
HYBRID FEDERATED LEARNING FOR FEATURE &
SAMPLE HETEROGENEITY: ALGORITHMS AND IMPLE-
MENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) is a popular distributed machine learning paradigm deal-
ing with distributed and private data sets. Based on the data partition pattern, FL is
often categorized into horizontal, vertical, and hybrid settings. All three settings
have many applications, but the hybrid FL remains relatively less explored, be-
cause it deals with the challenging situation where both the feature space and the
data samples are heterogeneous. This work designs a novel mathematical model
that effectively allows the clients to aggregate distributed data with heterogeneous,
and possibly overlapping features and samples. Our main idea is to partition each
client’s model into a feature extractor part and a classifier part, where the former
can be used to process the input data, while the latter is used to perform the learn-
ing from the extracted features. The heterogeneous feature aggregation is done
through building a server model, which assimilates local classifiers and feature
extractors through a carefully designed matching mechanism. A communication-
efficient algorithm is then designed to train both the client and server models. Fi-
nally, we conducted numerical experiments on multiple image classification data
sets to validate the performance of the proposed algorithm. To our knowledge,
this is the first formulation and algorithm developed for hybrid FL.

1 INTRODUCTION

Federated Learning (FL) is an emerging distributed machine learning (ML) framework which en-
ables heterogeneous clients – such as organizations or mobile devices – to collaboratively train ML
models (Konečnỳ et al., 2016; Yang et al., 2019). The development of FL aims to address practical
challenges in distributed learning, such as feature and data heterogeneity, high communication cost,
and data privacy requirement.

The challenge due to heterogeneous data is particularly evident in FL. The most well-known form
of heterogeneous data is sample heterogeneity (SH), where the distributions of training samples
are different across the clients (Kairouz et al., 2021; Bonawitz et al., 2019). Severe SH can cause
common FL algorithms such as FedAvg to diverge (Khaled et al., 2019; Karimireddy et al., 2020b).
Recently, better-performing algorithms and system architectures for distributed ML (including FL)
under SH include Karimireddy et al. (2020b); Li et al. (2018); Wang et al. (2020); Fallah et al.
(2020); Vahidian et al. (2021).

Figure 1: The heterogeneous data distribu-
tion in a medical diagnosis example.

Besides SH, another form of heterogeneity is feature het-
erogeneity (FH). Traditionally, we say the samples are
FH if we can partition them into subsets that bear dis-
tinct features. In the FL setting, when the sample sub-
sets of different clients have different, but not necessarily
distinct, features, we call it FH. That is, under FH, dif-
ferent clients have unique and possibly also common fea-
tures. FH and SH arise in ML tasks such as collaborative
medical diagnosis (Ng et al., 2021), recommendation sys-
tem (Yang et al., 2020), and graph learning (Zhang et al.,
2021), where the data collected by different clients have
different, and possibly overlapping features and sample IDs. Next, we provide a few examples.

1

Application Client Feature Blocks Sample
Medical Diagnosis clinic output of different diagnostic devices patient
Recommendation System retailer record of different product categories customer
Social Network SNS provider user activity & relationship SNS user

Table 1: Examples of applications that generates heterogeneous data

(a) Heterogeneous data on clients (b) HFL data usage (c) VFL data usage

Figure 2: The data distribution patterns of a) heterogeneous client data; b) HFL and c) VFL.

Medical diagnosis application (see Figure 1). The clients are clinics, and they collect data samples
from patients. Each clinic may have a different set of diagnostic devices, e.g., clinic A has MRI and
ultrasound, while clinic B has MRI and electrocardiographs (ECG). FH arises as the feature set of
each sample collected by clinic A may partially overlap with that done by clinic B. Besides FH, SH
also arises as multiple clinics may not have the chance of treating the same patient and each patient
usually visit only a subset of clinics.

Recommendation system (Yang et al., 2020; Zhan et al., 2010). In this case, the clients are large
retailers, and they collect samples (such as shopping records) from their customers. The retailers
share a subset of common products and a subset of common customers.

A third example pertains to an application of learning over multiple social networks (Zhang et al.,
2021; Guo & Wang, 2020). Here the clients are social network providers (e.g., Twitter, Facebook),
and the samples are the set of participating users, their activities and relations. We summarize these
three examples in Table. 1.

In the previous three applications, client data can be heterogeneous in both feature and sample.
Surprisingly, none of the existing FL algorithms can fully handle such data. Rather, Horizontal FL
(HFL) and Vertical FL (VFL) methods can handle data with only one heterogeneity, the former with
SH and the latter with FH. By keeping only the common features (and ignoring the other features),
we can avoid FH and apply an HFL method. By keeping only the common samples (and discarding
the remaining samples), we can avoid SH and apply a VFL method. Clearly, they both waste data.

Consider the HFL algorithms (Konečnỳ et al., 2016; Karimireddy et al., 2020b;a; Dinh et al., 2021).
The clients perform multiple local model updates, and the server averages those updates and broad-
casts the new model to the clients. This scheme works when the clients share the same model and
their data share an identical set of features (see Figure 2b for an illustration); otherwise, the server
cannot average their models.

Consider the Vertical FL (VFL) algorithms (Liu et al., 2019; Chen et al., 2020). They split the model
into blocks. Each client processes a subset of the blocks while the server aggregates the processed
features to compute training losses and gradients. They require all the clients to have the same set
of samples (see Figure 2c); otherwise, they cannot compute the loss and its gradient.

According to Yang et al. (2019); Rahman et al. (2021), the FL setting with heterogeneous feature and
samples is referred to as hybrid FL. To develop a hybrid FL method, we must address the following
challenges:
1. Global and local inference requires global and local models. Hybrid FL makes it possible
for a client to make its local inference and also for all the clients (or the server) to make a global
inference. The former requires only the features local to a client; the latter requires all the features
and training a global model at the server.

2. Limited data sharing. In typical HFL, the clients do not share their local data or labels during
training. In VFL, the labels are either made available by the clients to the server (Chen et al., 2020)
or stored in a designated client (Liu et al., 2019). A hybrid FL system may be subject to a “no

2

sharing” requirement, so it is desirable to develop a method in which the server has no access to any
data, including the labels.
3. Sample synchronization. A technical challenge with VFL is that the server wants the clients to
draw the same mini-bath of samples at each iteration. This challenge is exacerbated in hybrid FL
since not all the clients will have the same samples. Therefore, to avoid idling clients, a hybrid FL
method should allow uncoordinated sample draws.

Our contributions: Towards addressing the previous challenges, this work proposes a novel model
and its training method. We summarize our contribution as follows.

1. We propose a new hybrid FL approach. For each client, the model consists of a feature extractor
and a subsequent classifier. The clients collaborate and share their knowledge through building a
model at the server that assimilates local classifiers and feature. The assimilation is achieved by a
matching mechanism inspired by the non-parametric modeling idea in Yurochkin et al. (2019). This
approach enables both global and local inferences and can handle data with both SH and FH. To our
knowledge, this is the first concrete hybrid FL model in the literature.
2. We develop a hybrid FL algorithm that enables knowledge transfer among the clients. The algo-
rithm maintains data locality, so the server does not access clients’ data, and it allows uncoordinated
sample draws by the clients.
3. We evaluated the performance of the hybrid FL algorithm on a number of real datasets. The
learned model achieved an accuracy that was comparable to that of a centrally trained model.

1.1 RELATED WORK

Federated graph learning (FGL) is applied to molecular classification (He et al., 2021), relation
or node classification for social networks (Zhang et al., 2021; Ng et al., 2021) and financial net-
work (Suzumura et al., 2019). In the first application, the graphs are relatively small and the clients
have large amount of graphs (Zhang et al., 2021; He et al., 2021). In the last two application sce-
narios, the clients possess partial yet overlapping data of a single large graph, including partial node
and edge information (Zhang et al., 2021). However, existing FGL algorithms mainly focus on the
first application scenario (He et al., 2021) and fail to deal with the latter two scenarios. So we cannot
apply them to our hybrid FL setting.

HFL has a popular algorithm FedAvg (Konečnỳ et al., 2016), which adopts the computation-then-
aggregation strategy. The clients locally perform a few steps of model updates, and then the server
aggregates the updated local models and averages them before sending the updated global model
back to the clients. Beyond model averaging, PFNM (Yurochkin et al., 2019) and FedMA (Wang
et al., 2020) use a parameter-matching-based strategy and FedGKT (He et al., 2020) uses a knowl-
edge distillation strategy to get better global model performance, and they do not require the global
model to have the same size as the local models. All HFL algorithms assume their data have the
same set of features.

Personalized FL (PFL) has been studied as a potential way to tackle different levels of task het-
erogeneity. MAML (Jiang et al., 2019; Fallah et al., 2020) uses meta-learning to build global
model that can fast adapt to heterogeneous data distribution; FedProx (Li et al., 2018) and LG-
FedAvg (Hanzely & Richtárik, 2020) regularize the distance between the local models and the global
model. MOCHA (Smith et al., 2017) and FedU (Dinh et al., 2021) combine multi-task learning with
FL to train models for personalized tasks. FedPer (Arivazhagan et al., 2019) separates the model
into base+personalized layers to decouple the common and personal knowledge. However, most of
the algorithms assume that all local models take the same input size and format.

2 PROBLEM FORMULATION

In this section, we first provide a mathematical characterization of the heterogeneous data distribu-
tions of interest to this work. We then propose a unified hybrid FL model.

Notation: Due to the nature of hybrid FL, we must carefully set up its notation. We denote the all
one (column) vector of length d as 1d; the identity matrix of size d as Id; the positive integer set
{1, 2, . . . , N} as [N]. Feature selection below uses a selector matrix of dimension d1 × d2, which
belongs to the following set:

3

(a) Data partition pattern and notations. (b) Block structure of client and server models

Figure 3: The partitioned data and notations, and the structure of the client and server models with heteroge-
neous feature extractors and classifiers.

S(d1, d2) :=

{
P

∣∣∣∣ P ∈ {0, 1}d1×d2 ,

d2∑
j=1

Pij = 1, ∀i ∈ [d1],

d1∑
i=1

Pij ∈ {0, 1}, ∀j ∈ [d2]

}
.

Data description: See Figure 3a for an illustration of a dataset with three clients, where the client
datasets has no fully overlapped sample or feature, so neither HFL nor VFL can be used. We consider
a hybrid FL system with M clients indexed by m ∈ [M], and they collaborate to accomplish the
same task. For convenience, we index the server as m = 0.

First, assume that each sample can have at most d0 feature blocks, and the ith block has the set
Di of features, i ∈ [d0]; client m has a set of dm feature blocks indexed by Im, that is, we write
⟨Dim⟩im∈Im

and write the feature space of client m as Xm =
∏

im∈Im
Dim , which is a Cartesian

product of the subset of the feature blocks possessed by client m. Similarly, we denote the “full
feature” space as X0 =

∏d0

i=1Di, which is the Cartesian product of all feature blocks.

Second, client m holds a private dataset with index setNm and the samples (xm,n, yn) for n ∈ Nm,
where xm,n ∈ Xm denotes the features of the nth sample on client m, and yn denotes the label of the
nth sample. Collecting all the clients’ data together, we can define the (virtual) global dataset to have
sample index set N0 = [N], with samples (x0,n, yn) where x0,n ∈ X0 denotes the “full feature” of
the nth sample (for the precise relation between the full featured x0,n and the local sample xm,n,
please see the property P2 below).

The dataset defined above satisfy the following properties.

P1) The global index set is the union of the clients’ index sets:

N0 =

M⋃
m=1

Nm, which implies Nm ⊆ N0.

P2) For a given client m, the features of the nth sample is a sub-vector of the “full features”. That
is, there exists a selector matrix Pm such that it can map the global feature x0,n to xm,n:

xm,n = Pmx0,n, for some Pm ∈ S(dm, d0), (1)

where Pm as a selector matrix that selects the feature blocks on client m from the full feature.

Remark 1. (Data structures of HFL and VFL) The data structure that the HFL deals with can be
viewed as a special case of what has been described above, where the clients have fully overlapping
features, i.e., d0 = 1, Pm = 1, ∀m ∈ [M]; Similarly, the data structure for VFL can be viewed as a
special case that the clients have fully overlapping sample indices, i.e., Nm = N0, ∀m ∈ [M]. □

Model design: With the above description of data, we are ready to present the proposed hybrid FL
model and the corresponding optimization problem.

Client and server model design: Similar to VFL, we split the ML model into feature extractors and
classifiers. Each feature extractor takes a feature block as input and extracts an intermediate feature
as output; the classifier takes the concatenated intermediate features of multiple feature extractors as
input and outputs the prediction.

As illustrated by Figure 3b, on client m, the feature extractor him(θm,im ; ·) for input feature block
Dim is parameterized by θm,im for all im ∈ Im. The feature extractors can have different neural

4

network architectures (e.g., CNN for CT/MRI images, LSTM/Transformer for medical records, and
1-D CNN for ECG data). We denote the concatenated feature extractors and its parameters as:

Hm(Θm; ·) := [him(θm,im ; ·)]im∈Im , and Θm := [θm,im]im∈Im . (2)

The classifier Fm(wm; ·) is parameterized by wm, and we denote the prediction loss function as
ℓ(·, ·). The data processing procedure on client m is described as follows:
(1) The features xm,n of the nth sample are passed to the feature extractors {him(θm,im ; ·)}im∈Im

;
(2) The classifier Fm(wm; ·) makes the prediction based on the concatenated output of the feature
extractors Hm(Θm;xm,n);
(3) The prediction Fm(wm;Hm(Θm;xm,n)) and the true label yn together evaluates the loss ℓ(·, ·).
With the specified data processing procedure, the prediction loss on client m is defined as:

fm(Θm, wm) :=
1

|Nm|
∑

n∈Nm

ℓ(Fm(wm;Hm(Θm;xm,n)), yn). (3)

Additionally, the server will have a model with full feature extractors, concatenated with a classifier;
see the top figure in Fig. 3b. This model structure covers a wide range of ML models for classifica-
tion and regression problems, e.g., image classification, language processing, and recommendation
system.

Remark 2. (Local and server models). A few remarks are ready. First, although the construction of
the client model has been partly motivated by the model splitting idea from VFL, one key difference
with VFL is that each client holds a complete model, capable of performing local inference without
communication to the server. Second, it is important to have a separate server model, because: 1) in
case a test data with “full feature” comes in, the server can deal with it; 2) in case a new client comes
who needs to process a new subset of features, it can directly download the corresponding feature
extractors from the server, which significantly reduces the complexity of building the local model;
and most importantly 3) the server’s model is instrumental in helping the clients to learn from each
other’s data (as we will see shortly). □

At this point, we have defined the models and the prediction loss for each individual client. A key
question is: how the client can effectively collaborate and leverage each other’s data to train high-
quality server/client models? Unlike HFL, where all clients share the same model, the clients in
this problem have local models (i.e., feature extractors and classifiers) of different sizes to deal with
feature heterogeneity. Therefore, one cannot directly perform the conventional model averaging.

Model matching: To enable effective collaboration among the clients, our idea is to properly match
different parts of the model, by imposing a number of carefully designed regularizers.

First, it is natural to assume that when client m and m′ share the same feature block Di, the corre-
sponding feature extractors hi(θm,i; ·) should produce the same output, that is θm,i ≈ θ0,i ≈ θm′,i.
Therefore, we impose the following regularizer for the feature extractors, which matches the ith

feature extractor at user m with the corresponding extractor at the server:

rm,1(Θm,Θ0) :=
∑
i∈Im

1

2
∥θm,i − θ0,i∥2 =

1

2
∥Θm − PmΘ0∥2 , (4)

where Pm is the data selection matrix defined in (1) and Θm concatenates parameters defined in (2).

We then design the regularizer for the classifiers. As the classifiers on different clients share partially
overlapping input and identical output space, we model the client’s classifiers wm as some “pruned”
versions of the server-side classifier w0, but with unknown pruning pattern. More specifically, as-
sume that wm ∈ Rdm,w , w0 ∈ Rd0,w , we impose the following regularizer for the classifier:

rm,2(wm,Πm, w0) =
1

2
∥wm −Πmw0∥2 , s.t. Πm ∈ S(dm,w, d0,w), (5)

where Πm is a selection matrix defining the unknown pruning pattern. It is important to note that,
the pruning pattern matrices Πm’s are unknown and need to be optimized. On the contrary, when
in the definition of the feature extractor regularizer (4), the matrix data selection matrices Pm’s are
fixed, and they are defined by the data partitioning pattern. Detailed discussion about the structure
of the constraints on the pruning matrix Πm’s and the regularizer rm,2 are given in Appendix A.1

5

Overall problem formulation: By combining the models discussed in the previous two subsec-
tions, we arrive at the following training problem:

min
{Θm,wm}Mm=0,{Πm}Mm=1

M∑
m=1

pm (fm(Θm, wm) + µ1 · rm,1(Θm,Θ0) + µ2 · rm,2(wm,Πm, w0)) ,

s.t. Πm ∈ S(dm,w, d0,w), ∀m ∈ [M],

(6)

where µ1, µ2 are hyper-parameters for the regularizers; pm’s are the weights for each local problem
satisfying

∑M
m=1 pm = 1, with common choices pm = 1

M or pm = |Nm|
|N | .

Remark 3. (Relation with HFL). When d0 = 1, that is, there is only a single feature block across all
the clients, then the data structure can be handled by the conventional HFL. Below let us discuss the
relations between our model (6) and some popular HFL models. First note that when d0 = 1, the
feature extractor regularizer (4) reduces to rm,1(Θm,Θ0) =

1
2 ∥Θm −Θ0∥2.

1) Reduction to FedMA (Wang et al., 2020) and Sub-FedAvg (Vahidian et al., 2021). If we set
Θm = I , i.e., the features are directly processed by the wm’s, then (6) is equivalent to the problem
solved by FedMA and Sub-FedAvg.

2) Reduction to FedProx (Li et al., 2018) and LG-FedAvg (Hanzely & Richtárik, 2020). By
setting wm = I.pm = 1

M and letting Θm directly predict the labels, the problem reduces to

min
{Θm}M

m=0

1

M

M∑
m=1

(fm(Θm) + µ1 · rm,1(Θm,Θ0)), (7)

which is equivalent to the formulation solved by FedProx and LG-FedAvg.

3) Reduction to FedAvg. Further by letting µ1 →∞ in (7), the regularizer enforce Θm’s to achieve
exact consensus, the problem reduces to the one solved by FedAvg.

4) Reduction to FedPer (Arivazhagan et al., 2019). By letting µ2 = 0 and µ1 → ∞ in (6), the
regularizer on wm’s is removed and Θm’s achieve exact consensus. In this case, Θm serves as the
base layers while wm’s serve as the personalized layers, which is equivalent to the model design of
FedPer. □

Remark 4. (Relation with VFL). VFL assumes that the clients cannot perform prediction indepen-
dently, so it directly trains a global model with the local data (Liu et al., 2019; Chen et al., 2020). In
contrast, we assume that each client has sufficient features for independent training and construct a
local model, which is further used to construct a global model. This way, we avoid data sharing and
sample synchronization issues that often limit VFL use in practice. □

3 ALGORITHM DESIGN

In this section, we propose a training algorithm for the proposed Hybrid FL formulation (6). This
algorithm will alternate between the server-side updates and the client-side updates. To proceed, we
will first split (6) into a server-side problem and a client-side problem, and then develop algorithms
to optimize each part. One key consideration in our algorithm design is to ensure that the server-side
model is optimized without directly accessing any clients’ data.

Problem splitting: Notice that the problem contains parameter blocks {Θm}Mm=1, {wm}Mm=1, Θ0,
w0 and {Πm}Mm=1. First we divide the parameters into two groups: 1) the server-side parameters
Θ0, w0, and {Πm}Mm=1 and 2) the client-side parameters {Θm}Mm=1 and {wm}Mm=1.

By fixing the server-side parameters, (6) decomposes into m independent problems, one for each
client. The problem related to client m is given by:

min
Θm,wm

fm(Θm, wm) + µ1 · rm,1(Θm,Θ0) + µ2 · rm,2(wm,Πm, w0). (8)

Similarly, by fixing the client-side parameters, the fm’s in (6) become constants, and the problem
reduces to the following server-side problem:

min
Θ0,w0,{Πm}M

m=1

M∑
m=1

pm (µ1 · rm,1(Θm,Θ0) + µ2 · rm,2(wm,Πm, w0)) ,

s.t. Πm ∈ S(dm,w, d0,w), ∀m ∈ [M].

(9)

6

Algorithm 1 Hybrid Federated Matching Algorithm (HyFEM)
1: Input: w0

0,Θ
0
0, {Π0

m}Mm=1, η, T,Q, P
2: for t = 0, . . . , T − 1 do
3: for client m = 1, . . . ,M in parallel do
4: Θt,Q

m , wt,Q
m ←ClientUpdate

(
Θt

0,Π
t
m, wt

0, Q, η)
)

// Local perturbed SGD solving (8)
5: Sends client model Θt,Q

m , wt,Q
m to server

6: for server do
7: Θt+1

0 ←
(∑M

m=1 pmPT
mPm

)−1 (∑M
m=1 pmPT

mΘt,Q
m

)
//Exact minimization for (10)

8: wt+1
0 , {Πt+1

m }Mm=1 ←ModelMatching
(
{wt,Q

m ,Πt
m}Mm=1, P

)
// Solving (11)

9: Distributes server model wt+1
0 ,Θt+1

0 , {Πt+1
m }Mm=1 to clients

10: Output: {wT
m,ΘT

m}Mm=0, {ΠT
m}Mm=1

The above problem can be naturally separated into two sub-problems. The first sub-problems is:

min
Θ0

M∑
m=1

pm · rm,1(Θm,Θ0), (10)

and the second one is:

min
w0,{Πm}M

m=1

M∑
m=1

pm · rm,2(wm,Πm, w0), s.t. Πm ∈ S(dm,w, d0,w), ∀m ∈ [M]. (11)

Algorithm design: We propose a block coordinate descent type algorithm called Hybrid Federated
Matched Averaging (HyFEM) in Algorithm 1 to solve (6) with the above problem splitting strategy
and the sub-routines are given by Algorithm 2 in Appendix A.2. In global iteration t, the clients
first performs Q local perturbed SGD steps on problem (8) to optimize client models wt

m,Θt
m (line

1 − 7 in Algorithm 2); then the server aggregates the updated client models, updates global feature
extractors by optimizing (10) that has a closed-form solution as line 7 in Algorithm 1, and match the
classifiers by optimizing (11); finally, the server distributes the models and the selection matrices to
clients.

The major step in the algorithm is solving the sub-problem (11). We optimize it by the Model-
Matching procedure described in line 8 − 14 of Algorithm 2 in Appendix A.2: 1) for each client
index m′, construct the server model wt,p

0 without the impact of the selected client; 2) apply the Hun-
garian algorithm to solve a parameter assignment problem and obtain Πt,p+1

m′ in at mostO((dm,w)
3)

run-time complexity Kuhn (1955). With few rounds of updates, we obtain the server classifier
and the selection matrices for each client. This procedure is inspired by the model matching algo-
rithms Wang et al. (2020); Yurochkin et al. (2019) for matching parameters in deep neural networks
of the same size. Our matching algorithm is a non-trivial extension to the existing model matching
algorithm. Because the server-side and client-side models do not share the exact same functionality,
we cannot replace the client-side models with the server-side model. Such a special property intro-
duces some significant challenges for model matching. The detailed matching procedure is included
in Appendix A.2.

Remark 5. Although Algorithm 1 seems to be complicated, it can be viewed as a problem with
three parameter blocks L(x,y, z), where x is the collection of {wm,Θm}Mm=1; y is the collection
of {Πm}Mm=1 and z is {w0,Θ0}. Then the update can be viewed as follows:

x+ ← x− η∇̃xL(x,y, z)︸ ︷︷ ︸
Q times

, y+ ← argmin
y∈Range(y)

L(x+,y, z), z+ ← argmin
z
L(x+,y+, z), (12)

where ∇̃xL(·) denotes the stochastic partial gradient estimation w.r.t. x. □

Theorem 1 (Informal) Suppose that for each m ∈ [M], fm has Lipschitz continuous gradients
w.r.t. [Θm, wm] and that w0 has a fixed dimension. Then with stepsize η = O(1/

√
QT) and client

update Q = O(T), by running Algorithm 1, the expected gradient norm square w.r.t. {Θm, wm}Mm=1

converges with rate O(1/T) and the successive update difference
∥∥wt+1

0 − wt
0

∥∥2 + ∥∥Θt+1
0 −Θt

0

∥∥2
converges with rate O(1/T). Alternatively, if we assume the solution to {Πm}Mm=1 for sub-problem
(11) is unique, and we update client models with one-step gradient descent, then Algorithm 1 asymp-
totically converges to the first-order stationary point of (6).

Remark 6. Theorem 1 is a non-trivial extension of the convergence results for traditional BCD-type
algorithms. The major challenges in the analysis of HyFEM are: 1) it runs multiple, yet fixed number

7

of stochastic gradient updates on (potentially nonconvex) blocks {Θm, wm}Mm=1, which results in
non-strictly decrease; 2) the problem w.r.t. block {Πm}Mm=1 is nonconvex and non-smooth and
does not has a unique global minima. Such a setting is different from existing work on BCD-type
algorithms. The detailed convergence statement and its proofs are given in Appendix B. □

We highlight the merits of the proposed approach: 1) Unlike the typical VFL formulations (Liu
et al., 2019; Chen et al., 2020), our approach keeps the data at the clients. Hence, the local problems
are fully separable. There is no sample-drawing synchronization needed during local updates; 2)
By utilizing the proposed model matching technique, we can generate a global model at the server,
which makes use of full features. This makes the inference stage flexible: the clients can use either
partial features (by using its local parameters (Θm, wm)) or the full features by requesting (Θ0, w0)
from the server or letting the server do the inference.

Although we formulate the problem by adopting the idea of model splitting from VFL and model
pruning/matching from HFL, optimizing (5) is still a non-trivial procedure. Specifically, we can
only train clients’ classifiers wm’s of different sizes, and construct unknown server’s classifier w0

with wm’s and find Πm’s, while existing algorithms either require w0 to be given (Vahidian et al.,
2021), or wm’s to have the same size (Wang et al., 2020; Yurochkin et al., 2019).

4 NUMERICAL EXPERIMENTS

To evaluate the proposed algorithms, we have conducted experiments on a number of standard
datasets, and compared the results with several baselines including centralized training and stand-
alone local training (without any client-server communication). Since existing FL algorithms can-
not be applied to our setting that the client features are only partial overlapped, we do not compare
HyFEM with other FL algorithms in this section. However, we put an additional set of experiments
in Appendix C comparing HyFEM and FedProx with less heterogeneous features.

Dataset & data splitting: We consider the ModelNet40, Cifar-10, and EuroSAT datasets, the details
of which are explained below. We also consider an additional multi-modal dataset, we refer the
readers to Appendix C.3 for details.

ModelNet40 (Wu et al., 2015): ModelNet40 is a multiview object classification dataset that has 12
views from different angles as 12 feature blocks for each object. The dataset hasN0 = 40, 000 sam-
ples from 40 classes. Cifar-10 (Krizhevsky, 2009): Cifar-10 is an image classification dataset
with N = 50, 000 samples from 10 classes. We manually split each image into (top left,top
right,bottom left,bottom right)×(red,green,blue) blocks, resulting in total d0 = 12 feature blocks.
EuroSAT (Helber et al., 2019): EuroSAT is a land cover classification satellite image dataset with
N0 = 27, 000 samples from 10 classes, and the images are split into 12 feature blocks the same as
Cifar-10.

In the training phase of each task, we manually assign a few feature blocks and classes to each
client, so that the clients have partially overlapping features and samples and exhibit FH and SH. The
settings are summarized in Table 2. It is worth pointing out that in setting ModelNet40:2, 12.08%
of the data have never been used by any of the clients during training, and in all settings, there is
no feature or sample that is shared by all clients, so VFL and HFL algorithms cannot be applied.
We conduct two sets of experiments on ModelNet40 dataset where setting 1 uses d0 = 4 views and
setting 2 uses full d0 = 12 views. The first setting has less features, so the classifiers are smaller
and the matching procedure is easier and expected to be more accurate. Thus the performance of the
server model should be closer to the model obtained with centralized training. In the second setting,
the matching procedure is more complex than that of the first setting and should result in worse
server model performance. The illustration of the data assignment pattern is given in Appendix C.2.

In the testing phase, the clients evaluate their model on all testing samples with corresponding feature
blocks used in training phase. We average over the accuracies obtained by the clients to obtain the
averaged local accuracy. The global accuracy is evaluated using the matched server model on all
testing samples with full features.

Training settings: In the experiments, we use the MLP model with one hidden layer as the classifier
fm(wm; ·). We use the CNN part of ResNet-18 followed by one pooling layer as the feature extrac-
tors for Cifar-10 and EuroSAT dataset; we use the CNN part of ResNet-34 followed by one pooling
layer as the feature extractors for ModelNet40 dataset. We use the following experiment settings as

8

Dataset d0 Classes N0 Client M dm Classes/client Nm

ModelNet40:1 4 40 40k 4 3 20 20k
ModelNet40:2 12 40 40k 8 6 15 15k
Cifar-10 12 10 50k 9 6-8 5 25k
EuroSAT 12 10 27k 9 6-8 5 13.5k

Table 2: Experiment settings for each dataset. d0, dm denote the # of feature blocks;N0,Nm denote
the # of samples; M denotes the number of clients.

(a) ModelNet40:1 (b) ModelNet40:2 (c) Cifar-10 (d) EuroSAT

Figure 4: Test accuracy of server model trained with HyFEM compared with centralized training and stand-
alone training for a) ModelNet40:1, b) ModelNet40:2, c) Cifar-10, and d) EuroSAT datasets.

comparison: Centralized training: we train a full-sized server model with all data. This setting
serves as the performance upper bound among all trained model. Stand-alone training: each client
trains a client model only with local data, and without any communication. This setting serves as
the baseline (and the performance lower bound) of HyFEM. In all settings, we fix the total number
of updates (i.e., T · Q = 4096, with T = 128, Q = 32) for fair comparison and tune the learning
rate to achieve the optimal performance for each experiment separately.

Numerical results: The global accuracy is shown in Figure 4 under different settings. We can see
that HyFEM algorithm can train a server model with higher accuracy than stand-alone training in all
settings. Moreover, the server models can achieve comparable performance as models obtained with
centralized training, even none of the client has full features or full classes of the data. HyFEM can
deal with data with SH and FH. As expected, in setting ModelNet40:2, the server model accuracy is
lower than in setting ModelNet40:1, because the matching problem is harder for larger classifiers and
12.08% of the data have never been used by any of the clients compared with centralized training.

The average client accuracy is shown in Figure 5 for different settings. Client models have lower
testing accuracies compared with server models. This is reasonable as the client models are trained
with partial features and biased data with partial classes. We also observe that the stand-alone
accuracy under setting ModelNet40:1 is higher than ModelNet40:2, as each client has more samples.
However, the accuracy improvement with HyFEM under setting ModelNet40:1 is less than setting
ModelNet40:2, as the latter one uses more features. Nevertheless, HyFEM algorithm can train much
better client models than stand-alone training even the clients do not share the same input space and
classes. By using global model matching algorithm, the local classifiers can share knowledge with
other clients on unseen classes and deal with SH.

5 CONCLUSIONS

We propose a hybrid FL framework that handles a general collaborative-learning scenario with par-
tially overlapped features and samples. We first clarify how the data are partitioned in hybrid FL
scenario and propose a generic problem formulation. We then show that the proposed formulation
covers a number of horizontal and personalized FL settings, and develop a BCD based HyFEM
algorithm to solve the proposed problem. Finally our numerical results on a number of image clas-
sification datasets demonstrate that the HyFEM algorithm enables clients with partial features and
samples to achieve performance that is comparable to centralized training with full features.

(a) ModelNet40:1 (b) ModelNet40:2 (c) Cifar-10 (d) EuroSAT

Figure 5: Averaged test accuracy of all clients trained with HyFEM compared with centralized training and
stand-alone training for a) ModelNet40:1, b) ModelNet40:2, c) Cifar-10, and d) EuroSAT datasets.

9

REFERENCES

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Nan Bai, Pirouz Nourian, Renqian Luo, and Ana Pereira Roders. Heri-graphs: A workflow of
creating datasets for multi-modal machine learning on graphs of heritage values and attributes
with social media, 2022. URL https://arxiv.org/abs/2205.07545.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical asynchronous
federated learning. arXiv preprint arXiv:2007.06081, 2020.

Canh T Dinh, Tung T Vu, Nguyen H Tran, Minh N Dao, and Hongyu Zhang. Fedu: A uni-
fied framework for federated multi-task learning with laplacian regularization. arXiv preprint
arXiv:2102.07148, 2021.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Zhiwei Guo and Heng Wang. A deep graph neural network-based mechanism for social recommen-
dations. IEEE Transactions on Industrial Informatics, 17(4):2776–2783, 2020.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
learning of large cnns at the edge. Advances in Neural Information Processing Systems, 33:
14068–14080, 2020.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang
He, Liangwei Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and
benchmark for graph neural networks. arXiv preprint arXiv:2104.07145, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning per-
sonalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun
Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al.
Advances and open problems in federated learning. Foundations and Trends® in Machine Learn-
ing, 14(1-2):1–210, 2021.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebas-
tian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms
in federated learning. arXiv preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. pp.
5132–5143, 2020b.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local GD on hetero-
geneous data. arXiv preprint arXiv:1909.04715, 2019.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

10

https://arxiv.org/abs/2205.07545

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Tront, 2009.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and
Qiang Yang. A communication efficient vertical federated learning framework. arXiv preprint
arXiv:1912.11187, 2019.

Dianwen Ng, Xiang Lan, Melissa Min-Szu Yao, Wing P Chan, and Mengling Feng. Federated
learning: a collaborative effort to achieve better medical imaging models for individual sites that
have small labelled datasets. Quantitative Imaging in Medicine and Surgery, 11(2):852, 2021.

KM Jawadur Rahman, Faisal Ahmed, Nazma Akhter, Mohammad Hasan, Ruhul Amin, Kazi Ehsan
Aziz, AKM Muzahidul Islam, Md Saddam Hossain Mukta, and AKM Najmul Islam. Challenges,
applications and design aspects of federated learning: A survey. IEEE Access, 9:124682–124700,
2021.

Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. A unified convergence analysis of block
successive minimization methods for nonsmooth optimization. SIAM Journal on Optimization,
23(2):1126–1153, 2013.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems, pp. 4424–4434, 2017.

Toyotaro Suzumura, Yi Zhou, Natahalie Baracaldo, Guangnan Ye, Keith Houck, Ryo Kawahara, Ali
Anwar, Lucia Larise Stavarache, Yuji Watanabe, Pablo Loyola, et al. Towards federated graph
learning for collaborative financial crimes detection. arXiv preprint arXiv:1909.12946, 2019.

Saeed Vahidian, Mahdi Morafah, and Bill Lin. Personalized federated learning by structured and
unstructured pruning under data heterogeneity. In 2021 IEEE 41st International Conference on
Distributed Computing Systems Workshops (ICDCSW), pp. 27–34. IEEE, 2021.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. In International Conference on Learning Represen-
tations (ICLR), 2020.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Liu Yang, Ben Tan, Vincent W Zheng, Kai Chen, and Qiang Yang. Federated recommendation
systems. In Federated Learning, pp. 225–239. Springer, 2020.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional Conference on Machine Learning, pp. 7252–7261, 2019.

Justin Zhan, Chia-Lung Hsieh, I-Cheng Wang, Tsan-Sheng Hsu, Churn-Jung Liau, and Da-Wei
Wang. Privacy-preserving collaborative recommender systems. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 40(4):472–476, 2010.

Huanding Zhang, Tao Shen, Fei Wu, Mingyang Yin, Hongxia Yang, and Chao Wu. Federated graph
learning–a position paper. arXiv preprint arXiv:2105.11099, 2021.

11

A HETEROGENEOUS MODEL MATCHING ALGORITHM

In this section, we describe the details for the model matching algorithm. First, we describe the mo-
tivation behind the design of the classifiers’ regularizer (5), which encourage wm’s to be matched
together to construct w0 is designed. Then we present the detailed version of line 8 − 14 in Algo-
rithm 2 for optimizing the regularizer (11).

A.1 REGULARIZER DESIGN

Recall the regularizer for the classifiers is given by:

rm,2(wm,Πm, w0) =
1

2
∥wm −Πmw0∥2 , s.t. Πm ∈ S(dm,w, d0,w),

where dm,w, d0,w are the dimensions of wm, w0 and Πm is a selection matrix corresponds to the
unknown pruning pattern. In this section, we motivate why such a regularizer is used, and how the
selection matrices Πm’s are constructed.

We note that the proposed matching method is a non-trivival extension of the neural matching
method (Yurochkin et al., 2019) (designed for horizontal FL) to the case of hybrid FL. In Yurochkin
et al. (2019), the author considered the horizontal FL setting where the sizes and the functionalities
of all the clients’ models as well as the server’s model are identical, so after matching, the clients can
use the matched server-side model directly as their new model. However, in the considered hybrid
FL setting, the input dimension of each of the client’s inference block can be very different, and the
serve-side and client-side models do not share the exact same functionality. Therefore we cannot
replace the client-side models with the server-side model. Such a special property of the hybrid
FL problem introduces some significant challenges for the matching procedure. This is the main
reason that in our proposed algorithm, the matching matrices and the client/server models have to
be iteratively optimized.

Suppose that for each client m, its classifier fm(wm; ·) has L layers; then the inference block has
the following structure:

y = σm,L(wm,L · σm,L−1(wm,L−1 . . . σm,1(wm,1vm) . . .)), (13)

where σm,l(·) represents the element-wise nonlinear activation function of layer l; wm,l’s are the
weight matrices of layer l, and vm is the input of the classifier which is the stacked output of the
feature extractors, i.e., vm = Hm(Θm;x). Then wm = {wm,l}Ll=1; see Figure 6 for an illustration.
Let us further define the server’s output of feature extractors, activation functions and weights as v0

{σ0,l(· · ·)}Ll=1 similarly as above.

Note that giving a selection matrix with appropriate shape Π ∈ S, left multiply the weight matrix
wm,l by ΠT (ΠTwm,l) results in selecting the rows of wm,l, which is equivalent to selecting the
output neurons of the lth layer. And right multiply the weight matrix wm,l by Π (wm,lΠ) results in
selecting the columns of wm,l, which is equivalent to selecting the input neurons of the lth layer.

The goal is to match wm,l’s with the corresponding parameters w0,l at the server. Below, we discuss
how the first layer, the middle layers and the last layer are matched.

First, recall that the input of the classifiers have the following relation:

Hm(Θm;xm) = PmH0(Θ0;x0), thatis,vm = Pmv0,

where Pm is the selection matrix defined by the feature overlapping pattern between xm and x0.
Then, let us multiply PT

m on both sides of the above equation, we obtain

PT
mPmv0 = PT

mvm. (14)

Note that PT
mvm basically pads zeros in the missing feature indices of the vm, so that it matches

the size of v0. Let us define Πm,1 = Pm. By utilizing the fact that Pm ∈ S(dm, d0) is a selection
matrix, it holds PmPT

m = Idm
, then we have the following relation:

σm,1((wm,1Πm,1)(Π
T
m,1vm)) = σm,1(wm,1vm).

This process expands the input vm to the same size as v0, while keeping the output of the first layer
unchanged; see Fig. 7 for an illustration of this process.

12

Next, we would like to find a selection matrix Πm,2 ∈ S that compresses the output of the first layer
of the server to match the output of the first layer of client m, as follows:

σm,1((wm,1Πm,1)(Π
T
m,1vm)) ≈ Πm,2 · σ0,1(w0,1v0). (15)

This output matching relation imposes the following assumption on the model parameters:
wm,1 = Πm,2w0,1Π

T
m,1. (16)

To see why (16) implies (15), we can plug (16) into the left hand side of (16), and obtain:
σm,1((wm,1Πm,1)(Π

T
m,1vm)) = σm,1((Πm,2w0,1Π

T
m,1Πm,1)(Π

T
m,1vm))

(i)
= Πm,2 · σ0,1((w0,1Π

T
m,1Πm,1)(Π

T
m,1vm))

= Πm,2 · σ0,1((w0,1Π
T
m,1Πm,1)(Π

T
m,1Πm,1v0))

= Πm,2 · σ0,1(w0,1Π
T
m,1Πm,1v0)

(ii)
≈ Πm,2 · σ0,1(w0,1v0),

(17)

where (i) comes from the fact that projection only changes the order and pads zeros to the output,
so applying element-wise activation before or after the projection does not affect the final output;
in (ii) we use the fact that ΠT

m,1Πm,1 is a diagonal matrix with 1’s and 0’s on diagonal that can be
approximated by a identity matrix. The above discussion suggests that, if (16) holds approximately,
then (15) holds approximately. As a result, we design the regularizer on the first layer between client
m and the server, by approximately enforcing (16) as

1

2

∥∥wm,1 −Πm,2w0,1Π
T
m,1

∥∥2 .
Let us now analyze the constraint for Πm,2. First, since the dimension of w0,1 is larger or equal to
that of wm,1 for each client m, we require that each coordinate of wm,1 is matched to one coordinate
in w0,1. Therefore we need Πm,2 to satisfy 1 = Πm,21. Further, each coordinate in w0,1 should
match to a coordinate in at least one clients m ∈ [M]’s wm,1, so this means

∑M
m=1 1

TΠm,2 ≥ 1.
The above process is illustrated in Fig. 8.

For the lth middle layer, its input is the output of the previous layer. By fixing the projection matrices
{Πm,l}Mm=1 that match the output of the (l − 1)th layer at each client to the output of the (l − 1)th

layer at the server, the matching problem for the lth middle layer takes the same form as the matching
problem for the input layer: the output of the previous layer σm,l−1(·) corresponds to the input vm;
the projection matrices {Πm,l}Mm=1 correspond to the input projection matrices {Πm,1}Mm=1; the
goal is to find the projection matrices {Πm,l+1}Mm=1 that match the output of the lth layer at each
client to the output of the same layer as the server.

By using the same argument that we used for the input layer, we design the regularizer on the lth

middle layer between client m and the server as
1

2

∥∥wm,l −Πm,l+1w0,lΠ
T
m,l

∥∥2 .

Figure 6: Illustration of the layer structure of the inference blocks on the clients, for the L = 3 case.

13

Figure 7: Aligning the input of the first layer by rearranging and padding the corresponding coordi-
nates of the input vm and the first layer wm,1.

Figure 8: Aligning the output of the first layer by rearranging and padding the corresponding coor-
dinates of the first layer wm,1.
For the last layer, the output at each client is the same as the server, which are the predicted label.
Therefore, the projection matrix of the output for the last layer are identity matrices, and we design
the regularizer for the last layer as

1

2

∥∥wm,L − w0,LΠ
T
m,L

∥∥2 .
Next, by vectorizing wm,l’s we have following relation:

vec(Πm,l+1w0,lΠ
T
m,l) = (Πm,l ⊗Πm,l+1)vec(w0,l),

where⊗ denotes the Kronecker product. Therefore the regularizer for each layer can be rewritten as

1

2
∥vec(wm,l)− (Πm,l ⊗Πm,l+1)vec(w0,l)∥2 .

Finally we can stack the sub-vector {vec(wm,l)}Ll=1 into wm, and define the projection matrix of
the long vector as

Πm := diag((Πm,1 ⊗Πm,2), . . . , (Πm,L ⊗ I)).

Again, Πm is a block diagonal matrix, and it is easy to verify that it satisfies the following conditions:

ΠT
m1 = 1,

M∑
m=1

1Πm ≥ 1; Πm ≥ 0. (18)

Finally, we obtain the final formulation of the regularizer

14

Algorithm 2 Sub-routines for Algorithm 1
1: ClientUpdate(Θt

0,Π
t
m, wt

0, Q, η)
2: Initialize: Θt,0

m ← PmΘt
0, w

t,0
m ← Πt

mwt
0

3: for q = 0, . . . , Q− 1 do
4: Uniformly sample n ∈ Nm

5: Θt,q+1
m ← Θt,q

m − η
(
∇Θmℓ(Fm(wt,q

m ;Hm(Θt,q
m ;xm,n)), yn) + µ1(Θ

t,q
m − PmΘt

0)
)

6: wt,q+1
m ← wt,q

m − η
(
∇wmℓ(Fm(wt,q

m ;Hm(Θt,q
m ;xm,n)), yn) + µ2(w

t,q
m −Πt

mwt
0)
)

7: Output: Θt,Q
m , wt,Q

m

8: ModelMatching({wt,Q
m ,Πt

m}Mm=1, w
t
0, P)

9: for p = 0, . . . , P − 1 do
10: for m′ = 1, . . . ,M in parallel do

11: ŵt,p
0 ←

(∑
m ̸=m′ pm(Πt,p

m)TΠt,p
m

)−1 (∑
m ̸=m′ pm(Πt,p

m)Twt,Q
m

)
12: Πt,p+1

m′ ← argminΠm′ rm′,2(w
t,Q
m′ ,Πm′ , ŵt,p

0), // Using Hungarian algorithm

13: wt+1
0 ←

(∑M
m=1 pm(Πt,P

m)TΠt,P
m

)−1 (∑M
m=1 pm(Πt,P

m)Twt,Q
m

)
, Πt+1

m ← Πt,P
m

14: Output: wt+1
0 , {Πt+1

m }Mm=1

Algorithm 3 Model Matching Procedure
1: ModelMatching
2: Input: {wt,Q

m ,Πt
m}Mm=1, w

t
0, P

3: for p = 0, . . . , P − 1 do
4: Uniformly sample m′ ∈ [M]

5: wt,p
0 ←

(∑
m ̸=m′ pm(Πt,p

m)TΠt,p
m

)−1 (∑
m ̸=m′ pm(Πt,p

m)Twt,Q
m

)
6: for l = 1, . . . , L− 1: do
7: Construct cost matrix Cl with (20).
8: Πt,p+1

m′,l ← argminΠm′

∑
i,j Πm′(i, j) · Cl(i, j), // Using Hungarian algorithm

9: wt+1 ←
(∑M

m=1 pm(Πt,P
m)TΠt,P

m

)−1 (∑M
m=1 pm(Πt,P

m)Twt,Q
m

)
, Πt+1

m ← Πt,P
m

10: Output: wt+1
0 , {Πt+1

m }Mm=1

rm,2(wm,Πmw0) =
1

2
∥wm −Πmw0∥2 , ∀m ∈ [M]

where Πm’s satisfy: Πm ∈ S(dw,m, dw,0),

M∑
m=1

1T
dw,m

Πm ≥ 1T
dw,0

.
(19)

A.2 OPTIMIZATION PROCEDURE

In this subsection, we describe the detailed procedures in line 8 − 14 of Algorithm 2 to optimize
the classifier matching problem (5) or its more detailed formulation (19). The procedure with more
details is given in Algorithm 3.

We iteratively solve the matching problem (11) for P iterations. In each iteration, we randomly pick
a client m′ to match it with the server’s classifier from the first layer to the last layer.

For the first L − 1 layers, we first fix Πm′,l−1 and construct an assignment cost matrix Cl that
computes the cost to match jth row in client m′ to ith row in the server of layer l for all (i, j). The
element Cl(i, j) of the cost matrix is defined as:

Cl(i, j) =

{
dist1(w0,lΠ

T
m,l−1[i], wm,l[j]) w0,lΠ

T
m,l−1[i] ̸= 0

dist2(wm,l[j]) otherwise,
(20)

where w0,lΠ
T
m,l−1[i] and wm,l[j] denote the ith and jth row of the matrices, dist1 is the similarity

cost for matching wm,l[j] to an existing row, and dist2 is the dimension penalty to match wm,l[j]
to a new row in w0,l. One specification of the cost functions is PFNM (Yurochkin et al., 2019) that
uses the MAP loss of the Beta-Bernoulli process, where dist1 is based on the Gaussian prior and
dist2 follows the Indian Buffet process prior. Then we can solve the assignment problem to obtain
Πm′,l with the celebrated Hungarian algorithm (Kuhn, 1955).

15

Note that for the first layer, the matching pattern Πm,0 is given by Πm,0 = Pm. And we do not need
to match the output layer.

B CONVERGENCE ANALYSIS

In this section, we analyze the convergence property of Algorithm 1. We first make the following
assumptions on the problem:

A 1 (Block Lipschitz Gradient) For each parameter blocks in {wm,Θm}Mm=1, there exists an Lm

such that the following holds:∥∥∇Θm
fm(Θm, wm)−∇Θ′

m
fm(Θ′

m, w′
m)
∥∥+ ∥∥∇wm

fm(Θm, wm)−∇w′
m
fm(Θ′

m, w′
m)
∥∥

≤ Lm (∥Θm −Θ′
m∥+ ∥wm − w′

m∥) , ∀ Θm,Θ′
m, wm, w′

m,

A 2 (Lower Bounded Loss) There exist finite lower bounds for each client classification loss, i.e.,

∃ fm > −∞, s.t. fm(Θm, wm) ≥ fm, ∀Θm, wm,m.

A 3 (Bounded Variance) The stochastic partial gradient estimation has bounded variance σ2
Θ and

σ2
w, i.e.,

En ∥∇Θmℓ(Fm(wm;Hm(Θm;xm,n)), yn)−∇Θmfm(wm,Θm)∥2 ≤ σ2
Θ,∀ Θm, wm, ∀m ∈ [M],

En ∥∇wmℓ(Fm(wm;Hm(Θm;xm,n)), yn)−∇wmfm(wm,Θm)∥2 ≤ σ2
w,∀ Θm, wm, ∀m ∈ [M].

We can abstract HyFEM to a BCD-type algorithm by redefining the model parameters and the prob-
lem as follows:

1. Define x := [Θ1; . . . ; ΘM ;w1; . . . ;wM], y := [vec(Π1); . . . , vec(ΠM)], and z := [Θ0;w0].

2. DefineL(x,y, z) :=
∑M

m=1 pm (fm(Θm, wm) + µ1 · rm,1(Θm,Θ0) + µ2 · rm,2(wm,Πm, w0)) .

Then the optimization problem (6) can be simplified as:

min
x,y,z
L(x,y, z), s.t. y ∈ Range(y). (21)

Moreover, the algorithm can be simplified as:

xt,q+1 = xt,q − η∇̃xL(xt,q,yt, zt), forq = 0, . . . , Q− 1 (22a)

yt+1 = argmin
y∈Range(y)

L(xt,Q,y, zt), (22b)

zt+1 = argmin
z
L(xt,Q,yt+1, z), (22c)

where we assume xt+1,0 = xt+1 = xt,Q and ∇̃xL(·) denotes the stochastic partial gradient of x.

We make the following assumptions to problem (21).

A 4 (Block Lipschitz Gradient) L is block smooth, and for parameter x and z, there exists positive
constants Lx, Lz and Cx such that the following holds:

∥∇xL(x,y, z)−∇x′L(x′,y, z)∥ ≤ Lx ∥x− x′∥ ,∀ x,x′, z,∀y ∈ Range(y).

∥∇xL(x,y, z)−∇xL(x,y, z′)∥ ≤ Cx ∥z− z′∥ ,∀ z, z′,x,∀y ∈ Range(y).

A 5 (Block Strong Convexity of z) For parameter z, there exists a positive constant µ such that
the following holds:

L(x,y, z′) ≥ L(x,y, z) + ⟨∇zL(x,y, z), z′ − z⟩+ µ

2
∥z′ − z∥2 ,∀ x, z, z′,∀y ∈ Range(y).

A 6 (Unbiased Stochastic Partial Gradient) The stochastic partial gradient of x is unbiased:

E ∇̃xL(x,y, z) = ∇xL(x,y, z),∀ x, z,∀y ∈ Range(y).

16

A 7 (Bounded Variance of Stochastic Partial Gradient) The stochastic partial gradient of x has
bounded variance σ2:

E
∥∥∥∇̃xL(x,y, z)−∇xL(x,y, z)

∥∥∥2 ≤ σ2,∀ x, z,∀y ∈ Range(y).

A 8 (Lower Bounded Function) The problem L is bounded from below, i.e.,

∃L > −∞, s.t. L(x,y, z) ≥ L, ∀x, z,∀y ∈ Range(y).

A 9 (Compact Constraint Set) For parameter y, the constraint set Range(y) is compact.

Note that in A4 and A5, we only assume blocks x, z are smooth, and only block z is strongly convex
while block y can be non-smooth and non-convex and x can potentially be non-convex. Further we
assume that∇xL is smooth w.r.t. z, which is non-standard, but we can prove that it hold for problem
(6). The rest assumptions A6-A9 are common assumptions when analyzing stochastic algorithms.
Further we can verify that the above assumptions hold for the original problem (6).

Lemma 1 Suppose (6) satisfies assumptions A1-A3, then it satisfies A4-A9 with the constants in the
assumptions given as:

Lx = max
m
{pmLm +max{µ1, µ2}}, Cx = max{µ1, µ2},

µ ≥ min
m
{pm} ·min{µ1, µ2}, σ2 = σ2

Θ + σ2
w, L =

M∑
m=1

pmfm.

The proof is given in Section B.2.

Then we have the following result:

Theorem 2 Suppose the problem (21) satisfies A4-A9 and run (22) for T iterations with stepsize
η ≤ min{ 1

Lx
, 8µ
5C2

x
}. Then the sequence {xt,q,yt, zt}Tt=0 generated by (22) satisfies:

1

TQ

T−1∑
t=0

E

(
µ

η

∥∥zt+1 − zt
∥∥2 + ∥∥∇xL(xt+1,yt+1, zt)

∥∥2 + Q∑
q=0

∥∥∇xL(xt,q,yt, zt)
∥∥2)

≤ 10

TQη

(
L(x0,y0, z0)− L

)
+

(
5Lxη +

2L2
xη

2

Q

)
σ2,

(23)

and ∥∇zL(xt,yt, zt)∥2 = 0, ∀t ∈ [T].

This result indicates that by setting Q = T, η =
√

2(L(x0,y0,z0)−L)
LxQTσ2 , the right-hand-side (RHS) of

(23) becomes 10σ
√

2(L(x0,y0,z0)−L)Lx

T + 2Lx(L(x0,y0,z0)−L)
T 3 = O(1

T). Let us analyze the left-hand-
side (LHS) terms of (23). First, we have

1

TQ

T−1∑
t=0

E
µ

η

∥∥zt+1 − zt
∥∥2 =

µ

T

T−1∑
t=0

E
∥∥zt+1 − zt

∥∥2 = O
(
1

T

)
,

indicating that E
∥∥zt+1 − zt

∥∥2 = O
(
1
T

)
. Second, we have

1

TQ

T−1∑
t=0

E

(∥∥∇xL(xt+1,yt+1, zt)
∥∥2 + Q∑

q=0

∥∥∇xL(xt,q,yt, zt)
∥∥2) = O

(
1

T

)
,

where the LHS is the sum of T (Q + 2) terms of ∥∇xL∥2 divide by TQ, which also indicates that
E ∥∇xL(xt,q,yt, zt)∥2 = O

(
1
T

)
. Together we have that algorithm (22) finds a stationary solution

of (21) w.r.t. x, z with rate O
(
1
T

)
. Combining Theorem 2 with Lemma 1, we have that by running

Algorithm 1, parameters {wm,Θm}Mm=0 converges to their stationary point of (6), while {Πm}Mm=1
stays in a compact set.

17

Alternatively, if we assume the solution to y is unique, and update on x is a one-step gradient
descent, i.e., Q = 1 and

xt+1 = xt − η∇xL(xt,yt, zt),

then by applying (Razaviyayn et al., 2013, Theorem 2), Algorithm 1 asymptotically converges to
the first-order stationary point of (6).

B.1 PROOF FOR THEOREM 2

We begin with proving the following descent result:

Et L(xt+1,yt+1, zt+1)− L(xt,yt, zt) ≤ −η

2

Q−1∑
q=0

Et
∥∥∇xL(xt,q,yt, zt)

∥∥2
− µ

2

∥∥zt+1 − zt
∥∥2 + QLxη

2σ2

2
,

(24)

where we denote the expectation conditioned on the information up to iteration t as Et. First, we
write the LHS of the above equation into three terms as below:

L(xt+1,yt+1, zt+1)− L(xt,yt, zt) =
(
L(xt+1,yt+1, zt+1)− L(xt+1,yt+1, zt)

)
+
(
L(xt+1,yt+1, zt)− L(xt+1,yt, zt)

)
+
(
L(xt+1,yt, zt)− L(xt,yt, zt)

)
.

(25)

We bound the three terms on the RHS of the above equation separately.

1) The first term
(
L(xt+1,yt+1, zt+1)− L(xt+1,yt+1, zt)

)
can be bounded by applying A5:

L(xt+1,yt+1, zt+1)− L(xt+1,yt+1, zt)

A5
≤ −

〈
∇Lz(x

t+1,yt+1, zt+1), zt − zt+1
〉
− µ

2

∥∥zt+1 − zt
∥∥2

(a)
= −µ

2

∥∥zt+1 − zt
∥∥2 ,

(26)

where in (a) uses update rule (22c) that by exact minimization∇zL(xt+1,yt+1,zt+1

) = 0.

2) By the update rule (22b), the second term
(
L(xt+1,yt+1, zt)− L(xt+1,yt, zt)

)
can be bound

by

L(xt+1,yt+1, zt)− L(xt+1,yt, zt) ≤ 0. (27)

3) The third term
(
L(xt+1,yt, zt)− L(xt,yt, zt)

)
can be further decompose into:

L(xt+1,yt, zt)− L(xt,yt, zt) = L(xt,Q,yt, zt)− L(xt,0,yt, zt)

=

Q−1∑
q=0

(
L(xt,q+1,yt, zt)− L(xt,q,yt, zt)

)
,

(28)

where the first inequality uses the definition that xr,Q = xr+1 and xr,0 = xr. Then we bound each
term in the summation as:

L(xt,q+1,yt, zt)− L(xt,q,yt, zt)
A4
≤
〈
∇xL(xt,q,yt, zt),xr,q+1 − xr,q

〉
+

Lx

2

∥∥xt,q+1 − xt,q
∥∥2

(22a)
= −η

〈
∇xL(xt,q,yt, zt), ∇̃xL(xt,q,yt, zt)

〉
+

Lxη
2

2

∥∥∥∇̃xL(xt,q,yt, zt)
∥∥∥2 .

(29)

18

Taking expectation on (t, q), we have:

Et,q L(xt,q+1,yt, zt)− L(xt,q,yt, zt)

≤ −η
〈
∇xL(xt,q,yt, zt),Et,q ∇̃xL(xt,q,yt, zt)

〉
+

Lxη
2

2
Et,q

∥∥∥∇̃xL(xt,q,yt, zt)
∥∥∥2

(a)
= η

∥∥∇xL(xt,q,yt, zt)
∥∥2 + Lxη

2

2

∥∥∇xL(xt,q,yt, zt)
∥∥2

+
Lxη

2

2
Et,q

∥∥∥∇̃xL(xt,q,yt, zt)−∇xL(xt,q,yt, zt)
∥∥∥2

A7
≤ −

(
η − Lxη

2

2

)∥∥∇xL(xt,q,yt, zt)
∥∥2 + Lxη

2σ2

2
,

(30)

where (a) first applies the fact that E(X2) = (EX)2 +E((X −E(X))2) to the second therm, then
applies A6 to the first and the second term.

By picking η ≤ 1
Lx

and substituting (30) to (28), we have:

Et L(xt+1,yt, zt)− L(xt,yt, zt) ≤ −η

2

Q−1∑
q=0

Et
∥∥∇xL(xt,q,yt, zt)

∥∥2 + QLxη
2σ2

2
. (31)

Then we substitute (26), (27) and (31) back to (25), then we obtain (24).

To prove Theorem 2, we need to further bound
∥∥∇xL(xt+1,yt, zt)

∥∥2 and
∥∥∇xL(xt+1,yt+1, zt)

∥∥2.
We bound them as follows. Term

∥∥∇xL(xt+1,yt, zt)
∥∥2 can be bound as:

Et,Q−1
∥∥∇xL(xt+1,yt, zt)

∥∥2 (a)

≤ 2
∥∥∇xL(xt,Q−1,yt, zt)

∥∥2
+ Et,Q−1 2

∥∥∇xL(xt,Q,yt, zt)−∇xL(xt,Q−1,yt, zt)
∥∥2

A4
≤ 2L2

x E
t,Q−1

∥∥xt,Q − xt,Q−1
∥∥2 + 2

∥∥∇xL(xt,Q−1,yt, zt)
∥∥2

(22a)
= 2L2

xη
2 Et,Q−1

∥∥∥∇̃xL(xt,Q−1,yt, zt)
∥∥∥2 + 2

∥∥∇xL(xt,Q−1,yt, zt)
∥∥2

A7
≤
(
2 + 2L2

xη
2
) ∥∥∇xL(xt,Q−1,yt, zt)

∥∥2 + 2L2
xη

2σ2,

(32)

where in (a) we add and subtract∇xL(xt,Q−1,yt, zt) and apply Cauchy–Schwarz inequality. Sim-
ilarly, term

∥∥∇xL(xt+1,yt+1, zt)
∥∥2 can be bound as:

∥∥∇xL(xt+1,yt+1, zt)
∥∥2 (a)

≤ 2
∥∥∇xL(xt+1,yt+1, zt)−∇xL(xt+1,yt+1, zt+1)

∥∥2
+ 2

∥∥∇xL(xt+1,yt+1, zt+1)
∥∥2

A4
≤ 2C2

x

∥∥zt+1 − zt
∥∥2 + 2

∥∥∇xL(xt+1,yt+1, zt+1)
∥∥2 , (33)

where in (a) we add and subtract∇xL(xt+1,yt+1, zt+1) and apply Cauchy–Schwarz inequality.

Then we sum the above results as (24)× 2 + (32)× η
5 + (33)× η

5 and obtain the following:

2Et L(xt+1,yt+1, zt+1)− 2L(xt,yt, zt) +
η

5
Et,Q−1

∥∥∇xL(xt+1,yt, zt)
∥∥2

+
η

5

∥∥∇xL(xt+1,yt+1, zt)
∥∥2 ≤ −η Q−1∑

q=0

Et
∥∥∇xL(xt,q,yt, zt)

∥∥2 − µ
∥∥zt+1 − zt

∥∥2
+QLxη

2σ2 +
2C2

xη

5

∥∥zt+1 − zt
∥∥2 + 2η

5

∥∥∇xL(xt+1,yt+1, zt+1)
∥∥2

+
2η + 2L2

xη
3

5

∥∥∇xL(xt,Q−1,yt, zt)
∥∥2 + 2L2

xη
3σ2

5
.

(34)

19

Rearrange the terms, notice that we choose η ≤ 1
Lx

, so that 2η + 2L2
xη

3 ≤ 4η, we have:

η

5

Q∑
q=0

Et
∥∥∇xL(xt,q,yt, zt)

∥∥2 + η

5
Et
∥∥∇xL(xt+1,yt+1, zt+1)

∥∥2 + (µ− 2C2
xη

5

)∥∥zt+1 − zt
∥∥2

≤ 2
(
L(xt,yt, zt)− Et L(xt+1,yt+1, zt+1)

)
+

(
2L2

xη
3

5
+QLxη

2

)
σ2.

(35)
Sum the above equation from t = 0 to T − 1, choose µ − 2C2

xη
5 ≥ µ

5 (η ≤ 8µ
5C2

x
), and devide both

side by ηQT
5 , then Theorem 2 is proved.

B.2 PROOF FOR LEMMA 1

In this section, we verify the assumptions A4-A9 for the original problem (6) under assumptions
A1-A3.

Recall that we have the following corresponcance:
x := [Θ1; . . . ; ΘM ;w1; . . . ;wM], y := [vec(Π1); . . . , vec(ΠM)], z := [Θ0;w0],

L(x,y, z) :=
M∑

m=1

pm (fm(Θm, wm) + µ1 · rm,1(Θm,Θ0) + µ2 · rm,2(wm,Πm, w0)) ,

rm,1(Θm,Θ0) =
1

2
∥Θm − PmΘ0∥2 ,

rm,2(wm,Πm, w0) =
1

2
∥wm −Πmw0∥2 , s.t. Πm ∈ S(dw,m, dw,0),

M∑
m=1

1T
dw,m

Πm ≥ 1T
dw,0

.

1) For A4, we have

∇xL(x,y, z) =
[

pm∇Θm
fm(Θm, wm) + pmµ1(Θm − PmΘ0)

pm∇wm
fm(Θm, wm) + pmµ2(wm −Πmw0)

]M
m=1

.

Therefore we have the following bound:
∥∇xL(x,y, z)−∇xL(x′,y, z)∥

=

M∑
m=1

pm ∥∇Θm
fm(Θm, wm) + µ1Θm −∇Θm

fm(Θ′
m, w′

m)− µ1Θ
′
m∥

+

M∑
m=1

pm ∥∇wmfm(Θm, wm) + µ2wm −∇wmfm(Θ′
m, w′

m)− µ2w
′
m∥

≤
M∑

m=1

pm (∥∇Θm
fm(Θm, wm)−∇Θm

fm(Θ′
m, w′

m)∥+ µ1 ∥Θm −Θ′
m∥)

+

M∑
m=1

pm (∥∇wm
fm(Θm, wm)−∇wm

fm(Θ′
m, w′

m)∥+ µ2 ∥wm − w′
m∥)

A1
≤

M∑
m=1

pm ((Lm + µ1) · ∥Θm −Θ′
m∥+ (Lm + µ2) · ∥wm − w′

m∥)

≤ max
m
{pmLm +max{µ1, µ2}}

M∑
m=1

(∥Θm −Θ′
m∥+ ∥wm − w′

m∥)

= Lx ∥x− x′∥ .
where we obtain Lx = maxm{pmLm +max{µ1, µ2}}. Also, we have

∥∇xL(x,y, z)−∇xL(x,y, z′)∥ =
M∑

m=1

pm (µ1 ∥Pm(Θ0 −Θ′
0)∥+ µ2 ∥Πm(w0 − w′

0)∥)

20

≤
M∑

m=1

pm (µ1 ∥Pm∥ ∥Θ0 −Θ′
0∥+ µ2 ∥Πm∥ ∥w0 − w′

0∥)

(a)
=

M∑
m=1

pm (µ1 ∥Θ0 −Θ′
0∥+ µ2 ∥w0 − w′

0∥)

(b)

≤ max{µ1, µ2} (∥Θ0 −Θ′
0∥+ ∥w0 − w′

0∥)
= Cx ∥z− z′∥ .

where in (a) we use the fact that Pm ∈ S(dm, d0),Πm ∈ S(dw,m, dw,0) are selection matrices so
that ∥Pm∥ = 1, ∥Πm∥ = 1; (b) uses the fact that

∑M
m=1 pm = 1. Therefore A4 is verified.

2) Next, we verify A5. We proceed by directly computing the second derivitive of z:

∇2
zL(x,y, z)

=

M∑
m=1

pm

[
∇2

Θ0
µ1 · rm,1 + µ2 · rm,2 ∇Θ0

∇w0
µ1 · rm,1 + µ2 · rm,2

∇Θ0
∇w0

µ1 · rm,1 + µ2 · rm,2 ∇2
w0

µ1 · rm,1 + µ2 · rm,2

]
=

[
µ1 ·

∑M
m=1 pmPT

mPm 0

0 µ2

∑M
m=1 pmΠT

mΠm

]
.

Then we analyze the range of the eigenvalues of this matrix. First we know that Πm, Pm’s are
selection matricies, therefore PT

mPm,ΠT
mΠm are diagonal matricies, indicating that∇2

zL(x,y, z) is
also a diagonal matrix.

For the first block µ1 ·
∑M

m=1 pmPT
mPm, we have that Pm’s are the feature selection matrix, i.e.,

xm = Pmx0, xm ∈ Xm =
∏
i∈Im

Di, x0 ∈ X0 =

d0∏
i=1

Di.

It is clear that if client m has the ith feature, then the ith diagonal entry of PT
mPm is PT

mPm(i, i) = 1,
and PT

mPm(i, i) = 0 otherwise. That is, the following holds:

PT
mPm(i, i) =

{
1, i ∈ Im,

0, i /∈ Im.

Further we have that the full feature space X0 is the union of the clients’ feature spaces, i.e.,⋃
m∈[M] Im = [d0]. Therefore, we have

1
T
d0

M∑
m=1

PT
mPm ≥ 1

T
d0
, and min

i∈[d0]

M∑
m=1

pmPT
mPm(i, i) ≥ min

m
{pm}.

Similarly, the constraint on Πm’s that
∑M

m=1 1
T
dw,m

Πm ≥ 1T
dw,0

indicates that the following holds:

min
i∈[dm,0]

M∑
m=1

pmΠT
mΠm(i, i) ≥ min

m
{pm}.

Therefore, the Hessien matrix ∇2
zL(x,y, z) is positive definite, with smallest eigenvalue µ ≥

minm{pm} ·min{µ1, µ2}. Thus A5 is verified.

3) A6 holds true as in Algorithm 1, we uniformly samples n ∈ Nm for all m ∈ [M], therefore

En∇Θm
ℓ(Fm(wm;Hm(Θm;xm,n)), yn) = ∇Θm

fm(Θm, wm),

En∇wmℓ(Fm(wm;Hm(Θm;xm,n)), yn) = ∇wmfm(Θm, wm),

Further, from A3, we can obtain A7 with σ2 = σ2
Θ + σ2

w.

21

Client index m Assigned features Im Assigned class #
1 1,2,3 25
2 1,2,3 25
3 1,3,4 25
4 1,3,4 25
5 1,3 25
6 1,3 25

Table 3: The data assignment pattern for MultiView40 dataset. Note that 6.88% of data has never
been used.

Client index m Assigned features Im Assigned classes
1 1,2,3 1–5
2 1,2,3 6–10
3 1,3,4 1–5
4 1,3,4 6–10
5 1,3 1–5
6 1,3 6–10

Table 4: The data assignment pattern for Cifar-10 and EuroSAT dataset.
4) To verify A8, we apply A2 that:

L(x,y, z) =
M∑

m=1

pm (fm(Θm, wm) + µ1 · rm,1(Θm,Θ0) + µ2 · rm,2(wm,Πm, w0))

(a)

≥
M∑

m=1

pmfm(Θm, wm)
A2
≥

M∑
m=1

pmfm := L,

where (a) uses the fact that rm,1(Θm,Θ0) = 1
2 ∥Θm − PmΘ0∥2 ≥ 0 and rm,2(wm,Πm, w0) =

1
2 ∥wm −Πmw0∥2 ≥ 0.

5) A9 directly comes from the constraint on Πm’s that

Πm ∈ S(dw,m, dw,0),

M∑
m=1

1T
dw,m

Πm ≥ 1T
dw,0

,

which is a compact set.

At this point, we have verified A4-A9 for problem (6) with Algorithm 1, and the corresponding
constants are summarized below:

Lx = max
m
{pmLm +max{µ1, µ2}}, Cx = max{µ1, µ2},

µ ≥ min
m
{pm} ·min{µ1, µ2}, σ2 = σ2

Θ + σ2
w, L =

M∑
m=1

pmfm.

This completes the proof for Lemma 1.

C ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we include additional sets of numerical experiments. In the first set of additional
experiments, we reduce the feature heterogeneity of the data on the clients by allowing clients to
have common features, so that HFL algorithms such as FedProx and FedAvg applies. Further, we
include an additional multi-modal dataset with both image and text features.

C.1 COMPARISON WITH HFL

In this section, we conduct numerical experiments to compare FedProx (Li et al., 2018) with
HyFEM. In the experiments, we split the features into d0 = 4 blocks for the datasets and assign

22

(a) ModelNet40 (b) Cifar-10 (c) EuroSAT

Figure 9: Test accuracy of server model trained with HyFEM compared with FedProx for a) ModelNet40, b)
Cifar-10, and c) EuroSAT datasets.

(a) ModelNet40 (b) Cifar-10 (c) EuroSAT

Figure 10: Averaged test accuracy of client models trained with HyFEM compared with FedProx for a)
ModelNet40, b) Cifar-10, and c) EuroSAT datasets.

the first and the third blocks as the common blocks for all M = 6 clients. Then we can apply
FedProx to train a model with the overlapped features and compare with the models trained with
HyFEM with more features. The detailed data assignment patterns for different datasets are de-
scribed in Table 3 - 4. Note that in MultiView40 dataset, there are 6.88% of the data has never been
used by HyFEM and 50% of the data has never been used by FedProx. For Cifar-10 and EuroSAT
datasets, all data has been used by at least one client with HyFEM while 50% of the data are dropped
by FedProx.

For Cifar-10 and EuroSAT datasets, we split each image into (top left, top right, bottom left, bottom
right) total d0 = 4 feature blocks. For MultiView40 dataset, we choose four views of different
angles of the objects as the full feature space. The total communication round is T = 64 and local
update # Q = 32 are fixed for all experiments. We conducted line search on the learning rate η and
µ2 for the algorithms to obtain the best performance.

The results for the datasets are shown in Figure 9 and Figure 10. From the results, we can see that the
models trained with HyFEM can obtain better performance than FedProx. This is because HyFEM
is able to use more data than FedProx by using heterogeneous models.

C.2 DATA PARTITIONING PATTERN

In this subsection, we provide the data partitioning patterns for each settings. Notice that in Fig-
ure 11(b), and Figure 12(a), the black boxes with 0 inside them indicate that the corresponding
feature block of the samples in this class has not been used for training by any of the clients.

C.3 EXPERIMENTS ON HERIGRAPH DATASET

HeriGraph (Bai et al., 2022) dataset is a multi-modal dataset for heritage site classification. This
dataset consists of total N0 = 41, 621 samples from 9 classes. Each sample has at most d0 =
4 preprocessed feature blocks, including one text feature block and three different image feature
blocks. Note that not all samples have all features. For example, only 25, 325 samples have text
features, and the rest do not. We will include the result for this dataset in the revised manuscript.

In the experiments, we use the MLP model with one hidden layer as the classifier fm(wm; ·). We
use MLP of different sizes as feature extractors for each feature block. We set client number M = 6,
client feature block number dm = 2 and each client has 6 out of 9 classes.

23

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

1

2

3

4

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

(a) ModelNet40:1

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

1

2

3

4

5

6

7

8

9

10

11

12

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

3

3

3

3

4

3

4

3

4

3

4

3

3

3

3

3

3

0

0

0

1

1

1

2

2

2

1

1

1

2

1

2

2

2

1

0

1

1

2

1

2

2

2

1

2

1

2

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

2

2

1

0

1

1

2

1

0

0

0

1

1

1

1

1

1

0

0

0

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

1

1

1

0

0

0

1

1

1

1

1

1

2

2

2

2

1

2

1

2

1

2

1

0

0

0

1

1

1

1

1

1

0

0

0

1

2

1

2

1

2

1

2

1

2

1

2

1

2

0

1

0

2

1

1

1

2

2

2

1

1

1

2

2

2

0

0

0

1

1

1

0

0

0

1

1

1

2

1

2

1

2

1

2

0

1

0

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

2

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

2

2

2

1

2

0

1

0

1

1

1

0

0

0

2

2

2

1

1

1

1

2

1

2

1

2

0

1

0

2

2

1

2

2

2

2

1

2

0

1

0

1

2

1

2

1

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

1

1

1

1

1

1

0

0

0

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

2

2

2

1

2

1

2

1

2

2

2

2

2

1

1

1

0

0

0

2

2

2

1

1

1

2

1

2

1

2

1

2

0

1

0

0

1

0

2

1

2

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

2

1

2

1

2

1

2

2

2

1

1

1

1

1

1

0

0

0

0

0

0

2

2

2

2

2

2

1

1

1

1

1

1

1

2

1

1

0

1

1

2

1

1

0

1

(b) ModelNet40:2

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

12

3

3

3

3

3

3

4

3

3

3

3

3

3

4

3

4

3

4

3

3

3

3

3

3

4

3

3

3

4

3

3

4

3

3

3

3

4

3

3

3

3

3

3

3

3

4

4

3

3

3

3

3

3

3

3

4

3

4

3

3

3

3

1

2

2

2

1

2

2

2

2

2

1

2

1

2

2

1

2

2

2

1

2

2

2

2

2

2

1

2

1

2

2

2

2

2

2

1

2

2

1

2

2

2

1

2

2

2

1

2

2

2

2

2

2

1

2

2

2

1

(c) Cifar-10 & EuroSAT

Figure 11: The illustration of how many clients (the numbers in boxes) possess the training data of each
feature block in each class for the settings in Section 4, with a) ModelNet40:1 with d0 = 4 features, M = 4
clients, and 40 classes; b) ModelNet40:2 with d0 = 12 features, M = 8 clients, and 40 classes; c) Cifar-10 &
EuroSAT with d0 = 12 features, M = 9 clients, and 10 classes. The x-axis of each plot is the class axis and
y-axis is the feature axis.

The result is shown in Figure 13. The server model trained with HyFEM has comparable perfor-
mance as the centralized trained model. The average performance of the clients’ models has worse
performance than full model due to lack of full features and classes, but the accuracy is 20% higher
than the models obtained with stand-alone training.

24

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

1

2

3

4

6

6

4

4

5

5

4

4

4

4

4

4

4

4

5

5

4

4

5

5

6

6

5

5

6

6

4

4

4

4

5

5

4

4

4

4

5

5

4

4

5

5

5

5

2

2

3

0

3

1

3

2

3

0

2

1

2

1

3

2

3

1

2

2

3

1

3

1

3

1

3

1

3

2

3

1

2

1

3

1

3

1

2

1

1

1

2

1

3

1

3

1

2

0

2

0

1

1

2

0

2

2

2

1

2

0

2

2

2

1

2

0

1

1

1

2

2

2

1

2

2

2

1

2

2

1

2

2

1

1

3

0

3

1

2

2

2

0

2

1

2

1

3

1

3

1

1

1

2

2

1

2

3

0

3

2

3

2

3

0

(a) ModelNet40

1 2 3 4 5 6 7 8 9 10

1

2

3

4

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

(b) Cifar-10 & EuroSAT

Figure 12: The illustration of how many clients (the numbers in boxes) possess the training data of each
feature block in each class for the settings in Appendix C.1, with a) ModelNet40 with d0 = 4 features, M = 6
clients, and 40 classes; c) Cifar-10 & EuroSAT with d0 = 4 features, M = 6 clients, and 10 classes. The
x-axis of each plot is the class axis and y-axis is the feature axis.

(a) Server (b) Client

Figure 13: Test accuracy of a) server model, b) client models trained with HyFEM compared with Centralized
training and stand-alone training for HeriGraph dataset.

25

	Introduction
	Related work

	Problem Formulation
	Algorithm Design
	Numerical Experiments
	Conclusions
	Heterogeneous Model Matching Algorithm
	Regularizer Design
	Optimization Procedure

	Convergence Analysis
	Proof for Theorem 2
	Proof for Lemma 1

	Additional Numerical Experiments
	Comparison with HFL
	Data Partitioning Pattern
	Experiments on HeriGraph Dataset

