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ABSTRACT

Adapting Large Language Models (LLMs) to specialized domains like medicine
and law through domain continual pre-training has become the cutting-edge
method. However, contrary to our expectations of immediate gains, we’ve un-
covered a surprising phenomenon: a temporary performance drop at the start of
the process, followed by a performance recovery phrase. This drop is not only
unexpected but remarkably consistent across different model sizes and domains,
such as medical and law. To gain a deeper understanding of this issue, we in-
troduce the concept of stability gap—borrowed from visual models dealing with
new class classifications—to explain this initial drop in LLM performance. Based
on this concept, we hypothesize that the initial performance drop arises from in-
stability in the model’s general abilities, which we further validated through our
experiments. We further reveal that this initial instability is intricately tied to
training settings that involve distribution shifts. To address this initial instabil-
ity and enhance LLM performance within a fixed compute budget, we propose
one training strategy that reduces the instability by increasing the epoch number,
along with two data sampling strategies focused on data quality and corpus dis-
tribution. We conduct various experiments on Llama-family models to validate
the effectiveness of our strategies in both medical and legal continual pre-training
and instruction tuning. For example, our strategies improve the average medical
task performance of the OpenLlama-3B model from 36.2% to 40.7% with only
40% of the original training budget and enhance the average general task perfor-
mance without causing forgetting. Furthermore, we apply our strategies to contin-
ually pre-train and instruction-tune the Llama-3-8B model. The resulting model,
Llama-3-Physician, achieves the best medical performance among current open-
source models and performs comparably to or even better than GPT-4 on several
medical benchmarks.

1 INTRODUCTION

Continual pre-training is an important approach for LLMs to improve their performance in target
domains (Huang et al., 2023; Yang et al., 2024a; Chen et al., 2023c), learn new topics and lan-
guages (Jiang et al., 2024; Gupta et al., 2023), and even boost their general capabilities (Ibrahim
et al., 2024). While extensive research has focused on understanding LLM mechanisms during pre-
training from scratch (Biderman et al., 2023a; Xue et al., 2024), far less attention has been given
to how LLMs behave during continual pre-training (Que et al., 2024). This gap in the literature is
particularly striking given the importance of continual pre-training in adapting models to new do-
mains and evolving knowledge. In this paper, we report a surprising phenomenon observed during
continual pre-training: rather than an immediate improvement, LLM performance on target domain
tasks initially declines in the early stages of training. Only after further training, when more data
is incorporated, does performance recover and eventually surpass that of the original model. We
consistently observe this performance pattern—a V-shaped curve—across various model scales and
target domains, including both medical and legal fields. This counterintuitive finding challenges
common assumptions about continual pre-training, where improvement is typically expected at ini-
tial.

To explore the underlying mechanisms of this phenomenon, we draw inspiration from the concept
of the stability gap (De Lange et al., 2022; Caccia et al., 2021), originally introduced in the context
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of vision models in continual learning. The stability gap describes how a model’s performance on
previously learned tasks initially degrades when learning new tasks, before gradually recovering as
it adapts. Previous research attributes this initial drop to an imbalance between the model’s stability
gradient—its ability to maintain performance on prior tasks—and its plasticity gradient—the capac-
ity to adapt to new ones. Early in training, the model’s plasticity gradient dominates, leading to a
temporary performance decline. As training progresses, the stability gradient strengthens, allowing
performance to recover.

Applying this framework to LLMs, we hypothesize that the initial performance drop in continual
pre-training stems from a similarly insufficient stability gradient to preserve the model’s general
capabilities (e.g., instruction-following skills). Over time, as the plasticity gradient diminishes and
the stability gradient rises, task performance rebounds. Supporting this hypothesis, we observe
a similar V-shaped pattern in general-domain tasks, where initial declines give way to recovery.
Further analysis of weight updates throughout the training process provides additional evidence for
this interpretation.

But how can we harness it to optimize continual pre-training? Given a fixed computing budget,
we know that the stability gap causes inefficiency in continual pre-training as it delays perfor-
mance improvement. To address this, we propose three efficient continual pre-training strategies:

Figure 1: The performance comparison between
our model (Llama-3-physician) and other base-
lines involves reporting the ratio of each model’s
task performance to the best performance of that
task among all models.

1. Instead of continually pre-training the
LLM on a large corpus for one epoch,
which induces a large plasticity gradient
for a long period, we continually pre-
train the LLM on a subset of the corpus
with a proper size for multiple epochs.

2. Select the subset with the highest-
quality tokens to learn rich domain
knowledge, leading to faster perfor-
mance recovery and higher peak perfor-
mance.

3. Use a data mixture that is similar to
the pre-training data distribution in data
source and rate, thus reducing the distri-
bution shift and mitigating the knowl-
edge forgetting of general instruction-
following ability.

To verify our strategy, we first conduct experi-
ments on the OpenLlama-3B model with medi-
cal and legal domain continual pretraining. We
find that our strategies not only accelerate per-
formance improvement by mitigating the stabil-
ity gap but also improve the LLM’s peak per-
formance. We also compare our strategies with
other continual pre-training techniques and ana-

lyze the influence of important learning factors, such as learning rate, for our strategies in Sec. 5.
Finally, we apply our strategies to both the continual pretraining and instruction tuning processes
of the Llama-3-8B model (Meta, 2024), efficiently enhancing its performance on diverse medical
tasks, outperforming other open-source LLM baselines, and achieving performance comparable to
GPT-4 (See performance comparison in Figure 1).

2 RELATED WORK

Large language Models such as GPT-4 (OpenAI, 2023), Gemini (Team), and Llama (Touvron
et al., 2023a)), have billions of parameters and show strong performance on various basic natural
language tasks (Qin et al., 2023), human examination (Hendrycks et al., 2020b; Zhong et al., 2023),
and agent-related tasks (Guo et al., 2023; Liu et al., 2023; Zhou et al., 2023). Their success attracts
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researchers to analyze LLMs’ learning properties during the pre-training process (Kaplan et al.,
2020; Biderman et al., 2023a; Zhang et al., 2024a). Kaplan et al. (2020) finds the pre-training
scaling rule for model size and dataset size and then Hoffmann et al. (2022) proposes the Chinchilla
rule that claims the equal importance of the model size and the number of training tokens. Sorscher
et al. (2022) further claims that pruning low-quality data can improve the above neural scaling
laws. However, high-quality training tokens are limited and may be run out soon (Villalobos et al.,
2022). Thus, some researchers try to maximize the utilization of the existing corpus by training it
for multiple epochs (Muennighoff et al., 2024; Xue et al., 2024). But they observe the performance
degradation (Hernandez et al., 2022; Xue et al., 2023; Hoffmann et al., 2022) after training 4 epochs.

Continual pre-training gradually becomes necessary for LLMs to expand their basic ability (Wu
et al., 2022; Fu et al., 2024; Zhuang et al., 2024), avoid outdated information (Jiang et al., 2024),
and become the domain expert (Huang et al., 2023; Yang et al., 2024a; Chen et al., 2023c; Nguyen
et al., 2023; Wu et al., 2023; Yıldız et al., 2024; Xie et al., 2024a). The domain corpus for con-
tinual pre-training can be collected by n-gram models (Muennighoff et al., 2024), heuristic rules
designed by human experts (Chen et al., 2023c; Zhang et al., 2024c) or automatically identified by a
LLM (Zhang et al., 2024c). For the continual pre-training techniques. Ke et al. (2023; 2022) focused
on adding masks or adjusting the architecture of small Language models like RoBERT to protect
the learned general knowledge. However, these techniques result in huge computational consump-
tion for LLMs. Recent studies (Gupta et al., 2023) show that learning rate re-warming can improve
LLMs’ downstream task performance and a stability gap appears when replaying the previous data.
Ibrahim et al. (2024) further claims that learning rate re-warming, re-decaying, and replay can make
the continual pre-training performance match the performance of fully re-training when continually
pre-training the English LLM on the German corpus. Other continual pre-training method studies
focus on selecting useful tokens (Lin et al., 2024), expanding MOE architecture (Chen et al., 2023a),
and knowledge distillation (Jin et al., 2021b).

Continual learning and the Stability Gap Continual learning aims to design methods that can
learn new knowledge without the catastrophic forgetting of previously learned knowledge (Kirk-
patrick et al., 2017; Van de Ven et al., 2022). To mitigate the forgetting problem when learning a new
task, replaying previous tasks’ data (Rolnick et al., 2019; Buzzega et al., 2020; Prabhu et al., 2020;
Buzzega et al., 2021; Guo et al., 2022) becomes the main approach. De Lange et al. (2022); Caccia
et al. (2021) further find that, although they conduct the replay approach, the vision model still first
loses its performance stability in previous classification tasks ( the performance drops abruptly) and
then gradually recovers. They call it the stability gap phenomenon. Different from them, we focus
on the continual pre-training of the LLM and observe that both the LLM’s domain task performance
and general ability suffer from the stability gap.

3 IDENTIFYING THE STABILITY GAP IN CONTINUAL PRE-TRAINING

In this section, we describe the unique performance phenomenon observed during continual pre-
training, where performance on the target domain initially drops before rising. We then introduce
the concept of the stability gap to explain this behavior and validate our explanation through exper-
iments.

3.1 INVESTIGATING THE BEHAVIOR OF LLMS DURING CONTINUAL PRE-TRAINING

Experiment setup In this study, we chose OpenLlama3B-v2 (Geng & Liu, 2023) as our default
LLM and use the medical domain as our primary target domain. Following previous work (Chen
et al., 2023b), we set the compute budget to 50 billion (50B) training tokens. To collect the continual
pre-training corpus, we follow the simple and scalable methodology of Muennighoff et al. (2024);
Lin et al. (2024). First, we train a small model (e.g., KenLM (Heafield, 2011)) on a high-quality
medical reference corpus. Then, we use the trained small model to calculate the perplexity (PPL) of
samples in the Refined-Web dataset (Penedo et al., 2023). Finally, we extract 50B tokens from the
Refined-Web dataset with the lowest PPL to create the medical corpus. More details are provided in
Appendix A.
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Figure 2: (a) reports the models’ average medical performance during the medical continual pre-
training process. (b) reports the models’ average medical performance at the beginning. (c) il-
lustrates the models’ average medical perplexity (PPL) during the medical continual pre-training
process.

Observation (1): The medical task performance first drops and rises during continual pre-
training. Specifically, we follow Chen et al. (2023c) and measure the average accuracy perfor-
mance over the MMLU-Medical-Genetics (Hendrycks et al., 2020a), MedQA (Jin et al., 2021a),
PubMedQA (Jin et al., 2019), and MedMCQA (Pal et al., 2022) tasks (see task details in Ap-
pendix C). We report the average performance on medical tasks every 5 billion training tokens.
From Figure 2(a), we observe that the domain task performance initially drops during the first 5
billion tokens and then gradually recovers and improves. Furthermore, as shown in Figure 2(b) (a
fine-grained view), we observe that the performance declines sharply at the beginning, followed by
a gradual recovery. Additionally, we consider the TinyLlama model (Zhang et al., 2024b), a 1.1B
Llama model trained on 3 trillion tokens, and continually pre-train it on the medical corpus. From
Figure 2(a), we observe that its performance on medical tasks also shows the same trend, despite
being trained on so many tokens.

Observation (2): The perplexity of medical Wikipedia steadily declines during continual pre-
training. We further measure the average perplexity (PPL) of the models on the Wikipedia corpus
about medical terms1. From Figure 2(b), we observe that the PPL steadily drops. This indicates that
the LLM has acquired medical domain knowledge at the initial continual pre-training and continues
improving its medical domain knowledge throughout the entire continual pre-training process.

More Observations: We also examine continual pretraining in both the legal domain and a general
setting. Similar V-shaped performance curves are observed, reinforcing that the initial performance
drop followed by a subsequent rise in target task performance is a common phenomenon in the
continual pretraining of LLMs. Detailed results are provided in Appendix B.

3.2 STABILITY GAP: A CONCEPTUAL EXPLANATION FOR THE INITIAL PERFORMANCE DROP
AND THEN FOLLOWING RECOVERY.

The Stability Gap refers to the initial decline in a vision model’s performance on previous tasks
while learning a new task, followed by a subsequent improvement, even when data from the ear-
lier tasks is replayed. Lange et al. (2022) explains this by disentangling the model gradient G into
α-weighted plasticity and stability components: G = αGplasticity + (1 − α)Gstability, where Gplasticity
focuses on learning the new task by minimizing its data loss, while Gstability seeks to maintain perfor-
mance on previous tasks by keeping the loss of replay data low. They attribute the initial performance
drop to the plasticity gradient exceeding the stability gradient to reduce new task loss, resulting in a
failure to maintain performance on previous tasks. As performance declines, the stability gradient
strengthens, leading to a balance between gradients and eventual performance recovery.

Explanation of our observations Directly applying the concept of the stability gap to explain our
phenomenon is not feasible, as we do not replay the pretraining corpus. However, during domain-

1https://huggingface.co/datasets/gamino/wiki_medical_terms
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Figure 3: (a) shows the OpenLLaMa’s average common-sense task performance during medical
continual pre-training. (b) illustrates the OpenLlama model’s relative parameter update during the
medical continual pre-training process. We report the average weight relative update of weights in
the top 5 layers and the bottom 5 layers. We also report the rate between the two average numbers.

specific continual pretraining, the language modeling loss serves two critical functions: it explicitly
learns domain-specific knowledge while implicitly preserving general knowledge and text model-
ing capabilities, as the domain corpus still contains general information. This implicit preservation
acts as a form of ’self-replay’, providing the stability gradient. Further, we infer that performance
declines because the plasticity gradient for learning domain-specific knowledge surpasses the stabil-
ity gradient for retaining general text knowledge and text modeling ability. Over time, the stability
gradient strengthens to restore general knowledge and text modeling abilities, while the plasticity
gradient has learned knowledge in the target domain, leading to performance improvement.

Empirical verification for our explanation Based on our inference, we can predict that the gen-
eral task performance follows a similar V-shape curve as the stability gradient gradually rises. We
verify our prediction in Figure 3(a). We also find evidence for our explanation at the weight level by
(2) measuring the relative weight update of each weight w as wt−w0

w0
, where wt is the weight value

during continual pre-training and w0 is the original weight value. A high relative weight update
indicates a large gradient for updating the weight. Figure 3(b) shows that the bottom layers’ weights
initially have a higher relative weight update than the top layers (rate > 1.35). Previous studies
indicate that bottom layers learn the syntax and low-level semantics (Devlin et al., 2019; Hewitt &
Manning, 2019; Ling et al., 2023), while top layers contain high-level semantics and task-specific
knowledge (Yang et al., 2024b; Chen et al., 2024). This suggests that the top layers’ weights indeed
lack sufficient stability gradient to maintain instruction-following ability initially. The performance
then recovers as the relative weight updates (stability gradient) increase in the top layers and domain
knowledge is learned, as indicated by the continuous drop in medical perplexity.

4 EFFICIENT CONTINUAL PRETRAINING STRATEGIES FOR MITIGATING THE
STABILITY GAP

In this section, we propose three efficient continual pre-training strategies for reducing the above
stability gap problem. The training process and details follow those in the above section.

Strategy I: Continually pre-train the LLM on a corpus subset across multiple epochs rather
than the entire large corpus for a single epoch. The key insight is that a larger corpus demands
a high plasticity gradient for a longer period. In contrast, pretraining the LLM on a properly sized
random subset of the corpus across multiple epochs reduces the need for sustained high plasticity
after the first epoch and accelerates the rise of the stability gradient. In Figure 4(a), we observe
that this strategy leads to faster performance recovery. The LLM achieves peak performance at the
fourth epoch, consistent with previous studies (Xue et al., 2024).

Strategy II: Continually pre-train the LLM on the corpus subset with the highest quality. The
performance of domain tasks also depends on the learned domain knowledge. Therefore, collecting
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Figure 4: (a) reports the average medical performance during the medical continual pre-training
process. The baseline is pre-training the OpenLlama-3B model with 50b medical tokens with one
epoch. ’5b Random’ is pre-training the LLM with 5b tokens randomly selected from the 50b medical
tokens for 5 epochs. ’5b HQ’ is pre-training the LLM with the highest quality (HQ) 5b tokens of the
50b medical tokens for 5 epochs. (b) shows the average medical performance across 5 epochs. (c)
illustrates the average commonsense task performance across 5 epochs.

a subset with the highest quality should further enhance performance. To verify this, we used the
trained KenLM from Sec. 3.1 to calculate the perplexity (ppl) of each sample in the entire medical
corpus. A lower perplexity indicates that the sample is closer to the distribution of the medical
reference corpus. We then continually pre-trained the OpenLlama-3B model on the subset with the
lowest perplexity (i.e., the highest quality) for multiple epochs. From Figure 4 (a), we observe that
the high-quality subset indeed enables the LLM to recover performance faster and stronger in the
medical domain. Further analysis of the pre-training subset size is presented in Sec. 5.2.

Strategy III: Use a data mixture rate similar to the pre-training data. The pre-training data
mixture rate is a vital factor for the pre-training performance of large language models (LLMs) (Xie
et al., 2024c; Shen et al., 2023). Therefore, we propose a third strategy that follows the pre-training
data’s mixture rate to construct the continual pretraining training subset, aiming to reduce the distri-
bution gap and stabilize the instruction-following ability of the LLM during continual pre-training.
Specifically, for the OpenLlama model, we follow the Llama mixture rate (Touvron et al., 2023a) to
collect 5 billion tokens initially. We then replace the CC and C4 data (82% of the 5 billion tokens)
with medical tokens sampled from the highest quality 5 billion medical tokens (HQ-5b). There are
two ways to sample these medical tokens. The first method randomly samples the medical tokens
once to construct a fixed training corpus. We call this “rate-fixed-data-fixed”. The second method
randomly samples the medical tokens from the HQ-5b tokens for each epoch. We call this “rate-
fixed-data-dynamic”.

From Figure 4(b), we observe that the second method achieves a higher peak performance as it offers
a better trade-off between recovering performance and learning domain knowledge. Additionally,
our strategies further improve the average performance on general commonsense tasks, as shown
in Figure 4(c), and reduce the medical perplexity and the rate of relative weight update, as detailed
in Appendix D. We also investigate the effectiveness of our three strategies in the general continual
pre-training setting in Appendix E.

5 EVALUATION

In this section, we first compare the effectiveness of our strategies with other continual pre-training
techniques. Next, we investigate the impact of important learning factors, such as the learning
rate, on our strategies. Finally, we deploy our strategies into the newest Llama-3-8b model, which
achieves the strongest fine-tuned performance among open-source baselines.

5.1 COMPARISON WITH OTHER CONTINUAL PRE-TRAINING TECHNIQUES

Baselines and evaluation tasks We consider the following baselines for comparison: (1) Con-
tinually pre-training the OpenLLaMa-3B LLM with 50 billion collected medical tokens for one
epoch (”the full token baseline”). (2) Re-warming and re-decaying the learning rate of (1) based

6
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on the paper by (Ibrahim et al., 2024). (3) Replay baselines: Following (Chen et al., 2023b), we
randomly sample 5B (10%), 10B (20%), and 15B (30%) tokens from OpenLLaMa-3B’s pretrain-
ing dataset (the RefinedWeb dataset) and combine them with 50B medical tokens. Pretraining is
stopped once a total of 50B tokens have been processed. This baseline does not consider the data
mixture rate. (4) Parameter protection baselines: Following (Harun & Kanan, 2023), we freeze
the top 5 layers’ weights during the continual pre-training process of (1) to protect the high-level
instruction-following ability and mitigate the stability gap. We also consider another baseline that
freezes the bottom 5 layers’ weights for comparison. We follow (Chen et al., 2023b) and consider the
tasks of PubMedQA, MedMCQA, and MedQA-4-Option. For the MMLU benchmark (Hendrycks
et al., 2020a), we consider the average performance of its medical topics, including medical ge-
netics, anatomy, clinical knowledge, professional medicine, and college medicine. We use the lm-
evaluation-harness framework (Gao et al., 2023) to measure the baselines’ zero-shot performance.
The training details are the same in Appendix A.

Method Training tokens number MMLU-Med-Avg PubMedQA MedMCQA MedQA-4-Option Avg
OpenLLaMa-3B - 25.6 68.4 25.4 25.4 36.2
Full token baseline 50B 26.1 70.4 26.1 27.1 37.4
Re-warming and re-decaying 50B 26.5 70.3 27.1 27.1 37.7
Replay 5B data 50B 26.3 69.2 27.6 26.9 37.5
Replay 10B data 50B 29.3 71.0 30.4 27.6 39.5
Replay 15B data 50B 29.0 70.1 29.4 26.2 38.7
Freezing top 5 layers 50B 26.2 69.9 27.1 27.3 37.6
Freezing bottom 5 layers 50B 26.0 69.1 25.4 25.7 36.5
Our strategies 20B 30.0 71.2 34.0 27.8 40.7

Table 1: Zero-shot accuracy across various medical benchmarks.

Results From Table 1, we find that (1) our strategies improve the base model’s average medical
task performance significantly (4.5%) with only 20 billion training tokens. This demonstrates the
effectiveness and efficiency of our strategies for continual pre-training. (2) Other techniques can
also improve continual pre-training performance, except for the baseline ’Freezing bottom 5 lay-
ers,’ which hinders the learning of medical domain knowledge. We further verify our strategies’
effectiveness in continual law pretraining. We put the results in Appendix F.

5.2 FACTOR ANALYSIS

Impact of learning rate and training subset size To analyze the impact of training factors such
as learning rate and training subset size, we conducted a series of experiments, with details provided
in Appendix G. Our findings show that a learning rate that is too high leads to significant drops
in generalization ability, while a rate too low hampers the acquisition of new domain knowledge.
Additionally, using a subset that is too large (e.g., 10 billion tokens) introduces a stability gap and
slows performance. Conversely, a smaller subset yields better initial performance but leads to rapid
overfitting in later epochs. Finally, we validate the optimal hyperparameter configuration for our
experiments.

5.3 DEPLOYING OUR STRATEGIES INTO THE LLAMA-3 MODEL

Continual pre-training We continually pre-train the Llama3-8B-base model using our three
strategies with the high-quality 5 billion medical tokens constructed in Sec. 4 for 4 epochs. The
training details are in Appendix H. After the continual pre-training process, we find that the average
medical performance drops slightly, likely due to the unknown data mixture rate of Llama-3 and
the lack of access to its high-quality pre-training corpus for performance recovery. However, the
medical perplexity is significantly lower than that of the Llama3-8B-base model.

Task-specific fine-tuning To evaluate LLMs’ performance in the supervised learning setting, we
follow (Chen et al., 2023b) and individually conduct task-specific finetuning on both the base models
and the continually pre-trained models using each benchmark’s training set. We also consider 8
task-finetuned baselines. We put task details in Appendix C and training and baseline details in
Appendix H.
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Model MMLU-Medical PubMedQA MedMCQA MedQA-4-Option Avg
Llama-2-7B (Touvron et al., 2023b) 56.3 61.8 54.4 49.6 53.2
BioMistral SLERP 7B (Labrak et al., 2024) 60.5 75.2 44.2 47.3 56.8
MEDITRON-7B (Chen et al., 2023b) 55.6 74.4 59.2 52.0 57.5
Llama3-Aloe-8B-Alpha (Gururajan et al., 2024) 72.7 77.2 59.0 62.3 67.8

Llama-2-70B 74.7 78.0 62.7 61.3 67.2
MEDITRON-70B 73.6 80.0 65.1 65.4 69.0

GPT-3.5-turbo-finetuned (Shi et al., 2024) 70.5 71.4 61.8 63.3 66.7

Llama-3-8B Fine-tuned (ours) 82.3 75.8 60.0 61.1 69.8
Llama-3-8B Full (ours) 82.0 78.6 61.8 60.8 70.8
Llama-3-Physician-8B (ours) 85.0 79.1 81.4 61.5 76.7

Table 2: Accuracy comparison across various medical benchmarks in the task-specific fine-tuning
setting. Llama-3-8B Fine-tuned is directly fine-tuned on these tasks. For ’Llama-3-8B Full’, we first
continually pre-trained the Llama with 50B medical tokens and then finetuned the pretrained model
on these tasks. For Llama-3-Physician-8B, we first continually pre-trained the Llama with with our
strategies and then finetuned the pretrained model on these tasks.

Results We use the lm-eval-harness (Gao et al., 2023) to evaluate our model (Llama-3-Physician)
and related baselines’ performance. No demonstration examples are used. From Table 2, we find that
our model outperforms other baselines with similar model scales on the four evaluation benchmarks
by a clear margin. This is due to the following reasons: (1) we use the newest and strongest open-
source Llama-3 model rather than older Llama-2 or Mistral-7B, (2) we continually pre-train the
base model with high-quality medical tokens (compared to ’Llama-3-8B fine-tuned and Llama-
3-8B instruct’), and (3) our strategies further boost the gains from continual pre-training markedly
(compared to ’Llama-3-8B Full’). Our model also outperforms many larger LLMs (70B) on average,
meaning that users can obtain higher-quality medical services with a faster inference rate and less
memory consumption.

5.4 DEPLOYING OUR STRATEGIES INTO THE INSTRUCTION TUNING PROCESS

Instruction-tuning is an important approach to boost the LLM’s performance among multiple tasks.
We follow Xie et al. (2024b) and consider the instruction-tuning setting that tunes the continual
pretrained Llama-3-8B model (see the above section) with a combination of medical tasks. More
training details are in Appendix H.

Figure 5: We consider the ’full instruction data’ experiment as fine-tuning the model with all in-
struction data for 3 epochs. For the ’n% data’ experiments, we first uniformly sampled the highest
quality instructions from each instruction dataset based on scores provided by the Deita data selec-
tor. We then mixed the sampled data with the general instructions from the Airoboros-3.2 dataset.
The total training tokens are equal to n% of the full instruction data. We set n to 25, 50, and 75 here.
(a) shows the experiments’ average medical question-answering task performance during instruction
tuning. (b) illustrates the experiments’ performance for other medical tasks. For BioNLI, DDI 2023,
and HOC tasks, we report macro-F1 as the score. For MIMIC-CXR summarization tasks, we report
Rouge-L as the score.
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Deployment In the instruction tuning process, our first strategy is common as the medical instruc-
tion tuning process usually involves multi-epochs training (Zhang et al., 2023a; Xie et al., 2024b;
Han et al., 2023). For the second strategy, we consider Deita (Liu et al., 2024), a simple automatic
instruction data selector, to select high-quality medical instruction data. This selector uses the LLM
to give quality scores for instructions and considers the diversity of instruction data by sampling data
from different clustering. For the last strategy, we consider high-quality general instruction datasets
like Airoboros-3.2 Durbin (2024) to mitigate the forgetting in general instruction following ability.

Observations From Figure 5, we first observe that the average performance of medical question-
answering tasks initially drops slightly (in the first epoch) and then gradually rises, which is similar
to the phenomenon observed in the continual pre-training process. Additionally, we observe that
our strategies can mitigate the initial performance drop and achieve higher peak performance during
the instruction tuning process, thereby extending the application of our strategies. Figure 5 also
shows that we only need computation equivalent to 25% of the original instruction data (consisting
of high-quality medical instruction data and general instruction data) to achieve the best perfor-
mance among diverse tasks. This reduces computational consumption and improves the efficiency
of the instruction tuning process. We call the tuned model in the experiment ’25% instruction data’
as ’Llama-3-physician-8B instruct’. In the following paragraphs, we will compare it with other
baselines.

Baselines For instruction-tuning, we consider instruction-tuned models like Mistral-7B-
instruct (Jiang et al., 2023), Zephyr-7B-β-instruct (Tunstall et al., 2023), PMC-Llama-7B (Wu et al.,
2023), BioMedGPT-LM 7B (Zhang et al., 2023a), Medalpaca-13B (Han et al., 2023), AlpaCare-13B
(Zhang et al., 2023b), Me-LLaMA-13B chat(Xie et al., 2024b), Llama-3-8B instruct (Meta, 2024),
and JSL-Med-Sft-Llama-3-8B (johnsnowlabs, 2024). These LLMs are tuned with general instruc-
tions or medical task instructions.

Model MMLU-Medical PubMedQA MedMCQA MedQA-4-Option Avg
Mistral-7B-instruct (Jiang et al., 2023) 55.8 17.8 40.2 41.1 37.5
Zephyr-7B-instruct-β (Tunstall et al., 2023) 63.3 46.0 43.0 48.5 48.7
PMC-Llama-7B (Wu et al., 2023) 59.7 59.2 57.6 49.2 53.6
Medalpaca-13B (Han et al., 2023) 55.2 50.4 21.2 20.2 36.7
AlpaCare-13B (Zhang et al., 2023b) 60.2 53.8 38.5 30.4 45.7
BioMedGPT-LM 7B (Zhang et al., 2023a) 52.0 58.6 34.9 39.3 46.2
Me-Llama-13B (Xie et al., 2024b) - 70.0 44.9 42.7 -
Llama-3-8B instruct 82.0 74.6 57.1 60.3 68.5
JSL-Med-Sft-Llama-3-8B (johnsnowlabs, 2024) 83.0 75.4 57.5 59.7 68.9

GPT-3.5-turbo-1106 74.0 72.6 34.9 39.3 60.6
GPT-4 (OpenAI, 2023) 85.5 69.2 69.5 83.9 77.0
Llama-3-physician-8B instruct (ours) 80.0 76.0 80.2 60.3 74.1

Table 3: Accuracy comparison for question-answering tasks in the instruction-tuning setting.

Results From Table 3, we find that our model outperforms other open-source baselines in
question-answering tasks by a clear margin. Additionally, our model’s average performance is close
to that of GPT-4. Furthermore, in Table 6, we observe that our model significantly outperforms
GPT-4 in medical classification, relation extraction, natural language inference, and summarization
tasks. This demonstrates the significant advantage of our model in processing diverse medical tasks.

6 CONCLUSION

Our paper explores the behavior of LLMs when continually pre-training them on a new domain’s
corpus and observes the stability gap, a phenomenon marked by a significant initial performance
drop followed by a slow recovery. We explain it from the view of plasticity and stability gradients
and then propose three strategies that effectively improve the LLM’s domain performance and reduce
computational costs by reducing the stability gap. Furthermore, we deploy our strategies on the
newest Llama-3-8B model, which achieves the strongest performance among open-source baselines
of similar model scales and outperforms the closed-source GPT-3.5 model.
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Limitations and Potential impacts Ideally, knowing the pre-training data mixture could maxi-
mize the outcome of our method, but most strong open-source LLMs didn’t provide their training
data mixture. Our Llama-3-8B experiment shows we can still improve significantly in this scenario.
Due to limitations in computing resources, we plan to verify our conclusions and strategies on larger
LLMs in the future. Our strategies are designed to address the machine learning problem of the
stability gap, and we do not see any potential risks. The datasets and base models used in this paper
will be open-sourced. Although we do not consider our model to be ready for real-world medical
use in its current form, we are releasing it to the research community to promote work on large
language models for the medical domain and the safety of language models in medical applications.
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dre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel Marmet,
Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut. Meditron-70b: Scal-
ing medical pretraining for large language models, 2023c.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Matthias De Lange, Gido van de Ven, and Tinne Tuytelaars. Continual evaluation for lifelong
learning: Identifying the stability gap. arXiv preprint arXiv:2205.13452, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the Associ-
ation for Computational Linguistics, 2019. URL https://api.semanticscholar.org/
CorpusID:52967399.

Jon Durbin. airoboros: Customizable implementation of the self-instruct paper., 2024. URL
https://huggingface.co/datasets/jondurbin/airoboros-3.2.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context. arXiv preprint arXiv:2402.10171,
2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. ArXiv, abs/2101.00027, 2020. URL
https://api.semanticscholar.org/CorpusID:230435736.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm-research/open_llama.

Neel Guha, Julian Nyarko, Daniel E. Ho, Christopher Ré, Adam Chilton, Aditya Narayana, Alex
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A THE DETAILS OF PRE-TRAINING

For OpenLLaMa-3B, TinyLLaMa-1B, and Pythia-410m, we download them from their official web-
site. For OpenLLaMa-3B and TinyLLaMa-1B LLMs, we continually pre-train them with the 50 bil-
lion medical tokens we constructed in Sec. 4 for one epoch. For the high-quality medical reference
file, we use the dataset ’wiki medical terms’ downloaded from the huggingface. For the high-quality
legal reference file, we use the dataset ’Caselaw Access Project’ downloaded from the huggingface.
For the Pythia-410m LLM, we continually pre-train it with the 100 billion tokens randomly sampled
from the 2021-2022 subset of the RefinedWeb dataset. We consider this subset as the Pile dataset
only contains data before the year 2021 and then the tokens sampled from the 2021-2022 subset are
unseen for the Pythia-410m model. The pre-training code is based on the transformers. The task is
to predict the next token with a context size of 2048. The training is executed using 192 V100 GPUs.
We employ the AdamW optimizer with β1 = 0.9, β2 = 0.95, a weight decay of 0.01, and a learning
rate of 3e-4. We use a cosine learning rate scheduler with a 0.1 warmup ratio for gradual adaptation
to training complexity and bf16 precision for computational efficiency. Gradient accumulation is
set to 4 steps, and each training batch contains about 340 million tokens. We also add support for
FlashAttention-2 (Dao, 2023) for more efficient inference and long-context decoding.

When deploying our strategies into the continual pretraining process, we use the same learning rate
schedule as the one used for pretraining. For baselines, we follow their setups in their official papers.

B MORE OBSERVATION AND ANALYSIS

Figure 6: (a) shows the OpenLLaMa’s average legal task performance during law continual pre-
training. (b) illustrates the OpenLlama model’s relative parameter update during the medical contin-
ual pre-training process. We report the average weight relative update of weights in the top 5 layers
and the bottom 5 layers. We also report the rate between the two average numbers.

For continual law pretraining, we use the same procedure to collect domain corpus and the same
optimization setup to train the LLM. For its evaluation, we consider three QA tasks: MMLU-
International-Law, MMLU-Professional-Law, and Contract-QA from LegalBench Guha et al.
(2023). We report the average performance in Figure 6(a), which shows a similar v-shape per-
formance curve. Continual pretraining on another large corpus is an important approach to boost the
pretrained LLM’s general task performance (Jiang et al., 2024; Gupta et al., 2023). We call it the
general continual pretraining setting. We further find that it also exists a similar performance phe-
nomenon. Specifically, we continually pre-train the Pythia-410m model (Biderman et al., 2023b)
(initially pre-trained on the Pile (Gao et al., 2020) dataset) on the RefinedWeb dataset (Penedo et al.,
2023) to boost its general ability. We measure its general ability using the average performance
across 10 common-sense tasks and report the average performance of every 10 billion tokens. Train-
ing details are in Appendix A and task details are in Appendix C. From Figure 6(b), we observe that
the LLM’s general task performance first drops significantly and then gradually rises.

Based on our observations, the initial drop followed by a rise in target task performance is a general
phenomenon in the continual pre-training of LLMs of various sizes.
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C TASK AND BASELINE INFORMATION

For the medical evaluation, we follow Chen et al. (2023b) and mainly consider the following four
tasks:

MedMCQA (Pal et al., 2022) is a large-scale and comprehensive dataset for multichoice (four-
option) medical question answering. It is derived from real-world medical entrance exam questions
(Indian AIIMS and NEET-PG) and consists of over 194,000 high-quality medical questions. These
questions cover 2,400 healthcare topics and 21 medical subjects, exhibiting a wide range of topical
diversity. The average token length is 12.77.

MedQA (Jin et al., 2021a)is a multichoice question-answering dataset collected from the profes-
sional medical board exam, the United States Medical License Exams (USMLE). It comprises
12,723 questions sourced from a comprehensive collection of 18 English medical textbooks that
have been extensively utilized by medical students and USMLE candidates. Questions in MedQA
cover a wide range of topics in clinical medicine, necessitating responses with professional exper-
tise and complex multi-hop reasoning across multiple pieces of evidence. The average question and
option length is 116.6 and 3.5, respectively.

MMLU (Hendrycks et al., 2020b) is a comprehensive multi-task language understanding test dataset
that encompasses 57 tasks across various domains such as mathematics, history, computer science,
law, etc. In our experiments, we specifically focus on a subset of medical reasoning-related tasks
including clinical knowledge, college medicine, medical genetics, and professional medicine.

PubMedQA (Jin et al., 2019) is a biomedical question and answering dataset derived from PubMed
abstracts. It contains 1k expert annotated multi-choice question-and-answer samples based on
211.3k PubMed articles. The task of PubMedQA is to provide answers to research questions with
yes/no/maybe responses based on the corresponding abstracts. The average question and context
length is 14.4 and 238.9, respectively.

HOC (Baker et al., 2016) is a classification task to decide the Hallmarks of Cancer (HOC) taxonomy
of the article based on its abstract. The input is an abstract text. There are 10 topics you will need
to decide whether the article is related to. Topics: sustaining proliferative signaling, evading growth
suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activat-
ing invasion and metastasis, genomic instability and mutation, tumor promoting inflammation, and
cellular energetics, and avoiding immune destruction.

DDI 2023 (Segura-Bedmar et al., 2013) is a task to predict the relationship between the given head
entity labeled as @DRUG1andtailentitylabeledas@DRUG2 within a given sentence, this relation
which must be in (‘mechanism’, ‘effect’, ‘advice’, ‘int’, ’none’). mechanism: this type is used to
annotate drug-drug interactions that are described by their pharmacokinetic mechanism. effect: this
type is used to annotate drug-drug interactions describing an effect or a pharmacodynamic mech-
anism. advice: this type is used when a recommendation or advice regarding a drug interaction is
given. int: this type is used when a drug-drug interaction appears in the text without providing any
additional information. none: there are no drug-drug interactions.

BioNLI (Bastan et al., 2022) is a task to classify the relationship between the given medical premise
and hypothesis into one of the following labels: entailment, contradiction, or neutral. This dataset
contains abstracts from biomedical literature and mechanistic premises generated with nine different
strategies.

MIMIC-CXR (Johnson et al., 2019) is a generation task that derives the impression from findings
in the radiology report.

The dataset statistics are in Table 4

For the evaluation of general task ability, we consider the following 10 commonsense tasks:

ARC-Challenge and ARC-Easy ARC (Clark et al., 2018) is a multiple-choice question-answering
dataset, containing questions from science exams from grade 3 to grade 9. The dataset is split into
two partitions: Easy and Challenge, where the latter partition contains the more difficult questions
that require reasoning. Most of the questions have 4 answer choices.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Dataset statistics
Dataset # Train # Test Source
MedMCQA (Pal et al., 2022) 182,822 4183 Exam
MedQA (Jin et al., 2021a) 10178 1273 Exam
MMLU (Hendrycks et al., 2020b) - 163 Exam
PubMedQA (Jin et al., 2019) 211,269 500 Literature
HOC (Baker et al., 2016) 1108 315 Literature
DDI 2023 (Segura-Bedmar et al., 2013) 1108 315 Literature
BioNLI (Bastan et al., 2022) 5544 6308 Literature
MIMIC-CXR (Bastan et al., 2022) 122,014 1606 Literature

BoolQ (Clark et al., 2019) is a question-answering dataset for yes/no questions containing 15942
examples. These questions are naturally occurring —they are generated in unprompted and un-
constrained settings. Each example is a triplet of (question, passage, answer), with the title of the
page as optional additional context. The text-pair classification setup is similar to existing natural
language inference tasks.

COPA (Roemmele et al., 2011) consists of 1000 questions, split equally into development and test
sets of 500 questions each. Each question is composed of a premise and two alternatives, where the
task is to select the alternative that more plausibly has a causal relation with the premise.

HellaSWAG (Zellers et al., 2019) is a dataset for studying grounded commonsense inference. It
consists of 70k multiple choice questions about grounded situations: each question comes from one
of two domains – activitynet or wikihow – with four answer choices about what might happen next
in the scene. The correct answer is the (real) sentence for the next event; the three incorrect answers
are adversarially generated and human-verified, so as to fool machines but not humans.

OpenBookQA (Mihaylov et al., 2018) is a new kind of question-answering dataset modeled after
open-book exams for assessing human understanding of a subject. It consists of 5,957 multiple-
choice elementary-level science questions (4,957 train, 500 dev, 500 test), which probe the under-
standing of a small “book” of 1,326 core science facts and the application of these facts to novel
situations.

PIQA (Bisk et al., 2020) dataset introduces the task of physical commonsense reasoning and a cor-
responding benchmark dataset Physical Interaction: Question Answering or PIQA. Physical com-
monsense knowledge is a major challenge on the road to true AI-completeness, including robots that
interact with the world and understand natural language. PIQA focuses on everyday situations with
a preference for atypical solutions.

Race (Lai et al., 2017) is a large-scale reading comprehension dataset with more than 28,000 pas-
sages and nearly 100,000 questions. The dataset is collected from English examinations in China,
which are designed for middle school and high school students. The dataset can serve as the training
and test sets for machine comprehension.

SciQ (Welbl et al., 2017) dataset contains 13,679 crowdsourced science exam questions about
Physics, Chemistry and Biology, among others. The questions are in multiple-choice format with
4 answer options each. For the majority of the questions, an additional paragraph with supporting
evidence for the correct answer is provided.

WinoGrande (Sakaguchi et al., 2021) is a new collection of 44k problems, inspired by the Winograd
Schema Challenge (Levesque, Davis, and Morgenstern 2011), but adjusted to improve the scale and
robustness against the dataset-specific bias. Formulated as a fill-in-a-blank task with binary options,
the goal is to choose the right option for a given sentence which requires commonsense reasoning.

We use the lm-eval-harness (Gao et al., 2023) to evaluate the LLM on these tasks’ test set and report
the zero-shot performance.
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Figure 7: (a) reports the average medical perplexity of the OpenLLaMa-3B using our strategies.
’5b HQ’ means the LLM using our strategies I and II. ’5b rate-fixed-data-dynamic’ means the LLM
using our three strategies. ’Baseline’ is the average medical perplexity of the OpenLLaMa-3B model
that has been continually pre-trained with 50 billion medical tokens. (b) shows the rate between the
bottom 5 layers’ average relative parameter and the top 5 layers’ average relative parameter update
of the OpenLLaMa-3B using our strategies. ’Baseline’ is the rate of the OpenLLaMa-3B model
during the continual pre-training with 50 billion medical tokens.

D THE PERPLEXITY AND RELATIVE PARAMETER UPDATE RATE OF THE LLM
USING OUR STRATEGIES

From Figure 7(a), we observe that the LLM using our strategies gradually decreases its average med-
ical perplexity, indicating that the LLM is acquiring rich medical knowledge. Its average medical
perplexity at the fourth epoch is even lower than that of the OpenLLaMa-3B model, which has been
continually pre-trained with 50 billion medical tokens. From Figure 7(b), we also find that the ratio
between the average relative parameter updates of the bottom 5 layers and the top 5 layers of the
OpenLLaMa-3B model using our strategies is closer to 1. This suggests that the plasticity gradient
and the stability gradient are more balanced when employing our strategies.

E DEPLOYING OUR STRATEGIES INTO THE GENERAL CONTINUAL
PRE-TRAINING SETTING

Figure 8: We report the average performance of the 10 commonsense and reading compression task
here. The Model is Pythia-410m.

Continually pre-training one LLM on another large corpus is an approach to boost its general ability
(Gupta et al., 2023). We consider the scenario of continually pre-training the Pythia-410m model
on the RefinedWeb dataset. The Pythia-410m model has been pre-trained on the Pile dataset. In this
context, we use the average performance of 10 commonsense and reading comprehension tasks, as
detailed in Appendix C, to measure the LLM’s general task performance. To test the effectiveness
of strategy I in the general continual pre-training setting, we conduct multi-epoch experiments with
different training subset sizes. The tokens in each training subset are randomly sampled from the
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RefinedWeb dataset and the computational consumption of each experiment can not be beyond the
compute budget (100 billion tokens). From Figure 8, we find that strategy I indeed helps the Pythia-
410m model to mitigate the stability gap and achieve better peak performance. We also find the best
performance among our experiments is achieved when pre-training the LLM with 11 billion tokens
for 7 epochs. However, we can not find a good quality filter for the second strategy. We have tried
to train a KenLM on WikiText as the quality filter for measuring the sample’s quality in improving
LLMs’ general ability. But it does not work. From Figure 8, we find that strategies I and III can help
the LLM to reduce the stability gap and achieve higher performance.

F EFFECTIVENESS OF OUR STRATEGIES IN THE LEGAL DOMAIN

We consider strong baselines and report their legal performance in Table 5.

Method Training tokens number MMLU-International-Law MMLU-Professional-Law Contract-QA Avg
OpenLLaMa-3B - 27.1 28.4 51.0 35.5
Full token baseline 50B 28.1 29.4 54.4 37.4
Re-warming and re-decaying 50B 28.5 27.3 55.1 37.0
Replay 10B data 50B 29.3 29.0 54.4 37.6
Our strategies 20B 31.0 31.2 57.0 39.7

Table 5: Zero-shot accuracy across various legal benchmarks.

G IMPACT OF LEARNING RATE AND TRAINING SUBSET SIZE

Figure 9: (a) reports the performance of TinyLlama-1.1B across multiple epochs. All these exper-
iments use our strategies with different pre-training learning rates. (b) reports the performance of
OpenLlama-3B across multiple epochs. All of the experiments in (a) and (b) use our strategies with
different pre-training learning rates. (c) reports the performance of OpenLlama-3B across multiple
epochs with different training subset sizes S. To collect the pre-training corpus with different sizes,
we first rank all samples of the 50 billion medical tokens based on the perplexity calculated by the
trained KenLM (see Sec. 3.1). Then, we select the first S billion tokens with the lowest perplex-
ity. For all experiments here, we report the average task performance of PubMedQA, MedMCQA,
MMLU-medical-genetics, and MedQA-4-Option tasks.

Impact of the learning rate To analyze the influence of training factors like learning rate and
training subset size, we conduct a series of experiments. We put the details in Appendix xxx. We
find that too high learning rate leads to severe general-ability drops and too low leads to poor learning
of new domain knowledge. Too large a subset (e.g., 10 billion tokens) results in a stability gap and
slower performance, too small a subset yields better initial performance, but it also causes quick
overfitting in later epochs. We further verify the best hyperparameter setup for our experiments.
The pre-training learning rate is a crucial factor for updating LLMs during continual pre-training. To
investigate its impact on our strategies, we conduct continual pre-training experiments with different
learning rates. From Figure 9(a) and (b), we find that the optimal learning rate varies with the LLM
scale: a small LLM (e.g., TinyLlama-1.1B) requires a higher learning rate (e.g., 3e-4), whereas
larger LLMs (e.g., OpenLlama-3B) benefit from a lower learning rate (e.g., 3e-5). If the learning
rate is too low (e.g., 3e-5 for TinyLlama-1.1B), the LLM cannot learn domain knowledge effectively
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to boost performance. Conversely, if the learning rate is too high (e.g., 3e-4 for OpenLlama-3B),
performance declines as the large learning rate leads to a significant plasticity gradient, causing the
LLM to lose its general instruction-following ability for completing tasks. Based on our analysis
experiments, we set the pre-training learning rate at 3e-4 for TinyLlama and 3e-5 for OpenLlama-
3B’s experiments.

Impact of the training subset size The size of the training subset is another important factor in
our strategies. To determine the optimal training subset size, we conduct pre-training experiments
on Llama-3b using various training subset sizes. From Figure 9(c), we observe that a smaller high-
quality subset yields better initial performance and mitigates the stability gap (e.g., 1 billion tokens),
but it also causes the performance to drop quickly in later epochs due to overfitting. A larger subset
(e.g., 10 billion tokens) results in a stability gap and slower performance recovery, as the LLM
needs to maintain a high plasticity gradient to learn a large number of new samples. Based on our
experiments, we select a subset with 5 billion high-quality tokens, as it mitigates the stability gap,
achieves the best peak performance, and is computationally effective.

H THE TRAINING DETAILS OF DEPLOYING OUR STRATEGIES INTO THE
LLAMA-3 MODEL

Pre-training details: The pre-training task is to predict the next token with a context size of 8192.
The training is executed using 16 H100 80GB GPUs. We employ the AdamW optimizer with β1 =
0.9, β2 = 0.95, a weight decay of 0.01, and a learning rate of 3e-5. We use a cosine learning rate
scheduler with a 0.1 warmup ratio for gradual adaptation to training complexity and bf16 precision
for computational efficiency. Gradient accumulation is set to 12 steps, and each training batch
contains about 340 million tokens. We also add support for FlashAttention-2 (Dao, 2023) for more
efficient inference and long-context decoding.

Task-specific finetuning details: We employ the AdamW optimizer with a weight decay of 0.01 and
a learning rate of 3e-5. We use a cosine learning rate schedule with a 10% warmup ratio, decaying
the final learning rate to 10% of the peak learning rate. We fine-tune the LLMs for 3 epochs. Since
MMLU (Hendrycks et al., 2020a) does not have a training set, we follow (Chen et al., 2023b) and
primarily consider the MMLU-Medical-Genetics benchmark, evaluating the model finetuned on
MedMCQA.

For baselines in task-specific fine-tuning, we consider three kinds of baselines here: (1) Task-specific
finetuning of the base model of open-source LLMs. This includes models such as Llama-2-70B,
Llama-3-8B, and Llama3-Aloe-8B-Alpha (Gururajan et al., 2024). We copy their results from their
respective papers (Gururajan et al., 2024) or the Meditron paper (Chen et al., 2023b) except for
the Llama-3-8B, which we finetuned using the same process as our strategies. (2) Task-specific
finetuning of continually pre-trained LLMs like meditron (Chen et al., 2023b), BioMistral SLERP
7B (Labrak et al., 2024), Llama-3-8B-full. These LLMs have been continually pre-trained with a
medical corpus. We copy their results from their papers, except for Llama-3-8B-full, for which we
continually pre-train the Llama-3-8B with 50B medical tokens collected in Section 3.1, and then
finetune it using the same process as our strategies. (3) Closed-source LLMs. This includes models
like ChatGPT and GPT-4 (OpenAI, 2023). The results are measured using the Microsoft Azure
OpenAI API service (Shi et al., 2024).

Instructions-tuning details: We consider the combination of the question-answering training set of
MedMCQA (Pal et al., 2022), MedQA (Jin et al., 2021a), PubMedQA (Jin et al., 2019), classification
task HOC (Baker et al., 2016), relation extract task DDI2013 (Segura-Bedmar et al., 2013), inference
task BioNLI (Bastan et al., 2022), and summarization task MIMIC-CXR (Johnson et al., 2019)
tasks . To avoid potential data contamination, for each test sample of MedQA (Jin et al., 2021a),
PubMedQA (Jin et al., 2019), and MedMCQA (Pal et al., 2022) tasks, we delete the training samples
that contain its option. The specific dataset details are in Appendix C. For the training samples of
theMedQA (Jin et al., 2021a),PubMedQA (Jin et al., 2019), and MedMCQA (Pal et al., 2022) tasks,
we use the instruction template from the Meditron paper (Chen et al., 2023b). For the other datasets’
training samples, we use their original instructions. We employ the AdamW optimizer with a weight
decay of 0.01 and a learning rate of 3e-5. We use a cosine learning rate schedule with a 10% warmup
ratio, decaying the final learning rate to 10% of the peak learning rate. We fine-tune the LLMs for 3
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epochs. The global batch size is 96 and max sequence length is 1024. Unlike the above task-specific
fine-tuning, we only tune one LLM here and use the instruction-tuned LLM to test all benchmarks.

For the baselines’ results, we download the baselines’ official models/deploy their APIs and then
test their task performance using lm-eval-harnesses and Me-Llama’s evaluation frameworks. If the
paper does not release its model, we copy the results from the original paper (e.g., Me-Llama).

Task type Classification Relation extraction Natural Language Inference Summarization
Datasets HOC DDI-2013 BioNLI MIMIC-CXR
Mistral-7B-instruct (Jiang et al., 2023) 35.8 14.1 16.7 12.5
Zephyr-7B-instruct-β (Tunstall et al., 2023) 26.1 19.4 19.9 10.5
PMC-Llama-7B (Wu et al., 2023) 18.4 14.7 15.9 13.9
Medalpaca-13B (Han et al., 2023) 24.6 5.8 16.4 1.0
AlpaCare-13B (Zhang et al., 2023b) 26.7 11.0 17.0 13.4
BioMedGPT-LM 7B (Zhang et al., 2023a) 23.4 15.5 17.9 6.2
Me-Llama-13B (Xie et al., 2024b) 33.5 21.4 19.5 40.0
JSL-Med-Sft-Llama-3-8B (johnsnowlabs, 2024) 25.6 19.7 16.6 13.8
Llama-3-8B instruct 31.0 15.1 18.8 10.3

GPT-3.5-turbo-1106 54.5 21.6 31.7 13.5
GPT-4 (OpenAI, 2023) 60.2 29.2 57.8 15.2

Llama-3-physician-8B instruct (ours) 78.9 33.6 76.2 37.7

Table 6: Performance comparison for general medical tasks in the instruction-tuning setting. For
BioNLI, DDI 2023, and HOC tasks, we report macro-F1. For MIMIC-CXR summarization tasks,
we report Rouge-L as the result.
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