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ABSTRACT

Although retrieval-augmented generation(RAG) significantly improves generation
quality by retrieving external knowledge bases and integrating generated content,
it faces computational efficiency bottlenecks, particularly in knowledge retrieval
tasks involving hierarchical structures for Tree-RAG. This paper proposes a Tree-
RAG acceleration method based on the improved Cuckoo Filter, which optimizes
entity localization during the retrieval process to achieve significant performance
improvements. Tree-RAG effectively organizes entities through the introduction of
a hierarchical tree structure, while the Cuckoo Filter serves as an efficient data struc-
ture that supports rapid membership queries and dynamic updates. The experiment
results demonstrate that our method is much faster than baseline methods while
maintaining high levels of generative quality. For instance, our method is more
than 800% faster than naive Tree-RAG on DART dataset. Our work is available at
https://github.com/TUPYP7180/CFT-RAG-2025.

1 INTRODUCTION

In the era of information explosion, Retrieval-Augmented Generation (RAG), a technology integrating
retrieval mechanisms with generative models, has gained significant attention. It allows models to
draw on external knowledge bases during text generation, effectively overcoming the limitations of
traditional generative models in knowledge-intensive tasks (Lewis et al., 2020). The knowledge base,
a vital part of the RAG system, stores a wealth of structured and unstructured knowledge, acting as
the main source of external information for the model. However, with the continuous expansion of
the knowledge base and the rapid pace of knowledge update, the challenge of efficiently retrieving
relevant and accurate information from it has become a major obstacle to improving the performance
of RAG system. The experiment results of time ratio in Table [I] show that the retrieval time accounts
for 10% to 72% of the total response time in all baseline RAG methods. Enhancing the retrieval
speed and accuracy of the knowledge base is crucial for boosting the overall performance of the
RAG system (Zhong et al., [2024])). Faster and more accurate retrieval enables the model to access
relevant knowledge promptly, improving response speed and the quality of generated content. In
contrast, inefficient or inaccurate retrieval can result in incorrect or irrelevant outputs, degrading user
experience and system usability. Therefore, exploring ways to optimize the knowledge base retrieval

*Corresponding Author.


https://github.com/TUPYP7180/CFT-RAG-2025

Published as a conference paper at ICLR 2026

mechanism is of great theoretical and practical importance, and this paper will focus on this key issue.
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Figure 1: The workflow of CFT-RAG begins with a user query, which undergoes vector search to
retrieve relevant documents. Key entities are then identified from entity trees by applying SpaCy
and hierarchical tree searches. Context information related to these entities is retrieved and filtered
efficiently by applying Cuckoo Filter. The retrieved context and hierarchical relationships are
integrated into a comprehensive prompt, which is fed into an augmented large language model (LLM).
The LLM processes this enriched prompt to generate a context-aware and accurate response to the
user query.

Knowledge bases in Retrieval-Augmented Generation (RAG) systems are mainly of three types:
text-based, graph-based, and tree-based (Han et al., [2025)). Text-based ones store information as text,
easy to manage but slow in retrieval due to complex language processing. Graph-based knowledge
bases represent knowledge as graphs, excelling in handling complex relationships with relatively fast
retrieval for certain queries, thanks to graph neural networks. Tree-based knowledge bases structure
knowledge hierarchically. Despite text-based and graph-based knowledge bases having made good
progress, the retrieval speed of all three types, especially tree-based ones, needs improvement.
For RAG systems to provide faster and more accurate responses, optimizing retrieval from these
knowledge bases, particularly tree-RAG, is a key research challenge.

Tree-RAG, an extension of RAG, improves on traditional RAG frameworks by using a hierarchical
tree structure to organize the retrieved knowledge, thus providing richer context and capturing
complex relationships among entities. In Tree-RAG, entities are arranged hierarchically, allowing
the retrieval process to more effectively traverse related entities at multiple levels. This results in
enhanced response accuracy and coherence, as the tree structure maintains connections between
entities that are essential for contextually rich answers (Fatehkia et al., [2024a). However, a critical
limitation of Tree-RAG lies in its computational inefficiency: as the datasets and tree depth grow,
the time required to locate and retrieve relevant entities within the hierarchical structure significantly
increases, posing scalability challenges. This paper aims to greatly improve the retrieval efficiency of
Tree-RAG without sacrificing the accuracy of the generated responses.

To address the retrieval bottleneck, we introduce an optimized method to Tree-RAG by integrating the
Cuckoo Filter (Fan et al.,|2014)), a high-performance data structure. Its basic workflow is presented in
Figure[T] The Cuckoo Filter excels in fast membership queries and supports dynamic operations, such
as element insertions and deletions, making it suitable for dynamic data management scenarios (Fan
et al., |2014). Unlike traditional filters, such as Bloom Filter (Guo et al., 2010), which is limited
by fixed false-positive rates and lack deletion capability, the Cuckoo Filter allows for both flexible
updates and reduced storage requirements. Therefore, it is particularly advantageous for handling
large hierarchical datasets. The comparison experiment is designed to demonstrate that our method is
significantly better than the three baseline methods including naive Tree-RAG.

Theoretically, the time complexity of Cuckoo Filter for searching entities is O(1), which is significantly
lower than that of naive Tree-RAG. From a spatial point of view, entities are stored in the Cuckoo
Filter in the form of fingerprints (12-bit), which greatly saves memory usage. On the other hand,
when the load factor of Cuckoo Filter exceeds the preset threshold, the storage capacity is usually
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increased by double expansion, while the original elements are re-hashed and migrated to the new
storage location to complete the automatic expansion. This keeps the loading rate of cuckoo filter
high and not too high, thus saving memory while avoiding hash collisions as much as possible.

Moreover, we propose two novel designs. The first design introduces a temperature variable, with
each entity stored in the Cuckoo Filter maintaining an additional variable called temperature. The
variable is used to record the frequency of the entity being accessed. The Cuckoo Filter sorts the
entities according to the frequency, and the entities with the highest temperature are placed in the
front of the bucket, thus speeding up the retrieval. The second design is to introduce block linked list,
where Cuckoo Filter stores the addresses of entities at different locations in the tree. The utilization
of the space of block linked list is high, it can support relatively efficient random access, reduce the
number of linked list nodes, and perform well in balancing time and space complexity, especially
for processing large-scale data. Therefore, we achieve acceleration by storing these addresses in the
form of a block linked list. An ablation experiment is performed to demonstrate the effectiveness of
the design.

1.1 RELATED WORK

Cuckoo Filter Cuckoo Filter is an efficient data structure for supporting fast element lookup and
deletion operations, which is mainly used for collection operations and data stream processing (Fan
et al.|2014). It is developed based on the idea of Cuckoo Hashing (Pagh & Rodler,2001). Cuckoo
Filter outperforms traditional Bloom filters in terms of storage efficiency and query performance,
especially in scenarios where frequent insertion and deletion of elements are required. The main
advantage of Cuckoo Filter is its support for dynamic updates, which enables it to efficiently handle
element changes in a collection. Unlike Bloom Filter, Cuckoo Filter can not only query whether an
element exists or not, but also support the deletion operation of an element, a feature that is important
in many practical applications (Gupta & Breitinger, 2015)). The working principle of Cuckoo Filter is
based on multiple hash functions and a bucket structure, which is utilized by storing the elements
in fixed-size buckets and using the hash conflicts to achieve fast lookup of elements. This efficient
data structure provides new ideas for handling large-scale datasets, which can accelerate the retrieval
process and improve response efficiency.

Retrieval Augmented Generation Retrieval Augmented Generation(RAG) is a state-of-the-art
method that combines information retrieval with large language models, with the aim of addressing
the limitations of it in the absence of specific knowledge (Lewis et al., [2020). The core idea of
RAG is to utilize an external knowledge base for retrieval and to incorporate relevant information
into the generation process. Specifically, RAG first retrieves multiple relevant documents from the
knowledge base on the basis of the input query, and then combines the retrieved knowledge with
the input query to form the context and then generate the final answer through the generative model.
This approach significantly improves the quality and relevance of the generated text (Karpukhin
et al.,[2020) and avoids the limitations of fixed model knowledge (Gupta et al., [2024). Compared
to fine-tuning, RAG has a greater ability to update knowledge and also reduces the dependence on
large-scale data. Moreover, CRUD-RAG (Lyu et al.,|2024) provides a Chinese benchmark covering
four main application scenarios of RAG. MemoryBank (Zhong et al., |2023)) enhances long-term
memory for LLMs, improving recall and user adaptation. RAPTOR (Sarthi et al.,2024) employs a
tree-structured retrieval approach with recursive embedding, clustering, and summarization, excelling
in semantic understanding. These works emphasize relationship extraction and dynamic updating
but lack strong retrieval efficiency across diverse applications. CFT-RAG addresses these gaps with
Cuckoo Filter.

Graph-RAG Graph Retrieval-Augmented Generation (Graph-RAG) is an extension of RAG, where
the information retrieval process is augmented by leveraging graph-based structures to organize and
retrieve information (Lewis et al.,2020). The key difference between traditional RAG and Graph-RAG
is the use of a graph, such as a knowledge graph, to model relationships between entities and concepts,
which can improve the relevance and contextuality of the retrieved information (Hu et al.| |2024). The
algorithmic process of Graph-RAG enhances the understanding of relationships and provides more
precise information retrieval than traditional RAG (Darrin et al., 2024). However, the complexity
in graph construction and maintenance will be a trouble, the quality and completeness of the graph
can also affect the accuracy of responses generated by the model. For instance, EMG-RAG (Wang
et al} |2024) integrates Editable Memory Graph for partition management and relation capture,
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improving answer quality but suffering from high computational cost. Therefore, in comparison to
Tree-RAG (Fatehkia et al., 2024b), Graph-RAG still has certain disadvantages.

Tree-RAG Tree-RAG(T-RAG) is an emerging method that combines tree structure and large language
models to improve the effectiveness of knowledge retrieval and generation tasks. Compared to
traditional RAG, T-RAG further enhances the context retrieved from vector databases by introducing
a tree data structure to represent the hierarchy of entities in an organization. The algorithmic process
of Tree-RAG consists of the following steps: first, the input query is parsed to identify relevant
entities and the retrieval of relevant entities is performed in the constructed forest. Next, the system
traverses through the hierarchical structure of the tree to obtain the nodes related to the query entity
and its upper and lower multilevel parent-child nodes. Subsequently, the retrieved knowledge is fused
with the query to generate the augmented context. Finally, the generative model generates the final
answer based on the augmented context. This process effectively combines knowledge retrieval and
generation and improves the accuracy and contextual relevance of the generative model (Fatehkia
et al., 2024a)). However, T-RAG runs inefficiently due to the time-consuming nature of finding all the
locations of related entities in a forest with a large amount of data. Our method applies the improved
Cuckoo Filter to the retrieval process of Tree-RAG, making it greatly faster.

2 DATA PRE-PROCESSING

It is important to recognize entities and construct hierarchical relationships (e.g., tree diagrams) be-
tween entities from datasets. It mainly involves the steps of entity recognition, relationship extraction
and filtering. For existing hierarchical data, binary pairs representing parent-child relationships are
directly extracted. For raw textual data, text cleansing is first performed manually to remove irrelevant
information.

2.1 ENTITIES RECOGNITION

SpaCy is a Python library, and its entity recognition function is based on deep learning models (e.g.,
CNN and Transformer). It captures information by transforming the text into word vectors and feature
vectors. The models are trained on a labeled corpus to recognize named entities in the text, such as
names of people and places. We adopt the method in T-RAG by using the spaCy library to recognize
and extract entities from a user’s query (Fatehkia et al., [2024a)).

2.2 RELATIONSHIP EXTRACTION

Various relationships are identified from the data, including organizational, categorization, temporal,
geographic, inclusion, functional, and attribute relationships. The relationships manifest through
grammatical structures such as noun phrases, prepositional phrases, relative clauses, and appositive
structures (Vaswani et al., [2017; |Devlin et al., [2019). We focus on extracting relationships that
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We apply several dependency parsing models(gpt-4 and open-source NLP libraries) to analyze
the grammatical structure of the data. This helps identify relationships between words, such as
subject-verb-object or modifier relationships.

We define rules to identify hierarchical relationships. If a word modifies another noun, it can be
interpreted as a child-parent relationship; If there are conjunctions (e.g., ”and”, ”or”), handle them to
group entities under the same parent. As a result, there is a list of tuples representing the hierarchical
structure.

2.3 RELATIONSHIP FILTERING

After extracting relations, certain relationships are filtered out to ensure maintain the tree structure:
* Transitive Relations: If transitive relations are detected (e.g., ”A belongs to B”, ”B belongs
to C” and ”A belongs to C”), remove distant relations.

* Cycle Relations: If cycles are detected (e.g., ”A belongs to B” and B belongs to A”), only
the closest relationship is retained.

Self-Pointing Edges: Any relation where a node points to itself is removed.

* Duplicate Edges: Multiple edges between the same nodes are pruned, leaving only one edge.
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/
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Figure 3: Error relation examples.

3 METHODOLOGY

In this section, we propose a novel design of Cuckoo Filter that combines the advantages of traditional
Cuckoo Hashing and applies it to Tree-RAG by introducing additional designs that greatly improve
the speed of knowledge retrieval in Tree-RAG.

3.1 STORAGE MODE

In addition to entity trees, we set up an additional Cuckoo Filter to store some entities to improve
retrieval efficiency. Based on the naive Cuckoo Filter, we introduce the block linked list for optimiza-
tion, which can greatly reduce memory fragmentation. We first find out all locations of each entity in
the forest and then store these addresses in a block linked list.

To further optimize the retrieval performance, we propose an adaptive sorting strategy to reorder the
entities in each bucket in the Cuckoo Filter based on the temperature variable which is stored at the
head of the block list. The temperature variable records how often each entity is accessed, and entities
with high-frequency access are prioritized to be placed at the front of the bucket. Since the Cuckoo
Filter looks up the elements in the buckets linearly, this reordering mechanism can significantly
optimize the query process, which can further improve the response speed of the model. In summary,
in each entry of the bucket, an entity’s fingerprint, its temperature, and head pointer of its block linked
list are stored. The storage mode is included in Figure[dand details about the process of insertion and
eviction of entities are provided in Appendix
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Figure 4: The workflow of CFT-RAG when query contains entity x. The entity with high temperature
will be placed ahead of which with low temperature in the bucket. All the addresses in different trees
of the entity are linked by the block linked list.

3.2 CONTEXT GENERATION

After the fingerprint of the target entity is found, the temperature of the entity is added by one and a
pointer to the head of the corresponding block linked list of that entity is returned. From this pointer,
the location of the entity node in different trees including multi-level parent nodes, child nodes, etc.
can be accessed through the address stored in the block list. If no matching fingerprint is found, the
null pointer is returned. For the queried entity and its parent and child nodes in different trees, we form
a context between the entity and its relevant nodes based on the set template. For instance, the upward
hierarchical relationship of entity A are: B, C and D. Finally, we fuse this information with the query
to generate the augmented context. After that, the augmented context combined with system prompt
and query is regarded as the prompt. The lookup and context generation process is stated in Figure ]

Algorithm 1: Context Generation Algorithm
Input: x: Input entity
Output: context: Context generated for entity x
f(x) « fingerprint(z);
if bucket[i1] or bucket[is] contains f(x) then
temperature <— temperature + 1;
return head;
end
currentBlock < head — next;
while currentBlock # NULL do
foreach location in currentBlock do
Let [oc be the current location of entity « in the block;
Find the set of hierarchical relationship nodes at location loc in the tree;
Hup — {hh h27 HERE hn}a
Hiown {hgl_a /25 EREE) h;l},
Record the first n upward and downward hierarchical relationship nodes;
for(:2=1;7;n;i++)do
Store (h;, h}) in context;

end
end
currentBlock < currentBlock — next;
end
for(i=1;i<n;i++)do
context < context U (h;, hl);
end
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4 EXPERIMENTS

In this section, we describe our experimental setup, baseline methods, and CFT-RAG, and compre-
hensively evaluate the results. Our experiments aim to assess the efficiency of CFT-RAG approach
under diverse experimental conditions, particularly in terms of retrieval speed and computational
overhead.

4.1 BASELINE

To benchmark the effectiveness of the proposed Cuckoo Filter T-RAG, we compare it against
several baseline models. Our baselines include the text-based RAG, Naive T-RAG without filtering
mechanisms, T-RAG with ANN and Graph-RAG with ANN. These baselines allow us to quantify the
improvements introduced by Cuckoo Filter T-RAG.

Naive T-RAG This basic implementation of T-RAG (Fatehkia et al., 2024b)) does not include any
filtering optimizations. The method constructs an entity tree using entities extracted from the dataset
and employs a Breadth-First Search (BFS) algorithm for entity lookup. Although this approach has
high time complexity and prolonged search time, it provides a straightforward baseline for evaluating
the benefits of incorporating filtering mechanisms.

Text-based RAG This baseline RAG model retrieves the top-K relevant documents from a vector store
based purely on similarity scores, without considering entity relationships or structural information.
It performs standard dense retrieval followed by response generation using a sequence-to-sequence
model. Although simple and easy to implement, this approach may suffer from irrelevant or redundant
information due to lack of context-aware filtering or reasoning capabilities. It serves as a foundational
benchmark to assess the advantages of incorporating more structured or semantic retrieval strategies.

ANN Graph RAG This model integrates approximate nearest neighbor (ANN) search with a graph-
based entity structure to accelerate retrieval while maintaining semantic relevance. Entities and
their relationships are organized into a directed graph, enabling multi-hop traversal and contextual
inference. During retrieval, ANN is used to identify the closest matching entities efficiently, and the
graph structure guides the expansion to related entities for enriched context. This method balances
speed and accuracy by leveraging the fast lookup capabilities of ANN and the expressive power of
graph reasoning.

ANN Tree-RAG In this variant, Approximate Nearest Neighbor (ANN) search is employed to
accelerate document retrieval in the entity tree structure. Instead of performing exact similarity
search, the model leverages efficient ANN indexing techniques (e.g., FAISS or HNSW) to retrieve
top-K candidates for each entity. ANN T-RAG provides a strong balance between performance and
efficiency, especially compared to the Naive T-RAG baseline.

4.2 CFT-RAG

Cuckoo Filter supports entity deletion operation, which is suitable for ongoing data update, and it has
a lower false positive rate and is more space efficient. The CFT-RAG method stores the individual
nodes of the entity in the forest in each bucket of the Cuckoo Filter, i.e. it merges the Cuckoo Hash
with the Cuckoo Filter. After the entity tree is generated, the nodes with the same entity details in
each tree are concatenated into a block list, where the pointer to the head of the list corresponds to
the fingerprint, and stored together in buckets.

An improved CFT-RAG is to maintain access popularity of each entity, called temperature, at the
head node of each block list, and raise the level of temperature corresponding to the hit entity during
retrieval. For each bucket, if there is a bucket that has not been searched, i.e. if it is free, the
fingerprints and block list header pointers in the bucket can be sorted according to temperature, and
the fingerprints with higher access popularity are placed at the front of the bucket, which can take
advantage of the locality of the entities contained in the user questions to improve the running speed
of the algorithm.
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4.3 DATASETS AND ENTITY FOREST

Our experiments use three datasets: the large-scale dataset MedQA (Jin et al.| |2021) and two
medium-sized datasets AESLC (Zhang & Tetreault, [2019) and DART (Nan et al.,2021). We leverage
dependency parsing models to extract entities and relationships among them and construct the entity
forest based on these extracted entities and relationships. The resulting entity forest is structured to
allow efficient retrieval and provides a practical evaluation scenario for our approach. The cost is
stated in Appendix [A]

4.4 SETUP

We implement the core RAG architecture in Python, while key data structures, including Cuckoo
Filters, are optimized in C++ for performance. All experiments were conducted on a system equipped
with an Nvidia H100 GPU, 22 CPU cores, and 220 GiB of memory. Each algorithm was repeated
108 times to account for variability and ensure reliable results, with averages calculated across runs
to mitigate the influence of outliers. We apply the LangSmith framework to evaluate the accuracy of
answers, where the OpenAl scoring model used by LangSmith was replaced with doubao (Doubao
AL 2024).

Table 1: Retrieval time and accuracy on MedQA, AESLC and DART

datasets
Dataset ~ Algorithm Time(s) Time Ratio(%) Acc(%)
Text-based RAG - - 5145
Naive T-RAG 19.45 58 65+ 5
ANN T-RAG 7.65 25 67+ 4
MedQA ANN G-RAG 8.78 26 61 +6
CFT-RAG 5.24 16 69+ 4
Text-based RAG - - 42+ 6
Naive T-RAG 12.87 62 55+ 5
ANN T-RAG 2.52 13 56 + 6
AESLC NN G-RAG 238 1 53+ 5
CFT-RAG 0.97 5 57+5
Text-based RAG - - 53+6
Naive T-RAG 16.03 74 65+ 5
ANN T-RAG 3.28 15 66 + 5
DART "\ NN G-RAG 3.95 19 65+ 6
CFT-RAG 1.81 9 68 =5

CFT-RAG represents Cuckoo Filter T-RAG.

ANN G-RAG represents Graph-RAG with ANN.

ANN T-RAG represents Tree-RAG with ANN.

Time represents the retrieval time.

Time Ratio represents the proportion of retrieval time in response time.
Acc represents the model’s accuracy of answer.

4.5 RESULTS AND EVALUATIONS
4.5.1 COMPARISON EXPERIMENT

We conduct the experiments by selecting 1,000 questions on each dataset. Then we record the average
retrieval time and average response accuracy by LangSmith. Table [I| presents the retrieval time and
accuracy of various RAG-based models across the MedQA, AESLC, and DART datasets. As expected,
the Naive T-RAG model incurs the highest retrieval latency due to its exhaustive BFS-based search,
while offering moderate accuracy improvements over the text-based baseline. Further efficiency gains
are observed in ANN-based methods (ANN T-RAG and ANN G-RAG), which leverage approximate
nearest neighbor search to achieve faster response times with comparable accuracy. Notably, CFT-
RAG consistently outperforms other variants by achieving the lowest retrieval time across all datasets
while maintaining high accuracy, demonstrating the effectiveness of integrating probabilistic filtering
with structural optimization. Moreover, when the problem is complex involving multi-hop and the
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required entity relationships are precise, our method shows an obvious advantage over the other
methods. Use cases are provided in Appendix [A]

Moreover, the error rate of our method in the process of searching entities is very low. After building
the trees based on the dataset, the Cuckoo Filter includes 1024 buckets, each of which can hold up
to 4 fingerprints and block linked list head pointers. The Cuckoo Filter’s own memory expansion
strategy is to increase the number of buckets by a power of two. In the experimental datasets, there
are thousands of entities that can be extracted, and the space load factor for the Cuckoo Filter is more
than 70%. Because the space load factor is not too high and searching errors are mainly caused by
hash collisions, the error rate is almost 0, showing that the number of entities causing the lookup
error is O to 1 out of 1024 buckets for thousands of entities.
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Figure 5: We record the search time per round of query with different number of trees and entities.
Each round represents a search in the entities forest, and entities are inserted into the improved
Cuckoo Filter before the first search is performed.

4.5.2 ABLATION EXPERIMENT

Sorting the fingerprints and head pointers of the block linked lists by temperature can optimize the
retrieval time without occupying any extra space, which is eminently useful when the query given by
the user contains a large number of entities. We design experiments to measure the effect of having
or not having the sorting design on the result. In figure[5] we can observe that the retrieval time after
the first round is significantly shorter than that of the first round. This is because the temperatures are
updated according to the access frequency in each round and after each query, the Cuckoo Filter sorts
the entities according to the entities’ temperatures. This sorting design allows the *hot’ entities to be
found more quickly in subsequent queries.
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5 CONCLUSION

In this paper, we have introduced an efficient acceleration method for the Tree-RAG framework
by integrating the improved Cuckoo Filter into the knowledge retrieval process. Tree-RAG, which
combines hierarchical tree structures for knowledge representation with generative models, holds
great promise for improving the quality and contextual relevance of generated responses. However, its
performance is hindered by the computational inefficiencies of retrieving and organizing large-scale
knowledge within complex tree structures.

By leveraging the Cuckoo Filter, which supports fast membership queries and dynamic updates,
we have significantly enhanced the speed and efficiency of the retrieval process in Tree-RAG. Our
experimental results show that the Cuckoo Filter improves retrieval times without sacrificing the
quality of generated responses, making the system more scalable for real-world applications. This
acceleration is particularly valuable in scenarios where real-time knowledge updates and rapid
information retrieval are critical, such as in large-scale question answering, decision support systems,
and conversational agents.

Future work could explore further optimizations, such as adapting the method for different knowledge
structures or extending it to more complex multimodal tasks. Overall, this research demonstrates
the potential of efficient data structures to enhance the performance of large language models in
retrieval-intensive applications.
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A APPENDIX

A. ENTITY INSERTION STRATEGY

The fingerprint is a shorter hash representation of an entity x, which is usually represented in fixed-
length bits. Thus, we introduce fingerprints to save memory. After the tree structure is constructed, the
fingerprint is first computed for each entity before inserting. Furthermore, the insertion and eviction
strategy is consistent with the traditional Cuckoo Filter, where the locations of the fingerprint are
determined by two hash functions |Fan et al.|(2014). When inserting an entity by applying the Cuckoo
Filter, it first tries to store its fingerprint in the empty position ¢; or i2, which can be calculated as:

where h(z) is the hash value of entity x and h(f(x)) is the hash value of fingerprint f(z). The
two locations ¢; and ¢ are candidate storage locations to increase the flexibility of the lookup and
insertion operations.

Algorithm 2: Entity Insertion Algorithm

f(x) = fingerprint(x);
if either bucket([i1 ] or bucket[is] has an empty entry then
add f(x) and the initialized temperature t to that bucket;
add the addresses of the entity as block linked list to that bucket;

return 7True
end

randomly select 71 or is as i;
for K = 0;k < MaxNumKicks; k + + do
select an entry m from bucket[i] randomly;
interchange f(x) and the fingerprint stored in entry m;
i=1@® hash(f(z));
if bucket[i] has an empty entry then
add f(x) and the initialized temperature t to bucket[i];
add the addresses of the entity as block linked list to bucket[i];

return True
end

end
return False

Then we check if there are empty slots at locations 77 and 7. If an empty slot exists in either position,
the information of entity x including its fingerprint f(x), its temperature t and its addresses are
inserted into that empty slot and the insertion process is completed. If both locations are occupied, the
Cuckoo Filter activates the eviction mechanism and tries to free up space for inserting a new entity
by evicting the existing entity. In practice, the Cuckoo Filter sets the maximum number of evictions
to avoid infinite recursive eviction operations; after reaching the maximum number of evictions, it
means that the insertion operation fails.

B. ENTITY EVICTION STRATEGY

In the eviction mechanism, the Cuckoo Filter randomly selects a location from i1 or 75 to evict the
fingerprints therein and then calculate the alternative position j of the fingerprint. Next, it inserts the
fingerprint into the empty slot of j. If it is already occupied, the eviction operation is repeated until an
empty location is found or the maximum number of iterations is reached.
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Algorithm 3: Entity Eviction Algorithm
f(x) =fingerprint(x);
i1 = hash(x);
ig =11 @ hash(f(x));
if bucket[i1] or bucket[is] has f(x) then
remove f(x) together with its information from this bucket;

return 7True
end

return False

Through the eviction mechanism, Cuckoo Filter is able to continue inserting new entities under high
load conditions, avoiding the high misclassification rate caused by direct rejection of insertion.

C. 1-Hop + EASY QUESTION

* Question: What causes Horner’s syndrome?
* Key Answer: Paralysis of ocular sympathetic nerves.

* Rare Entity: ocular_sympathetic_nerves.

Text-Based RAG

Retrieval Time | Response Time | Time Ratio
- 25.87s -

Accuracy
56%

* Question: What causes Horner’s syndrome?

* Answer: Horner’s syndrome is caused by a disruption of the sympathetic nerve pathway
that supplies the eye and face. This disruption can occur at any point along the three-neuron
sympathetic chain, which extends from the hypothalamus to the eye...

ANN Graph-RAG

Retrieval Time

Response Time

Time Ratio

Accuracy

7.53s

24.30s

30.99%

60%

* Question: What causes Horner’s syndrome?

* Answer: Symptoms of Horner’s syndrome include ptosis (drooping eyelid), miosis (con-
stricted pupil), anhidrosis (lack of sweating), and enophthalmos (sunken eye appearance).
Identifying the underlying cause is crucial, as some causes, such as carotid artery dissection,
require urgent medical attention...

Cuckoo Filter Tree-RAG

Retrieval Time
4.72s

Time Ratio
21.92%

Response Time
21.54s

Accuracy
66%

* Relation: Horner - ocular sympathetic nerves
* Question: What causes Horner’s syndrome?

* Answer: Horner’s syndrome is caused by paralysis of the ocular sympathetic nerves.
Because Horner’s syndrome can be a sign of serious conditions like carotid artery dissection
or lung tumors, it often requires urgent medical evaluation...
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D. 2-Hop + EASY

* Question: What is the most essential component for culturing Mycoplasma?

QUESTION

* Key Answer: Cholesterol supplements.

* Rare Entity: cholesterol_supplements.

Text-Based RAG

Retrieval Time

Response Time

Time Ratio

Accuracy

25.12s

45%

* Question: What is the most essential component for culturing Mycoplasma?

* Answer: The most essential component for culturing Mycoplasma is a specialized growth
medium containing sterols. Since Mycoplasma lack a cell wall, they require sterols to
maintain membrane integrity...

ANN Graph-RAG

Time Ratio
34.01%

Retrieval Time
7.98s

Response Time
23.46s

Accuracy
61%

* Question: What is the most essential component for culturing Mycoplasma?

* Answer: The most essential component for culturing Mycoplasma is a rich growth medium
supplemented with sterols. Since Mycoplasma species lack a cell wall and cannot synthesize
sterols on their own, they require cholesterol for membrane stability...

Cuckoo Filter Tree-RAG

Retrieval Time
3.86s

Time Ratio
19.67%

Response Time
19.62s

Accuracy
67%

* Relation: Mycoplasma - cholesterol*, cholesterol* - horse serum, cholesterol* - cholesterol
supplements

* Question: What is the most essential component for culturing Mycoplasma?

* Answer: The most essential component for culturing Mycoplasma is cholesterol. My-
coplasma are prokaryotic organisms that lack a cell wall, and their cell membrane requires
cholesterol for stability and function. Therefore, the culture medium must include choles-
terol, such as horse serum or cholesterol supplements, to support their growth. Additionally...

E. MULTI-HOP + HARD QUESTION

When the problem is complex and the required entity relationships are precise, Tree-RAG shows an
obvious advantage over the other two methods.

* Question: Here are five types of hydrogen carriers involved in electron transfer, which
proceed in a specific order. Can you describe the detailed process?

* Answer: flavoprotein, coenzyme I, iron-sulfur protein, ubiquinone, cytochrome.

* Rare Entity: flavoprotein, coenzyme I, iron-sulfur_protein, ubiquinone, cytochrome.

Text-Based RAG

Retrieval Time

Response Time

Time Ratio

Accuracy

38.62s

40%
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* Question: There are five types of hydrogen carriers involved in electron transfer, which
proceed in a specific order. Can you describe the detailed process?

* Answer: NADH donates electrons to Complex I, FADH, donates to Complex II. Electrons
transfer to ubiquinone (CoQ) converted to ubiquinol (QH;). Ubiquinol transfers electrons to
cytochrome b-c; complex (Complex III). Electrons pass through cytochrome ¢ and reach

Complex IV...

ANN Graph-RAG

Retrieval Time

Response Time

Time Ratio

Accuracy

9.02s

30.15s

29.91%

49%

* Question: There are five types of hydrogen carriers involved in electron transfer, which
proceed in a specific order. Can you describe the detailed process?

* Answer: NADH donates electrons to Complex I (via FMN) or FADH, donates to Complex
II. Fe-S clusters pass electrons one at a time to downstream carriers. Ubiquinone (CoQ)
accepts electrons and protons, becoming ubiquinol (QH,), which shuttles electrons to
Complex III. Cytochromes in Complex III pass electrons to cytochrome c, which carries
them to Complex I'V. Complex IV (cytochrome c oxidase) transfers electrons to O,, reducing

it to H,O..

Cuckoo Filter Tree-RAG

Retrieval Time

Response Time

Time Ratio

Accuracy

4.75s

27.02s

17.58%

69%

* Relation: electron transfer - hydrogen carriers, hydrogen carriers - process*, process*
- 1.flavoprotein, process* - 2.coenzyme I, process* - 3.iron-sulfur protein, process* -

4.ubiquinone, process™* - 5.cytochrome

* Question: There are five types of hydrogen carriers involved in electron transfer, which
proceed in a specific order. Can you describe the detailed process?

* Answer: The process can be summarized as follows: flavoprotein — coenzyme I — iron-
sulfur protein — ubiquinone — cytochrome. Flavoproteins, such as NADH dehydrogenase
(Complex I) and succinate dehydrogenase (Complex II), contain flavin mononucleotide
(FMN) or flavin adenine dinucleotide (FAD) as prosthetic groups. These enzymes play a
crucial role in electron transfer from NADH or succinate to downstream components of the

ETC...

F. OFFLINE CONSTRUCTION COST

The complexity of Entity Extraction is linear O(N) with respect to the number of documents in the
corpus, as each document is processed independently by the LLM (or smaller IE models). While
extraction is the most expensive step, it is a one-time offline cost. The Tree Construction and Cuckoo
Filter insertion are negligible (O(M ) where M is the number of entities) compared to the extraction.

G. THE USE OF LLMS

We use llm to check and correct grammar and spelling mistakes. In addition, we also use 1lm to polish

the sentences in our paper to make them more fluent.
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