000 POMONAG: PARETO-OPTIMAL MANY-OBJECTIVE 001 NEURAL ARCHITECTURE GENERATOR 002 003

Anonymous authors

004

010 011

013

017

021

025

026

027

029

031

032

034

Paper under double-blind review

ABSTRACT

Neural Architecture Search (NAS) automates the design of neural network ar-012 chitectures, minimising dependence on human expertise and iterative experimentation. While NAS methods are often computationally intensive and datasetspecific, employing auxiliary predictors to estimate architecture properties has 014 proven extremely beneficial. These predictors substantially reduce the number 015 of models requiring training, thereby decreasing overall search time. This strat-016 egy is frequently utilised to generate architectures satisfying multiple computational constraints. Recently, Transferable Neural Architecture Search (Trans-018 ferable NAS) has emerged, generalising the search process from being dataset-019 dependent to task-dependent. In this domain, DiffusionNAG stands as a stateof-the-art method. This diffusion-based method streamlines computation, generating architectures optimised for accuracy on unseen datasets without the need for further adaptation. However, by concentrating exclusively on accuracy, DiffusionNAG neglects other crucial objectives like model complexity, computational efficiency, and inference latency – factors essential for deploying models in resource-constrained, real-world environments. This paper introduces the Pareto-Optimal Many-Objective Neural Architecture Generator (POMONAG), extending DiffusionNAG through a many-objective diffusion process. POMONAG simultaneously considers accuracy, the number of parameters, multiply-accumulate 028 operations (MACs), and inference latency. It integrates Performance Predictor models to estimate these secondary metrics and guide the diffusion gradients. POMONAG's optimisation is enhanced by expanding its training Meta-Dataset, applying Pareto Front Filtering to generated architectures, and refining embeddings for conditional generation. These enhancements enable POMONAG to generate Pareto-optimal architectures that outperform the previous state-of-the-art in both performance and efficiency. Results were validated on two distinct search spaces – NASBench201 and MobileNetV3 – and evaluated across 15 image classification datasets.

037

040

INTRODUCTION 1

Deep learning has become indispensable in various domains by enabling models to learn intricate 041 patterns from large datasets. The architecture of neural networks plays a pivotal role in their perfor-042 mance, traditionally requiring expert knowledge and extensive experimentation. Neural Architec-043 ture Search (NAS) automates this design process, aiming to discover optimal architectures without 044 human intervention. However, conventional NAS methods often involve significant computational costs and are typically tailored to specific datasets, limiting their scalability and general applica-046 bility. Transferable Neural Architecture Search (Transferable NAS) addresses these limitations by 047 generalising the search process across different tasks. DiffusionNAG stands out in this domain, util-048 ising diffusion processes to generate neural architectures optimised for accuracy on unseen datasets. While effective in reducing computational overhead, DiffusionNAG focuses solely on maximising accuracy, neglecting other crucial performance metrics such as model size, computational cost, and 051 inference latency. In practical applications, especially within resource-constrained environments like mobile devices and embedded systems, it is essential to consider multiple objectives simultane-052 ously. Existing Multi- and Many-objective NAS methods often face scalability challenges or require extensive computational resources, making them less practical for widespread adoption.

054 This work introduces the Pareto-Optimal Many-Objective Neural Architecture Generator 055 (POMONAG), which extends the capabilities of DiffusionNAG by performing a many-objective 056 optimisation. POMONAG simultaneously considers accuracy, the number of parameters, multiply-057 accumulate operations (MACs), and inference latency during the architecture generation process. 058 Auxiliary Performance Predictor models, trained to estimate these metrics, are integrated into the diffusion process, guiding exploration towards regions of the search space offering optimal tradeoffs among these objectives. This approach facilitates the generation of architectures that are both 060 highly accurate and efficient in computational resources and speed. To enhance POMONAG's per-061 formance and adaptability, several key improvements have been implemented. The training Meta-062 Dataset has been significantly expanded, incorporating a diverse set of architectures and tasks to 063 enhance the Performance Predictors' capabilities across different domains. Pareto Front Filtering 064 and Stretching techniques are applied to balance the multiple objectives effectively, ensuring that 065 the generated architectures are Pareto-optimal. Additionally, the embeddings used for conditional 066 generation have been refined to facilitate more accurate and dataset-aware architecture synthesis. 067 Extensive experiments validate POMONAG's effectiveness. Evaluations conducted on two promi-068 nent search spaces-NASBench201 and MobileNetV3-and tested across 15 diverse image classification datasets demonstrate that POMONAG outperforms existing state-of-the-art methods, includ-069 ing DiffusionNAG. The generated architectures achieve superior accuracy while satisfying various computational constraints and require significantly fewer trained models, highlighting the efficiency 071 of the proposed technique. 072

- 073 The key contributions of this work include:
 - **Diffusion-based Many-Objective Optimisation.** POMONAG introduces a manyobjective diffusion approach within Transferable NAS, optimising neural architectures for accuracy, number of parameters, MACs, and inference latency.
 - **Pareto-Optimal Architecture Generation.** By computing Pareto Fronts, POMONAG effectively navigates trade-offs among multiple objectives, generating architectures that offer balanced compromises suitable for diverse deployment scenarios.
 - Enhanced Meta-Datasets. New Meta-Datasets have been developed to improve the Performance Predictors' ability to predict architecture performance across various tasks and datasets.
 - **Refined Performance Predictor Models.** The Performance Predictor models have been enhanced to increase prediction accuracy and effectiveness in guiding the architecture generation process.
 - **State-of-the-Art Transferable NAS Model.** POMONAG establishes a new benchmark by generating architectures that are high-performing and adaptable to various computational constraints.

The POMONAG model's code and the accompanying Meta-Datasets will be made publicly available upon publication of this paper at the following <u>link</u>.

092 093 094

090

091

075

076

077

078

079

081

082

084

085

2 RELATED WORKS

Neural Architecture Search. Neural Architecture Search (NAS) seeks to automate neural architecture design, removing the need for manual trial-and-error processes. Early methods, such as reinforcement learning (Zoph & Le, 2016; Zoph et al., 2018), evolutionary algorithms (Real et al., 2019; Lu et al., 2019), and gradient-based techniques (Xie et al., 2018; Dong & Yang, 2019b), are computationally expensive as they require full training of numerous architectures.

One-shot NAS. To mitigate computational costs, one-shot NAS methods employ weight sharing among candidate architectures. ENAS (Pham et al., 2018) uses an RNN controller to generate subnetworks; DARTS (Liu et al., 2018) relaxes the search space into a continuous one; OFA (Cai et al., 2020) trains a single large network with many architectural choices, and OFAv2 (Sarti et al., 2023a) extends this approach with an enriched search space. While these methods reduce costs, they may face challenges in optimisation bias, training stability, or performance across diverse sub-networks.

Multi- and Many-Objective NAS. As application complexity grows, NAS methods increasingly consider multiple objectives. Approaches like MONAS (Hsu et al., 2018) and DPP-Net (Dong et al.,

2018) balance criteria such as accuracy, latency, and energy consumption. NSGANetV2 (Lu et al., 2020) handles up to 12 objectives. Methods such as POPNASv3 (Falanti et al., 2023), NAT (Lu et al., 2021), and NATv2 (Sarti et al., 2023b) offer Pareto-optimal solutions, addressing scalability and computational challenges inherent in multi-objective optimisation.

BO-based NAS. To further reduce computational costs, Bayesian Optimisation (BO) predictor-based methods (Luo et al., 2018; Yu et al., 2020) employ surrogate models to estimate architecture performance without full training. BANANAS (White et al., 2021) uses an ensemble of neural networks, while NASBOWL (Ru et al., 2021) combines graph kernels with Gaussian processes. However, these methods often play a passive role, mainly filtering architectures generated by other strategies.

Transferable NAS. Transferable NAS methods leverage knowledge from previous tasks to accelerate searches on new datasets. MetaD2A (Lee et al., 2021) employs meta-learning to generate dataset-specific architectures. TNAS (Shala et al., 2023) enhances predictor adaptability to unseen datasets using BO with a deep-kernel Gaussian process. While promising in reducing search times, these methods may still face inefficiencies in exploring the architecture space.

Diffusion Models. Diffusion models (Ho et al., 2020; Rombach et al., 2022) have shown outstand ing generative performance by learning to reverse the process of gradually adding noise to data. In
 graph generation, GDSS (Jo et al., 2022) applies diffusion models to undirected graphs. However,
 their application to neural architecture generation, involving directed acyclic graphs with specific
 constraints, remains unexplored.

DiffusionNAG. DiffusionNAG introduces a conditional Neural Architecture Generation framework 129 based on diffusion models (An et al., 2024), addressing inefficiencies in traditional NAS methods 130 that require sampling and training numerous irrelevant architectures. It models neural architectures 131 as directed graphs and employs a graph diffusion process for their generation. The forward diffusion 132 process perturbs architectures with Gaussian noise, mapping the architecture distribution to a known 133 prior. The reverse process then refines noise into valid architectures using a learned score function. 134 A key component is a specialised Score Network designed to capture dependencies between nodes, 135 reflecting the computational flow in directed acyclic graphs. This network utilises Transformer 136 blocks with an attention mask and incorporates positional embeddings to accurately represent the 137 topological ordering of layers, ensuring that generated architectures adhere to specific search space 138 rules. DiffusionNAG integrates a parameterised predictor into the reverse diffusion process, forming a predictor-guided conditional generation scheme. This allows the model to generate task-optimal 139 architectures by sampling from regions more likely to satisfy desired properties. 140

In Transferable NAS scenarios, DiffusionNAG employs a meta-learned dataset-aware predictor con ditioned on image classification datasets. This predictor, trained over a distribution of tasks, enables
 accurate predictions for unseen datasets without additional training. By integrating this predictor
 into the conditional generative process, DiffusionNAG facilitates efficient architecture generation
 for new tasks. By leveraging predictor-guided conditional architecture generation within the diffusion framework, DiffusionNAG reduces computational overhead and enhances search efficiency in
 NAS.

- 47
- 148 149

3 Method

150 151

This section outlines the techniques developed and implemented in POMONAG, a Transferable
NAS model derived from the DiffusionNAG framework proposed by An et al. (2024). It presents
the Many-Objective Reverse Diffusion Guidance process, the creation of new Meta-Datasets, and
enhancements to the Performance Predictors. Additionally, it explains the Pareto Front Stretching
and Pareto Front Filtering techniques used to optimise and refine the architecture generation process.

157 158

159 160 3.1 MANY-OBJECTIVE REVERSE DIFFUSION GUIDANCE

161 The diffusion model in DiffusionNAG employs the Reverse Diffusion Process for architecture generation, described as:

Figure 1: Overview of the POMONAG framework illustrating the Many-Objective Reverse Diffusion Guidance process.

$$dA_t = \left[f_t(A_t) - g_t^2 \nabla_{A_t} \log p_t(A_t) \right] d\bar{t} + g_t d\bar{w}$$

The score function $\nabla_{A_t} \log p_t(A_t)$ is approximated by introducing the Score Network, which iteratively applies the transformation $s_{\theta}(A_t, t)$ to the noisy architecture A_t . The process is guided using the dataset-aware **Performance Predictor** $f_{\phi}(y|\tilde{D}, A_t)$, resulting in:

$$dA_t = \left\{ f_t(A_t) - g_t^2 \left[s_{\theta}(A_t, t) + k_{\phi} \nabla_{A_t} \log \left[f_{\phi}(y|\tilde{D}, A_t) \right] \right\} d\bar{t} + g_t d\bar{w} \right\}$$

The Score Network is responsible for denoising the noisy architecture sampled from the generative distribution at each denoising step. The output of the Performance Predictor is used to compute the guidance term that steers the generation process towards regions of the search space with a higher density of accurate architectures for the given dataset.

In POMONAG's Reverse Diffusion Guidance process, the generation gradient is directed in a many-objective fashion by simultaneously considering three additional terms:

- $k_{\pi} \nabla_{A_t} \log f_{\pi}(p|\tilde{D}, A_t)$, where p represents the number of parameters of architecture A_t and k_{π} is a constant scaling factor;
 - $k_{\mu} \nabla_{A_t} \log f_{\mu}(m | \tilde{D}, A_t)$, where *m* represents the number of MACs of architecture A_t and k_{μ} is a constant scaling factor;
 - $k_{\lambda} \nabla_{A_t} \log f_{\lambda}(l|\tilde{D}, A_t)$, where *l* represents the inference latency of architecture A_t and k_{λ} is a constant scaling factor.

Each term represents the log-likelihood of architecture A_t satisfying the corresponding metric evaluated on dataset D at timestamp t. These three terms are approximated by introducing three specialised Performance Predictors. The formulation for the new Many-Objective Reverse Diffusion Guidance is defined as:

$$dA_t = \left\{ f_t(A_t) - g_t^2 \left[s_{\theta}(A_t, t) + k_{\phi} \nabla_{A_t} \log \left[f_{\phi}(y|\tilde{D}, A_t) \right] + k_{\pi} \nabla_{A_t} \log \left[f_{\pi}(p|\tilde{D}, A_t) + k_{\mu} \nabla_{A_t} \log \left[f_{\mu}(m|\tilde{D}, A_t) \right] + k_{\lambda} \nabla_{A_t} \log \left[f_{\lambda}(l|\tilde{D}, A_t) \right] \right\} d\bar{t} + g_t d\bar{w}.$$

213 Each Performance Predictor – the Accuracy Predictor f_{ϕ} , Parameters Predictor f_{π} , MACs Predictor f_{μ} , and In-214 ference Latency Predictor f_{λ} – is trained to predict the corresponding metric of architecture A_t when presented 215 with dataset D. Similar to the Accuracy Predictor f_{ϕ} , the outputs of each additional Performance Predictor are used to adjust the unconditioned gradient direction and update the generative probability distribution at each denoising step during the diffusion phase. In doing so, the generative probability distribution is progressively guided towards regions of the search space that yield optimal architectures in terms of accuracy, number of parameters, number of operations (MACs), and inference latency. The entire many-objective generation process of POMONAG is depicted in Figure 1.

221 3.2 META-DATASET

220

240

241

242

243

244

251

252

253

254

255

256

257

259

260

261

The training of the Score Network, as well as the Performance Predictors, requires a Meta-Dataset containing the types of architecture structures to be generated, along with their characteristics and performance metrics. These architectures must be sampled from a sufficiently large search space and subsequently trained to solve specific tasks using a broad pool of datasets. This approach generalises the models and enables the Score Network to perform dataset-aware generation.

227 In line with practices used in other models within the Transferable NAS family (Lee et al., 2021; Shala et al., 228 2023; An et al., 2024), the datasets used for training the architectures – whose metadata will compose the Meta-Dataset - are extracted from the ImageNet32 dataset (Chrabaszcz et al., 2017). For each iteration, extraction is performed randomly by selecting 20 classes from ImageNet32. All corresponding samples of these 230 classes form the dataset D. In parallel, an architecture A is selected from the designated search space to be 231 associated with this classification task. The structure of this architecture is stored in encoded form. For more 232 information regarding the encoding of architectures, refer to Appendix A. Subsequently—and in contrast to 233 other approaches—the number of parameters, MACs, and the inference latency on a single 32×32 sample are calculated for the architecture. Since latency is highly susceptible to noise, each measurement is repeated 100 234 times; measurements outside the 90% confidence interval are discarded, and the mean of the remaining values 235 is computed. 236

Finally, the architecture is trained on the extracted dataset, split into training, validation, and test sets (80/10/10),
 and its accuracy is calculated on the test split. This information is aggregated and stored as a new tuple in the
 Meta-Dataset, forming a triplet:

- Dataset: The dataset D of 20 classes extracted from ImageNet32.
- Architecture: The structure of the architecture A in encoded form, extracted from the designated search space.
- **Objectives**: The test accuracy, parameters, MACs, and latency values of architecture A on dataset D.

The search spaces used in this work are NASBench201 (Dong & Yang, 2020) and MobileNetV3 (Howard et al., 2019), utilised independently to create two distinct Meta-Datasets. The choice of training and augmentation techniques is as crucial as the size of the Meta-Datasets to obtain accurate Performance Predictors and generate high-performing and efficient architectures. To this end, the Meta-Datasets created for training the models composing POMONAG have undergone the following modifications compared to those used in the DiffusionNAG model:

- **Training Pipeline Optimisation.** The training pipelines for the architectures included in the Meta-Datasets have been optimised to maximise accuracy performance through hyperparameter tuning. For each search space, five architectures were selected and five associated datasets were extracted, as previously described. For each architecture, 50 optimisation steps were executed using Optuna (Akiba et al., 2019), incorporating a Tree-structured Parzen Estimator sampling method (Bergstra et al., 2011) alongside a Hyperband pruning mechanism (Li et al., 2018), aiming to maximise validation accuracy. For more information on the search space and the obtained pipelines, refer to Appendix D.
 - **Dataset Expansion.** The size of the Meta-Datasets was increased by including a larger number of architecture-dataset pairs. For the NASBench201 search space, the cardinality was expanded from 4,630 to 10,000 triplets. Since the cardinality of the MobileNetV3-based Meta-Dataset was not provided by An et al. (2024), and given the considerable size of the search space, the number of triplets was set to 20,000.
- 262 263 3.3 SCORE NETWORK AND PERFORMANCE PREDICTORS

Score Network. The POMONAG framework adapts the core architecture of the Score Network from DiffusionNAG (An et al., 2024), incorporating modifications to accommodate the novel encodings detailed in Appendix A. The Score Network is responsible for iteratively denoising the encodings of the architectures to be generated. The fundamental structure remains consistent with DiffusionNAG. The input embeddings combine operation information (Embops), node positions (Embpos), and time step (Emb_{time}):

$$\text{Emb}_i = \text{Emb}_{\text{ops}(v_i)} + \text{Emb}_{\text{pos}(v_i)} + \text{Emb}_{\text{time}(t)}$$

where v_i represents the *i*-th row of the operator type matrix V. The training strategy for the Score Network remains consistent with that defined by An et al. (2024).

Performance Predictors. The Performance Predictors are models designed to predict the characteristics of architectures during and after the generation phase. In the first instance, the objective is to calculate the regression error used as Reverse Diffusion Guidance; in the second, the aim is to estimate the performance of the architecture once denoised, allowing for ranking without the need for any training and thereby identifying the most promising architectures.

In DiffusionNAG, there are two Performance Predictors: one for estimating the accuracy of noisy architectures during generation, and one for estimating the accuracy of denoised architectures. In POMONAG, there are five
 Performance Predictors. Four are dedicated to the respective estimation of accuracy, parameters, MACs, and
 inference latency of noisy architectures during the diffusion phase. The fifth estimates the accuracy of denoised architectures, given that the other metrics can be extracted with negligible overhead.

The Performance Predictors in POMONAG retain a similar architecture to that in DiffusionNAG. The substantial modifications pertain to the training procedure – which has been revised to maximise the Spearman correlation between the predicted values and the actual metrics – the size and content of the Meta-Dataset used during training, and the model employed as the Dataset Encoder. Specifically, while DiffusionNAG employs a ResNet18 architecture, POMONAG utilises a Vision Transformer (ViT-B-16) model for dataset embedding. From the conducted ablation studies, where the two Performance Predictors of DiffusionNAG are gradually adapted to the version used in POMONAG, a gradual improvement in terms of Spearman correlation is observable. Concretely, this amounts to improvements of +0.168 and +0.117 for the versions applied to noisy and denoised architectures, respectively. More details on the study are presented in Appendix C.

290

293

291 292

3.4 PARETO FRONT FILTERING AND STRETCHING

In DiffusionNAG, architectures are generated in batches of size 256. The scaling factor k_{ϕ} used to weight the contribution of the Performance Predictor during the generation process is set to 10000 and remains constant across all experiments. The generated architectures are then validated by filtering out those with inadequate or incorrect structures. Subsequently, the Performance Predictor for denoised architectures estimates their accuracy, obviating the need to train them. The architectures are then ranked based on this estimate, and the top five are returned as the output of the generation.

299 Pareto Front Filtering. In POMONAG, an additional filtering step is introduced through the construction of a Pareto Front, aimed at leveraging the secondary metrics. Specifically, after the many-objective generation of architectures, the elimination of invalid configurations, and the estimation of accuracies via the Performance 301 Predictor, a Pareto Front is constructed for each of the three secondary metrics, and only the dominant archi-302 tectures are retained. This approach enables the selection of architectures that are Pareto-optimal, allowing 303 for choices based on trade-offs between accuracy and secondary metrics. To this end, three configurations ex-304 tractable from each Pareto Front are identified. The configuration POMONAGAcc represents the architecture 305 for which the highest accuracy is predicted; the configuration POMONAGBal represents the architecture for 306 which the ratio between predicted accuracy and the considered secondary metric is highest; finally, the configuration POMONAG_{Eff} represents the architecture with the lowest value of the secondary metric and therefore 307 the most efficient. 308

Pareto Front Stratching. The Many-Objective Reverse Diffusion Guidance process introduced in POMONAG
 utilises four different guides, one for each Performance Predictor, to model the distribution of the architecture
 space. To optimise the corresponding scaling factors, POMONAG employs a dynamic approach rather than
 a fixed value as in DiffusionNAG. This optimisation process aims to maximise the mean of the estimated
 accuracies of the architectures in the Pareto Front by adjusting the scaling factors corresponding to each guide.

This optimisation leverages Optuna (Akiba et al., 2019), incorporating a Tree-structured Parzen Estimator sampling method (Bergstra et al., 2011) alongside a Hyperband pruning mechanism (Li et al., 2018). The process involves 100 evaluations on four datasets (CIFAR10, CIFAR100, Aircraft, Oxford III Pets). This procedure is replicated for each search space.

- To fully exploit the secondary metrics, POMONAG introduces a novel technique termed Pareto Front Stretching. This entails generating architectures in two phases, each with batches of 128 elements. The first batch favours efficient architectures with respect to the secondary metrics, assigning greater weight to the predictors of parameters, MACs, and inference latency. The second batch aims to obtain highly accurate architectures while still maintaining constraints on their complexity.
- To implement these two generation processes, the optimisation of the scaling factors is executed twice with different constraints. For efficient architectures, the scaling factor for the accuracy guide is searched within the interval [1000, 5000], while for the other guides it is within [100, 500]. For highly accurate architectures, the

Dataset	Stats.	MetaD2A Lee et al. (2021)	TNAS Shala et al. (2023)	DiffusionNAG An et al. (2024)	POMONA (ours)
CIFAR10	Max	97.45±0.07	97.48 ± 0.14	97.52 ± 0.07	97.85±0.
	Mean	97.28±0.01	97.22 ± 0.00	97.39 ± 0.01	97.85±0.
	Min	97.09±0.13	95.26 ± 0.09	97.23 ± 0.06	97.85±0.
CIFAR100	Max	86.00 ± 0.19	85.95 ± 0.29	86.07 ± 0.16	86.18±0.
	Mean	85.56 ± 0.02	85.30 ± 0.04	85.74 ± 0.04	86.18±0.
	Min	84.74 ± 0.13	81.30 ± 0.18	85.42 ± 0.08	86.18±0.
Aircraft	Max Mean Min	82.18±0.70 81.19±0.11 79.71±0.54	$\begin{array}{c} 82.31{\pm}1.31\\ 80.86{\pm}0.15\\ 74.99{\pm}6.65\end{array}$	$\begin{array}{c} 82.28{\pm}0.29\\ 81.47{\pm}0.05\\ 80.88{\pm}0.54\end{array}$	$87.62 \pm 0.$ $87.62 \pm 0.$ $87.62 \pm 0.$
Oxford III Pets	Max	95.28 ± 0.50	95.04 ± 0.44	95.34±0.29	95.28±0.
	Mean	94.55 ± 0.03	94.47 ± 0.10	94.75±0.14	95.28±0.
	Min	93.68 ± 0.16	92.39 ± 0.47	94.28±0.17	95.28±0.

Table 1: Comparison with Transferable NAS methods on the MobileNetV3 search space. The 325 POMONAG architectures in this comparison correspond to the POMONAG_{Acc} configuration. The 326 best scores are highlighted in **bold**.

scaling factor for the accuracy guide is optimised within [10,000, 50,000], while for the other metrics within [10, 50].

The optimisation results yielded specific values for each search space. For NASBench201, the optimal scal-346 ing factors for efficient architectures were 4732, 482, 421, and 368, respectively for accuracy, parameters, 347 MACs, and latency. For highly accurate architectures, the values are 24,943, 12, 26, and 13. In the case of 348 MobileNetV3, for efficient architectures, the values obtained are 4987, 494, 478, and 481, while for highly 349 accurate ones, 48,321, 21, 16, and 39.

350 This approach allows for a more thorough exploration of the solution space, generating an overall set of ar-351 chitectures more widely spread with respect to the secondary metrics. The effect is therefore a diversified 352 generation of architectures and a Pareto Front with a more elongated shape. For more information, the reader 353 is referred to Appendix B.

354 355

356

4 **EXPERIMENTS AND RESULTS**

357 This section presents the experiments conducted and the results obtained to evaluate the performance of 358 POMONAG compared to other NAS models, particularly DiffusionNAG. All experiments were conducted using an NVIDIA Quadro RTX 6000 graphics card. 359

360 Transferable NAS Evaluation on MobileNetV3. In Table 1, the comparison between POMONAG and other 361 Transferable NAS methods on the MobileNetV3 search space is presented. POMONAG achieves the best performance in terms of minimum, mean, and maximum accuracy on almost all the datasets considered. Notably, 362 on the Aircraft dataset, POMONAG reaches an accuracy of 87.62%, significantly surpassing other methods. On 363 CIFAR10, CIFAR100, and Oxford III Pets, POMONAG also demonstrates superior or comparable performance 364 to the state of the art. Unlike other approaches, where the generation of architectures yields multiple alterna-365 tives and diversifies the obtained performances, by exploiting the Pareto Front and selecting the POMONAGAcc configuration, it is possible to reduce the number of architectures to be trained to just one. These results demon-366 strate POMONAG's ability to generate architectures that, even when considering multiple conditionings based 367 on competing metrics, manage to outperform previous state-of-the-art methods. 368

NAS Evaluation on NASBench201. Table 2 compares the performance of POMONAG with that of other NAS 369 techniques on the NASBench201 search space across the datasets CIFAR10, CIFAR100, Aircraft, and Oxford 370 III Pets. POMONAG achieves the best accuracies on all datasets, using only one trained architecture per dataset, 371 mirroring the approach taken for the MobileNetV3 search space. Specifically, for the CIFAR10 and CIFAR100 372 datasets, where all other Transferable NAS methods obtain accuracy results with a 95% confidence interval of 373 0.00 due to lookup procedures, POMONAG presents a non-zero value as its performances were recalculated over three different runs, confirming superior performance. It is crucial to note that POMONAG minimises the 374 number of architectures to be trained to only the final architecture, thereby reducing computational complexity 375 to a minimum. 376

377 **Performance Predictors.** Optimising the Performance Predictors is fundamental for effectively guiding the many-objective conditional generation process. The comparative analysis summarised in Table 3 highlights

342 343

344

345

398

399

400

401

402

403

410

378 Table 2: Comparison of NAS techniques on the NASBench201 search space across four datasets. 379 'Trained Archs' indicates the number of neural architectures trained to achieve the reported accuracy. Results show mean accuracy \pm 95% confidence intervals over three runs. The POMONAG 381 architectures used in this comparison correspond to the POMONAG_{Acc} configuration. Best scores are highlighted in **bold**. 382

		CIFAR	.10	CIFAR	100	Aircra	ft	Oxford II	I Pets
Туре	Method	Accuracy ↑	Trained Archs↓						
	RSPS Li & Talwalkar (2020)	84.07±3.61	N/A	52.31±5.77	N/A	42.19±3.88	N/A	22.91±1.65	N/A
	SETN Dong & Yang (2019a)	87.64 ± 0.00	N/A	59.09 ± 0.24	N/A	44.84 ± 3.96	N/A	25.17 ± 1.68	N/A
One-shot	GDAS Dong & Yang (2019b)	93.61 ± 0.09	N/A	70.70 ± 0.30	N/A	53.52 ± 0.48	N/A	24.02 ± 2.75	N/A
NAS	PC-DARTS Xu et al. (2020)	93.66±0.17	N/A	66.64 ± 2.34	N/A	26.33 ± 3.40	N/A	25.31 ± 1.38	N/A
	DrNAS Chen et al. (2021)	94.36 ± 0.00	N/A	73.51 ± 0.00	N/A	46.08 ± 7.00	N/A	26.73 ± 2.61	N/A
	BOHB Falkner et al. (2018)	93.61±0.52	>500	$70.85 {\pm} 1.28$	>500	-	-	-	-
	GP-UCB Srinivas et al. (2012)	$94.37 {\pm} 0.00$	58	$73.14 {\pm} 0.00$	100	$41.72{\pm}0.00$	40	$40.60 {\pm} 1.10$	11
BO-based	BANANAS White et al. (2021)	$94.37 {\pm} 0.00$	46	$73.51 {\pm} 0.00$	88	$41.72 {\pm} 0.00$	40	40.15 ± 1.59	17
NAS	NASBOWL Ru et al. (2021)	$94.34{\pm}0.00$	100	$73.51 {\pm} 0.00$	87	$53.73 {\pm} 0.83$	40	$41.29 {\pm} 1.10$	17
	HEBO Cowen-Rivers et al. (2022)	94.34 ± 0.00	100	72.62 ± 0.20	100	49.32 ± 6.10	40	40.55 ± 1.15	18
	TNAS Shala et al. (2023)	94.37±0.00	29	73.51±0.00	59	59.15±0.58	26	$40.00 {\pm} 0.00$	6
Transferabl	e MetaD2A Lee et al. (2021)	$94.37{\pm}0.00$	100	$73.34{\pm}0.04$	100	$57.71 {\pm} 0.20$	40	$39.04{\pm}0.20$	40
NAS	DiffusionNAG An et al. (2024)	$94.37 {\pm} 0.00$	5	$73.51 {\pm} 0.00$	5	$59.63 {\pm} 0.92$	2	$41.32 {\pm} 0.84$	2
	POMONAG (Ours)	95.42 ±0.12	1	75.94 ±0.24	1	63.38±0.51	1	68.82±0.19	1

Table 3: Comparison of Spearman's correlation coefficients for Performance Predictors between DiffusionNAG and POMONAG on the NASBench201 and MobileNetV3 search spaces. Higher coefficients indicate better predictions. 'Accuracy', 'Params', 'MACs', and 'Latency' refer to predictions for noisy architectures during diffusion, while 'Accuracy*' represents predictions for denoised architectures after diffusion. 'N/A' indicates experiments that could not be replicated; '-' indicates metrics not applicable to DiffusionNAG. Best scores are highlighted in **bold**.

		NAS	Bench20	1			Mob	ileNetV3	3	
Method	Accuracy	Accuracy*	Params	MACs	Latency	Accuracy	Accuracy*	Params	MACs	Latency
DiffusionNAG POMONAG	0.687 0.855	0.767 0.884	- 0.666	- 0.656	- 0.470	N/A 0.857	N/A 0.988	0.828	- 0.847	- 0.618

411 a marked superiority of the predictors employed in POMONAG compared to those of DiffusionNAG. In the 412 context of NASBench201, a substantial increase in Spearman's correlation for accuracy is observed: from 413 0.687 to 0.855 for noisy architectures and from 0.767 to 0.884 for denoised ones. POMONAG also stands out 414 for introducing efficient predictors for parameters, MACs, and latency, absent in DiffusionNAG. These new 415 predictors show significant correlations—0.666 for parameters, 0.656 for MACs, and 0.470 for latency - thus providing reliable guidance for many-objective optimisation. In the MobileNetV3 search space, POMONAG 416 achieves even higher correlations, exceeding 0.8 for accuracy, parameters, and MACs. Appendix C presents 417 a detailed analysis of the ablation studies related to these predictors, corroborating the effectiveness of the 418 implemented modifications. 419

Generation Performance. The comparative analysis in Table 4 shows generation metrics between Diffusion-420 NAG and POMONAG. Validity measures the percentage of generated architectures that adhere to the con-421 straints of the search space; uniqueness assesses the diversity among the generated architectures; and novelty 422 indicates the proportion of architectures not present in the training dataset. In the NASBench201 search space, 423 POMONAG demonstrates significant improvements across all metrics, particularly in uniqueness (34.14% vs. 5.10%) and novelty (37.41% vs. 19.87%) compared to DiffusionNAG. For the MobileNetV3 search space, a 424 slight decrease in validity is observed for POMONAG (72.58% vs. 99.09%), likely due to a more ambitious ex-425 ploration of the search space driven by many-objective conditioning. Nonetheless, POMONAG maintains high 426 levels of uniqueness (91.79%) and novelty (100%), illustrating its capability to generate diverse and innovative 427 architectures while simultaneously achieving superior classification performance.

428 Many-Objective Evaluation. A comprehensive comparison between DiffusionNAG and the three variants of 429 POMONAG (Efficient, Balanced, Accurate) was conducted across both NASBench201 and MobileNetV3 430 search spaces considering all the key metrics involved in the many-objective optimisation – accuracy, number 431 of parameters, MACs, and inference latency. The results, summarised in Table 5, represent the means over 15 diverse image classification datasets, depicted in more details in Appendix B.

432 Table 4: Comparison of generation metrics—'Validity', 'Uniqueness', and 'Novelty'—between Dif-433 fusionNAG and POMONAG on the NASBench201 and MobileNetV3 search spaces. Results show 434 mean values \pm 95% confidence intervals over three runs. Best scores are highlighted in **bold**.

		NASBench201			MobileNetV3	
Method	Validity ↑	Uniqueness \uparrow	Novelty ↑	Validity ↑	Uniqueness ↑ Novel	ty↑
DiffusionNAG POMONAG (ours)	98.97±0.29 99.97±0.10	5.10±0.33 34.14 ± 17.33	19.87±1.35 37.41 ± 7.73	99.09±0.28 72.58±5.84	100.00±0.00 100.00 91.79±7.32 100.00	±0.00 ±0.00

Table 5: Comparative analysis of DiffusionNAG and POMONAG variants on the NASBench201 and MobileNetV3 search spaces. Metrics include accuracy, number of parameters (millions), MACs (millions), and latency (milliseconds). Values are means over the 15 image classification datasets considered, with \pm 95% confidence intervals. **Bold** indicates the best performance, and underlined indicates the second-best. Green and red shading denote POMONAG's improvements or deteriorations, respectively, relative to DiffusionNAG.

	NASBench201				MobileNetV3			
Model	Accuracy ↑	Params [M] \downarrow	MACs [M] \downarrow	Latency [ms] ↓	Accuracy ↑	Params [M] \downarrow	MACs [M] ↓ Latency [ms	
DiffusionNAG	$77.83 {\pm} 10.86$	$1.02 {\pm} 0.01$	$18.02 {\pm} 0.21$	$18.83 {\pm} 0.46$	87.29±6.32	$7.86{\pm}1.05$	100.75±8.18 32.13±2.9	
POMONAG _{Eff} POMONAG _{Bal} POMONAG _{Acc}	$\frac{70.25 \pm 12.46}{77.91 \pm 10.69}$ 81.89 \pm 9.21	$\begin{array}{c} \textbf{0.10}{\pm}\textbf{0.03} \\ \underline{0.43}{\pm} \\ \overline{0.65}{\pm} \end{array}$	$\begin{array}{c} \textbf{1.27}{\pm \textbf{0.63}} \\ \underline{7.33 \pm 3.21} \\ 11.40 \pm 2.06 \end{array}$	$\begin{array}{c} \textbf{6.51}{\pm}\textbf{0.77} \\ \underline{11.06 \pm 2.12} \\ 13.68 \pm 1.17 \end{array}$	$\begin{array}{c} 88.66{\pm}5.28\\ \underline{89.02\pm}5.22\\ \textbf{89.96\pm}\textbf{4.86}\end{array}$	$\begin{array}{c} \textbf{3.47}{\pm \textbf{0.01}} \\ \underline{4.24 \pm 0.48} \\ \overline{6.01 \pm 0.37} \end{array}$	$\begin{array}{c ccccc} 33.69 \pm 0.85 & 17.96 \pm 0.7 \\ 38.02 \pm 6.92 & 21.62 \pm 3. \\ 90.92 \pm 4.62 & 34.24 \pm 2. \end{array}$	

In the NASBench201 search space, POMONAGAcc achieves the highest average accuracy (81.89%), surpass-456 ing DiffusionNAG's 77.83%, while also improving upon all secondary metrics. This indicates that accuracy 457 gains do not come at the expense of efficiency. The POMONAGEff variant achieves remarkable reductions 458 in parameters (-90%), MACs (-93%), and latency (-65%) compared to DiffusionNAG, albeit with a trade-off 459 in accuracy. This highlights POMONAG's capability to generate highly efficient architectures suitable for 460 resource-constrained environments. The POMONAG_{Bal} configuration offers a balanced compromise, main-461 taining an accuracy comparable to DiffusionNAG while significantly enhancing efficiency metrics. In the MobileNetV3 search space, all POMONAG variants outperform DiffusionNAG in terms of average accuracy. No-462 tably, POMONAGEff achieves significant reductions in parameters (-56%), MACs (-67%), and latency (-44%), 463 demonstrating its effectiveness in generating compact and fast architectures suitable for devices with limited 464 computational capabilities. The POMONAGAcc variant attains the highest average accuracy (89.96%), with a 465 24% reduction in parameters and a 10% reduction in MACs compared to DiffusionNAG. This illustrates that it is possible to enhance performance while also improving efficiency. These results underscore POMONAG's 466 effectiveness in generating Pareto-optimal architectures that provide a balanced trade-off between accuracy and 467 efficiency, catering to various deployment scenarios and resource constraints. 468

Generation and Training Time. The time required for generating and training the architectures depends on 469 the search space, the selected POMONAG configuration, and the size of the dataset used for training. For the 470 generation phase, the diffusion process takes an average of approximately 5 minutes and 45 seconds (\pm 32 sec-471 onds) on NASBench201, and about 18 minutes and 15 seconds (±1 minute and 12 seconds) on MobileNetV3. 472 Regarding training times, utilising the optimised pipelines detailed in Appendix D, the training durations for 473 NASBench201 range from approximately 2 hours and 33 minutes (\pm 54 minutes) to 3 hours and 32 minutes (±1 hour and 19 minutes), depending on the POMONAG configuration. For MobileNetV3, training times vary 474 from about 2 hours and 8 minutes (\pm 31 minutes) to 2 hours and 26 minutes (\pm 39 minutes), again contingent 475 on the configuration used. Considering that only a single generation and a single training run are required, and 476 in light of the superior performances achieved in terms of both accuracy and efficiency, POMONAG represents 477 a substantial advancement in the field of Neural Architecture Search. This reduction in computational time 478 and resources not only accelerates the development process but also makes the approach more accessible for practical applications where time and computational budget are limited. 479

480 481

CONCLUSION AND FUTURE DIRECTIONS 5

482

483 This paper has presented POMONAG, an innovative framework for generating neural architectures optimised 484 in a many-objective context. By integrating advanced techniques like Many-Objective Reverse Diffusion 485 Guidance, the creation of extended Meta-Datasets, and the adoption of improved Performance Predictors, POMONAG addresses and overcomes limitations of existing approaches, effectively combining many-objective

441

442

443

444

445

446

486 and Transferable NAS paradigms. The conducted experiments demonstrate that POMONAG is capable of gen-487 erating architectures offering an effective balance between accuracy and computational efficiency. Specifically, 488 it achieves superior performance across various datasets and search spaces requiring training only the identified optimal architecture. As a future direction, extending POMONAG's approach to other computer vision tasks -489 such as segmentation and object detection – is envisaged. This trajectory aims to develop a foundational NAS 490 model for computer vision tasks that is both task-aware and dataset-aware, capable of effectively adapting to a 491 variety of applications, domains, and computational constraints. Such an advancement would further enhance 492 the adaptability and applicability of NAS methodologies in diverse real-world scenarios. 493

References

494

495

506

- Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation hyperparameter optimization framework. In *Proceedings of the 25th International Conference on Knowledge Discovery and Data Mining*, 2019.
- Sohyun An, Hayeon Lee, Jaehyeong Jo, Seanie Lee, and Sung Ju Hwang. Diffusionnag: Predictor-guided neural architecture generation with diffusion models. In *The Twelfth International Conference on Learning Representations*, 2024.
- James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimiza tion. Advances in neural information processing systems, 24, 2011.
- Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one network and specialize it for efficient deployment. In *International Conference on Learning Representations*, 2020.
- Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural architecture search. In *International Conference on Learning Representations*, 2021.
- Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an alternative to
 the cifar datasets. *arXiv preprint arXiv:1707.08819*, 2017.
- Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan-Rhys Griffiths,
 Alexandre Max Maraval, Jianye Hao, Jun Wang, Jan Peters, et al. Hebo: An empirical study of assumptions
 in bayesian optimisation. J. Artif. Intell. Res., 74:1269–1349, 2022.
- Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Dpp-net: Device-aware progressive
 search for pareto-optimal neural architectures. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 517–531, 2018.
- Xuanyi Dong and Yi Yang. One-shot neural architecture search via self-evaluated template network. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 3681–3690, 2019a.
- Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1761–1770, 2019b.
- Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search. In International Conference on Learning Representations, 2020.
- Andrea Falanti, Eugenio Lomurno, Danilo Ardagna, and Matteo Matteucci. Popnasv3: A pareto-optimal neural architecture search solution for image and time series classification. *Applied Soft Computing*, 145:110555, 2023.
- 527
 528 Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter optimization at scale. In *International conference on machine learning*, pp. 1437–1446. PMLR, 2018.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–6851, 2020.
- Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun
 Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1314–1324, 2019.
- Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao Liu, Shih-Chieh Chang, JiaYu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas: Multi-objective neural architecture search using reinforcement learning. *arXiv preprint arXiv:1806.10332*, 2018.
- Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the system of stochastic differential equations. In *International conference on machine learning*, pp. 10362–10383. PMLR, 2022.

550

578

581

- Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid neural architecture search by learning to generate graphs from datasets. In *International Conference on Learning Representations*, 2021.
- Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In *Uncertainty in artificial intelligence*, pp. 367–377. PMLR, 2020.
- Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter optimization. *Journal of Machine Learning Research*, 18(185): 1–52, 2018.
- Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In *International Conference on Learning Representations*, 2018.
- Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm. In *Proceedings of the genetic and evolutionary computation conference*, pp. 419–427, 2019.
- Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti. Nsganetv2:
 Evolutionary multi-objective surrogate-assisted neural architecture search. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16*, pp. 35–51. Springer, 2020.
- Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, and Vishnu Naresh
 Boddeti. Neural architecture transfer. *IEEE transactions on pattern analysis and machine intelligence*, 43 (9):2971–2989, 2021.
- Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization. *Advances in neural information processing systems*, 31, 2018.
- Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via parameters sharing. In *International conference on machine learning*, pp. 4095–4104. PMLR, 2018.
- Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier
 architecture search. In *Proceedings of the aaai conference on artificial intelligence*, volume 33, pp. 4780–4789, 2019.
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
 image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture search via bayesian optimisation with weisfeiler-lehman kernels. In *International Conference on Learning Representations*, 2021.
- 575
 576
 576
 576
 577
 577
 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4510–4520, 2018.
- Simone Sarti, Eugenio Lomurno, Andrea Falanti, and Matteo Matteucci. Enhancing once-for-all: A study on parallel blocks, skip connections and early exits. In *2023 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–9. IEEE, 2023a.
- Simone Sarti, Eugenio Lomurno, and Matteo Matteucci. Neural architecture transfer 2: A paradigm for improving efficiency in multi-objective neural architecture search. *arXiv preprint arXiv:2307.00960*, 2023b.
- Gresa Shala, Thomas Elsken, Frank Hutter, and Josif Grabocka. Transfer nas with meta-learned bayesian
 surrogates. In *The Eleventh International Conference on Learning Representations*, 2023.
- 586
 587
 588
 588
 588
 589
 580
 580
 581
 582
 583
 584
 584
 585
 585
 586
 586
 586
 586
 587
 588
 588
 588
 588
 588
 588
 588
 588
 589
 589
 589
 580
 580
 581
 581
 581
 582
 582
 582
 582
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
 592
- Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural architectures for neural architecture search. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 10293–10301, 2021.
- 593 Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search. In *International Conference on Learning Representations*, 2018.

- Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel connections for memory-efficient architecture search. In *International Conference on Learning Representations*, 2020.
- Kaicheng Yu, Christian Suito, Martin Jaggi, Claudiu-Cristian Musat, and Mathieu Salzmann. Evaluating the search phase of neural architecture search. In *International Conference on Learning Representations*, 2020.
 - Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. *arXiv preprint arXiv:1611.01578*, 2016.
- Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scal able image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 pp. 8697–8710, 2018.

648 **META-DATASETS** А

649 650 651

652

This appendix describes the search spaces utilised in this work, the encoding and sampling strategies employed for the creation of the Meta-Datasets, and introduces the Meta-Datasets themselves.

A.1 NASBENCH201 SEARCH SPACE 653

654 NASBench201, introduced by Dong & Yang (2020), is a standardised search space for Neural Architecture 655 Search (NAS) tasks within the domain of image classification. This search space is confined to the composition 656 of an optimal cell, which is used in series to construct the final architecture. A cell comprises four fixed 657 nodes, representing the summation operation of the feature maps received as input, and six possible connections between the nodes. The connections are associated with operations for transforming and adapting the feature 658 maps. The available operations are Zeroise, Skip connection, 1x1 2D Convolution, 3x3 2D Convolution, and 659 3x3 Average Pooling. Each convolution operation is followed by a Batch Normalisation layer and a ReLU 660 activation. This leads to a total of $5^6 = 15,625$ unique architectures within the NASBench201 search space. 661 The evaluation of models in NASBench201 is conducted through full training on three datasets: CIFAR10, 662 CIFAR100, and ImageNet16. For each architecture, metrics such as accuracy, cross-entropy loss, training time, number of parameters, MACs, and inference latency are provided. 663

664 Architecture Encoding and Sampling. The encoding of NASBench201 architectures used in this work in-665 volves two complementary matrices: an operations matrix and an adjacency matrix, as proposed by Dong & 666 Yang (2020).

667 The operations matrix describes the transformations applied to the feature maps between the nodes of the graph. 668 This 8×7 matrix is structured such that each cell represents a possible edge of the directed acyclic graph. There are eight rows-one for the input, six for the possible intermediate connections, and one for the output-and 669 seven columns, one for each possible operation, including placeholders for the input and output. The matrix 670 is binary: a '1' indicates that the connection is assigned the corresponding operation, and a '0' otherwise. 671 In this sense, each row has exactly one '1', since each connection must be assigned an operation. Parallelly, 672 the adjacency matrix defines the connection structure of the graph. Also of size 8×8 , this binary matrix is 673 fixed for all architectures in NASBench201. The elements of the matrix are '1' to indicate the presence of a connection between two nodes summing the feature maps, and '0' to indicate the absence of a connection. 674 Again, the first row and column represent the input, while the last row and column represent the output. The 675 sampling of architectures is optimised by exploiting the knowledge of the evaluations present in NASBench201. 676 Specifically, the top-250 most performant architectures are identified by calculating the average relative to 677 the three datasets used by the authors for their evaluation. Sampling is conducted such that there is a 95% 678 probability of sampling from this subset of high-performing architectures, and a 5% probability from the rest 679 of the search space.

680 681

A.2 MOBILENETV3 SEARCH SPACE

682 The MobileNetV3 search space (Howard et al., 2019), implemented via Once-for-All (OFA) introduced by Cai 683 et al. (2020), is a flexible search space for NAS tasks in the domain of image classification on mobile devices. This search space is defined by a pre-trained super-network that supports various architectural configurations, 685 allowing exploration of a wide range of sub-networks. The super-network comprises a sequence of inverted bottleneck blocks, similar to those in MobileNetV2 (Sandler et al., 2018). The main dimensions of the search 686 space are:

- 688
- 690

691

692

693

- 689
- **Depth.** Each stage of the network can have a variable number of blocks, typically chosen from 2, 3, 4. • Expansion ratio. The number of channels in each layer can be adjusted using two width multipliers.
- Kernel size. For depthwise convolutions, the kernel size can be 3×3 , 5×5 , or 7×7 .
- **Input resolution.** The input image can have variable dimensions, typically from 128×128 to 224×224.

694 The input resolution is fixed at 224×224 . Each of the five stages in the super-network, as provided by the 695 original implementation, can include a Squeeze-and-Excitation module and use different activation functions 696 (ReLU or h-swish) based on its position within the architecture. This approach leads to a search space compris-697 ing approximately 10^{19} unique architectures. The evaluation of models in this space is conducted through the 698 selection of subgraphs of the pre-trained super-network, eliminating the need to train each architecture from scratch. 699

700 Architecture Encoding and Sampling. As with NASBench201, the encoding of MobileNetV3 architectures 701 used in this work involves representations related to the operators of the architecture and the internal connections within the network. The operators are represented by a 21×9 matrix, with the first row dedicated to the

702

NASBench201

Figure 2: Distributions of key metrics in the proposed Meta-Datasets. Histograms display accuracy, number of parameters, MACs, and latency for architectures sampled from the NASBench201 (top row, 10,000 architectures) and MobileNetV3 (bottom row, 20,000 architectures) search spaces. The architectures were randomly selected and trained on subsets of ImageNet32, demonstrating the diversity within each search space.

719 720

715

716

717

718

721 placeholder of the width multiplier, followed by one row for each of the 20 blocks within the architecture. If 722 the width multiplier is set to 1.0, then the first row is populated with zeros; if it is set to 1.2, the first row is 723 populated exclusively with ones. From the second row onwards, the columns are divided into three groups of three, each representing a combination of expansion ratio and kernel size. The first group corresponds to an 724 expansion ratio of 3, the second to 4, and the third to 6. Within each group, the three columns represent kernel 725 sizes of 3×3 , 5×5 , and 7×7 , respectively. Each row of the matrix contains a '1' in the position corresponding 726 to the chosen combination of expansion ratio and kernel size for that block, and zeros elsewhere. If a block is 727 inactive (as indicated by the depth mask), its corresponding row is filled with zeros. The adjacency matrix, on 728 the other hand, represents the connections between the blocks of the architecture. It is a square matrix of size 20×20 , where each element (i, j) is '1' if there is a direct connection from block i to block j, and '0' otherwise. 729 The structure of this matrix reflects the topology of the network, taking into account the variable depth of each 730 stage. For this search space, the sampling of architectures is conducted uniformly with respect to the values of 731 the width multiplier, depth, expansion ratio, and kernel size, drawing from a possible number of architectures equal to 2×10^{19} (the factor of 2 arises from the addition of the width multiplier).

733 734

735

META-DATASETS DISTRIBUTIONS A.3

Figure 2 illustrates the distributions of key metrics for the Meta-Datasets created in this study. For the NAS-736 Bench201 search space, 10,000 architectures were sampled, while 20,000 were selected for the MobileNetV3 737 space. These architectures were sampled from their respective search spaces and then trained using the pro-738 posed pipelines on a dataset of 20 classes with 1,000 samples per class, randomly extracted from ImageNet32. 739 The reported accuracy performance is based on a test set of 10 samples per class for the same 20 classes. The 740 distributions shown are consistent with the characteristics of their respective search spaces. Notably, the graphs clearly demonstrate that MobileNetV3 architectures are, as expected, more complex yet relatively lightweight, 741 and also more performant. This is due to their incorporation of more advanced architectural designs compared 742 to NASBench201 architectures, as well as the benefit of fine-tuning during training. 743

- 744
- 745
- 746
- 747
- 748
- 749 750
- 751
- 752
- 753
- 754
- 755

756 B EXTENSIVE RESULTS

758 759 760 761 762 763 764 765 766 766 767 768 769	Figures 3 and 4 present a comprehensive comparison of neural architectures generated by DiffusionNAG and POMONAG across 15 diverse datasets: CIFAR10, CIFAR100, Aircraft, Oxford III Pets, BloodMNIST, DermaMNIST, EuroSAT, FashionMNIST, OCTMNIST, OrganAMNIST, OrganCMNIST, PathMNIST, STL10, TinyImageNet, and TissueMNIST. The comparisons are made using the NASBench201 and MobileNetV3 search spaces, respectively. The plots illustrate the trade-offs between accuracy and secondary metrics (parameters, MACs, and latency) for each dataset. POMONAG's results are represented by Pareto Fronts, showcasing the range of optimal solutions. Three key variants are highlighted: Efficient, emphasising minimal secondary metric; Accurate, prioritising highest predicted accuracy; and Balanced, optimising the ratio of predicted accuracy to secondary metric. DiffusionNAG's results, both reproduced (orange points) and as reported by An et al. (2024) (dashed lines), provide a benchmark for comparison. The 95% confidence intervals, averaged over three runs, underscore the robustness of the results. These visualisations demonstrate POMONAG's capability to generate a diverse set of architectures, effectively balancing performance and efficiency across various datasets and search spaces. The consistent outperformance of POMONAG, particularly in terms of Pareto-optimal solutions in provide a pomplay. Navel Architectures, Source Arceuract to interval the interval of predicted accuracy in the provide a prediction of predicted accuracy in the results.
709	nutions, nightights its effectiveness in navigating complex Neural Architecture Search spaces. It is important to note that the performances of POMONAG's architectures, as well as those replicated from DiffusionNAG and
771	represented in both figures, were explicitly calculated and are not estimates from the Performance Predictors.
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
784	
785	
786	
787	
788	
709	
790	
792	
793	
794	
795	
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
807	
808	
800	
000	

Figure 3: Performance comparison of architectures generated by DiffusionNAG and POMONAG on 15 datasets using the NASBench201 search space. Each plot illustrates accuracy versus a sec-858 ondary metric (number of parameters, MACs, or latency). The blue lines represent POMONAG's 859 Pareto Fronts, with circles highlighting the efficient (yellow), balanced (purple), and accurate (green) 860 variants. Orange points depict DiffusionNAG results. Error bars show 95% confidence intervals averaged over three runs. Dashed lines indicate DiffusionNAG results as reported by An et al. (2024). 862

861

Figure 4: Performance comparison of architectures generated by DiffusionNAG and POMONAG
on 15 datasets using the MobileNetV3 search space. Each plot illustrates accuracy versus a secondary metric (number of parameters, MACs, or latency). The blue lines represent POMONAG's
Pareto Fronts, with circles highlighting the efficient (yellow), balanced (purple), and accurate (green)
variants. Orange points depict DiffusionNAG results. Error bars show 95% confidence intervals averaged over three runs. Dashed lines indicate DiffusionNAG results as reported by An et al. (2024).

Table 6: Ablation study results for Performance Predictors on the NASBench201 search space. 'Performance Predictor' specifies the training and the encoding strategy used for the predictors. 'Archs Training' indicates the training pipeline for the architectures in the Meta-Dataset. 'Size' denotes the Meta-Dataset's cardinality. 'Accuracy' and 'Accuracy*' are Spearman correlations for noisy and denoised architectures, respectively. Best scores are highlighted in **bold**

4	Performance	Performance Predictor		Meta-Dataset		Spearman Correlation	
5	Training Strategy	Dataset Encoder	Archs Training	Size	Accuracy	Accuracy*	
6	An et al. (2024)	ResNet18	An et al. (2024)	4630	0.687	0.767	
7	Ours	ResNet18	An et al. (2024)	4630	0.705	0.772	
	Ours	ResNet18	Ours	4630	0.822	0.854	
)	Ours	ResNet18	Ours	10000	0.842	0.884	
)	Ours	ViT-B-16	Ours	10000	0.855	0.884	

PERFORMANCE PREDICTORS ABLATION STUDY С

An ablation study was conducted to evaluate the improvements introduced in the Performance Predictors on the NASBench201 search space. The study involved a series of modifications to the predictors and their training strategies, aiming to maximise the Spearman correlation between the predicted values and the actual metrics.

Initially, a new predictor was implemented using the same training pipeline as An et al. (2024), which yielded slight improvements in correlation scores over the baseline DiffusionNAG predictor. Specifically, the Spearman correlation for the accuracy of noisy architectures increased from 0.687 to 0.705, and for denoised architec-tures from 0.767 to 0.772. Subsequently, the introduction of a novel training strategy significantly enhanced performance for both noisy and denoised architecture accuracy estimates. This new training strategy involved switching from the Adam optimiser to AdamW, incorporating a cosine annealing learning rate scheduler, and introducing a weight decay of 5×10^{-3} . These modifications improved convergence and generalisation of the Performance Predictors, leading to Spearman correlations of 0.822 for noisy architectures and 0.854 for denoised architectures.

Expanding the Meta-Dataset size from 4,630 to 10,000 architectures further improved the results, with corre-lations reaching 0.842 for noisy architectures and 0.884 for denoised ones. This demonstrates the benefit of a larger and more diverse training set, providing the Performance Predictors with a richer array of examples to learn from. Finally, replacing the ResNet18 Dataset Encoder with a Vision Transformer (ViT-B-16) feature extractor led to the best performance, achieving Spearman correlations of 0.855 and 0.884 for noisy and denoised architectures, respectively. These results indicate that both the architectural choices and the training strategies for the Performance Predictors have a substantial impact on their effectiveness, directly influencing the quality of guidance provided during the diffusion process.

972	Table 7. Hyperparameter search space used for optimising the training pipelines for architectures in
973	the Meta-Datasets.

Hyperparameter	Search Space		
Epochs	{50, 100, 200}		
Warm-up epochs	{-, 10, 20}		
Optimiser	{SGD, Adam, AdamW}		
Learning rate	$\{1 \times 10^{-1}, 1 \times 10^{-2}, 1 \times 10^{-3}, 1 \times 10^{-4}\}$		
Learning rate scheduler	{-, Cosine annealing, Cosine annealing with restarts}		
Weight decay	$\{-, 5 \times 10^{-3}, 5 \times 10^{-4}, 5 \times 10^{-5}\}$		
Label smoothing	{-, 0.1}		
Heavy augmentation	{-, AutoAugment, TrivialAugmentWide, RandAugment, AugMix}		
Random horizontal flip	{-, 0.5}		
Random erasing (Gaussian)	{-, 0.2}		
MixUp	$\{-, 0.2\}$		
CutMix	$\{-, 0.2\}$		

Table 8: Optimal training hyperparameters identified for architectures in the NASBench201 and
 MobileNetV3 search spaces.

	Search Space	NASBench201	MobileNetV3
2	Weights initialisation	HeNormal initialisation	ImageNet-1k pre-training
-	Mixed precision	True	True
1	Training technique	Ordinary	Fine-tuning
5	Epochs	200	50
5	Warm-up epochs	20	-
7	Early stopping patience	120	30
3			
9	Optimiser	SGD	AdamW
0	Learning rate	1×10^{-1}	1×10^{-3}
0	Learning rate scheduler	Cosine annealing	-
1	Weight decay	5×10^{-4}	5×10^{-5}
2	Label smoothing	-	0.1
)3	D · · ·	22 22	224 224
4	Resizing	32×32	224×224
5	Heavy augmentation	Trivial Augment Wide	AugMix
~	Random horizontal flip	0.5	0.5
6	Padding (constant)	4	21
)7	Random crop	32×32	224×224
8	Random erasing (Gaussian)	0.2	-
19	MixUp	-	0.2

¹⁰¹⁰

974

987

990

1011 1012

D HYPERPARAMETER TUNING AND OPTIMISATION

The training of the architectures included in the Meta-Datasets required meticulous hyperparameter tuning to maximise performance. For each search space – NASBench201 and MobileNetV3 – a comprehensive hyperparameter search was conducted to identify optimal training configurations. The hyperparameter search involved exploring a range of values for key training parameters, such as the number of epochs, warm-up epochs, optimisers, learning rates, learning rate schedulers, weight decay, label smoothing, and various data augmentation techniques. The search space for these hyperparameters is summarised in Table 7, providing an overview of the parameters considered during the optimisation process. The optimal training pipelines identified for each search space are detailed in Table 8.

1020

1021

1022

1023

1024