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ABSTRACT

We aim at designing language agents with greater autonomy for crystal materials
discovery. While most of existing studies restrict the agents to perform specific
tasks within predefined workflows, we aim to automate workflow planning given
high-level goals and scientist intuition. To this end, we propose Materials Agent
unifying Planning, Physics, and Scientists, known as MAPPS. MAPPS consists
of a Workflow Planner, a Tool Code Generator, and a Scientific Mediator. The
Workflow Planner uses large language models (LLMs) to generate structured and
multi-step workflows. The Tool Code Generator synthesizes executable Python
code for various tasks, including invoking a force field foundation model that
encodes physics. The Scientific Mediator coordinates communications, facilitates
scientist feedback, and ensures robustness through error reflection and recovery.
By unifying planning, physics, and scientists, MAPPS enables flexible and reliable
materials discovery with greater autonomy, achieving a five-fold improvement in
stability, uniqueness, and novelty rates compared with prior generative models
when evaluated on the MP-20 data. We provide extensive experiments across
diverse tasks to show that MAPPS is a promising framework for autonomous
materials discovery.

1 INTRODUCTION

Materials discovery has significant societal impacts across energy, environment, health, and beyond.
However, its current pace remains limited by a heavy reliance on trial-and-error wet-lab experiments.
Computational methods, including those based on density functional theory (DFT), have substantially
accelerated materials discovery over the past several decades. Nevertheless, the computational cost of
solving DFT is expensive, making them infeasible for exploring the vast and largely uncharted space
of stable materials. In the past a few years, advances in AI for science has led to a new paradigm for
scientific discovery by providing significant speed-ups over traditional DFT based methods. There
are predictive models (Choudhary et al., 2020; Yan et al., 2022; 2024a;b; Choudhary et al., 2024)
proposed to predict physical properties of atomistic systems with remarkable efficiency and accuracy,
and generative models (Jiao et al., 2023; Antunes et al., 2024; Yan et al., 2024c; Zhang et al., 2023)
that can generate novel and stable materials with desired properties. Powered by large language
models (LLMs), recent studies have also started exploring how LLM-based AI agents can support
autonomous materials discovery (Jia et al., 2024; Zhang et al., 2024). Currently, most existing studies
constrain LLM agents to perform predefined actions specified by human experts, with fixed tasks at
each step. In these setups, a fixed discovery pipeline is defined in advance, and LLM agents primarily
serve to coordinate AI tools (Zou et al., 2025).

Here, we attempt to enable more autonomy in materials discovery agents by making use of the
planning capabilities of LLMs. While LLMs’ planning capabilities for generic and complex tasks are
unclear and still a topic of intensive research and discussions, we attempt to explore their performance
in a constrained setting of materials discovery and particularly in scientific workflow planning. This
refers to the construction and adaptation of structured sequences of domain-specific actions designed
to solve scientific problems. We show that, while the broader capabilities of LLMs in general-purpose
planning remain limited, their emerging ability to perform scientific workflow planning is promising,
especially when coupled with human scientist interactions. This focused planning capability opens
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the door to more autonomous and adaptive agents, enabling systems that can reason about goals,
generate workflows, and revise their plans dynamically to achieve scientific objectives.

Concretely, unlike most existing approaches that constrain agents with predefined workflows tailored
to specific tasks, our focus is on enabling agents to plan workflows and reason independently. Instead
of prescribing step-by-step procedures, we provide only high-level goals and scientific intuition,
allowing agents to determine the sequence of actions required to achieve discovery objectives. In
addition, we design our agent system to be physics-informed and include human experts in the
loop. This setup enriches the agent’s scientific knowledge beyond textual data, mitigates risk, and
allows expert guidance to influence the agent’s decisions. To this end, we propose Materials Agents
unifying Planing, Physics, and Scientists, known as MAPPS, a multi-agent system equipped with a
Workflow Planner, a Tool Code Generator, and a Scientific Mediator. These three agents, coupled
with human scientists, collaboratively drive materials discovery by planning tasks, generating code,
and integrating expert guidance. We show that MAPPS achieves a five-fold improvement in stability,
uniqueness, and novelty rates compared with prior generative models when evaluated on the MP-20
data. We provide extensive experiments across diverse tasks to show that MAPPS is a promising
framework for autonomous materials discovery.

2 MATERIALS AGENTS UNIFYING PLANNING, PHYSICS, AND SCIENTISTS

The goal of materials discovery is to discover novel materials structures with desirable physical or
chemical properties. Following Yan et al. (2024c), we represent each crystal structure as a tuple
M = (X,P,L), where X = [x1,x2, · · · ,xn] ∈ Rdx×n denotes the list of n one-hot representations
of atom types in the unit cell,P = [p1,p2, · · · ,pn] ∈ R3×nrepresents the Cartesian coordinates of
the atoms, and L = [ℓ1, ℓ2, ℓ3] ∈ R3×3 specifies the lattice matrix containing three basic vectors to
describe periodic boundary of the unit cell.

In this paper, we focus on three types of tasks, including crystal generation, crystal structure prediction,
and property-guided generation. Crystal generation is the unconditional generation of stable crystal
structures without predefined constraints. Crystal structure prediction aims to generate a stable
structure given a specific chemical composition. Property-guided generation seeks to design crystal
structures that satisfy desired property criteria, such as a target band gap or formation energy. Rather
than generating the final structure in a single step, these tasks can be formulated as sequential
decision-making problems, where an agent constructs the crystal structure M through a series of T
actions (a1, a2, . . . , aT ). The process may start from an empty structure or from a candidate retrieved
from a database, followed by iterative refinement to achieve the design objective.

2.1 DIFFERENT LEVELS OF AUTONOMY IN SCIENCE AGENT DESIGN

Given the complexity of such tasks, it becomes crucial to understand the level of autonomy given
to the agents performing them. We define three levels of autonomy for agents in materials science
discovery, characterized by the agent’s freedom in planning workflows.

Level 1 – Tool-Executing Agents. The agent performs specific tasks within a fixed, human-designed
workflow. It operates as a tool integrator or step executor, typically relying on predefined templates
or direct calls to existing tools, such as running a DFT calculation. In this setup, planning freedom
is minimal, since agents do not alter the overall workflow or sequence of operations and merely
automate individual components.

Level 2 – Human-Guided Planning Agents. The agent proposes workflows by itself, but with
human-provided intuition, constraints, or intermediate goals. For instance, the agent may decompose
a complex task into sub-tasks based on the domain knowledge provided by experts. Human feedback
or verification helps prune the workflow space, allowing for more flexibility than Level 1 while
maintaining scientific plausibility and feasibility.

Level 3 – Fully Autonomous Planning Agents. The agent has full freedom to design and adapt
workflows from scratch, with no predefined sequence or human-imposed constraints. It decides
which tools to use, how to combine them, and in what order. While this level enables the highest
flexibility and potential for novel discoveries, it poses significant challenges in ensuring workflow
validity, reliability, and scientific correctness.
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Figure 1: MAPPS Agent Framework. The MAPPS framework consists of three key modules: the
Workflow Planner, Tool Code Generator, and Scientific Mediator, which collaboratively drive structure
discovery by planning tasks, generating code, and integrating expert guidance. As shown in the
figure, the process begins with the human scientist providing a task description, domain intuition, and
optional feedback. The Scientific Mediator interprets these inputs and passes them to the Workflow
Planner, which proposes a multi-step workflow tailored to the scientific objective. Once the workflow
is approved by the human, the Scientific Mediator forwards it to the Tool Code Generator, which
translates each workflow step into executable code. This module invokes domain-specific tools from
the Physics Toolbox, such as ML Force Fields for structure relaxation, ML Property Calculators for
evaluating physical properties, and Space Group Analyzers for symmetry analysis. After execution,
results are returned, and the system can optionally engage in self-reflection to detect and correct
errors, iteratively improving generated code.

2.2 OVERVIEW OF MAPPS

Most existing agent methods in materials science use LLMs as Level 1 autonomous agents, where
the model executes isolated tasks within human-curated workflows or serves as a natural language
interface to domain-specific tools. These approaches treat the LLM primarily as a tool user, relying
heavily on fixed, expert-designed procedures. While effective in individual components, such Level 1
agents are constrained in their ability to adapt or generalize to new scientific challenges.

To improve the autonomy of LLM agents for science, we aim to move beyond systems where agents
act solely as tool executors within fixed, human-designed workflows. Instead, we propose a multi-
agent framework MAPPS that achieves Level 2 autonomy by enabling agents to actively design and
follow their own workflows. Instead of following predefined steps, the agents construct sequences of
actions to solve scientific problems, guided by high-level human input such as goals, constraints, or
domain heuristics. This design allows the agents to independently develop both solutions and the
necessary tools, leading to better adaptability and scientific creativity.

Specifically, our multi-agent framework integrates three core components, including Workflow
Planner, Tool Code Generator, and Scientific Mediator. The Workflow Planner uses an LLM
to decompose high-level scientific goals into adaptive, multi-step plans. The Tool Code Generator
synthesizes executable code for each step and incorporates physics-based tools, ensuring that outputs
are grounded in fundamental physical laws. The Scientific Mediator coordinates communication
between agents and humans, maintaining consistency and tracking progress. See Figure 1 for an
overview of our MAPPS agent framework.
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2.3 WORKFLOW PLANNER

To enable autonomous scientific planning, the Workflow Planner is built on a large reasoning model
(LRM), which is an advanced LLM with enhanced planning and reasoning capabilities, to generate
workflows for different tasks. Let τ ∈ T denote a high-level task description, where T is the
space of natural language prompts that specify scientific goals. Given a high-level task description
τ , the goal of the Workflow Planner is to generate a workflow consisting of T actionable steps,
A = (a1, a2, . . . , aT ), where each at ∈ A corresponds to a structured scientific or data processing
action, and A is the space of all executable operations. Formally, the workflow generation process
can be described as

A ∼ Pθ(A | τ) =
T∏

t=1

Pθ(at | a<t, τ), (1)

where Pθ is parameterized by the pretrained LRM and a<t = (a1, . . . , at−1) denotes the sequence
of previously generated steps. However, as shown in Section 4.4, relying solely on a high-level task
description τ often results in invalid or impractical workflows due to the model’s limited domain
knowledge. To address this, we introduce an auxiliary input ι ∈ I, where I denotes the space
of human-provided intuition, such as domain-specific heuristics. Formally, the refined generation
process can be expressed as

A ∼ Pθ(A | τ, ι) =
T∏

t=1

Pθ(at | a<t, τ, ι). (2)

This refinement guides the model toward more valid plans, while slightly sacrificing the agent’s
freedom in exploring arbitrary planning strategies.

In our implementation, human intuition ι is provided in a structured prompt with the task description
τ . This includes relevant constraints, known physical principles, or useful heuristics, leading to
excluding unfeasible operations such as environment setup or model loading from the action space
A. Note that the LRM is instructed to output a well-structured workflow containing at most T = 5
steps. By injecting expert intuition into the generation process, the Workflow Planner supports Level
2 autonomy, allowing agents to plan more effectively while retaining a human-in-the-loop safeguard.
The following template and example demonstrate how human intuition shapes the generated workflow.
See Appendix A.1 for the detailed workflow and the prompt template used by the Workflow Planner.

2.4 SCIENTIFIC MEDIATOR

To support structured interaction between human scientists and autonomous agents, we introduce
the Scientific Mediator, a central coordination module that enables a lightweight human-in-the-
loop mechanism. While the system is capable of autonomous operation, the Scientific Mediator
incorporates human guidance at key decision points to ensure scientific reliability and task relevance.

The process begins when the scientist provides a high-level task description τ . The Scientific
Mediator forwards τ to the Workflow Planner, which generates a structured, multi-step workflow
A = (a1, a2, . . . , aT ). The proposed plan is then returned to the scientist for review and refinement.
Once approved, the Scientific Mediator initiates its execution step by step.At each step t, the Scientific
Mediator constructs an augmented input context ξt = (at, rt−1, ιt), where at is the current action,
rt−1 denotes the intermediate result from the previous step, and ιt is the human intuition at step t.
This context is sent to the Tool Code Generator to synthesize executable code to perform action at and
compute the corresponding results rt. Before proceeding to step t+1, the Scientific Mediator queries
the human for approval or feedback on rt, enabling intervention when necessary. This iterative
process maintains a human-in-the-loop mechanism while preserving the autonomy of the system.
In this way, the Scientific Mediator plays a crucial role in bridging autonomous agents with human
experts, ensuring adaptability and scientific validity.

2.5 TOOL CODE GENERATOR

Given the workflow A generated by the Workflow Planner, the Tool Code Generator is an autonomous
agent responsible for translating each workflow step into executable Python functions. Specifically,
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at each step t, it receives the input context ξt = (at, rt−1, ιt) from the Scientific Mediator and
synthesizes a Python function to perform action at and compute the result rt.

In addition, the Tool Code Generator operates with a set of domain-specific physics tools denoted
as Ψ = {ψ1, ψ2, . . . , ψn}, where each ψi represents an individual physics tool. The Tool Code
Generator uses a pretrained LRM to generate executable code, integrating these domain-specific
physics tools to ensure physically grounded outcomes. For instance, within a crystal structure
prediction workflow, the Tool Code Generator integrates a space group analyzer in the initial step to
validate symmetry preservation from prototype structures. Subsequently, ML Force Fields (MLFFs)
are used to efficiently relax candidate structures towards energetically favorable configurations,
significantly reducing computational overhead compared to DFT calculations.

To enhance robustness, the Tool Code Generator includes a self-reflection mechanism. If execution
of the generated code results in runtime errors, a diagnostic error signal et is generated, triggering the
Tool Code Generator itself to revise and regenerate the code. Formally, the initial code generation
and self-reflection-based revision processes can be expressed as

ct ∼ Pϕ(ct | ξt,Ψ) = Pϕ(ct | at, rt−1, ιt,Ψ), (3)
where ct represents the code generated for executing step at. The revision upon encountering an error
is formulated as

c′t ∼ Pϕ(c
′
t | ξt, et,Ψ), (4)

where c′t is the revised code generated for executing step at. The result rt is computed by executing
the generated code ct if no error occurs; otherwise, it is obtained by executing the revised code c′t.
See Appendix A.2 for the detailed tool code generation process.

3 RELATED WORK

Crystal Structure Generation. Existing methods for 3D crystal generation can be broadly catego-
rized into diffusion-based generative models and language model-based approaches. CDVAE (Xie
et al., 2022) models the generation of crystal structures by combining variational autoencoders with
denoising diffusion. It learns a latent representation of crystals and gradually refines noisy samples
into valid structures through a learned reverse diffusion process. DiffCSP (Jiao et al., 2023) is a
diffusion-based approach specifically designed for crystal structure prediction. It conditions the
generation on a given chemical composition and guides the denoising process using surrogate energy
models to produce low-energy, stable structures. Mat2Seq (Yan et al., 2024c) is a language-model-
based approach that converts crystal structures into token sequences and trains an autoregressive
transformer to generate them. It converts 3D crystal structures into invariant and complete 1D
sequences that language models can take as input. CrystaLLM (Antunes et al., 2024)trains a lan-
guage model for crystal generation using text-like representations of crystal structures, i.e., CIF files.
However, these generative approaches are designed with specific tasks. They serve as tools that assist
in discovery but cannot plan, reason, guide, or control the discovery process.

LLM Agents for Science. LLM agents are now widely adopted across various scientific domains. In
the materials science domain, several systems have been developed to use LLMs for autonomous
material discovery. AtomAgents (Ghafarollahi and Buehler, 2025) uses a multi-agent framework
combining physics-based simulations and multi-modal data integration to design and discover new
alloys. OSDA Agent (Hu et al., 2025) focuses on zeolite synthesis by integrating molecule generation,
quantum evaluations, and reflective feedback to identify suitable organic structure directing agents.
LLMatDesign (Jia et al., 2024) uses LLMs to translate human instructions into material modifications,
applying iterative updates to optimize properties. MatLLMSearch (Gan et al., 2025) demonstrates
that pre-trained LLMs, combined with evolutionary search algorithms, can generate stable crystal
structures without additional fine-tuning. Similarly, in other scientific fields, LLM agents have been
developed to integrate domain-specific tools within structured workflows (Ghafarollahi and Buehler,
2024; Liu et al., 2024a; Kang and Kim, 2023; Liu et al., 2024b; Zhao et al., 2024). Systems such
as ChemCrow (Bran et al., 2023) enable autonomous chemical synthesis by combining LLMs with
several chemistry tools. Although these systems are promising, LLMs are typically used as tool
users who execute predefined steps in workflows designed by human experts and depend heavily on
existing domain tools and infrastructure in these systems. As we discussed in Section 2.1, this Level
1 usage pattern constrains the autonomy and adaptability of the agent in complex science discovery
tasks.
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Table 1: Results for crystal structure generation on the MP-20 dataset.

Model Validity Rate (%) Metastability Rate(%) Stability Rate (DFT) (%) S.U.N Rate (DFT)(%)
Structural Composition M3GNet (Ehull < 0.1)

CDVAE 100 86.7 28.8 1.6 1.43
DiffCSP 100 83.3 – 5.1 3.34
FlowMM 96.9 83.2 – 4.7 2.34
CrystalTextLLM 99.6 95.4 49.8 5.3 –
FlowLLM 99.9 90.8 – 17.8 4.92
MAPPS 100 94.0 95.0 34.3 24.9

Table 2: Results for crystal structure generation on the Matbench dataset.

Model Validity Rate (%) Metastability Rate (%)

Structural Composition M3GNet (Ehull < 0.1) CHGNet (Ehull < 0.1) CHGNet(Ehull < 0.03)

MatLLMSearch 100 79.4 81.1 76.8 56.5
MAPPS 100 76.9 93.8 95.9 84.3

Differences with Prior Work. MAPPS distinguishes itself from prior agent systems through its
ability to autonomously design workflows, implement code, and incorporate intuition and feedback
from human experts. We go beyond Level 1 tool-executing agent systems by introducing a Level 2
framework, where agents perform human-guided planning rather than merely executing predefined
tasks. Through extensive experiments, we demonstrate that the MAPPS system outperforms Level 1
agent systems, even when those systems follow workflows carefully crafted by human experts.

4 EXPERIMENTS

In this section, we evaluate MAPPS on a diverse range of real-world material discovery tasks, includ-
ing crystal structure generation, crystal structure prediction, and discovering crystal structures with
desired properties. The experimental results demonstrate that our proposed multi-agent framework
are able to complete these challenging tasks. Additionally, we present a study in Section 4.4 to
analyze the workflow generations. We conduct our experiments using OpenAI API and a single
NVIDIA A100 GPU.

4.1 CRYSTAL STRUCTURE GENERATION

Setup. A major goal of materials science is to discover stable and novel crystals. We first evaluate
the ability of our proposed multi-agent framework to generate stable crystal structures. We consider
two datasets, including MP-20 (Jain et al., 2013) and Matbench (Dunn et al., 2020). MP-20 includes
45,231 stable materials from the Materials Project, covering materials with a maximum of 20 atoms
per unit cell and within 0.08 eV/atom of the convex hull. We follow (Gan et al., 2025) to process
Matbench. The datasets are used as the retrieval database of our method and the training set of
the baselines.We generate 1,000 candidates on MP-20 and Matbench. We evaluate the quality of
generated crystal structures using four metrics: validity rate, metastability, stability, and S.U.N rate.
Following Xie et al. (2022); Court et al. (2020); Miller et al. (2024), we compute both structural
and compositional validity percentages based on heuristic checks of interatomic distances and
charge balance, respectively. For metastability, we adopt the approach of Gan et al. (2025), using
CHGNet (Deng et al., 2023) and M3GNet (Chen and Ong, 2022) as surrogate models to estimate
the fraction of structures with decomposition energies below thresholds of 0.1 eV/atom and 0.03
eV/atom. Stability is further assessed through DFT calculations, where a structure is considered
stable if its energy above the convex hull (Ehull) is less than 0 eV/atom. Finally, the S.U.N. rate
measures the proportion of structures that are stable, unique, and novel.

Baselines. We compare MAPPS with the following baseline methods, including (1) CDVAE (Xie
et al., 2022), a crystal diffusion variational autoencoder that learn to denoise atomic coordinates and
atom types through a diffusion process; (2) DiffCSP (Jiao et al., 2023), which is a diffusion-based
generative model that uses a periodic E(3)-equivariant network to jointly generate lattice parameters
and fractional atomic coordinates, ensuring symmetry-aware crystal generation; (3) FlowMM (Miller
et al., 2024), a Riemannian flow matching model tailored to crystal symmetries, offering efficient and
accurate generation of periodic structures; (4) CrystalTextLLM (Gruver et al., 2024), which leverages
fine-tuned large language models to generate crystal structures from string-based representations,
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Figure 2: Examples of generated material structures in the Crystal Structure Generation task
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Figure 3: Examples of generated material structures in the Crystal Structure Prediction task

supporting both unconditional and text-guided generation; (5) FlowLLM (Sriram et al., 2024),
which fine-tunes an LLM to learn an effective base distribution of meta-stable crystals in a text
representation.and (6) MatLLMSearch (Gan et al., 2025), which integrates pre-trained LLMs with
evolutionary search to iteratively generate and optimize crystal candidates based on structural and
property constraints.

Results. The results in Table 1 show that MAPPS outperforms several generative model-based
baselines, including CDVAE, DiffCSP, FlowMM, and CrystalTextLLM, on the MP-20 dataset.
Notably, our approach does not require training any new model. Instead, it successfully extracts
the scientific knowledge embedded in pretrained LLMs to solve the crystal structure generation
task. This demonstrates that LLMs possess strong capabilities for understanding scientific concepts
and facilitating materials discovery. Moreover, the results in Table 2 demonstrate that our MAPPS
surpasses MatLLMSearch, a recent baseline that combines LLMs with evolutionary algorithms, on
the Matbench dataset. This result highlights that LLMs are not merely useful for replacing individual
components in an algorithmic pipeline but can serve as central reasoning engines for end-to-end
scientific design. We also provide some examples of generated crystal structures in Figure 2.

4.2 CRYSTAL STRUCTURE PREDICTION

While the promising results in Section 4.1 highlight the effectiveness of our proposed framework, we
further evaluate its capability on the crystal structure prediction (CSP) task, which involves predicting
the stable structure for a given composition. We use the MP-20 and MPTS-52 dataset(Jiao et al.,
2023), a challenging benchmark containing 40, 476 structures with up to 52 atoms per unit cell. In
addition, we consider the challenge set introduced by Antunes et al. (2024), which focuses on crystals
that have only recently been discovered in the literature, to assess MAPPS’s ability to uncover novel
structures. Two metrics are used to evaluate the quality of generated crystal structures, namely match
rate and RMSE. Match rate measures the ratio of the generated structures that match the ground
truth structure determined by the Pymatgenstructure matcher (Ong et al., 2013a). RMSE (Ong et al.,
2013a)measures the structural differences between the ground truth and matched generated structures.

Baselines. On the MP-20 and MPTS-52 datasets, we compare MAPPS with several baseline
approaches, including language model-based methods such as CrystalLLM (Antunes et al., 2024)
and Mat2Seq (Yan et al., 2024c), as well as diffusion-based methods such as CDVAE (Xie et al.,
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Table 3: Results for crystal structure prediction on three benchmarks, including MP-20, MPTS-52,
and the challenge set.

Model MP-20 MPTS-52 Challenge Set

Match Rate RMSE Match Rate RMSE Match Rate RMSE

CDVAE 33.9% 0.105 5.34% 0.211 – –
DiffCSP 51.5% 0.063 12.2% 0.179 – –
CrystaLLM 58.7% 0.041 19.2% 0.111 22.4% 0.090
Mat2Seq 61.3% 0.040 23.1% 0.109 – –
MAPPS 63.9% 0.022 27.6% 0.097 31.0% 0.055

Table 4: Evaluation under Bandgap-Constrained Generation Conditions

Generation Condition Condition Satisfaction (DFT) Validity Uniqueness Novelty

Bandgap > 3 eV 74.6% 97.8% 96.4% 94.8%
Bandgap < 0.5 eV 92.2% 91.6% 98.6% 98.0%

2022) and DiffCSP (Jiao et al., 2023). All baselines are trained using the training sets. To ensure
a fair comparison, we also provide our agents with access to the corresponding training data for
retrieval. For the challenge set, we compare our method with CrystalLLM (Antunes et al., 2024).To
ensure a fair comparison, we use the same data, which was used by CrystalLLM for training, as
our retrieval source. Additionally, all models are evaluated under the same setting of generating a
one-shot candidate structure for each input composition.

Results. The results in Table 3 show that our approach achieves the highest match rate and the
lowest RMSE on both datasets, indicating superior performance of MAPPS on the crystal structure
prediction task. On the MP-20 dataset, our method attains a match rate of 63.9% and an RMSE of
0.022, outperforming all baselines. The performance gains are even more significant on the more
challenging MPTS-52 dataset. MAPPS achieves a match rate of 27.6% and an RMSE of 0.097,
significantly outperforming the next-best baseline Mat2Seq by 4.5% in match rate. Notably, on the
newly introduced challenge set, MAPPS achieves a match rate of 31.0% and an RMSE of 0.055,
outperforming CrystaLLM by 8.6% in match rate and showing a substantial improvement. These
results underscore the effectiveness of MAPPS, demonstrating that Level 2 autonomous agents can
generate high-fidelity materials.

4.3 DISCOVERING CRYSTAL STRUCTURES WITH DESIRED PROPERTIES

Setup. We further evaluate MAPPS’s ability to discover crystal structures with desired electronic
properties. Specifically, we focus on generating structures with target bandgap values. We consider
two distinct settings, including generating crystals with high bandgaps, defined as bandgap values
higher than 3 eV, and generating crystals with low bandgaps, defined as bandgap values less than
0.5 eV. For each condition, we generate 500 crystal structures. For retrieval, we use the JARVIS-
DFT dataset (Choudhary et al., 2020), which contains 61,541 crystal structures along with their
corresponding bandgap values. To evaluate the quality of the generated structures, we compute their
bandgap values using DFT simulations and report the percentage of generated crystals that meet the
high and low bandgap criteria. In addition, we also evaluate the validity, uniqueness, and novelty of
the generated structures. See Appendix B for the bandgap distributions under two generation settings.

Results. Table 4 demonstrates that MAPPS can effectively discover crystal structures with target
band gap properties. Specifically, under the high band gap setting, 74.6% of the generated crystals
have band gap values greater than 3 eV, while under the low band gap setting, 92.2% of the generated
crystals have band gap values below 0.5 eV. Moreover, the generated structures show high quality,
achieving over 90% validity, uniqueness, and novelty.

4.4 CAN CURRENT LLMS ACHIEVE LEVEL 3?

To investigate whether current LLMs can achieve Level 3 autonomy, we evaluated three models—
GPT-4o-mini, GPT-4o, and O3-mini—on their ability to design workflows from scratch for three
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Table 5: Validity (%) and workflow length under CSP, CSD, and CSG tasks.

LLM Validity
W/ Human Intuition

Validity
W/O Human Intuition

Avg
Workflow Length

CSP CSD CSG CSP CSD CSG

GPT-4o-mini 0% 0% 10% 0% 0% 0% 5.0
GPT-4o 10% 30% 40% 0% 0% 0% 5.0
O3-mini 60% 60% 100% 0% 0% 0% 4.37

Table 6: Results of the ablation study on O3-mini for the CSP task.

Experimental Condition Workflow Validity (%) Avg. Execution Time

Baseline (Full Human Expertise) 100% < 1 min
Ablation 1: No Heuristic/Empirical Knowledge 0% N/A
Ablation 2: No Methodological/Procedural Review 60% < 1 min
Ablation 3: No Strategic/Cost-Feasibility Assessment 100% > 1 hour

materials discovery tasks: crystal structure prediction (CSP), crystal structure design (CSD), and
crystal structure generation (CSG). As shown in Table 5, performance is highly dependent on the
model and the provision of human expertise. The advanced reasoning model, O3-mini, significantly
outperforms the others when guided by human intuition, achieving validity rates of 60% for CSP
and CSD, and 100% for CSG. In contrast, GPT-4o and GPT-4o-mini struggle even with guidance.
Critically, without human intuition, all models fail completely, with workflow validity dropping
to 0% across all tasks. This highlights that even the most advanced LLMs are not yet capable of
unguided, autonomous workflow generation. We also note that less advanced models tend to produce
fixed-length, five-step workflows, often including redundant steps, whereas O3-mini generates more
concise and effective plans, averaging 4.37 steps.

To better understand the essential role of human expertise, we conducted a systematic ablation
study on the O3-mini model for the CSP task, progressively removing specific categories of human
knowledge. The results, detailed in Table 6, reveal three indispensable facets of human expertise. First,
removing heuristic and empirical knowledge caused the validity rate to drop to 0%, demonstrating
that scientific intuition is fundamental for guiding the agent toward plausible pathways. Second,
without methodological and procedural review, the validity fell to 60%, indicating that an expert’s
ability to identify logical flaws remains crucial. Third, removing strategic assessment of cost and
feasibility maintained 100% validity but increased the average execution time from under one minute
to over an hour, highlighting the expert’s role in ensuring computational efficiency.

Furthermore, an attempt to replace the human scientific mediator with a separate LLM agent also
proved ineffective, resulting in a 0% workflow validity rate. This aligns with findings that LLMs
struggle to reliably evaluate complex reasoning without external grounding. These results collectively
underscore that current LLMs cannot achieve true Level 3 autonomy, as they critically depend on
human expertise for heuristic guidance, logical correctness, and strategic efficiency.

5 SUMMARY AND OUTLOOK

We introduce MAPPS, a multi-agent framework that combines Planning, Physics, and Scientists to
accelerate autonomous materials discovery. It features a Workflow Planner for task decomposition, a
Tool Code Generator for physics-grounded code, and a Scientific Mediator for incorporating human
expertise. Our experiments show MAPPS outperforms Level 1 agent systems. Current limitations
of MAPPS include: (1) MAPPS currently has human expert in the loop, and does not reach full
autonomous agent system which is Level 3; and (2) we currently focus on materials discovery
tasks, while extensions to other domains such as molecules, polymers, or other systems remain
underexplored. While it doesn’t achieve full Level 3 autonomy due to its reliance on human experts
and its current focus on materials, we view MAPPS as a stepping stone toward a fully autonomous
future. Realizing Level 3 autonomy will require further advancements in LLMs and scientific
reasoning.

9
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6 ETHICS STATEMENT

The ethical implications of materials discovery, including both potential benefits and risks, are
acknowledged and apply to this research. Our work aims to contribute to the field responsibly.

7 REPRODUCIBILITY STATEMENT

We provide key implementation details within the paper’s appendices to ensure reproducibility. For
instance, Appendix A offers a detailed workflow for planning and code generation with concrete
examples, Appendix C defines all evaluation metrics used, and Appendix D specifies the DFT
calculation settings. We will make our entire codebase and detailed setup instructions publicly
available upon acceptance.
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A EXPERIMENTAL DETAILS

A.1 WORKFLOW PLANNING FOR CRYSTAL STRUCTURE PREDICTION

Workflow Planner Prompt Template

You are a Workflow Planner. Based on the task requirements and human expert intuition, pro-
vide a workflow as a list of necessary steps. The workflow should contain no more than 5 steps.
Each step must involve data processing — steps such as environment setup, loading models,
or loading data are not considered complete steps by themselves. End your output with
a note for human approval or feedback. Each step should be detailed and written on a new line:

Step 1:

Step 2:
...

Task:"task description"

Human intuition:"scientist knowledge"

The workflow example in the box below is generated by the Workflow Planner, which maps the
task description τ and human intuition ι to a multi-step action sequence A = (a1, a2, . . . , aT ). This
process follows Equation 2 in the main text:

A ∼ Pθ(A | τ, ι) =
T∏

t=1

Pθ(at | a<t, τ, ι). (5)

In this example, we provide the following inputs:

Task Description (τ ): “Please predict the stable structure for Ba2Fe2F9.”

Human Intuition (ι): “1. Recent studies commonly employ Machine Learning force fields as an
alternative to Density Functional Theory for optimizing structures and calculating energies. 2. Similar
chemical compositions might have similar stable structural prototypes. A dataset is available at
{path}, providing various structure prototypes.”

The output is the following workflow A:

Workflow Example: Crystal Structure Prediction for Ba2Fe2F9

Step 1: Query the structural database for crystal structures with chemical compositions or
reduced formulas similar to Ba2Fe2F9 to identify promising structural prototypes.
Step 2: Use the retrieved similar prototypes to generate initial candidate structures specifi-
cally for Ba2Fe2F9, ensuring a diverse set of likely configurations based on known stable
arrangements.
Step 3: Optimize these candidate structures using Machine Learning force fields, ensuring
the minimization of energy and refinement of lattice and atomic positions.
Step 4: Calculate the total energies for the optimized candidates and compare their stability;
the structure with the lowest energy is identified as the most probable stable configuration.
Step 5: Validate the selected structure by cross-referencing with available experimental or
high-accuracy computational data, if available, to confirm its stability and consistency with
known behavior for similar compounds.
Please review and provide feedback or suggest revisions to the workflow.

A.2 TOOL CODE GENERATION

For each workflow step at ∈ A, the Scientific Mediator constructs the input context ξt =
(at, rt−1, ιt), where at denotes the current step description, rt−1 is the result of the previous step,

13
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and ιt is the domain-specific expert intuition for step t. This input context is passed to the Tool Code
Generator, along with a collection of physics tools Ψ = {ψ1, ψ2, . . .} (e.g., CHGNetCalculator,
pymatgen, ASE), which represent the available modeling and simulation environments. The Tool
Code Generator synthesizes executable code ct based on this context, following Equation 3 in the
main text:

ct ∼ Pϕ(ct | ξt,Ψ) = Pϕ(ct | at, rt−1, ιt,Ψ). (6)

Below, we provide a concrete example for Step 3. The prompt template used for the Tool Code
Generator is shown below.

Tool Code Generator Prompt Template

You are a Tool Code Generator. Based on the following information (last step result, current
workflow step, and expert intuition), please propose complete and executable Python code.
The code must define exactly one unique function named ’stepX’ (e.g., step1, step2, etc.). All
file paths used in the code must be absolute paths. Save the code result files in a folder and
output the folder’s path. Do not print any other information. Return the processing result.
The function must include a descriptive Python comment at the top explaining its purpose
and functionality.

Output a JSON object in the following format:

"function name": "stepX",

"code": "Complete Python code"

The structured inputs to the Tool Code Generator are:

Action Description (a3): “Optimize candidate structures using Machine Learning force fields,
ensuring the minimization of energy and refinement of lattice and atomic positions.”

Previous Step Result (r2): A folder path ’candidates’ containing candidate structures in ’cif’
format.

Human Intuition (ι3): “CHGNetCalculator is a machine learning force field that approximates
DFT-level accuracy and can be used to efficiently optimize lattice and atomic positions.”

Physics Tool Set (Ψ): Includes CHGNetCalculator, ASE, pymatgen.

The following Python function is synthesized by the Tool Code Generator to implement a3.

The code 1 represents a successful instantiation of the Tool Code Generator output at Step 3, enabling
structure relaxation with physics-informed ML force fields.

B BANDGAP DISTRIBUTION UNDER TARGETED GENERATION

In Figure 4, we show histograms of DFT-computed bandgaps for structures generated under two
targeted conditions in Section 4.3: low-bandgap generation (bandgap < 0.5 eV) and high-bandgap
generation (bandgap > 3 eV). Each histogram is computed over 500 generated crystal structures.
These plots illustrate how well the generated structures satisfy the intended electronic constraints
and how the bandgap distributions differ under each target setting. Under the low-bandgap setting, a
significant proportion of the generated structures exhibit bandgap values below the 0.5 eV threshold,
demonstrating the model’s ability to synthesize narrow-gap materials such as semimetals or small-gap
semiconductors. Conversely, in the high-bandgap setting, the bandgap distribution is shifted toward
larger values, with many structures achieving bandgaps greater than 3 eV, indicating the successful
generation of wide-gap insulating candidates.
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Listing 1: Generated code for Step3

1 def step3(chemical_composition):
2

3 import os
4 from ase.io import read, write
5 from ase.optimize import BFGS
6 from ase.constraints import ExpCellFilter
7 from chgnet.model import CHGNetCalculator
8

9 input_dir = ’candidates’
10 output_dir = ’optimized_candidates’
11 os.makedirs(output_dir, exist_ok=True)
12

13 calc = CHGNetCalculator()
14

15 for filename in os.listdir(input_dir):
16 if filename.lower().endswith(’cif’):
17 file_path = os.path.join(input_dir, filename)
18 try:
19 atoms = read(file_path)
20 atoms.set_calculator(calc)
21 ecf = ExpCellFilter(atoms)
22 opt = BFGS(ecf, logfile=None)
23 opt.run(steps=100)
24 write(os.path.join(output_dir, filename), atoms)
25 except Exception as e:
26 print(f’Error processing {file_path}: {e}’)
27

28 return output_dir
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Figure 4: DFT-computed bandgap distributions under two generation settings.

C EVALUATION METRIC DETAILS

To evaluate the quality of generated crystal structures, we adopt a set of metrics covering structural
validity, compositional correctness, thermodynamic stability, uniqueness, novelty, and accuracy
of property prediction. Unless otherwise specified, all metrics are computed based on structures
post-processed and relaxed by DFT or ML-based surrogates.

Structural Validity. A structure is considered structurally valid if all pairwise interatomic distances
are greater than or equal to 0.5 Å and the unit cell volume is no less than 0.1 Å3. This ensures that
generated structures are physically meaningful and free of atom overlaps or degenerate geometries.
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Compositional Validity. We assess the physical plausibility of compositions using SMACT Davies
et al. (2019), which verifies charge neutrality and electronegativity balance. A crystal is considered
compositionally valid if it passes both checks.

Stability. We define a crystal as stable if its DFT-calculated energy above the convex hull is below
0.0 eV/atom and it contains at least two unique elements.

Uniqueness. To measure diversity, we compute the fraction of stable crystals that are mutually unique.
Uniqueness is determined via all-to-all structural comparison using the StructureMatcher class
from pymatgen Ong et al. (2013b). Two crystals are considered duplicates if they match under
symmetry-preserving tolerances on lattice, angles, and atomic coordinates.

Novelty. A crystal is considered novel if it does not match any existing structure in the original
dataset, again based on the StructureMatcher. This ensures the generated structures are not
trivial rediscoveries.

Match Rate. For crystal structure prediction (CSP) tasks, we compute the match rate, defined as the
percentage of generated structures that match the ground-truth structure for the given composition,
determined using StructureMatcher.

RMSE. We also report the root mean square error (RMSE) between the fractional coordinates of
matching atoms in predicted and true structures, after alignment via symmetry operations and cell
transformation. RMSE provides a fine-grained measure of geometric fidelity.

D DFT CALCULATIONS

First-principles density functional theory (DFT) Hohenberg and Kohn (1964); Kohn and Sham (1965)
calculations were performed using the Vienna Ab initio Simulation Package (VASP) Kresse and Furth-
müller (1996). For stability and S.U.N rate evaluation in Section 4.1, the Perdew-Burke-Ernzerhof
(PBE) Perdew et al. (1996) form of the exchange-correlation functional within the generalized gradi-
ent approximation (GGA) Langreth and Mehl (1983) was employed. To ensure consistency with the
MP-20 dataset, all input settings were generated using the MPRelaxSet class. We determine the DFT
energy above hull for the relaxed structures against the Matbench Discovery convex hullRiebesell
et al. (2023). For the evaluation in Section 4.3, to maintain consistency with the JARVIS-DFT
datasetChoudhary et al. (2020), the vdW-DF-OptB88 functional Klimeš et al. (2009) was used and
the input settings were modified, with the atomic force convergence criterion set to 0.001 eV Å

−1

and the convergence criterion for electronic self-consistent calculations set to 10−7 eV.

E LARGE LANGUAGE MODEL USAGE

In this paper, we leverage a scientific agent system built around Large Language Models for materials
discovery tasks. The authors take full responsibility for the experimental results generated by the
LLM-based system. Additionally, an LLM was used to refine the language and improve the grammar
of this paper.
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