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ABSTRACT

Stochastic gradient descent (SGD) algorithms, with constant momentum and its
variants such as Adam, are the optimization methods of choice for training deep
neural networks (DNNs). There is great interest in speeding up the convergence
of these methods due to their high computational expense. Nesterov accelerated
gradient (NAG) with a time-varying momentum, denoted as NAG below, improves
the convergence rate of gradient descent (GD) for convex optimization using a
specially designed momentum; however, it accumulates error when an inexact
gradient is used (such as in SGD), slowing convergence at best and diverging at
worst. In this paper, we propose scheduled restart SGD (SRSGD), a new NAG-style
scheme for training DNNs. SRSGD replaces the constant momentum in SGD by
the increasing momentum in NAG but stabilizes the iterations by resetting the
momentum to zero according to a schedule. Using a variety of models and bench-
marks for image classification, we demonstrate that, in training DNNs, SRSGD
significantly improves convergence and generalization; for instance, in training
ResNet-200 for ImageNet classification, SRSGD achieves an error rate of 20.93%
vs. the benchmark of 22.13%. These improvements become more significant as
the network grows deeper. Furthermore, on both CIFAR and ImageNet, SRSGD
reaches similar or even better error rates with significantly fewer training epochs
compared to the SGD baseline.

1 INTRODUCTION

Training many machine learning (ML) models reduces to solving the following finite-sum optimiza-
tion problem

min
w

f(w) := min
w

1

N

N∑

i=1

fi(w) := min
w

1

N

N∑

i=1

L(g(xi,w), yi), w ∈ Rd, (1)

where {xi, yi}Ni=1 are the training samples and L is the loss function, e.g., cross-entropy loss for a
classification task, that measure the discrepancy between the ground-truth label yi and the prediction
by the model g(·,w), parametrized by w. The problem (1) is known as empirical risk minimization
(ERM). In many applications, f(w) is non-convex, and g(·,w) is chosen among deep neural networks
(DNNs) due to their preeminent performance across various tasks. These deep models are heavily
overparametrized and require large amounts of training data. Thus, both N and the dimension of w
can scale up to millions or even billions. These complications pose serious computational challenges.

One of the simplest algorithms to solve (1) is gradient descent (GD), which updates w according to:

wk+1 = wk − sk
1

N

N∑

i=1

∇fi(wk), (2)

where sk > 0 is the step size at the k-th iteration. Computing ∇f(wk) on the entire training set is
memory intensive and often prohibitive for devices with limited random access memory (RAM) such
as graphics processing units (GPUs) used for deep learning (DL). In practice, we sample a subset
of the training set, of size m with m � N , to approximate ∇f(wk) by the mini-batch gradient
1/m

∑m
j=1∇fij (wk), resulting in the (mini-batch)-stochastic gradient descent (SGD). SGD and its
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accelerated variants are among the most used optimization algorithms in ML. These gradient-based
algorithms have low computational complexity, and they are easy to parallelize, making them suitable
for large scale and high dimensional problems (Zinkevich et al., 2010; Zhang et al., 2015).

Nevertheless, GD and SGD have issues with slow convergence, especially when the problem is
ill-conditioned. There are two common techniques to accelerate GD and SGD: adaptive step size
(Duchi et al., 2011; Hinton et al.; Zeiler, 2012) and momentum (Polyak, 1964). The integration of
both adaptive step size and momentum with SGD leads to Adam (Kingma & Ba, 2014), one of the
most used optimizers for training DNNs. Many recent developments have improved Adam (Reddi
et al., 2019; Dozat, 2016; Loshchilov & Hutter, 2018; Liu et al., 2020). GD with constant momentum
leverages the previous step to accelerate GD according to:

vk+1 = wk − sk∇f(wk); wk+1 = vk+1 + µ(vk+1 − vk), (3)

where µ > 0 is a constant. A similar acceleration can be achieved by the heavy-ball (HB) method
(Polyak, 1964). The momentum update in both (3) and HB have the same convergence rate of
O(1/k) as that of GD for convex smooth optimization. A breakthrough due to Nesterov (1983; 2018)
replaces µ with (k − 1)/(k + 2), which is known as the Nesterov accelerated gradient (NAG) with
time-varying momentum. For simplicity, we denote this method as NAG below. NAG accelerates
the convergence rate to O(1/k2), which is optimal for convex and smooth loss functions (Nesterov,
1983; 2018). NAG can also speed up the process of escaping from saddle points (Jin et al., 2017).
In practice, NAG momentum can accelerate GD for nonconvex optimization, especially when the
underlying problem is poorly conditioned (Goh, 2017). However, NAG accumulates error and causes
instability when the gradient is inexact (Devolder et al., 2014; Assran & Rabbat, 2020). In many DL
applications, constant momentum achieves state-of-the-art result. For instance, training DNNs for
image classification. Since NAG momentum achieves a much better convergence rate than constant
momentum with exact gradient for general convex optimization, we consider the following question:

Can we leverage NAG with a time-varying momentum parameter to accelerate SGD in training DNNs
and improve the test accuracy of the trained models?

Contributions. We answer the above question by proposing the first algorithm that integrates sched-
uled restart NAG momentum with plain SGD. Here, we restart the momentum, which is orthogonal
to the learning rate restart (Loshchilov & Hutter, 2016). We name the resulting algorithm scheduled
restart SGD (SRSGD). Theoretically, we prove the error accumulation of Nesterov accelerated SGD
(NASGD) and the convergence of SRSGD. The major practical benefits of SRSGD are fourfold:

• SRSGD remarkably speeds up DNN training. For image classification, SRSGD significantly
reduces the number of training epochs while preserving or even improving the network’s accuracy.
In particular, on CIFAR10/100, the number of training epochs is reduced by half with SRSGD,
while on ImageNet the reduction in training epochs is also remarkable.
• DNNs trained by SRSGD generalize significantly better than the current benchmark optimizers.

The improvement becomes more significant as the network grows deeper as shown in Fig. 1.
• SRSGD reduces overfitting in training very deep networks such as ResNet-200 for ImageNet

classification, enabling the accuracy to keep increasing with depth.
• SRSGD is straightforward to implement and only requires changes in a few lines of the SGD code.

There is also no additional computational or memory overhead.

We focus on image classification with DNNs, in which SGD with constant momentum is the choice.

Related Work. Momentum has long been used to accelerate SGD. SGD with scheduled momentum
and a good initialization can handle the curvature issues in training DNNs and enable the trained
models to generalize well (Sutskever et al., 2013). Kingma & Ba (2014) and Dozat (2016) integrated
momentum with adaptive step size to accelerate SGD. In this work, we study the time-varying
momentum version of NAG with restart for stochastic optimization. Adaptive and scheduled restart
have been used to accelerate NAG with the exact gradient (Nemirovskii & Nesterov, 1985; Nesterov,
2013; Iouditski & Nesterov, 2014; Lin & Xiao, 2014; Renegar, 2014; Freund & Lu, 2018; Roulet
et al., 2015; O’donoghue & Candes, 2015; Giselsson & Boyd, 2014; Su et al., 2014). These studies of
restart NAG momentum are for convex optimization with the exact gradient. Restart techniques have
also been used for stochastic optimization (Kulunchakov & Mairal, 2019). In particular, Aybat et al.
(2019) developed a multistage variant of NAG with momentum restart between stages. Our work
focuses on developing NAG-based optimization for training DNNs. Many efforts have also been

2



Under review as a conference paper at ICLR 2021

SGD SRSGD

Te
st

 E
rr

or

Number of Layers

CIFAR10 CIFAR100 ImageNet

Figure 1: Error rate vs. depth of ResNet models trained with SRSGD and the baseline SGD with constant
momemtum. Advantage of SRSGD continues to grow with depth.

devoted to studying the non-acceleration issues of SGD with HB and NAG momentum (Kidambi
et al., 2018; Liu & Belkin, 2020), as well as accelerating first-order algorithms with noise-corrupted
gradients (Cohen et al., 2018; Aybat et al., 2018; Lan, 2012). Ghadimi & Lan (2013; 2016) provides
analysis for the general stochastic gradient-based optimization algorithms. .

Organization. In Section 2, we review and discuss momentum for accelerating GD for convex
smooth optimization. In Section 3, we present the SRSGD algorithm and its theoretical guarantees.
In Section 4, we verify the efficacy of the proposed SRSGD in training DNNs for image classification
on CIFAR and ImageNet. In Section 4.3, we perform empirical analysis of SRSGD. We end with
some concluding remarks. Technical proofs, some experimental details, and more results in training
LSTMs (Hochreiter & Schmidhuber, 1997) and WGANs (Arjovsky et al., 2017; Gulrajani et al.,
2017) are provided in the Appendix.

Notation. We denote scalars and vectors by lower case and lower case bold face letters, respectively,
and matrices by upper case bold face letters. For a vector x = (x1, · · · , xd) ∈ Rd, we denote its `p
norm (p ≥ 1) by ‖x‖p = (

∑d
i=1 |xi|p)1/p. For a matrix A, we use ‖A‖p to denote its induced norm

by the vector `p norm. Given two sequences {an} and {bn}, we write an = O(bn) if there exists a
positive constant s.t. an ≤ Cbn. We denote the interval a to b (included) as (a, b]. For a function
f(w) : Rd → R, we denote its gradient as∇f(w) and its Hessian as∇2f(w).

2 REVIEW: MOMENTUM IN GRADIENT DESCENT

GD. GD (2) is a popular approach to solve (1), which dates back to Cauchy (1847). If f(w) is
convex and L-smooth (i.e., ‖∇2f(w)‖2 ≤ L), then GD converges with rate O(1/k) by letting
sk ≡ 1/L (we use this sk in all the discussion below), which is independent of the dimension of w.

HB. HB (4) (Polyak, 1964) accelerates GD by using the historical information, which gives

wk+1 = wk − sk∇f(wk) + µ(wk −wk−1), µ > 0. (4)

We can also accelerate GD by using the Nesterov/lookahead momentum, which leads to (3). Both
(3) and (4) have a convergence rate of O(1/k) for convex smooth optimization. Recently, several
variants of (3) have been proposed for DL, e.g., (Sutskever et al., 2013) and (Bengio et al., 2013).

NAG. NAG (Nesterov, 1983; 2018; Beck & Teboulle, 2009) replaces µ with (tk − 1)/tk+1, where
tk+1 = (1 +

√
1 + 4t2k)/2 with t0 = 1. NAG iterates as following

vk+1 = wk − sk∇f(wk); wk+1 = vk+1 +
tk − 1

tk+1
(vk+1 − vk). (5)

NAG achieves a convergence rate O(1/k2) with the step size sk = 1/L.
Remark 1. Su et al. (2014) showed that (k− 1)/(k+ 2) is the asymptotic limit of (tk − 1)/tk+1. In
the following presentation of NAG with restart, for the ease of notation, we will replace the momentum
coefficient (tk − 1)/tk+1 with (k − 1)/(k + 2).

Adaptive Restart NAG (ARNAG). The sequences, {f(wk)− f(w∗)} where w∗ is the minimum
of f(w), generated by GD and GD with constant momentum (GD + Momentum, which follows (3))
converge monotonically to zero. However, that sequence generated by NAG oscillates, as illustrated
in Fig. 2 (a) when f(w) is a quadratic function. O’donoghue & Candes (2015) proposed ARNAG
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(6), which restart the time-varying momentum of NAG according to the change of function values, to
alleviate this oscillatory phenomenon. ARNAG iterates as following

vk+1 = wk − sk∇f(wk); wk+1 = vk+1 +
m(k)− 1

m(k) + 2
(vk+1 − vk), (6)

where m(1) = 1; m(k + 1) = m(k) + 1 if f(wk+1) ≤ f(wk), and m(k + 1) = 1 otherwise.

Scheduled Restart NAG (SRNAG). SR is another strategy to restart the time-varying momentum
of NAG. We first divide the total iterations (0, T ] (integers only) into a few intervals {Ii}mi=1 =
(Ti−1, Ti], such that (0, T ] =

⋃m
i=1 Ii. In each Ii we restart the momentum after every Fi iterations.

The update rule is then given by:

vk+1 = wk − sk∇f(wk); wk+1 = vk+1 +
(k mod Fi)

(k mod Fi) + 3
(vk+1 − vk). (7)

Both AR and SR accelerate NAG to linear convergence for convex problems with the Polyak-
Lojasiewicz (PL) condition (Roulet & d’Aspremont, 2017).

Case Study – Quadratic Function. Consider the following quadratic optimization (Hardt, 2014)

min
x
f(x) =

1

2
xTLx− xT b, (8)

where L ∈ Rd×d is the Laplacian of a cycle graph, and b is a d-dimensional vector whose first entry
is 1 and all the other entries are 0. Note that f(x) is convex with Lipschitz constant 4. In particular,
we set d = 1K (1K:= 103). We run T = 50K iterations with step size 1/4. In SRNAG, we restart,
i.e., we set the momentum to 0, after every 1K iterations. Fig. 2 (a) shows that GD + Momentum as
in (3) converges faster than GD, while NAG speeds up GD + Momentum dramatically and converges
to the minimum in an oscillatory fashion. Both AR and SR accelerate NAG significantly.

f(x
k ) 

–
f(x

* )

Iteration

(a) (b) (c)

GD GD + Momentum NAG ARNAG SRNAG

Figure 2: Comparison between different schemes in optimizing the quadratic function in (8) with (a)
exact gradient, (b) gradient with constant variance Gaussian noise, and (c) gradient with decaying
variance Gaussian noise. NAG, ARNAG, and SRNAG can speed up convergence remarkably when
exact gradient is used. Also, SRNAG is more robust to noisy gradient than NAG and ARNAG.

3 ALGORITHM PROPOSED: SCHEDULED RESTART SGD (SRSGD)

Computing gradient for ERM, (1), can be computational costly and memory intensive, especially
when the training set is large. In many applications, such as training DNNs, SGD is used. In this
section, we first prove that the error bound of SGD with NAG cannot be bounded by a convergent
sequence, then we formulate our new SRSGD as a solution to accelerate the convergence of SGD
using the NAG momentum.

3.1 UNCONTROLLED BOUND OF NESTEROV ACCELERATED SGD (NASGD)

Replacing ∇f(wk) := 1/N
∑N

i=1∇fi(wk) in (5) with the mini-batch gradient 1/m
∑m

j=1∇fij (wk)
will lead to uncontrolled error bound. Theorem 1 formulates this observation for NASGD.
Theorem 1 (Uncontrolled Bound of NASGD). Let f(w) be a convex and L-smooth function with
‖∇f(w)‖ ≤ R, whereR > 0 is a constant. The sequence {wk}k≥0 generated by (5), with stochastic
gradient of bounded variance (Bubeck, 2014; Bottou et al., 2018) 1 and using any constant step size
sk ≡ s ≤ 1/L, satisfies

E
(
f(wk)− f(w∗)

)
= O(k), (9)

1We leave the analysis under the other assumptions (Jain et al., 2018) as a future work.
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where w∗ is the minimum of f , and the expectation is taken over the generation of the stochastic
gradient.

One idea to prove Theorem 1 is by leveraging the established resulting in Lan (2012). We will
provide a new proof of Theorem 1 in Appendix A. The proof shows that the uncontrolled error bound
is because the time-varying momentum gets close to 1 as iteration increases. To remedy this, we
can restart the momentum in order to guarantee that the time-varying momentum with restart is less
than a number that is strictly less than 1. Devolder et al. (2014) proved a similar error bound for the
δ-inexact gradient, and we provide a brief review of NAG with δ-inexact gradient in Appendix B. As
far as we know that there is no lower bound of E(f(wk)− f(w∗)) available even for the δ-inexact
gradient, and we leave the lower bound estimation as an open problem.

We consider three different inexact gradients: Gaussian noise with constant and decaying variance
corrupted gradients for the quadratic optimization (8), and training logistic regression model for
MNIST (LeCun & Cortes, 2010) classification. The detailed settings and discussion are provided
in Appendix B. We denote SGD with NAG momentum as NASGD and NASGD with AR and SR
as ARSGD and SRSGD, respectively. The results shown in Fig. 2 (b) and (c) (iteration vs. optimal
gap for quadratic optimization (8)) and Fig. 3 (a) (iteration vs. loss for training logistic regression)
confirm Theorem 1. For these cases, SR improves the performance of NAG with inexact gradients.
Moreover, when an inexact gradient is used, ARNAG/ARSGD performs almost the same as GD/SGD
asymptotically because ARNAG/ARSGD restarts too often and almost degenerates to GD/SGD.

3.2 SRSGD AND ITS CONVERGENCE

For ERM (1), SRSGD replaces∇f(w) in (7) with stochastic gradient with batch size m and gives

vk+1 = wk − sk 1

m

m∑
j=1

∇fij (wk); wk+1 = vk+1 +
(k mod Fi)

(k mod Fi) + 3
(vk+1 − vk), (10)

where Fi is the restart frequency used in the interval Ii. We implemented SRSGD, in both PyTorch
(Paszke et al., 2019) and Keras (Chollet et al., 2015), by changing just a few lines of code on top
of the existing implementation of the SGD optimizer. We provide a snippet of SRSGD code in
Appendix J (PyTorch) and K (Keras). We formulate the convergence of SRSGD for general convex
and nonconvex problems in Theorem 2 and provide its proof in Appendix C.
Theorem 2 (Convergence of SRSGD). Suppose f(w) is L-smooth. Consider the sequence
{wk}k≥0 generated by (10) with stochastic gradient that is bounded and has bounded vari-
ance, and consider any restart frequency F using any constant step size sk := s ≤ 1/L. As-
sume that

∑
k∈A

(
Ef(wk+1)− Ef(wk)

)
= R̄ < +∞ with R̄ being a constant and the set

A := {k ∈ Z+|Ef(wk+1) ≥ Ef(wk)}, then we have

min
1≤k≤K

{
E‖∇f(wk)‖22

}
= O

(
s+

1

sK

)
. (11)

If f(w) is further convex and
∑
k∈B

(
Ef(wk+1)− Ef(wk)

)
= R̂ < +∞ with R̂ being a constant

and the set B := {k ∈ Z+|E‖wk+1 −w∗‖2 ≥ E‖wk −w∗‖2}, then

min
1≤k≤K

{
E
(
f(wk)− f(w∗)

)}
= O

(
s+

1

sK

)
, (12)

where w∗ is the minimum of f . To obtain ε (∀ε > 0) error, we set s = O(ε) and K = O(1/ε2).

Theorem 2 relies on the assumption that
∑
k∈A or B

(
Ef(wk+1)− Ef(wk)

)
is bounded, and we

provide an empirical verification in Appendix C.1. We leave it open for how to establish the
convergence result for SRSGD without this assumption.

4 EXPERIMENTAL RESULTS

We evaluate SRSGD on a variety of benchmarks for image classification, including CIFAR10,
CIFAR100, and ImageNet. In all experiments, we show the advantage of SRSGD over the widely
used and well-calibrated SGD baselines with a constant momentum of 0.9 and decreasing learning
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Figure 3: (a) Training loss comparison between different schemes in training logistic regression for
MNIST classification. Here, SGD is the plain SGD without momentum, and SGD + Momentum that
follows (3) and replaces gradient with the mini-batch stochastic gradient. NASGD is not robust to
noisy gradient, ARSGD almost degenerates to SGD, and SRSGD performs the best in this case. (b, c)
Training loss vs. training epoch of ResNet models trained with SRSGD (blue) and the SGD baseline
with constant momentum as in PyTorch implementation, which is denoted by SGD in Section 4 (red).

rate at certain epochs, which we denote as SGD. We also compare SRSGD with the well-calibrated
SGD in which we switch momentum to the Nesterov momentum of 0.9, and we denote this optimizer
as SGD + NM. We fine tune the SGD and SGD + NM baselines to obtain the best validation
performance, and we then adopt the same set of parameters for training with SRSGD. In the SRSGD
experiments, we tune the restart frequencies on small DNNs for each task based on the validation
performance and apply the calibrated restart frequencies to large DNNs for the same task. Note that
ARSGD is impractical for training on large-scale datasets since it requires to compute the loss over the
whole training set at each iteration, which is very computationally inefficient. Alternatively, ARSGD
can estimate loss and restart using mini-batches, but then ARSGD restarts too often and degenerates
to SGD without momentum as we mentioned in Section 3. Thus, we do not compare with ARSGD
in our CIFAR and ImageNet experiments. The details about hyper-parameters calibration can be
found in Appendix D.4. We provide the detailed description of datasets and experimental settings in
Appendix D. Additional experimental results in training LSTMs (Hochreiter & Schmidhuber, 1997)
and WGANs (Arjovsky et al., 2017; Gulrajani et al., 2017) with SRSGD, as well as the comparison
between SRSGD and SGD + NM on ImageNet classification task, are provided in Appendix E. We
also note that in all the following experiments, the training loss will blow up if we apply NASGD
without restart. These further confirm the stabilizing effect of scheduled restart in training DNNs.

4.1 CIFAR10 AND CIFAR100

We summarize our results for CIFAR in Tables 1 and 2. We also explore two different restarting
frequency schedules for SRSGD: linear and exponential schedule. These schedules are governed by
two parameters: the initial restarting frequency F1 and the growth rate r. In both scheduling schemes,
the restarting frequency at the 1st learning rate stage is set to F1 during training. Then the restarting
frequency at the (k + 1)-th learning rate stage is determined by:

Fk+1 =

{
F1 × rk, exponential schedule
F1 × (1 + (r − 1)× k), linear schedule.

We search F1 and r using the method outlined in Appendix D.4. For CIFAR10, (F1 = 40, r = 1.25)
and (F1 = 30, r = 2) are good initial restarting frequencies and growth rates for the exponential
and linear schedules, respectively. For CIFAR100, those values are (F1 = 45, r = 1.5) for the
exponential schedule and (F1 = 50, r = 2) for the linear schedule.

Improvement in Accuracy Increases with Depth. We observe that the linear schedule of restart
yields better test error on CIFAR than the exponential schedule for most of the models except for
Pre-ResNet-470 and Pre-ResNet-1001 on CIFAR100 (see Tables 1 and 2). SRSGD with either linear
or exponential restart schedule outperforms SGD. Furthermore, the advantage of SRSGD over SGD is
more significant for deeper networks. This observation holds strictly when using the linear schedule
(see Fig. 1) and is generally true when using the exponential schedule with only a few exceptions.

Faster Convergence Reduces the Training Time by Half. SRSGD also converges faster than SGD.
This result is consistent with our MNIST case study in Section 3 and indeed expected since SRSGD
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Table 1: Classification test error (%) on CIFAR10 using SGD, SGD + NM, and SRSGD. We report
the results of SRSGD with two restarting schedules: linear (lin) and exponential (exp). The numbers
of iterations after which we restart the momentum in the lin schedule are 30, 60, 90, 120 for the
1st, 2nd, 3rd, and 4th stage. Those numbers for the exp schedule are 40, 50, 63, 78. We include the
reported results from (He et al., 2016b) (in parentheses) in addition to our reproduced results.

Network # Params SGD (baseline) SGD+NM SRSGD SRSGD Improve over Improve over
(lin) (exp) SGD (lin/exp) SGD+NM (lin/exp)

Pre-ResNet-110 1.1M 5.25 ± 0.14 (6.37) 5.24 ± 0.16 4.93 ± 0.134.93 ± 0.134.93 ± 0.13 5.00 ± 0.47 0.320.320.32/0.25 0.310.310.31/0.24

Pre-ResNet-290 3.0M 5.05 ± 0.23 5.04 ± 0.12 4.37 ± 0.154.37 ± 0.154.37 ± 0.15 4.50 ± 0.18 0.680.680.68/0.55 0.670.670.67/0.54

Pre-ResNet-470 4.9M 4.92 ± 0.10 4.97 ± 0.15 4.18 ± 0.094.18 ± 0.094.18 ± 0.09 4.49 ± 0.19 0.740.740.74/0.43 0.790.790.79/0.48

Pre-ResNet-650 6.7M 4.87 ± 0.14 4.80 ± 0.14 4.00 ± 0.074.00 ± 0.074.00 ± 0.07 4.40 ± 0.13 0.870.870.87/0.47 0.800.800.80/0.40

Pre-ResNet-1001 10.3M 4.84 ± 0.19 (4.92) 4.62 ± 0.14 3.87 ± 0.073.87 ± 0.073.87 ± 0.07 4.13 ± 0.10 0.970.970.97/0.71 0.750.750.75/0.49

Table 2: Classification test error (%) on CIFAR100 using SGD, SGD + NM, and SRSGD. We report
the results of SRSGD with two restarting schedules: linear (lin) and exponential (exp). The numbers
of iterations after which we restart the momentum in the lin schedule are 50, 100, 150, 200 for the
1st, 2nd, 3rd, and 4th stage. Those numbers for the exp schedule are 45, 68, 101, 152. We include the
reported results from (He et al., 2016b) (in parentheses) in addition to our reproduced results.

Network # Params SGD (baseline) SGD+NM SRSGD SRSGD Improve over Improve over
(lin) (exp) SGD (lin/exp) SGD+NM (lin/exp)

Pre-ResNet-110 1.2M 23.75 ± 0.20 23.65 ± 0.36 23.49 ± 0.2323.49 ± 0.2323.49 ± 0.23 23.50 ± 0.39 0.260.260.26/0.25 0.160.160.16/0.15

Pre-ResNet-290 3.0M 21.78 ± 0.21 21.68 ± 0.21 21.49 ± 0.2721.49 ± 0.2721.49 ± 0.27 21.58 ± 0.20 0.290.290.29/0.20 0.190.190.19/0.10

Pre-ResNet-470 4.9M 21.43 ± 0.30 21.21 ± 0.30 20.71 ± 0.32 20.64 ± 0.1820.64 ± 0.1820.64 ± 0.18 0.72/0.790.790.79 0.50/0.570.570.57

Pre-ResNet-650 6.7M 21.27 ± 0.14 21.04 ± 0.38 20.36 ± 0.2520.36 ± 0.2520.36 ± 0.25 20.41 ± 0.21 0.910.910.91/0.86 0.680.680.68/0.63

Pre-ResNet-1001 10.4M 20.87 ± 0.20 (22.71) 20.13 ± 0.16 19.75 ± 0.11 19.53 ± 0.1919.53 ± 0.1919.53 ± 0.19 1.12/1.341.341.34 0.38/0.600.600.60

Table 3: On CIFAR10/100 (%), SRSGD training with only 100 epochs achieves comparable classifi-
cation errors (%) to the SGD baseline training with 200 epochs.

CIFAR10 CIFAR100
Network SRSGD Improvement SRSGD Improvement

Pre-ResNet-110 5.43 ± 0.18 −0.18 23.85 ± 0.19 −0.10

Pre-ResNet-290 4.83 ± 0.11 0.22 21.77 ± 0.43 0.01

Pre-ResNet-470 4.64 ± 0.17 0.28 21.42 ± 0.19 0.01

Pre-ResNet-650 4.43 ± 0.14 0.44 21.04 ± 0.20 0.23

Pre-ResNet-1001 4.17 ± 0.20 0.67 20.27 ± 0.11 0.60

Pre-ResNet-110 5.25 ± 0.10 (110 epochs) 0.00 23.73 ± 0.23 (140 epochs) 0.02

Table 4: Test errors on CIFAR10 (%) of Pre-ResNet-110 (Left)/290 (Right) using different optimizers.
SRSGD Adam RMSProp SRSGD Adam RMSProp

4.93 ± 0.134.93 ± 0.134.93 ± 0.13% 6.83 ± 0.10% 7.31 ± 0.31% 4.37 ± 0.154.37 ± 0.154.37 ± 0.15% 6.12 ± 0.18% 7.18 ± 0.05%

can avoid the error accumulation when there is an inexact oracle. For CIFAR, Fig. 3 (b) shows that
SRSGD yields smaller training loss than SGD during the training. Interestingly, SRSGD converges
quickly to good loss values in the 2nd and 3rd stages. This suggests that the model can be trained
with SRSGD in many fewer epochs compared to SGD while achieving a similar error rate.

Results in Table 3 confirm the hypothesis above. We train Pre-ResNet models with SRSGD in only
100 epochs, decreasing the learning rate by a factor of 10 at the 80th, 90th, and 95th epoch while using
the same linear schedule for restarting frequency as before with (F1 = 30, r = 2) for CIFAR10 and
(F1 = 50, r = 2) for CIFAR100. We compare the test error of the trained models with those trained
by the SGD baseline in 200 epochs. We observe that SRSGD training consistently yields lower test
errors than SGD except for the case of Pre-ResNet-110 even though the number of training epochs
of our method is only half of the number of training epochs required by SGD. For Pre-ResNet-110,
SRSGD needs 110 epochs with learning rate decreased at the 80th, 90th, and 100th epoch to achieve
the same error rate as the 200-epoch SGD training on CIFAR10. On CIFAR100, SRSGD training for
Pre-ResNet-110 needs 140 epochs with learning rate decreased at the 80th, 100th and 120th epoch to
outperform the 200-epoch SGD. Comparison with SGD short training is provided in Appendix F.2.

Comparison with Adam and RMSProp. SRSGD outperforms not only SGD with momentum
but also other popular optimizers including Adam and RMSProp (Tieleman & Hinton, 2012) for
image classification tasks. In fact, for image classification tasks, Adam and RMSProp yield worse
performance than the baseline SGD with momentum (Chen & Kyrillidis, 2019). Table 4 compares
SRSGD with Adam and RMSprop on CIFAR10.
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Table 5: Single crop validation errors (%) on ImageNet of ResNets trained with SGD baseline and
SRSGD. We report the results of SRSGD with the increasing restarting frequency in the first two
learning rates. In the last learning rate, the restarting frequency is linearly decreased to 1. For baseline
results, we also include the reported single-crop validation errors (He et al., 2016c) (in parentheses).

Network # Params SGD SRSGD Improvement
top-1 top-5 top-1 top-5 top-1 top-5

ResNet-50 25.56M 24.11 ± 0.10 (24.70) 7.22 ± 0.14 (7.80) 23.85 ± 0.0923.85 ± 0.0923.85 ± 0.09 7.10 ± 0.097.10 ± 0.097.10 ± 0.09 0.26 0.12

ResNet-101 44.55M 22.42 ± 0.03 (23.60) 6.22 ± 0.01 (7.10) 22.06 ± 0.1022.06 ± 0.1022.06 ± 0.10 6.09 ± 0.076.09 ± 0.076.09 ± 0.07 0.36 0.13

ResNet-152 60.19M 22.03 ± 0.12 (23.00) 6.04 ± 0.07 (6.70) 21.46 ± 0.0721.46 ± 0.0721.46 ± 0.07 5.69 ± 0.035.69 ± 0.035.69 ± 0.03 0.57 0.35

ResNet-200 64.67M 22.13 ± 0.12 6.00 ± 0.07 20.93 ± 0.1320.93 ± 0.1320.93 ± 0.13 5.57 ± 0.055.57 ± 0.055.57 ± 0.05 1.20 0.43

Table 6: Comparison of single crop validation errors on ImageNet (%) between SRSGD training with
fewer epochs and SGD training with full 90 epochs.

Network SRSGD Reduction Improvement Network SRSGD Reduction Improvement
ResNet-50 24.30± 0.21 10 −0.19 ResNet-152 21.79± 0.07 15 0.24

ResNet-101 22.32± 0.06 10 0.1 ResNet-200 21.92± 0.17 30 0.21

4.2 IMAGENET

Next, we discuss our experimental results on the 1000-way ImageNet classification task (Russakovsky
et al., 2015). We conduct our experiments on ResNet-50, 101, 152, and 200 with 5 different seeds. We
use the official PyTorch implementation for all of our ResNet models (Paszke et al., 2019). Following
common practice, we train each model for 90 epochs and decrease the learning rate by a factor of 10
at the 30th and 60th epoch. We use an initial learning rate of 0.1, a momentum scaled by 0.9, and a
weight decay value of 0.0001. Additional details and comparisons between SRSGD and SGD + NM
are given in Appendix E.

We report single crop validation errors of ResNet models trained with SGD and SRSGD on ImageNet
in Table 5. In contrast to our CIFAR experiments, we observe that for ResNets trained on ImageNet
with SRSGD, linearly decreasing the restarting frequency to 1 at the last stage (i.e., after the 60th
epoch) helps improve the generalization of the models. Thus, in our experiments, we use linear
scheduling with (F1 = 40, r = 2). From epoch 60 to 90, the restarting frequency decays to 1 linearly.

Advantage of SRSGD continues to grow with depth. Similar to the CIFAR experiments, we
observe that SRSGD outperforms the SGD baseline for all ResNet models that we study. As shown
in Fig. 1, the advantage of SRSGD over SGD grows with network depth, just as in our CIFAR
experiments with Pre-ResNet architectures.

Avoiding Overfitting in ResNet-200. ResNet-200 demonstrates that SRSGD is better than the SGD
baseline at avoiding overfitting2. The ResNet-200 trained with SGD has a top-1 error of 22.13%,
higher than the ResNet-152 trained with SGD, which achieves a top-1 error of 22.03% (see Table 5).
He et al. (2016b) pointed out that ResNet-200 suffers from overfitting. The ResNet-200 trained with
our SRSGD has a top-1 error of 20.93%, which is 1.2% lower than the ResNet-200 trained with the
SGD and also lower than the ResNet-152 trained with both SRSGD and SGD, an improvement by
0.53% and 1.1%, respectively. We hypothesize that SRSGD with appropriate restart frequency is
locally not monotonic (see Fig. 3 (b, c)), and this property allows SRSGD to escape from bad minima
in order to reach a better one, which helps avoid overfitting in very deep networks. Theoretical
analysis of the observation that SRSGD is less overfitting in training DNNs is under our investigation.

Training ImageNet in Fewer Number of Epochs. As in the CIFAR experiments, we note that
when training on ImageNet, SRSGD converges faster than SGD at the first and last learning rate
while quickly reaching a good loss value at the second learning rate (see Fig. 3 (c)). This observation
suggests that ResNets can be trained with SRSGD in fewer epochs while still achieving comparable
error rates to the same models trained by the SGD baseline using all 90 epochs. We summarize the
results in Table 6. On ImageNet, we note that SRSGD helps reduce the number of training epochs
for very deep networks (ResNet-101, 152, 200). For smaller networks like ResNet-50, training with
fewer epochs slightly decreases the accuracy.

4.3 EMPIRICAL ANALYSIS

SRSGD Helps Reduce the Training Time. We find that SRSGD training using fewer epochs yields
comparable error rates to both the SGD baseline and the SRSGD full training with 200 epochs on
CIFAR. We conduct an ablation study to understand the impact of reducing the number of epochs

2By overfitting, we mean that the model achieves low training error but high test error.
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on the final error rate when training with SRSGD on CIFAR10 and ImageNet. In the CIFAR10
experiments, we vary the number of epoch reduction from 15 to 90 while in the ImageNet experiments,
we vary the number of epoch reduction from 10 to 30. We summarize our results in Fig. 4, and
provide detailed results in Appendix F. For CIFAR10, we can train with 30 fewer epochs while still
maintaining a comparable error rate to the full SRSGD training, and with a better error rate than
the SGD baseline trained in full 200 epochs. For ImageNet, SRSGD training with fewer epochs
decreases the accuracy but still obtains comparable results to the 90-epoch SGD baseline.
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Figure 4: Test error vs. number of training epochs.
Dashed lines are test errors of SGD trained with
200 epochs for CIFAR10 (left) and 90 epochs for
ImageNet (right). For CIFAR, SRSGD with fewer
epochs achieves comparable results to SRSGD
with 200 epochs. For ImageNet, training with
less epochs slightly decreases the performance of
SRSGD but still achieves comparable results to
200-epoch SGD.

Impact of Restarting Frequency. We examine the impact of restarting frequency on the network
training. We choose a case study of training a Pre-ResNet-290 on CIFAR10 using SRSGD with a
linear schedule scheme for the restarting frequency. We fix the growth rate r = 2 and vary the initial
restarting frequency F1 from 1 to 80. As shown in Fig. 5, SRSGD with a large F1, e.g. F1 = 80,
approximates NASGD (yellow). We also show the training loss and test accuracy of NASGD in red.
As discussed in Section 3, it suffers from error accumulation due to stochastic gradients and converges
slowly or even diverges. SRSGD with small F1, e.g. F1 = 1, approximates SGD without momentum
(green). It converges faster initially but reaches a worse local minimum (i.e. larger loss). Typical
SRSGD (blue) converges faster than NASGD and to a better local minimum than both NASGD and
SGD without momentum. It also achieves the best test error. We provide more empirical analysis
results in Appendix F, G and H. The impact of the growth rate r is studied in Appendix G.2.
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=	32.44	± 0.84

Figure 5: Training loss (left) and test error (right) of Pre-ResNet-290 trained on CIFAR10 with
different initial restarting frequencies F1 (linear schedule). SRSGD with small F1 approximates SGD
without momentum, while SRSGD with large F1 approximates NASGD. The training loss curve
and test accuracy of NASGD are shown in red and confirm the result of Theorem 1 that NASGD
accumulates error due to the stochastic gradients.

5 CONCLUSIONS

We propose the Scheduled Restart SGD (SRSGD), with two major changes from the widely used
SGD with constant momentum. First, we replace the momentum in SGD with the iteration-dependent
momentum that used in Nesterov accelerated gradient (NAG). Second, we restart the NAG momentum
according to a schedule to prevent error accumulation when the stochastic gradient is used. For image
classification, SRSGD can significantly improve the accuracy of the trained DNNs. Also, compared to
the SGD baseline, SRSGD requires fewer training epochs to reach the same trained model’s accuracy.
There are numerous avenues for future work: 1) deriving the optimal restart scheduling and the
corresponding convergence rate of SRSGD and 2) integrating the scheduled restart NAG momentum
with adaptive learning rate algorithms, e.g., Adam (Kingma & Ba, 2014).
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Part

Appendices
The appendices are structured as follows. In Section A, we prove Theorem 1. In Section B, we
review an error accumulation result of the Nesterov accelerated gradient with δ-inexact gradient. In
Section C, we prove Theorem 2. In Section D, we provide some experimental details; in particular,
the calibration of restarting hyperparameters. In Section E, we compare SRSGD with benchmark
optimization algorithms on some other tasks, including training LSTM and Wasserstein GAN. In
Section F, we provide detailed experimental settings in studying the effects of reducing the number
of epoch in training deep neural networks with SRSGD, and we provide some more experimental
results. In Section G and H, we further study the effects of restarting frequency and training with
less epochs by using SRSGD. In Section I, we visualize the optimization trajectory of SRSGD and
compare it with benchmark methods. A snippet of our implementation of SRSGD in PyTorch and
Keras are available in Section J and K, respectively.
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A UNCONTROLLED BOUND OF NASGD

Consider the following optimization problem

min
w

f(w), (13)

where f(w) is L-smooth and convex.

Start from wk, GD update, with step size 1
r , can be obtained based on the minimization of the

function
Qr(v,w

k) := 〈v −wk,∇f(wk)〉+
r

2
‖v −wk‖22. (14)

With direct computation, we can get that

Qr(v
k+1,wk)−minQr(v,w

k) =
‖gk −∇f(wk)‖2

2r
,

where gk := 1
m

∑m
j=1∇fij (wk). We assume the variance is bounded, which gives The stochastic

gradient rule,Rs, satisfies E[Qr(v
k+1,wk)−minQr(v,w

k)|χk] ≤ δ, with δ being a constant and
χk being the sigma algebra generated by w1,w2, · · · ,wk, i.e.,

χk := σ(w1,w2, · · · ,wk).

NASGD can be reformulated as

vk+1 ≈ arg min
v
Qr(v,w

k) with ruleRs,

wk+1 = vk+1 +
tk − 1

tk+1
(vk+1 − vk),

(15)

where t0 = 1 and tk+1 = (1 +
√

1 + 4t2k)/2.

A.1 PRELIMINARIES

To proceed, we introduce several definitions and some useful properties in variational and convex anal-
ysis. More detailed background can be found at Mordukhovich (2006); Nesterov (1998); Rockafellar
& Wets (2009); Rockafellar (1970).

Let f be a convex function, we say that f is L-smooth (gradient Lipschitz) if f is differentiable and

‖∇f(v)−∇f(w)‖2 ≤ L‖v −w‖2,
and we say f is ν-strongly convex if for any w,v ∈ dom(f)

f(w) ≥ f(v) + 〈∇f(v),w − v〉+
ν

2
‖w − v‖22.

Below of this subsection, we list several basic but useful lemmas, the proof can be found in Nesterov
(1998).
Lemma 1. If f is ν-strongly convex, then for any v ∈ dom(f) we have

f(v)− f(v∗) ≥ ν

2
‖v − v∗‖22, (16)

where v∗ is the minimizer of f .
Lemma 2. If f is L-smooth, for any w,v ∈ dom(f),

f(w) ≤ f(v) + 〈∇f(v),w − v〉+
L

2
‖w − v‖22.

15
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A.2 UNCONTROLLED BOUND OF NASGD: ANALYSIS

In this part, we denote
ṽk+1 := arg min

v
Qr(v,w

k). (17)

Lemma 3. If the constant r > 0, then

E
(
‖vk+1 − ṽk+1‖22|χk

)
≤ 2δ

r
. (18)

Proof. Note that Qr(v,wk) is strongly convex with constant r, and ṽk+1 in (17) is the minimizer of
Qr(v,w

k). With Lemma 1 we have

Qr(v
k+1,wk)−Qr(ṽk+1,wk) ≥ r

2
‖vk+1 − ṽk+1‖22. (19)

Notice that

E
[
Qr(v

k+1,wk)−Qr(ṽk+1,wk)
]

= E
[
Qr(v

k+1,wk)−min
v
Qr(v,w

k)
]
≤ δ.

The inequality (18) can be established by combining the above two inequalities.

Lemma 4. If the constant satisfy r > L, then we have

E
(
f(ṽk+1) +

r

2
‖ṽk+1 −wk‖22 − (f(vk+1) +

r

2
‖vk+1 −wk‖22)

)
(20)

≥ −τδ − r − L
2

E[‖wk − ṽk+1‖22],

where τ = L2

r(r−L) + 1.

Proof. The convexity of f gives us

0 ≤ 〈∇f(vk+1),vk+1 − ṽk+1〉+ f(ṽk+1)− f(vk+1). (21)

From the definition of the stochastic gradient ruleRs, we have

−δ ≤ E
(
Qr(ṽ

k+1,wk)−Qr(vk+1,wk)
)

(22)

= E
[
〈ṽk+1 −wk,∇f(wk)〉+

r

2
‖ṽk+1 −wk‖22

]
−

E
[
〈vk+1 −wk,∇f(wk)〉+

r

2
‖vk+1 −wk‖22

]
.

With (21) and (22), we have

−δ ≤
(
f(ṽk+1) +

r

2
‖ṽk+1 −wk‖22

)
−
(
f(vk+1) +

r

2
‖vk+1 −wk‖22

)
+ (23)

E〈∇f(wk)−∇f(ṽk+1), ṽk+1 − vk+1〉.

With the Schwarz inequality 〈a, b〉 ≤ ‖a‖
2
2

2µ + µ
2 ‖b‖22 with µ = L2

r−L , a = ∇f(vk+1)−∇f(ṽk+1)

and b = wk − ṽk+1,
〈∇f(wk)−∇f(ṽk+1), ṽk+1 − vk+1〉 (24)

≤ (r − L)

2L2
‖∇f(wk)−∇f(ṽk+1)‖22 +

L2

2(r − L)
‖vk+1 − ṽk+1‖22

≤ (r − L)

2
‖wk − ṽk+1‖22 +

L2

2(r − L)
‖vk+1 − ṽk+1‖22.

Combining (23) and (24), we have

−δ ≤ E
(
f(ṽk+1) +

r

2
‖ṽk+1 −wk‖22

)
− E

(
f(vk+1) +

r

2
‖vk+1 −wk‖22

)
(25)

+
L2

2(r − L)
E‖vk+1 − ṽk+1‖22 +

r − L
2

E‖wk − ṽk+1‖22.

By rearrangement of the above inequality (25) and using Lemma 3, we obtain the result.
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Lemma 5. If the constants satisfy r > L, then we have the following bounds

E
(
f(vk)− f(vk+1)

)
≥ r

2
E‖wk − vk+1‖22 + rE〈wk − vk, ṽk+1 −wk〉 − τδ, (26)

E
(
f(v∗)− f(vk+1)

)
≥ r

2
E‖wk − vk+1‖22 + rE〈wk − v∗, ṽk+1 −wk〉 − τδ, (27)

where τ := L2

r(r−L) + 1 and v∗ is the minimum .

Proof. With Lemma 2, we have

− f(ṽk+1) ≥ −f(wk)− 〈ṽk+1 −wk,∇f(wk)〉 − L

2
‖ṽk+1 −wk‖22. (28)

Using the convexity of f , we have

f(vk)− f(wk) ≥ 〈vk −wk,∇f(wk)〉,
i.e.,

f(vk) ≥ f(wk) + 〈vk −wk,∇f(wk)〉. (29)

According to the definition of ṽk+1 in (14), i.e.,

ṽk+1 = arg min
v
Qr(v,w

k) = arg min
v
〈v −wk,∇f(wk)〉+

r

2
‖v −wk‖22,

and the optimization condition gives

ṽk+1 = wk − 1

r
∇f(wk). (30)

Substituting (30) into (29), we obtain

f(vk) ≥ f(wk) + 〈vk −wk, r(wk − ṽk+1)〉. (31)

Direct summation of (28) and (31) gives

f(vk)− f(ṽk+1) ≥
(
r − L

2

)
‖ṽk+1 −wk‖22 + r〈wk − vk, ṽk+1 −wk〉. (32)

Summing (32) and (20), we obtain the inequality (26)

E
[
f(vk)− f(vk+1)

]
≥ r

2
E‖wk − vk+1‖22 + rE〈wk − vk, ṽk+1 −wk〉 − τδ. (33)

On the other hand, with the convexity of f , we have

f(v∗)− f(wk) ≥ 〈v∗ −wk,∇f(wk)〉 = 〈v∗ −wk, r(wk − ṽk+1)〉. (34)

The summation of (28) and (34) results in

f(v∗)− f(ṽk+1) ≥
(
r − L

2

)
‖wk − ṽk+1‖22 + r〈wk − v∗, ṽk+1 −wk〉. (35)

Summing (35) and (20), we obtain

E
(
f(v∗)− f(vk+1)

)
≥ r

2
E‖wk − vk+1‖22 + rE〈wk − v∗, ṽk+1 −wk〉 − τδ, (36)

which is the same as (27).

Theorem 3 (Uncontrolled Bound of NASGD (Theorem 1 with detailed bounded)). Let the constant
r satisfy r < L and the sequence {vk}k≥0 be generated by NASGD with stochastic gradient that has
bounded variance. By using any constant step size sk ≡ s ≤ 1/L, then we have

E[f(vk)−min
v
f(v)] ≤ (

2τδ

r
+R2)

4k

3
. (37)
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Proof. We denote
F k := E(f(vk)− f(v∗)).

By (26)× (tk − 1) + (27), we have

2[(tk − 1)F k − tkF k+1]

r
≥ tkE‖vk+1 −wk‖22 (38)

+ 2E〈ṽk+1 −wk, tkw
k − (tk − 1)vk − v∗〉 − 2τtkδ

r
.

With t2k−1 = t2k − tk, (38)× tk yields

2[t2k−1F
k − t2kF k+1]

r
≥ E‖tkvk+1 − tkwk‖22 (39)

+ 2tkE〈ṽk+1 −wk, tkw
k − (tk − 1)vk − v∗〉 − 2τt2kδ

r

Substituting a = tkv
k+1 − (tk − 1)vk − v∗ and b = tkw

k − (tk − 1)vk − v∗ into identity

‖a− b‖22 + 2〈a− b, b〉 = ‖a‖22 − ‖b‖22. (40)

It follows that

E‖tkvk+1 − tkwk‖22 + 2tkE〈ṽk+1 −wk, tkw
k − (tk − 1)vk − v∗〉 (41)

= E‖tkvk+1 − tkwk‖22 + 2tkE〈vk+1 −wk, tkw
k − (tk − 1)vk − v∗〉

+2tkE〈ṽk+1 − vk+1, tkw
k − (tk − 1)vk − v∗〉

=
(40)

E‖tkvk+1 − (tk − 1)vk − v∗‖22 − ‖tkwk − (tk − 1)vk − v∗‖22
+2tkE〈ṽk+1 − vk+1, tkw

k − (tk − 1)vk − v∗〉
= E‖tkvk+1 − (tk − 1)vk − v∗‖22 − E‖tk−1vk − (tk−1 − 1)vk−1 − v∗‖22
+ 2tkE〈ṽk+1 − vk+1, tk−1v

k − (tk−1 − 1)vk−1 − v∗〉.

In the third identity, we used the fact tkwk = tkv
k + (tk−1 − 1)(vk − vk−1). If we denote

uk = E‖tk−1vk − (tk−1 − 1)vk−1 − v∗‖22, (39) can be rewritten as

2t2kF
k+1

r
+ uk+1 ≤ 2t2k−1F

k

r
+ uk +

2τt2kδ

r
(42)

+ 2tkE〈vk+1 − ṽk+1, tk−1v
k − (tk−1 − 1)vk−1 − v∗〉

≤ 2t2kF
k

r
+ uk +

2τt2kδ

r
+ t2k−1R

2,

where we used

2tkE〈vk+1 − ṽk+1, tk−1v
k − (tk−1 − 1)vk−1 − v∗〉

≤ t2kE‖vk+1 − ṽk+1‖22 + E‖tk−1vk − (tk−1v
k − (tk−1 − 1)vk−1 − v∗)‖22

= 2t2kδ/r + t2k−1R
2.

Denoting

ξk :=
2t2k−1F

k

r
+ uk,

then, we have

ξk+1 ≤ ξ0 + (
2τδ

r
+R2)

k∑

i=1

t2i = (
2τδ

r
+R2)

k3

3
. (43)

With the fact, ξk ≥ 2t2k−1F
k

r ≥ k2F k/4, we then proved the result.
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B NAG WITH δ-INEXACT ORACLE & EXPERIMENTAL SETTINGS IN SECTION
3.1

In Devolder et al. (2014), the authors defines δ-inexact gradient oracle for convex smooth optimization
as follows:
Definition 1 (δ-Inexact Oracle). Devolder et al. (2014) For a convex L-smooth function f : Rd → R.
For ∀w ∈ Rd and exact first-order oracle returns a pair (f(w),∇f(w)) ∈ R × Rd so that for
∀v ∈ Rd we have

0 ≤ f(v)−
(
f(w) + 〈∇f(w),v −w〉

)
≤ L

2
‖w − v‖22.

A δ-inexact oracle returns a pair
(
fδ(w),∇fδ(w)

)
∈ R× Rd so that ∀v ∈ Rd we have

0 ≤ f(v)−
(
fδ(w) + 〈∇fδ(w),v −w〉

)
≤ L

2
‖w − v‖22 + δ.

We have the following convergence results of GD and NAG under a δ-Inexact Oracle for convex
smooth optimization.
Theorem 4. Devolder et al. (2014)3 Consider

min f(w), w ∈ Rd,
where f(w) is convex and L-smooth with w∗ being the minimum. Given access to δ-inexact oracle,
GD with step size 1/L returns a point wk after k steps so that

f(wk)− f(w∗) = O

(
L

k

)
+ δ.

On the other hand, NAG, with step size 1/L returns

f(wk)− f(w∗) = O

(
L

k2

)
+O(kδ).

Theorem 4 says that NAG may not robust to a δ-inexact gradient. In the following, we will study the
numerical behavior of a variety of first-order algorithms for convex smooth optimizations with the
following different inexact gradients.

Constant Variance Gaussian Noise: We consider the inexact oracle where the true gradient is
contaminated with a Gaussian noise N (0, 0.0012). We run 50K iterations of different algorithms.
For SRNAG, we restart after every 200 iterations. Fig. 2 (b) shows the iteration vs. optimal gap,
f(xk)− f(x∗), with x∗ being the minimum. NAG with the inexact gradient due to constant variance
noise does not converge. GD performs almost the same as ARNAG asymptotically, because ARNAG
restarts too often and almost degenerates into GD. GD with constant momentum outperforms the
three schemes above, and SRNAG slightly outperforms GD with constant momentum.

Decaying Variance Gaussian Noise: Again, consider minimizing (8) with the same experimen-
tal setting as before except that ∇f(x) is now contaminated with a decaying Gaussian noise
N (0, ( 0.1

bt/100c+1 )2). For SRNAG, we restart every 200 iterations in the first 10k iterations, and
restart every 400 iterations in the remaining 40K iterations. Fig. 2 (c) shows the iteration vs. optimal
gap by different schemes. ARNAG still performs almost the same as GD. The path of NAG is
oscillatory. GD with constant momentum again outperforms the previous three schemes. Here
SRNAG significantly outperforms all the other schemes.

Logisitic Regression for MNIST Classification: We apply the above schemes with stochastic
gradient to train a logistic regression model for MNIST classification LeCun & Cortes (2010). We
consider five different schemes, namely, SGD, SGD + (constant) momentum, NASGD, ASGD, and
SRSGD. In ARSGD, we perform restart based on the loss value of the mini-batch training data. In
SRSGD, we restart the NAG momentum after every 10 iterations. We train the logistic regression
model with a `2 weight decay of 10−4 by running 20 epochs using different schemes with batch
size of 128. The step sizes for all the schemes are set to 0.01. Fig. 3 (a) plots the training loss vs.
iteration. In this case, NASGD does not converge, and SGD with momentum does not speed up SGD.
ARSGD’s performance is on par with SGD’s. Again, SRSGD gives the best performance with the
smallest training loss among these five schemes.

3We adopt the result from Hardt (2014).
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C CONVERGENCE OF SRSGD

We prove the convergence of Nesterov accelerated SGD with scheduled restart, i.e., the convergence
of SRSGD. We denote that θk := tk−1

tk+1
in the Nesterov iteration and θ̂k is its use in the restart version,

i.e., SRSGD. For any restart frequency F (positive integer), we have θ̂k = θk−bk/Fc∗F . In the restart
version, we can see that

θ̂k ≤ θF =: θ̄ < 1.

Lemma 6. Let the constant satisfies r > L and the sequence {vk}k≥0 be generated by the SRSGD
with restart frequency F (any positive integer), we have

k∑

i=1

‖vi − vi−1‖22 ≤
r2kR2

(1− θ̄)2 , (44)

where θ̄ := θF < 1 and R := supx{‖∇f(x)‖2}.

Proof. It holds that

‖vk+1 −wk‖2 = ‖vk+1 − vk + vk −wk‖2 (45)

≥ ‖vk+1 − vk‖2 − ‖vk −wk‖2
≥ ‖vk+1 − vk‖2 − θ̄‖vk − vk−1‖2.

Thus,

‖vk+1 −wk‖22 ≥
(
‖vk+1 − vk‖2 − θ̄‖vk − vk−1‖2

)2
(46)

= ‖vk+1 − vk‖22 − 2θ̄‖vk − vk−1‖2‖vk − vk−1‖2 + θ̄2‖vk − vk−1‖22
≥ (1− θ̄)‖vk+1 − vk‖22 − θ̄(1− θ̄)‖vk+1 − vk‖22.

Summing (46) from k = 1 to K, we get

(1− θ̄)2
K∑

k=1

‖vk − vk−1‖22 ≤
K∑

k=1

‖vk+1 −wk‖22 ≤ r2KR2. (47)

In the following, we denote

A := {k ∈ Z+|Ef(vk) ≥ Ef(vk−1)}.
Theorem 5 (Convergence of SRSGD). (Theorem 2 with detailed bound) Suppose f(w) is L-smooth.
Consider the sequence {wk}k≥0 generated by (10) with stochastic gradient that is bounded and has
bound variance. Using any restart frequency F and any constant step size sk := s ≤ 1/L. Assume
that

∑
k∈A

(
Ef(wk+1)− Ef(wk)

)
= R̄ < +∞, then we have

min
1≤k≤K

{
E‖∇f(wk)‖22

}
≤ rR2

(1− θ̄)2
L(1 + θ̃)

2
+
rLR2

2
+
θ̃R̃

rK
. (48)

If f(w) is further convex and the set B := {k ∈ Z+|E‖wk+1 −w∗‖2 ≥ E‖wk −w∗‖2} obeys∑
k∈B

(
Ef(wk+1)− Ef(wk)

)
= R̂ < +∞, then

min
1≤k≤K

{
E
(
f(wk)− f(w∗)

)}
≤ ‖w

0 −w∗‖2 + R̂

2γk
+
γR2

2
, (49)

where w∗ is the minimum of f . To obtain ε (∀ε > 0) error, we set s = O(ε) and K = O(1/ε2).

Proof. Firstly, we show the convergence of SRSGD for nonconvex optimization. L-smoothness of f ,
i.e., Lipschitz gradient continuity, gives us

f(vk+1) ≤ f(wk) + 〈∇f(wk),vk+1 −wk〉+
L

2
‖vk+1 −wk‖22. (50)
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Taking expectation, we get

Ef(vk+1) ≤ Ef(wk)− rE‖∇f(wk)‖22 +
r2LR2

2
. (51)

On the other hand, we have

f(wk) ≤ f(vk) + θ̂k〈∇f(vk),vk − vk−1〉+
L(θ̂k)2

2
‖vk − vk−1‖22. (52)

Then, we have

Ef(vk+1) ≤ Ef(vk) + θ̂kE〈∇f(vk),vk − vk−1〉 (53)

+
L(θ̂k)2

2
E‖vk − vk−1‖22 − rE‖∇f(wk)‖22 +

r2LR2

2
.

We also have

θ̂k〈∇f(vk),vk − vk−1〉 ≤ θ̂k
(
f(vk)− f(vk−1) +

L

2
‖vk − vk−1‖22

)
. (54)

We then get that

Ef(vk+1) ≤ Ef(vk) + θ̂k
(
Ef(vk)− Ef(vk−1)

)
− rE‖∇f(wk)‖22 +Ak, (55)

where

Ak := E
L

2
‖vk − vk−1‖22 +

L(θ̂k)2

2
E‖vk − vk−1‖22 +

r2LR2

2
.

Summing the inequality gives us

Ef(vK+1) ≤ Ef(v0) + θ̃
∑

k∈A

(
Ef(vk)− Ef(vk−1)

)
(56)

− r

K∑

k=1

E‖∇f(wk)‖22 +

K∑

k=1

Ak.

It is easy to see that
θ̃
∑

k∈A

(
Ef(vk)− Ef(vk−1)

)
= θ̃R̃.

We get the result by using Lemma 6

Secondly, we prove the convergence of SRSGD for convex optimization. Let w∗ be the minimizer of
f . We have

E‖vk+1 −w∗‖22 = E‖wk − γ∇f(wk)−w∗‖22 (57)

= E‖wk −w∗‖22 − 2γE〈∇f(wk),wk −w∗〉+ γ2E‖∇f(wk)‖22
≤ E‖wk − x∗‖22 − 2γE〈∇f(wk),wk −w∗〉+ γ2R2.

We can also derive

E‖wk −w∗‖2 = E‖vk + θ̂k(vk − vk−1)−w∗‖22
= E‖vk −w∗‖22 + 2θ̂kE〈vk − vk−1,vk −w∗〉+ (θ̂k)2E‖vk − vk−1‖22
= E‖vk −w∗‖22 + θ̂kE

(
‖vk −w∗‖22 + ‖vk−1 − vk‖22 − ‖vk−1 −w∗‖22

)

+ (θ̂)2E‖vk − vk−1‖22
= E‖vk −w∗‖22 + θ̂kE

(
‖vk −w∗‖22 − ‖vk−1 −w∗‖22

)
+ 2(θ̂k)2E‖vk − vk−1‖22,

where we used the following identity

(a− b)T (a− b) =
1

2
[‖a− d‖22 − ‖a− c‖22 + ‖b− c‖22 − ‖b− d‖22].
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Then, we have

E‖vk+1 −w∗‖22 ≤ E‖vk −w∗‖22 − 2γE〈∇f(wk),wk −w∗〉+ 2(θ̂k)2E‖vk − vk−1‖22 (58)

+ r2R2 + θ̂kE(‖vk −w∗‖22 − ‖vk−1 −w∗‖22).

We then get that

2γE
(
f(wk)− f(w∗)

)
≤ E‖vk −w∗‖22 − E‖vk+1 −w∗‖22 (59)

+ θ̂k
(
E‖vk −w∗‖22 − E‖vk−1 −w∗‖22

)
+ r2R2.

Summing the inequality gives us the desired convergence result for convex optimization.

C.1 NUMERICAL VERIFICATION OF THE ASSUMPTIONS IN THEOREM 2

In this part, we numerically verify the assumptions in Theorem 2. In particular, we apply SRSGD with
learning rate 0.1 to train LeNet 4 for MNIST classification (we test on MNIST due to extremely large
computational cost). We conduct numerical verification as follows: starting from a given point w0, we
randomly sample 469 mini-batches (note in total we have 469 batches in the training data) with batch
size 128 and compute the stochastic gradient using each mini-batch. Next, we advance to the next step
with each of these 469 stochastic gradients and get the approximated Ef(w1). We randomly choose
one of these 469 positions as the updated weights of our model. By iterating the above procedure, we
can get w1,w2, · · · and Ef(w1),Ef(w2), · · · and we use these values to verify our assumptions in
Theorem 2. We set restart frequencies to be 20, 40, and 80, respectively. Figure 6 top panels plot k vs.
the cardinality of the set A := {k ∈ Z+|Ef(wk+1) ≥ Ef(wk)}, and Figure 6 bottom panels plot k
vs.
∑
k∈A

(
Ef(wk+1)− Ef(wk)

)
. Figure 6 shows that

∑
k∈A

(
Ef(wk+1)− Ef(wk)

)
converges

to a constant R̄ < +∞. We also noticed that when the training gets plateaued, E(f(wk)) still
oscillates, but the magnitude of the oscillation diminishes as iterations goes, which is consistent
with our plots that the cardinality of A increases linearly, but R̄ converges to a finite number. These
numerical results show that our assumption in Theorem 2 is reasonable.

Restart	Frequency	=	20 Restart	Frequency	=	40 Restart	Frequency	=	80

Cardinality	of	set	 A := {k 2 Z+|Ef(wk+1) � Ef(wk)}
<latexit sha1_base64="KGxFghypAjXIicc/n/Kwgjn1ES0="></latexit>

R̄ =
X

k2A

�
Ef(wk+1) � Ef(wk)

�

<latexit sha1_base64="ii5CSPWM+MBAMmZ6pU0d3YuTlng="></latexit>

Figure 6: Cardinality of the set A := {k ∈ Z+|Ef(wk+1) ≥ Ef(wk)} (Top panels) and the value
of R̄ =

∑
k∈A

(
Ef(wk+1)− Ef(wk)

)
(Bottom panels). We notice that when the training gets

plateaued, E(f(wk)) still oscillates, but the magnitude of the oscillation diminishes as iterations
goes, which is consistent with our plots that the cardinality of A increases linearly, but R̄ converges
to a finite number under different restart frequencies. These results confirm that our assumption in
Theorem 2 is reasonable.

4We used the PyTorch implementation of LeNet at https://github.com/activatedgeek/LeNet-5.
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D DATASETS AND IMPLEMENTATION DETAILS

D.1 CIFAR

The CIFAR10 and CIFAR100 datasets Krizhevsky et al. (2009) consist of 50K training images and
10K test images from 10 and 100 classes, respectively. Both training and test data are color images
of size 32× 32. We run our CIFAR experiments on Pre-ResNet-110, 290, 470, 650, and 1001 with
5 different seeds He et al. (2016b). We train each model for 200 epochs with batch size of 128 and
initial learning rate of 0.1, which is decayed by a factor of 10 at the 80th, 120th, and 160th epoch. The
weight decay rate is 5× 10−5 and the momentum for the SGD baseline is 0.9. Random cropping and
random horizontal flipping are applied to training data. Our code is modified based on the Pytorch
classification project Yang (2017),5 which was also used by Liu et al. Liu et al. (2020). We provide
the restarting frequencies for the exponential and linear scheme for CIFAR10 and CIFAR100 in
Table 7 below. Using the same notation as in the main text, we denote Fi as the restarting frequency
at the i-th learning rate.

Table 7: Restarting frequencies for CIFAR10 and CIFAR100 experiments

CIFAR10 CIFAR100

Linear schedule F1 = 30, F2 = 60, F3 = 90, F4 = 120 (r = 2) F1 = 50, F2 = 100, F3 = 150, F4 = 200 (r = 2)

Exponential schedule F1 = 40, F2 = 50, F3 = 63, F4 = 78 (r = 1.25) F1 = 45, F2 = 68, F3 = 101, F4 = 152 (r = 1.50)

D.2 IMAGENET

The ImageNet dataset contains roughly 1.28 million training color images and 50K validation color
images from 1000 classes Russakovsky et al. (2015). We run our ImageNet experiments on ResNet-
50, 101, 152, and 200 with 5 different seeds. Following He et al. (2016a;b), we train each model for
90 epochs with a batch size of 256 and decrease the learning rate by a factor of 10 at the 30th and 60th
epoch. The initial learning rate is 0.1, the momentum is 0.9, and the weight decay rate is 1× 10−5.
Random 224× 224 cropping and random horizontal flipping are applied to training data. We use the
official Pytorch ResNet implementation Paszke et al. (2019),6 and run our experiments on 8 Nvidia
V100 GPUs. We report single-crop top-1 and top-5 errors of our models. In our experiments, we set
F1 = 40 at the 1st learning rate, F2 = 80 at the 2nd learning rate, and F3 is linearly decayed from 80
to 1 at the 3rd learning rate (see Table 8).

Table 8: Restarting frequencies for ImageNet experiments

ImageNet

Linear schedule F1 = 40, F2 = 80, F3: linearly decayed from 80 to 1 in the last 30 epochs

D.3 TRAINING IMAGENET IN FEWER NUMBER OF EPOCHS:

Table 9 contains the learning rate and restarting frequency schedule for our experiments on training
ImageNet in fewer number of epochs, i.e. the reported results in Table 6 in the main text. Other
settings are the same as in the full-training ImageNet experiments described in Section D.2 above.

Additional Implementation Details: Implementation details for the ablation study of error rate vs.
reduction in epochs and the ablation study of impact of restarting frequency are provided in Section F
and G below.

D.4 DETAILS ON RESTARTING HYPER-PARAMETERS SEARCH

In our CIFAR10 and CIFAR100 experiments, for both linear and exponential schedule, we conduct
hyperparameter searches over the restarting frequencies using our smallest model, Pre-ResNet-110,

5Implementation available at https://github.com/bearpaw/pytorch-classification
6Implementation available at https://github.com/pytorch/examples/tree/master/imagenet
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Table 9: Learning rate and restarting frequency schedule for ImageNet short training, i.e. Table 6 in
the main text.

ImageNet

ResNet-50 Decrease the learning rate by a factor of 10 at the 30th and 56th epoch. Train for a total of 80 epochs.

F1 = 60, F2 = 105, F3: linearly decayed from 105 to 1 in the last 24 epochs

ResNet-101 Decrease the learning rate by a factor of 10 at the 30th and 56th epoch. Train for a total of 80 epochs.

F1 = 40, F2 = 80, F3: linearly decayed from 80 to 1 in the last 24 epochs

ResNet-152 Decrease the learning rate by a factor of 10 at the 30th and 51th epoch. Train for a total of 75 epochs.

F1 = 40, F2 = 80, F3: linearly decayed from 80 to 1 in the last 24 epochs

ResNet-200 Decrease the learning rate by a factor of 10 at the 30th and 46th epoch. Train for a total of 60 epochs.

F1 = 40, F2 = 80, F3: linearly decayed from 80 to 1 in the last 14 epochs

making choices based on final validation performance. The same chosen restarting frequencies are
applied for all models including Pre-ResNet-110, 290, 470, 650, and 1001. In particular, we use
10,000 images from the original training set as a validation set. This validation set contains 1,000 and
100 images from each class for CIFAR10 and CIFAR100, respectively. We first train Pre-ResNet-110
on the remaining 40,000 training images and use the performance on the validation set averaged over
5 random seeds to select the initial restarting frequency F1 and the growth rate r. Both F1 and r
are selected using grid search from the sets of {20, 25, 30, 35, 40, 45, 50} and {1, 1.25, 1.5, 1.75, 2},
respectively. We then train all models including Pre-ResNet-110, 290, 470, 650, and 1001 on all
50,000 training images using the selected values of F1 and r and report the results on the test set
which contains 10,000 test images. The reported test performance is averaged over 5 random seeds.
We also use the same selected values of F1 and r for our short training experiments in Section 4.3.

For ImageNet experiments, we use linear scheduling and sweep over the initial restarting frequency
F1 and the growth rate r in the set of {20, 30, 40, 50, 60} and {1, 1.25, 1.5, 1.75, 2}, respectively. We
select the values of F1 = 40 and r = 2 which have the highest final validation accuracy averaged
over 5 random seeds. Same as in CIFAR10 and CIFAR100 experiments, we select F1 and r using
our smallest model, ResNet-50, and apply the same selected hyperparameter values for all models
including ResNet-50, 101, 152, and 200. We also use the same selected values of F1 and r for our
short training experiments in Section 4.3. However, for ResNet-50, we observe that F1 = 60 and
r = 1.75 yields better performance in short training. All reported results are averaged over 5 random
seeds.

E SRSGD VS. SGD AND SGD + NM ON IMAGENET CLASSIFICATION AND
OTHER TASKS

E.1 COMPARING WITH SGD WITH NESTEROV MOMENTUM ON IMAGENET CLASSIFICATION

In this section, we compare SRSGD with SGD with Nesterov constant momentum (SGD + NM) in
training ResNets for ImageNet classification. All hyper-parameters of SGD with constant Nesterov
momentum used in our experiments are the same as those of SGD described in section D.2. We list
the results in Table 10. Again, SRSGD remarkably outperforms SGD + NM in training ResNets for
ImageNet classification, and as the network goes deeper the improvement becomes more significant.

E.2 LONG SHORT-TERM MEMORY (LSTM) TRAINING FOR PIXEL-BY-PIXEL MNIST

In this task, we examine the advantage of SRSGD over SGD and SGD with Nesterov Momentum in
training recurrent neural networks. In our experiments, we use an LSTM with different numbers of
hidden units (128, 256, and 512) to classify samples from the well-known MNIST dataset LeCun &
Cortes (2010). We follow the implementation of Le et al. (2015) and feed each pixel of the image into
the RNN sequentially. In addition, we choose a random permutation of 28× 28 = 784 elements at
the beginning of the experiment. This fixed permutation is applied to training and testing sequences.
This task is known as permuted MNIST classification, which has become standard to measure the
performance of RNNs and their ability to capture long term dependencies.

24



Under review as a conference paper at ICLR 2021

Table 10: Single crop validation errors (%) on ImageNet of ResNets trained with SGD + NM and
SRSGD. We report the results of SRSGD with the increasing restarting frequency in the first two
learning rates. In the last learning rate, the restarting frequency is linearly decreased from 70 to 1.
For baseline results, we also include the reported single-crop validation errors He et al. (2016c) (in
parentheses).

Network # Params SGD + NM SRSGD Improvement

top-1 top-5 top-1 top-5 top-1 top-5

ResNet-50 25.56M 24.27± 0.07 7.17± 0.07 23.85± 0.0923.85± 0.0923.85± 0.09 7.10± 0.097.10± 0.097.10± 0.09 0.42 0.07

ResNet-101 44.55M 22.32± 0.05 6.18± 0.05 22.06± 0.1022.06± 0.1022.06± 0.10 6.09± 0.076.09± 0.076.09± 0.07 0.26 0.09

ResNet-152 60.19M 21.77± 0.14 5.86± 0.09 21.46± 0.0721.46± 0.0721.46± 0.07 5.69± 0.035.69± 0.035.69± 0.03 0.31 0.17

ResNet-200 64.67M 21.98± 0.22 5.99± 0.20 20.93± 0.1320.93± 0.1320.93± 0.13 5.57± 0.055.57± 0.055.57± 0.05 1.05 0.42

Implementation and Training Details: For the LSTM model, we initialize the forget bias to 1 and
other biases to 0. All weights matrices are initialized orthogonally except for the hidden-to-hidden
weight matrices, which are initialized to be identity matrices. We train each model for 350 epochs
with the initial learning rate of 0.01. The learning rate was reduced by a factor of 10 at epoch 200
and 300. The momentum is set to 0.9 for SGD with standard and Nesterov constant momentum. The
restart schedule for SRSGD is set to 90, 30, 90 . The restart schedule changes at epoch 200 and 300.
In all experiments, we use batch size 128 and the gradients are clipped so that their L2 norm are at
most 1. Our code is based on the code from the exponential RNN’s Github.7

Results: Our experiments corroborate the superiority of SRSGD over the two baselines. SRSGD
yields much smaller test error and converges faster than SGD with standard and Nesterov constant
momentum across all settings with different number of LSTM hidden units. We summarize our
results in Table 11 and Figure 7.

Table 11: Test errors (%) on Permuted MNIST of trained with SGD, SGD + NM and SRSGD. The
LSTM model has 128 hidden units. In all experiments, we use the initial learning rate of 0.01, which
is reduced by a factor of 10 at epoch 200 and 300. All models are trained for 350 epochs. The
momentum for SGD and SGD + NM is set to 0.9. The restart schedule in SRSGD is set to 90, 30,
and 90.

Network No. Hidden Units SGD SGD + NM SRSGD Improvement over SGD/SGD + NM

LSTM 128 10.10± 0.57 9.75± 0.69 8.61± 0.308.61± 0.308.61± 0.30 1.49/1.14
LSTM 256 10.42± 0.63 10.09± 0.61 9.03± 0.239.03± 0.239.03± 0.23 1.39/1.06
LSTM 512 10.04± 0.35 9.55± 1.09 8.49± 1.598.49± 1.598.49± 1.59 1.55/1.06

Beyond	DNNs:	Training	LSTM	on	PMNIST		
Table 10: Test errors (%) on Permuted MNIST of trained with SGD, SGD + NM and SRSGD. The
LSTM model has 128 hidden units. In all experiments, we use the initial learning rate of 0.01, which
is reduced by a factor of 10 at epoch 200 and 300. All models are trained for 350 epochs. The
momentum for SGD and SGD + NM is set to 0.9. The restart schedule in SRSGD is set to 90, 30,
and 90.
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LSTM 256 10.42 ± 0.63 10.09 ± 0.61 9.03 ± 0.239.03 ± 0.239.03 ± 0.23 1.39/1.06
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Figure 6: Training loss vs. training iterations of LSTM trained with SGD (red), SGD + NM (green),
and SRSGD (blue) for PMNIST classification tasks.

We evaluate our models using the discriminator’s loss, i.e. the Earth Moving distance estimate, since572

in WGAN lower discriminator loss and better sample quality are correlated [2].573

Implementation and Training Details: The detailed implementations of our generator and discrim-574

inator are given below. For the generator, we set latent dim to 100 and d to 32. For the discriminator,575

we set d to 32. We train each model for 350 epochs with the initial learning rate of 0.01. The learning576

rate was reduced by a factor of 10 at epoch 200 and 300. The momentum is set to 0.9 for SGD with577

standard and Nesterov constant momentum. The restart schedule for SRSGD is set to 60, 120, 180.578

The restart schedule changes at epoch 200 and 300. In all experiments, we use batch size 64. Our579

code is based on the code from the Pytorch WGAN-GP Github.8580

i m p o r t t o r c h581

i m p o r t t o r c h . nn as nn582

583

c l a s s G e n e r a t o r ( nn . Module ) :584

d e f i n i t ( s e l f , l a t e n t d i m , d =32) :585

s u p e r ( ) . i n i t ( )586

s e l f . n e t = nn . S e q u e n t i a l (587

nn . ConvTranspose2d ( l a t e n t d i m , d ⇤ 8 , 4 , 1 , 0 ) ,588

nn . BatchNorm2d ( d ⇤ 8) ,589

nn . ReLU( True ) ,590

591

nn . ConvTranspose2d ( d ⇤ 8 , d ⇤ 4 , 4 , 2 , 1 ) ,592

nn . BatchNorm2d ( d ⇤ 4) ,593

nn . ReLU( True ) ,594

595

nn . ConvTranspose2d ( d ⇤ 4 , d ⇤ 2 , 4 , 2 , 1 ) ,596

nn . BatchNorm2d ( d ⇤ 2) ,597

nn . ReLU( True ) ,598

599

nn . ConvTranspose2d ( d ⇤ 2 , 1 , 4 , 2 , 1 ) ,600

8Implementation available at https://github.com/arturml/pytorch-wgan-gp
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Figure 7: Training loss vs. training iterations of LSTM trained with SGD (red), SGD + NM (green),
and SRSGD (blue) for PMNIST classification tasks.

E.3 WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS (WGAN) TRAINING ON MNIST

We investigate the advantage of SRSGD over SGD with standard and Nesterov momentum in training
deep generative models. In our experiments, we train a WGAN with gradient penalty Gulrajani

7Implementation available at https://github.com/Lezcano/expRNN
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et al. (2017) on MNIST. We evaluate our models using the discriminator’s loss, i.e. the Earth
Moving distance estimate, since in WGAN lower discriminator loss and better sample quality are
correlated Arjovsky et al. (2017).

Implementation and Training Details: The detailed implementations of our generator and discrim-
inator are given below. For the generator, we set latent dim to 100 and d to 32. For the discriminator,
we set d to 32. We train each model for 350 epochs with the initial learning rate of 0.01. The learning
rate was reduced by a factor of 10 at epoch 200 and 300. The momentum is set to 0.9 for SGD with
standard and Nesterov constant momentum. The restart schedule for SRSGD is set to 60, 120, 180.
The restart schedule changes at epoch 200 and 300. In all experiments, we use batch size 64. Our
code is based on the code from the Pytorch WGAN-GP Github.8

i m p o r t t o r c h
i m p o r t t o r c h . nn as nn

c l a s s G e n e r a t o r ( nn . Module ) :
d e f i n i t ( s e l f , l a t e n t d i m , d =32) :

s u p e r ( ) . i n i t ( )
s e l f . n e t = nn . S e q u e n t i a l (

nn . ConvTranspose2d ( l a t e n t d i m , d ∗ 8 , 4 , 1 , 0 ) ,
nn . BatchNorm2d ( d ∗ 8) ,
nn . ReLU( True ) ,

nn . ConvTranspose2d ( d ∗ 8 , d ∗ 4 , 4 , 2 , 1 ) ,
nn . BatchNorm2d ( d ∗ 4) ,
nn . ReLU( True ) ,

nn . ConvTranspose2d ( d ∗ 4 , d ∗ 2 , 4 , 2 , 1 ) ,
nn . BatchNorm2d ( d ∗ 2) ,
nn . ReLU( True ) ,

nn . ConvTranspose2d ( d ∗ 2 , 1 , 4 , 2 , 1 ) ,
nn . Tanh ( )

)
d e f f o r w a r d ( s e l f , x ) :

r e t u r n s e l f . n e t ( x )

c l a s s D i s c r i m i n a t o r ( nn . Module ) :
d e f i n i t ( s e l f , d =32) :

s u p e r ( ) . i n i t ( )
s e l f . n e t = nn . S e q u e n t i a l (

nn . Conv2d ( 1 , d , 4 , 2 , 1 ) ,
nn . Ins tanceNorm2d ( d ) ,
nn . LeakyReLU ( 0 . 2 ) ,

nn . Conv2d ( d , d ∗ 2 , 4 , 2 , 1 ) ,
nn . Ins tanceNorm2d ( d ∗ 2) ,
nn . LeakyReLU ( 0 . 2 ) ,

nn . Conv2d ( d ∗ 2 , d ∗ 4 , 4 , 2 , 1 ) ,
nn . Ins tanceNorm2d ( d ∗ 4) ,
nn . LeakyReLU ( 0 . 2 ) ,

nn . Conv2d ( d ∗ 4 , 1 , 4 , 1 , 0 ) ,
)

d e f f o r w a r d ( s e l f , x ) :
o u t p u t s = s e l f . n e t ( x )
r e t u r n o u t p u t s . s q u e e z e ( )

Results: Our SRSGD is still better than both the baselines. SRSGD achieves smaller discriminator
loss, i.e. Earth Moving distance estimate, and converges faster than SGD with standard and Nesterov
constant momentum. We summarize our results in Table 12 and Figure 8. We also demonstrate the

8Implementation available at https://github.com/arturml/pytorch-wgan-gp
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digits generated by the trained WGAN in Figure 9. By visually evaluation, we observe that samples
generated by the WGAN trained with SRSGD look slightly better than those generated by the WGAN
trained with SGD with standard and Nesterov constant momentum.

Table 12: Discriminator loss (i.e. Earth Moving distance estimate) of the WGAN with gradient
penalty trained on MNIST with SGD, SGD + NM and SRSGD. In all experiments, we use the initial
learning rate of 0.01, which is reduced by a factor of 10 at epoch 200 and 300. All models are trained
for 350 epochs. The momentum for SGD and SGD + NM is set to 0.9. The restart schedule in
SRSGD is set to 60, 120, and 180.

Task SGD SGD + NM SRSGD Improvement over SGD/SGD + NM
MNIST 0.71± 0.10 0.58± 0.03 0.44± 0.060.44± 0.060.44± 0.06 0.27/0.14

Beyond	DNNs:	Training	WGAN	on	MNIST

nn . Tanh ( )601
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nn . LeakyReLU ( 0 . 2 ) ,612

613
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617
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621
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)623
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Results: Our SRSGD is still better than both the baselines. SRSGD achieves smaller discriminator627

loss, i.e. Earth Moving distance estimate, and converges faster than SGD with standard and Nesterov628

constant momentum. We summarize our results in Table 11 and Figure 7. We also demonstrate the629

digits generated by the trained WGAN in Figure 8. By visually evaluation, we observe that samples630

generated by the WGAN trained with SRSGD look slightly better than those generated by the WGAN631

trained with SGD with standard and Nesterov constant momentum.

Table 11: Discriminator loss (i.e. Earth Moving distance estimate) of the WGAN with gradient
penalty trained on MNIST with SGD, SGD + NM and SRSGD. In all experiments, we use the initial
learning rate of 0.01, which is reduced by a factor of 10 at epoch 200 and 300. All models are trained
for 350 epochs. The momentum for SGD and SGD + NM is set to 0.9. The restart schedule in
SRSGD is set to 60, 120, and 180.

Task SGD SGD + NM SRSGD Improvement over SGD/SGD + NM
MNIST 0.71 ± 0.10 0.58 ± 0.03 0.44 ± 0.060.44 ± 0.060.44 ± 0.06 0.27/0.14

632

F Error Rate vs. Reduction in Training Epochs633

F.1 Implementation Details634

CIFAR10 (Figure 4, left, in the main text) and CIFAR100 (Figure 10 in this Appendix): Except635

for learning rate schedule, we use the same setting described in Section D.1 above and Section 4.1 in636

the main text. Table 12 contains the learning rate schedule for each number of epoch reduction in637

Figure 4 (left) in the main text and Figure 10 below.638

ImageNet (Figure 4, right, in the main text): Except for the total number of training epochs, other639

settings are similar to experiments for training ImageNet in fewer number of epochs described in640

Section D.3. In particular, the learning rate and restarting frequency schedule still follow those in641

Table 8 above. We examine different numbers of training epochs: 90 (0 epoch reduction), 80 (10642

epochs reduction), 75 (15 epochs reduction), 70 (20 epochs reduction), 65 (25 epochs reduction), and643

60 (30 epochs reduction).644

F.2 Additional Experimental Results645

Figure 9 shows error rate vs. reduction in epochs for all models trained on CIFAR10 and ImageNet.646

It is a more complete version of Figure 4 in the main text. Table 13 and Table 14 provide detailed test647

errors vs. number of training epoch reduction reported in Figure 4 and Figure 9 . We also conduct an648
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Figure 8: Earth Moving distance estimate (i.e. discriminator loss) vs. training epochs of WGAN with
gradient penalty trained with SGD (red), SGD + NM (green), and SRSGD (blue) on MNIST.

SGD SGD + NM SRSGD
Figure 9: MNIST digits generated by WGAN trained with gradient penalty by SGD (left), SGD +
NM (middle), and SRSGD (right).

F ERROR RATE VS. REDUCTION IN TRAINING EPOCHS

F.1 IMPLEMENTATION DETAILS

CIFAR10 (Figure 4, left, in the main text) and CIFAR100 (Figure 11 in this Appendix): Except
for learning rate schedule, we use the same setting described in Section D.1 above and Section 4.1 in
the main text. Table 13 contains the learning rate schedule for each number of epoch reduction in
Figure 4 (left) in the main text and Figure 11 below.

ImageNet (Figure 4, right, in the main text): Except for the total number of training epochs, other
settings are similar to experiments for training ImageNet in fewer number of epochs described in
Section D.3. In particular, the learning rate and restarting frequency schedule still follow those in
Table 9 above. We examine different numbers of training epochs: 90 (0 epoch reduction), 80 (10
epochs reduction), 75 (15 epochs reduction), 70 (20 epochs reduction), 65 (25 epochs reduction), and
60 (30 epochs reduction).

27



Under review as a conference paper at ICLR 2021

Table 13: Learning rate (LR) schedule for the ablation study of error rate vs. reduction in training
epochs for CIFAR10 experiments, i.e. Figure 4 in the main text and for CIFAR100 experiments, i.e.
Figure 11 in this Appendix.

#of Epoch Reduction LR Schedule

0 Decrease the LR by a factor of 10 at the 80th, 120th and 160th epoch. Train for a total of 200 epochs.

15 Decrease the LR by a factor of 10 at the 80th, 115th and 150th epoch. Train for a total of 185 epochs.

30 Decrease the LR by a factor of 10 at the 80th, 110th and 140th epoch. Train for a total of 170 epochs.

45 Decrease the LR by a factor of 10 at the 80th, 105th and 130th epoch. Train for a total of 155 epochs.

60 Decrease the LR by a factor of 10 at the 80th, 100th and 120th epoch. Train for a total of 140 epochs.

75 Decrease the LR by a factor of 10 at the 80th, 95th and 110th epoch. Train for a total of 125 epochs.

90 Decrease the LR by a factor of 10 at the 80th, 90th and 100th epoch. Train for a total of 110 epochs.

100 Decrease the LR by a factor of 10 at the 80th, 90th and 95th epoch. Train for a total of 100 epochs.

Table 14: Classification test error (%) of SGD short training (100 epochs), SGD full training (200
epochs), SRSGD short training (100 epochs), and SRSGD full training (200 epochs) on CIFAR10.
SGD short training yields much worse test errors than the others while SRSGD short training yields
either comparable or even better results than SGD full training.

Network SGD short training SGD full training SRSGD short training SRSGD full training

Pre-ResNet-110 6.36± 0.12 5.25± 0.14 5.43± 0.18 4.93± 0.13

Pre-ResNet-290 5.81± 0.10 5.05± 0.23 4.83± 0.11 4.37± 0.15

Pre-ResNet-470 5.59± 0.19 4.92± 0.10 4.64± 0.17 4.18± 0.09

Table 15: Classification test error (%) of SGD short training (100 epochs), SGD full training (200
epochs), SRSGD short training (100 epochs), and SRSGD full training (200 epochs) on CIFAR100.
SGD short training yields worse test errors than the others while SRSGD short training yields either
comparable or even better results than SGD full training.

Network SGD short training SGD full training SRSGD short training SRSGD full training

Pre-ResNet-110 24.34± 0.21 23.75± 0.20 23.85± 0.19 23.49± 0.23

Pre-ResNet-290 22.70± 0.25 21.78± 0.21 21.77± 0.43 21.49± 0.27

Pre-ResNet-470 22.43± 0.18 21.43± 0.30 21.42± 0.19 20.71± 0.32

F.2 SHORT TRAINING ON CIFAR10/CIFAR100 USING SGD

For better comparison between SRSGD training using fewer epochs and SGD full training, we also
conduct experiments with SGD training using fewer epochs on CIFAR10 and CIFAR100. Table 14
and 15 compares SRSGD short training using 100 epoch, SGD short training using 100 epochs,
SRSGD full training using 200 epochs, and SGD full training using 200 epochs for Pre-ResNet-110,
290, and 470 on CIFAR10 and CIFAR100, respectively. The learning rate schedule for SGD short
training using 100 epochs is the same as the learning rate schedule for SRSGD short training using
100 epoch given in Section 4 and in Table 13 above. In particular, for both SGD and SRSGD training
using 100 epochs, we decrease the learning rate by a factor of 10 at the 80th, 90th, and 95th epoch.
We observe that SGD short training has the worst performance compared to the others while SRSGD
short training yields either comparable or even better results than SGD full training.

F.3 ADDITIONAL EXPERIMENTAL RESULTS

Figure 10 shows error rate vs. reduction in epochs for all models trained on CIFAR10 and ImageNet.
It is a more complete version of Figure 4 in the main text. Table 16 and Table 17 provide detailed test
errors vs. number of training epoch reduction reported in Figure 4 and Figure 10 . We also conduct an
additional ablation study of error rate vs. reduction in epochs for CIFAR100 and include the results
in Figure 11 and Table 18 below.
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Figure 10: Test error vs. number of training epochs. Dashed lines are test errors of SGD trained
in 200 epochs for CIFAR10 and 90 epochs for ImageNet. For CIFAR, SRSGD with fewer epochs
achieves comparable results to SRSGD with 200 epochs. For ImageNet, training with less epochs
slightly decreases the performance of SRSGD but still achieves comparable results to 200-epoch
SGD.

Table 16: Test error vs. number of training epochs for CIFAR10

Network 110 (90 less) 125 (75 less) 140 (60 less) 155 (45 less) 170 (30 less) 185 (15 less) 200 (full trainings)

Pre-ResNet-110 5.37± 0.11 5.27± 0.17 5.15± 0.09 5.09± 0.14 4.96± 0.14 4.96± 0.13 4.93± 0.134.93± 0.134.93± 0.13

Pre-ResNet-290 4.80± 0.14 4.71± 0.13 4.58± 0.11 4.45± 0.09 4.43± 0.09 4.44± 0.11 4.37± 0.154.37± 0.154.37± 0.15

Pre-ResNet-470 4.52± 0.16 4.43± 0.12 4.29± 0.11 4.33± 0.07 4.23± 0.12 4.18± 0.094.18± 0.094.18± 0.09 4.18± 0.094.18± 0.094.18± 0.09

Pre-ResNet-650 4.35± 0.10 4.24± 0.05 4.22± 0.15 4.10± 0.15 4.12± 0.14 4.02± 0.05 4.00± 0.074.00± 0.074.00± 0.07

Pre-ResNet-1001 4.23± 0.19 4.13± 0.12 4.08± 0.15 4.10± 0.09 3.93± 0.11 4.06± 0.14 3.87± 0.073.87± 0.073.87± 0.07

Table 17: Top 1 single crop validation error vs. number of training epochs for ImageNet

Network 60 (30 less) 65 (25 less) 70 (20 less) 75 (15 less) 80 (10 less) 90 (full trainings)

ResNet-50 25.42± 0.42 25.02± 0.15 24.77± 0.14 24.38± 0.01 24.30± 0.21 23.85± 0.0923.85± 0.0923.85± 0.09

ResNet-101 23.11± 0.10 22.79± 0.01 22.71± 0.21 22.56± 0.10 22.44± 0.03 22.06± 0.1022.06± 0.1022.06± 0.10

ResNet-152 22.28± 0.20 22.12± 0.04 21.97± 0.04 21.79± 0.07 21.70± 0.07 21.46± 0.0721.46± 0.0721.46± 0.07

ResNet-200 21.92± 0.17 21.69± 0.20 21.64± 0.03 21.45± 0.06 21.30± 0.03 20.93± 0.1320.93± 0.1320.93± 0.13

Table 18: Test error vs. number of training epochs for CIFAR100

Network 110 (90 less) 125 (75 less) 140 (60 less) 155 (45 less) 170 (30 less) 185 (15 less) 200 (full trainings)

Pre-ResNet-110 24.06± 0.26 23.82± 0.24 23.82± 0.28 23.58± 0.18 23.69± 0.21 23.73± 0.34 23.49± 0.2323.49± 0.2323.49± 0.23

Pre-ResNet-290 21.96± 0.45 21.77± 0.21 21.67± 0.37 21.56± 0.33 21.38± 0.4421.38± 0.4421.38± 0.44 21.47± 0.32 21.49± 0.27

Pre-ResNet-470 21.35± 0.17 21.25± 0.17 21.21± 0.18 21.09± 0.28 20.87± 0.28 20.81± 0.32 20.71± 0.3220.71± 0.3220.71± 0.32

Pre-ResNet-650 21.18± 0.27 20.95± 0.13 20.77± 0.31 20.61± 0.19 20.57± 0.13 20.47± 0.07 20.36± 0.2520.36± 0.2520.36± 0.25

Pre-ResNet-1001 20.27± 0.17 20.03± 0.13 20.05± 0.22 19.74± 0.18 19.71± 0.22 19.67± 0.2219.67± 0.2219.67± 0.22 19.75± 0.11

G IMPACT OF RESTARTING FREQUENCY FOR IMAGENET AND CIFAR100

G.1 IMPLEMENTATION DETAILS

For the CIFAR10 experiments on Pre-ResNet-290 in Figure 5 in the main text, as well as the
CIFAR100 and ImageNet experiments in Figure 14 and 15 in this Appendix, we vary the initial
restarting frequency F1. Other settings are the same as described in Section D above.
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Figure 11: Test error vs. number of epoch reduction in CIFAR100 training. The dashed lines are
test errors of the SGD baseline. For CIFAR100, SRSGD training with fewer epochs can achieve
comparable results to SRSGD training with full 200 epochs. In some cases, such as with Pre-ResNet-
290 and 1001, SRSGD training with fewer epochs achieves even better results than SRSGD training
with full 200 epochs.
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Figure 12: Training loss (left) and test error (right) of Pre-ResNet-110 trained on CIFAR10 with
different growth rate r (linear schedule). Here, we fix the initial restarting frequency F1 = 30 for all
trainings. Increasing the restarting frequency during training yields better results than decreasing the
restarting frequency, but increasing the restarting frequency too fast and too much also diminishes the
performance of SRSGD.

G.2 IMPACT OF THE GROWTH RATE r

We do an ablation study for the growth rate r to understand its impact on the behavior of SRSGD. We
choose a case study of training a Pre-ResNet-110 on CIFAR10 using SRSGD with a linear schedule
scheme for the restarting frequency. We fix the initial restarting frequency F1 = 30 and vary the
growth rate r. We choose r from the set of {0.7, 1.0, 2.0, 10.0}. These values of r represent four
different scenarios. When r = 0.7, the restarting frequency decreases every time the learning rate is
reduced by a factor of 10. When r = 1.0, the restarting frequency stays constant during the training.
When r = 2.0, the restarting frequency increases every time the learning rate is reduced by a factor
of 10. Finally, when r = 10.0, it is similar to when r = 2.0, but the restarting frequency increases
much faster and to larger values. Figure 12 summarizes the results of our ablation study. We observe
that for CIFAR10, decreasing the restarting frequency or keeping it constant during training yields
worse results than increasing the restarting frequency. However, increasing the restarting frequency
too much also diminishes the performance of SRSGD.

30



Under review as a conference paper at ICLR 2021

G.3 ADDITIONAL EXPERIMENTAL RESULTS

To complete our study on the impact of restarting frequency in Section 5.2 in the main text, we
examine the case of CIFAR100 and ImageNet in this section. We summarize our results in Figure 14
and 15 below. Also, Figure 13 is a more detailed version of Figure 5 in the main text.
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Figure 13: Training loss (left) and test error (right) of Pre-ResNet-290 trained on CIFAR10 with
different initial restarting frequencies F1 (linear schedule). SRSGD with small F1 approximates
SGD without momentum, while SRSGD with large F1 approximates NASGD.The training loss curve
and test accuracy of NASGD are shown in red and confirm the result of Theorem 1 that NASGD
accumulates error due to the stochastic gradients.
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Figure 14: Training loss and test error of Pre-ResNet-290 trained on CIFAR100 with different
initial restarting frequencies F1 (linear schedule). SRSGD with small F1 approximates SGD without
momentum, while SRSGD with large F1 approximates NASGD. The training loss curve and test
accuracy of NASGD are shown in red and confirm the result of Theorem 1 that NASGD accumulates
error due to the stochastic gradients.
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Figure 15: Training loss and test error of ResNet-101 trained on ImageNet with different initial
restarting frequencies F1. We use linear schedule and linearly decrease the restarting frequency to
1 at the last learning rate. SRSGD with small F1 approximates SGD without momentum, while
SRSGD with large F1 approximates NASGD.
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H FULL TRAINING WITH LESS EPOCHS AT THE INTERMEDIATE LEARNING
RATES

We explore SRSGD full training (200 epochs on CIFAR and 90 epochs on ImageNet) with less
number of epochs at the intermediate learning rates and report the results in Table 19, 20, 21 and
Figure 16, 17, 18 below. The settings and implementation details here are similar to those in Section F,
but using all 200 epochs for CIFAR experiments and 90 epochs for ImageNet experiments.
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Figure 16: Test error when using new learning rate schedules with less training epochs at the 2nd and
3rd learning rate for CIFAR10. We still train in full 200 epochs in this experiment. On the x-axis, 10,
for example, means we reduce the number of training epochs by 10 at each intermediate learning rate,
i.e. the 2nd and 3rd learning rate. The dashed lines are test errors of the SGD baseline.

Table 19: Test error when using new learning rate schedules with less training epochs at the 2nd
and 3rd learning rate for CIFAR10. We still train in full 200 epochs in this experiment. In the table,
80-90-100, for example, means we reduce the learning rate by factor of 10 at the 80th, 90th, and
100th epoch.

Network 80 - 90 - 100 80 - 95 - 110 80 - 100 - 120 80 - 105 - 130 80 - 110 - 140 80 - 115 - 150 80 - 120 - 160

Pre-ResNet-110 5.32± 0.14 5.24± 0.17 5.11± 0.13 5.04± 0.15 4.92± 0.154.92± 0.154.92± 0.15 4.95± 0.12 4.93± 0.13

Pre-ResNet-290 4.73± 0.13 4.67± 0.12 4.53± 0.10 4.40± 0.11 4.42± 0.09 4.42± 0.10 4.37± 0.154.37± 0.154.37± 0.15

Pre-ResNet-470 4.48± 0.16 4.34± 0.10 4.25± 0.12 4.28± 0.10 4.19± 0.10 4.14± 0.074.14± 0.074.14± 0.07 4.18± 0.09

Pre-ResNet-650 4.25± 0.13 4.12± 0.06 4.13± 0.09 4.03± 0.11 4.04± 0.11 4.04± 0.04 4.00± 0.074.00± 0.074.00± 0.07

Pre-ResNet-1001 4.14± 0.18 4.06± 0.12 4.04± 0.15 4.08± 0.09 3.92± 0.13 4.05± 0.14 3.87± 0.073.87± 0.073.87± 0.07

Table 20: Test error when using new learning rate schedules with less training epochs at the 2nd and
3rd learning rate for CIFAR100. We still train in full 200 epochs in this experiment. In the table,
80-90-100, for example, means we reduce the learning rate by factor of 10 at the 80th, 90th, and
100th epoch.

Network 80 - 90 - 100 80 - 95 - 110 80 - 100 - 120 80 - 105 - 130 80 - 110 - 140 80 - 115 - 150 80 - 120 - 160

Pre-ResNet-110 23.65± 0.14 23.96± 0.26 23.97± 0.31 23.53± 0.13 23.57± 0.36 23.68± 0.24 23.49± 0.2323.49± 0.2323.49± 0.23

Pre-ResNet-290 21.94± 0.44 21.71± 0.27 21.55± 0.40 21.44± 0.31 21.37± 0.4521.37± 0.4521.37± 0.45 21.47± 0.32 21.49± 0.27

Pre-ResNet-470 21.29± 0.11 21.21± 0.14 21.17± 0.18 20.99± 0.28 20.81± 0.22 20.80± 0.31 20.71± 0.3220.71± 0.3220.71± 0.32

Pre-ResNet-650 21.11± 0.24 20.91± 0.17 20.66± 0.33 20.52± 0.18 20.51± 0.16 20.43± 0.10 20.36± 0.2520.36± 0.2520.36± 0.25

Pre-ResNet-1001 20.21± 0.15 20.00± 0.11 19.86± 0.19 19.55± 0.1919.55± 0.1919.55± 0.19 19.69± 0.21 19.60± 0.17 19.75± 0.11
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Figure 17: Test error when using new learning rate schedules with less training epochs at the 2nd and
3rd learning rate for CIFAR100. We still train in full 200 epochs in this experiment. On the x-axis,
10, for example, means we reduce the number of training epochs by 10 at each intermediate learning
rate, i.e. the 2nd and 3rd learning rate. The dashed lines are test errors of the SGD baseline.
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Figure 18: Test error when using new learning rate schedules with less training epochs at the 2nd
learning rate for ImageNet. We still train in full 90 epochs in this experiment. On the x-axis, 10, for
example, means we reduce the number of training epochs by 10 at the 2nd learning rate. The dashed
lines are test errors of the SGD baseline.

Table 21: Top 1 single crop validation error when using new learning rate schedules with less training
epochs at the 2nd learning rate for ImageNet. We still train in full 90 epochs in this experiment. In
the table, 30-40, for example, means we reduce the learning rate by factor of 10 at the 30th and 40th
epoch.

Network 30 - 40 30 - 45 30 - 50 30 - 55 30 - 60

ResNet-50 24.44± 0.16 24.06± 0.15 24.05± 0.09 23.89± 0.14 23.85± 0.0923.85± 0.0923.85± 0.09

ResNet-101 22.49± 0.09 22.51± 0.05 22.24± 0.01 22.20± 0.01 22.06± 0.1022.06± 0.1022.06± 0.10

ResNet-152 22.02± 0.01 21.84± 0.03 21.65± 0.14 21.55± 0.06 21.46± 0.0721.46± 0.0721.46± 0.07

ResNet-200 21.65± 0.02 21.27± 0.14 21.12± 0.02 21.07± 0.01 20.93± 0.1320.93± 0.1320.93± 0.13

I VISUALIZATION OF SRSGD’S TRAJECTORY

Here we visualize the training trajectory through bad minima of SRSGD, SGD with constant momen-
tum, and SGD. In particular, we train a neural net classifier on a swiss roll data as in Huang et al.
(2019) and find bad minima along its training. Each red dot in Figure 19 represents the trained model
after each 10 epochs in the training. From each red dot, we search for nearby bad local minima,
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which are the blue dots. Those bad local minima achieve good training error but bad test error. We
plots the trained models and bad local minima using PCA Wold et al. (1987) and t-SNE Maaten &
Hinton (2008) embedding. The blue color bar is for the test accuracy of bad local minima; the red
color bar is for the number of training epochs.

SGD + MomentumSGD SRSGD

PCA Embedding of the Trajectory

SGD + MomentumSGD SRSGD

t-SNE Embedding of the Trajectory

Figure 19: Trajectory through bad minima of SGD, SGD with constant momentum, and SRSGD
during the training: we train a neural net classifier and plot the iterates of SGD after each ten epoch
(red dots). We also plot locations of nearby “bad” minima with poor generalization (blue dots). We
visualize these using PCA and t-SNE embedding. The blue color bar is for the test accuracy of bad
local minima while the red color bar is for the number of training epochs. All blue dots for SGD with
constant momentum and SRSGD achieve near perfect train accuracy, but with test accuracy below
59%. All blue dots for SGD achieves average train accuracy of 73.11% and with test accuracy also
below 59%. The final iterate (yellow star) of SGD, SGD with constant momentum, and SRSGD
achieve 73.13%, 99.25%, and 100.0% test accuracy, respectively.

(CONTINUED NEXT PAGE)
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J SRSGD IMPLEMENTATION IN PYTORCH

i m p o r t t o r c h
from . o p t i m i z e r i m p o r t Op t imize r , r e q u i r e d

c l a s s SRSGD( O p t i m i z e r ) :
”””
Schedu led R e s t a r t SGD.
Args :

params ( i t e r a b l e ) : i t e r a b l e o f p a r a m e t e r s t o o p t i m i z e
o r d i c t s d e f i n i n g p a r a m e t e r g ro ups .

l r ( f l o a t ) : l e a r n i n g r a t e .
w e i g h t d e c a y ( f l o a t , o p t i o n a l ) : w e i gh t decay ( L2 p e n a l t y ) (

d e f a u l t : 0 )
i t e r c o u n t ( i n t e g e r ) : c o u n t t h e i t e r a t i o n s mod 200

Example :
>>> o p t i m i z e r = t o r c h . opt im . SRSGD( model . p a r a m e t e r s ( ) , l r = 0 . 1 ,

w e i g h t d e c a y =5e−4, i t e r c o u n t =1)
>>> o p t i m i z e r . z e r o g r a d ( )
>>> l o s s f n ( model ( i n p u t ) , t a r g e t ) . backward ( )
>>> o p t i m i z e r . s t e p ( )
>>> i t e r c o u n t = o p t i m i z e r . u p d a t e i t e r ( )

Formula :
v { t +1} = p t − l r ∗ g t
p { t +1} = v { t +1} + ( i t e r c o u n t ) / ( i t e r c o u n t +3) ∗ ( v { t +1} − v t )

”””
d e f i n i t ( s e l f , params , l r = r e q u i r e d , w e i g h t d e c a y = 0 . ,

i t e r c o u n t =1 , r e s t a r t i n g i t e r =100) :
i f l r i s n o t r e q u i r e d and l r < 0 . 0 :

r a i s e V a l u e E r r o r ( ” I n v a l i d l e a r n i n g r a t e : {} ” . f o r m a t ( l r ) )
i f w e i g h t d e c a y < 0 . 0 :

r a i s e V a l u e E r r o r ( ” I n v a l i d w e i g h t d e c a y v a l u e : {} ” . f o r m a t (
w e i g h t d e c a y ) )

i f i t e r c o u n t < 1 :
r a i s e V a l u e E r r o r ( ” I n v a l i d i t e r c o u n t : {} ” . f o r m a t ( i t e r c o u n t ) )

i f r e s t a r t i n g i t e r < 1 :
r a i s e V a l u e E r r o r ( ” I n v a l i d i t e r t o t a l : {} ” . f o r m a t (

r e s t a r t i n g i t e r ) )

d e f a u l t s = d i c t ( l r = l r , w e i g h t d e c a y = w e i g h t d e c a y , i t e r c o u n t =
i t e r c o u n t ,

r e s t a r t i n g i t e r = r e s t a r t i n g i t e r )
s u p e r (SRSGD, s e l f ) . i n i t ( params , d e f a u l t s )

d e f s e t s t a t e ( s e l f , s t a t e ) :
s u p e r (SRSGD, s e l f ) . s e t s t a t e ( s t a t e )

d e f u p d a t e i t e r ( s e l f ) :
i d x = 1
f o r group i n s e l f . pa r am groups :

i f i d x == 1 :
group [ ’ i t e r c o u n t ’ ] += 1
i f group [ ’ i t e r c o u n t ’ ] >= group [ ’ r e s t a r t i n g i t e r ’ ] :

g roup [ ’ i t e r c o u n t ’ ] = 1
i d x += 1

r e t u r n group [ ’ i t e r c o u n t ’ ] , g roup [ ’ r e s t a r t i n g i t e r ’ ]

d e f s t e p ( s e l f , c l o s u r e =None ) :
”””
Per fo rm a s i n g l e o p t i m i z a t i o n s t e p .
Arguments : c l o s u r e ( c a l l a b l e , o p t i o n a l ) : A c l o s u r e t h a t

r e e v a l u a t e s t h e model and r e t u r n s t h e l o s s .
”””
l o s s = None
i f c l o s u r e i s n o t None :
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l o s s = c l o s u r e ( )

f o r group i n s e l f . pa r am groups :
w e i g h t d e c a y = group [ ’ w e i g h t d e c a y ’ ]
momentum = ( group [ ’ i t e r c o u n t ’ ] − 1 . ) / ( group [ ’ i t e r c o u n t ’ ] +

2 . )
f o r p i n group [ ’ params ’ ] :

i f p . g r ad i s None :
c o n t i n u e

d p = p . g r ad . d a t a
i f w e i g h t d e c a y ! = 0 :

d p . add ( w e i g h t d e c a y , p . d a t a )

p a r a m s t a t e = s e l f . s t a t e [ p ]

i f ’ momentum buffer ’ n o t i n p a r a m s t a t e :
buf0 = p a r a m s t a t e [ ’ momentum buffer ’ ] = t o r c h . c l o n e ( p

. d a t a ) . d e t a c h ( )
e l s e :

buf0 = p a r a m s t a t e [ ’ momentum buffer ’ ]

buf1 = p . d a t a − group [ ’ l r ’ ]∗ d p
p . d a t a = buf1 + momentum∗ ( buf1 − buf0 )
p a r a m s t a t e [ ’ momentum buffer ’ ] = buf1

i t e r c o u n t , i t e r t o t a l = s e l f . u p d a t e i t e r ( )

r e t u r n l o s s

K SRSGD IMPLEMENTATION IN KERAS

i m p o r t numpy as np
i m p o r t t e n s o r f l o w as t f
from k e r a s i m p o r t backend as K
from k e r a s . o p t i m i z e r s i m p o r t O p t i m i z e r
from k e r a s . l e g a c y i m p o r t i n t e r f a c e s
i f K. backend ( ) == ’ t e n s o r f l o w ’ :

i m p o r t t e n s o r f l o w as t f

c l a s s SRSGD( O p t i m i z e r ) :
””” Schedu led R e s t a r t S t o c h a s t i c g r a d i e n t d e s c e n t o p t i m i z e r .
I n c l u d e s s u p p o r t f o r N e s t e r o v momentum
and l e a r n i n g r a t e decay .
# Arguments

l e a r n i n g r a t e : f l o a t >= 0 . L e a r n i n g r a t e .
”””

d e f i n i t ( s e l f , l e a r n i n g r a t e = 0 . 0 1 , i t e r c o u n t =1 , r e s t a r t i n g i t e r
=40 , ∗∗ kwargs ) :
l e a r n i n g r a t e = kwargs . pop ( ’ l r ’ , l e a r n i n g r a t e )
s e l f . i n i t i a l d e c a y = kwargs . pop ( ’ decay ’ , 0 . 0 )
s u p e r (SRSGD, s e l f ) . i n i t (∗∗ kwargs )
wi th K. name scope ( s e l f . c l a s s . n a m e ) :

s e l f . i t e r a t i o n s = K. v a r i a b l e ( 0 , d t y p e = ’ i n t 6 4 ’ , name= ’
i t e r a t i o n s ’ )

s e l f . l e a r n i n g r a t e = K. v a r i a b l e ( l e a r n i n g r a t e , name= ’
l e a r n i n g r a t e ’ )

s e l f . decay = K. v a r i a b l e ( s e l f . i n i t i a l d e c a y , name= ’ decay ’ )
# f o r s r s g d
s e l f . i t e r c o u n t = K. v a r i a b l e ( i t e r c o u n t , d t y p e = ’ i n t 6 4 ’ , name=

’ i t e r c o u n t ’ )
s e l f . r e s t a r t i n g i t e r = K. v a r i a b l e ( r e s t a r t i n g i t e r , d t y p e = ’

i n t 6 4 ’ , name= ’ r e s t a r t i n g i t e r ’ )
s e l f . n e s t e r o v = n e s t e r o v
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@ i n t e r f a c e s . l e g a c y g e t u p d a t e s s u p p o r t
@K. sy m b o l i c
d e f g e t u p d a t e s ( s e l f , l o s s , params ) :

g r a d s = s e l f . g e t g r a d i e n t s ( l o s s , params )
s e l f . u p d a t e s = [K. u p d a t e a d d ( s e l f . i t e r a t i o n s , 1 ) ]

momentum = (K. c a s t ( s e l f . i t e r c o u n t , d t y p e =K. d t y p e ( s e l f . decay ) ) −
1 . ) / ( K. c a s t ( s e l f . i t e r c o u n t , d t y p e =K. d t y p e ( s e l f . decay ) ) + 2 . )

l r = s e l f . l e a r n i n g r a t e
i f s e l f . i n i t i a l d e c a y > 0 :

l r = l r ∗ ( 1 . / ( 1 . + s e l f . decay ∗ K. c a s t ( s e l f . i t e r a t i o n s ,
K. d t y p e ( s e l f . decay )

) ) )
# momentum
s h a p e s = [K. i n t s h a p e ( p ) f o r p i n params ]

moments = [K. v a r i a b l e ( v a l u e =K. g e t v a l u e ( p ) , d t y p e =K. d t y p e ( s e l f .
decay ) , name= ’ moment ’ + s t r ( i ) )

f o r ( i , p ) i n enumera t e ( params ) ]

s e l f . w e i g h t s = [ s e l f . i t e r a t i o n s ] + moments + [ s e l f . i t e r c o u n t ]
f o r p , g , m i n z i p ( params , g rads , moments ) :

v = p − l r ∗ g
new p = v + momentum ∗ ( v − m)
s e l f . u p d a t e s . append (K. u p d a t e (m, v ) )

# Apply c o n s t r a i n t s .
i f g e t a t t r ( p , ’ c o n s t r a i n t ’ , None ) i s n o t None :

new p = p . c o n s t r a i n t ( new p )

s e l f . u p d a t e s . append (K. u p d a t e ( p , new p ) )

c o n d i t i o n = K. a l l (K. l e s s ( s e l f . i t e r c o u n t , s e l f . r e s t a r t i n g i t e r ) )
n e w i t e r c o u n t = K. s w i t c h ( c o n d i t i o n , s e l f . i t e r c o u n t + 1 , s e l f .

i t e r c o u n t − s e l f . r e s t a r t i n g i t e r + 1)
s e l f . u p d a t e s . append (K. u p d a t e ( s e l f . i t e r c o u n t , n e w i t e r c o u n t ) )

r e t u r n s e l f . u p d a t e s

d e f g e t c o n f i g ( s e l f ) :
c o n f i g = { ’ l e a r n i n g r a t e ’ : f l o a t (K. g e t v a l u e ( s e l f . l e a r n i n g r a t e ) )

,
’ decay ’ : f l o a t (K. g e t v a l u e ( s e l f . decay ) ) ,
’ i t e r c o u n t ’ : i n t (K. g e t v a l u e ( s e l f . i t e r c o u n t ) ) ,
’ r e s t a r t i n g i t e r ’ : i n t (K. g e t v a l u e ( s e l f . r e s t a r t i n g i t e r

) ) }
b a s e c o n f i g = s u p e r (SRSGD, s e l f ) . g e t c o n f i g ( )
r e t u r n d i c t ( l i s t ( b a s e c o n f i g . i t e m s ( ) ) + l i s t ( c o n f i g . i t e m s ( ) ) )
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