
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POMONAG: PARETO-OPTIMAL MANY-OBJECTIVE
NEURAL ARCHITECTURE GENERATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Architecture Search (NAS) automates the design of neural network ar-
chitectures, minimising dependence on human expertise and iterative experimen-
tation. While NAS methods are often computationally intensive and dataset-
specific, employing auxiliary predictors to estimate architecture properties has
proven extremely beneficial. These predictors substantially reduce the number
of models requiring training, thereby decreasing overall search time. This strat-
egy is frequently utilised to generate architectures satisfying multiple compu-
tational constraints. Recently, Transferable Neural Architecture Search (Trans-
ferable NAS) has emerged, generalising the search process from being dataset-
dependent to task-dependent. In this domain, DiffusionNAG stands as a state-
of-the-art method. This diffusion-based method streamlines computation, gener-
ating architectures optimised for accuracy on unseen datasets without the need
for further adaptation. However, by concentrating exclusively on accuracy, Dif-
fusionNAG neglects other crucial objectives like model complexity, computa-
tional efficiency, and inference latency – factors essential for deploying models in
resource-constrained, real-world environments. This paper introduces the Pareto-
Optimal Many-Objective Neural Architecture Generator (POMONAG), extend-
ing DiffusionNAG through a many-objective diffusion process. POMONAG si-
multaneously considers accuracy, the number of parameters, multiply-accumulate
operations (MACs), and inference latency. It integrates Performance Predictor
models to estimate these secondary metrics and guide the diffusion gradients.
POMONAG’s optimisation is enhanced by expanding its training Meta-Dataset,
applying Pareto Front Filtering to generated architectures, and refining embed-
dings for conditional generation. These enhancements enable POMONAG to gen-
erate Pareto-optimal architectures that outperform the previous state-of-the-art in
both performance and efficiency. Results were validated on two distinct search
spaces – NASBench201 and MobileNetV3 – and evaluated across 15 image clas-
sification datasets.

1 INTRODUCTION

Deep learning has become indispensable in various domains by enabling models to learn intricate
patterns from large datasets. The architecture of neural networks plays a pivotal role in their perfor-
mance, traditionally requiring expert knowledge and extensive experimentation. Neural Architec-
ture Search (NAS) automates this design process, aiming to discover optimal architectures without
human intervention. However, conventional NAS methods often involve significant computational
costs and are typically tailored to specific datasets, limiting their scalability and general applica-
bility. Transferable Neural Architecture Search (Transferable NAS) addresses these limitations by
generalising the search process across different tasks. DiffusionNAG stands out in this domain, util-
ising diffusion processes to generate neural architectures optimised for accuracy on unseen datasets.
While effective in reducing computational overhead, DiffusionNAG focuses solely on maximising
accuracy, neglecting other crucial performance metrics such as model size, computational cost, and
inference latency. In practical applications, especially within resource-constrained environments
like mobile devices and embedded systems, it is essential to consider multiple objectives simultane-
ously. Existing Multi- and Many-objective NAS methods often face scalability challenges or require
extensive computational resources, making them less practical for widespread adoption.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This work introduces the Pareto-Optimal Many-Objective Neural Architecture Generator
(POMONAG), which extends the capabilities of DiffusionNAG by performing a many-objective
optimisation. POMONAG simultaneously considers accuracy, the number of parameters, multiply-
accumulate operations (MACs), and inference latency during the architecture generation process.
Auxiliary Performance Predictor models, trained to estimate these metrics, are integrated into the
diffusion process, guiding exploration towards regions of the search space offering optimal trade-
offs among these objectives. This approach facilitates the generation of architectures that are both
highly accurate and efficient in computational resources and speed. To enhance POMONAG’s per-
formance and adaptability, several key improvements have been implemented. The training Meta-
Dataset has been significantly expanded, incorporating a diverse set of architectures and tasks to
enhance the Performance Predictors’ capabilities across different domains. Pareto Front Filtering
and Stretching techniques are applied to balance the multiple objectives effectively, ensuring that
the generated architectures are Pareto-optimal. Additionally, the embeddings used for conditional
generation have been refined to facilitate more accurate and dataset-aware architecture synthesis.
Extensive experiments validate POMONAG’s effectiveness. Evaluations conducted on two promi-
nent search spaces—NASBench201 and MobileNetV3—and tested across 15 diverse image classifi-
cation datasets demonstrate that POMONAG outperforms existing state-of-the-art methods, includ-
ing DiffusionNAG. The generated architectures achieve superior accuracy while satisfying various
computational constraints and require significantly fewer trained models, highlighting the efficiency
of the proposed technique.

The key contributions of this work include:

• Diffusion-based Many-Objective Optimisation. POMONAG introduces a many-
objective diffusion approach within Transferable NAS, optimising neural architectures for
accuracy, number of parameters, MACs, and inference latency.

• Pareto-Optimal Architecture Generation. By computing Pareto Fronts, POMONAG
effectively navigates trade-offs among multiple objectives, generating architectures that
offer balanced compromises suitable for diverse deployment scenarios.

• Enhanced Meta-Datasets. New Meta-Datasets have been developed to improve the Per-
formance Predictors’ ability to predict architecture performance across various tasks and
datasets.

• Refined Performance Predictor Models. The Performance Predictor models have been
enhanced to increase prediction accuracy and effectiveness in guiding the architecture gen-
eration process.

• State-of-the-Art Transferable NAS Model. POMONAG establishes a new benchmark by
generating architectures that are high-performing and adaptable to various computational
constraints.

The POMONAG model’s code and the accompanying Meta-Datasets will be made publicly available
upon publication of this paper at the following link.

2 RELATED WORKS

Neural Architecture Search. Neural Architecture Search (NAS) seeks to automate neural archi-
tecture design, removing the need for manual trial-and-error processes. Early methods, such as
reinforcement learning (Zoph & Le, 2016; Zoph et al., 2018), evolutionary algorithms (Real et al.,
2019; Lu et al., 2019), and gradient-based techniques (Xie et al., 2018; Dong & Yang, 2019b), are
computationally expensive as they require full training of numerous architectures.

One-shot NAS. To mitigate computational costs, one-shot NAS methods employ weight sharing
among candidate architectures. ENAS (Pham et al., 2018) uses an RNN controller to generate sub-
networks; DARTS (Liu et al., 2018) relaxes the search space into a continuous one; OFA (Cai et al.,
2020) trains a single large network with many architectural choices, and OFAv2 (Sarti et al., 2023a)
extends this approach with an enriched search space. While these methods reduce costs, they may
face challenges in optimisation bias, training stability, or performance across diverse sub-networks.

Multi- and Many-Objective NAS. As application complexity grows, NAS methods increasingly
consider multiple objectives. Approaches like MONAS (Hsu et al., 2018) and DPP-Net (Dong et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2018) balance criteria such as accuracy, latency, and energy consumption. NSGANetV2 (Lu et al.,
2020) handles up to 12 objectives. Methods such as POPNASv3 (Falanti et al., 2023), NAT (Lu
et al., 2021), and NATv2 (Sarti et al., 2023b) offer Pareto-optimal solutions, addressing scalability
and computational challenges inherent in multi-objective optimisation.

BO-based NAS. To further reduce computational costs, Bayesian Optimisation (BO) predictor-
based methods (Luo et al., 2018; Yu et al., 2020) employ surrogate models to estimate architecture
performance without full training. BANANAS (White et al., 2021) uses an ensemble of neural
networks, while NASBOWL (Ru et al., 2021) combines graph kernels with Gaussian processes.
However, these methods often play a passive role, mainly filtering architectures generated by other
strategies.

Transferable NAS. Transferable NAS methods leverage knowledge from previous tasks to accel-
erate searches on new datasets. MetaD2A (Lee et al., 2021) employs meta-learning to generate
dataset-specific architectures. TNAS (Shala et al., 2023) enhances predictor adaptability to unseen
datasets using BO with a deep-kernel Gaussian process. While promising in reducing search times,
these methods may still face inefficiencies in exploring the architecture space.

Diffusion Models. Diffusion models (Ho et al., 2020; Rombach et al., 2022) have shown outstand-
ing generative performance by learning to reverse the process of gradually adding noise to data. In
graph generation, GDSS (Jo et al., 2022) applies diffusion models to undirected graphs. However,
their application to neural architecture generation, involving directed acyclic graphs with specific
constraints, remains unexplored.

DiffusionNAG. DiffusionNAG introduces a conditional Neural Architecture Generation framework
based on diffusion models (An et al., 2024), addressing inefficiencies in traditional NAS methods
that require sampling and training numerous irrelevant architectures. It models neural architectures
as directed graphs and employs a graph diffusion process for their generation. The forward diffusion
process perturbs architectures with Gaussian noise, mapping the architecture distribution to a known
prior. The reverse process then refines noise into valid architectures using a learned score function.
A key component is a specialised Score Network designed to capture dependencies between nodes,
reflecting the computational flow in directed acyclic graphs. This network utilises Transformer
blocks with an attention mask and incorporates positional embeddings to accurately represent the
topological ordering of layers, ensuring that generated architectures adhere to specific search space
rules. DiffusionNAG integrates a parameterised predictor into the reverse diffusion process, forming
a predictor-guided conditional generation scheme. This allows the model to generate task-optimal
architectures by sampling from regions more likely to satisfy desired properties.

In Transferable NAS scenarios, DiffusionNAG employs a meta-learned dataset-aware predictor con-
ditioned on image classification datasets. This predictor, trained over a distribution of tasks, enables
accurate predictions for unseen datasets without additional training. By integrating this predictor
into the conditional generative process, DiffusionNAG facilitates efficient architecture generation
for new tasks. By leveraging predictor-guided conditional architecture generation within the diffu-
sion framework, DiffusionNAG reduces computational overhead and enhances search efficiency in
NAS.

3 METHOD

This section outlines the techniques developed and implemented in POMONAG, a Transferable
NAS model derived from the DiffusionNAG framework proposed by An et al. (2024). It presents
the Many-Objective Reverse Diffusion Guidance process, the creation of new Meta-Datasets, and
enhancements to the Performance Predictors. Additionally, it explains the Pareto Front Stretching
and Pareto Front Filtering techniques used to optimise and refine the architecture generation process.

3.1 MANY-OBJECTIVE REVERSE DIFFUSION GUIDANCE

The diffusion model in DiffusionNAG employs the Reverse Diffusion Process for architecture gen-
eration, described as:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the POMONAG framework illustrating the Many-Objective Reverse Diffu-
sion Guidance process.

dAt =
[
ft(At)− g2t∇At log pt(At)

]
dt̄+ gtdw̄.

The score function ∇At log pt(At) is approximated by introducing the Score Network, which iteratively ap-
plies the transformation sθ(At, t) to the noisy architecture At. The process is guided using the dataset-aware
Performance Predictor fϕ(y|D̃, At), resulting in:

dAt =
{
ft(At)− g2t

[
sθ(At, t) + kϕ∇At log fϕ(y|D̃, At)

]}
dt̄+ gtdw̄.

The Score Network is responsible for denoising the noisy architecture sampled from the generative distribution
at each denoising step. The output of the Performance Predictor is used to compute the guidance term that
steers the generation process towards regions of the search space with a higher density of accurate architectures
for the given dataset.

In POMONAG’s Reverse Diffusion Guidance process, the generation gradient is directed in a many-objective
fashion by simultaneously considering three additional terms:

• kπ∇At log fπ(p|D̃, At), where p represents the number of parameters of architecture At and kπ is
a constant scaling factor;

• kµ∇At log fµ(m|D̃, At), where m represents the number of MACs of architecture At and kµ is a
constant scaling factor;

• kλ∇At log fλ(l|D̃, At), where l represents the inference latency of architecture At and kλ is a con-
stant scaling factor.

Each term represents the log-likelihood of architecture At satisfying the corresponding metric evaluated on
dataset D at timestamp t. These three terms are approximated by introducing three specialised Performance
Predictors. The formulation for the new Many-Objective Reverse Diffusion Guidance is defined as:

dAt =
{
ft(At)− g2t

[
sθ(At, t) + kϕ∇At log fϕ(y|D̃, At)

+ kπ∇At log fπ(p|D̃, At) + kµ∇At log fµ(m|D̃, At) + kλ∇At log fλ(l|D̃, At)
]}

dt̄+ gtdw̄.

Each Performance Predictor – the Accuracy Predictor fϕ, Parameters Predictor fπ , MACs Predictor fµ, and In-
ference Latency Predictor fλ – is trained to predict the corresponding metric of architecture At when presented
with dataset D. Similar to the Accuracy Predictor fϕ, the outputs of each additional Performance Predictor are
used to adjust the unconditioned gradient direction and update the generative probability distribution at each

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

denoising step during the diffusion phase. In doing so, the generative probability distribution is progressively
guided towards regions of the search space that yield optimal architectures in terms of accuracy, number
of parameters, number of operations (MACs), and inference latency. The entire many-objective generation
process of POMONAG is depicted in Figure 1.

3.2 META-DATASET

The training of the Score Network, as well as the Performance Predictors, requires a Meta-Dataset containing
the types of architecture structures to be generated, along with their characteristics and performance metrics.
These architectures must be sampled from a sufficiently large search space and subsequently trained to solve
specific tasks using a broad pool of datasets. This approach generalises the models and enables the Score
Network to perform dataset-aware generation.

In line with practices used in other models within the Transferable NAS family (Lee et al., 2021; Shala et al.,
2023; An et al., 2024), the datasets used for training the architectures – whose metadata will compose the
Meta-Dataset – are extracted from the ImageNet32 dataset (Chrabaszcz et al., 2017). For each iteration, ex-
traction is performed randomly by selecting 20 classes from ImageNet32. All corresponding samples of these
classes form the dataset D. In parallel, an architecture A is selected from the designated search space to be
associated with this classification task. The structure of this architecture is stored in encoded form. For more
information regarding the encoding of architectures, refer to Appendix A. Subsequently—and in contrast to
other approaches—the number of parameters, MACs, and the inference latency on a single 32×32 sample are
calculated for the architecture. Since latency is highly susceptible to noise, each measurement is repeated 100
times; measurements outside the 90% confidence interval are discarded, and the mean of the remaining values
is computed.

Finally, the architecture is trained on the extracted dataset, split into training, validation, and test sets (80/10/10),
and its accuracy is calculated on the test split. This information is aggregated and stored as a new tuple in the
Meta-Dataset, forming a triplet:

• Dataset: The dataset D of 20 classes extracted from ImageNet32.
• Architecture: The structure of the architecture A in encoded form, extracted from the designated

search space.
• Objectives: The test accuracy, parameters, MACs, and latency values of architecture A on dataset
D.

The search spaces used in this work are NASBench201 (Dong & Yang, 2020) and MobileNetV3 (Howard et al.,
2019), utilised independently to create two distinct Meta-Datasets. The choice of training and augmentation
techniques is as crucial as the size of the Meta-Datasets to obtain accurate Performance Predictors and generate
high-performing and efficient architectures. To this end, the Meta-Datasets created for training the models com-
posing POMONAG have undergone the following modifications compared to those used in the DiffusionNAG
model:

• Training Pipeline Optimisation. The training pipelines for the architectures included in the Meta-
Datasets have been optimised to maximise accuracy performance through hyperparameter tuning.
For each search space, five architectures were selected and five associated datasets were extracted, as
previously described. For each architecture, 50 optimisation steps were executed using Optuna (Ak-
iba et al., 2019), incorporating a Tree-structured Parzen Estimator sampling method (Bergstra et al.,
2011) alongside a Hyperband pruning mechanism (Li et al., 2018), aiming to maximise validation
accuracy. For more information on the search space and the obtained pipelines, refer to Appendix D.

• Dataset Expansion. The size of the Meta-Datasets was increased by including a larger number of
architecture-dataset pairs. For the NASBench201 search space, the cardinality was expanded from
4,630 to 10,000 triplets. Since the cardinality of the MobileNetV3-based Meta-Dataset was not pro-
vided by An et al. (2024), and given the considerable size of the search space, the number of triplets
was set to 20,000.

3.3 SCORE NETWORK AND PERFORMANCE PREDICTORS

Score Network. The POMONAG framework adapts the core architecture of the Score Network from Diffu-
sionNAG (An et al., 2024), incorporating modifications to accommodate the novel encodings detailed in Ap-
pendix A. The Score Network is responsible for iteratively denoising the encodings of the architectures to be
generated. The fundamental structure remains consistent with DiffusionNAG. The input embeddings combine
operation information (Embops), node positions (Embpos), and time step (Embtime):

Embi = Embops(vi) + Embpos(vi) + Embtime(t)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where vi represents the i-th row of the operator type matrix V . The training strategy for the Score Network
remains consistent with that defined by An et al. (2024).

Performance Predictors. The Performance Predictors are models designed to predict the characteristics of
architectures during and after the generation phase. In the first instance, the objective is to calculate the regres-
sion error used as Reverse Diffusion Guidance; in the second, the aim is to estimate the performance of the
architecture once denoised, allowing for ranking without the need for any training and thereby identifying the
most promising architectures.

In DiffusionNAG, there are two Performance Predictors: one for estimating the accuracy of noisy architectures
during generation, and one for estimating the accuracy of denoised architectures. In POMONAG, there are five
Performance Predictors. Four are dedicated to the respective estimation of accuracy, parameters, MACs, and
inference latency of noisy architectures during the diffusion phase. The fifth estimates the accuracy of denoised
architectures, given that the other metrics can be extracted with negligible overhead.

The Performance Predictors in POMONAG retain a similar architecture to that in DiffusionNAG. The sub-
stantial modifications pertain to the training procedure – which has been revised to maximise the Spearman
correlation between the predicted values and the actual metrics – the size and content of the Meta-Dataset used
during training, and the model employed as the Dataset Encoder. Specifically, while DiffusionNAG employs
a ResNet18 architecture, POMONAG utilises a Vision Transformer (ViT-B-16) model for dataset embedding.
From the conducted ablation studies, where the two Performance Predictors of DiffusionNAG are gradually
adapted to the version used in POMONAG, a gradual improvement in terms of Spearman correlation is observ-
able. Concretely, this amounts to improvements of +0.168 and +0.117 for the versions applied to noisy and
denoised architectures, respectively. More details on the study are presented in Appendix C.

3.4 PARETO FRONT FILTERING AND STRETCHING

In DiffusionNAG, architectures are generated in batches of size 256. The scaling factor kϕ used to weight the
contribution of the Performance Predictor during the generation process is set to 10000 and remains constant
across all experiments. The generated architectures are then validated by filtering out those with inadequate
or incorrect structures. Subsequently, the Performance Predictor for denoised architectures estimates their
accuracy, obviating the need to train them. The architectures are then ranked based on this estimate, and the
top five are returned as the output of the generation.

Pareto Front Filtering. In POMONAG, an additional filtering step is introduced through the construction of
a Pareto Front, aimed at leveraging the secondary metrics. Specifically, after the many-objective generation of
architectures, the elimination of invalid configurations, and the estimation of accuracies via the Performance
Predictor, a Pareto Front is constructed for each of the three secondary metrics, and only the dominant archi-
tectures are retained. This approach enables the selection of architectures that are Pareto-optimal, allowing
for choices based on trade-offs between accuracy and secondary metrics. To this end, three configurations ex-
tractable from each Pareto Front are identified. The configuration POMONAGAcc represents the architecture
for which the highest accuracy is predicted; the configuration POMONAGBal represents the architecture for
which the ratio between predicted accuracy and the considered secondary metric is highest; finally, the config-
uration POMONAGEff represents the architecture with the lowest value of the secondary metric and therefore
the most efficient.

Pareto Front Stratching. The Many-Objective Reverse Diffusion Guidance process introduced in POMONAG
utilises four different guides, one for each Performance Predictor, to model the distribution of the architecture
space. To optimise the corresponding scaling factors, POMONAG employs a dynamic approach rather than
a fixed value as in DiffusionNAG. This optimisation process aims to maximise the mean of the estimated
accuracies of the architectures in the Pareto Front by adjusting the scaling factors corresponding to each guide.

This optimisation leverages Optuna (Akiba et al., 2019), incorporating a Tree-structured Parzen Estimator sam-
pling method (Bergstra et al., 2011) alongside a Hyperband pruning mechanism (Li et al., 2018). The process
involves 100 evaluations on four datasets (CIFAR10, CIFAR100, Aircraft, Oxford III Pets). This procedure is
replicated for each search space.

To fully exploit the secondary metrics, POMONAG introduces a novel technique termed Pareto Front Stretch-
ing. This entails generating architectures in two phases, each with batches of 128 elements. The first batch
favours efficient architectures with respect to the secondary metrics, assigning greater weight to the predictors
of parameters, MACs, and inference latency. The second batch aims to obtain highly accurate architectures
while still maintaining constraints on their complexity.

To implement these two generation processes, the optimisation of the scaling factors is executed twice with
different constraints. For efficient architectures, the scaling factor for the accuracy guide is searched within the
interval [1000, 5000], while for the other guides it is within [100, 500]. For highly accurate architectures, the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison with Transferable NAS methods on the MobileNetV3 search space. The
POMONAG architectures in this comparison correspond to the POMONAGAcc configuration. The
best scores are highlighted in bold.

Dataset Stats. MetaD2A TNAS DiffusionNAG POMONAG
Lee et al. (2021) Shala et al. (2023) An et al. (2024) (ours)

Max 97.45±0.07 97.48±0.14 97.52±0.07 97.85±0.14
CIFAR10 Mean 97.28±0.01 97.22±0.00 97.39±0.01 97.85±0.14

Min 97.09±0.13 95.26±0.09 97.23±0.06 97.85±0.14

Max 86.00±0.19 85.95±0.29 86.07±0.16 86.18±0.11
CIFAR100 Mean 85.56±0.02 85.30±0.04 85.74±0.04 86.18±0.11

Min 84.74±0.13 81.30±0.18 85.42±0.08 86.18±0.11

Max 82.18±0.70 82.31±1.31 82.28±0.29 87.62±0.12
Aircraft Mean 81.19±0.11 80.86±0.15 81.47±0.05 87.62±0.12

Min 79.71±0.54 74.99±6.65 80.88±0.54 87.62±0.12

Max 95.28±0.50 95.04±0.44 95.34±0.29 95.28±0.09
Oxford III Pets Mean 94.55±0.03 94.47±0.10 94.75±0.14 95.28±0.09

Min 93.68±0.16 92.39±0.47 94.28±0.17 95.28±0.09

scaling factor for the accuracy guide is optimised within [10, 000, 50, 000], while for the other metrics within
[10, 50].

The optimisation results yielded specific values for each search space. For NASBench201, the optimal scal-
ing factors for efficient architectures were 4732, 482, 421, and 368, respectively for accuracy, parameters,
MACs, and latency. For highly accurate architectures, the values are 24,943, 12, 26, and 13. In the case of
MobileNetV3, for efficient architectures, the values obtained are 4987, 494, 478, and 481, while for highly
accurate ones, 48,321, 21, 16, and 39.

This approach allows for a more thorough exploration of the solution space, generating an overall set of ar-
chitectures more widely spread with respect to the secondary metrics. The effect is therefore a diversified
generation of architectures and a Pareto Front with a more elongated shape. For more information, the reader
is referred to Appendix B.

4 EXPERIMENTS AND RESULTS

This section presents the experiments conducted and the results obtained to evaluate the performance of
POMONAG compared to other NAS models, particularly DiffusionNAG. All experiments were conducted
using an NVIDIA Quadro RTX 6000 graphics card.

Transferable NAS Evaluation on MobileNetV3. In Table 1, the comparison between POMONAG and other
Transferable NAS methods on the MobileNetV3 search space is presented. POMONAG achieves the best per-
formance in terms of minimum, mean, and maximum accuracy on almost all the datasets considered. Notably,
on the Aircraft dataset, POMONAG reaches an accuracy of 87.62%, significantly surpassing other methods. On
CIFAR10, CIFAR100, and Oxford III Pets, POMONAG also demonstrates superior or comparable performance
to the state of the art. Unlike other approaches, where the generation of architectures yields multiple alterna-
tives and diversifies the obtained performances, by exploiting the Pareto Front and selecting the POMONAGAcc
configuration, it is possible to reduce the number of architectures to be trained to just one. These results demon-
strate POMONAG’s ability to generate architectures that, even when considering multiple conditionings based
on competing metrics, manage to outperform previous state-of-the-art methods.

NAS Evaluation on NASBench201. Table 2 compares the performance of POMONAG with that of other NAS
techniques on the NASBench201 search space across the datasets CIFAR10, CIFAR100, Aircraft, and Oxford
III Pets. POMONAG achieves the best accuracies on all datasets, using only one trained architecture per dataset,
mirroring the approach taken for the MobileNetV3 search space. Specifically, for the CIFAR10 and CIFAR100
datasets, where all other Transferable NAS methods obtain accuracy results with a 95% confidence interval of
0.00 due to lookup procedures, POMONAG presents a non-zero value as its performances were recalculated
over three different runs, confirming superior performance. It is crucial to note that POMONAG minimises the
number of architectures to be trained to only the final architecture, thereby reducing computational complexity
to a minimum.

Performance Predictors. Optimising the Performance Predictors is fundamental for effectively guiding the
many-objective conditional generation process. The comparative analysis summarised in Table 3 highlights

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of NAS techniques on the NASBench201 search space across four datasets.
’Trained Archs’ indicates the number of neural architectures trained to achieve the reported accu-
racy. Results show mean accuracy ± 95% confidence intervals over three runs. The POMONAG
architectures used in this comparison correspond to the POMONAGAcc configuration. Best scores
are highlighted in bold.

CIFAR10 CIFAR100 Aircraft Oxford III Pets

Type Method Accuracy ↑ Trained Accuracy ↑ Trained Accuracy ↑ Trained Accuracy ↑ Trained
Archs ↓ Archs ↓ Archs ↓ Archs ↓

RSPS Li & Talwalkar (2020) 84.07±3.61 N/A 52.31±5.77 N/A 42.19±3.88 N/A 22.91±1.65 N/A
SETN Dong & Yang (2019a) 87.64±0.00 N/A 59.09±0.24 N/A 44.84±3.96 N/A 25.17±1.68 N/A

One-shot GDAS Dong & Yang (2019b) 93.61±0.09 N/A 70.70±0.30 N/A 53.52±0.48 N/A 24.02±2.75 N/A
NAS PC-DARTS Xu et al. (2020) 93.66±0.17 N/A 66.64±2.34 N/A 26.33±3.40 N/A 25.31±1.38 N/A

DrNAS Chen et al. (2021) 94.36±0.00 N/A 73.51±0.00 N/A 46.08±7.00 N/A 26.73±2.61 N/A

BOHB Falkner et al. (2018) 93.61±0.52 >500 70.85±1.28 >500 - - - -
GP-UCB Srinivas et al. (2012) 94.37±0.00 58 73.14±0.00 100 41.72±0.00 40 40.60±1.10 11

BO-based BANANAS White et al. (2021) 94.37±0.00 46 73.51±0.00 88 41.72±0.00 40 40.15±1.59 17
NAS NASBOWL Ru et al. (2021) 94.34±0.00 100 73.51±0.00 87 53.73±0.83 40 41.29±1.10 17

HEBO Cowen-Rivers et al. (2022) 94.34±0.00 100 72.62±0.20 100 49.32±6.10 40 40.55±1.15 18

TNAS Shala et al. (2023) 94.37±0.00 29 73.51±0.00 59 59.15±0.58 26 40.00±0.00 6
Transferable MetaD2A Lee et al. (2021) 94.37±0.00 100 73.34±0.04 100 57.71±0.20 40 39.04±0.20 40
NAS DiffusionNAG An et al. (2024) 94.37±0.00 5 73.51±0.00 5 59.63±0.92 2 41.32±0.84 2

POMONAG (Ours) 95.42±0.12 1 75.94±0.24 1 63.38±0.51 1 68.82±0.19 1

Table 3: Comparison of Spearman’s correlation coefficients for Performance Predictors between
DiffusionNAG and POMONAG on the NASBench201 and MobileNetV3 search spaces. Higher co-
efficients indicate better predictions. ’Accuracy’, ’Params’, ’MACs’, and ’Latency’ refer to predic-
tions for noisy architectures during diffusion, while ’Accuracy*’ represents predictions for denoised
architectures after diffusion. ’N/A’ indicates experiments that could not be replicated; ’-’ indicates
metrics not applicable to DiffusionNAG. Best scores are highlighted in bold.

NASBench201 MobileNetV3

Method Accuracy Accuracy* Params MACs Latency Accuracy Accuracy* Params MACs Latency

DiffusionNAG 0.687 0.767 - - - N/A N/A - - -
POMONAG 0.855 0.884 0.666 0.656 0.470 0.857 0.988 0.828 0.847 0.618

a marked superiority of the predictors employed in POMONAG compared to those of DiffusionNAG. In the
context of NASBench201, a substantial increase in Spearman’s correlation for accuracy is observed: from
0.687 to 0.855 for noisy architectures and from 0.767 to 0.884 for denoised ones. POMONAG also stands out
for introducing efficient predictors for parameters, MACs, and latency, absent in DiffusionNAG. These new
predictors show significant correlations—0.666 for parameters, 0.656 for MACs, and 0.470 for latency – thus
providing reliable guidance for many-objective optimisation. In the MobileNetV3 search space, POMONAG
achieves even higher correlations, exceeding 0.8 for accuracy, parameters, and MACs. Appendix C presents
a detailed analysis of the ablation studies related to these predictors, corroborating the effectiveness of the
implemented modifications.

Generation Performance. The comparative analysis in Table 4 shows generation metrics between Diffusion-
NAG and POMONAG. Validity measures the percentage of generated architectures that adhere to the con-
straints of the search space; uniqueness assesses the diversity among the generated architectures; and novelty
indicates the proportion of architectures not present in the training dataset. In the NASBench201 search space,
POMONAG demonstrates significant improvements across all metrics, particularly in uniqueness (34.14% vs.
5.10%) and novelty (37.41% vs. 19.87%) compared to DiffusionNAG. For the MobileNetV3 search space, a
slight decrease in validity is observed for POMONAG (72.58% vs. 99.09%), likely due to a more ambitious ex-
ploration of the search space driven by many-objective conditioning. Nonetheless, POMONAG maintains high
levels of uniqueness (91.79%) and novelty (100%), illustrating its capability to generate diverse and innovative
architectures while simultaneously achieving superior classification performance.

Many-Objective Evaluation. A comprehensive comparison between DiffusionNAG and the three variants of
POMONAG (Efficient, Balanced, Accurate) was conducted across both NASBench201 and MobileNetV3
search spaces considering all the key metrics involved in the many-objective optimisation – accuracy, number
of parameters, MACs, and inference latency. The results, summarised in Table 5, represent the means over 15
diverse image classification datasets, depicted in more details in Appendix B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparison of generation metrics—’Validity’, ’Uniqueness’, and ’Novelty’—between Dif-
fusionNAG and POMONAG on the NASBench201 and MobileNetV3 search spaces. Results show
mean values ± 95% confidence intervals over three runs. Best scores are highlighted in bold.

NASBench201 MobileNetV3

Method Validity ↑ Uniqueness ↑ Novelty ↑ Validity ↑ Uniqueness ↑ Novelty ↑
DiffusionNAG 98.97±0.29 5.10±0.33 19.87±1.35 99.09±0.28 100.00±0.00 100.00±0.00
POMONAG (ours) 99.97±0.10 34.14±17.33 37.41±7.73 72.58±5.84 91.79±7.32 100.00±0.00

Table 5: Comparative analysis of DiffusionNAG and POMONAG variants on the NASBench201
and MobileNetV3 search spaces. Metrics include accuracy, number of parameters (millions), MACs
(millions), and latency (milliseconds). Values are means over the 15 image classification datasets
considered, with ± 95% confidence intervals. Bold indicates the best performance, and underlined
indicates the second-best. Green and red shading denote POMONAG’s improvements or deteriora-
tions, respectively, relative to DiffusionNAG.

NASBench201 MobileNetV3

Model Accuracy ↑ Params [M] ↓ MACs [M] ↓ Latency [ms] ↓ Accuracy ↑ Params [M] ↓ MACs [M] ↓ Latency [ms] ↓

DiffusionNAG 77.83±10.86 1.02±0.01 18.02±0.21 18.83±0.46 87.29±6.32 7.86±1.05 100.75±8.18 32.13±2.95

POMONAGEff 70.25±12.46 0.10±0.03 1.27±0.63 6.51±0.77 88.66±5.28 3.47±0.01 33.69±0.85 17.96±0.76
POMONAGBal 77.91 ± 10.69 0.43 ± 0.18 7.33 ± 3.21 11.06 ± 2.12 89.02 ± 5.22 4.24 ± 0.48 38.02 ± 6.92 21.62 ± 3.14
POMONAGAcc 81.89 ± 9.21 0.65 ± 0.11 11.40 ± 2.06 13.68 ± 1.17 89.96 ± 4.86 6.01 ± 0.37 90.92 ± 4.62 34.24 ± 2.19

In the NASBench201 search space, POMONAGAcc achieves the highest average accuracy (81.89%), surpass-
ing DiffusionNAG’s 77.83%, while also improving upon all secondary metrics. This indicates that accuracy
gains do not come at the expense of efficiency. The POMONAGEff variant achieves remarkable reductions
in parameters (-90%), MACs (-93%), and latency (-65%) compared to DiffusionNAG, albeit with a trade-off
in accuracy. This highlights POMONAG’s capability to generate highly efficient architectures suitable for
resource-constrained environments. The POMONAGBal configuration offers a balanced compromise, main-
taining an accuracy comparable to DiffusionNAG while significantly enhancing efficiency metrics. In the Mo-
bileNetV3 search space, all POMONAG variants outperform DiffusionNAG in terms of average accuracy. No-
tably, POMONAGEff achieves significant reductions in parameters (-56%), MACs (-67%), and latency (-44%),
demonstrating its effectiveness in generating compact and fast architectures suitable for devices with limited
computational capabilities. The POMONAGAcc variant attains the highest average accuracy (89.96%), with a
24% reduction in parameters and a 10% reduction in MACs compared to DiffusionNAG. This illustrates that
it is possible to enhance performance while also improving efficiency. These results underscore POMONAG’s
effectiveness in generating Pareto-optimal architectures that provide a balanced trade-off between accuracy and
efficiency, catering to various deployment scenarios and resource constraints.

Generation and Training Time. The time required for generating and training the architectures depends on
the search space, the selected POMONAG configuration, and the size of the dataset used for training. For the
generation phase, the diffusion process takes an average of approximately 5 minutes and 45 seconds (±32 sec-
onds) on NASBench201, and about 18 minutes and 15 seconds (±1 minute and 12 seconds) on MobileNetV3.
Regarding training times, utilising the optimised pipelines detailed in Appendix D, the training durations for
NASBench201 range from approximately 2 hours and 33 minutes (±54 minutes) to 3 hours and 32 minutes
(±1 hour and 19 minutes), depending on the POMONAG configuration. For MobileNetV3, training times vary
from about 2 hours and 8 minutes (±31 minutes) to 2 hours and 26 minutes (±39 minutes), again contingent
on the configuration used. Considering that only a single generation and a single training run are required, and
in light of the superior performances achieved in terms of both accuracy and efficiency, POMONAG represents
a substantial advancement in the field of Neural Architecture Search. This reduction in computational time
and resources not only accelerates the development process but also makes the approach more accessible for
practical applications where time and computational budget are limited.

5 CONCLUSION AND FUTURE DIRECTIONS

This paper has presented POMONAG, an innovative framework for generating neural architectures optimised
in a many-objective context. By integrating advanced techniques like Many-Objective Reverse Diffusion
Guidance, the creation of extended Meta-Datasets, and the adoption of improved Performance Predictors,
POMONAG addresses and overcomes limitations of existing approaches, effectively combining many-objective

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and Transferable NAS paradigms. The conducted experiments demonstrate that POMONAG is capable of gen-
erating architectures offering an effective balance between accuracy and computational efficiency. Specifically,
it achieves superior performance across various datasets and search spaces requiring training only the identified
optimal architecture. As a future direction, extending POMONAG’s approach to other computer vision tasks –
such as segmentation and object detection – is envisaged. This trajectory aims to develop a foundational NAS
model for computer vision tasks that is both task-aware and dataset-aware, capable of effectively adapting to a
variety of applications, domains, and computational constraints. Such an advancement would further enhance
the adaptability and applicability of NAS methodologies in diverse real-world scenarios.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th International Conference
on Knowledge Discovery and Data Mining, 2019.

Sohyun An, Hayeon Lee, Jaehyeong Jo, Seanie Lee, and Sung Ju Hwang. Diffusionnag: Predictor-guided
neural architecture generation with diffusion models. In The Twelfth International Conference on Learning
Representations, 2024.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimiza-
tion. Advances in neural information processing systems, 24, 2011.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one network and
specialize it for efficient deployment. In International Conference on Learning Representations, 2020.

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural
architecture search. In International Conference on Learning Representations, 2021.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an alternative to
the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan-Rhys Griffiths,
Alexandre Max Maraval, Jianye Hao, Jun Wang, Jan Peters, et al. Hebo: An empirical study of assumptions
in bayesian optimisation. J. Artif. Intell. Res., 74:1269–1349, 2022.

Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Dpp-net: Device-aware progressive
search for pareto-optimal neural architectures. In Proceedings of the European conference on computer
vision (ECCV), pp. 517–531, 2018.

Xuanyi Dong and Yi Yang. One-shot neural architecture search via self-evaluated template network. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3681–3690, 2019a.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 1761–1770, 2019b.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search. In
International Conference on Learning Representations, 2020.

Andrea Falanti, Eugenio Lomurno, Danilo Ardagna, and Matteo Matteucci. Popnasv3: A pareto-optimal neural
architecture search solution for image and time series classification. Applied Soft Computing, 145:110555,
2023.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter optimization at
scale. In International conference on machine learning, pp. 1437–1446. PMLR, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun
Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 1314–1324, 2019.

Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao Liu, Shih-Chieh Chang, Jia-
Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas: Multi-objective neural architecture search
using reinforcement learning. arXiv preprint arXiv:1806.10332, 2018.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the system
of stochastic differential equations. In International conference on machine learning, pp. 10362–10383.
PMLR, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid neural architecture search by learning to generate
graphs from datasets. In International Conference on Learning Representations, 2021.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In Uncertainty
in artificial intelligence, pp. 367–377. PMLR, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18(185):
1–52, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In International
Conference on Learning Representations, 2018.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and Wolfgang
Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm. In Proceedings of
the genetic and evolutionary computation conference, pp. 419–427, 2019.

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti. Nsganetv2:
Evolutionary multi-objective surrogate-assisted neural architecture search. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 35–51. Springer,
2020.

Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, and Vishnu Naresh
Boddeti. Neural architecture transfer. IEEE transactions on pattern analysis and machine intelligence, 43
(9):2971–2989, 2021.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization. Advances
in neural information processing systems, 31, 2018.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via
parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier
architecture search. In Proceedings of the aaai conference on artificial intelligence, volume 33, pp. 4780–
4789, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture search via
bayesian optimisation with weisfeiler-lehman kernels. In International Conference on Learning Represen-
tations, 2021.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

Simone Sarti, Eugenio Lomurno, Andrea Falanti, and Matteo Matteucci. Enhancing once-for-all: A study on
parallel blocks, skip connections and early exits. In 2023 International Joint Conference on Neural Networks
(IJCNN), pp. 1–9. IEEE, 2023a.

Simone Sarti, Eugenio Lomurno, and Matteo Matteucci. Neural architecture transfer 2: A paradigm for im-
proving efficiency in multi-objective neural architecture search. arXiv preprint arXiv:2307.00960, 2023b.

Gresa Shala, Thomas Elsken, Frank Hutter, and Josif Grabocka. Transfer nas with meta-learned bayesian
surrogates. In The Eleventh International Conference on Learning Representations, 2023.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE transactions on information theory, 58
(5):3250–3265, 2012.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural architectures
for neural architecture search. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 10293–10301, 2021.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search. In Interna-
tional Conference on Learning Representations, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial
channel connections for memory-efficient architecture search. In International Conference on Learning
Representations, 2020.

Kaicheng Yu, Christian Suito, Martin Jaggi, Claudiu-Cristian Musat, and Mathieu Salzmann. Evaluating the
search phase of neural architecture search. In International Conference on Learning Representations, 2020.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scal-
able image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 8697–8710, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A META-DATASETS

This appendix describes the search spaces utilised in this work, the encoding and sampling strategies employed
for the creation of the Meta-Datasets, and introduces the Meta-Datasets themselves.

A.1 NASBENCH201 SEARCH SPACE

NASBench201, introduced by Dong & Yang (2020), is a standardised search space for Neural Architecture
Search (NAS) tasks within the domain of image classification. This search space is confined to the composition
of an optimal cell, which is used in series to construct the final architecture. A cell comprises four fixed
nodes, representing the summation operation of the feature maps received as input, and six possible connections
between the nodes. The connections are associated with operations for transforming and adapting the feature
maps. The available operations are Zeroise, Skip connection, 1x1 2D Convolution, 3x3 2D Convolution, and
3x3 Average Pooling. Each convolution operation is followed by a Batch Normalisation layer and a ReLU
activation. This leads to a total of 56 = 15, 625 unique architectures within the NASBench201 search space.
The evaluation of models in NASBench201 is conducted through full training on three datasets: CIFAR10,
CIFAR100, and ImageNet16. For each architecture, metrics such as accuracy, cross-entropy loss, training time,
number of parameters, MACs, and inference latency are provided.

Architecture Encoding and Sampling. The encoding of NASBench201 architectures used in this work in-
volves two complementary matrices: an operations matrix and an adjacency matrix, as proposed by Dong &
Yang (2020).

The operations matrix describes the transformations applied to the feature maps between the nodes of the graph.
This 8×7 matrix is structured such that each cell represents a possible edge of the directed acyclic graph. There
are eight rows—one for the input, six for the possible intermediate connections, and one for the output—and
seven columns, one for each possible operation, including placeholders for the input and output. The matrix
is binary: a ’1’ indicates that the connection is assigned the corresponding operation, and a ’0’ otherwise.
In this sense, each row has exactly one ’1’, since each connection must be assigned an operation. Parallelly,
the adjacency matrix defines the connection structure of the graph. Also of size 8×8, this binary matrix is
fixed for all architectures in NASBench201. The elements of the matrix are ’1’ to indicate the presence of
a connection between two nodes summing the feature maps, and ’0’ to indicate the absence of a connection.
Again, the first row and column represent the input, while the last row and column represent the output. The
sampling of architectures is optimised by exploiting the knowledge of the evaluations present in NASBench201.
Specifically, the top-250 most performant architectures are identified by calculating the average relative to
the three datasets used by the authors for their evaluation. Sampling is conducted such that there is a 95%
probability of sampling from this subset of high-performing architectures, and a 5% probability from the rest
of the search space.

A.2 MOBILENETV3 SEARCH SPACE

The MobileNetV3 search space (Howard et al., 2019), implemented via Once-for-All (OFA) introduced by Cai
et al. (2020), is a flexible search space for NAS tasks in the domain of image classification on mobile devices.
This search space is defined by a pre-trained super-network that supports various architectural configurations,
allowing exploration of a wide range of sub-networks. The super-network comprises a sequence of inverted
bottleneck blocks, similar to those in MobileNetV2 (Sandler et al., 2018). The main dimensions of the search
space are:

• Depth. Each stage of the network can have a variable number of blocks, typically chosen from 2, 3,
4.

• Expansion ratio. The number of channels in each layer can be adjusted using two width multipliers.
• Kernel size. For depthwise convolutions, the kernel size can be 3×3, 5×5, or 7×7.
• Input resolution. The input image can have variable dimensions, typically from 128×128 to

224×224.

The input resolution is fixed at 224×224. Each of the five stages in the super-network, as provided by the
original implementation, can include a Squeeze-and-Excitation module and use different activation functions
(ReLU or h-swish) based on its position within the architecture. This approach leads to a search space compris-
ing approximately 1019 unique architectures. The evaluation of models in this space is conducted through the
selection of subgraphs of the pre-trained super-network, eliminating the need to train each architecture from
scratch.

Architecture Encoding and Sampling. As with NASBench201, the encoding of MobileNetV3 architectures
used in this work involves representations related to the operators of the architecture and the internal connec-
tions within the network. The operators are represented by a 21×9 matrix, with the first row dedicated to the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 2: Distributions of key metrics in the proposed Meta-Datasets. Histograms display accuracy,
number of parameters, MACs, and latency for architectures sampled from the NASBench201 (top
row, 10,000 architectures) and MobileNetV3 (bottom row, 20,000 architectures) search spaces. The
architectures were randomly selected and trained on subsets of ImageNet32, demonstrating the di-
versity within each search space.

placeholder of the width multiplier, followed by one row for each of the 20 blocks within the architecture. If
the width multiplier is set to 1.0, then the first row is populated with zeros; if it is set to 1.2, the first row is
populated exclusively with ones. From the second row onwards, the columns are divided into three groups of
three, each representing a combination of expansion ratio and kernel size. The first group corresponds to an
expansion ratio of 3, the second to 4, and the third to 6. Within each group, the three columns represent kernel
sizes of 3×3, 5×5, and 7×7, respectively. Each row of the matrix contains a ’1’ in the position corresponding
to the chosen combination of expansion ratio and kernel size for that block, and zeros elsewhere. If a block is
inactive (as indicated by the depth mask), its corresponding row is filled with zeros. The adjacency matrix, on
the other hand, represents the connections between the blocks of the architecture. It is a square matrix of size
20×20, where each element (i, j) is ’1’ if there is a direct connection from block i to block j, and ’0’ otherwise.
The structure of this matrix reflects the topology of the network, taking into account the variable depth of each
stage. For this search space, the sampling of architectures is conducted uniformly with respect to the values of
the width multiplier, depth, expansion ratio, and kernel size, drawing from a possible number of architectures
equal to 2× 1019 (the factor of 2 arises from the addition of the width multiplier).

A.3 META-DATASETS DISTRIBUTIONS

Figure 2 illustrates the distributions of key metrics for the Meta-Datasets created in this study. For the NAS-
Bench201 search space, 10,000 architectures were sampled, while 20,000 were selected for the MobileNetV3
space. These architectures were sampled from their respective search spaces and then trained using the pro-
posed pipelines on a dataset of 20 classes with 1,000 samples per class, randomly extracted from ImageNet32.
The reported accuracy performance is based on a test set of 10 samples per class for the same 20 classes. The
distributions shown are consistent with the characteristics of their respective search spaces. Notably, the graphs
clearly demonstrate that MobileNetV3 architectures are, as expected, more complex yet relatively lightweight,
and also more performant. This is due to their incorporation of more advanced architectural designs compared
to NASBench201 architectures, as well as the benefit of fine-tuning during training.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B EXTENSIVE RESULTS

Figures 3 and 4 present a comprehensive comparison of neural architectures generated by DiffusionNAG
and POMONAG across 15 diverse datasets: CIFAR10, CIFAR100, Aircraft, Oxford III Pets, BloodMNIST,
DermaMNIST, EuroSAT, FashionMNIST, OCTMNIST, OrganAMNIST, OrganCMNIST, PathMNIST, STL10,
TinyImageNet, and TissueMNIST. The comparisons are made using the NASBench201 and MobileNetV3
search spaces, respectively. The plots illustrate the trade-offs between accuracy and secondary metrics (param-
eters, MACs, and latency) for each dataset. POMONAG’s results are represented by Pareto Fronts, showcasing
the range of optimal solutions. Three key variants are highlighted: Efficient, emphasising minimal secondary
metric; Accurate, prioritising highest predicted accuracy; and Balanced, optimising the ratio of predicted accu-
racy to secondary metric. DiffusionNAG’s results, both reproduced (orange points) and as reported by An et al.
(2024) (dashed lines), provide a benchmark for comparison. The 95% confidence intervals, averaged over three
runs, underscore the robustness of the results. These visualisations demonstrate POMONAG’s capability to
generate a diverse set of architectures, effectively balancing performance and efficiency across various datasets
and search spaces. The consistent outperformance of POMONAG, particularly in terms of Pareto-optimal so-
lutions, highlights its effectiveness in navigating complex Neural Architecture Search spaces. It is important to
note that the performances of POMONAG’s architectures, as well as those replicated from DiffusionNAG and
represented in both figures, were explicitly calculated and are not estimates from the Performance Predictors.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 3: Performance comparison of architectures generated by DiffusionNAG and POMONAG
on 15 datasets using the NASBench201 search space. Each plot illustrates accuracy versus a sec-
ondary metric (number of parameters, MACs, or latency). The blue lines represent POMONAG’s
Pareto Fronts, with circles highlighting the efficient (yellow), balanced (purple), and accurate (green)
variants. Orange points depict DiffusionNAG results. Error bars show 95% confidence intervals av-
eraged over three runs. Dashed lines indicate DiffusionNAG results as reported by An et al. (2024).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 4: Performance comparison of architectures generated by DiffusionNAG and POMONAG
on 15 datasets using the MobileNetV3 search space. Each plot illustrates accuracy versus a sec-
ondary metric (number of parameters, MACs, or latency). The blue lines represent POMONAG’s
Pareto Fronts, with circles highlighting the efficient (yellow), balanced (purple), and accurate (green)
variants. Orange points depict DiffusionNAG results. Error bars show 95% confidence intervals av-
eraged over three runs. Dashed lines indicate DiffusionNAG results as reported by An et al. (2024).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Ablation study results for Performance Predictors on the NASBench201 search space.
’Performance Predictor’ specifies the training and the encoding strategy used for the predictors.
’Archs Training’ indicates the training pipeline for the architectures in the Meta-Dataset. ’Size’
denotes the Meta-Dataset’s cardinality. ’Accuracy’ and ’Accuracy*’ are Spearman correlations for
noisy and denoised architectures, respectively. Best scores are highlighted in bold

Performance Predictor Meta-Dataset Spearman Correlation

Training Strategy Dataset Encoder Archs Training Size Accuracy Accuracy*

An et al. (2024) ResNet18 An et al. (2024) 4630 0.687 0.767
Ours ResNet18 An et al. (2024) 4630 0.705 0.772
Ours ResNet18 Ours 4630 0.822 0.854
Ours ResNet18 Ours 10000 0.842 0.884
Ours ViT-B-16 Ours 10000 0.855 0.884

C PERFORMANCE PREDICTORS ABLATION STUDY

An ablation study was conducted to evaluate the improvements introduced in the Performance Predictors on the
NASBench201 search space. The study involved a series of modifications to the predictors and their training
strategies, aiming to maximise the Spearman correlation between the predicted values and the actual metrics.

Initially, a new predictor was implemented using the same training pipeline as An et al. (2024), which yielded
slight improvements in correlation scores over the baseline DiffusionNAG predictor. Specifically, the Spearman
correlation for the accuracy of noisy architectures increased from 0.687 to 0.705, and for denoised architec-
tures from 0.767 to 0.772. Subsequently, the introduction of a novel training strategy significantly enhanced
performance for both noisy and denoised architecture accuracy estimates. This new training strategy involved
switching from the Adam optimiser to AdamW, incorporating a cosine annealing learning rate scheduler, and
introducing a weight decay of 5 × 10−3. These modifications improved convergence and generalisation of
the Performance Predictors, leading to Spearman correlations of 0.822 for noisy architectures and 0.854 for
denoised architectures.

Expanding the Meta-Dataset size from 4,630 to 10,000 architectures further improved the results, with corre-
lations reaching 0.842 for noisy architectures and 0.884 for denoised ones. This demonstrates the benefit of a
larger and more diverse training set, providing the Performance Predictors with a richer array of examples to
learn from. Finally, replacing the ResNet18 Dataset Encoder with a Vision Transformer (ViT-B-16) feature ex-
tractor led to the best performance, achieving Spearman correlations of 0.855 and 0.884 for noisy and denoised
architectures, respectively. These results indicate that both the architectural choices and the training strategies
for the Performance Predictors have a substantial impact on their effectiveness, directly influencing the quality
of guidance provided during the diffusion process.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Hyperparameter search space used for optimising the training pipelines for architectures in
the Meta-Datasets.

Hyperparameter Search Space

Epochs {50, 100, 200}
Warm-up epochs {-, 10, 20}
Optimiser {SGD, Adam, AdamW}
Learning rate {1×10−1, 1×10−2, 1×10−3, 1×10−4}
Learning rate scheduler {-, Cosine annealing, Cosine annealing with restarts}
Weight decay {-, 5×10−3, 5×10−4, 5×10−5}
Label smoothing {-, 0.1}
Heavy augmentation {-, AutoAugment, TrivialAugmentWide, RandAugment, AugMix}
Random horizontal flip {-, 0.5}
Random erasing (Gaussian) {-, 0.2}
MixUp {-, 0.2}
CutMix {-, 0.2}

Table 8: Optimal training hyperparameters identified for architectures in the NASBench201 and
MobileNetV3 search spaces.

Search Space NASBench201 MobileNetV3

Weights initialisation HeNormal initialisation ImageNet-1k pre-training
Mixed precision True True
Training technique Ordinary Fine-tuning
Epochs 200 50
Warm-up epochs 20 -
Early stopping patience 120 30

Optimiser SGD AdamW
Learning rate 1×10−1 1×10−3

Learning rate scheduler Cosine annealing -
Weight decay 5×10−4 5×10−5

Label smoothing - 0.1

Resizing 32×32 224×224
Heavy augmentation TrivialAugmentWide AugMix
Random horizontal flip 0.5 0.5
Padding (constant) 4 21
Random crop 32×32 224×224
Random erasing (Gaussian) 0.2 -
MixUp - 0.2

D HYPERPARAMETER TUNING AND OPTIMISATION

The training of the architectures included in the Meta-Datasets required meticulous hyperparameter tuning to
maximise performance. For each search space – NASBench201 and MobileNetV3 – a comprehensive hyperpa-
rameter search was conducted to identify optimal training configurations. The hyperparameter search involved
exploring a range of values for key training parameters, such as the number of epochs, warm-up epochs, opti-
misers, learning rates, learning rate schedulers, weight decay, label smoothing, and various data augmentation
techniques. The search space for these hyperparameters is summarised in Table 7, providing an overview of
the parameters considered during the optimisation process. The optimal training pipelines identified for each
search space are detailed in Table 8.

19

	Introduction
	Related Works
	Method
	Many-Objective Reverse Diffusion Guidance
	Meta-Dataset
	Score Network and Performance Predictors
	Pareto Front Filtering and Stretching

	Experiments and Results
	Conclusion and Future Directions
	Meta-Datasets
	NASBench201 Search Space
	MobileNetV3 Search Space
	Meta-Datasets Distributions

	Extensive Results
	Performance Predictors Ablation Study
	Hyperparameter Tuning and Optimisation

