
Under review as submission to TMLR

FEATHERS: Federated Architecture and Hyperparameter
Search

Anonymous authors
Paper under double-blind review

Abstract

Deep neural architectures have profound impact on achieved performance in many of today’s
AI tasks, yet, their design still heavily relies on human prior knowledge and experience.
Neural architecture search (NAS) together with hyperparameter optimization (HO) helps to
reduce this dependence. However, state of the art NAS and HO rapidly become infeasible with
increasing amount of data being stored in a distributed fashion, typically violating data privacy
regulations such as GDPR and CCPA. As a remedy, we introduce FEATHERS—FEderated
ArchiTecture and HypERparameter Search, a method that not only optimizes both neural
architectures and optimization-related hyperparameters jointly in distributed data settings,
but further adheres to data privacy through the use of differential privacy (DP). We show that
FEATHERS efficiently optimizes architectural and optimization-related hyperparameters
alike, while demonstrating convergence on classification tasks at no detriment to model
performance when complying with privacy constraints.

1 Introduction

Federated learning (FL) is a distributed machine learning paradigm aiming to learn a shared model on data
distributed at different locations without ever exchanging the data itself (McMahan et al., 2017). It is a
promising solution in several industries, such as finance or healthcare, where it is infeasible to share the data
due to privacy and security regulations. As in classical machine learning (ML), neural architectures and
optimization-related hyperparameters (hence simply referred to as hyperparameters) have to be selected in
FL before training. Since even experts are likely to choose non-optimal architectures and hyperparameters,
different neural architecture search (NAS) and hyperparameter optimization (HO) methods have been
developed to automatically search for suitable architectures/hyperparameters (Kairouz et al., 2021; Zoph &
Le, 2017; Pham et al., 2018; Liu et al., 2019; Agrawal et al., 2021). With HO- and NAS-methods experts
only have to define a search space over candidates instead of defining a specific rigid architecture and setting
hyperparameters for a given ML-task. A search strategy is then applied to automatically find the optimal
element within this space.

To date, most NAS- and HO-methods are designed for classical ML-settings. As more and more data
is being stored decentralized and privacy awareness is rising (He et al., 2020a; Khodak et al., 2021), a
number of approaches to perform NAS/HO in FL settings have lately been proposed. However, the latter
still face a significant number of challenges. First, current methods either optimize neural architectures
or hyperparameters; a serious obstacle as performing NAS and HO sequentially is costly, especially in FL
settings where it is preferable to minimize the communication performed between devices. In addition, the
choice of architectures and hyperparameters inherently depend on each other. For instance, adopting a deeper
architecture may require selecting different learning rates in order to assure adequate update scaling, following
gradient back-propagation through the network. Therefore architectures and hyperparameters should be
optimized jointly. A second major challenge is that NAS- and HO-methods are traditionally not designed
to be privacy-preserving. Throughout FL training, the server and clients exchange the updated parameters
several times. In light of the growing concern about the disclosure of personal information(Fredrikson et al.,
2015) and the threat of adversarial attacks (Ye et al., 2022), both ML models and their training process,
and hence NAS and HO approaches, should guarantee privacy in distributed settings. To address the above

1

Under review as submission to TMLR

Client 1 Client 2

…………………

Central Server

HyperparametersArchitecture

Update
FedAvg

Update
reward

global
parameters

Client C

Figure 1: FEATHERS Overview. FEATH-
ERS jointly optimizes neural architectures and
hyperparameters using data distributed across
clients C while providing privacy-guarantee.

Table 1: FEATHERS unifies NAS, HO and DP
in federated learning settings. FEATHERS is the
first method that jointly optimizes neural architectures
(NAS) and arbitrary other hyperparameters (HO) in
a federated learning (Fed.) setting while providing
privacy guarantees (DP). Existing SOTA methods do
not tackle all of these challenges in a unified way.

Method NAS HO DP Fed.
DARTS(Liu et al., 2019) ✓ ✗ ✗ ✗
DP-FNAS(Singh et al., 2020) ✓ ✗ ✓ ✓
FedNAS(He et al., 2020a) ✓ ✗ ✗ ✓
DP-FTS-DE(Dai et al., 2021) ✗ ✓ ✓ ✓
FedEx(Khodak et al., 2021) ✗ ✓ ✗ ✓

FEATHERS ✓ ✓ ✓ ✓

challenges, we propose a novel method: FEATHERS1 - FEderated ArchiTecture and HypERparameter
Search. As illustrated in Table 1, FEATHERS is the first method to synergize architecture search and
hyperparameter optimization, while enabling privacy preserving federated learning.

The overall architecture of FEATHERS is shown in Fig. 1. In essence, it consists of an HO- and a NAS-phase
executed in an alternating fashion. Motivated by the bandit based HO of Khodak et al. (2021), a n-bandit
game is played to identify promising hyperparameters for a subsequent NAS-phase. Then, a NAS-phase is
performed for multiple iterations using the identified hyperparameters. Differentiable, cell-based, NAS (Liu
et al., 2019) is used to allow “averaging” architectures of several clients using FedAvg, thus obtaining a new
global architecture. The global architecture obtained is then sent back to the clients and used for further
training. The differentiability of the architecture entails a crucial property of FEATHERS: enabling a privacy
preserving optimization-scheme using differential privacy (DP).

Overall, we make the following contributions:

1. We propose a novel method, FEATHERS, that jointly optimizes neural architectures and hyperpa-
rameters in distributed data settings.

2. We prove that the HO phase of FEATHERS converges with high probability and that FEATHERS’
convergence properties subsequently coincide with those of DARTS if the HO phase converges.

3. By exploiting differentiability of model- and architectural parameters we provide privacy-guarantees
during the search- and evaluation-stage via DP.

4. We empirically show that FEATHERS converges towards well-suited architectures and hyperparame-
ters on various classification tasks.

We proceed as follows: After presenting related work we formally introduce the problem before moving to our
proposed solution. A convergence analysis is then conducted, followed by our experimental evaluation of
FEATHERS on several classification tasks. Finally, we conclude our work and show possible directions for
future work.

2 Related Work

Hyperparameter Optimization. Several works address hyperparameter optimization in federated learning
(Koskela & Honkela, 2018; Mostafa, 2019). Genetic CFL(Agrawal et al., 2021) clusters edge devices based

1We make our code publicly available at: https://anonymous.4open.science/r/FEATHERS-250B/.

2

https://anonymous.4open.science/r/FEATHERS-250B/

Under review as submission to TMLR

on the training hyperparameters and genetically modifies the parameters clusterwise. DP-FTS-DE(Dai
et al., 2021) integrates differential privacy into federated Thompson sampling with distributed exploration to
preserve privacy and uses it for federated hyperparameter tuning. FLoRA(Zhou et al., 2021) uses a single-shot
task by querying each client for several instantiations once and selects the best instantiations based on what
the clients returned w.r.t. learning progress. FedEx(Khodak et al., 2021) uses a weight-sharing mechanism
for hyperparameter optimization in the federated setting. In contrast, FEATHERS follows a few-shot policy
as we adjust the hyperparameters several times during training.

Neural Architecture Search. NAS aims to automatically identify an optimal neural architecture for a
given task. Most methods are based on reinforcement learning (RL) (Zoph & Le, 2017; Zoph et al., 2016;
2018), evolutionary algorithms (EAs) (Xie & Yuille, 2017; Galván & Mooney, 2021; Darwish et al., 2020)
or gradient decent (GD) (Liu et al., 2019; Dong & Yang, 2019; Xie et al., 2018; Li et al., 2020a). Gradient
based methods have been found to be more robust compared to the former (Zhu et al., 2021) and thus we
adapt gradient-based neural architecture search in FEATHERS. Since this approach is differentiable it can
be used in federated setting. Some recent NAS-methods for FL include Fed-NAS (He et al., 2020a) that
uses the gradient-based NAS method MiLeNAS (He et al., 2020b) for personalized federated learning, and
DP-FNAS (Singh et al., 2020), which also adopted differentiable NAS (Liu et al., 2019) combined with DP.

Differential Privacy DP has first been introduced in (Dwork, 2006) to protect private information in a
dataset from queries based on arbitrary mechanisms. In recent years, select works have shown that ML-models,
especially neural networks, carry private information of their training data in their parameters (Fredrikson
et al., 2015). To protect such private data from leaking, DP has been successfully employed in various FL
settings. In particular, it has been shown that SGD can be turned into a differentially private algorithm by
simply adding an appropriate amount of noise to the parameters during training (Abadi et al., 2016).

3 FEATHERS

Our objective is to efficiently optimize neural architectures and hyperparameters in a joint manner in FL
under privacy guarantees. We now define our problem setup formally and present our proposed solution.

3.1 Problem Definition

We consider a federated learning setting with a set of clients C of size C, each holding a dataset D1, ..., DC .
The data of each client c is split into training ⟨X(c)

train, y(c)
train⟩ and validation data ⟨X(c)

val, y(c)
val⟩ that is used

to solve a supervised learning task. We aim to find an architecture a ∈ A and hyperparameters h ∈ H
minimizing the global validation loss over all clients. Formally we phrase the problem as follows:

min
a,h

∑
c∈C

vc · La,h(w∗, X(c)
val, y(c)

val) with (1)

w∗ = arg min
w

∑
c∈C

vc · La,h(w, X(c)
train, y(c)

train) (2)

where w ∈ Rn refers to the parameters of a neural network (model parameters) and vc is the weight of a
client c:

vc := |X(c)
val|∑

c∈C |X
(c)
val|

(3)

Note that in a FL settings, the global validation loss is a weighted sum of the client’s local validation
losses. From now on, we denote the global training- and validation loss as La,h(w, Xtrain, ytrain) and
La,h(w, Xval, yval) respectively. Additionally, we require our method to be ϵ-differential w.r.t. model
parameters, architectural parameters and rewards. For better readability, we omit DP in the definition of the
optimization problem and will return to it in Section 3.3.

3

Under review as submission to TMLR

3.2 FEATHERS Architecture

FEATHERS operates in two stages, the search stage and the evaluation stage. The search stage consists of
an alternating procedure: As a first step, an instantiation of hyperparameters is identified which is expected
to achieve a high decrease in validation loss. In a second step, the identified instantiation is used to perform
several optimization-steps of the architecture. The two steps are repeated until convergence.

In the evaluation stage the optimized architecture is retrained. Again, the HO-scheme from the search stage
is applied to optimize hyperparameters. We now describe the HO and NAS phase in detail.

Hyperparameter Optimization (HO). To identify well-working hyperparameters h we have to solve
the following objective:

h∗ = arg min
h
La∗,h(w∗; Xval, yval) (4)

Here, w∗ denote model parameters minimizing the training-loss under architecture a∗ and a∗ are the
architectural parameters minimizing the validation-loss under hyperparameters h ∈ H where H is a discrete
set of hyperparameter instantiations. We solve the above by using a n-armed bandit-approach with a
strategy similar to ϵ-greedy as shown in Algorithm 1. (Line 1-3): We start of by intializing the parameters,
architecture and reward estimates. (Line 4-13): We then randomly sample m hyperparameter instantiations
from a distribution π over H. For each sampled instantiation one communication round of training is
performed using the same weights w and architecture a. This yields an approximation of a∗ and w∗, denoted
as w′ and a′ respectively. Each client computes its local validation loss before and after performing local
training using hyperparameters h as shown in Algorithm 2 (Line 1-5). The loss before local training is
denoted as ℓ

(c)
a,w and the loss after local training as ℓ

(c)
a′,w′ . We compute the reward-signal r

(e)
h indicating how

well instantiation h performed in HO-phase e as:
r

(e)
h =

∑
c∈C

vc ·
(
ℓ(c)

a,w − ℓ
(c)
a′,w′

)
(5)

In the above equation vc refers to the weight of each client. After testing each sampled h we obtain a vector
r(e) where each entry corresponds to one hyperparameter instantiations in H: For instantiations h sampled
in HO-round e, r(e) contains the reward, all other entries are zero. The reward-estimates r are then updated
using r(e) by applying the update rule:

r = r + (i ◦ α ◦ (r(e) − r)) + ((1− i) ◦ (α ◦ r− r)) (6)
Here, ◦ is the Hadamard product, i is a binary vector indicating which hyperparameter instantiations were
sampled in exploration round e and α is a constant factor determining how aggressively the reward-estimate
should be updated. If a hyperparameter instantiation was sampled at round e, its reward in r will be
corrected by the error of the current reward estimate. All instantiations that were not sampled in e get scaled
down by α since well suited instantiations in an early stage of training might not be suitable in later stages
anymore. For example, in the beginning of training, an instantiation with a higher learning rate might be
more appropriate whereas in later training-stages lower learning rates should be chosen.

The use of the reward estimates is three-fold: (1) The hyperparameter instantiation with the highest reward
achieved so far will be used to train the supernet in the next NAS-phase. (2) Reward estimates determine
the number of communication-rounds in the HO-phase before the HO-phase is starting: For this, we first
compute the distribution π = softmax(r) over instantiations using the reward estimates r. This allows to
compute the entropy H:

H =
∑
h∈H

ln(π(h)) · π(h) (7)

The number of HO-rounds performed next is determined by κ = rnd(βH). Here, β is a parameter to
control the exploration-exploitation trade-off. In the beginning, all rewards are set to 0, thus leading to
a uniform distribution which has the maximum entropy. Over time the reward-estimates reflect which
instantiations work well and which do not. Hence, π gets less uniform and the entropy decreases over time,
favoring exploitation over exploration in later training stages. (3) The distribution π is used to sample
hyperparameter-instantiations tested in the next HO-round.

4

Under review as submission to TMLR

Algorithm 1: FEATHERS method server side
Data: set of clients C, client weight vc∀c ∈ C
Data: hyperparameter search space H
Data: architecture search space A

1 initialize parameters w;
2 initialize architecture a;
3 initialize reward estimates r← 0;
4 π ← softmax(r);
5 for p in phases do
6 if p == ’ho’ then
7 sample n hyperparameters h from π;
8 rp ← 0;
9 for h in h do

10 l1, l2, w∗, a∗ ← client_step(h, w, a);
11 rp[h]←

∑
c∈C vc · (l(c)

1 − l
(c)
c);

12 r← update_rewards(r, rp);
13 π ← softmax(r);
14 if p == ’nas’ then
15 h∗ ← H[arg maxh r[h]];
16 for j in nas_steps do
17 w, a← client_steps(h∗, w, a);

Algorithm 2: FEATHERS Framework Client-
side Search stage
Data: Network parameters w, architecture a
Data: Hyperparameter configuration h
Data: Data Xtrain, Xval, ytrain yval

1 l1 ← La,h(w, Xval, yval);
2 w∗ ← SGD(∇wLa,h(w, Xtrain, ytrain), w, h);
3 a← SGD(∇aLa,h(w∗, Xval, yval), a, h);
4 w← SGD(∇wLa,h(w, Xtrain, ytrain), w, h);
5 l2 ← La,h(w, Xval, yval);
6 return l1, l2, w, a;

Algorithm 3: FEATHERS Framework Client-
side Evaluation stage
Data: Network parameters w, architecture a
Data: Hyperparameter configuration h
Data: Data Xtrain, Xval, ytrain yval

1 l1 ← La,h(w, Xval, yval);
2 w← SGD(∇wLa,h(w, Xtrain, ytrain), w, h);
3 l2 ← La,h(w, Xval, yval);
4 return l1, l2, w, a;

Neural Architecture Search. Once the HO-phase yields a hyperparameter instantiation h, the architecture
is optimized under h for a certain number of communication rounds as shown in Algorithm 1 (Line 14-17),
thereby solving:

min
a
La,h(w∗, Xval, yval) (8)

where w∗ = arg min
w
La,h(w, Xtrain, ytrain) (9)

Inspired by Differentiable Architecture Search (DARTS) (Liu et al., 2019) we solve this optimization problem
as follows: We define our search space to be a space over cells. A cell is a Directed Acyclic Graph (DAG) in
which each node is a feature representation and each edge is a mixed operation. The feature representation of
some node z is computed using all its parent-nodes and the mixed operations defining the edges between z
and its parent, i.e. for some node zj the representation is computed as: zj =

∑
i<j o(zi,zj)(xzi) Here, o(zi,zj)

is a mixed operation and xzi is the feature representation of node zi. A mixed operation connecting nodes z1
and z2 is defined as a weighted sum over a set of operations O:

o(z1,z2) =
∑
o∈O

exp(a(z1,z2)
o)∑

o′∈O exp(a(z1,z2)
o′)

o(x) (10)

Here, a
(zi,zj)
o are the architectural parameters to be learned. Since they fully describe the architecture, we

will refer to them as the architecture a from now on. Objective 8 is solved by an alternating optimization
of the architecture and model parameters. First, the architecture is updated by following the gradient
∇aLa,h(ŵ, Xval, yval) where ŵ = w− η∇wLa,h(w, Xtrain, ytrain). As a second step the model parameters
are updated by following the gradient ∇wLa,h(w, Xtrain, ytrain). As shown in Algorithm 2 (Line 2-4),
parameter-updates are performed on client-side in each communication round and yield new architectural
and model parameters a′

c and w′
c for each client c respectively. Since both, the architectural and model

parameters, are parameters of a non-convex optimization problem with a differentiable loss-function, we use
FedAvg to aggregate the model- and architecture parameters of all clients after each communication round.
We use two types of cells: Normal cells and reduction cells. Normal cells keep the dimensions of the input
while reduction cells apply an additional reduction-operation.

Discretizing the Architecture. Since differentiable NAS requires a continuous relaxation of the architec-
tural sapce A, the architecture learned by FEATHERS has to be discretized after training. This is done

5

Under review as submission to TMLR

Algorithm 4: FEATHERS Framework Client-
side Search stage with DP
Data: Parameters w and architecture a
Data: Hyperparameter configuration h
Data: Data Xtrain, Xval, ytrain yval

1 l1 ← La,h(w, Xval, yval) + Nl1 ;
2 w∗ ← SGD(∇wLa,h(·), w, h);
3 a← SGD(1

B

∑B
i=1∇aLa(·) + Ni, a, h);

4 w← SGD(1
B

∑B
i=1∇wLa(·) + Ni, w, h);

5 l2 ← La,h(w, Xval, yval) + Nl2 ;
6 return l1, l2, w, a;

Algorithm 5: FEATHERS Framework Client-
side Evaluation stage with DP
Data: Parameters w and architecture a
Data: Hyperparameter configuration h
Data: Data Xtrain, Xval, ytrain yval

1 l1 ← La,h(w, Xval, yval) + Nl1 ;
2 w← SGD(1

B

∑B
i=1∇wLa(·) + Ni;

3 l2 ← La,h(w, Xval, yval) + Nl2 ;
4 return l1, l2, w, a;

by selecting the top k operations with the highest architectural weight over all cells. Also, no operation is
allowed to connect the same two nodes. The discretized architecture is then retrained in the evaluation stage
where only the HO phase from Algorithm 1 is applied as discussed above. Each client performs standard
gradient descent w.r.t. the model parameters as shown in Algorithm 3 (Line 1-3).

3.3 Differential Privacy

Although in FL no data is exchanged between server and clients, the parameters sent to the server still leak
private information (Fredrikson et al., 2015). It has been shown that differential privacy (DP) can be used to
provably protect private information encoded in these parameters during Stochastic Gradient Descent (SGD)
(Abadi et al., 2016). We adapt this notion to both, model parameters and architectural parameters since
both inherently depend on the data the model is trained on. DP was introduced in Dwork (2006) and is
defined as follows:
Definition 1. For any two datasets D, D′ that differ in exactly one record a mechanism M is called
ϵ-differential private if ∀x : Pr[M(D) = x] ≤ exp(ϵ)Pr[M(D′) = x] holds where Pr[M(D) = x] refers to the
probability of mechanism M outputting x if executed on D.

In our case M is the learning procedure, i.e. SGD. Making SGD differential private can be achieved by
clipping gradients and adding Gaussian noise to the gradient of each sample w.r.t. the parameters, resulting
in an algorithm called DP-SGD (Abadi et al., 2016). Updating model- or architectural parameters with
DP-guarantees then becomes:

θ ← αθ
1
B

B∑
i=1
∇θLa(w, x(i)) +N (0, σ2

θC2
θ I) (11)

In the above equation we use θ ∈ {w, a} to either refer to the model- or architectural parameters. B denotes
the batch-size, N is the normal distribution, σθ is a scaling-parameter, Cθ is the maximum gradient norm, I
the identity matrix and αθ is the learning rate for parameters θ. We use DP-SGD for learning both, the
model parameters and the architecture. Hence, our method enjoys all convergence- and privacy-guarantees
given by DP-SGD which can be controlled via the parameter ϵ (Abadi et al., 2016). As ϵ inversely depends
on noise-parameters σ, for high ϵ-values DP-SGD achieves approximately SGD-convergence while losing
privacy-guarantees. For low ϵ we obtain strong privacy guarantees while losing convergence-guarantees. It
should be noted that FedAvg averages the parameters that have been computed by the clients. Since DP is
closed under arbitrary post-processing, averaging does not break DP (Dwork et al., 2014). Similarly, we apply
DP on losses sent to the server to “hide” possible private information from data by adding small Gaussian
noise with zero mean to the losses. Algorithm 4 shows the DP variant of the search stage of FEATHERS
clients. It performs the exact same computations as Algorithm 2 except that it adds independent noise Ni to
the gradient of each sample i (Line 2-4). Also, independent Gaussian noise is added to the losses computed
on client side which are used to compute the rewards for each hyperparameter configuration (Line 1, 5). The
noise is drawn from a Gaussian distribution with zero mean and variance depending on the privacy budget ϵ
(lower ϵ means higher variance). Algorithm 5 shows the DP variant of the evaluation stage and performs
the same computation as Algorithm 3. Again, the only difference is that the DP variant adds independent

6

Under review as submission to TMLR

Gaussian noise Ni with zero mean and variance depending on ϵ to each sample i and independent Gaussian
noise to the losses computed on client side.

3.4 Convergence Analysis

We now show that FEATHERS’ convergence properties in distributed settings coincide with the convergence
properties of DARTS in centralized settings with high probability, only scaled by a controllable factor arising
from using FedAvg. For simplicity we do not consider adding DP in our analysis.
Theorem 1. Given a joint distribution p(X1, . . . , Xn, y) over random variables X1, . . . , Xn, y from which
each client c ∈ C of a set of clients C samples a dataset ⟨X(c), y(c)⟩ ∼ p, FEATHERS enjoys the same
convergence properties as DARTS in a centralized setting if applied on a dataset ⟨X, y⟩ where X =

⋃
c∈C X(c)

and y =
⋃

c∈C y(c).

Proof. We treat the HO-phase of FEATHERS as an oracle and assume that it returns optimal hyperparameters
h∗. Once h∗ was obtained, it is fixed for a certain number of communication rounds κ. In each communication
round i epochs of DARTS are performed locally on each client. Since we employ FedAvg to average model
parameters after i local epochs, we exploit that FedAvg converges with rate O(1

iκ) (Li et al., 2020b). Since
FedAvg converges and parameter-updates are only propagated during NAS-phases, it follows that FEATHERS
enjoys the same convergence properties as DARTS in each NAS-phase scaled by the convergence of FedAvg
O(1

iκ).

Since the above proof assumes that our method selects optimal hyperparameters h∗ for each NAS-phase, we
will now show that the HO-phase converges with high probability in non-stationary bandit-environments.
Theorem 2. Given a fixed hyperparameter-space H and noisy, non-stationary rewards r

(j)
h ∼ N (µ(j)

h , σh)
where µ

(j)
h is the expected value of the reward at iteration j, σh its standard deviation and h ∈ H, the

HO-strategy of FEATHERS is at most off by α · 3σh for learning rate α with probability 0.997 once h ∈ H is
sampled.

Proof. Our proof is inspired by convergence results for ϵ-greedy strategies as stated in (Sutton & Barto,
2018). We assume that |µ(j+1)

h − µ
(j)
h | ≤ δ for finite δ ∈ R in all iterations and 0 < α < 1 in the update rule.

Since the softmax-function cannot evaluate to a point-mass, we can make a strict positivity assumption of
the distribution over hyperparameters, i.e. πi[h] > 0 for all h ∈ H. Thus, with j approaching infinity, each
h ∈ H will be sampled infinitely many times. At an iteration j, in the most extreme case, a certain h ∈ H
has not been sampled yet. Assume it gets sampled in iteration j. Since r

(j)
h ∼ N (µ(j)

h , σh) and the current
estimate reward-estimate rh = 0, the update rule reads: rh = α · r(j)

h . Since we assume all rewards being
Gaussian distributed, the probability of obtaining a reward r

(j)
h in the range of 3σh is 0.997. Since 0 < α < 1

holds, our estimate is at most ±α · 3σh of w.r.t. µ
(j)
h in 99.7% of the cases.

As the above only considers the case in which our algorithm terminates after some h ∈ H is sampled, we also
have to consider the following case: Assume h is sampled at iteration j and a reward-estimate is obtained.
After that, h is not sampled for k subsequent iterations. The following theorem gives bounds for how much
off our estimate will be in this case.
Theorem 3. Under the assumptions of Theorem 2, the reward estimate r

(j+k)
h will be at most off by

αkr
(j)
h − (kδ + µ

(j)
h) assuming that h is sampled at iteration j and not sampled for k subsequent iterations.

Proof. By assumptions from Theorem 2, the mean will be shifted by at most kδ after k steps. Since the update
rule for rh is defined as rh = αrh, the reward estimate after k iterations in which h is not sampled is αkr

(j)
h .

It follows that, k iterations after h was sampled, the reward estimate is off by at most αkr
(j)
h − (kδ +µ

(j)
h).

It turns out that the above bound can be controlled by setting α ≤ (1 + kδ
µ(j)) 1

k assuming we have access to
µ(j) (see Appendix F). In the case µ(j+1) − µ(j) = δ, this relation guarantees that our reward estimate of

7

Under review as submission to TMLR

some h is still optimal if h was not sampled for k HO-rounds. Since we can assume that the loss decreases
between HO-rounds, i.e. µ(j+1) − µ(j) < 0, the assumption 0 < α < 1 used in the above theorems is not
violated. Using Theorem 2 we can assume that we have an estimate of µ(j) fulfilling at least µ(j) ± α · 3σh
with high probability for some h sampled the first time in round j. Hence, the errors of reward-estimates can
be controlled within reasonable bound given by Theorem 3 in subsequent rounds.

4 Experiments and Results

In order to empirically demonstrate that FEATHERS is capable of jointly optimizing neural architectures
and hyperparameters in FL settings with privacy guarantees, we investigate the following three questions:

Q1. Can FEATHERS compete with state of the art HO- and NAS-methods in FL settings at various
scales and label skews?

Q2. Does FEATHERS adjust the choices of instantiations over time to account for dynamics of training
process?

Q3. How well does FEATHERS perform if DP is employed to preserve privacy with respect to privacy-
budget ϵ?

We next describe our experiment protocol including the employed datasets before presenting our results in
detail.

4.1 Experimental Protocol

In our experiments, we analyzed FEATHERS on three image classification tasks: Fashion-MNIST which
contains black-white images of 10 different articles of clothing to be categorized as well as CIFAR-10 and
Tiny-Imagenet which contain colored images of 10/200 different categories respectively. The fourth task is a
binary classification problem on a fraud detection dataset which contains anonymized bank-account data from
bank-customers based on which the fraud risk (high or low) has to be predicted (see Appendix A). All datasets
were partitioned randomly on a set of clients such that each client holds the approximately same number
of samples. Since in FL it is common to have data unequally distributed across clients, we also conducted
experiments in which we introduced a label skew in the data (referred to as ls subsequently) .We first executed
the search stage of FEATHERS using a search space over CNN/MLP-architectures. For the evaluation-stage
we used the best normal cell and reduction cell obtained in the search stage to build up a larger network
(validation networks). For discretizing the architecture k = 2 was chosen in order to be comparable to other
cell-based NAS-methods. We then retrained the validation network and optimized hyperparameters using the
same HO-strategy as in the search stage. The results of the validation network were then reported. Since we
assume a cross-silo setting, we allowed all clients to participate in each communication round. Additionally
we tested both FEATHERS with and without DP for fraud detection, to show that adding DP does not
prevent learning a suitable architecture. Appendix B contains a detailed description of our search space.

We implemented FEATHERS in Python based on the flower framework for federated learning. All models
were built using PyTorch and the clients were distributed on Nvidia DGX-clusters with A-100 40GB GPUs.
Also the server was deployed on the same cluster, however, using a separate GPU to simulate a cross-silo
federated learning setting with parallel client-execution.

4.2 Results

We are now ready to answer the posed research questions and will elaborate on each of them in more detail.

(Q1) FEATHERS achieves SOTA, independently of scale and label skew. First, we show that
FEATHERS, while performing both HO and NAS, achieves state of the art results on Fashion-MNIST,
CIFAR-10 and Tiny-Imagenet in Table 2. Despite DARTS being based on hyperparameters that have
traditionally manually been tuned for best results by humans, our method beats DARTS (94% vs. 92% on

8

Under review as submission to TMLR

Table 2: Achieved accuracies of FEATHERS and baselines. DARTS, FedEx and FEATHERS were
compared in different federated learning settings as described in Section 4. Each experiment was performed 5
times and the mean accuracy and standard deviation are reported. Colors are interpolated from green to
blue (high accuracy to low accuracy).

Dataset Fashion-MNIST CIFAR-10 Tiny-Imagenet
w/o ls w/ ls w/o ls w/ ls w/o ls w/ ls

DARTS (f, 5 clients)† 0.92± 0.02 0.93± 0.01 0.92± 0.02 0.90± 0.02 0.67± 0.02 0.67± 0.02
DARTS (f, 10 clients)† 0.91± 0.02 0.92± 0.02 0.91± 0.03 0.89± 0.04 0.68± 0.02 0.67± 0.03
DARTS (f, 100 clients)† 0.92± 0.03 0.91± 0.03 0.91± 0.02 0.89± 0.03 0.67± 0.02 0.67± 0.03
FedEx (5 clients)* 0.82± 0.01 0.81± 0.01 0.53± 0.02 0.54± 0.03 0.43± 0.04 0.41± 0.04
FedEx (10 clients)* 0.78± 0.03 0.78± 0.02 0.51± 0.04 0.51± 0.03 0.41± 0.03 0.40± 0.04
FedEx (100 clients)* 0.65± 0.03 0.64± 0.04 0.46± 0.05 0.47± 0.04 0.38± 0.04 0.38± 0.05
FEATHERS (5 clients) 0.94± 0.01 0.93± 0.02 0.93± 0.03 0.91± 0.03 0.69± 0.02 0.69± 0.03
FEATHERS (10 clients) 0.93± 0.01 0.93± 0.03 0.92± 0.02 0.89± 0.04 0.68± 0.02 0.68± 0.02
FEATHERS (100 clients) 0.94± 0.02 0.93± 0.03 0.90± 0.03 0.89± 0.03 0.68± 0.03 0.67± 0.03
*Training performed using architecture found by DARTS.
†The same hyperparameter-settings as described in (Liu et al., 2019) were used.

Table 3: GPU days comparison. FEATHERS’ runtime is approximately 0.4 GPU-days higher than
the runtime of DARTS. FedEx has lower runtimes compared to both, FEATHERS and DARTS, mainly
because it does not optimize the architecture and performs less exploration than FEATHERS. All runtimes
in GPU-days.

Fashion-MNIST CIFAR-10 Tiny-Imagenet Fraud Detection
FedEx (5 Clients) 0.8 0.9 1.3 0.09
FedEx (10 Clients) 0.8 0.8 1.3 0.07
FedEx (100 Clients) 0.6 0.7 1.1 0.05
DARTS (5 Clients) 1.8 2.1 3.1 0.4
DARTS (10 Clients) 1.7 2.0 2.9 0.3
DARTS (100 Clients) 1.5 1.8 2.7 0.2

FEATHERS (5 Clients) 2.2 2.5 3.6 0.6
FEATHERS (10 Clients) 2.1 2.4 3.5 0.6
FEATHERS (100 Clients) 1.9 2.1 3.1 0.35

Fashion-MNIST, 93% vs. 92% on CIFAR-10, 69% vs. 67% on Tiny-Imagenet) in most distributed learning
settings while optimizing for a larger set of parameters. The same holds for label-skew scenarios. Introducing
label skews does not seem to adversely affect its performance. However, if label-skew is present, a slight
increase in the variance of our results can be seen.

Second, to assess scalability of FEATHERS, we consider variance in results for increasing number of clients
(marked in the rows of Table 2). We find that, in contrast to FedEx, the number of participating clients does
not seem to have a negative influence on the performance of FEATHERS. We hypothesize that FEATHER’s
stability is due to more extensive exploration. For an increasing number clients, each client holds a smaller
subset of data since the datasets used have fixed size. Thus the stochastic gradients per client tend to have a
higher variance, which in turn leads to higher variances in parameter-changes across clients. FEATHERS
tests a set of hyperparameter instantiations on a frozen model before applying them for parameter-updates,
whereas FedEx directly applies the chosen instantiations. Consequently, higher variance of gradients and
FedEx’ higher risk of choosing inappropriate hyperparameters can lead to poorly performing models. In
contrast, FEATHERS tends to choose “safer” instantiations.

Finally, in terms of runtime, FEATHERS (∼ 2.5 GPU-days) does not add significant overhead compared to
DARTS (∼ 2 GPU-days). The additional HO-phase during the search stage adds an overhead of approximately
0.1-0.8 GPU-days, depending on the number of instantiations tested in each HO-round. In contrast, FedEx’
runtime (∼ 1 GPU-day) is much lower compared to DARTS and FEATHERS since FedEx does not perform

9

Under review as submission to TMLR

1

2

3

4

5

6

7

0

0.002

0.004

0.006

0.008

0.01

0.012

Learning Rate

0

0.002

0.004

0.006

0.008

0.01

0.012

Weight Decay

0

0.2

0.4

0.6

0.8

1

Momentum

0

0.002

0.004

0.006

0.008

0.01

0.012

Arch. Learning Rate

0

0.002

0.004

0.006

0.008

0.01

0.012

Arch. Weight Decay

NAS Round

Figure 2: FEATHERS adjusts hyperparameters over time. The choices of hyperparameters are
adapted during training to optimize the validation loss. In earlier stages (blue lines) higher learning rates
are chosen whereas in later stages of training (red lines) lower learning rates are chosen. The figure shows
hyperparameter-selections of three FEATHERS-runs on CIFAR-10. (Best viewed in color)

5 Clients 10 Clients 100 Clients
Number of Clients

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

NAS-Bench-201
FEATHERS

Figure 3: FEATHERS beats NAS-Bench-
201. FEATHERS’ additional HO phase improves
the performance of a fixed architecture. Note that
NAS-Bench-201 only provides averaged results in
centralized settings.

0.60 0.63 0.65 0.68 0.70 0.73 0.75 0.78 0.80
F1-Score

0.2

0.25

0.5

1.0

1.5

2.0

 (
Pr

iv
ac

y
Bu

dg
et

)

FEATHERS 5 Clients
FEATHERS 10 Clients
FEATHERS 100 Clients

Figure 4: DP retains performance. For ϵ ≥ 1,
FEATHERS achieves nearly the same perfor-
mance with DP as without DP regardless of the
number of clients. For low ϵ-values (i.e. stronger
privacy-guarantees), the performance decreases.

NAS and that it performs less exploration than our method. See Table 3 for a detailed listing of runtimes
w.r.t. datasets and number of clients.

(Q2) FEATHERS dynamically adjusts hyperparameters. Figure 2 shows the hyperparameters
selected by FEATHERS over time for three runs on CIFAR-10. We observe that our method chooses more
”cautious“ hyperparameters than engineers usually do. For example, in DARTS it is common to start with a
learning rate of 0.025, FEATHERS however chooses much lower learning rates most of the time. Presumably
this is due to the properties of our HO-algorithm: In the first HO-round it samples and tests a small subset
of instantiations from H before greedily selecting the one leading to the highest decrease in validation loss.
In this concrete example, this choice might lead FEATHERS to choose a lower learning rate than 0.025,
simply because there was no better sample. In subsequent HO-rounds the goal is to learn a distribution over
instantiations maximizing the reward in the long run. As SGD never truly converges due to its inherent
stochasticity, a smaller learning rate is ultimately beneficial in the later stages of training, in order to avoid
heavily perturbing away from a minimum (i.e. too large learning rates will “overshoot”).

10

Under review as submission to TMLR

Consequently, FEATHER’s ”cautious“ instantiations entail more stable convergence. In that sense, FEATH-
ERS mimics an annealing mechanism in later training stages, which find frequent use in Deep Learning
problems. To assess the effect of dynamic hyperparameter adjustments, we compare FEATHERS with
NAS-Bench-201 (Dong & Yang, 2020). This benchmark provides a database which allows to query the
performance of architectures trained under fixed and manually tuned hyperparameters. The architectures in
NAS-Bench-201 were chosen such that they cover widely used architecture search space, including ours. We
can easily assess whether our additional HO mechanism helps improving model performance by comparing to
NAS-Bench-201: We first run the search stage of FEATHERS to optimize the architecture for 5/10/100 clients.
Note that the architecture found can vary for a different number of clients. Then, we train the architecture
found during the search stage using FEATHER’s validation stage (i.e. with adjustments of hyperparameters)
and compare the accuracy of the same architecture reported in NAS-Bench-201 (i.e. trained with fixed
hyperparameters) on CIFAR-10. Figure 3 demonstrates that our dynamic adjustment helps improving
model performance. This observation further supports our claim that our method adjusts hyperparameters
appropriately over time.

(Q3) FEATHERS preserves privacy. To demonstrate that FEATHERS provides privacy guarantees
without sacrificing predictive performance, we performed classification on the fraud detection dataset. The
hyperparameter search space and the architecture search space are described in Appendix B. The same
privacy budget ϵ ∈ {0.2, 0.25, 0.5, 1.0, 1.5, 2.0,∞} was used for DP applied to the losses, model parameters
and architecture parameters. It is noteworthy that a privacy budget of ∞ corresponds to FEATHERS
without DP. The search stage was performed for 100 communication rounds, all other parameters were set
as above. Note that the dataset is heavily skewed (95% negative class, 5% positive class), we thus report
F1-scores instead of accuracy. We further used oversampling of positive samples on the client-side to account
for label-skew. Figure 4 visualizes the results for different privacy budgets ϵ. For ϵ ≥ 1 we obtained a F1-score
of approximately 0.77. This means, FEATHERS-DP performs equally well as FEATHERS as long as ϵ is
chosen larger to be larger than 1. Decreasing ϵ adds more noise on the gradients which increases the privacy
level while disturbing the gradient-signal. For ϵ ≤ 0.5 we obtained a significant decrease of the F1-score. This
confirms that the gradients carrying less (private) information also get less useful for parameter-updates.

In summary, FEATHERS-DP retains the performance of FEATHERS for appropriate ϵ. Finally, we emphasize
that adding DP came with approximately 1.5-2 times longer runtimes on our setup. A reasonable trade-off to
accommodate privacy considerations. The underlying reason is that for DP the gradient of each sample has
to be manipulated, resulting in poorer parallel execution of automatic differentiation. Hence, two trade-offs
have to be considered when using DP: (1) Finding a good balance between a high performing model and
privacy guarantees and (2) determining whether a longer runtime for training is still practically feasible to
protect privacy.

5 Conclusion

We have introduced FEATHERS, a federated learning method that efficiently optimizes both neural architec-
tures and hyperparameters jointly, while preserving privacy of the underlying training-data. Our empirical
investigation demonstrates that FEATHERS is more than competitive with state of the art NAS-algorithms,
despite popular approaches like DARTS only performing a subset of the above, while also optimizing in a
larger space of hyperparameters.

FEATHERS now allows for a myriad of real-world problems to be addressed fully, e.g. tasks surrounding
finance, defence, or healthcare. As one example, hospitals can use it to collaboratively train cancer-detection
models without sharing sensible patient-data and without revealing the patient’s identity through parameters.
That said, we note that fully automating critical systems could be risky and a human in-the-loop should
evaluate the quality of the model found before it is deployed and monitor its prediction.

From a technical perspective, it is further desirable to relax FEATHER’s requirement of discrete hyperparame-
ter search spaces in order to properly account for continuous hyperparameters in future work. Incorporating a
state reflecting the current state of training in HO-phases to allow for more informed hyperparameter choices
instead of a stateless bandit approach is a promising additional direction. Lastly, considering FL-scenarios

11

Under review as submission to TMLR

other than the cross-silo set-up considered in this work is intriguing, also with respect to enabling above
mentioned applications.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

Shaashwat Agrawal, Sagnik Sarkar, Mamoun Alazab, Praveen Kumar Reddy Maddikunta, Thippa Reddy
Gadekallu, and Quoc-Viet Pham. Genetic cfl: Hyperparameter optimization in clustered federated learning.
Computational Intelligence and Neuroscience, 2021.

Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. Differentially private federated bayesian
optimization with distributed exploration. Advances in Neural Information Processing Systems (NeurIPS),
2021.

Ashraf Darwish, Aboul Ella Hassanien, and Swagatam Das. A survey of swarm and evolutionary computing
approaches for deep learning. Artificial Intelligence Review, 2020.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search.
In International Conference on Learning Representations, 2020.

Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener
(eds.), Automata, Languages and Programming, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 2014.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2015.

Edgar Galván and Peter Mooney. Neuroevolution in deep neural networks: Current trends and future
challenges. IEEE Transactions on Artificial Intelligence, 2021.

Chaoyang He, Erum Mushtaq, Jie Ding, and Salman Avestimehr. Fednas: Federated deep learning via neural
architecture search. Workshop on Neural Architecture Search and Beyond for Representation Learning
(CVPR), 2020a.

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search via
mixed-level reformulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020b.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends in Machine Learning, 2021.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and Ameet Talwalkar.
Federated hyperparameter tuning: Challenges, baselines, and connections to weight-sharing. Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Antti Koskela and Antti Honkela. Learning rate adaptation for federated and differentially private learning.
arXiv:1809.03832, 2018.

12

Under review as submission to TMLR

Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and Bernard Ghanem. Sgas:
Sequential greedy architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg
on non-iid data. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020, 2020b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In International
Conference on Learning Representations (ICLR), 2019.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, 2017.

Hesham Mostafa. Robust federated learning through representation matching and adaptive hyper-parameters.
arXiv:1912.13075, 2019.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture search
via parameter sharing. CoRR, 2018.

Ishika Singh, Haoyi Zhou, Kunlin Yang, Meng Ding, Bill Lin, and Pengtao Xie. Differentially-private federated
neural architecture search. arXiv:2006.10559, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of the IEEE international conference on computer
vision, 2017.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv:1812.09926, 2018.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. Enhanced
membership inference attacks against machine learning models. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2022.

Yi Zhou, Parikshit Ram, Theodoros Salonidis, Nathalie Baracaldo, Horst Samulowitz, and Heiko Ludwig.
Flora: Single-shot hyper-parameter optimization for federated learning. arXiv:2112.08524, 2021.

Hangyu Zhu, Haoyu Zhang, and Yaochu Jin. From federated learning to federated neural architecture search:
a survey. Complex & Intelligent Systems, 2021.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International Conference
on Learning Representations (ICLR), 2017.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-resource neural
machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), 2018.

13

	Introduction
	Related Work
	FEATHERS
	Problem Definition
	FEATHERS Architecture
	Differential Privacy
	Convergence Analysis

	Experiments and Results
	Experimental Protocol
	Results

	Conclusion

