
Dependency Parsing
is More Parameter-Efficient with Normalization

Paolo Gajo

University of Bologna

Italy

paolo.gajo2@unibo.it

Domenic Rosati

Dalhousie University

Canada

domenic.rosati@dal.ca

Hassan Sajjad

Dalhousie University

Canada

hsajjad@dal.ca

Alberto Barrón Cedeño

University of Bologna

Italy

a.barron@unibo.it

Abstract
Dependency parsing is the task of inferring natural language struc-

ture, often approached by modeling word interactions via attention

through biaffine scoring. This mechanism works like self-attention

in Transformers, where scores are calculated for every pair of words

in a sentence. However, unlike Transformer attention, biaffine scor-

ing does not use normalization prior to taking the softmax of the

scores. In this paper, we provide theoretical evidence and empirical

results revealing that a lack of normalization necessarily results in

overparameterized parser models, where the extra parameters com-

pensate for the sharp softmax outputs produced by high variance

inputs to the biaffine scoring function. We argue that biaffine scor-

ing can be made substantially more efficient by performing score

normalization. We conduct experiments on six datasets for seman-

tic and syntactic dependency parsing using a one-hop parser and

a multi-hop GNN parser. We train 𝑁 -layer stacked BiLSTMs and

evaluate the parser’s performance with and without normalizing

biaffine scores. Normalizing allows us to achieve state-of-the-art

performance with fewer samples and trainable parameters. Code:

https://anonymous.4open.science/r/EfficientSDP-7A93

CCS Concepts
• Computing methodologies→ Natural language processing.

Keywords
semantic dependency parsing, biaffine attention, normalization,

graph neural networks

ACM Reference Format:
Paolo Gajo, Domenic Rosati, Hassan Sajjad, and Alberto Barrón Cedeño.

2025. Dependency Parsing is More Parameter-Efficient with Normalization.

In Proceedings of the Workshop on Machine Learning on Graphs in the Era of
Generative AI (MLoG-GenAI). ACM, New York, NY, USA, 17 pages.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MLoG-GenAI, Toronto, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1 Introduction
Dependency parsing (DP) consists in classifying node labels 𝑡𝑖
(words), edges 𝑒𝑖 𝑗 (relations), and edge labels 𝑟𝑖 𝑗 (relation types) of

a dependency graph [30]. A popular model for this task, introduced

by Dozat and Manning [8], entails modeling word interactions as a

fully connected graph via biaffine attention. Despite its simplicity, a

number of models using this biaffine transformation [3, 8, 9, 14, 16]

require more parameters than necessary, due to what we identify

as a lack of normalization of its outputs. We propose that this

overparameterization is caused by the high variance of the outputs,

which extra parameters help mitigate. After showing that variance

can be reduced through normalization, we demonstrate that similar

or better performance can be obtained for DPwith fewer parameters

and training samples.

In this task, we consider a graph G = (V, E) comprising a set

of nodesV , connected by a set of edges E, with each edge 𝑒𝑖 𝑗 ∈ E
connecting pairs of nodes (𝑣𝑖 , 𝑣 𝑗) ∈ V . In latent graph inference

for dependency graphs, a sentence of |V| words is modeled as a

|V| × |V| graph via biaffine scoring [8]:

𝑋𝑊𝑋⊤ = 𝑋 (𝑊𝑄𝑊 ⊤𝐾)𝑋
⊤ = 𝑋𝑊𝑄 (𝑋𝑊𝐾)⊤ = 𝑄𝐾⊤, 𝑋 ∈ R |V |×𝑑 .

Observe that this is equivalent to the unnormalized scores used

in [36]’s self-attention: 𝑄𝐾⊤/
√︁
𝑑𝑘 , where 𝑑𝑘 is the output size of

the keys and Attention(𝑄,𝐾,𝑉) = Softmax

(
𝑄𝐾⊤/

√︁
𝑑𝑘

)
𝑉 .

Themain difference resides in the fact that Transformer attention

scores are scaled by 𝑎 = 1/
√︁
𝑑𝑘 . As explained in [36], this scaling

is done because high variance inputs to the softmax function will

result in large values dominating the output (𝑒𝑥≫1
) and small values

decaying (𝑒𝑥≪1
). The downstream effect is exploding and vanishing

gradients. To see how this works, observe that the score 𝑠 between

any query and key vector is the result of their dot product𝑞𝑖𝑘
⊤
𝑖
. Now

if we assume that these vectors are zero mean and unit variance,

then the variance is Var(𝑠) = 𝑑𝑘 . Finally, we get our normalization

factor, which ensures that each entry in the score matrix has a

standard deviation of 1, since Std =
√︁
𝑑𝑘 . Consequently, lower

input variance will result in more stable outputs.

We observe that there is no consistency in the literature on the

use of this scaling term for DP. Most works do not use this scaling

term [3, 8, 9, 9, 14, 16], with the exception of [35] who use [36]’s self-

attention out of the box. In this paper, we carry out experiments on

semantic and syntactic DP tasks, using a wide range of architecture

https://anonymous.4open.science/r/EfficientSDP-7A93

MLoG-GenAI, August 03–08, 2025, Toronto, Canada Gajo et al.

ablations. We extend the work of Bhatt et al. [3], which represents

the state of the art in dependency graph parsing in NLP.

Following the state of the art, we train stacked BiLSTMs and a bi-

affine classifier to infer the latent dependency graph connecting the

words of a sentence. We find that, when not normalizing the scores

produced by the biaffine transformation, model performance drops

in terms of micro-averaged F1-measure and attachment score [25].

In particular, increasing the amount of layers produces a normal-

ization effect by reducing the variance of the output scores. Using

score normalization, we find that in some cases similar or better

performance can be obtained by reducing the amount of trained

BiLSTM parameters by as much as 85%. A similar phenomenon is

also observed with a GNN parser, where adding more layers is less

effective when normalizing scores.

To ablate the BiLSTM architecture entirely, we also experiment

with switching the BiLSTM layers with Transformer encoder layers.

Furthermore, we briefly experiment with a 7B-parameter LLM,

which constitutes a different architecture altogether.

Our contributions are thus three-fold. (i) We show the impact of

normalizing the output of the biaffine scorer in relation to the archi-

tectural changes in a DP model. (ii) We show DP models can obtain

better performance with substantially fewer trained parameters.

(iii) We provide a new method that substantially improves scores

and obtains state-of-the-art performance for semantic [22, 42] and

syntactic [24, 44] dependency parsing.

The rest of the paper is structured as follows. Section 2 presents

an overview of the literature concerning DP, with specific focus

on how to infer the adjacency matrix of a dependency graph. Sec-

tion 3 explains why layer depth can compensate for normalization.

Section 4 provides an overview of the datasets, models, evaluation,

and other experimental details. Section 5 shows how normalization

mitigates overparameterization, both with and without multi-hop

parsing with Graph Neural Networks (GNNs), and how it acceler-

ates convergence. Finally, Section 6 draws conclusions and provides

avenues for future research.

2 Background
In general, DP is an NLP task concerned with inferring the depen-

dency graph of a sentence [30]. Depending on the nature of the

nodes and relations of the graph, it can e.g., take on the name of

semantic (SemDP) [3, 9, 16, 35] or syntactic (SynDP) [8, 14, 44].

In this work, we tackle both tasks, but focus more specifically on

SemDP, which can be thought of as comprising two sub-tasks:

Named Entity Recognition (NER) [23] and Relation Extraction

(RE) [3, 16]. They can be either approached in a pipeline as separate

objectives [6, 43, 46, 49], or by jointly training a single model on

both sub-tasks [3, 4, 16, 45]. In the context of deep learning mod-

els trained end-to-end, three main paradigms are used: encoder-

based models [3, 8, 9, 14, 16, 37, 38], decoder-only Transform-

ers (LLMs) [4, 39, 47], and seq2seq encoder-decoder Transform-

ers [18, 21, 26, 45].

In this work, we focus on encoder-style models, since they cur-

rently achieve the best performance on DP tasks [3, 16, 35] and are

much more parameter efficient than LLM-based solutions. These

models approach entity (node) prediction analogously to NER, while

edges and relations are handled via MLP projection of node-pair

features [17, 27, 28, 50], or via attention-based edge and relation

inference [3, 9, 14, 16, 35]. Current state-of-the-art models, exempli-

fied by [3], are based on the biaffine dependency parser introduced

by [8], which uses stacked BiLSTM layers on top of embeddings

from a pre-trained language model.

Othermodels also involve the use of GNNs for iterative adjacency

matrix refinement [16]. In this case, intermediate representations

and adjacency matrices are calculated by interleaved biaffine and

GNN layers, before obtaining the final adjacency matrix. We experi-

ment with such a setup using Graph Attention Networks (GATs) [5]

to confirm the effectiveness of the normalization approach also for

this kind of model.

3 Layer depth can compensate for
normalization

In order to reduce the number of parameters used for biaffine scor-

ing, we observe that the softmax function is sensitive to inputs

with high variance: large values dominate the output (𝑒𝑥≫1
) and

small values decay (𝑒𝑥≪1
). This causes a drop in the downstream

task performance, due to some values dominating the probability

outputs in the score matrix, as well as exploding and vanishing

gradients. Typically, contemporary architectures based on [8] do

not employ normalization, but are still able to perform well on DP

tasks.

We explain this discrepancy using insights from the theory of im-

plicit regularization [1], which states that, as layer depth increases,

the effective rank of the weight matrices is reduced during gradient

descent. Our claim is that a reduction in the rank of the weight

matrices causes a corresponding decrease in the variance of the

input to the softmax function.

Result 1 (Singular Value Dynamics under Gradient De-

scent [1]). Minimization of a loss function L(𝑊) with gradient
descent using weight matrices W (assuming a small learning rate
𝜂 and initialization close to the origin). An 𝑁 -layer linear neural
network leads the singular values of W to evolve in the number of
iterations 𝑡 by:

𝜎𝑟 (𝑡 + 1) ← 𝜎𝑟 𝑡 − 𝜂 · ⟨∇L(𝑊 (𝑡)), u𝑟 (𝑡)vr⊤ (𝑡)⟩ · 𝑁 · 𝜎𝑟 (𝑡)2−2/𝑁

This implies that, as the number of layers increases, the rank of the
weight matrices decreases, since the smallest singular values decay.

While Result 1 is stated for deep linear neural networks for

the matrix factorization task, it has been validated empirically as

applying to deep non-linear neural networks [32, 48]. We validate

this finding for the biaffine scoring setting in Figure 1, which shows

the inverse proportionality between the effective rank 𝜌 (𝑊) [34]
of a BiLSTM’s weights and the number of its layers.

Claim 1 (Rank variance ineqality). Let𝑌𝑟 ∈ R𝑚 be a random
vector that is the outcome of a linear transformation y = A𝑟x, where
the vector x ∈ R𝑛 is drawn from the random vector𝑋 andA𝑟 ∈ R𝑚×𝑛
denotes a rank 𝑟 approximation of a fixed matrix A. The variance of
𝑌𝑟 is smaller than the variance of 𝑌𝑟+1 as measured by the Frobenius
norm | |Var(𝑌𝑟) | |𝐹 ≤ ||Var(𝑌𝑟+1) | |𝐹 .

Proof. The variance of a random vector 𝑋 is represented by

the positive semi-definite (PSD) covariance matrix Kxx ∈ R𝑛×𝑛 .

Dependency Parsing
is More Parameter-Efficient with Normalization MLoG-GenAI, August 03–08, 2025, Toronto, Canada

0 200 400 600 800 1000
40

45

50

N
1

2

3

4

5

6

7

8

9

10

Figure 1: Effective rank 𝜌 (𝑊) reduces over training epochs as we increase 𝑁 of BiLSTM layers.

Applying the variance of 𝑋 to the linear transformation, we get

Var(𝑌) = ArKxxAr
⊤ ∈ R𝑚×𝑚 .

Since Kxx is PSD, so is each term in x⊤i Kxxxi, and so the ma-

trix ArKxxAr
⊤
is also PSD for each rank-𝑟 approximation A𝑟 =∑𝑟

𝑖=1 𝜎𝑖u𝑖v
⊤
𝑖
.

This means that increasing the rank from 𝑟 − 1 to 𝑟 adds a new
PSD component Δ𝑟 :

ArKxxAr
⊤ = Ar−1KxxAr−1⊤ + Δ𝑟

Since the Frobenius norm is given by

√︃∑𝑚
𝑖

∑𝑛
𝑗 |𝑎𝑖 𝑗 |2, then we

must have:

| |ArKxxAr
⊤ | |𝐹 = | |Ar−1KxxAr−1⊤ + Δ𝑟 | |𝐹

≥ ||Ar−1KxxAr−1⊤ | |𝐹
= | |Ar−2KxxAr−2⊤ + Δ𝑟−1 | |𝐹
...

≥ ||A1KxxA1
⊤ | |𝐹

Which shows that, as the rank decreases, so does the variance of

the linear transformation.

□

The implication of Claim 1 is that the pre-softmax score matrix

from a shallow network without normalization will have a higher

variance than a deeper network because of Result 1. Based on this

finding, we propose to remove BiLSTM layers and use normalization

—rather than having greater layer depth— in order to develop amore

parameter-efficient method.

4 Experimental setting
4.1 Data
To train and evaluate our models, we use four SemDP datasets,

1

along with the 2.2 version of the Universal Dependencies English

EWT treebank (enEWT) [24] and SciDTB [44].

As regards SemDP, ADE [12] is a medical-domain dataset com-

prising reports of drug adverse-effect reactions. Each disease is

associated to a drug which caused it through the only type of re-

lation present, i.e. “adverseEffect.” CoNLL04 [33] contains news

texts and is annotated with the classic entities 𝑒𝑖 ∈ {per, org, loc}
and relations 𝑟 𝑗 ∈ {workFor, kill, orgBasedIn, liveIn, locIn}. ADE
1
We neglect ACE04 and ACE05, two popular datasets for relation extraction, due to

their prohibitive cost.

Table 1: Samples per partition and entity/relation classes for
the datasets used in this paper.

Dataset (Train / Dev / Test)

Entities Relations

ADE (2,563 / 854 / 300) [12]

disease, drug adverseEffect

CoNLL04 (922 / 231 / 288) [33]

organization, person, location kill, locatedIn, workFor, org-

BasedIn, liveIn

SciERC (1,366 / 187 / 397) [22]

generic, material, method, met-

ric, otherSciTerm, task

usedFor, featureOf, hyponymOf,

evaluateFor, partOf, compare,

conjunction

ERFGC (242 / 29 / 29) [42]

food, tool, duration, quantity,

actionByChef, discontAction,

actionByFood, actionByTool,

foodState, toolState

agent, target, indirectObject,

toolComplement, foodCom-

plement, foodEq, foodPartOf,

foodSet, toolEq, toolPartOf,

actionEq, timingHeadVerb,

other

enEWT (10,098 / 1,431 / 1,427) [42]

xPOS tags UD relations

SciDTB (2,567 / 814 / 817) [44]

xPOS tags UD relations

and CoNLL04 are characterized by relations which are not complex

enough to form connected graphs of considerable size. SciERC [22]

is a dataset compiled from sentences extracted from literature in the

domain of artificial intelligence. It is arguably the most challenging

dataset used in this study, since most of the entities in the valida-

tion and testing partitions are not assigned an entity class. This

makes it hard to train tag embeddings that can help to infer edges.

ERFGC [42] is a dataset comprising “flow graphs” parsed from

culinary recipes. The semantic dependency graphs of these recipes

are directed and acyclic, with a single root. Note that, differently

from [3], and as advised directly by [42] in personal correspondence,

we ignore the “-” edge labels present in the corpus.

MLoG-GenAI, August 03–08, 2025, Toronto, Canada Gajo et al.

parser

tagger

input

BERT

MLP tag classifier

tags

edges edge labels

tag-to-dense MLP

tagger BiLSTM

MLP{eh,ed,rh,rd}

score decoder

scorer BiLSTM

biaffine scorer

score
norm

Figure 2: Dependency parsing diagram. Dashed components
are the targets of ablation experiments.

As regards SynDP, we use enEWT [24] to compare directly

against [14]’s results. While many works evaluate SynDP on the

Penn Treebank [29] it is closed access and prohibitively expensive.

Instead, we use SciDTB [44], a discourse analysis dataset compris-

ing 798 abstracts extracted from the ACL Anthology. It was pro-

cessed for the syntax dependency parsing task using Stanza [31].

From these two datasets, we consider the xPOS tags (e.g. noun,

preposition, determiner) and the syntactic dependencies (e.g. sen-

tence root, object, adverbial modifier) to respectively be the entities

and relations of the dependency graphs to infer.

For ADE, CoNLL04, and SciERC we use the splits provided

in [4].
2
ERFGC is not available online; we obtained it by contact-

ing the authors of [42]. Table 1 summarizes the statistics of the

datasets used in this work and reports their entity and relation class

annotations.

4.2 Model
We adopt the architecture of [3] in our work, schematized in Fig-

ure 2. It can be subdivided into four main components: encoder, tag-

ger, parser, and decoder. The input is tokenized and passed through

a BERT-like encoder, where token representations are averaged

into |V| word-level features x𝑖 ∈ R𝑑𝑓 .3 Optionally, additional fea-
tures can be obtained by predicting the entity classes of each word

with a tagger, composed by a single-layer BiLSTM 𝜙 , followed by a

classifier:

h𝑡𝑎𝑔
𝑖

= 𝜙 (x𝑖), h𝑡𝑎𝑔
𝑖
∈ R𝑑ℎ

y𝑡𝑎𝑔
𝑖

= Softmax(MLP
𝑡𝑎𝑔 (h𝑡𝑎𝑔

𝑖
)), y𝑡𝑎𝑔

𝑖
∈ R |𝑇 |

where 𝑇 is the set of word tag classes. The tagger’s predictions are

then converted into one-hot vectors and projected into dense rep-

resentations by another MLP, such that e𝑡𝑎𝑔
𝑖

= MLP
𝑒𝑚𝑏 (1𝑇 (y

𝑡𝑎𝑔

𝑖
)).

These new tag embeddings are concatenated with the original BERT

output and sent to the parser.

2
https://drive.google.com/drive/folders/1vVKJIUzK4hIipfdEGmS0CCoFmUmZwOQV

3
Using token-level representations resulted in much lower performance in preliminary

experiments.

In the parser, an optional 𝑁 -layered BiLSTM 𝜓 produces new

representations h𝑖 = 𝜓 (e𝑡𝑎𝑔𝑖 ⊕ x𝑖), which are then projected into

four different representations:

eℎ𝑖 = MLP
(𝑒𝑑𝑔𝑒−ℎ𝑒𝑎𝑑) (h𝑖), e𝑑𝑖 = MLP

(𝑒𝑑𝑔𝑒−𝑑𝑒𝑝𝑡) (h𝑖)

rℎ𝑖 = MLP
(𝑟𝑒𝑙−𝑑𝑒𝑝𝑡) (h𝑖), r𝑑𝑖 = MLP

(𝑟𝑒𝑙−ℎ𝑒𝑎𝑑) (h𝑖)

The edge scores 𝑠
𝑒𝑑𝑔𝑒

𝑖
and relation scores 𝑠𝑟𝑒𝑙

𝑖
are then calculated

with the biaffine function 𝑓 :

𝑓 (x1, x2;𝑊) = x⊤
1
𝑊 x2 + x⊤1 b

𝑠
𝑒𝑑𝑔𝑒

𝑖
= 𝑓 (𝑒𝑑𝑔𝑒) (eℎ𝑖 , e

𝑑
𝑖 ;𝑊𝑒), 𝑊𝑒 ∈ R𝑑×1×𝑑

𝑠𝑟𝑒𝑙𝑖 = 𝑓 (𝑟𝑒𝑙) (rℎ𝑖 , r
𝑑
𝑖 ;𝑊𝑟), 𝑊𝑟 ∈ R𝑑×|𝑅 |×𝑑

where 𝑅 is the set of relation classes, i.e. the possible labels

applied to an edge.

Optionally, we experimentwith the addition of𝐿GNN ∈ {0, 1, 2, 3}
GNN layers upstream of the final biaffine layer. Each layer is com-

posed of a biaffine layer predicting an adjacency matrix based on

the MLP outputs, sparsified to only keep the top 𝑘 edge scores for

each node. Each MLP output is then passed through a dedicated

GAT layer [5] along with the sparse adjacency matrix:

e𝑙+1𝑖 = 𝜎1
©«e𝑙𝑖 , 𝜎2 ©«

𝑘∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗 ·𝑊 e𝑙𝑗
ª®¬ª®¬

𝛼𝑖 𝑗 = Softmax𝑗 (𝑠 (e𝑙𝑖 , e
𝑙
𝑗))

𝑠 (e𝑙𝑖 , e
𝑙
𝑗) = a⊤LeakyReLU

(
𝑊 ·

[
e𝑖 ∥e𝑗

])
where 𝜎1, 𝜎2 are non-linearities, ∥ is the concatenation operation,

and N is the neighborhood of the 𝑖-th node.

Finally, in the decoder, the edge scores are used in conjunction

with the relation representations rℎ
𝑖
and r𝑑

𝑖
to obtain the final pre-

dictions. During training, we do greedy decoding, while during in-

ference, we use Chu-Liu/Edmonds’ maximum spanning tree (MST)

algorithm [10] to ensure the predictions are well-formed trees. This

is especially useful with big dependency graphs, since greedy de-

coding is more likely to produce invalid trees as size increases.

When doing greedy decoding, an edge index (i.e. an adjacency ma-

trix) 𝑎𝑖 = argmax𝑗 𝑠
𝑒𝑑𝑔𝑒

𝑖 𝑗
is produced by taking the argmax of the

attention scores 𝑠
𝑒𝑑𝑔𝑒

𝑖
across the last dimension. The edge index is

then used to select which head relation representations 𝑟ℎ
𝑖
to use to

calculate the relation scores 𝑠𝑟𝑒𝑙
𝑖

= 𝑓 (rℎ
𝑖
, r𝑑
𝑖
;𝑊), 𝑊 ∈ R𝑑×|𝑅 |×𝑑 .

The relations are then predicted as 𝑟𝑖 = argmax𝑗 𝑠
𝑟𝑒𝑙
𝑖 𝑗

. When using

MST decoding, edge and relation scores are combined into a single

energy matrix where each entry represents the score of a specific

head-dependent pair with its most likely relation type. This energy

matrix is then used in the MST algorithm, producing trees with a

single root and no cycles. For all experiments, following [3], prior

to energy calculation, edge scores and relation scores are scaled so

that low values are squished and high values are increased, making

the log softmax produce a hard adjacency matrix.

https://drive.google.com/drive/folders/1vVKJIUzK4hIipfdEGmS0CCoFmUmZwOQV

Dependency Parsing
is More Parameter-Efficient with Normalization MLoG-GenAI, August 03–08, 2025, Toronto, Canada

The model is trained end-to-end jointly on the entity, edge, and

relation classification objectives:

L𝑡𝑎𝑔 = −
1

|V|

|V |∑︁
𝑖=1

|𝑇 |∑︁
𝑡=1

𝑦
𝑡𝑎𝑔

𝑖,𝑡
log𝑝

(
𝑦
𝑡𝑎𝑔

𝑖,𝑡

)
L𝑒𝑑𝑔𝑒 = −

|V |∑︁
𝑖, 𝑗=1

log 𝑝
(
𝑦
𝑒𝑑𝑔𝑒

𝑖,𝑗
= 1

)
L𝑟𝑒𝑙 = −

|V |∑︁
𝑖=1

|V |∑︁
𝑗=1

1
(
𝑦
𝑒𝑑𝑔𝑒

𝑖,𝑗
= 1

) |𝑅 |∑︁
ℓ=1

𝑦𝑟𝑒𝑙𝑖, 𝑗,ℓ log 𝑝
(
𝑦𝑟𝑒𝑙𝑖, 𝑗,ℓ

)
L = 𝜆1 L𝑡𝑎𝑔 + 𝜆2

(
L𝑒𝑑𝑔𝑒 + L𝑟𝑒𝑙

)
Losses are calculated based on the gold tags, edges, and relations.

We set 𝜆1 = 0.1 and 𝜆2 = 1 as hyperparameters because the tagging

task is much simpler than predicting the edges, since the same top

performance is always achieved regardless of any other selected

architecture hyperparameters. For the GNN setup, a separate loss

is calculated for each biaffine layer, as in [14]. Following the usual

approach for SynDP [8, 14, 16], when training on enEWT and

SciDTB we use an oracle, the gold tags, and do not predict the POS

tags ourselves. Since in this case we only focus on training the edge

and relation classification tasks, we set 𝜆1 = 0.

To highlight the comparative parameter efficiency of the graph-

based parsers, in Appendix B.9 we also experiment with a 7B-

parameter LLM. Specifically, we pick Mistral-7B-Instruct-v0.3 [15],
4

because it has shown to achieve the best performance among mod-

els of similar size on ADE, CoNLL04, and SciERC [11].

4.3 Hyperparameters
We experiment with a range of hyperparameters for the encoder,

tagger, and parser, as listed in Table 2. We use BERT𝑏𝑎𝑠𝑒 [7] as

our pre-trained encoder, which we keep frozen throughout the

whole training run in our main setting. As regards the tagger, we

set 𝐿𝜙 = 1 and ℎ𝜙 = 100, as in [3], with weights initialized with

a Xavier uniform distribution. In Appendix B.1, we ablate the 𝜙

BiLSTM and the use of the tag embeddings e𝑡𝑎𝑔
𝑖

to assess their

impact on overall performance. Finally, with relation to the parser,

for all hyperparameter combinations of {𝐿𝜓 , ℎ𝜓 , 𝑑MLP}, we run

our experiments by initializing its weights with a Xavier uniform

distribution (𝐼𝑝𝑎𝑟 = U) and no LayerNorm LN𝜓 . In Appendices B.2

to B.7, we conduct ablations for Table 2’s parser hyperparameters.

We train our models for 2𝑘 steps and evaluate on the develop-

ment partition of each dataset every 100 steps for ADE, CoNLL04,

SciERC, and ERFGC. For enEWT and SciDTB, we train for 5𝑘 steps

with 1𝑘-step validation intervals to make our results more com-

parable with the start of the art [14]. We apply early stopping at

30% of the total steps without improvement and choose the best

model based on top performance on the development split. In Ap-

pendix B.8, we extend the training to 10𝑘 steps and fully fine-tune

a variety of small and large pre-trained language models to show

time-wise test performance trends more clearly. In the case of the

GNN experiment (Appendix B.6), we also increase the steps to 10𝑘 ,

since the differences in performance become clearer later on in

the training. We also train for 10𝑘 steps when using Transformer

4
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

Table 2: Hyperparameter ranges tested in our experiments.
𝜓 = Parser BiLSTM. 𝑓 = biaffine layer.

Comp. Hyperparameter Values

Encoder Freeze BERT ∇BERT ∈ {✓,×}

Tagger

Tagger BiLSTM 𝜙 𝜙 ∈ {✓,×}
Concat. tag embeds. e𝑡𝑎𝑔

𝑖
∈ {✓,×}

Parser

𝜓 num. layers 𝐿𝜓 ∈ {0, 1, 2, 3}
𝜓 hidden dim. ℎ𝜓 ∈ {100, 200, 300, 400}
MLP

(𝑒𝑑𝑔𝑒)
output dim. 𝑑MLP ∈ {100, 300, 500}

𝜓 LayerNorm LN𝜓 ∈ {✓,×}
MLP

(𝑒𝑑𝑔𝑒)
and 𝑓 (𝑒𝑑𝑔𝑒) init. 𝐼par ∈ {U,N}

GNN layers 𝐿GNN ∈ {0, 1, 2, 3}
top-𝑘 edges 𝑘 ∈ {1, 4}
Score scaling 𝑎 ∈ {1, 1√

𝑑
}

Parser type 𝜓 ∈ {BiLSTM,Transf.}

encoder blocks in place of BiLSTM layers (Appendix B.7), since

the learning rate is lower and performance convergence is slower.

Unless stated otherwise, we set the learning rate at 𝜂 = 1 × 10−3
when the encoder is kept frozen. In all settings, including ablations,

we use AdamW [19] as the optimizer and a batch size of 8.

We use [3]’s original architecture as our baseline. It uses a

frozen BERT𝑏𝑎𝑠𝑒 model as encoder and trains all of the components

showed in Figure 2. Following the best results obtained by [8], they

use three BiLSTM layers in the parser with a hidden size of 400,

while the four MLPs following the stacked BiLSTM have an output

size of 500 for the edge representations and 100 for the relations.

4.4 Evaluation
Following [3, 9, 16], we measure tagging and parsing performance

on ADE, CoNLL04, SciERC, and ERFGC in terms of micro-F1. In

addition, for enEWT and SciDTB we use unlabeled (UAS) and la-

beled (LAS) attachment score [25]. To corroborate the validity of

our results, we train and evaluate each setting, including ablations,

with five random seeds. We report mean and standard deviation

for the F1, UAS, and LAS metrics, averaged over the five runs. For

brevity, the performance on the tagging and unlabeled edge predic-

tion tasks are reported in Appendix A. To test the significance of

our results, we use the one-tailed Wilcoxon signed-rank test [40].

5 Results and discussion
Table 3 shows the results of our experiments, with the first row

using the same hyperparameters as [3] (ℎ𝜓 = 400, 𝑑MLP = 500).
We also use these hyperparameters for enEWT and SciDTB, since

our ablation study only concerns SemDP due to SynDP being less

challenging. The lower half uses the best combinations for ADE

(200, 100), CoNLL04 (400, 300), SciERC (300, 300), and ERFGC (400,

300), chosen based on mean performance across these four datasets.

Overall, normalizing biaffine scores provides an evident per-
formance boost at all BiLSTM depths. In particular, for ERFGC

we beat the state-of-the-art performance achieved by [3]. Most of

the performance gain is obtained by adding the first layer, with

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

MLoG-GenAI, August 03–08, 2025, Toronto, Canada Gajo et al.

Table 3: Micro-F1 (SemDP) and LAS (SynDP) for the labeled edge prediction task. Best in bold.

Model 𝑎 𝐿𝜓 ADE CoNLL04 SciERC ERFGC enEWT SciDTB

[3] 1 3 0.653±0.018 0.566±0.019 0.257±0.024 0.701±0.009 0.804 ±0.006 0.915 ±0.002

Ours

1

0 0.541 ±0.021 0.399 ±0.024 0.147 ±0.049 0.548 ±0.010 0.559 ±0.005 0.729 ±0.004

1 0.657 ±0.011 0.556 ±0.021 0.282 ±0.009 0.676 ±0.010 0.771 ±0.006 0.892 ±0.002

2 0.667 ±0.011 0.573 ±0.025 0.273 ±0.010 0.694 ±0.010 0.796 ±0.006 0.910 ±0.002

3 0.662 ±0.027 0.562 ±0.021 0.299 ±0.023 0.705 ±0.011 0.804 ±0.006 0.915 ±0.002

1√
𝑑

0 0.567 ±0.014 0.438 ±0.033 0.181 ±0.027 0.612 ±0.008 0.646 ±0.002 0.796 ±0.002

1 0.668 ±0.017 0.597 ±0.015 0.299 ±0.019 0.692 ±0.009 0.789 ±0.003 0.904 ±0.002

2 0.676 ±0.019 0.596 ±0.014 0.312 ±0.011 0.699 ±0.009 0.805 ±0.003 0.916 ±0.002

3 0.686 ±0.025 0.602 ±0.017 0.320 ±0.013 0.708 ±0.008 0.807 ±0.005 0.919 ±0.001

additional ones yielding diminishing returns. In other words, the

performance boost provided by score normalization is highest in

the absence of the implicit normalization provided by extra param-

eters (𝐿𝜓 > 0). In general, the top performance obtained by using

three BiLSTM layers and no score normalization can be matched

or surpassed with a single BiLSTM layer, when using score nor-
malization. Taking into account the lower values for ℎ𝜓 and 𝑑MLP,

this represents a reduction in trained parameters of up to 85%.

As laid out in Section 3, score variance tends to decay with

deeper BiLSTM stacks. This in turn produces a converging trend as

𝐿𝜓 increases. When looking at Figure 3, this is especially evident

for ERFGC, enEWT, and SciDTB, for which the beneficial effect

of score normalization shrinks smoothly with higher values of 𝐿𝜓 .

Although the same cannot be said for ADE, CoNLL04, and SciERC,

the performance boost is still statistically significant across all layer

depths (𝑝 < 0.01).

As regards SciERC, normalizing scores without any BiLSTM

layers (𝐿𝜓 = 0) produces a 23% increase in performance with a

reduction in standard deviation. SciERC arguably has the hard-

est dependency graphs to parse, due to the little overlap between

training and testing entities, which makes it difficult to leverage tag

embeddings. In addition, it is characterized by complex semantic de-

pendencies. Thus, we argue normalizing biaffine scores is especially

important when dealing with hard tasks. In particular, normalizing

scores helps mitigate the higher variance of the model’s predictions

for this challenging dataset. Conversely, the lack of score normal-

ization exacerbates already uncertain predictions. For SciERC, this

makes the trend observed in Figure 3 more unstable. Indeed, the

performance first drops at 𝐿𝜓 = 2 and then increases once again at

𝐿𝜓 = 3, which does not happen for the other datasets.

Compared to existing approaches which do not scale the biaffine

scores, fewer parameters can thus be trained to obtain similar per-

formance. Therefore, our results indicate that parsers using raw

biaffine scores are likely overparameterized, compared to the perfor-

mance they could achieve by using score normalization. In addition,

score normalization increases sample efficiency by accelerating

convergence. Figure 4 displays the performance on SciERC’s test

set for four models during full fine-tuning. As the figure shows, the

speedup in convergence is statistically significant when normaliz-

ing scores. This shows how score normalization can be beneficial

even when fully fine-tuning models with ∼108 parameters, given a

hard task which forces the model to make uncertain predictions.

Figure 5 shows the performance on SciDTB with respect to the

use of normalization and the number of GNN layers inserted up-

stream of the biaffine scoring.
5
Top performance increases visibly

with 𝑎 = 1/
√
𝑑 , with the performance trends also being substan-

tially more stable. Confirming the findings of [14], the addition of

one or more GNN layers is beneficial, showing the usefulness of

considering multi-hop dependency interactions. Specifically, using

a single GNN layer provides the highest performance. This possibly

indicates that going over 2-hop interactions may not be useful due

to over-smoothing of the representations. As regards the number

𝑘 of highest-score edges considered by the GAT layers, the best

results are obtained by using the top 𝑘 = 4 edges at each GNN layer.

In addition, taking into account more likely edges is increasingly

beneficial the more GNN layers are used. Thus, aggregating infor-

mation from a bigger neighborhood starts to become desirable once

the adjacency matrix is refined a sufficient number of times. Intu-

itively, with 𝑘 = 1 choosing the wrong edge with 𝐿GNN = 1 only

creates minor noise by selecting wrong edges at 2-hop distance.

However, at 𝑘 = 1, propagating multiple times lowers performance

because errors in edge selection lead to multiplied propagation of

unwanted representation aggregations. Conversely, with a higher

𝑘 = 4, the correct representations are more likely to be aggregated,

which is more beneficial with higher numbers of layers. This is

evident by looking at the performance with 𝑘 = 1 at 𝐿GNN = 3,

which is similar or lower to the one with 𝐿GNN = 0, depending on

𝑎. With 𝑘 = 4, however, the performance at 𝐿GNN = 3 is clearly

higher than the one at at 𝐿GNN = 0. Regarding the effect of 𝑎, once

again normalization greatly reduces the variance in performance.

This is particularly evident with incresing numbers of GNN layers,

since the effect accumulates iteratively. Finally, this experiment

shows that using a single BiLSTM layer provides much greater

performance compared to using three GNN layers, despite both

of these settings having ∼7𝑀 learnable parameters. This puts into

question the effectiveness of [14]’s approach, when using modern

architectures such as [3].

5
Note that although the results at 𝐿GNN = 0 are equivalent to those of Table 3 for

𝐿𝜓 = 0, here we are simply reporting the maximum value of the curve, not the

maximum test performance at the highest validation performance.

Dependency Parsing
is More Parameter-Efficient with Normalization MLoG-GenAI, August 03–08, 2025, Toronto, Canada

0.55

0.60

0.65

0.70

ADE @ (200, 100)*

0.40

0.45

0.50

0.55

0.60

CoNLL04 @ (400, 300)*

0.10

0.15

0.20

0.25

0.30

SciERC @ (300, 300)*

0 1 2 3

0.55

0.60

0.65

0.70

ERFGC @ (400, 300)*

0 1 2 3
0.55

0.60

0.65

0.70

0.75

0.80

enEWT @ (400, 500)*

0 1 2 3

0.75

0.80

0.85

0.90

SciDTB @ (400, 500)*

Figure 3: Micro-F1 (SemDP) and LAS (SynDP) vs 𝐿𝜓 ∈ {0, 1, 2, 3} at 2𝑘 training steps. Red = norm; blue = raw. ∗Performance
increase with normalization is statistically significant (𝑝 < 0.01).

0 2000 4000 6000 8000 10000

0.1

0.2

0.3

0.4

BERTbase (p < 0.01)

0 2000 4000 6000 8000 10000

0.0

0.1

0.2

0.3

0.4

DeBERTabase (p < 0.01)

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

BERTlarge (p = 0.75)

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

DeBERTalarge (p < 0.01)

Figure 4: Test performance on SciERC (micro-averaged F1-measure vs number of training steps). The 𝑝-values indicate greater
performance with normalization (one-tailed Wilcoxon signed-rank test).

MLoG-GenAI, August 03–08, 2025, Toronto, Canada Gajo et al.

0.55

0.60

0.65

0.70

0.75

0.80

0.85
a =1, k =1

LGNN =2, max = 0.777

LGNN =1, max = 0.773

LGNN =3, max = 0.755

LGNN =0, max = 0.739

a =1, k =4

LGNN =2, max = 0.786

LGNN =1, max = 0.777

LGNN =3, max = 0.76

LGNN =0, max = 0.74

0 2000 4000 6000 8000 10000

0.55

0.60

0.65

0.70

0.75

0.80

0.85
a =1/

√
d, k =1

LGNN =1, max = 0.836

LGNN =2, max = 0.828

LGNN =3, max = 0.812

LGNN =0, max = 0.812

0 2000 4000 6000 8000 10000

a =1/
√
d, k =4

LGNN =1, max = 0.839

LGNN =2, max = 0.837

LGNN =3, max = 0.827

LGNN =0, max = 0.812

Figure 5: Test performance on SciDTB using GNN Layers (LAS vs number of training steps).

6 Conclusions
In this work, we explored the effect of scaling the scores produced

by biaffine transformations when predicting the edges of a de-

pendency graph. We have demonstrated, both theoretically and

empirically, that the score variance produced by a lack of score

scaling hurts model performance when predicting edges and rela-

tions. In addition, our theoretical work and experiments highlight a

strong relationship between the number of trained layers and their

intrinsic normalization effect.

Departing from a state-of-the-art architecture for semantic de-

pendency parsing, we were able to improve its performance on both

semantic and syntactic dependency parsing on six datasets. On ER-

FGC, a dataset of directed acyclic semantic dependency graphs

compiled from culinary recipes, our approach allowed us to beat

the state-of-the-art performance achieved by Bhatt et al. [3]. More-

over, our results showed that a single BiLSTM layer can be sufficient

to match or surpass the results of state-of-the-art architectures with

a decrease in trained parameters of up to 85%. In the case of SciERC,

a challenging dataset for semantic dependency parsing, we found

that the performance boost was particularly great when only train-

ing the biaffine scorer, without any BiLSTM layers. Moreover, for

this challenging dataset, we find that scaling the predictions of the

biaffine scorer can accelerate convergence speed even when fully

fine-tuning models in the 100 to 400𝑀 parameter range. In addition,

for three of the datasets we also observed that the performance

obtained with normalized and raw scores converged smoothly as

the number of trained layers increased. This supported our claim

that stacking BiLSTM layers mainly serves the purpose of produc-

ing an implicit regularization, and that this effect can be obtained

by normalizing the scores, without any extra parameters. We have

also shown that using Transformer encoder layers instead of BiL-

STM layers does not produce a performance boost, despite higher

parameter counts. Furthermore, we have demonstrated that score

normalization is also effective when using multi-hop GNN parser.

Moreover, obtaining richer representations by using a single BiL-

STM layer with a one-hop parser yields much greater performance

compared to multi-hop parsing via multiple GAT layers. Finally, in

order to have a comparison with models with very large parameter

counts, we also experimented with a 7B-parameter LLM, showing

its performance to be rather poor on complex graphs.

In the future, we aim to approach large scale graph inference

tasks which have been limited by the lack of parameter efficient

methods, such as long form discourse parsing tasks. As regards

score scaling, we wish to verify whether its positive effects can

carry over to other tasks. For example, we plan to extend our work

to non-NLP tasks, such as molecular graph inference, using the

QM9 dataset [41]. Further investigation is also warranted in model

efficiency, given our findings, e.g. via pruning of model parameters.

Dependency Parsing
is More Parameter-Efficient with Normalization MLoG-GenAI, August 03–08, 2025, Toronto, Canada

References
[1] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. 2019. Implicit Regulariza-

tion in Deep Matrix Factorization. In Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and

R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/

paper_files/paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[3] Dhaivat J. Bhatt, Seyed Ahmad Abdollahpouri Hosseini, Federico Fancellu, and

Afsaneh Fazly. 2024. End-to-end Parsing of Procedural Text into Flow Graphs. In

Proceedings of the 2024 Joint International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING 2024), Nicoletta Calzolari,

Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen

Xue (Eds.). ELRA and ICCL, Torino, Italia, 5833–5842. https://aclanthology.org/

2024.lrec-main.517

[4] Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong,Wei Guo, Huajun Chen, and Ningyu

Zhang. 2024. CodeKGC: Code Language Model for Generative Knowledge Graph

Construction. doi:10.48550/arXiv.2304.09048 arXiv:2304.09048 [cs].

[5] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-

tion Networks?. In International Conference on Learning Representations.
[6] Yee Seng Chan and Dan Roth. 2011. Exploiting syntactico-semantic structures

for relation extraction. In Proceedings of the 49th annual meeting of the association
for computational linguistics: human language technologies. 551–560.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association

for Computational Linguistics, Minneapolis, Minnesota, 4171–4186. doi:10.18653/

v1/N19-1423

[8] Timothy Dozat and Christopher D. Manning. 2017. Deep Biaffine Attention for

Neural Dependency Parsing. In International Conference on Learning Representa-
tions. arXiv. http://arxiv.org/abs/1611.01734 arXiv:1611.01734 [cs].

[9] Timothy Dozat and Christopher D. Manning. 2018. Simpler but More Accurate

Semantic Dependency Parsing. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), Iryna Gurevych
and Yusuke Miyao (Eds.). Association for Computational Linguistics, Melbourne,

Australia, 484–490. doi:10.18653/v1/P18-2077

[10] Jack Edmonds. 1967. Optimum branchings. Journal of Research of the National
Bureau of Standards Section B Mathematics and Mathematical Physics 71B, 4 (Oct.
1967), 233. doi:10.6028/jres.071B.032

[11] Gajo and Barrón-Cedeño. 2025. Natural vs Programming Language in LLM

Knowledge Graph Construction. Information Processing & Management 62, 5
(2025), 104195. doi:10.1016/j.ipm.2025.104195

[12] HarshaGurulingappa, AbdulMateen Rajput, Angus Roberts, Juliane Fluck,Martin

Hofmann-Apitius, and Luca Toldo. 2012. Development of a benchmark corpus to

support the automatic extraction of drug-related adverse effects frommedical case

reports. Journal of Biomedical Informatics 45, 5 (2012), 885–892. doi:10.1016/j.jbi.
2012.04.008 Text Mining and Natural Language Processing in Pharmacogenomics.

[13] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large

Language Models. http://arxiv.org/abs/2106.09685 arXiv:2106.09685 [cs].

[14] Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-based Dependency Parsing

with Graph Neural Networks. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Anna Korhonen, David Traum, and

Lluís Màrquez (Eds.). Association for Computational Linguistics, Florence, Italy,

2475–2485. doi:10.18653/v1/P19-1237

[15] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-

vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,

Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,

Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,

and William El Sayed. 2023. Mistral 7B. doi:10.48550/arXiv.2310.06825

arXiv:2310.06825 [cs].

[16] Shu Jiang, Zuchao Li, Hai Zhao, and Weiping Ding. 2024. Entity-Relation Extrac-

tion as Full Shallow Semantic Dependency Parsing. IEEE/ACM Transactions on
Audio, Speech, and Language Processing 32 (2024), 1088–1099. doi:10.1109/TASLP.

2024.3350905

[17] Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and Accurate De-

pendency Parsing Using Bidirectional LSTM Feature Representations. Trans-
actions of the Association for Computational Linguistics 4 (July 2016), 313–

327. doi:10.1162/tacl_a_00101 _eprint: https://direct.mit.edu/tacl/article-

pdf/doi/10.1162/tacl_a_00101/1567410/tacl_a_00101.pdf.

[18] Tianyu Liu, Yuchen Eleanor Jiang, Nicholas Monath, Ryan Cotterell, and Mrin-

maya Sachan. 2022. Autoregressive Structured Prediction with Language

Models. In Findings of the Association for Computational Linguistics: EMNLP
2022, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association

for Computational Linguistics, Abu Dhabi, United Arab Emirates, 993–1005.

doi:10.18653/v1/2022.findings-emnlp.70

[19] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.

http://arxiv.org/abs/1711.05101 arXiv:1711.05101 [cs, math].

[20] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.

http://arxiv.org/abs/1711.05101

[21] Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu Lin, Xianpei Han, Le Sun, and

HuaWu. 2022. Unified Structure Generation for Universal Information Extraction.

In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav Nakov, and Aline

Villavicencio (Eds.). Association for Computational Linguistics, Dublin, Ireland,

5755–5772. doi:10.18653/v1/2022.acl-long.395

[22] Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. 2018. Multi-Task

Identification of Entities, Relations, and Coreference for Scientific Knowledge

Graph Construction. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Ellen Riloff, David Chiang, Julia Hockenmaier,

and Jun’ichi Tsujii (Eds.). Association for Computational Linguistics, Brussels,

Belgium, 3219–3232. doi:10.18653/v1/D18-1360

[23] David Nadeau and Satoshi Sekine. 2009. A survey of named entity recognition

and classification. In Recognition, classification and use, Satoshi Sekine and

Elisabete Ranchhod (Eds.). John Benjamins Publishing Company, 3–28. doi:doi:

10.1075/bct.19.03nad

[24] Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, and Lene An-

tonsen. 2018. Universal Dependencies 2.2. http://hdl.handle.net/11234/1-2837

LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied

Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

[25] Joakim Nivre and Chiao-Ting Fang. 2017. Universal dependency evaluation. In

Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW
2017). 86–95.

[26] Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie Ma, Alessandro Achille,

RISHITA ANUBHAI, Cicero Nogueira dos Santos, Bing Xiang, and Stefano

Soatto. 2021. Structured Prediction as Translation between Augmented Nat-

ural Languages. In International Conference on Learning Representations. https:

//openreview.net/forum?id=US-TP-xnXI

[27] Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An Effective Neural Network

Model for Graph-based Dependency Parsing. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers),
Chengqing Zong and Michael Strube (Eds.). Association for Computational Lin-

guistics, Beijing, China, 313–322. doi:10.3115/v1/P15-1031

[28] Hao Peng, Sam Thomson, and Noah A. Smith. 2017. Deep Multitask Learning for

Semantic Dependency Parsing. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Regina Barzilay
and Min-Yen Kan (Eds.). Association for Computational Linguistics, Vancouver,

Canada, 2037–2048. doi:10.18653/v1/P17-1186

[29] Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind

Joshi, and Bonnie Webber. 2008. The Penn Discourse TreeBank 2.0.. In Proceed-
ings of the Sixth International Conference on Language Resources and Evaluation
(LREC‘08), Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani,

Jan Odijk, Stelios Piperidis, and Daniel Tapias (Eds.). European Language Re-

sources Association (ELRA), Marrakech, Morocco. https://aclanthology.org/L08-

1093/

[30] Peng Qi, Timothy Dozat, Yuhao Zhang, and Christopher D Manning. 2019. Uni-

versal dependency parsing from scratch. arXiv preprint arXiv:1901.10457 (2019).

[31] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Man-

ning. 2020. Stanza: A Python Natural Language Processing Toolkit for Many

Human Languages. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations.

[32] Noam Razin and Nadav Cohen. 2020. Implicit regularization in deep learning

may not be explainable by norms. Advances in neural information processing
systems 33 (2020), 21174–21187.

[33] Dan Roth and Wen-Tau Yih. 2004. A Linear Programming Formulation for Global

Inference in Natural Language Tasks. In Proceedings of the Eighth Conference on
Computational Natural Language Learning (CoNLL-2004) at HLT-NAACL 2004.
Association for Computational Linguistics, Boston, Massachusetts, USA, 1–8.

https://aclanthology.org/W04-2401

[34] Olivier Roy and Martin Vetterli. 2007. The effective rank: A measure of effective

dimensionality. In 2007 15th European signal processing conference. IEEE, 606–610.
[35] Wei Tang, Benfeng Xu, Yuyue Zhao, Zhendong Mao, Yifeng Liu, Yong Liao, and

Haiyong Xie. 2022. UniRel: Unified Representation and Interaction for Joint

Relational Triple Extraction. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang (Eds.). Association for Computational Linguistics, Abu Dhabi, United

Arab Emirates, 7087–7099. doi:10.18653/v1/2022.emnlp-main.477

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems, Vol. 30. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/

https://proceedings.neurips.cc/paper_files/paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf
https://aclanthology.org/2024.lrec-main.517
https://aclanthology.org/2024.lrec-main.517
https://doi.org/10.48550/arXiv.2304.09048
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1611.01734
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.6028/jres.071B.032
https://doi.org/10.1016/j.ipm.2025.104195
https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/10.1016/j.jbi.2012.04.008
http://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.1109/TASLP.2024.3350905
https://doi.org/10.1109/TASLP.2024.3350905
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.18653/v1/2022.findings-emnlp.70
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/D18-1360
https://doi.org/doi:10.1075/bct.19.03nad
https://doi.org/doi:10.1075/bct.19.03nad
http://hdl.handle.net/11234/1-2837
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=US-TP-xnXI
https://doi.org/10.3115/v1/P15-1031
https://doi.org/10.18653/v1/P17-1186
https://aclanthology.org/L08-1093/
https://aclanthology.org/L08-1093/
https://aclanthology.org/W04-2401
https://doi.org/10.18653/v1/2022.emnlp-main.477
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

MLoG-GenAI, August 03–08, 2025, Toronto, Canada Gajo et al.

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[37] David Wadden, Ulme Wennberg, Yi Luan, and Hannaneh Hajishirzi. 2019. Entity,

Relation, and Event Extraction with Contextualized Span Representations. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan

(Eds.). Association for Computational Linguistics, Hong Kong, China, 5784–5789.

doi:10.18653/v1/D19-1585

[38] Jue Wang and Wei Lu. 2020. Two are Better than One: Joint Entity and Relation

Extraction with Table-Sequence Encoders. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Bonnie Webber,

Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational

Linguistics, Online, 1706–1721. doi:10.18653/v1/2020.emnlp-main.133

[39] Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang, Xin Zhang, Shen Huang,

Pengjun Xie, Jinan Xu, Yufeng Chen, Meishan Zhang, Yong Jiang, and Wenjuan

Han. 2024. ChatIE: Zero-Shot Information Extraction via Chatting with ChatGPT.

http://arxiv.org/abs/2302.10205 arXiv:2302.10205 [cs].

[40] Robert F Woolson. 2005. Wilcoxon signed-rank test. Encyclopedia of biostatistics
8 (2005).

[41] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Ge-

niesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet:

a benchmark for molecular machine learning. Chem. Sci. 9, 2 (2018), 513–530.
doi:10.1039/C7SC02664A Publisher: The Royal Society of Chemistry.

[42] Yoko Yamakata, Shinsuke Mori, and John Carroll. 2020. English Recipe Flow

Graph Corpus. In Proceedings of the Twelfth Language Resources and Evaluation
Conference, Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, BenteMaegaard,

Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis

(Eds.). European Language Resources Association, Marseille, France, 5187–5194.

https://aclanthology.org/2020.lrec-1.638

[43] Zhiheng Yan, Chong Zhang, Jinlan Fu, Qi Zhang, and Zhongyu Wei. 2021. A

Partition Filter Network for Joint Entity and Relation Extraction. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, Marie-

Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.).

Association for Computational Linguistics, Online and Punta Cana, Dominican

Republic, 185–197. doi:10.18653/v1/2021.emnlp-main.17

[44] An Yang and Sujian Li. 2018. SciDTB: Discourse Dependency TreeBank for

Scientific Abstracts. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Association for Computational

Linguistics, Melbourne, Australia, 444–449. doi:10.18653/v1/P18-2071

[45] Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and Thierry Charnois. 2024. An

autoregressive text-to-graph framework for joint entity and relation extraction. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 19477–19487.
Issue: 17.

[46] Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. 2003. Kernel methods

for relation extraction. Journal of machine learning research 3, Feb (2003), 1083–

1106.

[47] Bowen Zhang and Harold Soh. 2024. Extract, Define, Canonicalize: An LLM-based

Framework for Knowledge Graph Construction. http://arxiv.org/abs/2404.03868

arXiv:2404.03868 [cs].

[48] Dan Zhao. 2022. Combining explicit and implicit regularization for efficient

learning in deep networks. Advances in Neural Information Processing Systems 35
(2022), 3024–3038.

[49] Zexuan Zhong and Danqi Chen. 2021. A Frustratingly Easy Approach for Entity

and Relation Extraction. In Proceedings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek

Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,

and Yichao Zhou (Eds.). Association for Computational Linguistics, Online, 50–61.

doi:10.18653/v1/2021.naacl-main.5

[50] Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-Seng Chua, and Maosong Sun.

2019. Graph Neural Networks with Generated Parameters for Relation Extraction.

In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Anna Korhonen, David Traum, and Lluís Màrquez (Eds.). Association

for Computational Linguistics, Florence, Italy, 1331–1339. doi:10.18653/v1/P19-

1128

https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/2020.emnlp-main.133
http://arxiv.org/abs/2302.10205
https://doi.org/10.1039/C7SC02664A
https://aclanthology.org/2020.lrec-1.638
https://doi.org/10.18653/v1/2021.emnlp-main.17
https://doi.org/10.18653/v1/P18-2071
http://arxiv.org/abs/2404.03868
https://doi.org/10.18653/v1/2021.naacl-main.5
https://doi.org/10.18653/v1/P19-1128
https://doi.org/10.18653/v1/P19-1128

Dependency Parsing
is More Parameter-Efficient with Normalization MLoG-GenAI, August 03–08, 2025, Toronto, Canada

A Full Results
Table 4 reports the results for the best hyperparameter combinations

for all three tasks of predicting tags, edges, and relations of the

semantic dependency graphs. Note that the first part of Table 4 is

identical to the bottom of Table 3. Since we already discussed the

performance for labeled edges in Section 5, we forgo discussing

them again in this appendix.

As regards unlabeled edges, using score normalization improves

mean performance for all datasets, similarly to relations. This is

expected, as unlabeled edges directly influence the prediction of

the edge labels, together with entity class prediction. As we have

already observed for relations, the performance boost provided by

normalization is particularly great for SciERC at 𝐿𝜓 = 0.

It is also interesting to notice that for CoNLL04, the performance

for the unlabeled edge prediction task is only slightly higher than

that of the relations. In fact, as regards ADE, the opposite is true,

with the labeled performance being seemingly higher. Due to the

high variances, it would therefore seem that for these two datasets

there is essentially no difference in difficulty between the labeled

and unlabeled edge prediction tasks. In the case of ADE, this makes

perfect sense, since there is only one possible relation. For CoNLL04,

the amount of relation types is rather limited as well; therefore,

it is sensible for the performance to also be similar in this case.

Indeed, when looking at SciERC and ERFGC, the performance gap

between labeled and unlabeled tasks is considerable. This is a strong

indication that CoNLL04 is thus found somewhere in the middle,

where the number of possible relations only slightly affects labeled

performance.

As far as enEWT and SciDTB are concerned, the performance

of edges (UAS) and relations (LAS) is also rather similar. Since in

this case the predictions involve syntactic rather than semantic

relations, the similar performance hints at relations being easier to

predict in SynDP than in SemDP.

In the tagging task, very high standard deviation can be observed.

In the case of ADE and CoNLL04, this could be caused by our choice

of 𝜆1 = 0.1 being too low a value. Regarding SciERC, as already

mentioned, most of the entities in the validation and test set are

not found in the training set. This means it is not possible to train

the model to recognize them, which results in the abysmal tagging

performance reported in Table 4. This makes it challenging to train

good tag embeddings which can help inform the edge and relation

prediction tasks. Surprisingly, we notice that for CoNLL04 and

ERFGC the tagging performance is also seemingly higher with score

normalization. However, the overlap of the standard deviations is

too high to be able to make any claims on the matter.

B Ablations
B.1 Tagger
Table 5 reports the results for the best values ofℎ𝜓 and𝑑MLP (chosen

as described in Section 4), ablating over 𝜙 ∈ {✓,×} and e𝑡𝑎𝑔
𝑖
∈

{✓,×}. Note that the first quarter of the table is equivalent to

Table 3.

Using both the tagger BiLSTM and tag embeddings on average

produces the best results. This is sensible, since a better tagger

produces better tag embeddings, which in turn help inform the

0 1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

ADE (p = 0.91)

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

SciERC (p < 0.05)

0 1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

CoNLL04 (p = 0.22)

0 1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

ERFGC (p = 0.67)

Figure 6: Performance in terms of F1-measure vs 𝐿𝜓 ∈
{0, . . . , 10} on ADE, CoNLL04, SciERC, and ERFGC at 2𝑘 train-
ing steps. As hyperparameters, we use the best values (ℎ𝜓 ,
𝑑MLP) with 𝜙 = ✓ and e𝑡𝑎𝑔

𝑖
= ✓. Red = norm; blue = raw. The

𝑝-values indicate that the performance gap between using
normalized and raw scores is statistically significant (one-
tailed Wilcoxon signed-rank test).

edge and relation classification tasks. The model in this case ob-

tains the best performance on ADE, CoNLL04, and ERFGC. Its top

performance for SciERC (0.320) is also close to the overall peak

performance (0.324), obtained without using the tagger BiLSTM.

On average, the mean performance is considerably higher when

combining the positive contributions of the BiLSTM and the tag

embeddings.

B.2 Additional BiLSTM layers
As shown in Figure 6, performance is initially greater when normal-

izing scores, with 𝐿𝜓 ∈ {0, 1, 2, 3, 4, 5}. In this range, an increasing

amount of layers reduces the amount of benefit obtained by using

normalization. However, at 𝐿𝜓 > 5, for ADE, CoNNL04, and ER-

FGC, performance drops suddenly and rapidly when using biaffine

score normalization. In the case of SciERC, the drop is more gentle,

with the performance for the normalized and raw biaffine scores

eventually converging, albeit with very high standard deviation at

𝐿𝜓 = 10.

As observed in Section 5, adding trainable layers seemingly al-

lows the parameters to scale the variance of the scores to compen-

sate for the lack of explicit normalization. As reported in Appen-

dix B.8, a similar behavior can be observed with fully fine-tuned

models, where normalization yields diminishing benefits the more

parameters we train. This behavior points to a trade-off between

the use of our technique and the amount of stacked BiLSTM layers,

at a given amount of training steps.

B.3 MLP output dimension
As shown in Table 6, without normalization, increasing the output

dimension of the two MLPs responsible for projecting edge rep-

resentation projections leads to a decrease in performance. This

MLoG-GenAI, August 03–08, 2025, Toronto, Canada Gajo et al.

Table 4: Micro-averaged test F1 performance on all tasks (𝜙 = ✓, e𝑡𝑎𝑔
𝑖

= ✓). Best in bold.

Metric 𝑎 𝐿𝜓 ADE CoNLL04 SciERC ERFGC enEWT SciDTB

(ℎ𝜓 , 𝑑MLP) = (200, 100) (400, 300) (300, 300) (400, 300) (400, 500) (400, 500)

rels.

1

0 0.541 ±0.021 0.399 ±0.024 0.147 ±0.049 0.548 ±0.010 0.559 ±0.005 0.729 ±0.004

1 0.657 ±0.011 0.556 ±0.021 0.282 ±0.009 0.676 ±0.010 0.771 ±0.006 0.892 ±0.002

2 0.667 ±0.011 0.573 ±0.025 0.273 ±0.010 0.694 ±0.010 0.796 ±0.006 0.910 ±0.002

3 0.662 ±0.027 0.562 ±0.021 0.299 ±0.023 0.705 ±0.011 0.804 ±0.006 0.915 ±0.002

1√
𝑑

0 0.567 ±0.014 0.438 ±0.033 0.181 ±0.027 0.612 ±0.008 0.646 ±0.002 0.796 ±0.002

1 0.668 ±0.017 0.597 ±0.015 0.299 ±0.019 0.692 ±0.009 0.789 ±0.003 0.904 ±0.002

2 0.676 ±0.019 0.596 ±0.014 0.312 ±0.011 0.699 ±0.009 0.805 ±0.003 0.916 ±0.002

3 0.686 ±0.025 0.602 ±0.017 0.320 ±0.013 0.708 ±0.008 0.807 ±0.005 0.919 ±0.001

edges

1

0 0.536 ±0.009 0.415 ±0.020 0.173 ±0.050 0.601 ±0.013 0.589 ±0.006 0.745 ±0.005

1 0.652 ±0.009 0.566 ±0.022 0.321 ±0.009 0.744 ±0.013 0.793 ±0.006 0.901 ±0.002

2 0.657 ±0.021 0.586 ±0.017 0.322 ±0.017 0.769 ±0.014 0.819 ±0.006 0.919 ±0.002

3 0.649 ±0.027 0.578 ±0.011 0.355 ±0.028 0.782 ±0.007 0.827 ±0.006 0.924 ±0.002

1√
𝑑

0 0.549 ±0.014 0.453 ±0.032 0.203 ±0.030 0.674 ±0.007 0.682 ±0.003 0.815 ±0.001

1 0.654 ±0.020 0.598 ±0.021 0.351 ±0.019 0.762 ±0.009 0.810 ±0.003 0.913 ±0.002

2 0.660 ±0.015 0.600 ±0.008 0.367 ±0.015 0.775 ±0.008 0.827 ±0.003 0.925 ±0.002

3 0.666 ±0.028 0.610 ±0.022 0.377 ±0.021 0.786 ±0.004 0.829 ±0.004 0.928 ±0.002

tags

1

0 0.615 ±0.115 0.285 ±0.150 0.014 ±0.015 0.662 ±0.073

1 0.665 ±0.147 0.671 ±0.018 0.049 ±0.014 0.794 ±0.057

2 0.746 ±0.011 0.648 ±0.074 0.060 ±0.012 0.838 ±0.016

3 0.768 ±0.022 0.669 ±0.033 0.062 ±0.005 0.853 ±0.013

1√
𝑑

0 0.604 ±0.134 0.464 ±0.115 0.046 ±0.005 0.735 ±0.066

1 0.734 ±0.048 0.702 ±0.031 0.058 ±0.014 0.857 ±0.010

2 0.724 ±0.064 0.688 ±0.080 0.060 ±0.007 0.864 ±0.018
3 0.762 ±0.017 0.690 ±0.062 0.057 ±0.012 0.850 ±0.022

is in contrast with the behavior observed when using normaliza-

tion, where performance is essentially independent from the output

dimension. This is in line with our claim that higher variance in

the edge scores causes lower performance. Normalizing the scores

assuages the variance, which makes performance stable even at

high output dimensions. Once again, these results show the rela-

tionship between score variance and performance, with equivalent

performance being achievable with fewer parameters.

B.4 BiLSTM hidden size
As Table 7 shows, the hidden size of the BiLSTMs does not have

a visible effect on performance. This is especially the case when

applying score normalization, which produces smaller standard

deviations. As a result, not only do models perform better with

biaffine score normalization, but performance is also less dependent

on the hidden size of the BiLSTM encoders. This supports our claim

that score normalization is a useful technique to obtain the same

performance with lower parameter count, since the models tend to

perform comparably, despite the lower BiLSTM hidden sizes.

B.5 LayerNorm and parameter initialization
In this section, we analyze the effects of using a Xavier normal

distribution (𝐼𝑝𝑎𝑟 = N)
6
for the weights of the two projections

MLP
(𝑒𝑑𝑔𝑒−ℎ𝑒𝑎𝑑)

and MLP
(𝑒𝑑𝑔𝑒−𝑑𝑒𝑝𝑡)

, along with the edge biaffine

layer 𝑓 (𝑒𝑑𝑔𝑒) (· ;𝑊𝑒). We also apply a LayerNorm function LN𝜓 [2]

for each of the BiLSTM layers.

As reported in Table 8, on average the best results are obtained

with the base setting, i.e. with 𝐼𝑝𝑎𝑟 = U and LN𝜓 = ×. Using Layer-

Norm can provide a performance boost for some datasets, especially

with uniform initialization. However, it makes performance unsta-

ble for some. As a matter of fact, when using LayerNorm with three

BiLSTM layers on CoNLL04 and SciERC, the model often breaks and

is not able to converge. Based on average performance, then, the

best models are obtained by scaling biaffine scores (𝑎 = 1/
√
𝑑) and

initializing the parser with a uniform weight distribution, without

any LayerNorm in between the stacked BiLSTM layers.

Dependency Parsing
is More Parameter-Efficient with Normalization MLoG-GenAI, August 03–08, 2025, Toronto, Canada

Table 5: Tagger ablation results: performance for the best
hyperparameters (ℎ𝜓 , 𝑑MLP). Best in bold, second-best under-
lined.

𝑎 𝐿𝜓 𝜙 e𝑡𝑎𝑔
𝑖

ADE CoNLL04 SciERC ERFGC Mean

(ℎ𝜓 , 𝑑MLP) = (200, 100) (400, 300) (300, 300) (400, 300)

1

0 ■ ■ 0.541 ±0.021 0.399 ±0.024 0.147 ±0.049 0.548 ±0.010

0.515

1 ■ ■ 0.657 ±0.011 0.556 ±0.021 0.282 ±0.009 0.676 ±0.010

2 ■ ■ 0.667 ±0.011 0.573 ±0.025 0.273 ±0.010 0.694 ±0.010

3 ■ ■ 0.662 ±0.027 0.562 ±0.021 0.299 ±0.023 0.705 ±0.011

1√
𝑑

0 ■ ■ 0.567 ±0.014 0.438 ±0.033 0.181 ±0.027 0.612 ±0.008

0.5411 ■ ■ 0.668 ±0.017 0.597 ±0.015 0.299 ±0.019 0.692 ±0.009

2 ■ ■ 0.676 ±0.019 0.596 ±0.014 0.312 ±0.011 0.699 ±0.009

3 ■ ■ 0.686 ±0.025 0.602 ±0.017 0.320 ±0.013 0.708 ±0.008

1

0 ■ □ 0.543 ±0.013 0.402 ±0.023 0.162 ±0.019 0.554 ±0.008

0.517

1 ■ □ 0.674 ±0.011 0.527 ±0.026 0.275 ±0.013 0.677 ±0.005

2 ■ □ 0.672 ±0.019 0.575 ±0.009 0.293 ±0.012 0.689 ±0.011

3 ■ □ 0.657 ±0.027 0.583 ±0.011 0.301 ±0.012 0.697 ±0.007

1√
𝑑

0 ■ □ 0.563 ±0.013 0.443 ±0.019 0.188 ±0.006 0.612 ±0.003

0.534

1 ■ □ 0.653 ±0.023 0.565 ±0.027 0.299 ±0.020 0.687 ±0.006

2 ■ □ 0.672 ±0.017 0.592 ±0.020 0.307 ±0.008 0.702 ±0.005

3 ■ □ 0.661 ±0.022 0.593 ±0.017 0.305 ±0.014 0.708 ±0.007

1

0 □ ■ 0.550 ±0.026 0.387 ±0.030 0.157 ±0.012 0.553 ±0.006

0.514

1 □ ■ 0.667 ±0.022 0.532 ±0.036 0.273 ±0.013 0.673 ±0.006

2 □ ■ 0.665 ±0.021 0.565 ±0.024 0.278 ±0.027 0.694 ±0.013

3 □ ■ 0.676 ±0.021 0.558 ±0.051 0.288 ±0.012 0.706 ±0.006

1√
𝑑

0 □ ■ 0.578 ±0.022 0.437 ±0.030 0.187 ±0.014 0.611 ±0.008

0.534

1 □ ■ 0.651 ±0.032 0.559 ±0.029 0.301 ±0.007 0.684 ±0.003

2 □ ■ 0.673 ±0.029 0.582 ±0.017 0.310 ±0.014 0.701 ±0.008

3 □ ■ 0.659 ±0.019 0.586 ±0.026 0.324 ±0.019 0.708 ±0.012

1

0 □ □ 0.547 ±0.019 0.402 ±0.033 0.156 ±0.029 0.549 ±0.015

0.516

1 □ □ 0.651 ±0.017 0.552 ±0.012 0.288 ±0.008 0.680 ±0.007

2 □ □ 0.664 ±0.031 0.566 ±0.012 0.288 ±0.017 0.693 ±0.011

3 □ □ 0.663 ±0.008 0.561 ±0.014 0.291 ±0.012 0.703 ±0.007

1√
𝑑

0 □ □ 0.566 ±0.014 0.431 ±0.015 0.182 ±0.023 0.606 ±0.012

0.534

1 □ □ 0.655 ±0.015 0.567 ±0.010 0.286 ±0.018 0.678 ±0.013

2 □ □ 0.678 ±0.014 0.591 ±0.026 0.307 ±0.007 0.702 ±0.007

3 □ □ 0.684 ±0.022 0.595 ±0.017 0.321 ±0.016 0.698 ±0.015

B.6 GAT layers
In Figure 7, we show the effect of adding dropout after each GAT

layer. With 𝑎 = 1 and 𝑘 = 1, dropout seemingly makes the perfor-

mance trend more stable at 𝐿GNN = 3. However, the top perfor-

mance is still lower in chart [0,0] compared to chart [0,2] of the

table. When looking at 𝐿GNN = 2 in chart [1,2], the training triggers

early stopping with very low final performance, compared to [1,0].

In general, then, dropout seems to have a negative effect when

applied to the GAT layers. However, normalizing the scores by set-

ting 𝑎 = 1/
√
𝑑 attenuates the instability and drop in performance it

causes.

6
https://docs.pytorch.org/docs/stable/nn.init.html#torch.nn.init.xavier_normal_

Table 6: Performance in terms of F1-measure when ablating
over different output dimension for the parser’s MLPs (𝜙 = ✓,
e𝑡𝑎𝑔
𝑖

= ✓). Best in bold.

𝑎 𝑑MLP ADE CoNLL04 SciERC ERFGC

(𝐿𝜓 , ℎ𝜓) = (3, 200) (3, 400) (3, 300) (3, 400)

1

100 0.662 ±0.027 0.579 ±0.030 0.302 ±0.018 0.709 ±0.008

300 0.658 ±0.018 0.562 ±0.021 0.299 ±0.023 0.705 ±0.011

500 0.657 ±0.018 0.566 ±0.019 0.281 ±0.016 0.701 ±0.009

1√
𝑑

100 0.686 ±0.025 0.586 ±0.013 0.318 ±0.017 0.712 ±0.008
300 0.680 ±0.018 0.602 ±0.017 0.320 ±0.013 0.708 ±0.008

500 0.685 ±0.019 0.600 ±0.015 0.311 ±0.009 0.707 ±0.004

Table 7: Performance in terms of F1-measure when ablating
over different hidden sizes for the parser’s stacked BiLSTMs
(𝜙 = ✓, e𝑡𝑎𝑔

𝑖
= ✓). Best in bold.

𝑎 ℎ𝜓 ADE CoNLL04 SciERC ERFGC

(𝐿𝜓 , 𝑑MLP) = (3, 100) (3, 300) (3, 300) (3, 300)

1

100 0.682 ±0.021 0.580 ±0.031 0.291 ±0.021 0.693 ±0.011

200 0.662 ±0.027 0.582 ±0.006 0.286 ±0.032 0.703 ±0.007

300 0.674 ±0.029 0.585 ±0.026 0.299 ±0.023 0.703 ±0.006

400 0.663 ±0.032 0.562 ±0.021 0.289 ±0.038 0.705 ±0.011

1√
𝑑

100 0.685 ±0.020 0.600 ±0.018 0.302 ±0.013 0.698 ±0.008

200 0.686 ±0.025 0.610 ±0.018 0.314 ±0.019 0.702 ±0.008

300 0.678 ±0.012 0.599 ±0.012 0.320 ±0.013 0.711 ±0.005
400 0.674 ±0.011 0.602 ±0.017 0.306 ±0.016 0.708 ±0.008

B.7 Transformer encoder layers
In this section we show the effect of using Transformer encoder

blocks rather than BiLSTM layers. In this setting, we use a learning

rate of 𝜂 = 10
−4
, similarly to the full fine-tuning setting, since

higher learning rates are too high for Transformer encoders. Ac-

cordingly, we also raise the number of training steps to 10,000,

compared to the 2,000 used in the main setting.

Table 10 shows the results for 𝐿 ∈ {1, 2, 3}, which in general

are lower than the ones obtained with a single BiLSTM layer (see

Table 3.With one BiLSTM layer the model has |Θ| ≈ 7Mparameters.

When using encoder layers with the same size as those of BERT𝑏𝑎𝑠𝑒 ,

the model has a higher number of parameters, with |Θ𝐿=1 | = 11M,

|Θ𝐿=2 | = 18M, and |Θ𝐿=3 | = 25M. Moreover, this performance is

obtained after training for five times as many steps. This supports

the use of BiLSTMs in the literature for this task and demonstrates

the efficacy and efficiency of using BiLSTM layers compared to

Transformer layers.

It is also interesting to notice that in this case the effect of nor-

malization does not seem to produce any significant performance

boosts. This behavior is very similar to the one observed when fully

fine-tuning the models in the following Section B.8. One possible

explanation for this is that the (slightly) higher parameter count

diminishes the effects of normalization even with a single Trans-

former encoder layer. The normalization layers found in each of the

https://docs.pytorch.org/docs/stable/nn.init.html#torch.nn.init.xavier_normal_

MLoG-GenAI, August 03–08, 2025, Toronto, Canada Gajo et al.

Table 8: Ablation over the best hyperparameters (ℎ𝜓 , 𝑑MLP)
and 𝜙 = ✓ and e𝑡𝑎𝑔

𝑖
= ✓, using LayerNorm layers LN𝜓 ∈ {✓,×}

and Xavier uniform/normal initialization 𝐼𝑝𝑎𝑟 ∈ {U,N} for
the parser. The first quarter of the table is equivalent to
Table 3. Best in bold, second-best underlined.

𝐼𝑝𝑎𝑟 LN𝜓 𝑎 𝐿𝜓 ADE CoNLL04 SciERC ERFGC Mean

(ℎ𝜓 , 𝑑MLP) = (200, 100) (400, 300) (300, 300) (400, 300)

U

□

1

0 0.541 ±0.021 0.399 ±0.024 0.147 ±0.049 0.548 ±0.010

0.515

□ 3 0.662 ±0.027 0.562 ±0.021 0.299 ±0.023 0.705 ±0.011

□ 1 0.657 ±0.011 0.556 ±0.021 0.282 ±0.009 0.676 ±0.010

□ 2 0.667 ±0.011 0.573 ±0.025 0.273 ±0.010 0.694 ±0.010

□
1√
𝑑

0 0.567 ±0.014 0.438 ±0.033 0.181 ±0.027 0.612 ±0.008

0.541□ 1 0.668 ±0.017 0.597 ±0.015 0.299 ±0.019 0.692 ±0.009

□ 2 0.676 ±0.019 0.596 ±0.014 0.312 ±0.011 0.699 ±0.009

□ 3 0.686 ±0.025 0.602 ±0.017 0.320 ±0.013 0.708 ±0.008

■

1

0 0.545 ±0.018 0.399 ±0.024 0.151 ±0.014 0.548 ±0.010

0.468

■ 1 0.680 ±0.014 0.554 ±0.042 0.265 ±0.028 0.686 ±0.007

■ 2 0.679 ±0.011 0.578 ±0.033 0.260 ±0.020 0.715 ±0.012
■ 3 0.680 ±0.013 0.117 ±0.261 0.060 ±0.133 0.569 ±0.318

■
1√
𝑑

0 0.567 ±0.014 0.433 ±0.029 0.181 ±0.027 0.614 ±0.004

0.503

■ 1 0.664 ±0.017 0.564 ±0.037 0.282 ±0.029 0.686 ±0.004

■ 2 0.697 ±0.022 0.623 ±0.019 0.300 ±0.042 0.702 ±0.011

■ 3 0.675 ±0.019 0.239 ±0.327 0.111 ±0.152 0.703 ±0.006

N

□

1

0 0.545 ±0.017 0.415 ±0.014 0.155 ±0.019 0.558 ±0.009

0.520

□ 1 0.667 ±0.014 0.543 ±0.017 0.275 ±0.020 0.680 ±0.015

□ 2 0.674 ±0.025 0.576 ±0.023 0.272 ±0.014 0.699 ±0.006

□ 3 0.672 ±0.028 0.580 ±0.022 0.297 ±0.019 0.705 ±0.006

□
1√
𝑑

0 0.570 ±0.013 0.454 ±0.006 0.181 ±0.023 0.613 ±0.007

0.538

□ 1 0.671 ±0.015 0.578 ±0.031 0.299 ±0.030 0.685 ±0.010

□ 2 0.671 ±0.031 0.593 ±0.016 0.301 ±0.019 0.704 ±0.007

□ 3 0.681 ±0.024 0.590 ±0.014 0.315 ±0.009 0.702 ±0.011

■

1

0 0.545 ±0.017 0.415 ±0.014 0.155 ±0.019 0.558 ±0.009

0.469

■ 1 0.679 ±0.012 0.582 ±0.012 0.259 ±0.010 0.680 ±0.016

■ 2 0.668 ±0.015 0.580 ±0.041 0.284 ±0.024 0.711 ±0.005

■ 3 0.679 ±0.018 0.000 ±0.000 0.000 ±0.000 0.711 ±0.009

■
1√
𝑑

0 0.570 ±0.013 0.454 ±0.006 0.181 ±0.023 0.613 ±0.007

0.512

■ 1 0.675 ±0.019 0.578 ±0.022 0.280 ±0.022 0.682 ±0.006

■ 2 0.687 ±0.021 0.609 ±0.012 0.308 ±0.012 0.702 ±0.011

■ 3 0.678 ±0.009 0.476 ±0.266 0.000 ±0.000 0.701 ±0.006

Transformer layers could also be at play. However, in Section B.5

we show that interleaving BiLSTM and LayerNorm layers is not

overall useful, making that this explanation less likely.

B.8 Full fine-tuning and sample efficiency
In this section, we present the results obtained when fine-tuning

BERT𝑏𝑎𝑠𝑒 , DeBERTa𝑏𝑎𝑠𝑒 , BERT𝑙𝑎𝑟𝑔𝑒 , and DeBERTa𝑙𝑎𝑟𝑔𝑒 over 10𝑘

steps. In our previous settings, we only used a frozen BERT𝑏𝑎𝑠𝑒 ,

whose last hidden states we fed as input to the tagger and parser.

This evaluation allows us to test the effectiveness of our approach

0.5

0.6

0.7

0.8

pdrop =0.0, a =1, k =1

LGNN =2, max = 0.777

LGNN =1, max = 0.773

LGNN =3, max = 0.755

LGNN =0, max = 0.739

pdrop =0.0, a =1, k =4

LGNN =2, max = 0.786

LGNN =1, max = 0.777

LGNN =3, max = 0.76

LGNN =0, max = 0.74

0.5

0.6

0.7

0.8

pdrop =0.0, a =1/
√
d, k =1

LGNN =1, max = 0.836

LGNN =2, max = 0.828

LGNN =3, max = 0.812

LGNN =0, max = 0.812

pdrop =0.0, a =1/
√
d, k =4

LGNN =1, max = 0.839

LGNN =2, max = 0.837

LGNN =3, max = 0.827

LGNN =0, max = 0.812

0.5

0.6

0.7

0.8

pdrop =0.3, a =1, k =1

LGNN =0, max = 0.739

LGNN =2, max = 0.736

LGNN =1, max = 0.73

LGNN =3, max = 0.7

pdrop =0.3, a =1, k =4

LGNN =0, max = 0.739

LGNN =1, max = 0.726

LGNN =3, max = 0.704

LGNN =2, max = 0.686

0 2000 4000 6000 8000 10000

0.5

0.6

0.7

0.8

pdrop =0.3, a =1/
√
d, k =1

LGNN =1, max = 0.83

LGNN =2, max = 0.817

LGNN =0, max = 0.812

LGNN =3, max = 0.797

0 2000 4000 6000 8000 10000

pdrop =0.3, a =1/
√
d, k =4

LGNN =1, max = 0.835

LGNN =2, max = 0.827

LGNN =0, max = 0.813

LGNN =3, max = 0.811

Figure 7: Test performance on SciDTB (LAS vs number of
training steps), with and without dropout on the GAT layers.

Table 9: Performance for the fully fine-tuned BERT and De-
BERTa models (ℎ𝜓 = 400, ℎ𝑜𝑢𝑡 = 500, 𝜙 = ✓ and e𝑡𝑎𝑔

𝑖
= ✓).

Model 𝑎 ADE CoNLL04 SciERC ERFGC Mean

BERT𝑏𝑎𝑠𝑒
1 0.748 ±0.028 0.613 ±0.019 0.414 ±0.011 0.726 ±0.006 0.321

1√
𝑑
0.731 ±0.025 0.629 ±0.022 0.412 ±0.016 0.726 ±0.006 0.321

BERT𝑙𝑎𝑟𝑔𝑒
1 0.748 ±0.016 0.700 ±0.019 0.473 ±0.011 0.750 ±0.006 0.340

1√
𝑑
0.777 ±0.011 0.697 ±0.014 0.446 ±0.025 0.748 ±0.010 0.341

DeBERTa𝑏𝑎𝑠𝑒
1 0.754 ±0.013 0.674 ±0.014 0.429 ±0.015 0.751 ±0.002 0.332

1√
𝑑
0.761 ±0.021 0.700 ±0.013 0.425 ±0.019 0.751 ±0.010 0.338

DeBERTa𝑙𝑎𝑟𝑔𝑒
1 0.786 ±0.010 0.739 ±0.016 0.478 ±0.019 0.763 ±0.006 0.352

1√
𝑑
0.794 ±0.015 0.747 ±0.013 0.476 ±0.010 0.763 ±0.007 0.353

Dependency Parsing
is More Parameter-Efficient with Normalization MLoG-GenAI, August 03–08, 2025, Toronto, Canada

Table 10: Micro-F1 (SemDP) and LAS (SynDP) for the labeled
edge prediction task, using 𝐿 ∈ {1, 2, 3, }Transformer encoder
layers instead of BiLSTMs. Best in bold.

𝐿 𝑎 ADE CoNLL04 SciERC ERFGC enEWT SciDTB

1

1 0.607 0.492 0.203 0.608 0.727 0.855

1√
𝑑

0.601 0.478 0.191 0.571 0.729 0.854

2

1 0.604 0.484 0.177 0.583 0.732 0.857
1√
𝑑

0.615 0.492 0.193 0.563 0.734 0.857

3

1 0.611 0.479 0.170 0.564 0.708 0.854

1√
𝑑

0.616 0.483 0.173 0.557 0.719 0.852

in a setting in which the number of learnable parameters is uncon-

strained. In this experiment, we use different learning rates for the

base models (𝜂 = 1× 10−4) and the large models (𝜂 = 3× 10−5) and
we apply gradient norm clipping with ∥∇∥𝑚𝑎𝑥 = 1.0. In the case

of the large models, we also use a cosine schedule with warm-up

over 6% of the steps. We adopt these measures because during early

trials we experienced sudden mid-run gradient explosions. Note

that, in this case, we do not use any downstream BiLSTMs and only

vary whether we use biaffine score normalization in the parser.

Table 9 reports the performance in terms of micro-averaged

F1-measure for the best models, picked based on top validation

performance, evaluated every 100 steps. As the table shows, nor-

malizing the scores generally does not increase top performance

when fully fine-tuning these models. This is in line with our the-

oretical results, since tuning all of their ∼100 − 400𝑀 parameters

can compensate for the lack of biaffine score normalization.

In order to have a stronger indication of whether score normal-

ization also works in this setting, we study the performance on the

test set versus the amount of training steps. Figure 8 and Figure 9

respectively visualize the performance of the base and large models

on the test set in terms of micro-averaged F1-measure over 10𝑘

training steps. We still use early stopping, which is why some of

the series are cut short before reaching 10𝑘 steps.

As Figure 8 shows, a one-tailed Wilcoxon signed-rank test finds

the difference in performance throughout the training to be sig-

nificantly higher when normalizing scores. Since the average test

performance of the models is similar with and without normaliza-

tion, the gap between the two curves being statistically significant

indicates faster convergence with normalization.

For both BERT𝑏𝑎𝑠𝑒 and DeBERTa𝑏𝑎𝑠𝑒 , the difference in conver-

gence speed and performance is statistically significant on ADE,

CoNLL04, and SciERC. The same is true for BERT𝑙𝑎𝑟𝑔𝑒 only on ADE.

However, the effect is statistically significant with DeBERTa𝑙𝑎𝑟𝑔𝑒

for all datasets. This indicates our score normalization approach

can produce positive effects in terms of sample efficiency also when

fine-tuning models with hundreds of millions of parameters.

B.9 LLM performance comparison
Table 11 reports the results for the parsing experiment, carried out

using Mistral-7B-Instruct-v0.3, an instruction-tuned LLM with 7B

parameters. We train the model using LoRA [13] and only target the

Table 11: Micro-averaged precision, recall and F1 for the la-
beled edge prediction task, using Mistral-7B-Instruct-v0.3.

ADE CoNLL04 SciERC ERFGC enEWT SciDTB

P 0.757 0.584 0.311 0.555 0.606 0.728

R 0.718 0.619 0.341 0.417 0.595 0.717

F1 0.737 0.599 0.325 0.476 0.601 0.722

query, key, and value matrices of the decoder blocks. With LoRA,

model weight updates are carried out as:

𝑊0 ←𝑊0 +
𝛼

𝑟
𝐵𝐴

where 𝐵 ∈ R𝑑1×𝑟 and 𝐴 ∈ R𝑟×𝑑2 , 𝑟 ≪ 𝑑1, 𝑑2. We set 𝛼 = 𝑟 = 16,

where the 𝛼 modifies the updates to the LoRA similarly to a learning

rate, while 𝑟 is the rank of the low-rank projection. With these

hyperparameters, the total amount of learnable parameters is 9.4𝑀 ,

an amount comparable to those of the main setting (7–14𝑀 BiLSTM

parameters).

We train the model for 200 steps with a batch size of 8. We use

this number of steps because it results in similar training times,

compared to the main setting models, which have an upper bound

of ∼7minutes.We use a learning rate of𝜂 = 2×10−4 with 5warm-up

steps, weight decay of 0.01, and AdamW [20] as the optimizer.

During training we provide the model with one ICL example cho-

sen at random from the training split of the used dataset, followed

by the training sample from which to extract entities and edges in

RDF triple format. The ICL and target sample are never the same.

We only use one example in the prompt because ERFGC, enEWT

and SciDTB comprise very long samples, which means multiple

samples do not fit even when using a context size 8,192 tokens,

with bigger windows not fitting in the available VRAM (96 GB on

a single NVIDIA H100).

Note that UAS and LAS require edge predictions for all tokens

in the sentence, and not just for the relevant entity triples. Since

producing all predictions using an LLM is unfeasible both compute-

and performance-wise, in this case we use F1-measure also for

enEWT and SciDTB.

On ADE, the LLM’s performance is higher than the graph-based

parsers of our base setting, but still lower than the results obtained

when fully fine-tuningDeBERTa𝑏𝑎𝑠𝑒 , BERT𝑙𝑎𝑟𝑔𝑒 , andDeBERTa𝑙𝑎𝑟𝑔𝑒 ,

as shown in Section B.8. In the case of CoNLL04 and SciERC, the

performance is very similar to our base setting. Conversely, for

more complex graphs, such as the ones comprising ERFGC, enEWT

and SciDTB, the performance is considerably lower. Therefore,

while LLMs of this size perform better than graph-based parser on

short sentences with few entities and edges, on large graphs better

performance can be obtained with ∼1.7% of the total parameters.

C Computational resources
We ran all of our experiments on a cluster of NVIDIA H100 (96GB

of VRAM) and NVIDIA L40 (48GB of VRAM) GPUs, one run per

single GPU.When freezing the BERT𝑏𝑎𝑠𝑒 encoder and only training

the BiLSTMs and the classifiers, each training and evaluation run

took ∼5-7 minutes, depending on the number of BiLSTM layers.

MLoG-GenAI, August 03–08, 2025, Toronto, Canada Gajo et al.

0 2000 4000 6000 8000

0.50

0.55

0.60

0.65

0.70

ADE (p < 0.01)

0 2000 4000 6000 8000

0.3

0.4

0.5

0.6

CoNLL04 (p < 0.01)

0 2000 4000 6000 8000 10000

0.2

0.3

0.4

SciERC (p < 0.01)

0 2000 4000 6000 8000

0.2

0.4

0.6

ERFGC (p = 1.00)

(a) BERT𝑏𝑎𝑠𝑒

0 2000 4000 6000 8000 10000

0.5

0.6

0.7

ADE (p < 0.01)

0 2000 4000 6000 8000 10000

0.2

0.4

0.6

CoNLL04 (p < 0.01)

0 2000 4000 6000 8000 10000

0.0

0.1

0.2

0.3

0.4

SciERC (p < 0.01)

0 2000 4000 6000 8000 10000

0.2

0.4

0.6

ERFGC (p = 0.70)

(b) DeBERTa𝑏𝑎𝑠𝑒

Figure 8: Performance in terms of F1-measure vs the number of training steps for the base models on the SemDP datasets.
Red = norm; blue = raw. The 𝑝-values refer to the performance being greater with score normalization (one-tailed Wilcoxon
signed-rank test).

For the main setting, finding the best hyperparameters involved

training and testing 6,120 models, for a total of ∼600 GPU hours.

When carrying out the full fine-tuning ablation (Appendix B.8),

training and evaluation took ∼1 hour for each of the 40 base models

and ∼2-3 hours for each of the 40 large models, for an additional

∼140 GPU hours. In the case of Mistral-7B-Instruct-v0.3, training

took between 1 and 30 minutes on an NVIDIA H100 depending on

the dataset.

Dependency Parsing
is More Parameter-Efficient with Normalization MLoG-GenAI, August 03–08, 2025, Toronto, Canada

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

ADE (p < 0.01)

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

CoNLL04 (p = 1.00)

0 2000 4000 6000 8000 10000

0.0

0.1

0.2

0.3

0.4

SciERC (p = 0.75)

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

ERFGC (p = 0.66)

(a) BERT𝑙𝑎𝑟𝑔𝑒

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8
ADE (p < 0.01)

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8
CoNLL04 (p < 0.01)

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

SciERC (p < 0.01)

0 2000 4000 6000 8000

0.0

0.2

0.4

0.6

ERFGC (p < 0.01)

(b) DeBERTa𝑙𝑎𝑟𝑔𝑒

Figure 9: Performance in terms of F1-measure vs the number of training steps for the large models on the SemDP datasets.
Red = norm; blue = raw. The 𝑝-values refer to the performance being greater with score normalization (one-tailed Wilcoxon
signed-rank test).

	Abstract
	1 Introduction
	2 Background
	3 Layer depth can compensate for normalization
	4 Experimental setting
	4.1 Data
	4.2 Model
	4.3 Hyperparameters
	4.4 Evaluation

	5 Results and discussion
	6 Conclusions
	References
	A Full Results
	B Ablations
	B.1 Tagger
	B.2 Additional BiLSTM layers
	B.3 MLP output dimension
	B.4 BiLSTM hidden size
	B.5 LayerNorm and parameter initialization
	B.6 GAT layers
	B.7 Transformer encoder layers
	B.8 Full fine-tuning and sample efficiency
	B.9 LLM performance comparison

	C Computational resources

