
which agents i and j reported the pair (c, c′), i.e.,

Mij
ℓ,t(c, c

′) :=
∑

kt∈Kℓ,t

1
(
(Vi,t,kt

, Vj,t,kt
) = (c, c′)

)
.

The total payment to agent i in round t is defined as the sum over all other agents of the product of
the determinants of these matrices:

pi,t :=
∑
j ̸=i

det(Mij
1,t) · det(M

ij
2,t).

In our setting, the discriminators are rewarded based on mutual evaluation. Meanwhile, the generator
is incentivized to produce responses that align with the majority consensus among high-confidence
discriminators. The utility functions are computed over a batch of Kt tasks in round t. The overall
utility functions are defined as:

u
(t)
Di

= EVi,t,kt∼πDi
(·|Xt,kt ,Yt,kt )

[pi,t] , ∀i ∈ {1, . . . , n},

u
(t)
G = EYt,kt∼πG(·|Xt,kt ,Vt,kt )

[
1(Vt,kt

= V̂t,kt
)
]
,

(2)

where kt ∈ {1, . . . ,Kt} indexes the tasks in round t, and V̂t,kt
denotes the majority vote label

aggregated from the discriminator reports on task (t, kt).

Step 3: Policy Update. We assume that the policy space consists of conditional probability distri-
butions over inputs, and focus on a localized subset around a reference policy π∗ (e.g., a truthful
reporting strategy) [50]. This constraint reflects the intuition that although policies may adapt to
optimize for high utility, they should not obviate too far from truthful behavior to maintain semantic
consistency and interpretability. In practical terms, this can be enforced by initializing the agent
with a fine-tuned model that embodies π∗, and constraining updates to remain within a trust region
[45, 69]. Specifically, we define the local policy neighborhood as:

Πlocal = {π(· | input; θ) ∈ Π | ∥π(· | input; θ)− π∗(· | input)∥ < δ} . (3)

Our goal is to iteratively learn the policy that maximizes the utility function, aligning with the online
learning framework that sequentially optimizes an objective function by searching for its critical
point [22, 51]. Since each policy is a probability distribution, we adopt the Online Mirror Descent
(OMD) algorithm with negative entropy as the Bregman divergence, which naturally preserves the
probabilistic structure of the policy and regularizes each update by penalizing large deviations from
the previous policy [16]. The update rules for the discriminators and generator are:

π
(t′+1)
Di

(Vi,t,kt
| Xt,kt

, Yt,kt
) ∝ π

(t′)
Di

(Vi,t,kt
| Xt,kt

, Yt,kt
) exp

[
ηDi
t ∇

π
(t′)
Di

(Vi,t,kt |Xt,kt ,Yt,kt )
u
(t′)
Di

]
,

π
(t′+1)
G (Yt,kt

| Xt,kt
, Vt,kt

) ∝ π
(t′)
G (Yt,kt

| Xt,kt
, Vt,kt

) exp
[
ηGt ∇π

(t′)
G (Yt,kt |Xt,kt ,Vt,kt )

u
(t′)
G

]
.

(4)
Intuitively, these updates guide each agent to adjust its policy to direction yields higher utility. After
updating, the individual judgments {V1,t,kt

, . . . , Vn,t,kt
} from all discriminators on task (t, kt) are

aggregated via majority vote to form a consensus label V̂t,kt
, which serves as a proxy for correctness.

Step 4: Generator Update. The utility of the generator is determined by whether its output aligns
with the consensus label derived from the discriminators. Specifically, the generator receives utilies
when its generated response matches the consensus label V̂t,kt

. This design enables learning without
requiring supervised fine-tuning or access to explicit ground-truth correctness labels.

3 Theoretical Guarantees

In this section, we present three main theoretical results: (i) the mechanism incentivizes dominantly
truthful reporting in Section 3.1; (ii) both the generator and discriminators achieve sublinear regret
under online learning dynamics in Section 3.2; and (iii) last-iterate converges to a truthful Nash
equilibrium in Section 3.3. Here, last-iterate convergence means that the policy used in the final
iteration converges to the equilibrium, rather than requiring averaging over past iterations [6].
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3.1 Dominant Truthfulness

PEG satisfies the dominant truthfulness property, meaning that truthful reporting is a dominant
strategy for each discriminator, as it yields the highest expected utility regardless of the strategies
chosen by other agents. This ensures that truthful behavior is consistently incentivized. We now
formally state this property of PEG.
Lemma 1. Let n be the number of agents (e.g., discriminators) and Kt be the number of tasks
assigned in round t as defined in Section 2.2. When n ≥ 2 and Kt ≥ 4, under mild assumptions,
PEG is dominantly truthful and satisfies IC in Eq. (1). That is, for every agent i, the truthful reporting
strategy maximizes their expected payment regardless of the strategies chosen by other agents.

The proof of this lemma, which leverages ideas from [33], is provided in Appendix A.1. The
design of PEG is grounded in three principles to ensure this incentive guarantee. First, the use of
determinant-based utility ensures information-monotonicity: the determinant achieves its maximum
value when agents report truthfully, making truthful reporting the most rewarding strategy. Second,
the utility function acts as an unbiased estimator of the joint distribution of agent reports, allowing the
mechanism to approximate the true distribution without estimation error. Finally, to prevent negative
payments, the set of tasks is divided into two disjoint subsets, and payments are computed using
the product of determinants from these subsets. As both subsets serve as unbiased estimators of the
distribution of agent reports, their determinants are expected to have the same sign. As a result, the
payment is always non-negative.

3.2 Regret Analysis

Next, we show that both the generator and the discriminators can progressively improve their behavior
such that their cumulative performance asymptotically approaches that of the best truthful policy
by performing online policy updates as defined in Eq. (4) in Section 2.2. This is formalized via the
standard notion of no-regret learning, which measures the cumulative difference between the utility
obtained by the learned policy over time and the utility that would have been achieved by the best
fixed policy in hindsight [6, 18]. Since the generator and discriminators are updated independently,
and their optimal strategy is to report truthfully regardless of others, we follow the setting in [27] and
define the regret for each discriminator and the generator as:

RegretDi
(T ) =

T∑
t′=1

u
(t,t′)
Di

(π
(t′)
Di

)−max
π∗
Di

T∑
t=1

u
(t,t′)
Di

(π∗
Di

),

RegretG(T ) =
T∑

t=1

Kt∑
kt=1

u
(t,t′,kt)
G (π

(t′)
G )−max

π∗
G

T∑
t′=1

Kt∑
kt=1

u
(t,t′,kt)
G (π∗

G),

where π
(t′)
Di

and π
(t′)
G denote the policies of discriminator Di and the generator at iteration t′, and

π∗
Di

, π∗
G are their respective best fixed policies in hindsight. Each u

(t,kt)
G (·) denotes the generator’s

utility on task kt in round t.

We introduce the following Assumption 1 for theoretical guarantees.
Assumption 1. The utility function uDi

(πDi
) and uG(πG) satisfies the following:

(Part 1: Local concavity). There exists a neighborhood N around a truthful reference policy such
that uDi(πDi) and uG(πG) is concave in πDi and πG for all πDi , πG ∈ N .

(Part 2: Gradient boundedness). There exist constants M1,M2 > 0 such that for all πDi
and πG, the

gradients are bounded in ℓ2-norm: ∥∇πDi
uDi

(πDi
)∥2 ≤ M1, and ∥∇πG

uG(πG)∥2 ≤ M2.

Part 1 of Assumption 1 assumes that the utility function is locally concave with respect to the policy
within a restricted neighborhood around the truthful policy π∗, as defined in Section 2.2. This
is justified because π∗ is designed to be utility-maximizing under PEG, and policy updates are
constrained to stay close to π∗ in practice via deploying a fine-tuned model. Similar locality and
curvature assumptions are standard in trust-region and online learning methods [50, 20]. Part 2 of
Assumption 1 requires that the gradients of the utility function are bounded. These assumptions
are standard in the convex optimization literature such as [6, 16] which also employ gradient-based
optimization methods.
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We now formalize the no-regret property of PEG. The following theorem shows that both the generator
and each discriminator achieve sublinear regret when updated via mirror descent with appropriately
chosen learning rates.

Theorem 1. Under Assumption 1, and set the learning rate in Eq. (4) for the generator as ηG :=√
2DKL(π∗

G∥π
(1)
G )/(M2

1 tl), and for each discriminator Di as ηDi :=
√

2DKL(π∗
Di

∥π(1)
Di

)/(M2
2 tl)

for 2tl ≤ T < 2tl+1. Then, the regrets of the generator and each discriminator

are bounded by: RegretG(T ) ≤
√
2√

2−1
M1

√
2KTDKL(π∗

G∥π
(1)
G ) · T , and RegretDi

(T ) ≤
√
2√

2−1
M2

√
2KTDKL(π∗

Di
∥π(1)

Di
) · T , respectively, where DKL(·∥·) denotes the KL divergence be-

tween the optimal policy π∗ and the initial policy π(1), and KT is the number of tasks at T iteration.

Theorem 1 guarantees that both the generator and each discriminator achieve a regret bound of
O(

√
T ), which is consistent with standard results in online convex optimization and learning theory

[e.g., 6, 30]. This sublinear regret implies that the policy update defined in Eq. (4) is Hannan
consistent: their average regret vanishes as T → ∞, meaning that each agent’s average performance
converges to that of the best fixed policy [28]. More specifically, the regret bound depends on three
key factors: (1) the bound on the gradient norm of the utility functions; (2) the number of tasks K;
and (3) the KL divergence between the initial policy and the optimal one, which measures how far the
agent’s starting point is from the target behavior. A smaller KL divergence leads to a tighter regret
bound, as the learning trajectory begins closer to the optimal policy. Importantly, regret analysis
does not imply convergence to the optimal policy, but ensures that the average utility gap to the
best fixed policy vanishes as T → ∞. While regret guarantees are well studied in online learning,
applying them to a peer evaluation setting with multiple interdependent LLMs is novel. In this setting,
agents influence each other only indirectly through their reported outputs, making this a theoretically
grounded and promising direction for aligning LLMs.

3.3 Last-Iterate Convergence

Our third main theoretical result concerns the convergence behavior of agents to a Nash equilibrium.
Specifically, we establish last-iterate convergence, a stronger guarantee that ensures that the actual
sequence of policies converges to a fixed point [6].

In our PEG setup, each discriminator interacts with others repeatedly, aiming to report truthful
evaluations based on shared signals. These interactions can be naturally modeled as a continuous
multi-agent game G = (N ,Π, {ui}i∈N ), where N = {1, . . . , n} denotes the set of agents, Π =∏n

i=1 Πi is the joint space of stochastic policies, and ui : Π → R is the utility function for agent i,
reflecting agreement with peers. We assume each ui is continuous, differentiable in its own argument,
and has Lipschitz continuous gradients.

A Nash equilibrium in this setting corresponds to a stable configuration of policies where no discrimi-
nator has an incentive to unilaterally deviate [23, 34]. Formally, a joint policy π∗ = (π∗

1 , . . . , π
∗
n) ∈ Π

is a Nash equilibrium if for every i ∈ N and any alternative policy π̂i ∈ Πi,

ui(π
∗
i , π

∗
−i) ≥ ui(π̂i, π

∗
−i). (5)

Theorem 2 (Last-iterate Convergence to Nash). Suppose each discriminator i ∈ N updates its
policy using Eq. (4) with a decaying learning rate of order O(1/tp), for some p ∈ ( 12 , 1). Then, the
sequence of joint policies πt converges almost surely to the unique Nash equilibrium π∗ of PEG.

The proof of Theorem 2, provided in Appendix A.3, builds on the Robbins–Siegmund Lemma. It is
also inspired by the analysis in [16], though our setting is more specific—focusing on static games
with perfect feedback. Theorem 2 establishes last-iterate convergence to the Nash equilibrium: the
actual policies used by each discriminator at the end of training converge to the truthful equilibrium.
This is in contrast to classical no-regret learning, which only ensures good average performance over
time. Last-iterate convergence is particularly valuable in practice, as it guarantees that the learned
policies are not just good on average but are inherently stable and reliable [6, 16]. In our case, this
means PEG reliably leads to consistent and truthful evaluations, effectively enabling smaller language
models to coordinate and reach human-aligned consensus without any supervised fine-tuning or
distillation.
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Table 1: Accuracy (%) of majority vote answers across benchmark datasets for each method. Bold
indicates the best performance in each row.

Dataset G D MI ER-D PEG

ARC-Easy 88.19 84.18 88.61 88.57 91.78
ARC-Challenge 77.01 70.68 78.03 77.52 87.01

MMLU 59.98 50.75 59.85 59.66 70.73
GPQA-Main 18.08 9.15 16.29 16.52 22.54

4 Experiments

We evaluate PEG on question-answering (QA) tasks. In this setup, a generator LLM agent produces
answers, while a group of discriminator LLM agents independently evaluate each response, serving
as peers to promote both accuracy and consistency. Code for all experiments is available at https:
//github.com/toz015/neurips2025-repo.

4.1 Experiment Setup

Models. The main experiment employs the following models: DeepSeek-R1-Distill-Qwen-7B
(deepseek-Qwen-7b), deepseek-ai/deepseek-llm-7b-chat (deepseek-Llama-7b), and Qwen/Qwen2.5-
7B-Instruct (OQwen-7b) as discriminators, with Qwen/Qwen2.5-7B-Instruct also serving as the
generator. We consider Gemma-7B [53], Mistral-7B [29], Ai-Yi-9B [66] and OpenChat-7B [57] as
candidate discriminators. Unless otherwise specified, we set the learning rate η = 0.1 for all experi-
ments. The PEG mechanism between discriminators is run for 10 iterations for 8 tasks. Discussions
on different choices of learning rates and number of iterations are provided in Appendix C.6 and C.7.

Prompts. We evaluate our models with zero-shoting following the format described in [21]. By
default, conditioning the PLM on (x, correct) corresponds to the standard zero-shot prompt. Condi-
tioning on (x, incorrect) uses the same structure, except that the phrase “Answer:” is replaced with
“Incorrect Answer:” in the prompt C.1.

Baselines. We incorporate several baseline methods, each representing a different approach to
generating and selecting responses. To evaluate against our method, we apply each baseline to obtain
responses from the discriminators, and then compare their outputs using majority voting [61].

• Generative Ranking (G): A standard baseline that ranks candidate answers by the probabil-
ity PLM (y | x, correct) and selects the top candidate [56].

• Discriminative Ranking (D): This method employs a discriminator πD to estimate
P (correct | x, y) and ranks responses accordingly [27].

• Mutual Information Ranking (MI): This method reweights each candidate by the product
of the forward and reverse likelihoods, PLM (y | x, correct) · PLM (correct | x, y) [35].

• Equilibrium Ranking Discriminator (ER-D): Based on the Consensus Game framework
of [27], this method formulates the interaction between a generator and a discriminator as a
signaling game. The discriminator iteratively updates its estimates to maximize agreement
with the generator. Each query–candidate pair (x, y) is reweighted by π∗

D(correct | x, y),
encouraging consistency in the final ranking.

Datasets. We conduct our evaluations using four diverse datasets: ARC-Easy, ARC-Challenge,
Massive Multitask Language Understanding (MMLU) and Graduate-Level Google-Proof Q&A
Benchmark (GPQA) [21, 14, 48]. Details of the datasets are in Appendix C.2. Each dataset presents
unique challenges, allowing us to test PEG under various knowledge domains.

4.2 Experiment Results

PEG Improves Accuracy. Results in Table 1 show that PEG consistently outperforms all baselines
across the evaluated datasets. Notably, it achieves more than a 10% improvement in accuracy on the
most challenging benchmarks, ARC-Challenge and MMLU, compared to the strongest baseline. This
performance gain is due to two key factors. First, PEG leverages the complementary strengths and

8

https://github.com/toz015/neurips2025-repo
https://github.com/toz015/neurips2025-repo


Table 2: Accuracy (%) of each model before (D) and after applying the PEG mechanism (PEG)
across four benchmark datasets. Bold highlights the best PEG result per dataset.

Model ARC-Easy ARC-Challenge MMLU GPQA
D PEG D PEG D PEG D PEG

OQwen-7B 90.43 90.89 82.91 85.04 62.72 68.19 16.07 22.77
deepseek-Qwen-7B 70.48 91.73 57.18 86.15 42.38 69.04 15.18 20.09

deepseek-LLaMA-7B 76.30 91.44 59.83 85.98 46.23 68.71 17.41 23.66

diverse reasoning capabilities of multiple LLM discriminators. We provide an illustrative example
in Appendix 6a to further validate that initial divergent outputs will become more consistent and
accurate after applying PEG. Second, unlike agreement-based methods such as MI and ER-D,
PEG promotes truthful reporting through mutual information signals, which more effectively elicit
the latent capabilities of the models. Table 2 further supports this, showing that each individual
discriminator consistently improves in accuracy following policy updates under PEG.

PEG Enables Coordination Among Heterogeneous Agents. Despite substantial differences
in architecture and baseline accuracy, Table 2 shows that all discriminators benefit from PEG.
Remarkably, even the weakest model, OQwen-7B, which initially has the lowest accuracy among all
agents, becomes the most accurate after participating in PEG. This suggests that PEG encourages
cross-agent learning, where each model learns to align with truthful, high-confidence signals provided
by its peers. Figure 3 reports the accuracy of each individual discriminator, as well as the majority
vote, after applying PEG. The majority vote achieves a notable accuracy gain over any single model,
validating the benefits of collaborative learning among heterogeneous agents.

ARC - Easy ARC - Challenge MMLU GPQA - main
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Figure 3: Accuracy comparison between original model outputs (D) and PEG majority vote answers.

Table 3: Accuracy (%) of individual discriminators before and after applying PEG in the 5-
discriminator setting.

5 Discriminators OQwen-7B deepseek-Qwen-7B deepseek-Llama2-7B Gemma-7B Mistral-7B
Original 82.91 57.18 59.83 69.32 70.26

After PEG 86.84 84.27 83.76 84.27 82.74

PEG with Varying Number of Discriminators. We further evaluate PEG on the ARC-Challenge
dataset with extended discriminator settings: 5-discriminators (adding Gemma-7B [53] and Mistral-
7B [29]) and 7-discriminators (further adding Ai-Yi-9B [66] and OpenChat-7B [57]). The results
consistently highlight the strong impact of PEG on both individual and collective performance.
Notably, the weakest models with the lowest initial accuracy benefit the most from PEG. For
example, in Tables 3 and 4, Qwen-7B and LLaMA2-7B gain over 20% improvement after applying
PEG, whereas initially stronger models such as OQwen-7B and Ai-Yi-9B exhibit only marginal
gains. Nevertheless, all models, regardless of their initial performance, converge toward coordinated
outcomes after PEG. These results demonstrate that agents indeed learn from one another and
achieve coordination through PEG. Moreover, when varying the number of discriminators, PEG
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consistently outperforms both initial discriminator majority vote D and ER-D, especially with 3 and
5 discriminators, where it achieves over 10% improvement, as shown in Table 5.

Table 4: Accuracy (%) of individual discriminators before and after applying PEG in the 7-
discriminator setting.

7 Discriminators OQwen-7B Qwen-7B Llama2-7B Gemma-7B Mistral-7B Ai-Yi-9B OpenChat-7B
Original 82.91 57.18 59.83 69.32 70.26 81.28 79.06

After PEG 83.85 75.30 73.08 77.61 79.06 81.62 82.99

Table 5: Overall accuracy (%) comparison of initial discriminator majority vote D, ER-D and PEG
under 3-, 5-, and 7-discriminator settings. Bold indicates the best performance in each row.

Setting D ER-D PEG
3 Discriminators 70.68 77.52 87.01
5 Discriminators 71.71 76.32 86.75
7 Discriminators 76.50 81.54 81.97

Finally, we observe a slight decrease in accuracy when expanding to seven discriminators. This
can be attributed to a mild violation of the conditional independence assumption (Assumption 4 in
Appendix A.1), which ensures that the mutual information–based utility remains informative and non-
degenerate. Intuitively, when discriminators are highly similar, their outputs become redundant, i.e.,
observing one provides little new information beyond the others. As a result, the mutual-information-
based utility degenerates to zero, so truthfulness no longer maximizes the utility. Consequently, the
learning dynamics may converge to a suboptimal equilibrium where discriminators are not incentive-
compatible in (1), resulting in a reduction in accuracy. Overall, our results indicate that PEG remains
robust with up to five discriminators; see, Table 5. As a practical guideline, we recommend using
three to five heterogeneous LLMs, which provide a strong balance between performance, stability,
and computational efficiency. Expanding beyond this should be done cautiously and only when
sufficient diversity and independence among LLMs can be ensured.

5 Conclusions

In this paper, we propose a training-free, game-theoretic framework for aligning LLMs through a
multi-agent peer elicitation game. Through mutual evaluations among agents, our peer elicitation
game facilitates interactions between a generator and multiple discriminators in a way that provably
incentivizes truthful behavior. We theoretically show that truthful reporting is a dominant strategy for
each discriminator. Furthermore, using online mirror descent, each agent achieves sublinear regret,
ensuring that its average performance approaches that of the best fixed truthful strategy. The agents’
strategies also converge in the last iterate to a truthful Nash equilibrium. Empirically, our framework
significantly improves factual accuracy across a range of benchmarks and performs competitively
with much larger models, highlighting a practical direction for deploying lightweight models in
resource-constrained environments.

There are several promising directions for future research based on PEG. One is to extend PEG to
high-stakes settings such as medical decision support, scientific fact verification, and policy-relevant
summarization, where truthful and consistent outputs are essential for safety and reliability. Another
is to incorporate concepts from game theory and economics, such as reputation systems, repeated
interactions, and budget-aware mechanisms, to further enhance alignment and robustness among
LLM agents, particularly in open-ended or adversarial environments.
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Appendix

Appendix A contains the proofs of the theoretical results presented in this paper. Specifically,
Appendix A.1 presents the proof of Lemma 1, Appendix A.2 provides the proof of Theorem 1, and
Appendix A.3 includes the proof of Theorem 2. Appendix B provides the pseudocode of the PEG
algorithm. Appendix C offers additional experimental details related to Section 4.

A Proofs

A.1 Proof of Lemma 1

Formally, we consider a binary-choice setting, where each task consists of two possible outcomes,
denoted as {0, 1}. There are n agents. Each agent i is assigned K binary-choice tasks, where for each
task k, agent i receives a private signal cki ∈ {0, 1}. These private signals for all agents are drawn
from a joint unknown prior distribution Uk

[n] ∈ ∆2
[n], where ∆2

[n] represents the set of all measurable
distributions over {0, 1}n. For the same task, the private signals of different agents are correlated.
For different tasks, the private signals of the same agent independent. In our setting, discriminators
do not incur effort to acquire their private signals.

For a multi-task peer evaluation mechanism, the agents do not know the specific realization of the
prior distribution before receiving the private signals. After receiving the private signal cki , each agent
is required to report rki , which may or may not reflect their true signal. The mechanism is designed to
incentivize agents to truthfully report their signals.
Assumption 2. [A Priori Similar Tasks] We assume that all tasks are drawn from a common unknown
prior distribution U[n] such that Uk

[n] = U[n] for all tasks k.

This assumption states that all tasks are fundamentally similar, implying that the signals across
different tasks should follow the same joint distribution. Specifically, the signals ck for each task k are
assumed to be i.i.d.. While traditional single-task peer evaluation typically assumes a homogeneous
prior, this multi-task setting allows for heterogeneity in agents’ beliefs as long as the tasks themselves
are similar. In our setting, this assumption implies that the problems are similar in the sense that the
ground truths follow the same joint distribution within each batch at every round. We enforce this by
ensuring that the same set of subjects and the same set of problems are presented in each round.
Definition 1 (Strategy). Each agent i’s strategy for reporting is a mapping from her private signal
cki to a distribution over possible reports rki . Formally, a strategy can be represented as a function
Sk
i : {0, 1} → ∆({0, 1}), where Sk

i (c
k
i ) gives the probability distribution over the possible reports

rki conditioned on receiving the private signal cki .

Every strategy Sk
i corresponds to a 2× 2 transition matrix where Sk

i (c
k
i , r

k
i ) is the probability that

agent i reports rki given that she receives private signal cki . A strategy is truthful if the agent always
reports rki = cki . Agent i plays a truthful strategy if for every task k, Sk

i is an identity matrix.
Assumption 3 (Consistent Strategy). Each agent i plays the same strategy Si for all tasks.

This assumption is reasonable because agents face structurally identical tasks drawn from the same
distribution, with no task-specific information to adapt to.
Assumption 4 (Conditional Independence). We assume that agents’ private signals c1, c2, ...cn are
independent conditioning on ground truth. Since agents’ strategies are independent, this also implies
that agent’s reports ĉ1, ĉ2, ...ĉn are independent conditioning on ground truth.

In our case, the discriminators (agents) are instantiated independently and process inputs separately,
so their reports are naturally conditionally independent given the underlying truth.
Definition 2 (Informative Peer). Agent i and agent j are considered each other’s informative peers
if the determinant of the joint distribution matrix over their private signals ci and cj is non-zero,
i.e., det(Uci,cj ) ̸= 0, where Uci,cj represents the joint prior distribution of the signals ci and cj , and
Uci,cj is expressed in its matrix form.

Definition 2 captures whether two agents are “informative peers" by examining the structure of their
shared information. If their private signals are sufficiently correlated (as captured by a non-zero
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determinant of the joint distribution matrix), they can serve as reliable references for each other in
PEG.
Definition 3. Given two random variables X,Y which have the same support C, we define the
determinant mutual information (DMI) between X and Y as

DMI(X;Y ) = |det(UX,Y )|.
Lemma 2 (Strict Information Monotonicity). For every two random variables X,Y with the same
support C, when X ′ is less informative than X , i.e., X ′ is independent of Y conditioning on X , it
holds that

DMI(X ′;Y ) ≤ DMI(X;Y ).

The inequality is strict when det(UX,Y ) ̸= 0 and UX′|X is not a permutation matrix.

Lemma 3. Let Mij
ℓ be the co-occurrence matrix formed by agents i and j over the set of tasks Tℓ,

and define the score det(Mij
ℓ ). Then the expectation of this score is an unbiased estimator of the

determinant mutual information between X̂i and X̂j:

EX̂i,X̂j

[
det(Mij

ℓ )
]
= aℓ · det(UX̂i,X̂j

),

where aℓ =
(|Tℓ|
|C|
)
· |C|! and UX̂i,X̂j

is the co-occurrence matrix of the random variables X̂i and X̂j .

The proofs of Lemmas 2 and 3 follow the argument of Theorem 5.1 in [33]. Building on these results,
we now present the proof of Lemma 1.

Proof. Let agent i truthfully report X̂i = Xi, and let other agents report signals X̂j . Consider the
interaction between agent i and any peer agent j. The DMI between Xi and X̂j satisfies:

DMI(X̂i; X̂j) ≤ DMI(Xi; X̂j),

with equality if and only if X̂i is a permutation of Xi. In particular, if X̂j = Xj (agent j reports
truthfully), then:

DMI(X̂i;Xj) ≤ DMI(Xi;Xj),

and the inequality is strict if X̂i is not a permutation of Xi, due to the strict information monotonicity
of DMI. Therefore, the truthful strategy maximizes DMI against any truthfully reporting peer.

From Lemma 3, we know that the utility between agents i and j, based on co-occurrence matrix Mij
ℓ ,

satisfies:
E[det(Mij

ℓ )] = aℓ · det(UX̂i,X̂j
),

where aℓ is a constant depending on the number of tasks in round ℓ, and UX̂i,X̂j
is the empirical

joint distribution matrix. Therefore, the expected squared utility is proportional to:

{E[det(Mij
ℓ )]}

2 ∝ DMI2(X̂i; X̂j),

and is maximized when X̂i = Xi, i.e., the agent reports truthfully. Since each agent’s expected utility
(aggregated over peers j ̸= i) is a weighted sum of DMI2(X̂i; X̂j), and each term in the sum is
maximized by truthful reporting, it follows that truth-telling is a dominant strategy. Furthermore,
when all agents report truthfully, the resulting strategy profile forms an equilibrium, and any deviation
leads to a strictly lower expected utility unless the deviation is a permutation of the truth.

A.2 Proof of Theorem 1

Since no regret To maintain notational clarity and avoid redundancy, we use t to replace the notation
t′ used in the main text in Appendix A.2 and A.3.
Definition 4 (Bregman divergence). Let φ : Ω → R be a differentiable and µ-strongly convex
(µ > 0) function with respect to a norm ∥ · ∥, that is, satisfy

φ(x) ≥ φ(y) + ⟨∇φ(y), x− y⟩+ µ

2
∥x− y∥2, ∀x, y ∈ Ω.

The Bregman divergence centered in y ∈ Ω is the function Dφ(x ∥ y) defined as

Dφ(x ∥ y) := φ(x)− φ(y)− ⟨∇φ(y), x− y⟩.
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Definition 5. Let f : Ω → R be a convex function, and let Dφ be a Bregman divergence. The
proximal mapping (or proximal step) for a point xt with step size η > 0 is defined as:

Proxφ(η∇f(xt), xt) = argmin
x∈Ω

{η⟨∇f(xt), x⟩+Dφ(x∥xt)} .

The mirror descent algorithm is then given by the iterative update:

xt+1 := Proxφ(η∇f(xt), xt).

Lemma 4. Let πθ(y|x) be a policy and R(y) be a utility function independent of θ. Define the
objective function:

J(θ) = Ey∼πθ(·|x) [R(y)] .

Then, the gradient of J(θ) with respect to θ is:

∇θJ(θ) = Ey∼πθ(·|x) [R(y)∇θ log πθ(y|x)] .

Proof.

∇θJ(θ) = ∇θ

∫
πθ(y|x)R(y) dy =

∫
∇θπθ(y|x)R(y) dy

=

∫
πθ(y|x)∇θ log πθ(y|x) ·R(y) dy

= Ey∼πθ(·|x) [R(y)∇θ log πθ(y|x)] .

Corollary 3 (Gradient of utility Functions). Using Lemma 4, the gradients of the utility functions
with respect to the discriminator and generator parameters are given by: For each discriminator Di:

∇θDi
uDi

= Erik∼πDi
(·|xk,yk)

∑
j ̸=i

det(M1
ij) · det(M2

ij)

∇θDi
log πDi

(rik|xk, yk)

 .

For the generator G:

∇θGuG = Eyk∼πG(·|xk,vk) [1(vk = v̂k)∇θG log πG(yk|xk, vk)] .

Lemma 5. When Ω = △n is the set of full-support distributions over n objects and the φ is set
to the negative entropy function, which is 1-strongly convex with respect to the ℓ1 norm ∥ · ∥1, the
corresponding Bregman divergence is the Kullback-Leibler (KL) divergence.

Lemma 6. Let x′ = Proxφ(g, x) be the proximal update. Then, for all y ∈ Ω, we have:

⟨−g, y − x′⟩ ≤ −Dφ(y∥x′) +Dφ(y∥x)−Dφ(x
′∥x).

By setting y = x, this three-point inequality simplifies to

⟨−g, x− x′⟩ ≤ −Dφ(x∥x′)−Dφ(x
′∥x).

Proof. The objective function of the proximal step problem is given by

h(z) := ⟨g, z⟩+Dφ(z∥x), z ∈ Ω.

The first-order optimality conditions applied to the solution z = x′ are therefore

−∇h(x′) ∈ NΩ(x
′) ⇐⇒ −g −∇φ(x′) +∇φ(x) ∈ NΩ(x

′)

⇐⇒ ⟨−g −∇φ(x′) +∇φ(x), y − x′⟩ ≤ 0 ∀y ∈ Ω

⇐⇒ ⟨−g, y − x′⟩ ≤ ⟨∇φ(x′)−∇φ(x), y − x′⟩ ∀y ∈ Ω.

The statement now follows from using the identity

⟨∇φ(x′)−∇φ(x), y − x′⟩ = −Dφ(y∥x′) +Dφ(y∥x)−Dφ(x
′∥x),

which can be checked directly from the definition of Bregman divergence.

17



Lemma 7. Let f : Ω → R be convex. Each step of the mirror descent algorithm satisfies

f(xt) ≤ f(y) + ⟨∇f(xt), xt − xt+1⟩ −
1

ηt
Dφ(y ∥ xt+1) +

1

ηt
Dφ(y ∥ xt)−

1

ηt
Dφ(xt+1 ∥ xt).

Proof. Using the linear lower bound property of convex functions, we can write

f(xt) ≤ f(y)− ⟨∇f(xt), y − xt⟩ = f(y) + ⟨∇f(xt), xt − xt+1⟩ − ⟨∇f(xt), y − xt+1⟩.

On the other hand, from Lemma 6 applied to the mirror descent step (that is, for the choices
g = ηt∇f(xt), x

′ = xt+1, x = xt), we have

−ηt⟨∇f(xt), y − xt+1⟩ ≤ −Dφ(y∥xt+1) +Dφ(y∥xt)−Dφ(xt+1∥xt).

Hence, dividing by ηt and plugging into the previous inequality, we obtain the statement.

Lemma 8. Let ∥ · ∥ be the norm with respect to which the DGF φ is 1-strongly convex, and ∥ · ∥∗ be
the dual norm. If all functions ft : Ω → R are convex, the regret of online mirror descent is bounded
by

RT :=

T∑
t=1

ft(xt)−min
x∈Ω

T∑
t=1

ft(x) ≤
1

η
Dφ(x∥x1) +

η

2

T∑
t=1

∥∇ft(xt)∥2∗.

In particular, assuming that all dual gradient norms are upper bounded by G, and setting

η :=

√
2Dφ(x∥x1)

M2 · 2i
for 2i ≤ T < 2i+1.

we find

RT ≤ M
√
2Dφ(x∥x1) · T

√
2√

2− 1
.

Proof. Since functions ft are convex, we can use Lemma 7:

ft(xt) ≤ ft(x)+⟨∇ft(xt), xt−xt+1⟩−
1

ηt
Dφ(x∥xt+1)+

1

ηt
Dφ(x∥xt)−

1

ηt
Dφ(xt+1∥xt) ∀x ∈ Ω.

Using the Cauchy-Schwarz inequality, we can bound the right-hand side by

ft(xt) ≤ ft(x) + ∥∇ft(xt)∥∗ · ∥xt − xt+1∥ −
1

ηt
Dφ(x∥xt+1) +

1

ηt
Dφ(x∥xt)−

1

ηt
Dφ(xt+1∥xt).

Using Young’s inequality, as well as the 1-strong convexity of the KL divergence, which implies

1

ηt
Dφ(xt+1∥xt) ≥

1

2ηt
∥xt+1 − xt∥2,

ft(xt) ≤ ft(x)+
ηt
2
∥∇ft(xt)∥2+

1

2ηt
∥xt−xt+1∥2−

1

ηt
Dφ(x∥xt+1)+

1

ηt
Dφ(x∥xt)−

1

2ηt
∥xt+1−xt∥2.

Rearranging terms, we obtain:

ft(xt) ≤ ft(x) +
ηt
2
∥∇ft(xt)∥2 −

1

ηt
Dφ(x∥xt+1) +

1

ηt
Dφ(x∥xt).

Summing over t = 1, . . . , T :

T∑
t=1

(ft(xt)− ft(x)) ≤
1

2

T∑
t=1

ηt∥∇ft(xt)∥22∥+
T∑

t=1

1

ηt
(Dφ(x∥xt)−Dφ(x∥xt+1)) .

18



The regret incurred by the algorithm is upper bound by the regret incurred in each of the intervals
2i ≤ T < 2i+1. Suppose the algorithm has been run until time 2i ≤ T < 2i+1. Hence, the regret is
upper bounded by

RegT ≤

(
M

√
Dφ(x∥x1)

2

I∑
i=0

(
√
2)i

)
+

(
I−1∑
i=0

√
Dφ(x∥x1)

2M22i
M22i

)
+

(√
2Dφ(x∥x1)

2M22I

)
M2(T − 2I)

= M

√
Dφ(x∥x1)

2

(
I∑

i=0

(
√
2)i +

I−1∑
i=0

(
√
2)i

)
+

√
Dφ(x∥x1)

2M22I
M2(T − 2I)

In particular, since T < 2I+1,

RegT ≤ M

√
Dφ(x∥x1)

2

(
I∑

i=0

(
√
2)i +

I−1∑
i=0

(
√
2)i

)
+

√
Dφ(x∥x1)

2M22I
M22I

= M

√
Dφ(x∥x1)

2

(
I∑

i=0

(
√
2)i +

I∑
i=0

(
√
2)i

)

= M
√

2Dφ(x∥x1)

I∑
i=0

(
√
2)i

= M
√
2Dφ(x∥x1) ·

(
√
2)I+1 − 1√
2− 1

≤ M
√
2Dφ(x∥x1)T · ·

√
2√

2− 1
.

Lemma 9. Suppose the utility is defined over a set of K policies, and each policy is updated
independently via a no-regret algorithm with individual regret bounded by O(

√
T ). Then, the total

regret of the system with respect to the best fixed policy in hindsight is bounded by O(
√
KT ).

Therefore, when both the generator and each discriminator maintain and update K independent
policies, their regret bounds will incur an additional

√
K factor, yielding an overall regret of

O(
√
KT ) per agent.

This result that the regret grows as O(
√
KT ) when updating and aggregating over K policies is a

classical result in online learning and multi-armed bandits, as established in [5, 51]. Therefore, by
combining Lemmas 8 and 9, we complete the proof of Theorem 1.

A.3 Proof of Theorem 2

Lemma 10. If the utility function is concave and differentiable, its gradient is monotone.

Proof. By concavity, the first-order conditions for u at x and y give:

u(y) ≤ u(x) +∇u(x)⊤(y − x),

u(x) ≤ u(y) +∇u(y)⊤(x− y).

Adding these inequalities:

u(y) + u(x) ≤ u(x) + u(y) +∇u(x)⊤(y − x) +∇u(y)⊤(x− y).

Simplifying:
(∇u(x)−∇u(y))

⊤
(x− y) ≤ 0.

Thus, ∇u is monotone:

(∇u(x)−∇u(y))
⊤
(x− y) ≤ 0 ∀x, y ∈ X .

19



Lemma 11. Let πi,t+1 be the update given by mirror descent:

πi,t+1 = arg min
πi∈Πi

{ηt⟨−∇ui(πt), πi⟩+Di(πi, πi,t)} ,

where Di(·, ·) is the Bregman divergence generated by a µ-strongly convex function hi. Then for any
π∗
i ∈ Πi, we have

Di(π
∗
i , πi,t+1) ≤ Di(π

∗
i , πi,t)− ηt⟨∇Vi(πt), πi,t − π∗

i ⟩+
Liη

2
t

2
,

where Li > 0 is a constant that bounds ∥∇Vi(πt)∥2 due to compactness of Πi.

Proof. Let x = πi,t, x+ = πi,t+1, z = π∗
i , and gi = ∇ui(πt). The mirror descent update is:

x+ = arg min
πi∈Πi

{−ηt⟨gi, πi⟩+Di(πi, x)} .

By the first-order optimality condition for convex minimization over Πi, we have:

⟨−ηtgi +∇hi(x
+)−∇hi(x), z − x+⟩ ≥ 0,

which gives:
ηt⟨gi, z − x+⟩ ≤ ⟨∇hi(x

+)−∇hi(x), z − x+⟩.
Using the three-point identity for Bregman divergence:

⟨∇hi(x
+)−∇hi(x), z − x⟩ = Di(z, x)−Di(z, x

+)−Di(x
+, x),

we substitute and rearrange:

Di(z, x
+) ≤ Di(z, x)− ηt⟨gi, z − x⟩+ ηt⟨gi, x+ − x⟩ −Di(x

+, x).

Now apply Young’s inequality:

ηt⟨gi, x+ − x⟩ ≤ 1

2µ
∥x+ − x∥2 + µη2t

2
∥gi∥2∗.

By strong convexity, Di(x
+, x) ≥ µ

2 ∥x
+ − x∥2, so:

ηt⟨gi, x+ − x⟩ ≤ Di(x
+, x) +

η2t ∥gi∥2

2µ
.

Substituting back, the Di(x
+, x) term cancels, and we obtain:

Di(z, x
+) ≤ Di(z, x)− ηt⟨gi, z − x⟩+ η2t ∥gi∥2

2µ
.

Let Li :=
1
µ supπ∈K ∥∇ui(π)∥2, which is finite due to compactness of Πi. Therefore:

Di(π
∗
i , πi,t+1) ≤ Di(π

∗
i , πi,t)− ηt⟨∇ui(πt), π

∗
i − πi,t⟩+

Liη
2
t

2
.

Next we can move to the proof of Theorem 2.

Proof. We define an energy function that tracks the distance to the Nash equilibrium using Bregman
divergences. For each player i ∈ N , let Di denote the associated Bregman divergence:

Di(π
∗
i , πi,t) := hi(π

∗
i )− hi(πi,t)− ⟨∇hi(πi,t), π

∗
i − πi,t⟩.

We define the total energy function as

Et :=
∑
i∈N

Di(π
∗
i , πi,t).

Each player updates their strategy via mirror descent:

πi,t+1 = arg min
πi∈Πi

{ηt⟨−∇ui(πt), πi⟩+Di(πi, πi,t)} .
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With Lemma 11, we have:

Di(π
∗
i , πi,t+1) ≤ Di(π

∗
i , πi,t)− ηt⟨∇ui(πt), πi,t − π∗

i ⟩+
Liη

2
t

2
.

Summing over all players, we obtain:

Et+1 ≤ Et − ηt⟨∇u(πt), πt − π∗⟩+ Cη2t ,

for some constant C > 0, where ∇V (πt) = (∇u1(πt), . . . ,∇uN (πt)).

Because the utility map ∇u is strictly monotone, there exists µ > 0 such that

⟨∇u(πt), πt − π∗⟩ ≥ µ∥πt − π∗∥2.

Substituting into the previous inequality yields:

Et+1 ≤ Et − µηt∥πt − π∗∥2 + Cη2t .

This recursion is in the form required by the Robbins–Siegmund Lemma:

Et+1 ≤ Et − at + bt,

where at = µηt∥πt −π∗∥2 ≥ 0 and bt = Cη2t , with
∑∞

t=1 bt < ∞ since ηt = O(1/tp) with 2p > 1.
Therefore, the Robbins–Siegmund Lemma implies that Et converges almost surely to a finite random
variable E∞, and

∑
t ηt∥πt − π∗∥2 < ∞. Since

∑
t η

2
t < ∞ and

∑
t ηt = ∞, ∥πt − π∗∥ → 0

almost surely.

B PEG Algorithm

B.1 Algorithm

Algorithm 1 Two-Phase PEG Algorithm with Task Batches

Require: Dataset of questions {xk} (organized into batches of size 8 in the experiments); initial
parameters θG for generator; initial parameters {θDi

}ni=1 for discriminators; learning rate η.
1: repeat
2: for each batch do
3: Generator samples answers: yk ∼ πG(·|xk, vk).
4: (Step 1) Discriminator Updates:
5: for each discriminators Di do
6: (a) Discriminators provide judgments: rik ∼ πDi

(·|xk, yk).
7: (b) Approximate gradients for each Di using the log-derivative trick:

∇θDi
uDi

≈ 1

N

∑
batches

[∑
j ̸=i

det(M1
ij) · det(M2

ij)

]
∇θDi

log πDi
(rik|xk, yk).

8: (c) OMD update for discriminator policies: π(t+1)
Di

∝ π
(t)
Di

exp
(
η∇θDi

uDi

)
.

9: end for
10: (Step 2) Generator Update:
11: (a) Compute majority vote v̂k for each question xk in the batch.
12: (b) Approximate gradient for the generator:

∇θGuG ≈ 1

N

∑
batches

1
(
vk = v̂k

)
∇θG log πG(yk|xk, vk).

13: (c) PEG update for generator policy: π(t+1)
G ∝ π

(t)
G exp

(
η∇θGuG

)
.

14: end for
15: until all policy have been updated
16: Output: final parameters θG and {θDi}ni=1.
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B.2 Illustrative example

Question List:  
What is the capital of France?
A. Beijing B. London C. Paris D. New York

Which property of a mineral can be 
determined just by looking at it ?
A. luster B. mass C. weight D. hardness

[...]

Generator: "I think the answer is 
[C, A, ...]

My judge to generators' answer is [ correct, 
correct, ...]

My judge to generators' answer is [ correct, 
correct, ...]

My judge to generators' answer is [ correct, 
correct, ...]

Based on mutual evaluation reward. I need to 
report truthfully. My judge to generators' 
answer is [ correct, correct, ...]

Based on mutual evaluation reward. I need to 
report truthfully. My judge to generators' 
answer is [ correct, incorrect, ...]

Based on mutual evaluation reward. I need to 
report truthfully. My judge to generators' 
answer is [ correct, incorrect, ...]

After multiple round mutual evaluate, our 
judge to generators' answer is [ correct, 
correct, ...]

Evaluation

Reward

Peer Elicitation Game (Multi Agent)

Figure 4: An illustrative example of PEG’s peer evaluation process: (1) The generator answers a list
of questions. (2) Discriminators evaluate these answers, with some providing untruthful reports. (3)
Determinant-based utilities penalize non-truthful discriminators, incentivizing them to align their
future reports with the ground truth.

C Experiments Details

C.1 Prompt

Generator Prompt
The following are multiple choice questions (with answers) about Geology. Question: Which
property of a mineral can be determined just by looking at it?

A) luster
B) mass
C) weight
D) hardness

Answer:
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Discriminator Prompt
You are an expert evaluator of questions about Geology. Determine if the proposed answer is
correct. Output ONLY ’A’ or ’B’.
Question: Luster is the property of a mineral can be determined just by looking at it.
Proposed Answer: luster
Is this answer correct? Respond ONLY with: A. Correct B. Incorrect
Answer:

C.2 Datasets

Datasets from different domains are used in the experiments. Details are summarized below.

• ARC dataset [14] evaluates scientific reasoning, includes both the ’easy’ and ’challenge’
sets. It consists of 7787 science questions, all nondiagrams, multiple choice (typically
4-way multiple choice). The experiment applies a zero-shot setting for ARC, assessing how
well the model navigates science-related questions requiring logical reasoning rather than
memorized knowledge.

• MMLU [21] is a benchmark with questions across humanities, STEM, and social sciences.
It requires the model to demonstrate broad general knowledge. For MMLU, we evaluate our
models following the format described in setting [21].

• GPQA [48] is a challenging dataset designed to evaluate LLM capabilities and scalable
oversight mechanisms. It consists of 448 multiple choice questions that cover biology,
physics, and chemistry. These questions are intentionally designed to be high-quality and
extremely difficult. The experiment will apply the zero-shot setting for GPQA.

C.3 Computational Resources

Our experiments utilized the following hardware configurations:

• Initial Policy Extraction:

– GPU: A single NVIDIA A100 GPU with 200 GB of memory.

– CPU: AMD EPYC 7542 or 9654 processors.

– Throughput: Approximately 2.2 iterations per second (it/s) for policy generation per
question.

– Estimated Runtime: Varies by dataset size, typically requiring 10 minutes for 1000
questions.

• PEG Algorithm for Policy Update:

– GPU: NVIDIA RTX 2080 Ti.

– Runtime: Significantly faster, all datasets under 20 seconds.
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C.4 The impact of batch size
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(b) ARC Challenge
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(c) MMLU
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Figure 5: Different Batch Size Effect on Majority Vote Accuracy

We conducted experiments on four benchmark datasets by varying the discriminator update batch size
from 4 to 15 (with 4 being the minimum required to form a valid batch in this setup) to evaluate its
impact on majority vote accuracy. As shown in Figure 5, the accuracy remains relatively stable across
batch sizes, though slight fluctuations can be observed depending on the dataset. For ARC-Easy,
the accuracy is consistently high and robust to batch size, suggesting stable discriminator learning
on simpler, more homogeneous questions. In contrast, the other datasets display more variability
and a slight decreasing trend as batch size increases. This performance drop may due to the greater
diversity among questions within larger batches, making it harder for the discriminators to agree and
learn from a consistent utility signal. These findings align with Assumption 2, which presumes that
tasks within a batch are drawn from a common underlying distribution. Overall, the PEG algorithm
demonstrates robustness to batch size variation when the assumption of task similarity holds.
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C.5 Sample Outputs

(a) Initial Discriminator Responses

(b) Updated Discriminator Responses via PEG

Figure 6: A batch example from the ARC-Challenge dataset showing discriminator responses
before and after PEG-based policy updates. The top table illustrates the initial disagreement among
discriminators, while the bottom table demonstrates improved convergence following utility-based
updates. Red text indicates that the generator produced an incorrect answer. Red text indicates that
the generator produced a incorrect answer. A green arrow highlights cases where the majority vote
correctly judged the validity of the answer.
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Figure6 shows a batch from the ARC-Challenge dataset that illustrates the discriminator responses
before and after PEG-based policy updates. In the top table 6a, we observe noticeable disagreement
among the three discriminators, reflecting their differing judgment capabilities across questions. For
instance, Discriminator #3 (deepseek-LLaMA-7B) correctly identifies a case that the other two fail to
judge, while in other questions it falls behind the others. After applying PEG 6b, the discriminators
show improved agreement. In most cases, they converge to the correct judgment, leading to a higher
overall decision accuracy.

C.6 The impact of number of iterations

We conducted experiments on four benchmark datasets with {10, 20, 30, 40, 50} iterations using a
fixed learning rate of 0.1 and a batch size of 8. From Table 6, we observe that PEG’s performance is
stable and does not require many iterations to achieve strong performance, with only minimal changes
in accuracy and a few questions. We attribute this result to the fact that our updates operate directly
in the output policy space rather than modifying model parameters, allowing for faster convergence
within a few iterations.

Table 6: Accuracy (%) of PEG with different numbers of iterations across four benchmark datasets.

Iterations 10 20 30 40 50
ARC-Challenge 87.01 87.01 87.01 87.01 87.01

ARC-Easy 91.78 91.82 91.78 91.78 91.78
MMLU 70.78 70.81 70.81 70.79 70.81
GPQA 22.54 22.54 22.54 22.54 22.54

C.7 The impact of learning rate

We conducted experiments on four benchmark datasets using a fixed number of 10 iterations with
difference choices of learning rates in Table 7. Intuitively, smaller learning rates (e.g., ≤ 0.1)
yield stable performance without compromising convergence speed. In contrast, larger learning
rates degrade performance, likely due to the fact that the updates are applied directly to the output
distribution, which lies within a bounded space [0, 1]. As a result, overly aggressive updates may lead
to oscillation or failure to converge.

Table 7: Accuracy (%) of PEG with different learning rates across four benchmark datasets.

Learning Rate 0.01 0.05 0.1 0.15 0.2
ARC-Challenge 87.01 87.01 87.01 86.50 80.68

ARC-Easy 91.82 91.82 91.82 91.65 88.44
MMLU 70.89 70.88 70.73 68.51 61.06
GPQA 22.54 22.54 22.54 22.32 19.42

C.8 Impact of degree of initial disagreements

We conducted further analysis on the effectiveness of our method by categorizing problems in
each dataset into different levels of difficulty based on the initial level of disagreement among the
discriminators. We report the accuracy for each method across these groups on both ARC-Challenge
and MMLU in Table 8. Our analysis reveals three key findings. First, PEG consistently improves
accuracy across all levels of initial disagreement, suggesting that it enables agents to explore diverse
judgments and learn from each other to reach better consensus. Second, a counter-intuitive finding is
that cases with initial disagreement among discriminators actually result in higher accuracy compared
to those with full agreement. We believe this phenomenon occurs because agreement alone does
not ensure correctness: all discriminators may still converge on an incorrect answer. In contrast,
disagreement introduces diversity, increasing the likelihood that at least one agent is correct, and
serves as a useful signal to trigger further exploration. Third, PEG achieves the highest accuracy
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across all levels compared to other baselines methods, validating its effectiveness under different
settings.

Table 8: Accuracy (%) under different initial agreement settings for ARC-Challenge and MMLU
datasets. Bold indicates the best performance in each row.

Dataset Setting G MI ER-D PEG

ARC-Challenge Agreement 64.31 73.85 72.79 84.10
Disagreement 76.89 81.96 82.41 87.94

MMLU Agreement 50.54 60.11 60.17 66.93
Disagreement 57.96 65.19 65.02 72.20

D Potential Social Impact

Our proposed peer elicitation game contributes to the broader goal of building trustworthy and
accountable language models by explicitly incentivizing truthful behavior through multi-agent inter-
action. By avoiding reliance on supervised fine-tuning and instead leveraging incentive-compatible
mechanisms, the method has the potential to enhance factual reliability in resource-constrained or
safety-critical settings such as education, healthcare information retrieval, and scientific communi-
cation. However, as with any mechanism involving agent-based interactions, care must be taken to
ensure transparency in deployment and to prevent gaming of the system by adversarial agents.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s main contributions
and scope. All claims are supported by theoretical analysis and empirical results, with
assumptions and limitations explicitly acknowledged. The content accurately reflects what
is achieved in the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly discusses its limitations in Section 5.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides all necessary assumptions and complete proofs for each
theoretical result, with details in Section 3 and Appendix A.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details necessary for reproducing the
main experimental results, including dataset descriptions, model configurations, training
procedures, and evaluation metrics in Section 4 and Appendix C. These disclosures are
sufficient to support the main claims and conclusions.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code in Section 4.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper clearly specifies all relevant training and testing details, including
datasets, hyperparameters, optimizer types, and other configuration settings in Section 4 and
Appendix C.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not report error bars or conduct formal statistical significance
tests.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper specifies the type of hardware used for experiments (e.g., GPU
model) in Appendix C.3, along with relevant details such as batch size and runtime where
applicable, providing sufficient information to estimate the computational resources required
for reproduction.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics. It involves no human
subjects, sensitive data, or harmful applications, and all datasets and methods are used
responsibly and transparently.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses both positive and negative societal impacts in Appendix
D.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve models or data with high risk of misuse; therefore,
safeguards are not applicable in this context.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets used in the paper, including datasets and codebases, are
properly credited. Their licenses and terms of use are clearly acknowledged and fully
respected.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not relsease new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper doesn’t involve crowd sourceing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper doesn’t involve crowdsourcing nor research with human subjects

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this work doesn’t involve LLMs as any
important, original, or non-standard components.
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