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Abstract001

Evaluation of LLMs has primarily relied on002
comparing against "gold" answers that often003
takes months or years to conduct and hence is004
difficult to scale. Instead of harnessing these005
supervised approaches that aim to rank LLMs,006
we propose to assess models by measuring007
and identifying the significance of their dif-008
ferences. This reduces the difficult supervised009
learning into an unsupervised task that saves010
the substantial labeling costs. Specifically, we011
introduce the notion of topic-categorized dis-012
tinguisher questions that expose key behav-013
ioral differences and hence define distances014
between LLMs. We design a suite of algorith-015
mic techniques for finding these distinguishers016
and make three major innovations, including017
(i) a new correlation specification on objective018
functions based on topic trees and earth-mover019
distance of topics, (ii) a theoretically sound020
embedding technique between EMD induced021
by topics and ℓ2-space used in Bayesian opti-022
mization (BO), and (iii) a Siamese-net based023
model leveraging our theoretical results that024
effectively interface topics and BO in practice.025
Our experiments showed the efficacy of our026
new algorithms, its power to distinguish LLMs027
in medical topics, and its application in unsu-028
pervised ranking.029

1 Introduction030

Evaluating LLMs has primarily relied on grading031

them against a set of carefully constructed bench-032

mark tasks, such as those done in HuggingFace’s033

Open LLM Leaderboard (HuggingFace, 2024),034

MMLU (Hendrycks et al., 2020), ARC (Mitchell035

et al., 2023), HellaSwag (Zellers et al., 2019), and036

TruthfulQA (Lin et al., 2022). These benchmarks037

usually take months or years to build and polish,038

and thus do not scale well. On the other hand,039

with the recent proliferation of LLMs especially040

in high-stake domains such as medicine, law and041

education, it becomes critical to be able to evaluate042

LLMs under realistic time and resource budgets.043

Motivated by the above, we propose in this paper 044

that, instead of harnessing the supervised approach 045

as done in the past, we assess LLMs by measuring 046

and identifying the significance of their differences. 047

This unsupervised approach saves the substantial 048

supervised labeling costs. While this approach can 049

only distinguish instead of rank models, it is ar- 050

guably much more cost-effective: If two LLMs are 051

found to be indistinguishable, then our conclusion 052

will match the supervised approach; if the LLMs 053

are different, then they could be ranked further via 054

benchmarks targeted at their identified differences 055

which are much smaller in size than previously sug- 056

gested. Moreover, many evaluation problems in 057

fact do not boil down to ranking models’ qualities. 058

For instance, when a physician chooses between 059

two domain-specific LLMs, showing how LLMs 060

diff for a selected set of questions could be more 061

informative than displaying a grading sheet. Simi- 062

larly, when a model performs worse than another, 063

identifying questions leading to the two LLMs’ 064

largest behavioral differences helps understand the 065

data needed for fine-tuning. Finally, recent works 066

have shown that distance measurement can be used 067

to construct approximate rankings (Rohe et al., 068

2011; Li et al., 2017), so these techniques can po- 069

tentially be chained up, leading to an unsupervised 070

approximate ranking algorithm. 071

Our main contribution in this paper is to create 072

a principled and efficient framework to measure 073

and identify LLMs’ differences, thus materializ- 074

ing the benefit in our unsupervised approach over 075

label-intensive alternatives in the past. To this end, 076

a key component in our study is to properly define 077

a notion of model distance that roughly character- 078

izes the discrepancy between answers’ contents 079

from different LLMs. Specifically, we introduce 080

what we call distinguisher questions that lead to 081

the largest answer difference between LLMs. This 082

metric is based on sound statistical principles, and 083

is inspired by distinguisher sets in cryptography 084
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used to determine whether two programs’ output085

are close. The rough idea is that when we identify a086

subset of inputs that leads to the largest distribution087

discrepancies between two programs’ outputs, this088

discrepancy characterizes whether two programs089

are distinguishable (Vadhan, 1999).090

Our distinguisher questions are controlled by a091

subset of topics naturally associated with a new do-092

main under investigation, such as disease categories093

in medicine or subject areas in academia. Finding094

the distinguisher questions means searching for a095

subset of k topics so that a sampled question re-096

lated to these topics maximizes the discrepancies097

between LLMs in expectation. We use a Bayesian098

optimization (BO) framework, and design a new099

optimization algorithm with three major innova-100

tions. First, we leverage a topic-tree that usually101

exists in a new domain (see Fig. 1(a) for an exam-102

ple) and wire correlations of objective scores using103

earth-mover distance (EMD) between topic sets.104

Second, we develop a polynomial time algorithm105

to perform metric embedding between EMD and106

a Euclidean space for an exponential number of107

possible topic sets. Third, we use our embedding108

algorithm to design a Siamese net to efficiently109

interface with any standard BO blackboxes.110

Summary of contributions. (i) We propose to111

study unsupervised measurement of distances be-112

tween LLMs as a cost-effective alternative to eval-113

uate models for new domains. (ii) We design a dis-114

tance metric based on finding distinguisher ques-115

tions. Along the way, we explain the statistical116

principles in driving our design. (iii) We use BO to117

find distinguisher questions, and design a Simanese118

net-based algorithm that injects topic tree-structure119

to the search space. The new algorithm is powered120

by a novel metric embedding technique. (iv) We121

validate the efficacy of our algorithms via experi-122

ments, and demonstrate its power in distinguishing123

LLMs and its potential in unsupervised ranking.124

2 Related Work125

Large language model evaluation. With the emer-126

gence of large language models (LLMs), their eval-127

uation has become a significant research area (Zhao128

et al., 2023; Chang et al., 2024). These evaluations129

includes natural language understanding (Bang130

et al., 2023), reasoning (Bian et al., 2024), multi-131

lingual (Lai et al., 2023), factually (Gekhman et al.,132

2023), etc. While evaluation metrics can vary, most133

existing methods compare generated text/answers134

against certain costly gold answers (Aynetdinov 135

and Akbik, 2024). Assuming that language quality 136

will improve over time (Huh et al., 2024), in this pa- 137

per we focus on the relevance and (dis)-similarities 138

aspects of the answers. 139

Reinforcement learning (RL). By interacting with 140

LLMs, our problem of finding distinguishers can 141

be viewed as an RL problem, and that “environ- 142

ments” are the LLMs’ answers. RL (Sutton and 143

Barto, 2018) has long been used in optimizing the 144

performance of neural models. Recent work (Lang 145

et al., 2024; Luong et al., 2024; Casper et al., 2023) 146

has found applications in improving LLMs. 147

Bayesian optimization and metric embedding. 148

Our algorithmic solution is built on tools from 149

Bayesian optimization (BO) and metric embedding. 150

For BO, we mostly use standard techniques (Fra- 151

zier, 2018). Hierarchical Bayesian models (Shiffrin 152

et al., 2008; Pelikan and Pelikan, 2005) are par- 153

ticularly relevant to our solution since they also 154

aim to model tree-structured variables, but it re- 155

mains unclear whether they can scale well in our 156

setting. We also need to build new metric embed- 157

ding techniques to efficiently interplay between 158

EMD of topic subsets and Euclidean space do- 159

main assumed in BO. Closely associated with our 160

work are the impossible results for embedding ℓ1 161

to ℓ2 (Andoni et al., 2011), finite-point embedding 162

from arbitrary metrics to ℓ2 (Bourgain, 1985), and 163

Johnson-Linderstrauss-based embedding (Venkata- 164

subramanian and Wang, 2011). 165

3 The k-subset Distinguisher Problem 166

Notation. Let M1, . . . ,Mℓ be a collection of 167

question-answer LLMs. Let X and Y be the sets 168

of all possible questions and answers, respectively. 169

Let D(y1, y2) be a distance function between two 170

answers y1 and y2. Let Tr be a topic tree, or a hier- 171

archically structured knowledge graph associated 172

with the domain of interest (Fig 1). Let S be the 173

leaves of Tr. We assume that each question in the 174

domain is related to a subset of topics in S. 175

Finding k-subset distinguishers. Let M1 and M2 176

be two LLMs for comparison. Let T ⊆ S be a sub- 177

set of topics. We assume that there is a reasonable 178

mechanism available for generating questions re- 179

lated to T via some prompt engineering on LLMs 180

such as ChatGPT or Llama (See App B). For a 181

specific T , define the cost function as 182

f(T ) = EX∼Q(T )[D(M1(X),M2(X))]. (1) 183

X ∼ Q(T ) refers to sampling a question from 184
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Figure 1: (a) An example of topic tree representing hierarchical knowledge in a given domain. (b) Let R = {1, 3, 4}
(red leaves) and B = {4, 5, 6} (blue ones) be two topic sets. In standard BO, they are represented by binary
vectors so R = (1, 0, 1, 1, 0, 0) and B = (0, 0, 0, 1, 1, 1), and their correlation depends on (normalized) ℓ2-distance
∥R − B∥22 = 4/6. (c) Euclidean distance sometimes is not suitable. Let S1 = {1, 3} (red), S2 = {2, 4} (blue),
and S3 = {5, 6} (yellow). They are mutually exclusive so their pairwise distances are 1. But intuitive, S1 and
S2 are “closer” because 1-2 and 3-4 are siblings. Using earth-mover distance (EMD) captures this intuition
better: it takes four steps to move elements from S1 to S2 (red edges), and eight steps to move from S1 to S3,
hence EMD(S1, S3) = 2EMD(S1, S2). (d) Embedding EMD to Euclidean space: EMD needs to be mapped to
Euclidean distance to answer BO’s queries. This embedding ensures S1 and S2 are close, and they are far from S3.

a specific topic set T . Thus, Eq. 1 measures the185

expected distance between the outputs of M1 and186

M2, given topic set T .187

Our k-subset distinguisher problem finds188

max
T⊆S
|T |=k

f(T ) = max
T⊆S
|T |=k

EX∼Q(T )[D(M1(X),M2(X))] (2)189

and the top-m k-subset distinguisher problem is190
max

T1,...,Tm⊆S
|Ti|=k

Tidistinct

∑
i≤m

EX∼Q(Ti)[D(M1(X),M2(X))], (3)191

which examines a collection of top-m distinguish-192

ers (i.e., T1, . . . , Tm) to obtain a more holistic view193

of the distinction between the two LLMs. Below194

explains the rationale for using Eq. 2 and 3.195

3.1 Statistical Ground for Distinguishers196

Eq. 2 and 3 already have an intuitive interpretation,197

i.e, a “good question” exposing a significant differ-198

ence between two LLMs is naturally a distinguisher199

of the models. Nevertheless, the underlying statisti-200

cal principles highlight the definition’s connection201

to established statistical concepts, and equip users202

to further customize the metric as needed.203

A question-answer LLM can be viewed as a204

specification on the distribution (x, y), where x205

is a question and y is an answer. Thus, measur-206

ing distances between LLMs boils down to mea-207

suring discrepancies between probability distribu-208

tions. Common options include (i) Total varia-209

tion/statistical distance (TV). Let P and Q be two210

distributions on a discrete support S. Their TV is211

∥P −Q∥TV = ∥P −Q∥1 =
∑

s∈S |P (s)−Q(s)|.212

(ii) ℓp-norm. Generalize TV to ℓp-distance ∥P −213

Q∥p =
(∑

s∈S
∣∣P (s)−Q(s)

∣∣p)1/p. (iii) Kull-214

back–Leibler (KL) divergence, aka DKL(P∥Q) =215 ∑
s P (s) log

(
P (s)
Q(s)

)
.216

Total variation (TV) is the most logical choice, 217

because TV and the distinguisher set are connected: 218

219∑
s∈S

|P (s)−Q(s)| = max
S⊂S

|Pr
P
[s ∈ S]− Pr

Q
[s ∈ S]|. 220

221S in the RHS is a distinguisher set for P and Q. 222

As discussed earlier, the distinguisher sets used to 223

measure similarity between programs can also be 224

used to measure the (dis)-similarity between LLMs. 225

ℓp-norm can exhibits certain undesirable properties, 226

e.g., two distributions can have TV being 1 but ℓp 227

distance being 0 for p > 1 (Braverman et al., 2010). 228

Furthermore, KL divergence is asymmetric so we 229

cannot directly use it to define distance. 230

We need three enhancements to make TV a more 231

suitable metric for LLM comparisons. 232

E1. Structured by topics (principle: stratified 233

sampling). Merely generating “problematic” ques- 234

tions that trigger LLMs to react differently is too 235

unstructured to be useful or interpretable. We use 236

concepts from stratified sampling to introduce the 237

notion of topics and model each question to be 238

sampled from a fixed set of topics. Let (T, x, y) 239

be topics, question, and answer, respectively, and 240

its graphical model representation be T → x→ y, 241

i.e., x conditionally depends on T , and y condition- 242

ally depends on x. TV between the two models 243

represented by P and Q now becomes 244∑
T,x,y

∣∣∣P (T, x, y)−Q(T, x, y)
∣∣∣ 245

=
∑
T

(∑
x,y

Pr[x | T ] ·
∣∣∣P (y|x)−Q(y|x)

∣∣∣)Pr[T ] 246

247E2. Continuous vs discrete distributions (princi- 248

ple: embedding distance is a sufficient statistics 249

for TV). Assuming x and y to be discrete implies 250

they can be too rigid, because two texts are con- 251

sidered as completely different when there is only 252
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a small difference between them, e.g., a word is253

changed. We use the distance between the texts’254

embeddings to address this issue and our answers255

move to the continuous space, where TV becomes256

∥P − Q∥TV =
∫
x |P (x) − Q(x)|dx, which we257

estimate by standard non-parametric methods such258

as KDE. Under the standard setting, in which only259

one answer is generated, the TV under KDE de-260

pends only on the embedding distance between the261

two LLMs’ answers (Devroye et al., 2018), and we262

approximate it as263 ∑
T

(∑
x,y

Pr[x | T ] ·
∣∣∣P (y|x)−Q(y|x)

∣∣∣)Pr[T ]264

≈
∑
T

(
EX|T

∥∥∥yP (X)− yQ(X)
∥∥∥
embed

)
Pr[T ] (4)265

266 E3. Skewness property (principle: Laplacian267

structure). We express Eq. 4 as
∑

T U(T ) Pr[T ],268

where U(T ) = EX|T

∥∥∥yP (X) − yQ(X)
∥∥∥
embed

.269

U(T ) is often skewed (such as following Lapla-270

cian or power-law distributions) across T ’s: two271

reasonable LLMs are expected to produce simi-272

lar answers to simple questions, but their answers’273

discrepancies are sometimes large for harder ques-274

tions (Huh et al., 2024). Therefore, the heaviest275

leading terms should dominate the total mass of276

Eq. 4. By directly measuring those leading terms,277

we obtain an objective recovering Eq. 3.278

max
T1,...,Tm⊆S

|Ti|=k
Ti distinct

∑
i≤m

U(Ti) = max
T1,...,Tm⊆S

|Ti|=k
Ti distinct

∑
i≤m

f(Ti),279

280 Remark. The derivations above provide more prin-281

cipled guides to generalize our metrics: when we282

have more compute and generate multiple answers283

to the same question, we use KDE to produce284

TV estimates, and the embedding distance may285

no longer be a sufficient statistic. When we already286

know the better T ’s, we need to conduct a careful287

search for the leading terms of U(T ).288

4 Our algorithm289

We now solve Eq. 3. See Fig. 2 for our pipeline.290

A BO iteratively makes queries on an objective291

function with domain Rd (referred to as embedding292

space). A decoder module (EmbDecr/BayesDcdr)293

maps a query to a topic tuple, which, along with294

a question template, is fed to a reliable LLM to295

generate a question. Two LLMs produce answers296

to the question, and their distance is measured by a297

module such as Sentence-transformer and fed298

to the BO. BO then prepares for the next query.299

The crux here is to properly specify f ’s corre- 300

lations to optimize BO’s efficiency. We first ex- 301

plain a standard way to use BO as a warmup (cor- 302

responding to using BayesDcdr), then introduce 303

EMD to better capture the correlation structure of 304

f and describe our optimization algorithm built 305

on a new EMD-to-ℓ2 metric embedding technique 306

(corresponding to using EmbDcdr). 307

4.1 Warmup: Using Standard BO 308

Recall that we aim to find argmaxT⊆S f(T ) with 309

the constraint |T | = k. GP-based BO assumes 310

that the objective is from a Gaussian process, and 311

the domain of f is Rd, so we need some standard 312

trick; specifically, let x ∈ Rn, where |S| = n, 313

and T̃ be a random subset of size k sampled with- 314

out replacement from the distribution σ(x), where 315

σ(x) = 1/(1 + exp(−x)) is applied to x in an 316

element-wise manner. Define 317

f̃(x) = ET̃∼σ(x)[f(T̃ )]. (5) 318

319Since f̃ ’s domain is now Rn, we may apply 320

standard BO to optimize f̃ . A Monte-Carlo method 321

is used to estimate of Eq. 5’s RHS. While f̃ does 322

not directly give a set T , we can always find a T 323

such that f(T ) ≥ f̃(x) by an averaging argument. 324

4.2 Earth-Mover Distance for Correlations 325

Standard BO assumes the correlation of f(T1) and 326

f(T2) is proportional to their Hamming distance, 327

and T1 and T2 are considered far apart when they 328

do not share any elements. It becomes less suitable 329

when the topic tree is available. See Fig. 1(c) for 330

an example, where S1, S2, and S3 are mutually 331

exclusive, such that any pair of them is considered 332

far apart under Hamming. Intuitively, though, S1 333

and S2 should be “fairly close” because 1-2 and 3-4 334

are siblings. The notion of earth-mover distance 335

better captures this intuition. 336

Definition 1. Let G = (V,E) be an undirected 337

graph, and V1 and V2 be two subsets of V having 338

the same cardinality. Let F be the set of all bijec- 339

tive functions between V1 and V2, and DG(u, v) be 340

the shortest path length between u and v in G. The 341

earth-mover distance (EMD) between V1 and V2 is 342

343
EMD(V1, V2) = min

f∈F

∑
u∈V1

DG(u, f(u)). (6) 344

345In other words, EMD counts the minimum num- 346

ber of steps needed to move elements from one set 347

to another. One can see that in Fig. 1(c), the EMD 348

of S1 and S2 is half of that of S1 and S3 and thus 349

provides a more realistic distance estimate for BO. 350
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Figure 2: Our BO-based pipeline for finding distinguisher questions (Sec. 4).

4.3 Algorithms Using EMD351

We need to code EMD into f(·), i.e., f(T1) and352

f(T2) are more correlated (closer to each other)353

when EMD(T1, T2) is small. Standard BO usu-354

ally uses Euclidean space as the domain espe-355

cially when we use GP to model the objective.356

Thus, we need a low-distortion embedding function357

ψ(T ) ∈ Rd, so that we can use BO to optimize358

g(x) ≡ f(ψ−1(x)) (7)359

360 Eq. 7 suggests that a decoder ψ−1 is needed. Our361

embedding technique has two steps, including first362

embedding EMD to ℓ1-space, and from ℓ1 to ℓ2.363

Embedding from EMD to ℓ1. As a key building364

block, we design a sum encoding scheme to repre-365

sent a topic subset, and ensure that the two sets’ ℓ1366

distance is the same as their EMD.367

Figure 3: Sum encoding. Let two topics sets, S1 and
S2, be labeled with two different colors on two trees.
To build a sum-encoder for a set, we walk through each
node v on the tree, and count the number of elements
in the set that are “under” v. To encode S1, count the
number of elements in S1 that are under the root (which
is 2), and repeat the process for each node. The number
in each node represents the count needed. Flat out all
numbers, i.e., Ψ(S1) = (2, 1, 1, 0, 1, 0, 1, 0, 0, 0), and
similarly, Ψ(S2) = (2, 1, 1, 0, 0, 1, 0, 1, 0, 1). We have
∥Ψ(S1)−Ψ(S2)∥1 = EMD(S1, S2) = 4.

Definition 2 (Sum-encoding). Let T be a subset368

of leaves on Tr. In the sum-encoding representa-369

tion Ψ, each node v associates with a number that370

counts the number of elements in T that is in the371

subtree rooted at v:372

ΨTr(T ) =
{
(v, x) | v ∈ V (Tr),373

x = |{w ∈ T : v an ancestor of w}|
}

374

375

This definition considers v as an ancestor of it- 376

self. See Fig. 3 for an example. We can also use a 377

vector representation ΨTr(S) = (x1, x2, . . . , xñ), 378

where xi is the number of nodes in S that are on the 379

i-rooted subtree and ñ = 2n−1 is the total number 380

of nodes in Tr. When the context is clear, we write 381

Ψ(S) instead of ΨTr(S). Prop. 1 below shows that 382

while computing EMD seemingly requires using 383

heavy combinatorial algorithms, the computing can 384

be done by simple vector-computation. 385

Proposition 1. Let T1 and T2 be two subsets of 386

leaves in Tr of the same size, and Ψ(T1) and 387

Ψ(T2) be the sum-encodings of T1 and T2 in vector 388

representation form. We have EMD(T1, T2) = 389∥∥Ψ(T1)−Ψ(T2)
∥∥
1

(See App. A for the proof). 390

Embedding from ℓ1 to ℓ2: theory and practice. 391

One major technical barrier here is the impossibil- 392

ity results for ℓ1-to-ℓ2 embedding (Andoni et al., 393

2011), so we use two observations: (i) the number 394

of possible topic sets T is finite. This is less chal- 395

lenging than embedding the entire ℓ1 to ℓ2. Finite- 396

point embedding algorithms (Bourgain, 1985; In- 397

dyk et al., 2017) exist but in our setting they run 398

in exponential time, because the number of pos- 399

sible T ’s is O(nk) and is exponential in k. (ii) 400

Observe that the points embedded in ℓ1 possess 401

special structure, i.e., they are integer-valued and 402

sparse. These properties enable us to further sur- 403

pass SOTA exponential-time algorithms. 404

Below, we first explain ℓ1-to-ℓ2 embedding is 405

theoretically feasible, then we propose a practical 406

architecture built on the theoretical results. 407

Theory: Unitary Encoding. The values in each 408

coordinate can only be {0, 1, 2, . . . k}, so we flat- 409

ten a number in [k] as a k-dimensional unitary 410

vector, e.g., we encode 1 as (1, 0, . . . )︸ ︷︷ ︸
k elements

, encode 411

2 as (1, 1, 0, . . . ). The squared ℓ2-distance be- 412

tween two unitary-coded vectors is now the same as 413

the ℓ1 distance between the original vectors. Uni- 414

tary encoding inflates the dimension from 2n − 415

2 in ℓ1 to k(2n − 2), but applying a Johnson- 416
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Question (case) Llama-2-7b(4bit) Llama-2-7b
Question A. A 7-week-old male infant is brought to the
pediatrician by his concerned parents. They noticed that
he had frequent episodes of nosebleeds since birth,
which had become more persistent and difficult to
control in the past week. The parents also mention that
the infant has been unusually fussy and irritable. On
examination, the infant appears pale, with ... [text
abridged] Question for Medical Students: Based on the
presented case, what congenital malformations or
hematological disorders should be considered in the
differential diagnosis for this 7-week-old infant
presenting with recurrent nosebleeds, petechiae, and
irritability? Authors’ annotation: a non-distinguisher
question; answers are similar.

Based on the symptoms presented, there are several
congenital malformations or hematological disorders
that should be considered in the differential diagnosis for
this 7-week-old infant presenting with recurrent
nosebleeds, petechiae, and irritability. Here are some of
the possibilities: 1. Hemophilia A: This is a genetic
disorder that affects the blood’s ability to clot, leading to
prolonged bleeding after injury or surgery. The infant
may have inherited this condition from one of their
parents, and the frequent nosebleeds and petechiae could
be a sign of this disorder. 2. Von Willebrand Disease:
This is a mild bleeding disorder caused by a deficiency
of von Willebrand factor, which is essential for blood
clotting. The infant may ... [text abridged]

Based on the presented case, I would consider the
following congenital malformations or hematological
disorders in the differential diagnosis for this 7-week-old
infant presenting with recurrent nosebleeds, petechiae,
and irritability: 1. Hemophilia A: This is a genetic
disorder that affects the blood’s ability to clot, leading to
frequent nosebleeds and bruising. The elevated heart rate
and signs of bleeding from the gums could be indicative
of this condition. 2. Von Willebrand disease: Similar to
hemophilia A, this is a bleeding disorder caused by a
deficiency in von Willebrand factor, which is essential
for blood clotting. The symptoms of nosebleeds,
petechiae, and irritability could be indicative of this
condition... [text abridged]

Question B. A 45-year-old man presents to the clinic
with complaints of recurrent severe headaches, blurry
vision, and difficulty urinating for the past 6 months. He
also reports experiencing weakness and numbness in his
lower extremities. He has a history of inflammatory
bowel disease and was recently diagnosed with
noninfective enteritis. He is currently being treated with
mesalamine and infliximab ... [text abridged] As a
clinical expert, how would you respond to this medical
case? Topics: Cranial nerve disorders in diseases
classified elsewhere, Disorders of eyelid in diseases
classified elsewhere, Disorders of male genital organs in
diseases classified elsewhere, Noninfective enteritis and
colitis, Polyneuropathies and other disorders of the
peripheral nervous system

The patient in the scenario presented with signs and
symptoms consistent with a right temporal lobe
glioblastoma. Glioblastomas are the most common
primary brain tumors in adults. They are classified as
grade IV gliomas and are associated with a poor
prognosis. They are typically treated with surgery,
radiotherapy, and chemotherapy. Temozolomide is a
commonly used chemotherapy agent for glioblastoma.
Bevacizumab is a monoclonal antibody that targets
vascular endothelial growth factor (VEGF). It is used in
the treatment of several types of cancer, including
glioblastoma, but it is not a first-line agent. Cisplatin is a
platinum-based chemotherapy agent that is used in the
treatment of several types of cancer.
Authors’ annotation: Generic and misdiagnosed,
neglecting the patient’s history and symptoms.

Based on the presenting symptoms, medical history, and
family history provided, this patient’s constellation of
symptoms is concerning for a neurological condition
involving multiple systems. The presence of severe
headaches, blurry vision, lower extremity weakness,
numbness, urinary symptoms, ptosis of the left eyelid,
and decreased facial expression on the ... [text abridged]
Management Recommendations: 1. Neurological
Evaluation: Urgent referral to a neurologist for a
comprehensive evaluation, including a detailed
neurological examination and possible lumbar puncture.
2. Imaging: MRI of the brain and spinal cord to identify
any demyelinating lesions or other abnormalities.
3.Laboratory Tests: ...
Authors’ annotation: More case-specific.

Table 1: Abridged examples of questions and answers (see Table 4 for the full example): two questions are generated
based on the keywords, and the questions are supplied to Llama-2-7b(4bit) and Llama-2-7b. Two models
provide near identical answers to Question A. Question B is a distinguisher question identified by our algorithm.
Llama-2-7b(4bit) provides a more generic answer, whereas Llama-2-7b is more specific.

Linderstrauss afterward reduces the dimension417

back to (k log n)/ϵ2.418

Sum Encoding Sum Encoding

MLP Encoder

Distance Cost

MLP Decoder MLP Decoder

Share  weight

Share  weight

𝑇! = 	𝑇𝑜𝑝𝑖𝑐	𝑠𝑒𝑡	1 𝑇" 	= 	𝑇𝑜𝑝𝑖𝑐	𝑠𝑒𝑡	2

𝑇"!	 𝑇""	

MLP Encoder

−EMD-to-ℓ1

ℓ!-to-ℓ"

Figure 4: Architecture for learning EMD-to-ℓ2 embed-
ding. Two topic sets are sum-encoded, and then they go
through MLP encoders sharing weights. The distance
cost function is used to approximate the ℓ2 distance of
embedded points and the ℓ1 distance of the sum-encoded
vectors. The MLP encoder’s output is our EMD-to-ℓ2
embedding used for BO. A decoder needs to be trained
to map embedded points back to topics.
Practice: Training via a Siamese network. We419

develop a specialized neural net to leverage our420

theoretical results above for embedding. Neural421

nets simplify performance fine-tuning, and help to422

train the decoders needed in Eq. 7. We base our423

architecture on Siamese nets. See Fig. 4. ENC424

maps from topic subsets to an embedding on ℓ2 425

space, and DEC maps from a point in ℓ2 space to 426

a topic subset. Both ENC and DEC are MLPs. 427

In each round, we choose two random topic 428

sets, T1 and T2, compute Ψ(T1) and Ψ(T2), 429

and feed them to the same ENC. Let 430

ENC(Ψ(T1)) and ENC(Ψ(T2)) be the outputs, 431

and d(T1, T2) = ∥Ψ(T1) − Ψ(T2)∥1. The 432

cost (distance) function is difference between 433

the ℓ22 distance in embedding and EMD(T1, T2) 434((
∥ENC(Ψ(T1))− ENC(Ψ(T2)∥22

)
− EMD(T1, T2)

)2
. 435

To train the decoder, we want to ensure 436

DEC(ENC(T )) = T by using either cross- 437

entropy or simple MSE. It is important to simul- 438

taneously train ENC(·) and DEC(·), and not se- 439

quentially train them. 440

5 Experiments 441

Finding distinguishers. We design an experiment 442

to validate our algorithms on a medical domain. 443

We extract the topic tree (knowledge graph) from 444

the ICD-10 codes from World Health Organiza- 445

tion (Organization, 1993). For a specific set of top- 446

ics of fixed cardinality, we generate questions via 447

prompting a reliable LLM, e.g., GPT-3.5, about 448

a hypothetical patient’s symptoms. See App. B 449

for details/examples. The generated case scenarios 450

were reviewed by physician to evaluate plausibility. 451
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Topics 2 3 5
left right random bayes embed boost random bayes embed boost random bayes embed boost

Flan-T5-xxl
GPT2-xl 1.276 1.292 1.283 1.444 1.313 1.287 1.266 1.429 1.268 1.320 1.328 1.494
GPT-neo 1.413 1.399 1.376 1.547 1.311 1.319 1.328 1.557 1.283 1.252 1.354 1.456
GPT-j 1.360 1.430 1.314 1.635 1.336 1.436 1.398 1.583 1.452 1.550 1.332 1.674

GPT2-xl GPT-neo 1.446 1.285 1.262 1.494 1.210 1.323 1.357 1.506 1.306 1.348 1.328 1.529
GPT-j 1.341 1.296 1.405 1.544 1.311 1.254 1.366 1.492 1.279 1.308 1.327 1.478

GPT-neo GPT-j 1.382 1.369 1.373 1.537 1.294 1.350 1.376 1.575 1.134 1.370 1.437 1.626

Flan-T5-large Flan-T5-xxl 1.155 1.202 1.212 1.373 1.254 1.285 1.228 1.403 1.220 1.180 1.073 1.254
Llama-2-13b4bit 1.408 1.378 1.394 1.612 1.298 1.486 1.494 1.758 1.366 1.509 1.469 1.667

Flan-T5-xxl Llama-2-7b4bit 1.314 1.328 1.308 1.489 1.482 1.436 1.491 1.680 1.324 1.470 1.436 1.629
Llama-2-13b4bit Llama-2-7b4bit 1.496 1.399 1.744 1.914 1.626 1.709 2.100 2.361 1.448 1.495 1.531 1.880
GPT-3.5-Turbo Llama-3-8B 1.513 1.316 1.248 1.445 1.366 1.559 1.562 1.801 1.270 1.395 1.333 1.575

Llama-3-8B Llama-2-13b4bit 1.371 1.573 1.278 1.727 1.375 1.486 1.513 1.740 1.677 1.518 1.351 1.698
Llama-2-7b 1.398 1.457 1.317 1.642 1.307 1.557 1.422 1.766 1.411 1.479 1.437 1.743
Llama-2-7b4bit 1.517 1.288 1.159 1.475 1.426 1.525 1.234 1.702 1.466 1.453 1.472 1.731

Llama-2-13b4bit Llama-2-7b 1.667 1.791 1.256 1.956 1.539 1.740 1.271 1.855 1.521 1.602 1.611 1.944
Llama-2-7b Llama-2-7b4bit 1.552 1.240 1.237 1.597 1.579 1.790 1.531 1.991 1.411 1.396 1.480 1.771

Table 2: Evaluating different algorithms for optimizing the objective Eq. 3 for topic numbers being 2, 3, and 5.
Recall that Eq. 3 measures the mean distance of the top ten distinguisher topic tuples, i.e., the larger objective, the
more effective the algorithm. Bold text: the best performing algorithm for a specific configuration. Grayed text: the
random entry when neither Bayes nor embed base learner can out-compete random. Models are from Hugging Face.

We examine Flan-t5-large, Flan-t5-xxl,452

GPT-j, GPT2-xl, GPT-neo, GPT-3.5, Llama-2-7b,453

Llama-2-7b-4bit, Llama-2-13b, Llama-3-8b,454

and Llama-2-13b-4bit, 4bit versions use455

load_in_4bit; other models are original ones.456

We randomly selected 16 pairs from them.457

sentence-transformers are used to measure an-458

swers’ distance (Reimers and Gurevych, 2019).459

We evaluate random, standard BO bayes460

(Sec. 4.1), embedding-based BO embed (Sec. 4.3),461

and boosting algorithm boost; the latter uses the462

union of all queries from bayes and embed to select463

top m items. We note boost can execute bayes464

and embed in parallel, without requiring extra time.465

The domain of bayes and embed is the distribu-466

tions on topics. For each distribution (BO query),467

we sample three topic tuples and two questions468

for each topic tuple. The objective’s value is the469

mean of six distances. We perform a total of470

n = 100 queries, and find the mean distance of471

m = 10 largest topic tuples. Since the number472

of queries for the random baseline needs to match473

bayes and embed, we query n = 300 topic tuples.474

We standerdize the distances w.r.t. to random and475

repeat each experiment for k = 2, 3, and 5 topics.476

See Table 2 for the results. Algorithms in bold-477

face perform best for each configuration. En-478

tries are highlighted in gray when random outper-479

form both bayes and embed. (i) boost is the best480

and usually significantly outperforms the others.481

(ii) bayes and embed outperform random when482

k ∈ {3, 5}, whereas random can outperform bayes483

and embed when k = 2. The results are expected484

since questions with only two topics usually have 485

simpler structure, so the value of using BO di- 486

minishes, (iii) embed does not always outperform 487

bayes, but since boost usually significantly out- 488

performs them individually, embed and bayes offer 489

orthogonal signals and confirms the value of embed. 490

Case studies. Table 1 lists the distinguisher and 491

non-distinguisher questions identified by our al- 492

gorithms for Llama-2-7b and Llama-2-7b-4bit. 493

Question A shows a non-distinguisher question; 494

both models give nearly identical answers. Ques- 495

tion B shows a distinguisher; Llama-2-7b-4bit 496

gives a generic answer, whereas Llama-2-7b is 497

more specific. Physician review of the generated 498

questions provided potential reasons for distin- 499

guisher performance, such as question specificity 500

and range of potential diagnoses and clinical ac- 501

tions based on each scenario. The questions were 502

generally comprehensible and aligned with the for- 503

mat for medical training. While questions gener- 504

ated here could not be used directly in real-world 505

settings, they are useful for screening LLMs in the 506

medical domain. Suggestions were made to im- 507

prove question plausibility for future development, 508

such as removing non-specific diagnosis codes and 509

grouping topics according to age or epidemiologi- 510

cally co-occurring conditions. See App. B.3. 511

Siamese net performance. We use a Siamese 512

net to learn EMD-to-ℓ2 embedding. We need to 513

confirm that the encoder preserves the distance and 514

that the decoder properly maps a point in ℓ2 back 515

to a topic subset. We examine training ENC(·) 516
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Topics 2 3 5

algo σ(·) nℓ
train
emb

test
emb

train
decd

test
decd score train

emb
test
emb

train
decd

test
decd score train

emb
test
emb

train
decd

test
decd score

all
False 1 92.9% 91.7% 73.3% 73.1% 82.4% 91.6% 90.4% 71.2% 71.0% 80.7% 90.2% 88.4% 64.2% 64.0% 76.2%

2 93.5% 90.5% 96.2% 96.1% 93.3% 91.3% 87.9% 87.4% 86.8% 87.4% 90.5% 85.3% 75.6% 74.8% 80.0%

True 1 93.1% 91.8% 100.0% 100.0% 95.9% 91.4% 90.2% 99.8% 99.2% 94.7% 89.9% 88.2% 96.0% 95.2% 91.7%
2 93.2% 90.6% 96.1% 95.8% 93.2% 91.7% 88.4% 97.9% 96.0% 92.2% 90.4% 85.6% 85.9% 83.5% 84.5%

seq
False 1 92.6% 91.6% 72.0% 71.9% 81.7% 91.6% 90.3% 68.6% 68.5% 79.4% 89.9% 88.3% 60.4% 60.3% 74.3%

2 92.8% 89.8% 93.5% 92.9% 91.4% 91.2% 87.1% 65.2% 63.7% 75.4% 89.9% 84.4% 49.9% 48.8% 66.6%

True 1 92.8% 91.7% 72.1% 72.0% 81.8% 91.5% 90.2% 69.2% 69.1% 79.7% 90.0% 88.3% 59.7% 59.7% 74.0%
2 93.0% 90.0% 93.2% 92.6% 91.3% 91.3% 87.1% 65.2% 63.7% 75.4% 89.7% 84.3% 49.3% 48.1% 66.2%

Table 3: Using a Siamese network to learn embedding for EMD for topic subsets. The evaluation metric is
correlation (1 being the best and −1 being the worst). Score is the mean of embedding correlation and decoder
correlation in the test set. Training algorithms examined: all: simultaneously training both ENC(·) and DEC(·);
seq: sequentially first train ENC(·), then train DEC(·). Architecture searched: whether to include sigmoid function
at the final layer (σ(·) being true or false), and the number nℓ of hidden layers in the MLP.

and DEC(·) simultaneously and sequentially. We517

perform a lightweight architecture search along two518

dimensions: whether to include a sigmoid function519

at the top of the MLPs, and whether to use one or520

two hidden layers.521

Figure 5: Using pairwise distance to approximate rank-
ing. Left: embedding the models into a 2-dim space
based only on their estimated distances. Right: further
adjusting the 2-dim embedding by using polar coordi-
nates and certain ad-hoc transformations. Ranking in-
formation surfaces: models quality in general improve
from lower left to upper right.

Table 3 lists the results. We use the correlation522

between prediction and target as our evaluation523

metric and set our score to be the mean of embed-524

ding and decoding correlations. All configurations525

give reasonable ENC, but it is important to train526

ENC and DEC simultaneously to properly train527

DEC. Having the sigmoid function and using one528

layer consistently performs the best.529

Toward unsupervised ranking. There exist530

algorithms (primarily using metric-embedding531

techniques) that translate from distance to rank-532

ing (Rohe et al., 2011; Li et al., 2017), but the pres-533

ence of weaker and smaller models deteriorates534

the output quality. Weaker and smaller models535

give low-quality medical related answers, so they536

have small positive correlations with all other mod-537

els, and their cosine distances to all other models538

concentrate around 1, which makes 1-dimensional539

embedding (approximate ranking) impossible. 540

However, we still find interesting ranking-related 541

structures when we embed the distances measured 542

by our algorithms into a 2-dim space. Specifi- 543

cally, we first run a matrix completion algorithm to 544

fill in the missing distances, and then use PCA 545

to map models to 2-dim space. See Fig. 5(a). 546

GPT-3.5 is excluded because it is not an open- 547

source model. We observe that (i) smaller mod- 548

els GPT-j, GPT2-xl, and GPT-neo have equal dis- 549

tances to all other models as we predicted, and (ii) 550

a ranking starts to surface when we draw a spiral 551

from the bounding box to the “origin.” When we 552

use a polar coordinate to express the points and per- 553

form certain transformations, the ranking becomes 554

more explicit. See Fig. 5(b). Lower left are worse 555

models, and upper right corresponds to better mod- 556

els. In the extracted rankings (projection against 557

the dashed regression line), Llama-3-8b appears 558

to be out of order, but otherwise, the ranking ap- 559

pears consistent with general perception. We leave 560

a more systematic investigation to future work. 561

6 Conclusion 562

This paper studied unsupervised methods to mea- 563

sure distances between LLMs as a low-cost, faster 564

alternative to model grading/ranking. We proposed 565

using distinguisher questions categorized by topic 566

sets to measure distance and reduced our prob- 567

lem to a combinatorial optimization, which we 568

solved with Bayesian optimization. We introduced 569

a novel correlation structure for topics based on 570

earth-mover distance, and designed a theoretically 571

sound Siamese net for EMD-to-ℓ2 embedding that 572

interfaces topics and BO. The experiments con- 573

firmed the efficacy of our algorithms and demon- 574

strated their potential in approximate rankings. 575
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Limitations576

Computation. Our algorithms require moderate577

GPU resource for comparing two models. For mod-578

els with 7 to 13B parameters, evaluation takes 5-8579

hours using two A100 GPUs. This does not scale580

very well when massive pairs need to be evaluated.581

Techniques such as matrix completion could be582

needed to complement our algorithm and fill in583

“missing pairs”. Noise. The efficacy of Bayesian584

optimization relies on the correctness of the cor-585

relation specification. When the topic number is586

smaller and the quesiton structure is simple, the587

value of using BO diminishes as shown in our ex-588

periments. Blackboxes and hallucinations. Our589

algorithm assumes the availability of sufficiently590

powerful LLMs to generate questions based on top-591

ics. While domain experts are likely to conduct592

ad-hoc investigations and run additional “sanity593

checks” on question quality before deciding to use594

GPT-3.5-Turbo, we rely on a blackbox and do not595

have full control over text generation quality.596

Ethics Statement597

Clinical cases are auto-generated to compare LLMs598

for measuring their distances in the experiments.599

We reiterate that the experiments’ purpose is to600

highlight models’ differences under less common601

scenarios. We envision these results are used to602

build assistive tools for medical processionals to as-603

sess LLMs, or for further fine-tuining downstream604

models. Neither our algorithms nor our experi-605

ments provide definite assessment on LLMs used606

in medical domains.607
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A Missing Analysis761

Proof of Proposition 1. Recall that earth-moving762

distance can be interpreted as finding a way to763

move “balls” in T1 to locations specified by T2 so764

the sum of all balls’ travel distance is minimized.765

We first show that EMD is lower bounded by766 ∥∥Ψ(T1) − Ψ(T2)
∥∥
1
. Then we will give an algo-767

rithm that results in the total traveling distance be-768

ing exactly
∥∥Ψ(T1)−Ψ(T2)

∥∥
1
.769

Lower bound. Let us first name the levels of the770

tree: let Li consists of nodes whose distance to root771

is i so L0 consists of only the root, L1 consists of772

the root’s children, and Lh consists of all leaves,773

where h is the height of the tree.774

A ball is said to travel across level i if in a mov-775

ing strategy, we need to move the ball from level776

i to i − 1, and then from level i − 1 to i (these777

two operations need not be consecutive) at some778

point. For example, when we move the ball at the779

leftmost leaf to the root then move that down to780

the rightmost leaf, the ball is traveled across levels781

0, 1, 2, . . . h− 1.782

We can find a lower bound Ci on the number783

of balls that have to travel across level i for any784

moving strategy. Then an EMD lower bound would785

be 2
∑

1≤i≤hCi.786

Let v be a node in Li and xv (yv) be the number787

of balls in S1 (S2) that is in v-rooted tree. When788

xv > yv, that means xv − yv balls from S1 cannot789

find a match in S2 in v-rooted subtree so they have790

to travel beyond node v (and across level i). When791

xv < yv that means we need other balls outside792

v-rooted subtree to fill in S2’s spots in v-rooted793

subtree. We can use this argument to enumerate794

through all nodes in Li and each ball will be double795

counted so we have796

Ci ≥
1

2

∑
v∈Li

|xv − yv|.797

So we indeed have a lower bound798

2
∑

1≤i≤h

Ci ≥ |Ψ(S1)−Ψ(S2)|1. (8)799

Upper bound. Here, we image elements in S1 as800

red balls and elements in S2 as blue balls. Our801

goal is to move red and blue balls so that all of802

them are eventually paired (i.e., a red and a blue803

ball meet). This is equivalent to moving red balls to804

blue locations. We will construct a way to move the805

balls so that the total number of moves is exactly806

|Ψ(S1)−Ψ(S2)|1.807

All the balls are at the leaves of Tr at the initial 808

state. Our strategy is a fairly straightforward one: 809

if red and blue balls can be matched at a node, then 810

the unmatched nodes will be moved up. All balls 811

will eventually be paired because all unmatched 812

balls will eventually be pushed to the root and be 813

matched there “in the worst case” when no match- 814

ing is available earlier. We can also count the total 815

number of moves by the total number of balls that 816

are moved from layer i to layer i − 1, which is 817

exactly 818∑
v∈Li

|xv − yv|. 819

Thus, the total number of moves is indeed 820∑
1≤i≤h

∑
v∈Li

|xv − yv| = |Ψ(T1)−Ψ(T2)|1. 821

822

B Generation of questions 823

B.1 Generation procedure 824

For each topic tuple, we prompt an LLM 825

(ChatGPT3.5-turbo) using the following struc- 826

ture: 827

Prompt starts. 828

You are a medical school professor and you are 829

designing questions for medical school students. 830

Please refer to the medical scenario described in the 831

template below, and create a patient case scenario 832

involving these medical topics: $TOPIC LIST. The 833

case should interweave these themes into a coher- 834

ent and medically plausible scenario, and generate 835

a question concerning this patient. Build your own 836

case. Here is a template scenario: 837

A medical case template is copied here. 838

Note: For the cases in the template, only learn 839

the format here. Please do not copy the scenarios. 840

Prompt ends. 841

$TOPIC LIST consists of elements from the topic 842

tree (Sec. 4.2), and we sample a medical case tem- 843

plate from MedQA (Jin et al., 2021). Our prompt- 844

ing strategy asks the LLM to be more specific 845

and self-consistent and share certain similarities 846

with the “chain-of-thoughts” techniques (Wei et al., 847

2022). 848

B.2 Question examples 849

Below lists five questions generated based on our 850

prompting strategy. 851
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Question (case) Llama-2-7b(4bit) Llama-2-7b
Question A. A 7-week-old male infant is brought to the
pediatrician by his concerned parents. They noticed that
he had frequent episodes of nosebleeds since birth,
which had become more persistent and difficult to
control in the past week. The parents also mention that
the infant has been unusually fussy and irritable. On
examination, the infant appears pale, with petechiae
scattered over his body. The pediatrician notes that the
infant’s heart rate is elevated, and there are signs of
bleeding from the gums. Question for Medical Students:
Based on the presented case, what congenital
malformations or hematological disorders should be
considered in the differential diagnosis for this
7-week-old infant presenting with recurrent nosebleeds,
petechiae, and irritability? Authors’ annotation: a
non-distinguisher question; answers are similar.

Based on the symptoms presented, there are several
congenital malformations or hematological disorders
that should be considered in the differential diagnosis for
this 7-week-old infant presenting with recurrent
nosebleeds, petechiae, and irritability. Here are some of
the possibilities: 1. Hemophilia A: This is a genetic
disorder that affects the blood’s ability to clot, leading to
prolonged bleeding after injury or surgery. The infant
may have inherited this condition from one of their
parents, and the frequent nosebleeds and petechiae could
be a sign of this disorder. 2. Von Willebrand Disease:
This is a mild bleeding disorder caused by a deficiency
of von Willebrand factor, which is essential for blood
clotting. The infant may have this condition, which
could be causing the frequent nosebleeds and petechiae.
3. Platelet disorders: Disorders that affect the platelets’
ability to clot blood can lead to frequent nosebleeds and
petechiae. These disorders could include platelet
aggregation defects, platelet function

Based on the presented case, I would consider the
following congenital malformations or hematological
disorders in the differential diagnosis for this 7-week-old
infant presenting with recurrent nosebleeds, petechiae,
and irritability: 1. Hemophilia A: This is a genetic
disorder that affects the blood’s ability to clot, leading to
frequent nosebleeds and bruising. The elevated heart rate
and signs of bleeding from the gums could be indicative
of this condition. 2. Von Willebrand disease: Similar to
hemophilia A, this is a bleeding disorder caused by a
deficiency in von Willebrand factor, which is essential
for blood clotting. The symptoms of nosebleeds,
petechiae, and irritability could be indicative of this
condition. 3. Platelet disorders: Disorders such as
platelet dysfunction or platelet storage disease can cause
an increased risk of bleeding. The frequent nosebleeds
and petechiae in this case could be indicative of a
platelet disorder. 4. Liver disease: Certain liver disease

Question B. A 45-year-old man presents to the clinic
with complaints of recurrent severe headaches, blurry
vision, and difficulty urinating for the past 6 months. He
also reports experiencing weakness and numbness in his
lower extremities. He has a history of inflammatory
bowel disease and was recently diagnosed with
noninfective enteritis. He is currently being treated with
mesalamine and infliximab infusions for his IBD. The
patient also mentions that he has noticed drooping of his
left eyelid and has been experiencing erectile
dysfunction. His father had a history of polyneuropathy.
On examination, he is noted to have ptosis of the left
eyelid, decreased facial expression on the left side, and
diminished tactile sensation in his lower extremities.
Cranial nerve examination reveals weakness of the left
cranial nerves. As a clinical expert, how would you
respond to this medical case? Topics: Cranial nerve
disorders in diseases classified elsewhere, Disorders of
eyelid in diseases classified elsewhere, Disorders of male
genital organs in diseases classified elsewhere,
Noninfective enteritis and colitis, Polyneuropathies and
other disorders of the peripheral nervous system

The patient in the scenario presented with signs and
symptoms consistent with a right temporal lobe
glioblastoma. Glioblastomas are the most common
primary brain tumors in adults. They are classified as
grade IV gliomas and are associated with a poor
prognosis. They are typically treated with surgery,
radiotherapy, and chemotherapy. Temozolomide is a
commonly used chemotherapy agent for glioblastoma.
Bevacizumab is a monoclonal antibody that targets
vascular endothelial growth factor (VEGF). It is used in
the treatment of several types of cancer, including
glioblastoma, but it is not a first-line agent. Cisplatin is a
platinum-based chemotherapy agent that is used in the
treatment of several types of cancer.
Authors’ annotation: Generic and misdiagnosed,
neglecting the patient’s history and symptoms.

Based on the presenting symptoms, medical history, and
family history provided, this patient’s constellation of
symptoms is concerning for a neurological condition
involving multiple systems. The presence of severe
headaches, blurry vision, lower extremity weakness,
numbness, urinary symptoms, ptosis of the left eyelid,
and decreased facial expression on the left side may
suggest a neurological disorder affecting the cranial
nerves, optic nerves, and peripheral nerves. Given the
patient’s history of inflammatory bowel disease (IBD)
and recent diagnosis of noninfective enteritis, there is a
possibility of an autoimmune or systemic inflammatory
condition affecting the nervous system. Conditions such
as multiple sclerosis (MS), neuromyelitis optica (NMO),
or vasculitis could be considered. **Management
Recommendations**: 1. *Neurological Evaluation*:
Urgent referral to a neurologist for a comprehensive
evaluation, including a detailed neurological
examination and possible lumbar puncture. 2.
*Imaging*: MRI of the brain and spinal cord to identify
any demyelinating lesions or other abnormalities.
3.*Laboratory Tests*: Blood tests including autoimmune
markers (e.g., ANA, ANCA), inflammatory markers
(e.g., ESR, CRP), and specific tests for MS and NMO.
4.*Symptom Management*: Address specific symptoms
such as pain, urinary issues, and erectile dysfunction
with appropriate medications and therapies.
Authors’ annotation: More case-specific.

Table 4: Full examples of questions and answers: two questions are generated based on the keywords, and the
questions are supplied to Llama-2-7b(4bit) and Llama-2-7b. Two models provide near identical answers to
the first question (first grayed row). The second question is a distinguisher question identified by our algorithm.
Llama-2-7b(4bit) provides a more generic answer, whereas Llama-2-7b is more specific.
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Generated Question 1. Case Scenario: A 45-852

year-old man presents to the clinic with complaints853

of recurrent severe headaches, blurry vision, and854

difficulty urinating for the past 6 months. He also855

reports experiencing weakness and numbness in his856

lower extremities. He has a history of inflamma-857

tory bowel disease and was recently diagnosed with858

noninfective enteritis. He is currently being treated859

with mesalamine and infliximab infusions for his860

IBD. The patient also mentions that he has noticed861

drooping of his left eyelid and has been experienc-862

ing erectile dysfunction. His father had a history863

of polyneuropathy. On examination, he is noted864

to have ptosis of the left eyelid, decreased facial865

expression on the left side, and diminished tactile866

sensation in his lower extremities. Cranial nerve867

examination reveals weakness of the left cranial868

nerves. Question: As a clinical expert, how would869

you respond to this medical case? Topics: Cranial870

nerve disorders in diseases classified elsewhere,871

Disorders of eyelid in diseases classified elsewhere,872

Disorders of male genital organs in diseases clas-873

sified elsewhere, Noninfective enteritis and colitis,874

and Polyneuropathies and other disorders of the875

peripheral nervous system.876

Generated Question 2. Case Scenario: A 7-week-877

old male infant is brought to the pediatrician by878

his concerned parents. They noticed that he had879

frequent episodes of nosebleeds since birth, which880

had become more persistent and difficult to control881

in the past week. The parents also mention that the882

infant has been unusually fussy and irritable. On ex-883

amination, the infant appears pale, with petechiae884

scattered over his body. The pediatrician notes that885

the infant’s heart rate is elevated, and there are signs886

of bleeding from the gums. Question: Based on887

the presented case, what congenital malformations888

or hematological disorders should be considered in889

the differential diagnosis for this 7-week-old infant890

presenting with recurrent nosebleeds, petechiae,891

and irritability? Topics: Congenital malformations892

of eye, ear, face and neck, Persons encountering893

health services for specific procedures and health894

care, and Haemorrhagic and haematological dis-895

orders of fetus and newborn.896

Generated Question 3. Case Scenario: A 50-897

year-old man presents to the emergency room with898

complaints of worsening lower back pain over the899

past few months. He describes the pain as dull and900

aching, aggravated by movement and relieved by901

rest. He denies any history of trauma or injury to902

his back. He also reports increased frequency of 903

urination, especially at night, and occasional burn- 904

ing sensation while urinating. On examination, the 905

patient appears uncomfortable while moving, has 906

limited range of motion in his lumbar spine, and 907

tenderness over the lower lumbar region. Addi- 908

tionally, he has no focal neurological deficits. His 909

urine analysis reveals the presence of leukocytes 910

and red blood cells, indicative of a urinary tract 911

infection, but no signs of infection or inflammation 912

in the lumbar region are seen. Question: As a clini- 913

cal expert, how would you respond to this medical 914

case? Topics: Symptoms and signs involving the 915

urinary system, Abnormal findings on examination 916

of urine, without diagnosis, and Osteopathies and 917

chondropathies. 918

Generated Question 4. Case Scenario: A 42- 919

year-old man presents to the emergency room with 920

complaints of severe abdominal pain and blurring 921

of vision in his left eye. He reports a history of 922

intermittent abdominal pain and diarrhea over the 923

past few weeks, along with a recent onset of vision 924

changes. He denies any recent travel, fever, or his- 925

tory of infectious illnesses. His medical history is 926

significant for ulcerative colitis, for which he has 927

been on a regimen of mesalamine. Upon further in- 928

vestigation, the patient’s physical exam reveals ten- 929

derness in the lower abdomen and erythema in the 930

left eye. Fundoscopy shows chorioretinal lesions 931

in the affected eye. Laboratory tests reveal elevated 932

inflammatory markers. Question: As a clinical 933

expert, how would you respond to this medical 934

case? Topics: Noninfective enteritis and colitis, 935

and Chorioretinal disorders in diseases classified 936

elsewhere 937

Generated Question 5. Case Scenario: A 45-year- 938

old man, who works as a truck driver, presents to 939

the dermatology clinic with a suspicious mole on 940

his upper back that has been changing in size and 941

color over the past few months. He also reports 942

a history of multiple sunburns during his youth 943

due to prolonged exposure to the sun while driv- 944

ing. Upon examination, the dermatologist notes 945

irregular borders and color variation in the mole, 946

raising concern for melanoma. The patient admits 947

to being worried about skin cancer due to his oc- 948

cupational sun exposure and is eager to undergo 949

further evaluation. Question: As a clinical expert, 950

how would you respond to this medical case? Top- 951

ics: Melanoma and other malignant neoplasms 952

of skin and Persons with potential health hazards 953
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related to communicable diseases.954

B.3 Clinical reviews for Table 4955

This section provides clinician reviews for ques-956

tions and answers in Table 4.957

Question A. The differential diagnosis for bleed-958

ing disorders in an infant are relatively narrow, and959

the answers are similar for both LLMs and medi-960

cally reasonable diagnoses to explore with further961

workup.962

Question B. This is a very concerning case for963

severe neurologic diseases, with some possibly re-964

lated but unusual details like the urologic issues965

and history elements thrown in. The constellation966

of symptoms does not follow any one pattern and967

would be confusing in the setting of a question968

testing medical knoweldge, but theoretically could969

represent multiple systemic/neuropathic processes.970

The first answer anchors to glioblastoma alarm-971

ingly as the only diagnosis and rather than propos-972

ing workup jumps right to treatment of glioblas-973

toma. The 2nd answer is better as it focuses on974

braod differentials and suggests several types of975

workup.976
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