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Abstract
Large transformer models are known to produce
high-norm tokens. In vision transformers (ViTs),
such tokens have been mathematically modeled
through the singular vectors of the linear approx-
imations of layers. However, in large language
models (LLMs), the underlying causes of high-
norm tokens remain largely unexplored, and their
different properties from those of ViTs require a
new analysis framework. In this paper, we pro-
vide both theoretical insights and empirical val-
idation across a range of recent models, leading
to the following observations: i) The layer-wise
singular direction predicts the abrupt explosion of
token norms in LLMs. ii) The negative eigenval-
ues of a layer explain its sudden decay. iii) The
computational pathways leading to high-norm to-
kens differ between initial and noninitial tokens.
iv) High-norm tokens are triggered by the right
leading singular vector of the matrix approximat-
ing the corresponding modules. We showcase
two practical applications of these findings: the
improvement of quantization schemes and the de-
sign of LLM signatures. Our findings not only
advance the understanding of singular defects in
LLMs but also open new avenues for their appli-
cation. We expect that this work will stimulate
further research into the internal mechanisms of
LLMs. Code is released at https://github.
com/haoqiwang/singular_defect.

1. Introduction
While large foundation models are proving increasingly ef-
fective, their intrinsic behavior remains poorly understood.
An example of this is the emergence of tokens whose norm
is unexpectedly higher than that of the majority of the other
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tokens during the forward pass, as illustrated in Fig. 1. This
behavior has been observed in both large vision transform-
ers (Darcet et al., 2024; Wang et al., 2024) and large lan-
guage models (LLMs) (Sun et al., 2024).

In particular, in vision foundation model DINOv2 (Oquab
et al., 2024; Darcet et al., 2024), high-norm tokens appear
as defective patch tokens, degrading the feature quality and
hindering performance on downstream dense prediction
tasks. In pursuit of repairing these defects, Wang et al.
(2024) revealed a connection between the direction of the
high-norm tokens and the leading left singular vector of the
matrix that provides a linear approximation of a transformer
layer, and therefore name these tokens as singular defects.

In the context of LLMs, high-norm hidden states have also
been observed (Sun et al., 2024) and referred to as mas-
sive activations. Specifically, the following properties were
empirically identified: (1) The appearance of a massive
activation is abrupt, emerging suddenly in one layer and
diminishing later in the model after another. (2) Massive
activations appear mostly for the initial token and the delim-
iter tokens. These properties differ from those made with
DINOv2, where the norm of the defective tokens increases
gradually layer by layer, and the defective tokens are ran-
domly scattered across the feature map, with a tendency to
appear in low-semantic regions. Given these different be-
haviors of high-norm tokens in LLMs vs. ViTs, it is natural
to wonder (i) whether the theory of singular defects can be
applied to LLMs; and (ii) how to further explain the new
observations related to massive activations?

In this paper, we confirm that singular defects can predict
the direction of high-norm tokens in LLMs. However, it
falls short of explaining the high-norm properties that are
unique to LLMs. To understand the full life cycle of the
high-norm tokens, we thus expand the theory and provide
the following insights:

1. (Development) The explosion of the initial1 token norm
is linked to self-attention, whereas that of the noninitial
high-norm tokens is unrelated to self-attention.

2. (Trigger) A norm explosion is initiated when the input
vector has a projection onto the leading right singular

1We define the initial token as the first token in the user input.
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(a) LLama2-7B
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(b) Phi3-Medium
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(c) MPT-7B
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(d) Pythia-160M
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Figure 1. High norm tokens in various LLMs. Each subfigure plots the norm of the first few tokens and the token ‘.’ in the sentence ‘The
quick brown fox jumps over the lazy dog.’. The x-axis is the layer id, the y-axis shows different tokens, and the z-axis
is the norm. Layer 0 is the input embedding layer, and the others are transformer layers. Additional models are shown in Appendix A.

vector of the linear approximation of the explosion
layer’s feed-forward network (FFN) module.

3. (Explosion) Once triggered, the high-norm token in
the layer’s output aligns with the direction of the layer-
wise singular defect direction.

4. (Decay) The layer that decays the high-norm tokens has
a negative eigenvalue associated with an eigenvector
that aligns with the singular defect direction.

We empirically validate these findings on a variety of
LLMs, including LLaMA2 (Touvron et al., 2023), Phi3 (Ab-
din et al., 2024), MPT (Team, 2023), Pythia (Biderman
et al., 2023), Vicuna1.5 (Platzer & Puschner, 2021), Fal-
con2 (Malartic et al., 2024), GPT2 (Radford et al., 2019),
Qwen2.5 (Team, 2024), to name a few.

For the behavior of high-norm tokens during training, our
experiments reveal that the direction of high-norm tokens
gradually stabilizes in training and remains consistent even
after fine-tuning. Moreover, we conjecture that the causal
self-attention mechanism is one of the defining factors for
the emergence of high-norm tokens.

Finally, we demonstrate that a better understanding of the
high-norm tokens in LLMs can lead to novel applications. i)
High-Norm Aware Quantization Design. Outlier activations
induced by high-norm tokens cause significant performance
in low-bit quantization. To mitigate this, we propose a
high-norm aware quantization strategy that selectively pre-
serves precision for these critical layers, improving robust-
ness without compromising efficiency. ii) LLM Signature

via Singular Defects. The singular defect direction, which
stabilizes in the late training stages and persists through
fine-tuning, serves as a robust model signature. This signa-
ture enables distinguishing whether an LLM was fine-tuned
from another model and thus detect model infringement.

Ultimately, we believe that understanding singular defects
will not only stimulate novel applications but also spur new
insights into the internal mechanism of LLMs.

2. Related Work
Large Language Models (LLMs). Transformer-based
LLMs (Minaee et al., 2024) have achieved remarkable per-
formance in various natural language processing tasks. They
are mainly pre-trained with causal language modeling (e.g.,
LLaMA2 (Touvron et al., 2023)) or masked language mod-
eling (e.g., BERT (Devlin et al., 2019)). BERT-like mod-
els employ a bidirectional attention mechanism to learn
contextual representations, typically adopting an encoder-
only architecture. In contrast, LLaMA-like models utilize a
decoder-only architecture and are trained autoregressively
with causal self-attention, modeling the probability distri-
bution of the next token in a sequence. In our observations,
LLaMA-like models exhibit extremely high-norm tokens in
their hidden states, whereas BERT-like models do not. In
this work, we focus on LLaMA-like models and investigate
the characteristics of these high-norm tokens.

High-Norm Tokens in ViTs and LLMs. Several recent
works have observed the presence of high-norm defective
tokens in the feature maps of ViTs (Darcet et al., 2024;
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Wang et al., 2024) and proposed methods to repair them. In
particular, Wang et al. (2024) used the leading left singular
vector of the matrix representing a linear approximation
of the transformer layer to predict the direction of the de-
fective tokens. In the context of LLMs, Sun et al. (2024)
noticed that certain activations in the hidden states have a
huge magnitude (i.e., massive activations). They observed
that massive activations are consistently present in very few
fixed dimensions but did not provide a mathematical expla-
nation. To account for the different properties of high-norm
tokens in ViTs and LLMs, we extend the theory of Wang
et al. (2024) to LLMs, providing a systematic explanation
for their high-norm tokens. Furthermore, while Sun et al.
(2024) study massive activations from the perspective of the
individual scalar values within a token, we analyze high-
norm tokens as a whole vector and provide a mathematical
framework to explain high-norm tokens in LLMs.

Applications of High-Norm Tokens. While recent stud-
ies have identified high-norm tokens in LLMs, their practical
implications remain largely unexplored. We highlight two
key applications: Quantization and Model Signature. High-
norm tokens induce activation outliers, posing challenges
for tensor-wise quantization methods (Dettmers et al., 2022;
Xiao et al., 2023; Grattafiori et al., 2024). Additionally, as
more open-source LLMs become available, tracing model
lineage is increasingly important. Prior works (Yu & Wang,
2024; Mu et al., 2024) investigate model tracing through
internal representations, yet, they can only deal with models
in vision. To the best of our knowledge, we are the first
to leverage insights from the high-norm token analysis to
address both challenges in LLMs.

3. Analysis of High-Norm Tokens in LLM
As shown in Fig. 1, most recent LLMs manifest high-norm
tokens in intermediate layers, regardless of the model size,
training data, variations in model architecture, etc. Echoing
the observations in (Sun et al., 2024), we note that the high-
norm tokens appear abruptly in a certain layer and decay
suddenly after another layer, with the initial token consis-
tently having a high norm in the middle layers, while certain
later tokens, such as the delimiter ‘.’, also exhibit a high
norm in some models. These phenomena differ from those
in vision transformers, where norms gradually increase with-
out sudden drop (see Figure 4 in (Darcet et al., 2024)), and
high-norm tokens appear at random spatial locations.

This section provides a comprehensive understanding of the
distinctive high-norm phenomenon in LLMs by expanding
the theory of singular defects that was originally developed
for ViTs. As illustrated in Fig. 2, we study this phenomenon
from four perspectives, covering the full life cycle of the
high-norm tokens: (1) Development: the computational

Figure 2. The four properties of high-norm tokens. The x-axis is
the layer id, and the y-axis is the norm of the tokens. The results
are obtained from LLaMA2-7B.

Figure 3. Transformer layer in LLaMA2. Given an input token x,
we show the approximate output of each module in red.

pathways leading to norm increases. (2) Trigger: the cause
of the norm increase just before the explosion layer. (3)
Explosion: the appearance of high-norm tokens in interme-
diate layers and their correlation with network parameters.
(4) Decay: how high-norm tokens disappear.

3.1. Explosion: Appearance of High-Norm Tokens

The most obvious pattern in Fig. 1 is that the hidden states of
some tokens have extremely high norms in the intermediate
layers, and so consistently across different LLMs. Interest-
ingly, we find that for each model, all the high-norm tokens
share the same direction, regardless of the input text, the
layer, and the position of the token in the sentence. We
define the average of the high-norm tokens as the empirical
high-norm direction.

Taking LLaMA2-7B as an example, we extract the hid-
den states of 1K random rows from the WikiText2-v1
dataset (Merity et al., 2017) across all layers and compute
the norm of each token in each layer. We collect all hidden
states with a norm larger than 500. The average pairwise
angle between any two high-norm tokens is only 3.1 de-
grees, which verifies our claim. Additional statistics for
more models are provided in Appendix C, demonstrating
that this phenomenon is general across models. Sun et al.
(2024) observed that the massive activations appear at fixed
feature dimensions, which echos our observation from the
perspective of vector direction.

Notably, the behavior that the same high-norm direction ap-
pears across layers differs from DINOv2 where the direction
of the high-norm tokens varies across layers. Despite the dis-
tinctions between high-norm tokens in ViTs and LLMs, we
next verify whether the theory of singular defects developed
for DINOv2 is applicable to LLMs.

Let us first review the basic concepts introduced in (Wang
et al., 2024). The core of the theory of singular defects is
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the linear approximation of transformer layers under the
single-token assumption. It assumes that only a single token
is provided as input, so that the interaction across tokens
in self-attention can be ignored, making the mathematical
analysis tractable. Note that most recent LLMs are trained
with causal self-attention, where a token can only attend to
itself and the previous tokens. Thus, the inference of the
first token perfectly matches the single-token assumption.

We use LLaMA2 as an example to illustrate how to ap-
proximate the transformer layer as a linear operator. The
structure of the transformer layer is shown in Fig. 3, where
the self-attention module and the FFN module are the two
residual components. The self-attention module can be ap-
proximated as a matrix-vector multiplication,

Attention(x) ≈ Ax := A2A1A0x, (1)

where A0 is a diagonal matrix representing the weight of
the attention RMSNorm, A1 is the weight matrix of the
value projection, and A2 is the weight matrix of the output
projection. Note that for LLMs that use a different self-
attention design, the approximation of the self-attention
module can be adjusted accordingly. For example, LLaMA3
uses a grouped query attention (Ainslie et al., 2023) whose
key-value heads are repeated. Then, we can, accordingly,
repeat the weight matrix of the value in the approximation.

The FFN module can be approximated as

FFN(x) ≈ Fx := F2F1F0x, (2)

where F0 is a diagonal matrix representing the weight of
the feed-forward RMSNorm, F2 is the weight matrix of
the down proj, and F1 is the least-square linear approxima-
tion (see (Wang et al., 2024) for details) of the nonlinear
function F1x ≈ silu(W1x) � (W3x), in which W1 is the
gate proj and W3 is the up proj. For LLMs that use alterna-
tive FFN designs, e.g., F1x ≈ GELU(W1x) in Pythia, the
least-square linear approximation of the FFN module can
be adjusted accordingly.

Combining the two modules with the identity paths, the
transformer layer can be approximated as

Layer(x) ≈ Lx := x+(A+F +FA)x =: (I+R)x, (3)

where the right-hand side decomposes the approximated
matrix into an identity path I and a residual path R. The
layer-wise singular defect direction is then defined as the
leading left singular vector of the matrix L for each layer.

We compute the layer-wise singular defect directions of
LLaMA2-7B and compare them with the empirical high-
norm direction. The acute angles between the predicted
directions and the empirical one are provided in Fig. 4. We
observe layer-2 and layer-31 to yield very small angles
(6.05 and 2.93 degrees, respectively) with the empirical

0 5 10 15 20 25 30
Layer

0

20

40

60

80

An
gl

e 
(d

eg
re

es
)

6.05 2.93

Figure 4. Acute angle between the predicted layer-wise singular de-
fect directions and the empirical high-norm direction for LLaMA2-
7B. The predictions for more LLMs are provided in Appendix D.
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Figure 5. For LLama2-7B, the minimum angles between the eigen-
vectors of R and the empirical high-norm direction are shown in
red, and the corresponding eigenvalues are shown in blue. More
examples are shown in Appendix E.

high-norm direction. These two layers correspond to the
layer that increases the norm and decreases the norm of
the tokens, respectively (see Fig. 1a). Layers 3–30 only
cause small perturbations to the high-norm tokens. Thus,
the high-norm tokens in the hidden states are created by
layer-2, then preserved by the identity path between layer-3
and layer-30, and suppressed by layer-31. This explains why
the set of high-activation channels observed in (Sun et al.,
2024) is fixed: the high-norm tokens are (nearly) unchanged
in the intermediate layers. Unsurprisingly, we observe that
the angles between the layer-wise predicted directions and
the empirical directions are large, as they do not modify the
high-norm tokens. Note that the accumulated singular defect
directions (see (Wang et al., 2024) for a formal definition)
may mislead us about the contribution of the intermediate
layers to the high norms. Therefore, in the remainder of the
paper, we will focus on layer-wise singular defect directions.

3.2. Decay: Eigenvalues of Decay Layers

The leading left singular vector of the matrix L encodes
the output direction having the largest norm for all possible
unit-length inputs, and the corresponding singular value
is the norm of the output in that direction. However, this
interpretation contrasts with the behavior of the decay layer,
which greatly reduces the norms of high-norm tokens. To
better describe the behavior of such a layer, we instead
propose to use eigenvalue and eigenvector decomposition.
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Figure 6. Attention-independent exploding path of LLaMA2-7B.
The y-axis is the norm of each token at the output of layer-2 after
removing all self-attention blocks from the model. The largest
five tokens together with their norms are annotated in the figure.
The noninitial high-norm tokens are labeled in red. Results of
additional models is presented in Appendix F.

Figure 7. Attention-related exploding path of LLaMA2-7B for ini-
tial tokens. The y-axis is the norm of each token at the output of
layer-2. We also show the norm (sorted) of 32,000 random input
token embeddings (not learned by the network) after layer-2. See
more figures in Appendix F.

Consider the decomposition L = I + R in Eq. (3), and let
x be a high-norm token input to a decay layer. If after the
layer, the token does not have a high norm anymore, then
Lx ≈ 0, and therefore Rx ≈ −x. This implies that the
high-norm token x should be an eigenvector of the residual
matrix R with a negative eigenvalue.

To verify this intuition, we compute the minimum angle
between the eigenvectors of the residual matrix R and the
empirical high-norm direction for LLaMA2-7B. In Fig. 5,
we plot these angles for different layers, together with the
corresponding eigenvalues. At the decay layer-31, the eigen-
vector of the residual matrix R forms a small angle with
the empirical high-norm direction, with a relatively large
negative eigenvalue2. We verify this for other models in
Appendix E. A corollary of this observation is that, if the
input to the decay layer is not a high-norm token, it will not
produce a new high-norm token, i.e., the layer specializes in
shrinking the token norm in the high-norm direction.

2For simplicity, we only consider the real part of eigenvalues
and eigenvectors, having observed that the imaginary part of the
eigenvalues and eigenvectors of interest is close to zero.

Figure 8. Norm of output tokens of FFN at layer-2 of LLaMA2-7B
using the right singular vectors of F as input tokens to FFN. More
examples are provided in Appendix G.

Figure 9. Coefficient of tokens projected to the leading right sin-
gular vector of F just before the FFN in layer-2 of LLaMA2-7B.
Analysis for additional models is provided in Appendix G.

3.3. Development: The Two Types of Exploding Paths

We now focus on the development of the high-norm tokens
before the “explosion”. To this end, we refer to the compu-
tation path related to the appearance of high norms between
the input token embedding and the explosion layer as the
exploding path. We differentiate two types of high-norm
tokens: the initial token and the noninitial high-norm to-
kens. An example of the noninitial high-norm token is the
delimiter token ‘.’ in LLaMA2-7B. We observed that the
first occurrence of the ‘.’ token has a high norm in the
intermediate hidden states, regardless of the content before
it. This implies that the self-attention layers, the only places
where inter-token interactions occur, play an insignificant
role in noninitial high-norm tokens.

To verify this argument, we remove the self-attention layers
and feed each token available in the tokenizer individually
to the model. Without self-attention layers, all tokens in
a sequence effectively behave as independent single-token
within the network. If the noninitial high-norm tokens are
indeed unrelated to self-attentions, then we expect that the
noninitial high-norm tokens retain their high norms after
removing self-attention layers from the model. This is veri-
fied in Fig. 6, where we plot the norm of the hidden states
after the explosion layer for all possible input tokens. Out of
the five tokens with the highest norm, four of them belong
to noninitial high-norm tokens, including ‘.’, ‘◦’, ‘<s>’
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Figure 10. Norm of tokens after removing the component on the
explosion subspace before layer-2’s FFN in LLaMA2-7B. High-
norm tokens in the intermediate layers disappear, however, the
scale of the final outputs becomes abnormal, leading to low-quality
generated text.

and ‘\n’. Among them, the Chinese delimiter token ‘◦’ and
the special token ‘<s>’ are newly discovered high-norm
tokens that were not identified in previous work.

Given that the high norm of noninitial tokens is unrelated to
self-attention, such tokens can also be analyzed under the
single-token assumption. Therefore, our methodology for
predicting the high-norm directions can be applied to both
the initial token and the noninitial high-norm tokens. This
sheds light on why the two types of high-norm tokens share
the same direction.

For the initial token, we observed the exploding path to be
related to self-attention. For example, in Fig. 7, we plot the
norm of all the trained tokens after the explosion layer-2
in LLaMA2-7B. Almost all tokens have a high norm. This
aligns with the observation that the initial token always has
a high norm, regardless of the word it encodes. Comparing
Fig. 7 with Fig. 6, we can see that the initial high-norm
tokens lose their high norms (except for a few noninitial
high-norm tokens) when the self-attention layers are re-
moved from the model. This indicates that self-attention is
indispensable for initial tokens to have high norms.

Surprisingly, even a random token embedding that is not
learned by the network also has a higher norm than a non-
initial normal token, whose average norm is 46.88 in the
explosion layer-2 of LLaMA2-7B, although the norm of the
random token may be lower than that of the learned tokens.
The analysis for other models is provided in Appendix F.

3.4. Trigger: The Explosion Subspace

Let us now focus on the explosion layer where the norm
of tokens undergoes a sharp increase. Tracking the change
in norm within that transformer layer, we observed that the
abrupt increase occurs in the FFN module. For example, in
the explosion layer of LLaMA2-7B (layer 2), the average

norm of the initial tokens before/after FFN is 3.49/932.25,
respectively. Let F be the linear approximation of this
FFN module following Eq. (2), and the SVD of F be F =
UΣV T . The columns of V form an orthonormal basis of
the input space. We feed these unit-length base vectors to
the FFN and plot their output norms in Fig. 8. Note that the
leading right singular vector of F is the only direction that
undergoes norm explosion when passed through FFN. We
thus refer to the 1-dimensional subspace spanned by this
vector as the explosion subspace. This lets us conjecture
that the high-norm tokens have a large component in the
explosion subspace, while the normal tokens do not. This
is verified in Fig. 9. For any token at the initial position
in the input text (which is thus a high-norm token), the
projection of its feature just before the FFN module at layer-
2 onto the explosion subspace has a large coefficient (around
1.5). However, when the same token is placed at the second
position in the input (where it is not a high-norm token,
except for the few noninitial high-norm tokens discussed in
Section 3.3), the coefficient is much smaller.

One potential way to avoid high-norm in intermediate layers
could therefore be to remove the component in the explo-
sion subspace just before the FFN at the explosion layer. An
example of the resulting token norms is shown in Fig. 10,
where the high norms in the intermediate layers indeed dis-
appear. However, we observe that the network loses its
ability to generate high-quality text and instead produces
random texts. This shows that high-norm tokens are im-
portant for the performance of an existing trained model.
This observation echoes the experiments done by Sun et al.
(2024), where the authors set the massive activations to zero
and find performance degradations.

In summary, the life cycle of high-norm tokens can be out-
lined as follows. Firstly, the potential high-norm tokens,
either the tokens at the initial position of the input sequence,
or those noninitial high-norm tokens, develop a sufficiently
large component in the explosion subspace. Then, this com-
ponent explodes, yielding a high-norm token, whose direc-
tion can be predicted by the singular defect theory. Finally,
the decay layer produces a negative direction to neutralize
the high-norm token, which is described by the negative
eigenvalue and eigenvector of that layer.

4. Discussion
High-Norm Tokens During Training High-norm tokens
in ViTs appear only in the later stage of training and only in
large model variants (Darcet et al., 2024). However, high-
norm tokens in LLMs emerge early in training and across
a variety of model sizes, as demonstrated in Fig. 11 using
the suite of Pythia models (Biderman et al., 2023). After
5K out of a total of 143K iterations, the norms of both the
initial token and the token ‘.’ have become significantly
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Figure 11. High norm tokens in the Pythia model suite. Each row shows a different training iteration, with the top row being the final state
at 143K iteration. Each column is a different model size, including 410M, 1.4B, 2.8B, and 6.9B.
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Figure 12. Direction of high-norm tokens stabilizes during training.
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Figure 13. (a) Modifying the causal self-attention mechanism af-
fects the emergence of high-norm tokens. (b) Bi-directional models
do not show high-norm tokens. More examples are in Appendix B.

higher than that of the other tokens in the hidden states. Fur-
thermore, analyzing the change in the high-norm tokens as
training progresses, we found that the high-norm direction
gradually stabilizes during training, as shown in Fig. 12.

Which Factor Matters for the Emergence of High-Norm?
From our extensive experiments with various LLMs, we
observed that the presence of high-norm tokens is not signif-
icantly affected by factors such as the training dataset, posi-
tional embedding scheme, FFN design, the use of grouped-
query attention, parallel attention-FFN structures (Wang &
Komatsuzaki, 2022), supervised fine-tuning(SFT), reinforce-

ment learning with human feedback (RLHF), languages,
context length, model size, or training iterations. The root
cause therefore remains an open question. Nevertheless, em-
pirical evidence suggests that the causal self-attention mech-
anism may be one of the defining factors for the emergence
of high-norm tokens. Firstly, note that all the high-norm
examples we presented so far were trained with causal at-
tention. Secondly, Mistral (Jiang et al., 2023), which uses a
sliding window attention mechanism, does not exhibit high-
norm tokens among the initial tokens, as shown in Fig. 13.
This indicates that modifying the causal self-attention mech-
anism affects the emergence pattern of high-norm tokens.
Thirdly, we did not observe high-norm tokens in bidirec-
tional models, such as BERT, DistilBERT (Sanh et al., 2019),
and RoBERTa (Liu, 2019). This implies that masked lan-
guage modeling does not induce high-norm tokens as in
causal language modeling.

5. Applications
In this section, we showcase two applications motivated by
the insights of previous sections. In Section 5.1, we improve
quantization by specializing it according to the explosion
and decay layers. In Section 5.2, we show that the direction
of high-norm tokens can be used as a signature of an LLM.

5.1. Improving the Design of Quantization

LLMs are memory and computation intensive because of
their huge number of parameters. Quantization is a common
technique to reduce memory footprint and improve infer-
ence speed. Quantization in LLM mainly follows two set-
tings: W8A8 quantization (Dettmers et al., 2022; Xiao et al.,
2023), where both the weights and activations are quantized
to 8-bit; and low-bit weight-only quantization (Lin et al.,
2024; Frantar et al., 2023). We focus on W8A8 quantization.
Converting a model from 16-bit floating-point to 8-bit inte-
ger can reduce the model size by half. Int8 quantization (Ja-
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cob et al., 2018) can be expressed as X̄ int8 =
⌊
X fp16

∆

⌉
, where

∆ = max(|X|)
2N−1−1

is the quantization step size. Note that ∆ is
determined by the maximum absolute value of X . There-
fore, outliers in the input tensor will lead to non-negligible
underflow and cause large quantization errors.

Outlier channels in quantization are different from high-
norm tokens (Sun et al., 2024). High-norm tokens refer
to hidden states after each transformer layer, whereas out-
lier channels denote the input activations to linear layers
within a transformer layer. Most current LLMs adopt pre-
LayerNorm, where a normalization layer is prepended be-
fore the self-attention and FFN modules. Hence, the input
activations for the query, key, value projections in attention,
and W1, W3 in FFN, are normalized. These inputs are not
high-norm tokens, yet they possess outlier channels.

Outliers in activations are more severe than in weights (Xiao
et al., 2023). As such, the quantization of activations
is more challenging than that of weights. For example,
tensor-wise W8A8 quantization, where both weights and
activations are quantized to int8, does not work well for
LLaMA3 (Grattafiori et al., 2024). To tackle this issue,
LLaMA3 resorts to the row-wise quantization, where the
quantization step size is computed across rows of acti-
vation and weight matrices. However, hardware support
for row-wise quantization is limited. For instance, the
FBGEMM (FBG) implementation of row-wise quantiza-
tion only supports recent GPUs such as Nvidia H100 and
AMD MI300X. Furthermore, tensor-wise quantization has
lower latency compared to row-wise quantization (Xiao
et al., 2023). It is therefore desirable to improve the quanti-
zation strategy to make tensor-wise quantization effective.

We found that the main obstacle to tensor-wise quantization
in LLMs is related to the outlier channels induced by the
high-norm tokens. In the explosion layer and the decay layer,
the residual modules produce high-norm tokens (Section 3),
and thus, in the middle of the computation, the intermediate
token norms can be very large. Specifically, inside FFN, the
norm of some tokens after silu(W1x)� (W3x) is extremely
high, hence affecting the subsequent down proj F2x.

Our solution is straightforward: we simply allow the
down proj layer F2 of the FFN module in explosion and
decay layers to operate at a higher precision. The differ-
ence between our strategy and the mixed-precision strategy
in LLM.int8() (Dettmers et al., 2022) is that, LLM.int8()
decomposes a matrix into an 8-bit part and a 16-bit part,
while we operate the (very few) full problematic matrices
in a higher precision. We compare the performance of ours
with the two tensor-wise quantization in Table 1. The per-
plexities of both the standard RTN (Round-To-Nearest) and
the recent SmoothQuant (Xiao et al., 2023) are significantly
reduced after applying our solution.

Table 1. Improving tensor-wise quantization by skipping the
down proj matrix F2 of the FFN module in the explosion and decay
layers. PPL is the perplexity on the validation set of WikiText2-v1.

Model Method Skip F2 in Layers PPL↓

LLaMA2-7B

- - 5.47
RTN - 10.18
RTN (2, 31) 6.51

SmoothQuant - 13.87
SmoothQuant (2, 31) 6.78

LLaMA3-8B

- - 6.14
RTN - 59.38
RTN (2, 32) 8.80

SmoothQuant - 54.99
SmoothQuant (2, 32) 9.14
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Figure 14. The singular defect directions (at explosion layer 2 and
decay layer 31 for LLaMA2-7B) remain stable after fine-tuning.

5.2. Signature of an LLM

In Section 4, we have shown that the direction of the high-
norm tokens gradually stabilizes during training. By ex-
tension, this suggests that the singular defect direction is
also robust to fine-tuning, since fine-tuning is a continuation
of the training process. To verify this claim, in Fig. 14,
we compare the pairwise angles of the layer-wise singu-
lar defect directions between the base model LLaMA2-7B
and its fine-tuned variants LLaMA2-7B-Chat, LLaMA2-
7B-Code, LLaMA2-7B-Code-Python, LLaMA2-7B-Code-
Instruct. For the explosion layer 2 and the decay layer 31,
the pairwise angles are very small, which confirms that the
direction of the high-norm tokens is stable w.r.t. fine-tuning.
Additionally, we added LLaMA3-8B into the comparison,
and the pairwise angles are all nearly 90 degrees, suggesting
that the singular defect direction could distinguish different
models.

An application of this stability is to use the singular defect
direction as a signature of an LLM. Specifically, we define
the signature of a LLM as the empirical high-norm direction.
Based on our analysis, the leading left singular vector of ei-
ther the explosion layer or the decay layer serves as a reliable
approximation of the empirical high-norm direction. This
approach offers two key advantages: it is data-independent
and eliminates the need for manually selecting a threshold
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Figure 15. Model distances based on angles between model signa-
tures. la2, la3, la3.1, vi1.1, vi1.3, vi1.5, mpt mean LLaMA2-7B,
LLaMA3-8B, LLaMA3.1-8B, Vicuna-7B, MPT-7B, respectively.
We can see that the distances within each model series are very
small, as they originate from the same base models.

to define high norms. By defining the distance between two
models (with the same hidden dimension) as the acute angle
between their signature vectors, we can test whether one
model is derived from another by computing their signature
distances. In practice, to avoid having to manually locate the
explosion/decay layers, we can simply compute the acute
angle between the corresponding layer-wise singular defect
directions for all layers and take the minimum value as the
distance between the two models.

Fig. 15 presents the pairwise distances among several se-
ries of LLMs, including the LLaMA2-7B, LLaMA3/3.1-
8B, Vicuna-7B, and MPT-7B families. These models nat-
urally cluster into several groups, with models from the
same family appearing close to each other. We can infer
that LLaMA3 was trained from scratch without reusing the
LLaMA2 checkpoint, while LLaMA3.1 was obtained by
continuing training from the LLaMA3 checkpoint. Besides,
we confirm that Vicuna1.5 is fine-tuned from LLaMA2 in-
stead of Vicuna1.1/1.3. These findings are aligned with
the publicly available training details. In addition, we also
test distances between two models (Pythia-410M seed1 and
seed2) trained with the same data and same architecture,
where only the random seeds are different. Their distances
are approximately 90 degrees, showcasing the uniqueness
of model signatures for independently trained models. Alto-
gether, these results indicate that our LLM signature effec-
tively captures and differentiates the relationships between
models, validating its reliability for tracing model lineage.

6. Conclusion
We have studied the behavior of high-norm tokens in LLMs
from four perspectives, covering their whole life cycle. To
this end, we have extended the theory of singular defects
from ViTs to LLMs. Specifically, our theory gives a mathe-
matical characterization of the behavior of high-norm tokens
that is unique to LLMs. We have extensively verified our
theory on a variety of recent models, and our insights have
also motivated two practical applications, including a high-
norm aware quantization scheme and the design of an LLM
signature that may be used to detect model infringement.
We hope that our study will motivate advances in the under-
standing of the internal mechanisms of LLMs.

Acknowledgements
This work was supported in part by the Swiss National
Science Foundation via the grant 200020 214878.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, in particular, the understanding of
LLMs. There are many potential societal consequences of
our work, none which we feel must be specifically high-
lighted here.

References
FBGEMM. https://github.com/pytorch/
FBGEMM/tree/main/fbgemm_gpu/
experimental/gen_ai. Accessed: 2025-01-
30.

Abdin, M., Aneja, J., Awadalla, H., Awadallah, A., Awan,
A. A., Bach, N., Bahree, A., Bakhtiari, A., Bao, J., Behl,
H., et al. Phi-3 technical report: A highly capable lan-
guage model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. Empirical Methods in Natural Language Process-
ing, 2023.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Darcet, T., Oquab, M., Mairal, J., and Bojanowski, P. Vi-
sion transformers need registers. In The Twelfth In-

9

https://github.com/pytorch/FBGEMM/tree/main/fbgemm_gpu/experimental/gen_ai
https://github.com/pytorch/FBGEMM/tree/main/fbgemm_gpu/experimental/gen_ai
https://github.com/pytorch/FBGEMM/tree/main/fbgemm_gpu/experimental/gen_ai


Demystifying Singular Defects in Large Language Models

ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=2dnO3LLiJ1.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423/.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. The Eleventh International Confer-
ence on Learning Representations, 2023.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
e-prints, pp. arXiv–2407, 2024.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2704–2713, 2018.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. Awq:
Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of Machine
Learning and Systems, 6:87–100, 2024.

Liu, Y. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 364, 2019.

Malartic, Q., Chowdhury, N. R., Cojocaru, R., Farooq, M.,
Campesan, G., Djilali, Y. A. D., Narayan, S., Singh,
A., Velikanov, M., Boussaha, B. E. A., Al-Yafeai, M.,
Alobeidli, H., Qadi, L. A., Seddik, M. E. A., Fedyanin,

K., Alami, R., and Hacid, H. Falcon2-11b technical re-
port, 2024. URL https://arxiv.org/abs/2407.
14885.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference
on Learning Representations, 2017. URL https://
openreview.net/forum?id=Byj72udxe.

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher,
R., Amatriain, X., and Gao, J. Large language models: A
survey. arXiv preprint arXiv:2402.06196, 2024.

Mu, X., Wang, Y., Zhang, Y., Zhang, J., Wang, H., Xi-
ang, Y., and Yu, Y. Model provenance via model dna.
In Endriss, U., Melo, F. S., Bach, K., Diz, A. J. B.,
Alonso-Moral, J. M., Barro, S., and Heintz, F. (eds.),
ECAI 2024 - 27th European Conference on Artificial
Intelligence, 19-24 October 2024, Santiago de Com-
postela, Spain - Including 13th Conference on Presti-
gious Applications of Intelligent Systems (PAIS 2024),
volume 392 of Frontiers in Artificial Intelligence and
Applications, pp. 1043–1050. IOS Press, 2024. ISBN
978-1-64368-548-9. doi: 10.3233/FAIA240595. URL
https://doi.org/10.3233/FAIA240595.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec,
M., Khalidov, V., Fernandez, P., Haziza, D., Massa, F., El-
Nouby, A., et al. Dinov2: Learning robust visual features
without supervision. Transactions on Machine Learning
Research Journal, pp. 1–31, 2024.

Platzer, M. and Puschner, P. Vicuna: A timing-predictable
risc-v vector coprocessor for scalable parallel computa-
tion. In 33rd euromicro conference on real-time systems
(ECRTS 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Dis-
tilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter. In 5th Workshop on Energy Efficient
Machine Learning and Cognitive Computing @ NeurIPS
2019, 2019. URL http://arxiv.org/abs/1910.
01108.

Sun, M., Chen, X., Kolter, J. Z., and Liu, Z. Massive activa-
tions in large language models. In ICLR 2024 Workshop
on Mathematical and Empirical Understanding of Foun-
dation Models, 2024.

Team, M. N. Introducing mpt-7b: A new standard for
open-source, commercially usable llms, 2023. URL www.
mosaicml.com/blog/mpt-7b. Accessed: 2023-
05-05.

10

https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=2dnO3LLiJ1
https://aclanthology.org/N19-1423/
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2407.14885
https://arxiv.org/abs/2407.14885
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.3233/FAIA240595
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
www.mosaicml.com/blog/mpt-7b
www.mosaicml.com/blog/mpt-7b


Demystifying Singular Defects in Large Language Models

Team, Q. Qwen2.5: A party of foundation models, Septem-
ber 2024. URL https://qwenlm.github.io/
blog/qwen2.5/.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, B. and Komatsuzaki, A. Gpt-j-6b: a 6 bil-
lion parameter autoregressive language model (2021).
URL https://github. com/kingoflolz/mesh-transformer-jax,
2022.

Wang, H., Zhang, T., and Salzmann, M. Sinder: Repairing
the singular defects of dinov2. In European Conference
on Computer Vision, pp. 20–35. Springer, 2024.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Yu, R. and Wang, X. Neural lineage. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4797–4807, 2024.

11

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


Demystifying Singular Defects in Large Language Models

0
5

10
15

20
25

30 .
umps

 j
ox

 f
 brown

 quick
The

0
50
100

150

200

250

300

350

(a) Mistral-7B-v0.1

0
5

10
15

20
25

30 .
umps

 j
ox

 f
 brown

 quick
The

0

50

100

150

200

250

(b) Mistral-7B-Instruct-v0.1

0
5

10
15

20
25

30 .
umps

 j
ox

 f
 brown

 quick
The

0

50

100

150

200

250

300

(c) Mistral-7B-Instruct-v0.2

0
5

10
15

20
25

30 .
umps

j
ox

f
brown

quick
The

0

50

100

150

200

250

300

(d) Mistral-7B-Instruct-v0.3

0
2

4
6

8
10

12 .
the

over
jumps

fox
brown

quick
The

12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5

(e) BERT-Base-Cased

0
2

4
6

8
10

12 .
the

over
jumps

fox
brown

quick
the

14

16

18

20

22

24

26

(f) BERT-Base-Uncased

0
2

4
6

8
10

12 .
over

##s
jump

fox
brown

quick
[UNK]

18

20

22

24

26

28

(g) BERT-Base-Chinese

0
5

10
15

20
25

.
the

over
jumps

fox
brown

quick
the

10
12
14
16
18
20
22
24
26

(h) BERT-Large-Uncased

0
2

4
6

8
10

12 .
 the

 over
 jumps

 fox
 brown

 quick
The

7.5
10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

(i) RoBERTa-Base

0
5

10
15

20
25

.
 the

 over
 jumps

 fox
 brown

 quick
The

25
26
27
28
29
30
31
32

(j) RoBERTa-Large

0
1

2
3

4
5

6 .
the

over
jumps

fox
brown

quick
The

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

(k) DistilBERT-Base-Cased

0
1

2
3

4
5

6 .
the

over
jumps

fox
brown

quick
the

10
12
14
16
18
20
22
24
26

(l) DistilBERT-Base-Uncased

Figure 16. (Continuation of Fig. 13). The example token norms in Mistral, BERT, RoBERTa and DistilBERT models.

A. More Examples of High Norm Tokens
Fig. 17 shows more examples of high-norm tokens in the LLM series. Specifically, it displays a plethora of model variations
in the LLaMA2, LLaMA3, LLaMA3.1, LLaMA3.2, Phi3, and Qwen2 series. Without exception, they all exhibit the
high-norm phenomenon, especially in the initial token. The patterns of the high-norm look similar if one model is fine-tuned
from another, which echos our findings about the stability of high-norm tokens in Section 5.2.

B. More Examples of Token Norms in Mistral and BERT
Fig. 16 shows the norms of the first few tokens and the token ‘.’ in the sentence ‘The quick brown fox jumps
over the lazy dog.’ for more models in the Mistral, BERT, RoBERTa, and DistilBERT families.

C. More High-Norm Direction Statistics
Table 2 shows the average pairwise angles between all high-norm tokens for more LLMs. The thresholds are determined by
inspecting the visualization of the token norms as in Fig. 1. The results confirm that all the high-norm tokens in one model
have very similar directions across all layers and all tokens.

D. More Examples of Explosion Direction Prediction
Fig. 18 shows the angles between the predicted layer-wise singular defect directions and the empirical high-norm direction
for more models. Notice that in some models, such as Phi3-Medium, there are multiple explosion layers and decrease layers,
and the angles between the predicted directions and the empirical high-norm directions are close in those layers.
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Table 2. Average pairwise angles between all high-norm tokens for each LLM. High norm tokens are collected across all layers, and all
tokens from 1000 rows in the WikiText2-v1 dataset.

Model Threshold Mean Pairwise Angle (degree)

LLaMA2-7B 500 3.12
Phi3-Medium 2500 5.31
MPT-7B 1500 2.81
Pythia-160M 200 8.01
Vicuna1.5-7B 400 4.15
Falcon2-11B 3000 4.11
GPT2-Medium 3000 1.49
Qwen2.5-1.5B 8000 1.00

E. More Examples of Eigenvalues in Decay Layer
Fig. 19 shows the minimum angle between the eigenvectors of the linear approximation of the layer residual and the
empirical high-norm direction for more models. Their corresponding eigenvalues are also plotted.

F. More Examples of Exploding Path
Fig. 20 shows the norm of single tokens after the explosion layer when removing all self-attention blocks from the model.
The tokens with highest norms are candidates for the noninitial high-norm tokens. Fig. 21 shows the norm of the initial
token after the explosion layer. All trained tokens are plotted. Besides, a number of random input embeddings are also used
as initial tokens, and their norms after the explosion layer are plotted.

G. More Examples of Explosion Subspace
Fig. 22 shows that the leading right singular vector of the FFN module in the explosion layer ignites the explosion of the
token norms for more models. Fig. 23 shows the coefficients of tokens projected to the explosion subspace just before the
FFN in the explosion layer of LLMs for more models.
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Figure 17. (Continuation of Fig. 1). High norm tokens in various LLM series. Each subfigure plots the norm of the first few tokens and the
token ‘.’ in the sentence ‘The quick brown fox jumps over the lazy dog.’. Here, the token ‘The’ is the initial token,
and it has a high norm in all models. The x-axis is the layer id, the y-axis shows different tokens, and the z-axis is the norm. Layer 0 is
the input embedding layer, and the others are transformer layers.
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Figure 18. (Continuation of Fig. 4). Acute angles between layer-wise singular defect directions and empirical high-norm direction for
more models. We can see that small angles align with either the explosion or the decay layer.
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Figure 19. (Continuation of Fig. 5). For each layer, the minimum angles between the eigenvectors of R and the empirical high-norm
direction are shown in red, and the corresponding eigenvalues are shown in blue. Numbers for the explosion and decay layers are
annotated.
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(a) LLaMA2-7B-Chat (b) LLaMA2-7B-Code

(c) LLaMA2-13B (d) LLaMA2-13B-Chat

(e) LLaMA3-8B (f) LLaMA3-8B-Instruct

(g) Phi3-Mini (h) Phi3.5-Mini

(i) Phi3-Mini-128k (j) Phi3-Medium

(k) Qwen2-7B (l) Qwen2-7B-Instruct

Figure 20. (Continuation of Fig. 6). Attention-independent exploding paths. The y-axis is the norm of all single tokens after the explosion
layer when removing all self-attention blocks from the model. The largest few tokens together with their norms are annotated in the figure.
Red color means they are noninitial high-norm tokens.
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(a) LLaMA2-7B-Chat (b) LLaMA2-7B-Code

(c) LLaMA2-13B (d) LLaMA2-13B-Chat

(e) LLaMA3-8B (f) LLaMA3-8B-Instruct

(g) Phi3-Mini (h) Phi3.5-Mini

(i) Phi3-Mini-128k (j) Phi3-Medium

(k) Qwen2-7B (l) Qwen2-7B-Instruct

Figure 21. (Continuation of Fig. 7). Norm of all trained tokens after the explosion layer when they are used as the initial token in an input
sequence. We also plot the norm of a number of random input embeddings (sorted by their output norms) after the explosion layer.

18



Demystifying Singular Defects in Large Language Models

0 1000 2000 3000 4000
Right Singular Vectors of F in Layer 2

0

2000

4000

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(a) LLaMA2-7B-Chat

0 1000 2000 3000 4000
Right Singular Vectors of F in Layer 2

0

2500

5000

7500

10000

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(b) LLaMA2-7B-Code

0 1000 2000 3000 4000 5000
Right Singular Vectors of F in Layer 4

0

1000

2000

3000

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(c) LLaMA2-13B

0 1000 2000 3000 4000 5000
Right Singular Vectors of F in Layer 4

0

1000

2000

3000

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(d) LLaMA2-13B-Chat

0 1000 2000 3000 4000
Right Singular Vectors of F in Layer 2

0

200

400

600

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(e) LLaMA3-8B

0 1000 2000 3000 4000
Right Singular Vectors of F in Layer 2

0

200

400

600
O

ut
pu

t N
or

m
 o

f F
FN

leading right singular vector

(f) LLaMA3-8B-Instruct

0 500 1000 1500 2000 2500 3000
Right Singular Vectors of F in Layer 3

0

2000

4000

6000

8000

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(g) Phi3-Mini

0 500 1000 1500 2000 2500 3000
Right Singular Vectors of F in Layer 3

0

2500

5000

7500

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(h) Phi3.5-Mini

0 500 1000 1500 2000 2500 3000
Right Singular Vectors of F in Layer 3

0

2000

4000

6000

8000

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(i) Phi3-Mini-128k

0 1000 2000 3000 4000 5000
Right Singular Vectors of F in Layer 6

0

10000

20000

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(j) Phi3-Medium

0 500 1000 1500 2000 2500 3000 3500
Right Singular Vectors of F in Layer 4

0

10000

20000

30000

40000

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(k) Qwen2-7B

0 500 1000 1500 2000 2500 3000 3500
Right Singular Vectors of F in Layer 4

0

10000

20000

30000

40000

O
ut

pu
t N

or
m

 o
f F

FN

leading right singular vector

(l) Qwen2-7B-Instruct

Figure 22. (Continuation of Fig. 8). Norm of output tokens of FFN in the explosion layer using the right singular vectors of F as inputs to
FFN. We can see that the leading right singular vector of the FFN module in the explosion layer ignites the explosion of the token norms.
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(c) LLaMA2-13B (d) LLaMA2-13B-Chat

(e) LLaMA3-8B (f) LLaMA3-8B-Instruct

(g) Phi3-Mini (h) Phi3.5-Mini

(i) Phi3-Mini-128k (j) Phi3-Medium
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Figure 23. (Continuation of Fig. 9). Coefficient of tokens projected to the explosion subspace just before the FFN in the explosion layer of
LLMs. The initial tokens have a high component in the explosion subspace.
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