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Abstract
Message-passing graph neural networks
(MPNNs) and structural features (SFs) are corner-
stones for the link prediction task. However, as
a common and intuitive mode of understanding,
the potential of visual perception has been
overlooked in the MPNN community. For the
first time, we equip MPNNs with vision structural
awareness by proposing an effective framework
called Graph Vision Network (GVN), along with
a more efficient variant (E-GVN). Extensive
empirical results demonstrate that with the
proposed framework, GVN consistently benefits
from the vision enhancement across seven
link prediction datasets, including challenging
large-scale graphs. Such improvements are
compatible with existing state-of-the-art (SOTA)
methods and GVNs achieve new SOTA results,
thereby underscoring a promising novel direction
for link prediction. The official code is available
at https://github.com/WEIYanbin1999/EGVN.

1. Introduction
Link prediction, which predicts the presence of a connection
between two nodes, is a core task in graph machine learning.
It is crucial in numerous applications such as recommenda-
tion systems (He et al., 2020), drug interaction prediction
(Yamanishi et al., 2008), and knowledge-based reasoning
(Bordes et al., 2013; Wei et al., 2023).

Message-passing graph neural network (MPNN) (Kipf &
Welling, 2017; Hamilton et al., 2017) is a prominent and
powerful tool for link prediction. It generates node repre-
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sentations and aggregates them into link representations to
predict the existence of links. Besides, various structural
features (SFs), which are characteristics derived from the
graph topology to capture relationships and properties of
nodes and edges, are integrated into MPNNs to enhance
their link prediction capabilities (Zhang & Chen, 2018; You
et al., 2021; Zhu et al., 2021; Yun et al., 2021; Chamberlain
et al., 2023; Wang et al., 2024). This integration led to sig-
nificant advancements, making the SF-enhanced MPNNs
dominate the link prediction task.

Considering human perception of graph data, one of the
most crucial means is intuitively interpreting of graph in-
formation through visual perception. While the structural
awareness in MPNNs is derived from message-passing
paths, and SFs are typically based on specific heuristic
priors, both approaches have overlooked the potential of
utilizing visual modalities to comprehend graph structures.
As a fundamental capability of human perception, vision
has matured into a thriving field supported by robust re-
search tools, such as readily available visual encoders such
as VGG16 (Simonyan & Zisserman, 2015), ResNet50 (He
et al., 2016), and ViT (Dosovitskiy et al., 2021). These tools
offer powerful capabilities for visual information aware-
ness and extraction. Various research domains, including
natural language processing, have successfully integrated
visual modalities, leading to significant advancements in
areas such as visual question-answering (Antol et al., 2015)
and multimodal large language models (Zhang et al., 2024).

Given these developments, it is both timely and logical to
consider incorporating vision into MPNNs. To be specific,
we focus on integrating visual graph awareness into the
MPNN architecture and exploring the roles that vision can
play in enhancing link prediction. To this end, we propose
three important but unexplored research questions:

• RQ1: For the link prediction task, what is the effective
approach to be aware of graph structures from vision?

• RQ2: Does incorporating vision awareness into graph
structures enhance link prediction? If so, what are the
underlying reasons?
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• RQ3: If vision-based structural awareness proves ben-
eficial, how can it be effectively fused into the MPNN
architecture?

To address the above research questions, we propose a novel
framework called Graph Vision Network (GVN), as well as
a more efficient variant E-GVN. The proposed models seam-
lessly incorporate visual awareness of graph structures into
MPNNs for link prediction, while maintaining orthogonal
compatibility with existing methods. Extensive experiments
across seven major link prediction benchmarks, including
challenging large-scale graphs, demonstrate the benefits
of integrating vision into MPNN-based link prediction by
adopting the proposed GVN framework.

To our knowledge, GVN is the first method that incorpo-
rates vision awareness into MPNNs. It demonstrates consis-
tent SOTA effectiveness across various graph link prediction
tasks, highlighting a promising but unexplored direction.

Main Contributions. (i) We propose novel frameworks
GVN and E-GVN, that are the first in incorporating the
vision modality into MPNN for link prediction. They are
fully compatible with current models, ensuring seamless
integrations. (ii) We reveal properties during graph visual-
ization tailored to link prediction tasks and provide good
practices. (iii) We analyze the underlying benefits of vision
awareness in link prediction and provide empirical demon-
strations. (iv) We delve into the scalability on large-scale
graphs and propose efficient optimization in E-GVN. (v) We
demonstrate the efficacies of GVN and E-GVN across seven
common link prediction datasets, where vision awareness
brings orthogonal enhancements to the SOTA methods.

2. Related Works
Link Predictor. Link predictors can be divided into three
classes: 1) Node embedding methods (Perozzi et al., 2014;
Tang et al., 2015; Grover & Leskovec, 2016) represent each
node as an embedding vector and utilize the embeddings of
target nodes to predict links. 2) Link prediction heuristics
(Liben-Nowell & Kleinberg, 2003; Barabási & Albert, 1999;
Adamic & Adar, 2003; Zhou et al., 2009) create SFs through
manual design. 3) MPNN-based link predictors produce
node representations via the message-passing mechanism
(Kipf & Welling, 2017).

Structural Features. Structural Features (SFs) are char-
acteristics derived from the graph topology to capture the
relationships and properties of nodes and edges. Common
SFs are divided into two types: 1) Common Neighbor-based
SFs, including the Common Neighbor Count (CN) (Barabási
& Albert, 1999), Resource Allocation (RA) (Zhou et al.,
2009) and Adamic-Adar (AA) (Adamic & Adar, 2003). 2)
Path-based SFs, such as the Shortest Path Distance (SPD)
(Dijkstra, 1959), Double Radius Node Labeling (DRNL)

(Zhang & Chen, 2018) and Distance Encoding (DE) (Li
et al., 2020).

SF-enhanced MPNNs. The expressive power of naive
MPNN architectures is limited (Zhang et al., 2021), con-
strained by the 1-dimensional Weisfeiler-Lehman (1-WL)
test (Morris et al., 2019), and they fail to finely perceive
substructures like triangles (Chen et al., 2020). To over-
come these limitations, more recent studies adopt various
structural features to enhance MPNNs. For example, SEAL
(Zhang & Chen, 2018) incorporates SPD as structural fea-
tures into MPNNs by concatenating the SPD from each
node to the target nodes u and v with the node features.
Neo-GNN (Yun et al., 2021) and BUDDY (Chamberlain
et al., 2023) use heuristic functions to model high-order
common neighbor information. NCNC (Wang et al., 2024)
directly concatenates the weighted sum of node representa-
tions of common neighbors of u and v with the Hadamard
product of MPNN representations of u and v.

Graph Learning with Vision. Recent research has ex-
plored the potential of vision in graph learning. Das et al.
(2023) find that the vision-language models have competi-
tive node classification abilities. Wei et al. (2024) shows that
visual perception benefits language-based graph reasoning
tasks. However, no existing work realizes the potential of
vision in enhancing MPNN for link prediction, which is the
focus of this paper.

3. Preliminaries
Notations. A graph G = (V,E) comprises of a set V of n
nodes and a setE of e links. We denote the adjacency matrix
ofG byA ∈ Rn×n, whereA(u,v) > 0 if and only if the edge
(u, v) exists (i.e., (u, v) ∈ E). We define N(v) := {v ∈
V |Auv > 0} as the set of neighbors of node v, and Nk(v)
as the set of k-hop neighbors of node v. In other words, a
node u ∈ Nk(v) if and only if u and v are reachable within
k hops. The node feature matrix XG ∈ Rn×F contains
the node features in G, where the v-th row xv corresponds
to the feature of node v. We use Skuv = (V kuv, E

k
uv) to

denote the k-hop subgraph enclosing the link (u, v), where
V kuv is the union of k-hop neighbors of u and v, and Ekuv
is the union of links that can be reached by a k-hop walk
originating at u or v. Moreover, Skv is the k-hop subgraph
starting from node v.

MPNNs for Link Prediction. The MPNN is a com-
monly used model for link prediction. In MPNN, message
passing is employed to iteratively update node representa-
tions based on information exchanged between neighboring
nodes. Mathematically, this mechanism can be written as

htv = U t(ht−1
v ,AGG({M t(ht−1

v ,ht−1)
u )|u ∈ N(v)})),

YG = MPNN(XG, G), yv = hkv ,
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Figure 1. An illustration of the GVN framework (left) and its efficient variant E-GVN (middle), with the example illustrations of subgraph
visualization images (right). GVN and E-GVN seamlessly incorporate visual awareness of graph structures into MPNNs, which boosts
the link prediction capabilities while maintaining the orthogonal compatibility with existing methods.

where htv is the representation of node v after t layers, U t,
M t and AGG are the update, message-passing, and aggre-
gation functions of layer t, respectively. YG ∈ Rn×F ′

is the
matrix of final node representations by MPNN for G, whose
the vth row yv is the final representation of v. Given YG,
link probabilities can be computed as p(u, v) = R(yu,yv),
where R is a learnable readout function.

4. Methodology
In this section, we present the proposed GVN framework.
An illustration of GVN is in Figure 1. In Sections 4.1 to 4.3,
we will delve into the detailed designs inside, along with ad-
dressing the research questions raised in the introduction. In
Section 4.4, we propose a computationally efficient variant
of GVN for large-scale graphs.

4.1. Scope-Decoupled Subgraph Visualization

Link-Centered Subgraph Visualization. Beginning with
RQ1 (i.e., For the link prediction task, what is the effective
approach to be aware of graph structures from vision?),
we transform graph structures into visual representations
by rendering them as images during pre-processing. As
large-scale graphs often have thousands of nodes and edges,
we utilize k-hop subgraph sampling, a common practice
in graph learning (Hamilton et al., 2017). This method
concentrates on visual awareness via the most relevant local
k-hop subgraph Skuv around the central link (u, v), while
excluding distant structures that may introduce noise. In
line with the locality principle1 and effective practices of
many MPNNs with k ≤ 3 (Kipf & Welling, 2017; Hamilton
et al., 2017; Xu et al., 2019; Velickovic et al., 2018; Chen
et al., 2022), we limit k, which defines the visualized scope,
to a maximum of 3.

1Locality Principle: Correlated information is contained within
the near neighbors (Bronstein et al., 2017; Wu et al., 2020).

To be specific, utilizing existing automated graph visual-
ization tools (Details in Appendix F) such as Graphviz
(Gansner & North, 2000), Matplotlib (Tosi, 2009), and
Igraph (Gabor Csardi, 2006), a given query link (u, v) and
its surrounding k-hop subgraph Skuv are mapped one-to-one
into an image Ikuv by a graph visualizer GV. Formally, this
is expressed as Ikuv = GV(Skuv, u, v).

In this process, three key aspects are noteworthy:

1) Keeping Style Consistency. It is crucial that all visual-
ized subgraphs maintain consistency in the graph visualizer
GV, such as uniformly using Graphviz with fixed configura-
tions (e.g., graph layout algorithm, node colors, and shapes).
This prevents inconsistent image styles from introducing
additional learning difficulties and unstable training.

2) Highlighting the Queried Link. The unique role of the
queried link is essential for link prediction. By default, the
end nodes of the queried link are colored to emphasize their
roles, and the link itself is masked for prediction.

3) Ablating Node Labels. All the node labels are omitted,
enabling the model to focus on the graph structure, which
benefits generalizability.

Figure 2. Illustrations of visual graph images with different k’s.

Decoupled Vision Scope. While the perception scope ex-
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pands during message passing in MPNN, we fix the visual
perception scope k during visualization. This ensures that
the scope in vision can be decoupled from which in message
passing and offers two key advantages. First, both theoreti-
cal analysis and empirical evidence (Zeng et al., 2021) show
that a decoupled scope independent from message-passing
can improve expressivity of MPNN by addressing the over-
smoothing issue (Li et al., 2018; Kenta Oono, 2020; Shen
et al., 2024), and enhances the computational scalability of
the models by alleviating the neighbor explosion problem
(Chiang et al., 2019; Zeng et al., 2019). Second, as shown
in Figure 2, an excessively large visual perception scope
can lead to overcrowding of nodes/edges on a fixed-size
canvas, resulting in a cluttered appearance that complicates
graph interpretation. By using a small k, we maintain image
clarity independent of message passing.

4.2. Adaptive Extraction of Visual Structural Features

The obtained visual graph image Ikuv passes through a vision
encoder VEψ , with trainable parameter ψ, to extract visual
structural features (VSFs) vuv = VEψ(I

k
uv) ∈ RS for the

local subgraph around the queried link (u, v). By default,
we use the vision encoder of ResNet502, and extract VSFs
from its last convolutional layer.

To answer RQ2 (i.e., Does incorporating vision awareness
into graph structures genuinely enhance link prediction?
If so, what are the underlying reasons?), we analyze the
superiority of VSFs for link prediction from three aspects:

Link Discriminative Power. MPNNs struggle to differen-
tiate links involving isomorphic nodes (Zhang et al., 2021;
Chamberlain et al., 2023). As depicted in Figure 3(a), nodes
v2 and v3 have isomorphic subgraphs, resulting in iden-
tical node representations yv2 = yv3 after permutation-
equivariant message passing, akin to the 1-dimensional
Weisfeiler-Lehman test. Consequently, the link probabilities
p(v1, v2) = R(yv1 ,yv2) and p(v1, v3) = R(yv1 ,yv3) are
identical. This fails to account for the differences between
v2 and v3 w.r.t. v1 and is detrimental for link prediction.
For example, v2 is 5 hops away from v1, while v3 is just 2
hops away. Moreover, v1 and v3 share a common neighbor,
but not v1 and v2. On the other hand, Figures 3(b) and
3(c) show the 1-hop subgraphs surrounding these two links,
and they are clearly very different. Therefore, 1-hop VSFs
extracted from them help distinguish these links.

Remark 4.1. With the same perceptive scope, VSFs can
discriminate links involving isomorphic nodes, whereas
MPNNs or the 1-dimensional Weisfeiler-Lehman test cannot.

Note that when VSFs provide discriminative power in its

2https://download.pytorch.org/models/
resnet50-0676ba61.pth.

(a) (b) (c)

Figure 3. (a) An illustration of the challenge in distinguishing links
with isomorphic nodes. (b) and (c) are the 1-hop subgraphs sur-
rounding the links (v1, v2) and (v1, v3), respectively.

scope, our method allows the model to set the independent
scope of MPNNs via its depth. This enables the model
to benefit both from the refined structure awareness pro-
vided by VSFs and the capability to access more structure
information in a wider scope through deep MPNNs.

Fine-grained Substructure Awareness. The ability to cap-
ture substructures (motifs) is another perspective of MPNN
expressive power and plays a crucial role in areas like bi-
ology, molecular, and social networks (Chen et al., 2020;
Kanatsoulis & Ribeiro, 2024; Yan et al., 2024). However,
this can be challenging for MPNNs (Chen et al., 2020;
Arvind et al., 2020). We demonstrate in the following that
VSFs are helpful for MPNNs in capturing substructures.
Specifically, we follow the experimental setup in (Chen
et al., 2020). This involves generating two types of graph
datasets, Erdős-Rényi graphs and random regular graphs,
and compute the counts of two substructures including tri-
angles and 3-stars as ground-truth labels. We use MPNN
followed by a 3-layer MLP decoder as the architecture and
the VSFs are concatenated after the MPNN-produced repre-
sentations. The evaluation metric is the normalized mean
squared error (i.e., ratio of the mean squared error over the
variance of ground-truth labels). Table 1 shows the best
and median (third-best) performance over five runs with
different random seeds. As can be seen, incorporating VSFs
significantly improves the substructure capturing abilities
of MPNNs. More details of this experiment are provided in
Appendix E.

Erdős-Rényi Random Regular

Triangle 3-Star Triangle 3-Star

Best Median Best Median Best Median Best Median

GCN 0.69 0.83 0.49 0.55 1.84 2.79 2.81 4.67
VSF+GCN 6.76E-9 1.24E-8 3.22E-8 1.75E-7 2.06E-7 4.97E-7 7.11E-8 1.56E-7
SAGE 0.13 0.17 2.35E-6 1.92E-5 0.37 0.50 4.94E-7 7.72E-5
VSF+SAGE 3.24E-6 2.70E-5 1.27E-8 9.91E-7 1.02E-5 4.39E-5 5.11E-8 4.04E-6

Table 1. The performance of MPNNs with VSFs for counting tri-
angles and 3-star on Erdős-Rényi and Random regular graphs.

Remark 4.2. VSFs can provide fine-grained substructure
capturing ability for MPNNs via VSFs.

Information-rich and Adaptive SF Extraction. While
the design of existing structural features rely on heuris-
tics, VSFs encode the whole subgraph, making them more
information-rich. Figure 4 shows the reproduction ratios3

3The reproduction ratio is defined as the percentage (%) of SFs
successfully predicted.
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Figure 4. Reproduction ratios of various structural features based
on VSFs on the ogbl-ddi dataset.

of various SFs based on VSFs on ogbl-ddi, by feeding the
VSFs extracted from the pretrained ResNet50 into a train-
able 3-layer MLP. As can be seen, VSFs effectively capture
most of the information from a wide array of structural fea-
tures, underscoring their comprehensive nature as a versatile
structural feature pool.
Remark 4.3. VSFs involve the information of a wide range
of structural features.

The reproduction ratios of various SFs reflect the relative
distribution of information within the VSFs. Table 2 com-
pares the reproduction ratios of SFs between VSFs obtained
from a pre-trained ResNet50 and those after finetuning. The
latter is derived from a ResNet50 encoder fine-tuned for
link prediction with a 2-layer MLP on the ogbl-ddi and
PubMed datasets. Note that ogbl-ddi is a very dense graph,
while PubMed is much sparser. As shown in Table 2, after
finetuning on ogbl-ddi, the reproduction ratio of path-based
SFs (SPD, DRNL, and DE) consistently decreases. This
aligns with the under-performance observed in path-based
link prediction models like SEAL (Zhang & Chen, 2018)
and NBFNet (Zhu et al., 2021) on the ogbl-ddi dataset. This
is because in the ogbl-ddi dataset, most node pairs are reach-
able within two hops, making path-based structural features
like SPD less informative. On the other hand, in the sparser
PubMed dataset where path information is more valuable,
the reproduction ratios of common neighbor-based simi-
larity functions (CN, RA, AA) consistently increase after
finetuning. This trend is demonstrated by models such as
NeoGNN, Buddy, and NCCN (Yun et al., 2021; Chamber-
lain et al., 2023; Wang et al., 2024), which consistently
benefit from common neighbor similarity functions across
various datasets. These observations highlight the ability
of VSFs to adapt the internal information types to meet the
specific demands of different scenarios through finetuning.

Common Neighbor-based SFs Path-based SFs

CN RA AA SPD DRNL DE

ogbl-ddi (w/o) 80.23% 78.47% 78.89% 75.85% 73.34% 72.12%
ogbl-ddi (w/) 82.39% 79.66% 80.24% 31.11% 29.20% 35.49%

PubMed (w/o) 76.39% 78.87% 72.56% 76.60% 72.36% 71.19%
PubMed (w/) 83.96% 82.80% 78.86% 78.77% 73.34% 71.59%

Table 2. Reproduction ratios of SFs in VSFs with and without
finetuning on the ogbl-ddi and PubMed datasets.
Remark 4.4. Through finetuning, VSFs can adaptively ad-

just their emphasis on different types of structural informa-
tion, thus providing scenario adaptability.

VSFs are not permutation-equivariant, yet they remain ef-
fective with MPNNs, as will be shown in Section 5.1. This
is potentially attributed to two reasons: 1) Learnable VSFs
capture specific information like structural patterns or motifs
(see Remark 4.2). 2) Visualization introduces permutation-
based augmentations (e.g., varying layouts), making the
decoder less sensitive to node order.

4.3. Compatible Features Integration

After extracting valuable visual structure features vuv, the
next step is to integrate them with MPNNs, addressing RQ3
(i.e., If vision-based structural awareness proves beneficial,
how can it be effectively fused into the MPNN architecture?).

To ensure general applicability of the GVN framework, the
feature integration process should be compatible with exist-
ing methods, to benefit from both previous advances and the
newly introduced visual structural awareness. Based on this
compatibility principle, we offer three widely applicable
feature integration strategies, all of which are independent
of the message-passing process in MPNNs.

1) Attention-based Integration. We first project vuv ∈ RS
to ṽuv ∈ RF ′

for dimension alignment. Then the MPNN-
produced node representations yu ∈ RF ′

and yv ∈ RF ′
are

updated with ṽuv via cross-attention (denoted CA), result-
ing in vision-aware node representations ỹu = CA(yu, ṽuv)
and ỹv = CA(yv, ṽuv). Finally the link existence proba-
bility can be computed as p(u, v) = R(ỹu, ỹv), where R is
the readout function.

2) Concatenated Integration. We concatenate vuv with yu
and yv to produce vision-aware node representations ỹu and
ỹv, as: ỹu = yu||vuv, ỹv = yv||vuv. Then we use the
readout function to produce the link existence probability
p(u, v) = R(ỹu, ỹv).

3) Weighted Integration. We use an MLP to construct a
vision-based decoder model (denoted VDecoder), which
takes vuv as input to directly predict the link existence
probability based solely on visual structural awareness,
i.e., pvision(u, v) = VDecoder(vuv). Simultaneously,
the readout function predicts the link existence probabil-
ity based on the node representations produced by the
MPNN, i.e., pMPNN (u, v) = R(yu,yv). The final link
existence probability p(u, v) is a weighted integration of
both predictions with a learnable weight δ, i.e., p(u,v) =
δ · pvision(u, v) + (1− δ) · pMPNN (u, v).

These integration strategies can be freely chosen as needed.
Empirically, we observe that attention-based integration is
more effective and therefore used by default.

Thus far, we have presented the GVN framework to address

5



Open Your Eyes: Vision Enhances Message Passing Neural Networks in Link Prediction

Algorithm 1 The GVN Framework (Attention-based).
Require: Graph G = (V,E) with node attributes XG,

queried links Q = {(u, v)}.
Ensure: Link existence probabilities {p(u, v)|(u, v) ∈ Q}

1: YG ← MPNN(G,XG)
2: for each (u, v) ∈ Q do
3: Step 1: Scope-decoupled Subgraph Visualization
4: Skuv ← Extract k-hop subgraph around (u, v)
5: Ikuv ← GV(Skuv)
6: Step 2: Adaptive Extraction of VSFs
7: vuv ← VEψ(I

k
uv)

8: Step 3: Compatible Features Integration (default)
9: yu,yv ← YG[u],YG[v]

10: ṽuv ← Linear(vuv)
11: ỹu, ỹv ← CA(yu, ṽuv),CA(yv, ṽuv)
12: p(u, v)← R(ỹu, ỹv)
13: Output p(u, v)
14: end for

the three research questions corresponding to the three main
steps in GVN to integrate vision information into MPNNs.
We summarize the GVN framework with default attention-
based integration in Algorithm 1. GVN Algorithms with
other integration are in Appendix A.1.

4.4. E-GVN: An Efficient Variant

Considering the scalability of GVN on large-scale graphs,
we propose a more efficient variant called Efficient GVN (E-
GVN), whose architecture is presented in Figure 1 and the
algorithm is in Appendix A.2. The specialized modifications
are introduced as follows.

Node-centered Subgraph Visualization. GVN requires
subgraph visualization for the surrounding area of each link,
which can be time-consuming. Therefore, in E-GVN, the
visualization area is changed from a link-centered k-hop
neighborhood Skuv to a node-centered k-hop subgraph Skv ,
with the central node v colored to highlight its role. This vi-
sualization process is formalized as Ikv = GV(Skv , v). Due
to the fact that the number of nodes is much smaller than the
number of links in most natural graphs, this approach sig-
nificantly reduces the visualization cost from O(l) to O(n),
where l and n denote the total number of links and nodes.

Partial-adaptive VSFs. GVN use end-to-end finetuning of
vision encoder VEψ to refine the VSFs. However, such end-
to-end finetuning requires retaining all visualization images
and thus lead to substantial memory overhead. To enhance
scalability in terms of space, E-GVN first freezes the vision
encoder to extract static VSF vv . Instead, those static VSFs
{vv} can be stored and loaded as a fixed vector repository,
significantly reducing the storage payload. After that, as
we still want the VSFs to flexibly adapt to the different
scenarios, we additionally append a trainable Adapter with

learnable parameter ϕ, which processes the static VSF vv
to adaptive ṽv , where ṽv = Adaptorϕ(vv) for each node v.

Pre-MPNN Integration on Attributes. Unlike GVN,
which integrates VSFs after the MPNN, E-GVN incorpo-
rates ṽv into the node attribute xv to produce vision-aware
node attribute x̃v, which are then fed into the MPNN as
inputs. Due to the integration occurs before message pass-
ing, this allows the vision-aware structural information to
participate in the message propagation and aggregation to
get further enhanced.

To achieve this, the three integration strategies in GVN
are adapted as follows: 1) Attention-based Integration:
x̃v = CA(xv, ṽv); 2) Concatenated Integration: x̃v =
xv||ṽv; 3) Weighted Integration: x̃v = δLinearϕ1(xv) +
(1 − δ)Linearϕ2

(ṽv), where δ is a learnable weight and
Linearϕ1

, Linearϕ2
are linear layers. Finally, the MPNN-

produced node representations are processed by a readout
function to predict the link existence probability.

Time Complexity. Let n and l be the numbers of nodes
and links, respectively, F and F ′ be the dimensions of node
features and MPNN-produced representations, respectively,
O(MPNN) and O(VE) be the complexities of the MPNN
and vision encoder, respectively, and S be the dimension of
the VSF. With the default attention-based integration, the
time complexities of GVN and E-GVN are O(MPNN) +
lO(VE) +O(l(SF ′ + F ′2)) and O(MPNN) + nO(VE) +
O(n(S2+SF+F 2)), respectively. We can see that E-GVN
reduces the computational complexity, as n is much less
than l. More details are provided in Appendix B.

5. Experiments
In this section, we conduct a series of experiments to demon-
strate the effectiveness of the proposed GVN and E-GVN.

5.1. Evaluation on Real-World Datasets

Datasets. We conduct experiments on seven widely used
link prediction benchmarking, including the Planetoid cita-
tion networks: Cora (McCallum et al., 2000), Citeseer (Sen
et al., 2008), and Pubmed (Namata et al., 2012), and the
large-scale OGB link prediction datasets (Hu et al., 2020):
ogbl-collab, ogbl-ppa, ogbl-citation2 and ogbl-ddi. Statis-
tics of these datasets are shown in Appendix C.

Baselines. Baseline methods used include 1) Link predic-
tion heuristics: Common Neighbor counts (CN) (Barabási
& Albert, 1999), Adamic-Adar (AA) (Adamic & Adar,
2003), and Resource Allocation (RA) (Zhou et al., 2009);
2) MPNNs: GraphSAGE (Hamilton et al., 2017) and Graph
Convolutional Network (GCN) (Kipf & Welling, 2017); 3)
Advanced SF-enhanced MPNNs: SEAL (Zhang & Chen,
2018) and NBFNet (Zhu et al., 2021) with path-based SFs,
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Table 3. Link prediction performance (average score ± standard deviation). “-” indicates that the training time is > 12 hour/epoch (for
GVN) or out of memory (for NBFnet). The best performance is shown in bold, and the second-best is underlined.

Cora Citeseer Pubmed ogbl-collab ogbl-ppa ogbl-citation2 ogbl-ddi
(HR@100) (HR@100) (HR@100) (HR@50) (HR@100) (MRR) (HR@20)

CN 33.92±0.46 29.79±0.90 23.13±0.15 56.44±0.00 27.65±0.00 51.47±0.00 17.73±0.00

AA 39.85±1.34 35.19±1.33 27.38±0.11 64.35±0.00 32.45±0.00 51.89±0.00 18.61±0.00

RA 41.07±0.48 33.56±0.17 27.03±0.35 64.00±0.00 49.33±0.00 51.98±0.00 27.60±0.00

SAGE 55.02±4.03 57.01±3.74 39.66±0.72 48.10±0.81 16.55±2.40 82.60±0.36 53.90±4.74

GCN 66.79±1.65 67.08±2.94 53.02±1.39 44.75±1.07 18.67±1.32 84.74±0.21 37.07±5.07

GVNGCN 81.13±0.86 83.93±0.97 73.17±1.02 - - - -
E-GVNGCN 80.01±1.55 82.85±1.90 71.94±1.37 62.14±1.37 32.15±1.58 86.10±0.13 60.21±6.67

Neo-GNN 80.42±1.31 84.67±2.16 73.93±1.19 57.52±0.37 49.13±0.60 87.26±0.84 63.57±3.52

SEAL 81.71±1.30 83.89±2.15 75.54±1.32 64.74±0.43 48.80±3.16 87.67±0.32 30.56±3.86

NBFnet 71.65±2.27 74.07±1.75 58.73±1.99 - - - 4.00±0.58

BUDDY 88.00±0.44 92.93±0.27 74.10±0.78 65.94±0.58 49.85±0.20 87.56±0.11 78.51±1.36

NCNC 89.65±1.36 93.47±0.95 81.29±0.95 66.61±0.71 61.42±0.73 89.12±0.40 84.11±3.67

GVNNCNC 90.70±0.56 94.12±0.58 82.17±0.77 - - - -
E-GVNNCNC 91.47±0.36 94.44±0.53 84.02±0.55 68.14±0.75 63.45±0.66 90.72±0.24 87.31±3.04

Neo-GNN (Yun et al., 2021), BUDDY (Chamberlain et al.,
2023), and NCNC (Wang et al., 2024) that is the SOTA
SF-enhanced MPNN.

Performance Evaluation. The use of evaluation metrics fol-
lows (Chamberlain et al., 2023; Wang et al., 2024). Specifi-
cally, for the Planetoid datasets, we use the hit-ratio at 100
(HR@100), while for the OGB datasets, we use the metrics
in their official documents,4 i.e., hit-ratio at 50 (HR@50) for
ogbl-collab, HR@100 for ogbl-ppa, Mean Reciprocal Rank
(MRR) for ogbl-citation2, and hit-ratio at 20 (HR@20) for
ogbl-ddi.5 All results are reported as average and standard
variation over 10 trials with different random seeds.

Implementation Details. All experiments are conducted
on an NVIDIA A100 80G GPU. For GVN and E-GVN,
the candidate hyperparameters include the visual perception
scope (i.e., the subgraph visualization hop) k ranging from
1 to 3, the hidden dimension ranging from 512 to 2048,
the number of MPNN layers and readout predictor layers
varying from 1 to 3, the two separate learning rates for
trainable VSFs and compatible feature integration among
{10−7, 10−5, 0.001, 0.01}, and the weight decay from 0
to 0.0001. The hyperparameters with the best validation
accuracy are selected. For the model parameters, we utilize
the Adam algorithm (Kingma, 2014) as the optimizer. As
default settings, we use Graphviz (Gansner & North, 2000)
as the graph visualizer and use a pretrained ResNet50 (He
et al., 2016) as the vision encoder. More details on the
experimental setup are in Appendix D.

Configurations of the Proposed Methods. We use
four configurations of the GVN and E-GVN frameworks:
GVNGCN , GVNNCNC , E-GVNGCN , and E-GVNNCNC ,
as shown in Table 3. The subscript (i.e., ‘GCN’ or ‘NCNC’)

4https://ogb.stanford.edu/docs/leader linkprop/.
5Evaluation results on other metrics are in Section 5.2.

indicates the MPNN model used within the frameworks.
Our choice of MPNNs is based on the following consid-
erations: First, using GCN, a classic and straightforward
MPNN, within the proposed frameworks directly demon-
strates the enhancement provided by vision awareness when
compared to MPNN alone. This allows us to clearly see the
impact of incorporating the visual modality into MPNNs.
Second, based on NCNC, a state-of-the-art MPNN en-
hanced by advanced structural features, the comparison
between GVNNCNC /E-GVNNCNC and NCNC will high-
light the additional performance improvements from the
vision awareness that are orthogonal to existing advanced
methods. This demonstrates how visual features can comple-
ment and enhance existing sophisticated models. Although
we focus on these two MPNNs, the proposed GVN and
E-GVN are compatible with most MPNN models.

Main Results. Table 3 compares the performance of the
proposed methods with various baselines.

(i) By integrating visual structural features into GCN, GVN
enhances GCN with relative improvements on link pre-
diction performance (HR@100) by 21.47%, 25.13%, and
38.00% on Cora, Citeseer and PubMed, respectively. Sim-
ilarly, E-GVN achieves relative improvements of 19.79%,
23.51%, and 35.68% upon GCN on these three datasets. Ad-
ditionally, due to the efficient designs, E-GVN extends the
visual benefits to large-scale graph datasets ogbl-collab,
ogbl-ppa, ogbl-citation2 and ogbl-ddi, bringing relative
improvements of 38.86% (HR@50), 72.20% (HR@100),
1.60% (MRR), and 62.42% (HR@20), respectively. There-
fore, consistent results indicate that visual awareness has
been effectively integrated into GCN by the proposed meth-
ods and significantly enhances the link prediction perfor-
mance of GCN.

(ii) Based on SF-enhanced NCNC model, both GVNNCNC
and E-GVNNCNC still show remarkable improvements.
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Table 4. The performance comparison of the proposed methods against the strongest baseline NCNC across broader metrics.

Cora Citeseer Pubmed Collab PPA Citation2 DDI

hit@1 GVNNCNC 11.75±7.72 51.69±7.91 18.66±8.85 - - - -
E-GVNNCNC 8.66±4.39 59.30±5.53 16.88±9.58 11.04±3.01 6.53±1.52 86.62±1.04 0.42±0.08

NCNC 10.90±11.40 32.45±17.01 8.57±6.76 9.82±2.49 7.78±0.36 84.66±1.15 0.16±0.07

hit@3 GVNNCNC 26.66±5.96 59.97±6.21 32.23±5.69 - - - -
E-GVNNCNC 27.55±6.37 66.76±4.20 31.21±5.98 26.31±7.74 18.88±1.21 94.29±0.96 2.12±0.33

NCNC 25.04±11.40 50.49±12.01 17.58±6.57 21.07±5.46 16.58±0.60 92.37±0.56 0.59±0.42

hit@10 GVNNCNC 58.83±5.29 75.28±3.03 40.34±2.28 - - - -
E-GVNNCNC 55.98±4.14 77.12±2.95 47.90±2.86 43.12±5.77 31.16±1.67 97.07±1.01 50.88±11.35

NCNC 53.78±7.33 69.59±4.48 34.29±4.43 43.22±6.19 26.67±1.51 96.99±0.64 45.64±14.12

hit@20 GVNNCNC 70.01±4.44 81.11±1.30 53.33±2.67 - - - -
E-GVNNCNC 69.55±3.46 82.02±1.46 56.92±2.33 56.87±2.97 44.06±2.03 98.17±0.97 87.31±3.04

NCNC 67.10±2.96 79.05±2.68 51.42±3.81 57.83±3.14 35.00±2.22 97.22±0.94 83.92±3.25

hit@50 GVNNCNC 82.06±1.94 88.88±0.98 71.66±2.75 - - - -
E-GVNNCNC 82.99±2.95 88.97±0.58 71.55±1.19 68.14±0.75 52.58±0.30 99.09±0.66 95.95±0.75

NCNC 81.36±1.86 88.60±1.51 69.25±2.87 66.88±0.66 48.66±0.18 99.01±0.53 94.85±0.56

hit@100 GVNNCNC 90.70±0.56 94.12±0.58 82.17±0.77 - - - -
E-GVNNCNC 91.47±0.36 94.44±0.53 84.02±0.55 70.83±2.25 63.45±0.66 99.51±0.39 97.99±0.27

NCNC 89.05±1.24 93.13±1.13 81.18±1.24 71.96±0.14 62.02±0.74 99.37±0.27 97.60±0.22

mrr GVNNCNC 24.66±4.51 62.74±6.63 26.32±6.67 - - - -
E-GVNNCNC 23.27±3.39 66.49±3.53 27.11±5.88 18.04±3.01 19.66±0.11 90.72±0.24 13.32±2.75

NCNC 23.55±9.67 45.64±11.78 15.63±4.13 17.68±2.70 14.37±0.06 89.12±0.40 8.61±1.37

Although NCNC is a leading link prediction model by en-
hancing MPNN with dedicated common neighbor structural
features, adopting GVN and E-GVN brings additional im-
provements over NCNC. These results demonstrate that the
visual awareness provided by GVN or E-GVN own advan-
tages not covered by existing methods and can be used in
conjunction with current SOTA methods for better perfor-
mance. Therefore, GVNNCNC and E-GVNNCNC surpass
all baselines and are established as more powerful link pre-
diction approaches.

(iii) Compared to GVN, the computationally efficient de-
sign of E-GVN makes it more suitable for large-scale graphs.
GVNGCN is more powerful than E-GVNGCN . This may
be because the visual structural awareness in GVN is link-
based, therefore explicitly revealing link pairwise relations
such as common neighbors or shortest path differences for
distinguishing links with isomorphic nodes better. How-
ever, when using SF-enhanced NCNC, the improvements
brought by E-GVNNCNC surpass those of GVNNCNC . We
attribute this to the fact that in GVNNCNC , both the link-
centered visual awareness and the common-neighbor-based
SF can reveal the common neighbor information between
the link nodes, which makes their effects partially overlap.
In contrast, the pre-MPNN integration in E-GVN allows
vision-aware structural information to be further aggregated
during message passing, which provides more comprehen-
sive visual awareness.

5.2. Evaluation on Broader Metrics

Besides the metrics listed in Table 3, the performances of
proposed methods against the strongest baseline NCNC
with broader metrics are presented in Table 4. In total, E-

GVN achieves 39 best scores (in bold), GVN achieves 7
best scores, and our strongest baseline NCNC achieves 3
best scores. Therefore, GVNNCNC and E-GVNNCNC con-
sistently outperform NCNC in more comprehensive metrics.

5.3. Ablation and Sensitivity Analysis

Visualization Style Consistency. Table 5 shows that incon-
sistent styles degrade performance and emphasize keeping
styles consistent. The inconsistent styles are sampled from
a fixed range of node colors, shapes, and graph visualizers,
as detailed in Appendix G. In Appendix H, we include more
comprehensive findings by studying the impacts of node
colors (Appendix H.1), node shapes (Appendix H.2), and
node labeling strategies (Appendix H.3).

Visualization Scope Impact. Table 6 shows the perfor-
mance with varying visualization scopes k. The results
consistently show that k = 2 is enough for effective VSFs.

Graph Visualizer Selection. Table 7 shows the perfor-
mance with different graph visualizers. The results demon-
strate stable performance across various graph visualizers.

Vision Encoder Selection. Table 8 shows the performance
with different vision encoders. The results show stable
performance across various vision encoders.

Feature Integration Strategies. Table 9 shows the perfor-
mance when varying feature integration strategies in Sec-
tion 4.3. Experimental results suggest that in most cases,
the default attention-based integration (denoted “Attention”
in Table 9) is more effective than concatenated integra-
tion (denoted “Concat”) and weighted integration (denoted
“Weight”).
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VSF Adaptivity. Table 10 shows the impacts of VSF Adap-
tivity, where “freeze” means using a frozen vision encoder,
making VSFs static, “partial” adopts the partial adaptive
VSFs proposed in Section 4.4 that freezes the vision en-
coder but supplements it with a learnable adapter to provide
some adaptivity, and “full” means the models are fully fine-
tuned. Results show that static VSFs lose adaptivity, leading
to performance degradation. The “partial” strategy can
provide comparable performance with the “full” strategy,
demonstrating its effectiveness.

Table 5. Performance comparison between consistent and incon-
sistent visualization (HR@100).

Cora Citeseer
consistent inconsistent consistent inconsistent

GVNNCNC 90.70±0.56 89.88±0.47 94.12±0.58 93.65±0.64

E-GVNNCNC 91.47±0.36 90.29±0.61 94.44±0.53 93.99±0.51

Table 6. Performance comparison of the visualization scopes k.
Cora Citeseer

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

GVNNCNC 89.76±0.78 90.70±0.56 89.68±0.97 92.51±0.86 94.12±0.58 92.33±0.91

E-GVNNCNC 90.87±0.47 91.47±0.36 90.21±0.58 93.29±0.59 94.44±0.53 92.62±0.67

Table 7. Performance comparison of different graph visualizers.
Cora Citeseer

Graphviz Matplotlib Igrapj Graphviz Matplotlib Igraph

GVNNCNC 90.70±0.56 90.56±0.38 90.88±0.66 94.12±0.58 93.96±0.48 94.28±0.36

E-GVNNCNC 91.47±0.36 91.42±0.24 91.31±0.58 94.44±0.53 94.39±0.56 94.12±0.28

Table 8. Performance comparison of different vision encoders.
Cora Citeseer

ResNet50 VGG ViT ResNet50 VGG ViT

GVNNCNC 90.70±0.56 89.99±1.61 90.69±0.44 94.12±0.58 93.93±1.35 94.29±1.07

E-GVNNCNC 91.47±0.36 89.92±1.01 91.24±0.66 94.44±0.53 93.96±0.85 94.52±0.97

Table 9. Performance comparison of feature integration strategies.
Cora Citeseer

Attention Concat Weight Attention Concat Weight

GVNNCNC 90.70±0.56 85.65±6.25 89.99±1.64 94.12±0.58 86.33±4.18 93.93±1.04

E-GVNNCNC 91.47±0.36 76.58±7.79 90.66±1.56 94.44±0.53 88.25±5.54 93.88±1.21

Table 10. Performance comparison with varying VSF adaptivity.
Cora Citeseer

freeze partial full freeze partial full

GVNNCNC 89.57±0.62 90.52±0.65 90.70±0.56 91.55±0.79 93.75±0.75 94.12±0.58

E-GVNNCNC 89.66±0.54 91.47±0.36 91.53±0.55 92.72±0.48 94.44±0.53 94.52±0.67

5.4. Scalability Analysis

Figure 5 compares the inference time and GPU memory
for inferring one batch of samples from Cora (including
pre-processing time). Among all the methods in compari-
son, GVN is the most time-consuming, followed by SEAL
and NBFnet. These three methods also require consider-
ably more memory than the others. This elevated resource
consumption is due to the need for pre-processing and com-
putation for each link, and the storage of intermediate vari-
ables with respect to links. Particularly, GVN requires graph
visualization, which introduces extra pre-processing time.
Therefore, similar to SEAL and NBFnet, GVN is not well-
suited for large-scale graph computations. In contrast, the
visualization of E-GVN is node-dependent, which can be
reused for diverse links. After amortizing the pre-processing

visualization time across link queries, E-GVN still exhibits
computational overhead similar to the base models GCN and
NCNC. Therefore, when leveraging the lightweight base
models (e.g., GCN or NCNC), E-GVN maintains efficiency
for large-scale graphs.

Figure 5. Inference time and the use of GPU memory of different
methods on Cora.

5.5. Comparison with Positional Encodings

In addition to comparing with heuristic SFs, we further
demonstrate the effectiveness of VSFs by comparing them
against four representative encoding mechanisms for nodes:
1) 2-dimensional coordinates of nodes in the subgraph im-
age, 2) Laplacian positional encoding, 3) Distances to other
nodes, and 4) Node degree (centrality encoding). These
positional encodings (PEs) are utilized as node features and
processed by a 2-layer GCN followed by a 2-layer MLP
for link prediction. The comparison results of Hits@100
score among VSFs and these encoding mechanisms are pre-
sented in Table 11. As observed, VSFs outperform the PEs
across various datasets. Notably, directly encoding the 2-
dimensional coordinates proves insufficient, highlighting
the importance of employing a vision encoder to capture
comprehensive structural information.

Cora Citeseer Pubmed
VSF 71.32 ± 0.70 60.96 ± 0.68 48.27 ± 0.51
2-D Axis in Image 38.57 ± 1.22 33.29 ± 1.80 25.34 ± 0.95
Laplacian PE 55.14 ± 0.84 52.03 ± 1.17 46.80 ± 0.75
Distance 42.03 ± 0.82 56.65 ± 0.43 44.21 ± 0.36
Degree/Centrality 42.80 ± 1.52 44.15 ± 1.61 34.90 ± 1.23

Table 11. Link prediction effectiveness between VSFs and posi-
tional encodings (Hits@100).

6. Conclusion
We propose GVN and E-GVN, novel frameworks that first
reveal the vision potentials to enhance the link prediction
ability for MPNNs. We provide key practices and address
unexplored research questions in the integration of vision
and MPNN. Comprehensive experiments demonstrate that
the proposed methods significantly improve link prediction
and are fully compatible with existing methods. GVN ex-
hibits a novel direction for link prediction, with the potential
to extend to more graph learning tasks.
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Impact Statement
This work underscores the often-overlooked yet effective
role of visual perception in graph learning. By drawing
attention to this aspect, it is poised to generate discussion
and interest within the community. Additionally, it may
inspire the development of further research that combines
graph neural networks with visual insights, leveraging their
synergy across a broader range of applications. For example,
this approach could be extended to other graph tasks such
as node classification, as well as applied to various types of
graphs such as heterogeneous graphs and temporal graphs.
We leave these for future works.
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A. Supplementary Algorithms
This section provides the algorithms for GVN and E-GVN.

A.1. Algorithm for GVN with Selective Integration Strategies

Algorithm 2 The GVN Framework.
Require: Graph G = (V,E) with node attributes XG, queried linksQ = {(u, v)}.
Ensure: Link existence probabilities {p(u, v)|(u, v) ∈ Q}

1: YG ← MPNN(G,XG)
2: for each (u, v) ∈ Q do
3: Step 1: Scope-decoupled Subgraph Visualization
4: Skuv ← Extract k-hop subgraph around (u, v)
5: Ikuv ← GV(Skuv)
6: Step 2: Adaptive Extraction of VSFs
7: vuv ← VEψ(I

k
uv)

8: Step 3: Compatible Features Integration
9: yu,yv ← YG[u],YG[v]

10: if use Attention-based Integration then
11: ṽuv ← Linear(vuv)
12: ỹu, ỹv ← CA(yu, ṽuv),CA(yv, ṽuv)
13: p(u, v)← R(ỹu, ỹv)
14: else if use Concatenated Integration then
15: ỹu, ỹv ← yu ∥ vuv,yv ∥ vuv
16: p(u, v)← R(ỹu, ỹv)
17: else if use Weighted Integration then
18: pvision(u, v)← VDecoder(vuv)
19: pMPNN(u, v)← R(yu,yv)
20: p(u, v)← δ · pvision(u, v) + (1− δ) · pMPNN(u, v)
21: end if
22: Output p(u, v)
23: end for

A.2. Algorithm for Efficient GVN (E-GVN)

Algorithm 3 The Efficient GVN (E-GVN) Framework.
Require: Graph G = (V,E) with node attributes XG, queried linksQ = {(u, v)}.
Ensure: Link existence probabilities {p(u, v)|(u, v) ∈ Q}

1: for each node v ∈ V do
2: Step 1: Scope-decoupled Subgraph Visualization
3: Skv ← Extract k-hop subgraph around (v)
4: Ikv ← GV(Skv )
5: Step 2: Adaptive Extraction of VSFs
6: vv ← VE(Ikv )
7: ṽv ← Adaptorϕ(vv)
8: Step 3: Compatible Features Integration
9: if use Attention-based Integration then

10: x̃v ← CA(xv, ṽv)
11: else if use Concatenated Integration then
12: x̃v ← xv||ṽv
13: else if use Weighted Integration then
14: x̃v = δLinearϕ1(xv) + (1− δ)Linearϕ2(ṽv)
15: end if
16: end for
17: X̃G ← {x̃v}
18: ỸG ← MPNN(G, X̃G)
19: for each (u, v) ∈ Q do
20: ỹu, ỹv ← ỸG[u], ỸG[v]
21: p(u, v)← R(ỹu, ỹv)
22: Output p(u, v)
23: end for
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B. Time Complexity Analysis
Let n be the number of nodes, d be the maximum node degree, F be the node feature dimension, F ′ be the dimension of
node representation produced by MPNN, S be the dimension of visual structural features (VSFs), and l be the number of
target links.

B.1. Time Complexity Analysis for GVN

The time complexity of GVN is determined by the following components:

1. Complexity of the base MPNN model, which includes the MPNN and its associated read-out function. For example,
the complexity of GCN is O(ndF + nF 2) + O(lF 2). For the NCNC model (Wang et al., 2024) that incorporates
common-neighbor SFs, the complexity is O(ndF + nF 2) +O(ld2F + ldF 2). We denote this part by O(MPNN).

2. Complexity of generating visual images for the target links is O(l).

3. Complexity of extracting visual structural features with Vision Encoder is l · O(VE), where O(VE) is the
complexity of vision encoder.

4. Complexity of feature integration, which varies based on the integration strategy:

• Attention-based Integration:
– The linear projection that converts the S-dimensional VSFs vuv to the F ′-dimensional ṽuv has a complexity

of O(lSF ′).
– The cross-attention mechanism has a complexity of O(lF ′2).

Therefore, the total time complexity for attention-based integration is dominated by O(lSF ′ + lF ′2).
• Concatenated Integration:

– Concatenating vuv with yu and yv has a complexity of O(l(F ′ + S)), where (F ′ + S) is the dimension after
concatenation.

Therefore, the total time complexity for Concatenated integration is dominated as O(l(F ′ + S)).
• Weighted Integration:

– Using VExpert (an MLP) to process vuv has a complexity of O(lS2).
– The weighted integration step has a complexity of O(l).

Therefore, the total time complexity for Weighted integration is dominated as O(lS2).

Thus, the total time complexity of GVN for each feature integration method is as follows:

• Attention-based Integration:
O(MPNN) + l ·O(VE) +O(l(SF ′ + F ′2)).

• Concatenated Integration:
O(MPNN) + l ·O(VE) +O(l(F ′ + S)).

• Weighted Integration:
O(MPNN) + l ·O(VE) +O(lS2).

B.2. Time Complexity Analysis for E-GVN

The time complexity components for E-GVN are as follows:

1. Complexity of generating visual images for all nodes: O(n).

2. Complexity of extracting visual structural features with Vision Encoder is n ·O(VE).

3. Complexity of processing VSFs with the Adaptor: O(nS2).
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4. Complexity of integrating VSFs into node attributes before MPNN:

• Attention-based Integration:
– The attention mechanism now operates on n nodes instead of l links, and operates on F dimension node

attributes instead of F ′ dimension MPNN-produced node representations, resulting in a complexity of
O(nSF + nF 2).

Therefore, the total time complexity for attention-based integration in E-GVN is O(nSF + nF 2).
• Concatenated Integration:

– Concatenating vv with xv for all nodes has a complexity of O(n(F + S)).
Therefore, the total time complexity for Concatenated integration in E-GVN is O(n(F + S)).

• Weighted Integration:
– Using separate Linear Experts to process xv and vv and for all nodes has a complexity of O(nF 2 + nS2).
– The weighted integration step has a complexity of O(n).

Therefore, the total time complexity for Weighted integration in E-GVN is O(nF 2 + nS2).

5. Complexity of the base model: Remains O(MPNN).

Thus, the total time complexity of E-GVN for each feature integration method is as follows:

• Attention-based Integration:

O(MPNN) + n ·O(VE) +O(n(S2 + SF + F 2)).

• Concatenated Integration:
O(MPNN) + n ·O(VE) +O(n(S2 + F + S)).

• Weighted Integration:
O(MPNN) + n ·O(VE) +O(n(S2 + F 2)).

C. Dataset Statistics
The statistics of the datasets are shown in Table 12. Among these datasets, Collab,PPA, Collab, DDI and Citation2 belong
to large-scale graphs and the link prediction on them are more challenging.

For the Planetoid datasets (Cora, Citeseer, and Pubmed), since the official data splits are not available, we adopt the common
random splits of 70%/10%/20% for training/validation/testing. For the OGB benchmarks Collab, PPA, DDI, and Citation2
(Hu et al., 2020), we utilize the official fixed splits.

Table 12. Statistics of datasets.

Cora Citeseer Pubmed Collab PPA DDI Citation2

#Nodes 2,708 3,327 18,717 235,868 576,289 4,267 2,927,963
#Edges 5,278 4,676 44,327 1,285,465 30,326,273 1,334,889 30,561,187
data set splits random random random fixed fixed fixed fixed
average degree 3.9 2.74 4.5 5.45 52.62 312.84 10.44

D. Link Prediction Experimental Setups
In link prediction, links play dual roles: serving as supervision and acting as message-passing paths. Following the standard
practice in link prediction, training links fulfill both supervision labels and message-passing paths. In terms of supervision,
the training, validation, and testing links are mutually exclusive. For message passing, we follow the common setting (Li
et al., 2024) where the validation links in ogbl-collab additionally function as message-passing paths during test time.

For the baselines, we directly use the results reported in (Wang et al., 2024) since we adopt the same experimental setup.
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E. Substructure Counting Experimental Details
The experimental settings of substructure counting in Table 1 are detailed as follows.

Datasets Generation We follow the experimental setup in (Chen et al., 2020) to generate two synthetic datasets of random
unattributed graphs. The first one is a set of 5000 Erdos-Renyi random graphs, where each graph contains 10 nodes and
each edge exists with the probability p = 0.3. The second one is a set of 5000 random regular graphs, where the number
of nodes m for each graph and the node degree d is uniformly sampled from {(m = 10, d = 6), (m = 15, d = 6), (m =
20, d = 5), (m = 30, d = 5)}. As the ground-truth labels, we calculate the counts of two types of substructures, including
‘Triangle’ and ‘3-Star’, both are common patterns in graph topology. The dataset split ratio is set as 30%/20%/50% for
training/validation/testing, respectively.

Models We compare GCN (Kipf & Welling, 2017), VSF+GCN, SAGE (Hamilton et al., 2017), and VSF+SAGE. To predict
the substructure count, we append a 3-layer MLP decoder after GCN or SAGE. For VSF+ “‘GCN and VSF+SAGE, we
concatenate the VSFs with the node representations produced by the MPNN, which are then used as inputs to the MLP
decoder. All models are trained for 100 epochs using the Adam optimizer (Kingma, 2014), with learning rates searched from
{1, 0.1, 0.05, 0.01}. The depths of GCN and SAGE are searched from {2, 3, 4, 5}, and the hidden dimensions are searched
from {8, 32, 128, 256}. We select the best model based on the lowest MSE loss on the validation set to generate the results.

F. Graph Visualizer
In our implementation, the default graph visualization processes for both GVN and E-GVN are developed using Graphviz.
Graphviz (Gansner & North, 2000) is a powerful tool for creating visual representations of abstract graphs and networks. It
allows for the customization of styles (e.g., shapes, colors, labels) of nodes and edges to tailor the visualization to specific
requirements. By default, we use brown color to emphasize the centered link or node, white color for the background and to
fill other nodes, and a rectangular shape for node outlines. We use the scalable force-directed placement algorithm (sfdp) as
the default layout computation algorithm. All of these configurations are specified and implemented with Graphviz.

We also implement two other optional graph visualizers using Matplotlib (Tosi, 2009) and Igraph (Gabor Csardi, 2006).
Matplotlib provides a versatile plotting library that can be used for basic graph visualization, offering customization of
node and edge properties and integration with other data visualizations. Igraph, on the other hand, is specifically designed
for network analysis and visualization, featuring a wide range of layout algorithms and the ability to handle large graphs
efficiently.

These graph visualizers produce images with distinct stylistic characteristics, as illustrated in Figure 6. Specifically, Graphviz
generates images that are typically more structured and clean, making them suitable for detailed analysis and professional
presentations. Matplotlib is known for its flexibility, allowing for creative and highly customized images, which are ideal
for exploratory data analysis. Igraph, on the other hand, focuses on revealing underlying patterns in complex networks,
particularly excelling in handling large datasets with layout algorithms that effectively display the overall structure of the
network.

(a) (b) (c)

Figure 6. Node-centered examples of the visualized images by various visualizers (a) Graphviz (b) Matplotlib (c) Igraph.

G. Style Consistency Ablation Experimental Details
In this section, we provide a detailed description of the experimental setup used in Table 5. This experiment demonstrates
the negative impact of inconsistent styles on visualized subgraph images. Below, we outline the implementation details of
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both consistent and inconsistent style settings.

The consistent style setting is achieved by using the default image style configuration as described in Appendix F. This
involves maintaining uniformity in visual elements across all subgraph images, ensuring that each image adheres to the
same stylistic parameters.

For the inconsistent style setting, configurations are randomly sampled from a predetermined range of options. This includes
variations in node colors, shapes, and graph visualizers. The specific details are as follows:

• Node Colors: Colors are randomly selected from the set {White, Black, Brown, Yellow, Red, Green}. It is important
to note that the centered link/node is colored distinctly from the other nodes to maintain focus.

• Node Shapes: Shapes are randomly chosen from the set {ellipse, box, circle, pentagon}.

• Graph Visualizers: The visualizer is randomly selected from the set {Graphviz, Matplotlib, Igraph}.

By employing these variations, the inconsistent style setting introduces heterogeneity in the visual representation of
subgraphs, allowing us to assess the impact of style inconsistency on the overall analysis.

H. Impact Study for Image Styles
H.1. Impacts of Node Colors

In this section, we explore the effects of different color choices for node representations in graph images.

We first alter the colors of central nodes while keeping surrounding nodes white and evaluate performance on the Cora and
Citeseer datasets (Hits@100). The results are summarized in Table 13.

Table 13. Performance (Hits@100) with Different Central Node Colors

Center Node GVN (Cora) E-GVN (Cora) GVN (Citeseer) E-GVN (Citeseer)
Black 90.72±0.52 91.43±0.31 94.12±0.58 94.46±0.52
Brown 90.70±0.56 91.47±0.36 94.12±0.58 94.44±0.53
Dark Blue 90.71±0.48 91.45±0.44 94.09±0.45 94.39±0.47
Red 90.66±0.50 91.40±0.40 94.00±0.50 94.30±0.50
Green 90.60±0.55 91.35±0.45 93.95±0.55 94.25±0.55
Yellow 90.68±0.57 91.42±0.38 94.05±0.57 94.40±0.54
White 89.35±0.72 89.90±0.65 93.20±0.72 93.55±0.75

From the above results, we have several findings:

Findings 1 Only slight differences in performance when the model could distinguish central nodes from surrounding nodes.
However, the model showed a preference for darker colors.

Findings 2 When central nodes became white (indistinguishable from others), there was a noticeable performance degrada-
tion. This highlights the significance of labeling the identification of center nodes.

To further illustrate Findings 2, we assign colors to the nodes surrounding the central nodes. The results are presented in
Table 14.

Table 14. Performance (Hits@100) with Different Surrounding Node Colors

Center Node Surrounding Node GVN (Cora) E-GVN (Cora) GVN (Citeseer) E-GVN (Citeseer)
Black Black (same color) 89.00±0.60 89.50±0.55 93.00±0.65 93.40±0.60
White White (same color) 89.35±0.72 89.90±0.65 93.20±0.72 93.55±0.75
Black Brown (near color) 90.20±0.50 90.70±0.45 93.80±0.55 94.10±0.50
Black White (opposite color) 90.72±0.52 91.43±0.31 94.12±0.58 94.46±0.52
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These results further reflect the preference of the model for more pronounced color differences between central and
surrounding nodes, as indicated in Findings 2. The performance is lower when colors are the same or similar, and higher
when there is a clear distinction.

H.2. Impacts of Node Shapes

In this section, we investigate the impact of different node shapes on model performance. We experimented with three
different shapes: Box, Circle, and Ellipse.

Table 15. Performance (Hits@100) with Different Node Shapes

Center Node GVN (Cora) E-GVN (Cora) GVN (Citeseer) E-GVN (Citeseer)
Box 90.70±0.56 91.47±0.36 94.12±0.58 94.44±0.53
Circle 90.65±0.52 91.40±0.38 94.15±0.43 94.42±0.50
Ellipse 90.72±0.46 91.45±0.44 94.10±0.57 94.46±0.52

According to Table 15, we find there is no obvious preference for a particular node shape.

H.3. Impacts of Node Labeling Strategies

H.3.1. SENSITIVE STUDY OF NODE LABELING STRATEGIES

Table 16. HR@100 performance with different node labeling strategies.
Cora Citeseer

No-label Re-label Unique No-label Re-label Unique

GVNNCNC 90.70±0.56 89.86±0.44 89.67±0.62 94.12±0.58 94.01±0.43 94.08±0.99

E-GVNNCNC 91.47±0.36 89.73±0.24 89.75±0.83 94.44±0.53 93.85±0.65 94.02±0.91

In this experiment, we study different ways to label the nodes in the image: (i) “No-label”, which shows the nodes without
any labels; (ii) “Re-label”, which maps all the nodes in the current subgraph to new labels starting from zero; (iii) “Unique”,
which labels the nodes with unique global indices. Example images for these visualization strategies are shown in Appendix
H.3.2. Table 16 shows the HR@100 performance of GVNNCNC and E-GVNNCNC with these different labeling strategies
on Cora and Citeseer. As can be seen, “no-label” performs best, indicating that purely using the structural information is
preferred.

H.3.2. ILLUSTRATIONS FOR DIFFERENT LABELING STRATEGIES

Here, we present image examples for graph visualization used in both GVN and E-GVN with the three different labeling
strategies.

Figures 7-9 show an example of link-centered subgraph visualization in GVN with various labeling strategies, where
the target link is (1, 158). This indicates the objective is to predict the existence of a link between node 1 and node 158.
Similarly, Figures 10-12 present node-centered subgraph visualization images with various labeling strategies, where the
colored node is the center node.

In Figures 7 and 10, the “No-label” labeling strategy is applied. In this strategy, node labels are omitted, enabling the model
to focus purely on the intrinsic graph topological structural information, which is beneficial for generalizability across
different datasets or settings.

Figures 8 and 11 adopt the “Re-label” labeling strategy, where the nodes within the subgraph are reassigned labels starting
from 0. This local relabeling introduces some OCR noise, compelling the model to be more robust.

Finally, in Figures 9 and 12, which apply the “Unique” labeling strategy, nodes are labeled with their original IDs from
the dataset. This might leverage the OCR capability to match nodes across various subgraphs due to the unique identifiers,
which is beneficial for identifying node correspondences. However, this method may hamper generalizability and expose the
model to the long-tail problem, where the model’s performance degrades for nodes that appear infrequently in the data.
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Figure 7. Link-centered subgraph visualization with “No-label” labeling scheme.

Figure 8. Link-centered subgraph visualization with “Re-label” labeling scheme.

Figure 9. Link-centered subgraph visualization with “Unique” labeling scheme.
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Figure 10. Node-centered subgraph visualization with “No-label” labeling scheme.

Figure 11. Node-centered subgraph visualization with “Re-label” labeling scheme.
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Figure 12. Node-centered subgraph visualization with “Unique” labeling scheme.
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