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Abstract001

Large Language Models (LLMs) have shown002
strong capabilities in document re-ranking, a003
key component in modern Information Re-004
trieval (IR) systems. However, existing LLM-005
based approaches face notable limitations, in-006
cluding ranking uncertainty, unstable top-k007
recovery, and high token cost due to token-008
intensive prompting. To effectively address009
these limitations, we propose REALM, an010
uncertainty-aware re-ranking framework that011
models LLM-derived relevance as Gaussian012
distributions and refines them through recur-013
sive Bayesian updates. By explicitly cap-014
turing uncertainty and minimizing redundant015
queries, REALM achieves better rankings more016
efficiently. Experimental results demonstrate017
that our REALM surpasses state-of-the-art re-018
rankers while significantly reducing token us-019
age and latency, promoting it as the next gener-020
ation re-ranker for modern IR systems.021

1 Introduction022

Document re-ranking is a key component in mod-023

ern IR systems (Zhu et al., 2024). Given a user024

query, retrieval systems typically begin with a fast025

but coarse retrieval stage that returns a broad set of026

potentially relevant documents. However, these ini-027

tial results are often noisy or only loosely related to028

the query. Re-ranking addresses this issue by apply-029

ing a more accurate, context-aware scoring model030

to refine the order of the candidates and place031

the most relevant documents at the top (Nogueira032

and Cho, 2020). For example, in academic paper033

searching, an initial retrieval step may return a large034

number of documents that match surface-level key-035

words, while missing more in-depth relevance anal-036

ysis. Without re-ranking, users could suffer from037

missing important references, thus struggling to038

construct a complete picture of the research land-039

scape. Recent work (Fukuda and Tomiura, 2025)040

shows that integrating multiple retrieval methods,041

particularly re-ranking the combined results, signif- 042

icantly improves recall, helping users retrieve more 043

comprehensive and relevant literature within a man- 044

ageable number of results. In a nutshell, re-ranking 045

is crucial to ensure that high-quality, contextually 046

appropriate documents are selected as input for 047

subsequent applications (Lewis et al., 2020). 048

LLMs are redefining document re-ranking by 049

enabling deep semantic and contextual understand- 050

ing that traditional lexical-based methods funda- 051

mentally lack. Traditional re-rankers, such as 052

those based on BM25 scores (Robertson et al., 053

2009) or learning-to-rank models like Lamb- 054

daMART (Burges, 2010), rely heavily on sparse 055

features-term overlap, document frequency, or 056

hand-crafted heuristics-which often fail in captur- 057

ing nuanced relevance, especially in complex or 058

ambiguous queries. In contrast, LLM-based re- 059

rankers treat the query and candidate documents as 060

joint inputs, allowing for fine-grained relevance es- 061

timation grounded in deep semantic and contextual 062

comprehension. Recent studies have shown that 063

LLMs, when applied as cross-encoders or guided 064

with task-specific prompting, consistently outper- 065

form classical re-rankers across benchmarks (Sun 066

et al., 2023). These advancements suggest that 067

LLMs are not just an incremental improvement but 068

a paradigm shift toward unifying retrieval and com- 069

prehension within a single, adaptable framework. 070

However, LLM-based document re-ranking 071

faces a three-pronged challenge: (i) ranking un- 072

certainty, stemming from the inherent stochastic 073

nature of LLMs (see Section 2.2); (ii) unstable 074

top-k recovery, where minor input variations can 075

substantially disrupt document rankings (see Fig- 076

ure 2); and (iii) high token costs, due to the need 077

of complex prompting strategy (see Table 1). 078

Recent research endeavors have fallen short in 079

effectively addressing all three challenges: Point- 080

wise methods (Nogueira et al., 2020) are efficient 081

and parallelizable, as they assess each document in- 082
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dependently. Some variants (Zhuang et al., 2023b)083

further leverage generation likelihood as a rele-084

vance score. However, pointwise approaches fail085

to model interactions among candidates, making086

them less effective at resolving uncertainty or pro-087

ducing globally consistent top-k rankings. List-088

wise methods (Sun et al., 2023) enable joint eval-089

uation of multiple candidates in a single query,090

which helps mitigate ranking inconsistency. Ap-091

proaches like TourRank (Chen et al., 2025) adopt092

tournament-style aggregation to extend listwise093

scoring. Despite these benefits, listwise meth-094

ods still suffer from context length constraints and095

positional bias (Liu et al., 2024b), especially for096

long candidate sets. Pairwise methods (Qin et al.,097

2024) improve local comparison quality by directly098

modeling relative preferences between document099

pairs. Advanced systems like PRP-Graph (Luo100

et al., 2024) further exploit graph structures to ag-101

gregate pairwise signals. Nevertheless, the repeated102

comparisons, however, lead to high token usage103

and substantial inference latency. Setwise meth-104

ods (Zhuang et al., 2024; Podolak et al., 2025)105

improve efficiency by evaluating small subsets at a106

time, but discard fine-grained preference informa-107

tion, such as full relevance logits—thereby under-108

utilizing the model’s capacity.109

To effectively address the three-pronged chal-110

lenge, this paper proposes REALM, an uncertainty-111

aware re-ranking framework that combines rele-112

vance estimation with a recursive refinement pro-113

cess. REALM explicitly models uncertainty, im-114

proves top-k stability, and reduces inference costs.115

Our contributions are as follows:116

• Uncertainty-Aware Relevance Modeling.117

We model each document’s relevance as a118

Gaussian distribution, capturing both the esti-119

mated score and uncertainty to support robust120

re-ranking under the inherent stochastic nature121

of contemporary LLMs.122

• Recursive Refinement Framework. We in-123

troduce a recursive framework that compares124

pivot documents with subsets and refines rele-125

vance distributions through Bayesian updates,126

enhancing ranking stability.127

• Pivot-Centric Optimizations. We optimize128

efficiency by selecting high-confidence pivots,129

aggregating updates via uncertainty-aware av-130

eraging, and applying pivot adjustment to en-131

sure effective workload reduction.132

Experiments show that REALM outperforms 133

state-of-the-art re-ranking methods while substan- 134

tially reducing token usage and improving stability, 135

making it suitable for real-world retrieval systems. 136

2 Related Work & Preliminary 137

2.1 Related Work 138

Zero-shot document re-ranking with LLMs is typ- 139

ically grounded in four fundamental prompting 140

strategies: pointwise (Nogueira et al., 2020), pair- 141

wise (Qin et al., 2024), listwise (Sun et al., 2023), 142

and setwise (Zhuang et al., 2024). In this section, 143

we compare REALM with these papers. 144

Pointwise methods. Pointwise methods prompt 145

LLMs to assess the relevance of each document 146

independently with respect to a given query, typi- 147

cally by generating a relevance score or extracting 148

the score from the output logits (Nogueira et al., 149

2020). Several variants exist. For example, Query 150

Generation (Zhuang et al., 2023b) estimates query- 151

document compatibility by computing the likeli- 152

hood of the query given a passage. While these 153

approaches are token efficient and scalable, they 154

struggle to capture comparative relevance across 155

candidates, which is well preserved in REALM. 156

Listwise methods. With the continued expan- 157

sion of LLM capacity and input window size, list- 158

wise ranking—where the model receives a group of 159

candidate documents and directly outputs their rel- 160

ative ordering—has become increasingly feasible. 161

By supporting joint reasoning over multiple candi- 162

dates within a single inference, this paradigm has 163

motivated a series of methods aimed at better lever- 164

aging LLM capabilities for document re-ranking. 165

RankGPT (Sun et al., 2023) and LRL (Ma et al., 166

2023) adopt a sliding-window listwise re-ranking 167

strategy, comparing a subset of candidates at each 168

step, retaining the most relevant ones, and forward- 169

ing the rest for subsequent comparisons. Tour- 170

Rank (Chen et al., 2025) draws inspiration from 171

sports tournaments, treating each subset as a group 172

match and aggregating results through a point- 173

based system. ListT5 (Yoon et al., 2024) follows 174

a similar tournament-style design, effectively im- 175

plementing an m-ary heap traversal over listwise 176

scoring primitives to recover the top-k results. 177

Despite their effectiveness, these methods face 178

inherent limitations. Current LLMs are still re- 179

stricted by finite context lengths and remain sensi- 180

tive to positional biases (Liu et al., 2024b), which 181

hinders their ability to process long candidate lists 182
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holistically and maintain consistency across multi-183

ple comparisons. In contrast, REALM avoids full-184

list comparisons by decomposing the ranking pro-185

cess into a sequence of setwise updates. This ap-186

proach enables consistent top-k selection without187

suffering from context-length limitations or posi-188

tional bias, while still leveraging the LLM’s capac-189

ity to reason over small candidate sets.190

Pairwise methods. Pairwise prompting (PRP)191

(Qin et al., 2024) was introduced to overcome the192

limitations of pointwise and listwise ranking by193

prompting the model to compare two candidates194

at a time and choose the more relevant one. To195

extend this into a full ranking, the authors imple-196

mented a multi-round bubble sort using overlap-197

ping comparisons to extract the top-k candidates.198

PRP-Graph(Luo et al., 2024) further generalizes199

this idea by constructing a weighted comparison200

graph and applying a PageRank-style aggregation201

to derive a global ranking.202

While pairwise prompting yields accurate com-203

parisons, it incurs high token costs due to repeated204

queries. In contrast, our method reduces the num-205

ber of LLM calls by performing aggregation over206

setwise comparison, achieving greater efficiency207

without sacrificing ranking quality.208

Setwise methods. Setwise prompting (Zhuang209

et al., 2024) was introduced as a refined variant of210

listwise prompting, leveraging model output log-211

its to select the top-k documents within a group.212

This strategy was extended by integrating it with213

classic sorting algorithms such as bubble sort and214

heap sort. Setwise Insertion (Podolak et al., 2025)215

further advanced this line of work by incorporating216

the initial document ranking as prior knowledge,217

thereby improving ranking efficiency.218

While drawing inspiration from setwise prompt-219

ing, REALM preserves the full comparative infor-220

mation encoded in logits and performs uncertainty-221

aware updates through probabilistic aggregation,222

enabling more robust relevance estimation.223

Other directions in LLM for re-ranking.224

(i) Training strategies for LLM-based re-rankers.225

RankT5 (Zhuang et al., 2023a) adopts pairwise226

and listwise training objectives for T5, while227

ChainRank-DPO (Liu et al., 2024a) enhances228

ranking consistency using CoT-style supervision229

with DPO. Rank-R1 (Zhuang et al., 2025) intro-230

duces reinforcement learning with limited supervi-231

sion to promote reasoning over queries and docu-232

ments. RankGPT (Sun et al., 2023) and RankVi-233

cuna (Pradeep et al., 2023) distill ChatGPT/GPT-234

3.5 into smaller models via pairwise and listwise 235

losses. ListT5 (Yoon et al., 2024) uses Fusion- 236

in-Decoder for listwise inference, and TSARan- 237

kLLM (Zhang et al., 2024) adopts a two-stage pre- 238

training and fine-tuning strategy. 239

(ii) Hybrid architectures. Hybrid methods re- 240

structure the inference process by combining rank- 241

ing components or decomposing tasks, e.g., Ec- 242

oRank (Rashid et al., 2024) and RankFlow (Jin 243

et al., 2025). In parallel, Permutation Self- 244

Consistency (Tang et al., 2024) aggregates multiple 245

permutations to reduce positional bias, and LLM- 246

RankFusion (Zeng et al., 2024) improves robust- 247

ness via calibration and fusion-based aggregation. 248

2.2 LLM Uncertainty & Bayesian Rating 249

System 250

LLM uncertainty. LLMs exhibit two forms of un- 251

certainty: aleatoric, which stems from inherent data 252

noise, and epistemic, which arises due to limited 253

training coverage (Kendall and Gal, 2017). While 254

aleatoric uncertainty is largely irreducible, epis- 255

temic uncertainty can be mitigated by introducing 256

additional informative signals during inference. 257

In this context, studies have shown that in 258

multiple-choice settings, LLM output logits are 259

often well-calibrated—i.e., their relative magni- 260

tudes reliably reflect the model’s confidence (Ka- 261

davath et al., 2022; Si et al., 2023). This calibra- 262

tion enables softmax-normalized logits to serve as 263

meaningful probability estimates, supporting down- 264

stream applications such as uncertainty estimation 265

and probabilistic relevance modeling. 266

Bayesian rating systems offer principled proba- 267

bilistic frameworks for estimating latent skill levels 268

or quality scores based on observed outcomes from 269

comparisons or matches. Grounded in Bayesian 270

inference, these systems iteratively update skill es- 271

timates by combining prior beliefs with new ev- 272

idence. Key advantages include explicit uncer- 273

tainty modeling, incremental update capabilities, 274

and robustness to noisy or incomplete data. Two 275

widely adopted instances are the Elo rating sys- 276

tem (ELO, 1978) and its more expressive successor, 277

TrueSkill (Herbrich et al., 2006), which extend the 278

rating process to handle more complex scenarios, 279

which we detail in the Appendix A. 280
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Figure 1: Workflow of our recursive relevance modeling framework for LLM-based document re-ranking.

3 Methodology281

3.1 REALM Framework282

Figure 1 illustrates the workflow of our relevance283

modeling framework for LLM-based document re-284

ranking. As an illustrative example, the task is to285

retrieve the top-2 most relevant documents on the286

topic of LLM-based re-ranking. Given a set of287

documents, we model each document’s relevance288

as a Gaussian distribution N (µ, σ2) (step 1.1 ).289

We begin by selecting a pivot D3 to put the doc-290

uments into multiple subsets. For each subset, we291

conduct a setwise comparison involving the same292

pivot, as shown in step 2.1 in Figure 1. Then, as293

depicted in step 2.2 , we adopt a Bayesian update294

to refine the relevance distributions. Further details295

are presented in § 3.2. Further, as shown in step 3 ,296

we introduce a mechanism to update document297

D3’s relevance model.298

A naive subsequent design of REALM would di-299

rectly rely on the relevance distributions of the first300

iteration to order all the documents. Subsequently,301

we can select the top-k most relevant documents as302

the final result. Particularly, we can derive the rele-303

vance score of each document using a distribution-304

based rule µ − kσ, where k is a constant control-305

ling conservativeness, with higher values penaliz-306

ing uncertainty more heavily. However, this design307

could potentially rely on relevance distributions308

that are very unstable, as a single round of compar-309

ison might fail to effectively curb the uncertainty310

of the relevance distributions (see Table 2).311

Consequently, we introduce a recursive design,312

that is, we compare each document against the313

pivot document. If a document is closer to the query314

than the pivot, we keep it for the next round of315

calculation. Otherwise, we filter out that document.316

Moreover, directly relying on the pivot D3 to filter 317

out unpromising documents would yield unstable 318

workload reduction. We thus design an effective 319

workload reduction mechanism to cope with this 320

concern, which could derive D4 as the final split 321

point ( 4 ). Of note, we also design strategy to 322

select the document with the highest confidence as 323

the pivot (step 1.2 ). 324

3.2 REALM’s Relevance Modeling Scheme 325

Modeling relevance as a normal distribution. In 326

REALM, relevance judgment derived from LLMs 327

is inherently noisy due to their contextual sensitiv- 328

ity, response stochasticity, and inherent biases (Dai 329

et al., 2024). To capture this uncertainty, following 330

TrueSkill (Herbrich et al., 2006), a framework orig- 331

inally designed for competitive player rating, we 332

model the relevance of each document to a given 333

query as a Gaussian distribution, which is denoted 334

as N (µ, σ2), where the mean µ represents the esti- 335

mated relevance score and the variance σ2 quanti- 336

fies the uncertainty of this estimate. 337

As illustrated in step 1.1 of Figure 1, each doc- 338

ument is initially associated with an initial rele- 339

vance distribution (i.e., the dark blue squiggle lines 340

beside each document Di). We model the rele- 341

vance as a Gaussian distribution with fixed standard 342

deviation σ0, reflecting a uniform level of uncer- 343

tainty across all unobserved documents. The initial 344

mean µ0 is set based on the document’s retrieval 345

score if available (e.g., from a pre-LLM retrieval 346

pipeline such as embedding search); otherwise, a 347

shared default value is assigned. 348

Extracting latent LLM information for rele- 349

vance model update. To refine these initial rele- 350

vance distributions, REALM extracts latent infor- 351

mation from LLMs during setwise comparison. 352
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In setwise comparison, LLM is prompted to353

select the most relevant document from a small354

group (of size m) of candidate documents. Our355

example query is “Given a query, which of the fol-356

lowing passages is the most relevant?”. Internally,357

LLM assigns scalar logits to each option; we ex-358

tract these as a score vector {ℓi : Di ∈ set}, where359

each ℓi corresponds to the document Di. For in-360

stance, in step 2.1 of Figure 1, the logits assigned to361

(D0, D1, D3) are 3.2, 1.1, and −0.8, respectively.362

Of note, for closed-source LLMs, we can prompt363

them to output the confidence values and use that364

as the scores (Xia et al., 2025).365

Rather than relying on these scores for direct366

selection or ranking (Zhuang et al., 2024), REALM367

interprets their differences as pairwise preference368

probabilities. Specifically, the probability that doc-369

ument Di is preferred over Dj is computed as:370

P (Di ≻ Dj) = σ

(
ℓi − ℓj

T

)
,371

where σ is the sigmoid function and T is a tem-372

perature parameter. This formulation transforms373

a single multi-document comparison into a set of374 (
m
2

)
pairwise probabilities updates.375

To ensure consistency in aggregation, REALM376

adopts a pivot-based strategy. One document in the377

prompt is designated as the pivot, and preference378

probabilities are computed between the pivot and379

the others. As illustrated in step 2.1 of Figure 1,380

when D3 is used as the pivot alongside D0 and381

D1, we extract the probabilities P (D0 ≻ D3) and382

P (D1 ≻ D3). These preference probabilities are383

then used to update the relevance distributions of384

both the pivot and its comparators as follows.385

Relevance update design. The extracted pair-386

wise preference probabilities, such as P (D0 ≻ D3)387

and P (D1 ≻ D3) from step 2.1 , are then used to388

update each document’s relevance distribution.389

Rather than treating each update as a determinis-390

tic outcome (win, loss, or draw) as in the original391

TrueSkill, we leverage the preference probability392

to capture richer information in relevance updates.393

Specifically, we interpolate the influence of the win394

and loss outcomes based on the predicted probabil-395

ity, i.e., P (Di ≻ Dj).396

As illustrated in step 2.2 , the model predicts397

P (D0 ≻ D3) = 0.73. In this case, the relevance398

distribution of D0, i.e., N (µ0,0, σ
2
0,0), is updated399

to N (µ0,1, σ
2
0,1) by interpolating between the two400

TrueSkill-updated distributions—corresponding to401

a win N (µwin, σ
2
win) (green dashed curve) and 402

a loss N (µloss, σ
2
loss) (red dashed curve) against 403

D3—weighted by the predicted probability. 404

The resulting distribution for D0 thus shifts to- 405

ward the win-specific distribution while incorpo- 406

rating uncertainty, effectively reflecting both the 407

model’s directional preference and its confidence. 408

Formally, let the distribution of document Di 409

be N (µi,0, σ
2
i,0), with natural parameters defined 410

as the precision λi,0 = 1/σ2
i,0 and the precision- 411

adjusted mean τi,0 = µi,0/σ
2
i,0. We compute two 412

updated distributions for Di by applying the stan- 413

dard TrueSkill update rules for a 1v1 match against 414

Dj ∼ N (µj,0, σ
2
j,0), as follows: 415

• N
(
µwin, σ

2
win

)
, assuming Di wins over Dj , 416

• N
(
µloss, σ

2
loss

)
, assuming Di loses to Dj . 417

Let τwin = µwin/σ
2
win and λwin = 1/σ2

win, and 418

similarly for the loss outcome. Given a win prob- 419

ability p = P (Di ≻ Dj), we apply a fractional 420

update (Minka, 2004) in the natural parameter 421

space by combining the additive changes from the 422

win/loss outcomes: 423

λi,1 = λi,0+p·(λwin−λi,0)+(1−p)·(λloss−λi,0), 424

425
τi,1 = τi,0+p ·(τwin−τi,0)+(1−p) ·(τloss−τi,0), 426

The resulting distribution of Di is again a Gaus- 427

sian, given by: 428

N
(
µi,1, σ

2
i,1

)
, where µi,1 =

τi,1
λi,1

, σ2
i,1 =

1

λi,1
. 429

This relevance update enables our model to in- 430

tegrate both the direction and confidence of each 431

comparison. Further details are provided in Ap- 432

pendix A.3. As shown in step 2.2 of Figure 1, the 433

updated distribution becomes narrower, indicat- 434

ing increased certainty and shifts toward the more 435

likely outcome, resulting in a more accurate and 436

confident relevance distribution. 437

3.3 Pivot-Centric Optimizations 438

Pivot aggregation. The previous pivot-based strat- 439

egy enables the extraction of useful pairwise com- 440

parisons centered on each pivot. To integrate global 441

relevance signals for a given pivot, we introduce 442

pivot aggregation that consolidates its comparison 443

outcomes across all subsets. 444

After the current round, we combine the rele- 445

vance models of various copies for the pivot via an 446
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uncertainty-aware averaging:447

τ =

c∑
i=1

σ−2
i ,

µagg =

∑c
i=1 µi σ

−2
i

τ
,

σagg =
( τ
n

)−1/2
.

448

Here, τ denotes the total precision accumulated449

from c shadow comparisons, and the averaging450

yields an aggregated distribution that favors more451

confident estimation while reducing overall uncer-452

tainty. As shown in step 3 of Figure 1, the pivot453

D3 is replicated into five copies and updated in-454

dependently through soft comparisons. The final455

distribution of D3 is then obtained by aggregat-456

ing these updates, resulting in a more stable and457

unbiased estimation.458

Pivot selection. To determine the global pivot at459

each recursive step, we select the document with460

the lowest estimated standard deviation σ from461

the current candidate pool. Intuitively, a lower σ462

indicates higher confidence in the document’s rele-463

vance estimate. Using such a document as the pivot464

improves the stability of the partitioning process.465

As illustrated in step 1.2 of Figure 1, document D3466

is selected as the global pivot due to its lowest467

uncertainty. The remaining documents are then468

grouped into prompts: {D0, D1}, {D2, D4}, and469

{D5}, ensuring that each non-pivot document is470

compared once against D3. This structure enables471

us to construct a globally consistent relevance pref-472

erence centered on a high-confidence document.473

Pivot adjustment for effective reduction. Con-474

sidering that pivot might not be able to effectively475

reduce the documents, we interpolate the pivot with476

the interval midpoint:477

i∗ = λ rp + (1− λ)
l + r

2
, λ ∈ [0, 1],478

where l and r are the current interval bounds. Using479

i∗ as the split index helps avoid unbalanced parti-480

tions. Setting λ < 1 guarantees recursion depth481

remains bounded by O(log n) and total LLM com-482

parisons scale linearly with n. While the pivot still483

guides comparisons, the softened partition is used484

only to improve efficiency and does not change485

the underlying ranking based on the pivot. As il-486

lustrated in step 4 of Figure 1, only documents487

ranked above the split point (e.g., D3) are retained488

for the next iteration of refinement. This iteration489

continues until the desired top-k set is extracted.490

4 Experiments 491

4.1 Experimental Setup 492

We conduct evaluations on Flan-T5 models (Long- 493

pre et al., 2023) of three sizes—Flan-T5-Large 494

(770M parameters), Flan-T5-XL (3B), and Flan- 495

T5-XXL (11B)—following recent work on LLM- 496

based re-ranking (Qin et al., 2024; Luo et al., 2024; 497

Zhuang et al., 2024; Podolak et al., 2025). To assess 498

the generality of REALM, we additionally evaluate 499

Flan-UL2 (20B) (Tay et al., 2023) and LLaMA3 500

(8B and 70B) (Grattafiori et al., 2024). Notably, 501

LLaMA3 follows a decoder-only architecture and 502

differs from Flan-T5 models in both model struc- 503

ture and pretraining objectives. 504

All experiments are conducted on a server with 505

512 GB RAM, two Intel Xeon Silver 4309Y CPUs 506

(16 cores), and four A100 GPUs (80 GB each). All 507

models are evaluated on a single GPU, except for 508

LLaMA3-70B, which uses all four GPUs. 509

Datasets and metrics. Experiments are con- 510

ducted on two widely used benchmarks: TREC 511

Deep Learning 2019 (Craswell et al., 2020) and 512

2020 (Craswell et al., 2021). All LLM-based meth- 513

ods re-rank the top 100 documents retrieved by a 514

BM25 first-stage retriever. Adopting prior work’s 515

evaluation strategy (Zhuang et al., 2024; Podolak 516

et al., 2025), we formulate re-ranking as a top-k 517

task, with k = 10 as the default setting. Effective- 518

ness is measured using the NDCG@10 metric for 519

all datasets. For clarity, all NDCG@10 results are 520

presented as percentages 521

Baselines. We compare our method with four 522

recent LLM-based re-ranking approaches: Tour- 523

Rank (Chen et al., 2025), PRP-Graph (Luo et al., 524

2024), Setwise-Heapsort (Zhuang et al., 2024), and 525

Setwise-Insertion (Podolak et al., 2025). Imple- 526

mentation details are provided in Appendix B. 527

TourRank is a state-of-the-art listwise re-ranking 528

method inspired by sports tournaments. It treats 529

each subset of documents as a “group match” and 530

aggregates the results using a point-based system. 531

PRP-Graph constructs a global ranking by aggre- 532

gating local pairwise preferences through a graph- 533

based approach. Setwise-Heapsort and Setwise- 534

Insertion utilize setwise prompting to compare mul- 535

tiple candidates jointly in a token-efficient way. 536

The former focuses on computational efficiency us- 537

ing a heap-based sorting strategy, while the latter 538

improves ranking accuracy through a more refined 539

insertion-based sorting mechanism. 540
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LLM Method TREC DL 2019 TREC DL 2020
N@10 #Inf. P. tks. G. tks. Lat.(s) N@10 #Inf. P. tks. G. tks. Lat.(s)

NA BM25 50.6 - - - - 48.0 - - - -
Fl

an
-T

5-
L

ar
ge TourRank 48.2 130.0 95271.4 1507.2 56.9 40.7 130.0 95341.8 1524.5 57.1

PRP-Graph 65.8 492.7 221781.9 - 43.3 61.8 492.5 224605.5 - 42.4
Setwise-Heapsort 66.9 125.3 40449.6 626.5 8.8 61.8 124.2 40357.4 621.0 8.7
Setwise-Insertion 66.9 92.5 29913.1 93.4 4.5 62.5 91.3 29757.7 93.8 4.4

REALM 67.0 79.0 25165.7 - 3.9 63.0 74.6 23584.9 - 3.6

Fl
an

-T
5-

X
L TourRank 64.3 130.0 95257.0 2719.2 96.8 59.7 130.0 95277.6 2791.0 100.6

PRP-Graph 67.6 492.6 212884.5 - 43.0 66.1 492.5 216071.3 - 43.1
Setwise-Heapsort 69.2 129.5 41665.7 647.7 10.1 67.8 127.8 41569.1 639.1 9.6
Setwise-Insertion 69.0 106.0 34732.7 100.7 5.3 67.0 105.3 34400.7 99.5 5.1

REALM 70.5 80.4 25823.0 - 4.0 68.4 75.6 24033.6 - 3.7

Fl
an

-T
5-

X
X

L TourRank 61.9 130.0 95269.3 1610.4 133.6 62.7 130.0 95273.6 1615.6 133.2
PRP-Graph 66.6 492.6 213536.2 - 73.3 66.1 492.6 216332.4 - 74.4

Setwise-Heapsort 70.6 130.1 42078.6 650.5 15.9 68.8 128.2 41633.7 640.8 15.7
Setwise-Insertion 68.4 104.9 34284.2 99.2 10.6 67.1 100.7 33036.9 100.0 10.2

REALM 71.2 76.5 24659.8 - 7.5 69.1 74.1 23759.6 - 7.3

Table 1: Evaluation on TREC DL 2019 and TREC DCL 2020 datasets: REALM vs TourRank (Chen et al., 2025),
PRP-Graph (Luo et al., 2024), Setwise-Heapsort (Zhuang et al., 2024), and Setwise-Insertion (Podolak et al., 2025).

4.2 Overall Evaluation541

Table 1 presents a comprehensive comparison of542

our projects on both the TREC-DL 2019 and 2020543

benchmarks. We report NDCG@10 (N@10), Inf.544

(inference counts, a.k.a., the # of LLM calls), P.545

tks. (#tokens in prompt), G. tks. (# of generated546

tokens), and Lat. (latency in seconds).547

Compared to TourRank, PRP-Graph, Setwise-548

Heapsort, and Setwise-Insertion, REALM achieves549

consistent improvements in both ranking quality550

and inference efficiency across all evaluated bench-551

marks. On average, REALM outperforms all base-552

lines, improving NDCG@10 by 0.7− 11.9, while553

simultaneously reducing the number of LLM in-554

ferences by 23.4 − 84.4% and cutting inference555

latency by 25.0 − 88.7%. In terms of prompt to-556

ken usage (P. tks.), REALM reduces the cost by557

25.2−94.8%. Furthermore, since it only leverages558

the logits of the first generated token, the genera-559

tion token cost (G. tks.) is effectively eliminated.560

On the model size dimension, we observe561

that Flan-T5-XL outperforms Flan-T5-Large, and562

Flan-T5-XXL further surpasses Flan-T5-XL, align-563

ing with the general trend that larger instruction-564

tuned models exhibit stronger ranking capabilities.565

Among all methods, TourRank demonstrates the566

highest sensitivity to model capacity, as its listwise567

comparison approach relies heavily on both the568

model’s input context length and its vulnerability569

to positional biases.570

While PRP-Graph and TourRank consume the571

most tokens, this is mainly due to their re-572
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Figure 2: Sensitivity to initial ranking order on TREC
DL 2020 using Flan-T5-XL.

liance on multiple iterative rounds of pairwise 573

or listwise comparisons to accumulate sufficient 574

preference information, resulting in significantly 575

higher total query costs. Setwise-Heapsort and 576

Setwise-Insertion offer a more favorable efficiency- 577

performance trade-off by utilizing structured com- 578

parisons with fewer rounds. However, they still 579

underutilize the rich preference information em- 580

bedded in the LLM’s output, such as the model’s 581

confidence in its ranking decisions. This leaves 582

room for further enhancement of REALM by incor- 583

porating more principled information aggregation 584

strategies and refined comparison scheduling to 585

fully leverage the LLM’s capacity. 586

REALM vs Setwise-Insertion on the initial 587

ranking. Among existing baselines, Setwise- 588

Insertion offers a reasonable balance between per- 589

formance and efficiency, utilizing structured com- 590

parisons to reduce the number of LLM calls while 591

maintaining competitive ranking quality. However, 592

its effectiveness can still be affected by the quality 593

of the initial document ordering. 594

Figure 2 compares Setwise-Insertion and 595
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LLM Method Avg. Performance on TREC DL
N@10 #Inf. P. tks Lat.(s)

NA BM25 49.3 - - -
Fl

an
-T

5-
L

ar
ge w/o modeling 62.0 109.2 35064.2 5.4

w/o recursive 63.0 50.0 16089.0 2.6
w/o opt. 64.2 112.5 36335.6 5.6
REALM 65.0 76.8 24375.3 3.8

Fl
an

-T
5-

X
L w/o modeling 66.2 114.9 37003.4 5.8

w/o recursive 68.3 50.0 16089.0 2.6
w/o opt. 68.9 118.6 38409.6 6.0
REALM 69.5 78.0 24928.3 3.9

Fl
an

-T
5-

X
X

L w/o modeling 68.7 113.7 36696.1 11.5
w/o recursive 68.6 50.0 16089.0 5.0

w/o opt. 68.9 119.2 38846.4 12.1
REALM 70.2 75.3 24209.7 7.4

Table 2: Ablation study.

REALM on the TREC DL 2020 dataset under three596

initial document orderings: BM25, Inverse, and597

Random. The left plot reports NDCG@10, while598

the right plot shows the corresponding prompt to-599

ken usage. Here, Inverse refers to reversing the600

original BM25 ranking (i.e., least relevant docu-601

ments placed first), while Random denotes a ran-602

dom permutation of the BM25-ranked list.603

In terms of NDCG, the two methods perform604

comparably: Setwise-Insertion’s best and worst605

scores differ by 1.6 points, while REALM shows a606

smaller gap of 1.3 points, indicating slightly better607

stability. However, the difference becomes more608

pronounced when comparing token efficiency. Be-609

cause Setwise-Insertion relies more heavily on the610

assumptions of the initial ranking, it requires sig-611

nificantly more insertion operations when the ini-612

tial order is suboptimal (e.g., under Inverse). This613

leads to substantially higher prompt token usage,614

whereas REALM is less affected by the quality of615

the initial ranking and maintains consistently low616

token consumption across all input orders.617

4.3 Analysis618

Ablation study. Table 2 presents the results of619

ablation study, comparing the full REALM system620

with three reduced variants by disabling key com-621

ponents: (1) W/O MODELING, which removes un-622

certainty modeling and uses QuickSelect (Hoare,623

1961) to retrieve top-k; (2) W/O RECURSIVE, which624

disables recursive refinement; and (3) W/O OPTI-625

MIZATION, omitting pivot optimization.626

Removing any of these components leads to627

a consistent drop in performance. Disabling un-628

certainty modeling (W/O MODELING) results in a629

1.5−3.3 decrease in NDCG@10 across all models,630

LLM (Size) TREC DL 2019 TREC DL 2020
N@10 lat.(s) N@10 lat.(s)

NA 50.6 - 48.0 -
Flan-T5-Large (770M) 67.0 3.9 63.0 3.6

Flan-T5-XL (3B) 70.5 4.0 68.4 3.7
LLaMA3 (8B) 49.6 30.9 43.6 27.3

Flan-T5-XXL (11B) 71.2 7.5 69.1 7.3
Flan-UL2 (20B) 72.2 13.2 71.4 12.8
LLaMA3 (70B) 72.0 81.4 68.4 80.2

Table 3: Performance across different LLMs.

highlighting the value of Gaussian-based relevance 631

modeling. The absence of recursive reasoning 632

(W/O RECURSIVE) also causes noticeable degra- 633

dation, underscoring the benefit of multi-round 634

refinement. Lastly, disabling pivot-centric opti- 635

mization (W/O OPTIMIZATION) nearly doubles la- 636

tency—for example, from 7.4s to 12.1s with Flan- 637

T5-XXL—confirming that our pivot selection and 638

partitioning strategy substantially improves effi- 639

ciency without compromising effectiveness. 640

Performance across different LLMs. As 641

shown in Table 3, our method benefits from 642

stronger LLMs, achieving higher re-ranking per- 643

formance and reduced prompt usage. For instance, 644

Flan-UL2 achieves the best results on TREC DL 645

datasets with an average NDCG@10 of 71.8, while 646

Flan-T5-XXL and Flan-T5-XL reach 70.2 and 647

69.5, respectively, surpassing the no-LLM base- 648

line (48.0) and LLaMA models by a large margin. 649

In contrast, decoder-only architectures such as 650

LLaMA-8B yield substantially lower performance 651

(e.g., 49.6 on TREC DL 2019), despite incurring 652

30.9s per query. This discrepancy is partly due to 653

their limited formatting capabilities and strong po- 654

sitional bias. In particular, we observe that LLaMA- 655

8B selects the first option in approximately 85.6% 656

of cases on our balanced binary-choice tasks con- 657

structed from the TREC DL 2019 dataset (see Ap- 658

pendix C.1), indicating a strong positional bias that 659

undermines its effectiveness for re-ranking. 660

5 Conclusion 661

We present REALM, an uncertainty-aware re- 662

ranking framework. By modeling document rel- 663

evance as Gaussian distributions and refining them 664

through recursive comparisons and Bayesian aggre- 665

gation, REALM achieves both high effectiveness 666

and efficiency. Experiments across multiple LLMs 667

and TREC benchmarks demonstrate that REALM 668

consistently outperforms existing re-ranking meth- 669

ods across various configurations. 670
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Limitations671

Our current design choices are partially constrained672

by resource and space limitations. While our rele-673

vance modeling is, in principle, compatible with a674

broad range of re-ranking methods, we center our675

evaluation on the specific framework we designed676

that achieved the strongest empirical performance.677

A more comprehensive comparison with alterna-678

tive designs is left to future work. Secondly, we679

conduct experiments using open-source models, in-680

cluding the Flan-T5 and LLaMA 3 series. We did681

not include closed-source models such as GPT-3.5682

or GPT-4 accessed via API. Future extensions may683

consider such models to provide a more complete684

empirical picture of REALM.685
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A Bayesian Rating Systems915

Bayesian rating systems provide probabilistic916

frameworks to estimate latent skill levels or qual-917

ity scores of entities based on observed outcomes918

of comparisons or matches. Such systems lever-919

age Bayesian inference principles, combining prior920

knowledge with observed data to update skill esti-921

mations dynamically. The general characteristics922

include modeling uncertainty explicitly, supporting923

incremental updating, and providing robustness to924

noise and incomplete data. Two widely-adopted925

Bayesian rating systems are Elo (ELO, 1978) and926

its more advanced successor, TrueSkill (Herbrich927

et al., 2006), which progressively extend rating928

complexity and flexibility.929

A.1 Elo Rating System930

The Elo rating system is a foundational Bayesian931

rating method originally designed to quantify the932

relative skill levels of chess players. In this sys-933

tem, each player’s ability is represented by a single934

numerical rating. When two players compete, the935

ratings are updated based on the observed outcome936

compared to the expected outcome calculated from937

current ratings. A player’s rating increases after938

wins against higher-rated opponents and decreases939

upon losses or unexpected outcomes. The Elo sys-940

tem’s simplicity and adaptability make it partic-941

ularly effective in scenarios involving sequential 942

pairwise competitions. 943

A.2 TrueSkill Rating System 944

TrueSkill, introduced by Microsoft, generalizes the 945

Elo rating system by explicitly modeling player 946

skills using probability distributions rather than 947

single scalar values. Specifically, TrueSkill repre- 948

sents each player’s skill as a Gaussian distribution 949

characterized by two parameters: a mean µ reflect- 950

ing the estimated skill level, and a standard devi- 951

ation σ capturing the uncertainty of this estimate. 952

Following each match, TrueSkill applies approxi- 953

mate Bayesian inference to update these parame- 954

ters according to the observed results, factoring in 955

the certainty of each player’s current rating. This 956

mechanism enables TrueSkill to naturally handle 957

multiplayer and team-based matches, uncertain out- 958

comes, and noisy comparisons. 959

A.3 Bayesian Update Details 960

We adopt a Gaussian-based update rule derived 961

from the 1v1 setting in TrueSkill (Herbrich et al., 962

2006), adapted for document ranking. 963

Given two documents Di and Dj with current 964

relevance estimates µi,0, σ
2
i,0 and µj,0, σ

2
j,0, we de- 965

fine the following intermediate quantities: 966

δ = µi,0 − µj,0, c2 = σ2
i,0 + σ2

j,0 + 2β2, 967

968

t =
δ√
c2
, v(t) =

ϕ(t)

Φ(t)
, w(t) = v(t)(v(t)+t), 969

where ϕ(t) and Φ(t) denote the probability den- 970

sity function and cumulative distribution function 971

of the standard normal distribution, respectively. 972

The parameter β is a fixed constant that controls 973

comparison noise; we follow the TrueSkill default 974

and set β = µ0/3. 975

We then define the Bayesian updates to the rel- 976

evance distribution of Di, under two possible out- 977

comes: 978

If Di wins over Dj:

N (µwin, σ
2
win) 979
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980

∆λ+ =
σ4
i,0

c2
· w(t),981

∆τ+ =
σ2
i,0√
c2

· v(t) + µi,0 ·∆λ+,982

λwin = λi,0 +∆λ+,983

τwin = τi,0 +∆τ+,984

µwin =
τwin

λwin
, σ2

win =
1

λwin
.985

If Di loses to Dj:

N (µloss, σ
2
loss)986

987

∆λ− =
σ4
i,0

c2
· w(−t),988

∆τ− = −
σ2
i,0√
c2

· v(−t) + µi,0 ·∆λ−,989

λloss = λi,0 +∆λ−,990

τloss = τi,0 +∆τ−,991

µloss =
τloss

λloss
, σ2

loss =
1

λloss
.992

B Implementation Details993

B.1 Detailed Explanation of Datasets994

The TREC Deep Learning (DL) 2019 (Craswell995

et al., 2020) and 2020 (Craswell et al., 2021)996

datasets are benchmark collections designed to997

evaluate document ranking systems in complex in-998

formation retrieval tasks. Both datasets are based999

on queries derived from real-world search logs and1000

are built on top of the MS MARCO (Nguyen et al.,1001

2016) passage and document corpora. The TREC1002

DL 2019 dataset includes 43 queries with graded1003

relevance judgments, while the 2020 version ex-1004

pands the test set to 54 queries. Documents are1005

written in English and come from a large web-scale1006

corpus, with each query typically associated with1007

hundreds to thousands of candidate documents.1008

These datasets emphasize fine-grained relevance es-1009

timation and are widely used for evaluating neural1010

re-ranking models and LLM-based retrieval meth-1011

ods. The reported NDCG@10 scores are averaged1012

over the entire dataset with a single run, ensuring1013

stable and reliable evaluation results.1014

B.2 Parameter Settings1015

For a fair comparison, we set the number of com-1016

parison rounds for TourRank and PRP-Graph to1017

10. Since the original implementation of TourRank 1018

only supports the OpenAI API, we re-implemented 1019

it with a T5-based interface. For Setwise-Insertion, 1020

we adopt the best-performing variant, Setwise In- 1021

sertion Sort Compare Prior, as reported in their 1022

paper (Podolak et al., 2025). All other baselines 1023

are used with their default hyperparameters. In 1024

our method, we set λ = 2/3 (see Section 3.3) to 1025

balance effectiveness and efficiency. 1026

B.3 Prompts 1027

For TourRank, we adopt their default listwise 1028

prompt: 1029

System Prompt
You are an intelligent assistant that can com-
pare multiple documents based on their rele-
vancy to the given query.

1030

User Prompt
I will provide you with the given query and
{N} documents.
Consider the content of all the documents
comprehensively and select the {M} docu-
ments that are most relevant to the given
query: {query}.
The query is: {query}.
Now, you must output the top {M} docu-
ments that are most relevant to the query
using the following format strictly, and noth-
ing else.
Do not provide any explanation or commen-
tary. Output format:
Document 3, ..., Document 1

1031

For PRP-Graph, we also adopt their default pair- 1032

wise prompt: 1033

Given a query {query}, which of the fol-
lowing two passages is more relevant to the
query?

Passage A: {document_1}

Passage B: {document_2}

Output Passage A or Passage B:
1034

For the remaining methods—REALM, Setwise- 1035

Heapsort, and Setwise-Insertion—we use a consis- 1036

tent setwise prompt of the following form: 1037
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Given a query {query}, which of the fol-
lowing passages is the most relevant to the
query?
{passages}
Output only the passage label of the most
relevant passage:

1038

For Setwise-Insertion, we additionally append1039

the following sentence to the prompt:1040

If their relevance is similar, or none of them
is relevant, output A.

1041

This modification follows their original paper,1042

which claims this change as a key contribution.1043

C Supplementary Evaluations1044

C.1 Model Capability Analysis1045

We evaluate the pairwise comparison capability of1046

different LLMs by randomly sampling 500 doc-1047

ument pairs per query from the TREC DL 20191048

dataset. Each pair is presented to the model for bi-1049

nary relevance judgment. As shown in Table 4, we1050

observe that LLaMA 3 8B exhibits a strong posi-1051

tion bias, often favoring the document appearing in1052

a particular position regardless of content. In con-1053

trast, Flan-T5 models demonstrate more reliable1054

behavior and stronger alignment with ground-truth1055

preferences in pairwise comparisons.1056

Choice Correct Wrong Accuracy
LLaMA3 8B

A (85.6%) 10258 8145 55.7%
B (14.4%) 2669 428 86.2%

Total 12927 8573 60.1%
LLaMA3 70B

A (54.9%) 9979 1815 84.6%
B (45.1%) 8794 912 90.6%

Total 18773 2727 87.3%
FLAN-T5-XXL 11B

A (43.9%) 8709 722 92.3%
B (56.1%) 10047 2022 83.2%

Total 18756 2744 87.2%
FLAN-UL2 20B

A (50.3%) 9684 1137 89.5%
B (49.7%) 9542 1137 89.4%

Total 19226 2274 89.4%

Table 4: Statistical summary of different models’
choices in pair-wise comparison on TREC DL 19.
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