
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHANG++: ROBUST STOCHASTIC ACCELERATION UN-
DER MULTIPLICATIVE NOISE

Anonymous authors
Paper under double-blind review

ABSTRACT

Training with multiplicative noise scaling (MNS) is often destabilized by momen-
tum methods such as Nesterov’s acceleration, as gradient noise can overwhelm
the signal. A new method, SHANG++, is introduced to achieve fast convergence
while remaining robust under MNS. With only one-shot hyperparameter tuning,
SHANG++ consistently reaches accuracy within 1% of the noise-free setting across
convex problems and deep networks. In experiments, it outperforms existing accel-
erated methods in both robustness and efficiency, demonstrating strong performance
with minimal parameter sensitivity.

1 INTRODUCTION

Empirical Risk Minimization (ERM) is central to modern large-scale machine learning, including deep
neural networks and reinforcement learning (Hastie et al., 2009). Given a large dataset {(Xi, Yi)}Ni=1,
where Yi denotes the label of data Xi and N ≫ 1, the training objective is

min
x

f(x), f(x) =
1

N

N∑
i=1

fi(x), (1.1)

where x denotes the network parameters and fi(x) is the loss associated with sample (Xi, Yi). We
use x instead of θ for consistency with the optimization formulation. Efficiently computing the
minimizer x⋆ = argminx f(x) is critical for training neural network with large data.

Exact gradient evaluation is expensive, so Stochastic Gradient Descent (SGD) uses mini-batches:

g(x) =
1

M

∑
i∈B

∇fi(x), (1.2)

where B ⊂ {1, . . . , N} is a random batch of size M . SGD slows down when the condition number
of f is large. Momentum methods such as Heavy Ball (HB) (Polyak, 1964) and Nesterov accelerated
gradient (NAG) (Nesterov, 1983) are widely used to accelerate convergence. In training deep neural
networks, Adam (Adaptive Moment Estimation) (Kingma & Ba, 2015) is a widely used optimization
algorithm that combines momentum and adaptive step sizes for fast and stable convergence.

The mini-batch estimator g(x) reduces the cost of computing∇f(x) but introduces noise. In regimes
such as small-batch training or highly over-parameterized models, the variance can scale with and
even dominate the signal ∥∇f(x)∥2. This effect is modeled by the multiplicative-noise scaling (MNS)
condition (Wu et al., 2019; 2022b; Gupta et al., 2024). Hodgkinson & Mahoney (2021) further shows
that multiplicative noise induces geometric distortions in the loss landscape, beyond the smoothing
effects of additive noise.
Definition 1.1 (Multiplicative Noise Scaling (MNS)). The stochastic gradient estimator g(x) satisfies
the MNS condition if there exists σ ≥ 0 such that

E
[
∥g(x)−∇f(x)∥2

]
≤ σ2∥∇f(x)∥2. (1.3)

Related work. Accelerated variants of SGD have been extensively studied. However, momen-
tum methods are highly sensitive to stochastic noise (Devolder et al., 2014; Aujol & Dossal,
2015; Liu et al., 2018), and stability depends critically on parameter choices (Kidambi et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2018), (Liu & Belkin, 2020; Assran & Rabbat, 2020; Ganesh et al., 2023). Gupta et al. (2024) fur-
ther showed that under MNS with σ ≥ 1, NAG fails to converge even in convex and strongly convex
settings. In practice, the apparent benefits of momentum largely arise from large mini-batches, which
reduce gradient variance and make the dynamics closer to the deterministic regime.

To address these issues, a series of corrections have been developed. Following Jain et al. (2018),
many accelerated stochastic algorithms have been proposed (Liu & Belkin, 2020; Vaswani et al.,
2019; Even et al., 2021; Bollapragada et al., 2022; Laborde & Oberman, 2020; Gupta et al., 2024;
Hermant et al., 2025), aiming to retain acceleration while improving robustness to noise. Vaswani
et al. (2019) introduced a four-parameter NAG variant with optimal accelerated rates; Liu & Belkin
(2020) proposed the Mass method with a three-parameter correction, though acceleration was proved
only for over-parameterized linear models; Gupta et al. (2024) developed AGNES with guarantees
matching Vaswani et al. (2019); and Hermant et al. (2025) analyzed SNAG, a four-parameter variant
in Nesterov’s framework (Nesterov, 2012), showing similar rates under mild tuning. A more detailed
discussion appears in Appendix F.

From the viewpoint of convex theory, these algorithms are competitive. However, our deep-learning
experiments show that they often lose acceleration under high noise and can perform worse than
SGD even with recommended hyperparameters (see Section 3). For example, on CIFAR-100 with
ResNet-50 and batch size 50, SGD attains 58.326% test accuracy whereas AGNES reaches only
42.82%. With smaller batches, both AGNES and SNAG exhibit strong oscillations and require
additional hyperparameter tuning.

Contribution. Motivated by this gap, our goal is not only to design another accelerated method,
but to develop a complementary approach that (i) retains optimal theoretical guarantees, (ii) reduces
tuning effort, and (iii) improves stability. Our contributions emphasize simplicity (fewer parameters),
provable acceleration with explicit noise dependence, and robust empirical behavior.

1. We begin with SHANG, a stochastic extension of HNAG (Chen & Luo, 2021). Unlike the
classical Heavy-Ball method, HNAG includes the Hessian term ∇2f(x)x′, yielding a more
accurate continuous-time model of NAG. SHANG inherits this structure and already demonstrates
noise-suppression behavior.

2. We then refine SHANG into SHANG++ using the µ-shift principle: replacing f with f−µ(x) =
f(x) − µ

2 ∥x − x⋆∥2 reduces the effective Lipschitz constant and introduces a correction term
−βµ(xk+1 − xk). SHANG++ generalizes this to a flexible correction −m(xk+1 − xk) that does
not require strong convexity, and helps mitigate the multiplicative-noise–induced rescaling of the
key constants µ and L. The µ-shift mechanism and its noise-suppression effect are new and absent
from HNAG. SHANG++ achieves optimal accelerated rates in both convex and strongly convex
settings with multiplicative noise.

3. We evaluate SHANG++ on convex optimization, image classification, and generative modeling
tasks (MNIST, CIFAR-10, CIFAR-100). SHANG++ matches or outperforms NAG, SNAG,
AGNES, and Adam, with clear advantages under high multiplicative noise in Section 3.

4. Section 3 further examines robustness to multiplicative noise. For realistic noise levels (σ ≤ 0.5),
SHANG++ retains near noise-free accuracy (within 1% degradation), demonstrating that stability
can be achieved with fewer parameters and a simpler design than earlier corrections such as
AGNES and SNAG.

Limitation. Current convergence guarantees cover only convex objectives under multiplicative-
noise scaling and do not yet extend to general nonconvex landscapes. Empirically, the method typi-
cally enters locally convex basins after leaving unstable saddle regions, suggesting that similar stability
mechanisms operate in deep networks. We are exploring extensions under the Polyak–Łojasiewicz
condition and weak-convexity assumptions, where our Lyapunov framework naturally applies.

Although SHANG++ reduces tuning complexity through one-shot, non-adaptive hyperparameters, its
performance may still depend on accurate estimates of smoothness constants (e.g., L, µ). In highly
non-convex settings or under very high noise, the one-shot strategy may require refinement.

Notation. Let f : Rd → R be differentiable. The Bregman divergence of f between x, y ∈ Rd is

Df (y, x) := f(y)− f(x)− ⟨∇f(x), y − x⟩.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The function f is µ-strongly convex if for some µ > 0, Df (y, x) ≥ µ
2 ∥y − x∥2, ∀x, y ∈ Rd.

It is L-smooth, for some L > 0, if its gradient is L-Lipschitz:

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥, ∀x, y ∈ Rd.

Let Sµ,L be the class of all differentiable functions that are both µ-strongly convex and L-smooth.
For f ∈ Sµ,L, the Bregman divergence satisfies

µ

2
∥x− y∥2 ≤ Df (x, y) ≤

L

2
∥x− y∥2, ∀x, y ∈ Rd, (1.4)

Bregman divergence here is used purely as an analytical tool in the Lyapunov analysis. Parameters µ
and L are treated as known hyperparameters for the given problem. Their adaptivity is beyond the
scope of this work.

2 STOCHASTIC HESSIAN-DRIVEN ACCELERATED NESTEROV GRADIENT

Flow. To accelerate gradient descent, Polyak introduced a momentum term, which incorporates
information from previous iterates, inspired by the “heavy-ball” ODE model (Polyak, 1964):

x′′ + θx′ + η∇f(x) = 0. (2.1)

However, the discrete heavy-ball method xk+1 = xk − γ∇f(xk) + β(xk − xk−1) can diverge; see
Lessard et al. (2016); Goujaud et al. (2025) for non-convergent examples.

We will use the second-order dynamical system introduced in Chen & Luo (2019; 2021), known as
the Hessian-driven Nesterov Accelerated Gradient (HNAG) flow:

γx′′ + (γ + µ)x′ + βγ∇2f(x)x′ + (1 + µβ)∇f(x) = 0, (2.2)

where β > 0 is a parameter and γ is a time-scaling function. Compared with the classical HB flow
(2.1), the additional Hessian-driven term ∇2f(x)x′ captures how the local curvature of f affects the
damping strength of the dynamics. As shown in Chen & Luo (2019), this curvature aware mechanism
provides a more accurate continuous-time description of NAG. The second-order ODE (2.2) can be
equivalently reformulated as the first-order system:

x′ = v − x− β∇f(x), v′ =
µ

γ
(x− v)− 1

γ
∇f(x), γ′ = µ− γ, (2.3)

which removes the explicit dependence on ∇2f(x).

Methods. Discretizing (2.3) via a Gauss–Seidel–type scheme, adding an extra term−m(xk+1−xk)
to the x-update, and replacing∇f(xk) with an unbiased estimator g(xk) yield the Stochastic Hessian-
driven Nesterov Accelerated Gradient (SHANG++) method:

xk+1 − xk

αk
= vk − xk+1 −m(xk+1 − xk)− βkg(xk),

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
g(xk+1),

γk+1 − γk
αk

= µ− γk+1,

(2.4)

where αk > 0 is the step size, m ≥ 0 controls the extra noise-damping term −m(xk+1 − xk) , and
βk > 0 depends on αk and γk, typically scaling as αk

γk/(1+σ2) .

If the damping term is absorbed into the left-hand side, the x-update becomes
xk+1 − xk

α̃k
= vk − xk+1 − βkg(xk), (2.5)

where α̃k = αk

1+mαk
≤ αk. SHANG++ can thus be interpreted as a modified discretization of the

HNAG flow with a reduced step size α̃k. The case m = 0 recovers SHANG, a direct stochastic
extension of HNAG. The “++” indicates two improvements: faster theoretical convergence and greater
robustness to noise. With the parameter choices specified in Theorem 2.1 for the strongly convex
case f ∈ Sµ,L, and in Theorem 2.2 for µ = 0, accelerated convergence rate can be established.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

SHANG++ for Strongly Convex Minimization. Setting γ = µ and m = 1 when f ∈ Sµ,L with
0 < µ < L < ∞. Define the auxiliary variable x+

k := xk − α̃βg(xk). Then SHANG++ can be
rewritten in the following form:

xk+1 − x+
k

α̃
= vk − xk+1,

vk+1 − vk
α

= xk+1 − vk+1 − 1
µg(xk+1).

(2.6)

where α̃ = α
1+α . Schemes (2.6) and (2.4) generate the same sequences (xk, vk)

∞
0 ; the explicit

appearance of x+
k is only for analysis and does not affect the algorithm itself.

Theorem 2.1. Let f ∈ Sµ,L. Given x+
0 = v0 = x0, suppose (xk, x

+
k , vk) are generated by (2.6) with

g(xk) defined in (1.2) and MNS (1.3) holds. If the step size satisfies α = α̃
1−α̃ with 0 < α̃ ≤ 1

1+σ2

√
µ
L ,

and β = α̃
µ/(1+σ2) , then

E
[
f(x+

k)− f(x⋆) +
µ

2
∥vk − x⋆∥2

]
≤ (1 + α)−k

(
f(x0)− f(x⋆) +

µ

2
∥v0 − x⋆∥2

)
.

We give a proof sketch of Theorem 2.1 and refer to Appendix C.1 for full details, which cover the range
0 ≤ m ≤ 1; Theorem 2.1 treats the optimal special case m = 1 and shows that E[f(xk)− f(x⋆)]

contracts linearly at rate O
(
(1− 1

1+σ2

√
µ/L)k

)
. Note that m = βµ ≤

√
µ/L is also a particular

instance with 0 ≤ m ≤ 1.

Proof. Let z+k = (x+
k , vk) and define the Lyapunov function

E(z+k) = f(x+
k)− f(x⋆) +

µ

2
∥vk − x⋆∥2. (2.7)

Given (xk, vk) and g(xk), the quantities x+
k and xk+1 are deterministic, while randomness is intro-

duced through g(xk+1) and consequently affects (x+
k+1, vk+1). The expectation E is with respect to

the randomness in g(xk+1).

First of all, we have the sufficient decay of SGD for x+
k+1 := xk+1− α̃β(xk+1): if α̃β = α̃2

µ/(1+σ2) ≤
1

(1+σ2)L , which is equvialent to α̃ ≤ 1
(1+σ2)

√
µ/L, then

E
[
f(x+

k+1)− f(xk+1)
]
≤ −α̃β/2 · ∥∇f(xk+1)∥2 = −(1 + σ2)α̃2/2µ · ∥∇f(xk+1)∥2. (2.8)

By the definition of Bregman divergence, E(zk+1) − E(z+k) = ⟨∇E(zk+1), zk+1 − z+k ⟩ −
DE(z

+
k , zk+1). Expanding the term ⟨∇E(zk+1), zk+1 − z+k ⟩ and using the update in (2.6) gives

− α̃⟨∇f(xk+1)−∇f(x⋆), xk+1 − x⋆⟩ − αµ

2
∥vk+1 − x⋆∥2 − αµ

2
∥vk+1 − xk+1∥2

+
αµ

2
∥xk+1 − x⋆∥2 + α⟨g(xk+1), vk − vk+1⟩ − (α− α̃)⟨g(xk+1), vk − x⋆⟩

+ α̃⟨∇f(xk+1)− g(xk+1), vk − x⋆⟩

(2.9)

After taking the expectation E(⟨∇f(xk+1) − g(xk+1), vk − x⋆⟩) = 0. We use vk − x⋆ = (1 +
α)(vk+1 − xk+1) + (xk+1 − x⋆) + α

µg(xk+1) and the identity 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2
to bound the cross term −(α− α̃)⟨g(xk+1), vk − x⋆⟩ = −αα̃⟨g(xk+1), vk − x⋆⟩:

− α̃µ⟨α
µ
g(xk+1), (1 + α)(vk+1 − xk+1)⟩ − αα̃⟨g(xk+1), xk+1 − x⋆⟩ − α2α̃

µ
∥g(xk+1)∥2

= − α̃µ

2
∥vk − xk+1∥2 −

α2α̃

2µ
∥g(xk+1)∥2 +

α(1 + α)µ

2
∥vk+1 − xk+1∥2 − αα̃⟨g(xk+1), xk+1 − x⋆⟩

(2.10)
The last term can be combined with the first term of (2.9) after taking expectations, and using strong
convexity we obtain:

−α⟨∇f(xk+1)−∇f(x⋆), xk+1 − x⋆⟩ ≤ −α(f(xk+1)− f(x⋆) +
µ

2
∥xk+1 − x⋆∥2) (2.11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This negative contribution cancels the corresponding positive term in (2.9). The most difficult term is
the expectation of the cross term E [⟨g(xk+1), vk − vk+1⟩], as both g(xk+1) and vk+1 are random
variables. Using the identity 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 again to obtain

α⟨g(xk+1), vk − vk+1⟩ =
α2

2µ
∥g(xk+1)∥2 +

µ

2
∥vk − vk+1∥2 −

α2µ

2
∥vk+1 − xk+1∥2, (2.12)

where the term involving vk+1 − xk+1 follows from vk−vk+1

α − 1
µg(xk+1) = vk+1 − xk+1 by

the update of vk+1. The positive µ
2 ∥vk − vk+1∥2 is canceled by −µ

2 ∥vk − vk+1∥2 contained in
−DE(z

+
k , zk+1). The stochastic gradient term splits into two parts: one part is directly canceled

by the corresponding negative term in (2.10). For the remaining part, taking expectations termwise
and applying the MNS condition yields the positive gradient contribution α̃α(1+σ2)

2µ ∥∇f(xk+1)∥2,
which is then canceled by the negative term in the sufficient decay condition (2.8), together with the
additional negative term generated by applying the same sufficient decay condition to f(xk+1) −
f(x⋆). This cancellation motivates our choice of (α, β,m).

Combining all the above estimates, we obtain,

E
[
E(z+k+1)

]
− E(z+k) ≤ E

[
−αE(z+k+1)

]
.

Moving E(z+k+1) to the left-hand side yields the desired result.

When σ = 0, SHANG++ reduces to the deterministic HNAG++ method of Chen & Xu (2025). As σ
grows, convergence slows but acceleration is preserved. While Gupta et al. (2024) interpret noise as
inflating smoothness to (1 + σ2)L, our analysis shows it perturbs both smoothness and curvature,
giving Lσ = (1 + σ2)L and µσ = µ/(1 + σ2). We compare the parameters

(SHANG) 0 < α ≤
√

µσ

Lσ
(SHANG++) 0 < α ≤ 1

1− α̃

√
µσ

Lσ
,

The noise-damping term in SHANG++ further reduces the effective Lipschitz constant from Lσ to
(1− α̃)Lσ and increase the effective strongly convex constant from µσ to µσ/(1− α̃), explaining its
stronger stability.

SHANG++ Method for Convex Minimization Recall the modified step size α̃k = αk

1+mαk
. To

facilitate analysis, we define an auxiliary time-scaling variable γ̃k = γk

1+mαk
. Setting αk = 2

k+1 and
γk/(1 + σ2) = αkα̃kLσ , for any fixed m ≥ 0, we obtain:

γ̃k+1 − γ̃k
α̃k

= −(1 + 1

2(k + 1 + 2m)
)γ̃k+1 ≤ −γ̃k+1 (2.13)

Replacing the x-update in (2.4) with the equivalent modified discretization (2.5) and combining it
with (2.13) yields the following convergence result. The full proof appears in Appendix C.2.

Theorem 2.2. Let f ∈ S0,L. Suppose that (xk, vk) are generated by the time-stepping scheme (2.4).
g(xk) defined in (1.2) and MNS holds. Given x+

0 = v0 = x0,m ≥ 0, choose the step size αk = 2
k+1 ,

γk/(1 + σ2) = αkα̃kLσ and βk = αk

γk/(1+σ2) , we have

E
[
f(x+

k+1)− f(x⋆) +
γ̃k+1

2
∥vk+1 − x⋆∥2

]
≤ (1 + 2m)(2 + 2m)

(k + 2 + 2m)(k + 3 + 2m)
E(z0; γ̃0) = O(

Lσ

k2
)

We compare the parameters

(SHANG)
γk

1 + σ2
= α2

kLσ, (SHANG++)
γk

1 + σ2
= αkα̃kLσ = α2

k ·
Lσ

1 +mαk
,

which reduces the effective Lipschitz constant from Lσ to Lσ

1+mαk
. The noise-damping term offsets

part of the σ2–induced amplification, improving stability by slowing down the effective rate. Our
experiments suggest that choosing m in the range [0, 1.5] provides a good trade-off.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Other Convergence Results. Quadratic Loss. Consider a special case of problem (1.1): the
quadratic loss with Tikhonov regularization (also known as weight decay), which is widely used in
regression tasks. The objective takes the form

f(x) =
1

N

N∑
i=1

(x⊤Xi − Yi)
2 +

λ

2
∥x∥22 =

1

N
∥X⊤x− Y ∥22 +

λ

2
∥x∥22, (2.14)

where 1
N

∑N
i=1(x

⊤Xi−Yi)
2 is the empirical quadratic loss and λ

2 ∥x∥
2
2 is the regularizer with λ > 0.

The Tikhonov regularizer ensures that the objective is λ–strongly convex with smoothness constant

(L + λ). Under multiplicative noise scaling, setting α =
1

1− α̃

√
µσ/Lσ yields the accelerated

convergence rate (1− 1
1+σ2

√
λ/(L+ λ)) in the leading term.

Batching. Gradient noise can be reduced by increasing the mini-batch size M in (1.2). If σ2
1 is

the MNS constant for M = 1, then σ2
M = σ2

1/M . Another approach is to average K independent
gradient estimators, gK = 1

K

∑K
i=1 gi, which gives an effective MNS constant of σ2/K. Both

strategies reduce noise at the cost of higher computation, and a straightforward analysis shows that
averaging multiple estimates can accelerate convergence to some extent.

Variance decay under MNS. Beyond the expectation bound, we show geometric variance decay of the
Lyapunov energy. Specifically, by Theorem D.1,

Var
(
f−µ(x

+
k)− f−µ(x

⋆) +
µ

2
∥vk − x⋆∥2

)
≤ (f(x0)− f(x⋆))2(r2 +K2)

k.

A sufficient (practically verifiable) condition is K2 < 1− r2, where r = (1 + α)−1 is the decay rate
in Theorem 2.1 and K2 collects the fluctuation constants. This holds, for example, in low-condition
regime, with a damped stepsize α ← δα (0 < δ ≤ 1) or with a minibatch of larger M (or K
independent multiple estimates). Complete proofs and the explicit expressions of related constants
are provided in Appendix D.

3 NUMERICAL EXPERIMENTS

We design our experiments to validate the theoretical alignment, scalability, and robustness of
SHANG++ and SHANG (m = 0).

For deep learning tasks, we adopt SHANG++ with three explicit hyperparameters (α, γ,m), with
µ = 0 and β = α/γ, summarized in Algorithm 1, where v is updated first by index shifting. Here
we fix β = α/γ to simplify tuning. Although theory suggests β = (1 + σ2)α/γ, estimating σ is
unreliable, and the fixed ratio provides stable performance with implicit noise scaling. Adaptive
choices of σ offered little practical improvement.

SHANG++ incurs no extra per-iteration cost compared with standard momentum methods: each
update requires one gradient evaluation and a constant number of vector operations.

Algorithm 1: SHANG++ for Deep Learning
Input: Objective function f , initial point x0, step size α, time scaling factor γ, noise-damping

m, , iteration horizon T .
k ← 1, v0 ← x0, x1 ← x0, α̃← α

1+mα

while k ≤ T do
gk ← 1

M

∑
i∈B ∇fi(xk) // stochastic gradient estimate

vk ← vk−1 − α
γ gk

xk+1 ← 1
1+α̃xk + α̃

1+α̃vk −
α̃

1+α̃
α
γ gk

k ← k + 1
end
return xT

Throughout this section, NAG refers to the stochastic version of Nesterov’s accelerated gradient
(Nesterov, 1983) by replacing∇f(x) by g(x). While SNAG refers to the method in (Hermant et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2025), which can be treat as an alternative discretization of the HNAG flow (Appendix E). The
stability of SNAG can be also explained with our theoretical analysis. Similarly SHB is the stochastic
version of Heavy-Ball method (SGD with momentum).

Convex optimization We first consider the family of objective functions from Gupta et al. (2024):

fd : R→ R, fd(x) =

{
|x|d, |x| < 1,

1 + d(|x| − 1), else,

for d ≥ 2, with gradient estimators g(x) = (1 + σZ)∇f(x), where Z ∼ N (0, Id) is a standard
normal random variable. The functions fd belong to S0,L with L = d(d− 1).

Figure 3.1: Performance of different algorithms under varying noise levels.

We compare SHANG and SHANG++ with SGD, NAG, AGNES (Gupta et al., 2024), and SNAG
(Hermant et al., 2025) under σ ∈ {0, 10, 50} and d ∈ {4, 16}. The parameters used follow their
optimal choices for the convex case. All simulations are initialized at x0 = 1, and expectations are av-
eraged over 200 independent runs. See Appendix A.1 for the full experimental setup, hyperparameter
choices, and results.

In Figure 3.1, both SHANG and SHANG++ remain stable as the noise level σ increases, whereas
NAG diverges under large noise. SHANG is generally very competitive, with SHANG++ showing
consistently slightly better behavior than the other accelerated stochastic schemes. These results
suggest that the proposed methods are reasonably robust to noisy gradients with modest tuning, while
maintaining accelerated-like behavior in the high-noise regime.

Classification Tasks on MNIST, CIFAR-10 and CIFAR-100 We benchmark on three train-
ing tasks: LeNet-5 on MNIST (LeCun et al., 1998), ResNet-34 (He et al., 2016) on CIFAR-
10 (Krizhevsky, 2009), and ResNet-50 on CIFAR-100. Each model is trained for 50 epochs, and
results are reported as mean ± s.d. over five random seeds.

For hyperparameter selection, SHANG and SHANG++ used α = 0.5 with γ chosen from grids:
{1, 1.5, 2} for LeNet-5, {5, 10} for ResNet-34, and {10, 15} for ResNet-50. SHANG++ fixed
m = 1.5. AGNES followed defaults (η, α,m) = (0.01, 0.001, 0.99); SNAG used (η, β) with
η ∈ {0.5, . . . , 0.001}, β ∈ {0.7, 0.8, 0.9, 0.99}, where (0.05, 0.9) performed best, consistent with
prior CIFAR work. Other baselines used η = 0.001 and momentum 0.99 when applicable. After 25
epochs, all baseline learning rates (including AGNES’s correction) were decayed by 0.1, while γ was
doubled for our methods. Full details are in Appendix A.2.
Figure 3.2 reports SHANG with (α, γ) = (0.5, 10) and SHANG++ with (α, γ,m) = (0.5, 10, 1.5),
while Figure 3.3 reports the corresponding results for (α, γ) = (0.5, 15) and (α, γ,m) =
(0.5, 15, 1.5). Figure 3.2 shows the training and test losses of ResNet-34 on CIFAR-10 under

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3.2: Training loss (left) and test loss (right) in log scale (running average with decay 0.99) on CIFAR-10
with ResNet-34, for batch sizes 32 (top row), 50 (middle row), and 256 (bottom row).

different batch sizes, with all algorithmic hyperparameters kept fixed across batch sizes. Batch
size strongly affects gradient variance: smaller batches increase noise, larger batches reduce it. At
256, all methods are stable and gaps narrow; at 50, NAG, SNAG, and AGNES oscillate with wider
bands (AGNES also plateaus higher). At batch size 32, differences among methods become more
pronounced.

Even under extreme noise, SHANG and SHANG++ consistently outperform other first-order stochas-
tic momentum methods. Notably, when the batch size falls below 50, AGNES and SNAG lose
their acceleration advantage over SGD, whereas SHANG, SHANG++, and Adam still offer clear
improvements (though Adam is not directly comparable). As also observed by Hermant et al. (2025),
non–variance-reduced accelerated methods often lose acceleration at very small batch sizes; however,
SHANG and SHANG++ appear to remain robust down to relatively smaller thresholds.
Figure 3.3 shows ResNet-50 training and test losses on CIFAR-100. SHANG and SHANG++ deliver
competitive or superior performance to non-adaptive baselines. An interesting observation is that
SGD attains the lowest test loss, yet this does not correspond to the best classification accuracy
(see Figure A.3). This mismatch is aligned with prior findings: SGD on cross-entropy with hard
labels is a likely cause of “confidently wrong” predictions (Thulasidasan et al., 2020). Table 3.1

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3.3: Training, test loss (log scale, running average with decay 0.99) on CIFAR-100 with ResNet-50
(batch size 50).

further summarizes the mean final test accuracy over five independent runs: SHANG and SHANG++
are comparable to Adam, often surpass AGNES and SNAG, and clearly improve over SGD and
NAG. The slightly lower absolute accuracies arise because we use intentionally small batch sizes and
only 50 training epochs to stress-test optimizer stability rather than to reach full convergence; with
standard, longer training schedules, baselines attain their usual performance and the relative ranking
of the methods remains essentially unchanged.

Table 3.1: Test accuracy of SGD, SHB, NAG, Adam, AGNES, SHANG, and SHANG++ on MNIST
(LeNet-5), CIFAR-10 (ResNet-34), and CIFAR-100 (ResNet-50). Here b is batch size.

SGD SHB NAG Adam AGNES SNAG SHANG SHANG++

LeNet-5 91.07 98.98 98.9 99.07 98.88 99.07 99.06 99.11

(b = 50) ±0.11 ±0.05 ±0.08 ±0.07 ±0.09 ±0.08 ±0.02 ±0.03
ResNet-34 81.74 78.9 81.28 86.99 67.45 75.58 84.5 85.36

(b = 32) ±0.38 ±1.67 ±1.58 ±0.14 ±7.7 ±6.02 ±2 ±1.42
ResNet-34 79.91 84.59 86.43 87.38 70.49 77.65 87.15 87.4

(b = 50) ±0.11 ±2.62 ±0.81 ±0.26 ±2.51 ±2.7 ±0.82 ±0.5
ResNet-34 68.49 87.6 87.61 88.23 77.84 84.5 86.67 86.57

(b = 256) ±0.19 ±0.27 ±0.29 ±0.11 ±3.7 ±0.92 ±0.13 ±0.17
ResNet-50 58.31 58.17 57.66 59.87 42.82 49.51 63.31 65.02

(b = 50) ±0.51 ±1.99 ±1.44 ±0.61 ±1.24 ±1.56 ±0.93 ±1.25

Robustness to Multiplicative Gradient Noise Our theory predicts that time-scale coupling (α, γ)
in SHANG and (α, γ,m) in SHANG++ mitigates multiplicative gradient noise. To test this, we fix
one hyperparameter configuration per optimizer and evaluate across σ ∈ {0, 0.05, 0.1, 0.2, 0.5}. The
effective noise is higher than nominal σ, since minibatch SGD adds sampling noise. This one-shot
protocol isolates each optimizer’s robustness without re-tuning. All experiments use CIFAR-10 with
ResNet-34, batch size 50, the same settings as subsection 3, trained for 100 epochs and averaged over
three seeds. Final validation error at epoch 100 is reported; full setup and hyperparameters are in
Appendix A.4.

Figure 3.4 shows the mean final classification error rate under varying noise levels, and Table
3.2 reports the relative degradation ∆(σ) = (E(σ) − E(0))/E(0), where E(σ) denotes the mean
classification error rate (averaged over three seeds) at noise level σ.
1. At σ = 0, SHANG and SHANG++ reach 15.9%, outperforming SNAG (17.5%) and AGNES

(20.5%).
2. At σ = 0.1, SHANG slightly improves to 15.6 %, SHANG++ remains stable at 15.9%, SNAG

marginally improves to 17.1%, while AGNES degrades to 23.8%.
3. At σ = 0.5, SHANG and SHANG++ remain near 16%, while SNAG rises to 17.6% and AGNES

drifts to 23.2% (≈13.5% relative increase).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

These results align with our Lyapunov analysis: time-scale coupling (α, γ,m) suppresses σ2 am-
plification, ensuring stable performance without re-tuning. SNAG is stable but less accurate, while
AGNES is most sensitive to noise.

Table 3.2: Relative change in final classification
error compared with σ = 0 (lower is better; negative
values indicate improvement). Values are averaged
over three seeds.

Method
Relative degradation ∆(%) at σ

0.05 0.1 0.2 0.5

SHANG −2.5 −2.1 −1.0 −0.2
SHANG++ +3.4 −0.6 −2.1 −0.9
AGNES −14.4 +16.0 +14.6 +13.5

SNAG −2.0 −2.1 −5.0 0.7

Figure 3.4: Validation error under varying mul-
tiplicative noise level σ. Lower is better.

Image Reconstruction with Small Batch Size We further evaluate our algorithms on a generative
task of image reconstruction with small-batch training, using a lightweight U-Net (Ronneberger
et al., 2015) on CIFAR-10 with batch size 5. SHANG and SHANG++ are compared against SNAG,
AGNES, NAG, SGD, SHB, and Adam, with full experimental details provided in the appendix A.6.
Figure 3.5 shows training and test losses. Adam achieves the lowest loss due to its adaptive learning

Figure 3.5: Training and test loss (log scale, running average with decay 0.99) on CIFAR-10 using U-Net with
batch size 5.

rate, but both SHANG and SHANG++ outperform all other non-adaptive methods. In particular,
SHANG++ shows stable and efficient training even in this high-noise regime, highlighting its practical
robustness. We additionally include a sanity-check experiment on ImageNet-100 with ResNet-34
in Appendix A.5, which shows that SHANG and SHANG++ remain competitive with classical
momentum methods on this larger-scale task, and we also conduct a comparative hyperparameter
study, with full settings and results given in Appendix A.7.

4 CONCLUSION

We presented SHANG++, an accelerated first-order stochastic optimizer for robust and simple
training under multiplicative noise. Theoretically, it retains the optimal accelerated rate in both
convex and strongly convex settings under the MNS condition. Empirically, across convex tasks,
image classification, and generative reconstruction, one-shot hyperparameter choices sustain near
noise-free accuracy (within 1% for σ ≤ 0.5). Compared with other stochastic momentum methods,
SHANG++ demonstrates enhanced stability under small-batch or high-noise conditions, with accuracy
exceeding baselines and comparable to Adam. These properties make SHANG++ a practical, scalable
optimizer for large-scale, noise-intensive training. Its empirical success on nonconvex problems
further suggests that extending the theory beyond convexity is a natural next step.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Mahmoud Assran and Michael Rabbat. On the convergence of nesterov’s accelerated gradient method
in stochastic settings. In Proceedings of the 37th International Conference on Machine Learning
(ICML). PMLR, 2020.

Jean-François Aujol and Charles Dossal. Stability of over-relaxations for the forward-backward
algorithm, application to fista. SIAM Journal on Optimization, 25(4):2408–2433, 2015.

Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of sgd in non-convex
over-parametrized learning, 2018. URL https://arxiv.org/abs/1811.02564.

Raghu Bollapragada, Tyler Chen, and Rachel Ward. On the fast convergence of minibatch heavy ball
momentum. In arXiv preprint arXiv:2206.07553, 2022.

G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm using
bregman functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

Long Chen and Hao Luo. First order optimization methods based on hessian-driven nesterov
accelerated gradient flow. arXiv preprint arXiv:1912.09276, 2019.

Long Chen and Hao Luo. A unified convergence analysis of first-order convex optimization methods
via strong lyapunov functions, 2021.

Long Chen and Zeyi Xu. Hnag++: A super-fast accelerated gradient method for strongly convex
optimization, 2025. URL https://arxiv.org/abs/2510.16680.

Alex Damian, Tengyu Ma, and Jason D. Lee. Label noise sgd provably prefers flat global minimizers.
In In Advances in Neural Information Processing Systems, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146:37–75, 2014.

Mathieu Even, Raphaël Berthier, Francis Bach, Nicolas Flammarion, Pierre Gaillard, Hadrien
Hendrikx, Laurent Massoulié, and Adrien Taylor. A continuized view on nesterov acceleration for
stochastic gradient descent and randomized gossip. In arXiv preprint arXiv:2106.07644, 2021.

Swetha Ganesh, Rohan Deb, Gugan Thoppe, and Amarjit Budhiraja. Does momentum help in
stochastic optimization? a sample complexity analysis. In Uncertainty in Artificial Intelligence
(UAI), pp. 602–612. PMLR, 2023.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization i: A generic algorithmic framewor. SIAM Journal on
Optimization, 22(4):1469–1492, 2012.

Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Provable non-accelerations of the heavy-
ball method: B. goujaud et al. Mathematical Programming, pp. 1–59, 2025.

Kanan Gupta, Jonathan W. Siegel, and Stephan Wojtowytsch. Nesterov acceleration despite very
noisy gradients. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Julien Hermant, Marien Renaud, Jean-François Aujol, Charles Dossal, and Aude Rondepierre.
Gradient correlation is a key ingredient to accelerate SGD with momentum. In International
Conference on Learning Representations (ICLR), 2025.

11

https://arxiv.org/abs/1811.02564
https://arxiv.org/abs/2510.16680

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Liam Hodgkinson and Michael W. Mahoney. Multiplicative noise and heavy tails in stochastic
optimization. In International Conference on Machine Learning(ICML), pp. 4262–4274. PMLR,
2021.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerating
stochastic gradient descent for least squares regression. In In Conference On Learning Theory,
2018.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade. On the insufficiency of
existing momentum schemes for stochastic optimization. In International Conference on Learning
Representations (ICLR), 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Achim Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer, 2013.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Maxime Laborde and Adam Oberman. A lyapunov analysis for accelerated gradient methods: from
deterministic to stochastic case. In In International Conference on Artificial Intelligence and
Statistics, pp. 602–612. PMLR, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization
algorithms via integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss? –a
mathematical framework. In In International Conference on Learning Representations, 2022.

Chaoyue Liu and Mikhail Belkin. Accelerating SGD with momentum for over-parameterized learning.
In International Conference on Learning Representations (ICLR), 2020.

Tianyi Liu, Zhehui Chen, Enlu Zhou, and Tuo Zhao. Toward deeper understanding of nonconvex
stochastic optimization with momentum using diffusion approximations, 2018.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

Yurii Nesterov. A method of solving a convex programming problem with convergence rateO(1/k2).
Soviet Mathematics Doklady, 27:372–376, 1983.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012. doi: 10.1137/100802001. URL https:
//doi.org/10.1137/100802001.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI),
2015.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In In International Conference on Machine Learning (ICML), pp.
1139–1147, 2013.

Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
On mixup training: Improved calibration and predictive uncertainty for deep neural networks,
2020. URL https://arxiv.org/abs/1905.11001.

12

https://doi.org/10.1137/100802001
https://doi.org/10.1137/100802001
https://arxiv.org/abs/1905.11001

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of SGD for over-
parameterized models and an accelerated perceptron. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 1195–1204. PMLR, 2019.

Stephan Wojtowytsch. Stochastic gradient descent with noise of machine learning type. part ii:
Continuous time analysis, 2021. URL https://arxiv.org/abs/2106.02588.

Stephan Wojtowytsch. Stochastic gradient descent with noise of machine learning type. part i:
Discrete time analysis. Journal of Nonlinear Science, 33, 2023.

Lei Wu, Mingze Wang, and Weijie J.Su. The alignment property of sgd noise and how it helps
select flat minima: A stability analysis. In Advances in Neural Information Processing Systems
(NeurIPS), 2022a.

Lei Wu, Mingze Wang, and Weijie J. Su. The alignment property of SGD noise and how it helps
select flat minima: A stability analysis. In Advances in Neural Information Processing Systems
(NeurIPS), 2022b.

Xiaoxia Wu, Simon S. Du, and Rachel Ward. Global convergence of adaptive gradient methods for
an over-parameterized neural network, 2019.

Kun Yuan, Bicheng Ying, and Ali H Sayed. On the influence of momentum acceleration on online
learning. The Journal of Machine Learning Research, 17:6602–6667, 2016.

Puning Zhao, Jiafei Wu, Zhe Liu, Chong Wang, Rongfei Fan, and Qingming Li. Differential private
stochastic optimization with heavy-tailed data: Towards optimal rates, 2024. URL https:
//arxiv.org/abs/2408.09891.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and E. Weinan. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. In In Proceedings of the
34th International Conference on Neural Information Processing Systems, 2020.

LLM USAGE

In preparing this manuscript, large language models (LLMs) were employed exclusively to assist
with language-related tasks, such as improving readability, grammar, and style. The models were not
used for research ideation, development of methods, data analysis, or interpretation of results. All
scientific content, including problem formulation, theoretical analysis, and experimental validation,
was conceived, executed, and verified entirely by the authors. The authors bear full responsibility for
the accuracy and integrity of the manuscript.

ETHICS STATEMENT

This work is purely theoretical and algorithmic, focusing on convex optimization methods. It does not
involve human subjects, sensitive data, or applications that raise ethical concerns related to privacy,
security, fairness, or potential harm. All experiments are based on publicly available datasets or
synthetic data generated by standard procedures. The authors believe that this work fully adheres to
the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. All theoretical assump-
tions are explicitly stated, and complete proofs are provided in the appendix. For the experimental
evaluation, we describe the setup, parameter choices, and baselines in detail in the main text. The
source code for our algorithms and experiments are available as supplementary materials. Together,
these resources should allow others to reproduce and verify our theoretical and empirical findings.

13

https://arxiv.org/abs/2106.02588
https://arxiv.org/abs/2408.09891
https://arxiv.org/abs/2408.09891

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A SUPPLEMENT OF EXPERIMENTS

Here are some experimental setup and results that are not presented in the main text.

A.1 SUPPLEMENT OF THE CONVEX EXPERIMENT

For the convex example in Section 3, we compare SHANG and SHANG++ with SGD, NAG, AGNES,
and SNAG under σ ∈ {0, 10, 50} and d ∈ {4, 16}. The parameters used follow their optimal
choices for the convex case. For SHANG, αk = 2

k+1 , γk = α2
kL(1 + σ2)2 and βk = (1+σ2)αk

γk
;

For SHANG++, αk = 2
k+1 , m = 1.5, γk =

α2
k

1+mαk
(1 + σ2)2L and βk = (1+σ2)αk

γk
; For AGNES,

we adopted the best-performing parameters reported by the authors for this problem: learning rate
η = 1

L(1+2σ2) , correction step size α = η
1+σ2 , and momentum mk = k

k+5 . For SNAG, we use

s = 1
L(1+σ2) , ηk = 1

L(1+σ2)2
k+1
2 , β = 1, αk = k2/(k+1)

2+(k2/(k+1)) . For NAG, we used a learning rate
of 1

L(1+σ2) and momentum parameter of k
k+3 . SGD was also run with a learning rate of 1

L(1+σ2) .
All hyperparameter notations match those used in the original publications; note, however, that
symbol meanings may vary across algorithms (e.g., α denotes the discretization step size in SHANG,
while in AGNES it refers to the correction step size). All simulations are initialized at x0 = 1, and
expectations are averaged over 200 independent runs.

Figure A.1: Log-log plots of E [fd(xk)] for SHANG++ using m = 0.5 (black), m = 1 (olive),
m = 1.5 (orange), m = 2 (blue), m = 2.5 (green), m = 3 (red) with d = 4 (Top Row) and d = 16
(Bottom Row), under noise levels σ = 0 (Left Column), σ = 10 (Middle Column) and σ = 50 (Right
Column). From the figures, it can be observed that m ≤ 1.5 provides a good choice.

Figure A.1 highlights SHANG++’s stability across m: values m ≤ 1.5 consistently yield strong
performance. Our theoretical variance-decay predictions directly manifest in practice.

A.2 SUPPLEMENT OF CLASSIFICATION TASKS

Setup. We benchmark SHANG, SHANG++, Adam, SNAG, AGNES, NAG, SHB (or SGD with
momentum) and SGD on the following tasks: training LeNet-5 on the MNIST dataset, training
ResNet-34 on the CIFAR-10 image dataset and training ResNet-50 on the CIFAR-100 dataset with
standard data augmentation (normalization, random crop, and random flip). All models have pretrain
set to True. For each dataset, we run all algorithms for 50 epochs with batch size 50 and report
averages over five trials. After 25 epochs, the learning rates for all baseline methods (excluding
SHANG and SHANG++) are decayed by a factor of 0.1; AGNES’s correction step size is similarly
reduced. For our methods, the time-scaling factor γ is doubled after 25 epochs. This learning-rate

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

schedule follows Gupta et al. (2024) and helps the baselines achieve better performance on deep
learning tasks. SHANG and SHANG++ do not use an explicit learning rate; their effective learning
rate is controlled by the time-scaling parameter γ, with effective learning rate 1/γ (see Algorithm 1).
To implement an analogous decay, we increase γ after 25 epochs (thereby reducing the effective step
size 1/γ), so that all methods undergo a comparable mid-training learning-rate reduction.

Figure A.2: Training loss (log scale) (left), test loss (log scale) (middle) as a running average with
decay rate 0.99, and test accuracy (right) on the MNIST dataset using LeNet-5 trained with batch size
50. The compared methods include SGD (gray), SHB (black), NAG (olive), AGNES (blue), SNAG
(orange), Adam (yellow), SHANG (green) and SHANG++ (red). In SHANG, (α, γ) = (0.5, 2) and
in SHANG++, (α, γ,m) = (0.5, 2, 1.5).

For hyperparameter selection, our two methods were evaluated under three settings: α = 0.5 with
γ ∈ {1, 1.5, 2} for LeNet-5, γ ∈ {5, 10} for ResNet-34 and γ ∈ {10, 15} for ResNet-50. For
SHANG++, we fixed m = 1.5. AGNES employed the default parameter configuration recommended
by its authors, (η, α,m) = (0.01, 0.001, 0.99), which has demonstrated strong performance across
various tasks. For SNAG, we adopt the two-parameter variant (η, β) proposed by the original
authors for machine-learning tasks. Hyperparameters are selected via a grid search, learning rate η ∈
{0.5, 0.1, 0.05, 0.01, 0.005, 0.001} and momentum β ∈ {0.7, 0.8, 0.9, 0.99}. Among these, (η, β) =
(0.05, 0.9) yields the best performance, which coincides with the parameter choice recommended by
the original authors for training CNNs on the CIFAR dataset. All other baseline algorithms used a
fixed learning rate of η = 0.001; for those involving momentum, the momentum coefficient was set
to 0.99.

Results. Figures A.2, A.3, A.4 and A.5 depict the evolution of training/test loss and test accuracy
across datasets. Overall, SHANG and SHANG++ achieve competitive or superior performance
compared with non-adaptive baselines.

A.3 BATCH-SIZE SCALING ON CIFAR-10 (RESNET-34)

To further assess the robustness of our algorithms to stochastic gradient noise, we evaluate all
methods on CIFAR-10 with ResNet-34 under three batch-size settings: 32, 50 and 256. Smaller
batches introduce higher gradient variance, whereas larger batches reduce the noise level. Importantly,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure A.3: Test accuracy on CIFAR10 with ResNet-34 and CIFAR-100 with ResNet-50.

all hyperparameters are kept fixed across batch sizes to isolate the effect of noise on algorithmic
performance.

Setup. All data augmentation and experiments setting follows Appendix A.2. Hyperparameters
are held fixed across batch sizes: for SHANG/SHANG++ we use (α, γ) = (0.5, 10)/(α, γ,m) =
(0.5, 10, 1.5), and all baselines reuse their best settings from Appendix 3. No re-tuning is performed
when switching the batch size.

Results. Figure 3.2 shows the training/test dynamics.

• Small batch (32). Under the smallest batch size, classical momentum variants SHB, SNAG
and AGNES exhibit a clear loss of acceleration relative to SGD, while SHANG and
SHANG++ consistently retain accelerated convergence.

• Small batch (50). NAG, SNAG and AGNES exhibit larger oscillations and wider variance
bands; AGNES also shows a higher error plateau. In contrast, SHANG/SHANG++ produce
the lowest losses among non-adaptive methods and maintain narrow shaded regions, indicat-
ing markedly improved stability across seeds. Adam remains competitive in accuracy but
with higher variance in test loss.

• Large batch (256). The gap between methods narrows: all optimizers become more stable
and the curves cluster. SHANG/SHANG++ continue to match the best-performing baselines
while preserving smooth convergence.

Robustness to multiplicative noise translates into tangible benefits in the small-batch regime: with a
single, fixed hyperparameterization (α = 0.5, γ = 10,m = 1.5), SHANG/SHANG++ achieve stable
training and strong test accuracy without re-tuning, whereas competing momentum methods are more
sensitive (larger variance, higher plateaus). As batch size increases, all methods stabilize and the
performance gap diminishes, consistent with the noise-abatement expected from larger batches.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure A.4: Training loss (log scale), test loss (log scale) as a running average with decay rate 0.99,
and test accuracy on the MNIST dataset using LeNet-5 trained with batch size 50. The compared
methods include SHANG (green) and SHANG++ (red) under different parameter choices.

A.4 SUPPLEMENT OF ROBUSTNESS TO MULTIPLICATIVE GRADIENT NOISE

All runs use an identical experimental setup: CIFAR-10 dataset, ResNet-34, batch size 50, trained
for 100 epochs, and averaged over three random seeds. Once initialized, no hyperparameters were
adjusted or re-tuned during the experiments. This fixed-parameter setup allows us to isolate the
effect of increasing multiplicative noise and directly observe each optimizer’s inherent stability.
Specifically, SHANG with (α = 0.5, γ = 10), SHANG++ with (α = 0.5, γ = 10,m = 1.5),
AGNES with (η = 0.01, α = 0.001,m = 0.99) and SNAG with (η = 0.05,m = 0.9). Note that
the actual gradient noise level experienced by the optimizer is higher than the nominal σ, because
minibatch stochastic gradient descent inherently introduces sampling noise. The multiplicative noise
we introduce,

g(xk) = (1 + σN (0, Id))∇f(xk),

is therefore imposed on top of this intrinsic minibatch stochasticity. We record the final validation
error at epoch 100.

Discussion. The empirical trends align with our Lyapunov analysis: coupling the time scales
(α, γ,m) suppresses the σ2 amplification and yields stable behavior across noise levels with-
out retuning. SNAG—while reasonably stable—does not match the consistently low error of
SHANG/SHANG++, and AGNES is the most sensitive to increased multiplicative noise.

A.5 ADDITIONAL CLASSIFICATION TASK ON IMAGENET-100 WITH RESNET-34

We further evaluate all methods on the ImageNet-100 (Deng et al., 2009) subset using ResNet-34 with
input size 224× 224 and batch size 64. We adopt the standard ImageNet data augmentation: random
resized crops to 224× 224 with scale in [0.08, 1.0], random horizontal flips, and normalization with
the ImageNet mean and standard deviation. The model is trained for 40 epochs. For hyperparameter
selection, SHANG uses (α = 0.5, γ = 3) and SHANG++ uses (α = 0.5, γ = 3,m = 1). AGNES
follows the default (η = 0.01, α = 0.001,m = 0.99); SNAG uses (η = 0.05, β = 0.9). Other

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure A.5: Training loss (log scale), test loss (log scale) as a running average with decay rate 0.99,
and test accuracy on the MNIST dataset usingCIFAR-10 dataset using ResNet-34 and CIFAR-100
dataset using ResNet-50 trained with batch size 50. The compared methods include SHANG (green)
and SHANG++ (red) under different parameter choices.

baselines use η = 0.001 and momentum 0.99 when applicable. After 25 epochs, all baseline learning
rates (including AGNES’s correction) are decayed by a factor of 0.1, while γ is doubled for our
methods. Due to computational constraints, we report a single representative run.

Figure A.6 shows the training/test loss and test accuracy. SHANG and SHANG++ achieve test losses
comparable to the best classical momentum baselines (SHB and NAG), while clearly outperforming
AGNES, SNAG, and Adam. In terms of final test accuracy, SHANG and SHANG++ reach about
98.1%, within roughly 0.4 percentage points of SHB (98.49%) and NAG (98.53%). This is unsur-
prising: on this relatively benign ImageNet-100 setup with a moderate batch size, all well-tuned
momentum methods behave very similarly, and classical SHB and NAG are known to be extremely
strong baselines. Our goal here is not to dominate them in this regime, but to demonstrate that
SHANG and SHANG++ remain fully competitive on a larger-scale task. Their main advantages
appear in the noisier, small-batch regimes (e.g., CIFAR-10 and U-Net) highlighted in the main text,
where classical momentum becomes less stable.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure A.6: Training loss (log scale), test loss (log scale) as a running average with decay rate 0.99,
and test accuracy on the ImageNet-100 dataset using ResNet-34 trained with batch size 64.

A.6 SUPPLEMENT OF IMAGE RECONSTRUCTION

We further evaluate our algorithms on a generative task—image reconstruction with small-batch
training, which introduces substantial gradient noise. Specifically, we train a lightweight U-Net (Ron-
neberger et al., 2015) (base channels 32 → 64 → 128, with bilinear up-sampling and feature
concatenation) on CIFAR-10 using batch size 5. We compare SHANG (α = 0.5, γ = 0.5) and
SHANG++ (α = 0.5, γ = 0.5,m = 1) against SNAG, AGNES, NAG, SGD, SHB, and Adam. All
other experimental settings follow those in earlier sections.

A.7 HYPERPARAMETER COMPARISON

To identify optimal hyperparameter configurations for our stochastic algorithms, we perform grid
searches over α ∈ (0.005, 0.1) and γ ∈ (0.5, 30) on MNIST and CIFAR-10 (Figures A.7). For
SHANG++, we additionally vary m ∈ (0.5, 3) while keeping α = 0.5 fixed. Results indicate that:
(1) α = 0.5 and m = 1.5 are generally effective across tasks; (2) Smaller γ values work well for
LeNet-5, while larger γ are preferred for deeper networks like ResNet-34; (3) SHANG++ exhibits
low sensitivity to m in practice, with performance remaining stable across tested values. These
findings confirm the practical usability and tuning simplicity of our methods.

B SHANG

B.1 MODEL

Applying a Gauss-Seidel-type scheme to discretize HNAG flow (2.3) and replace the deterministic
gradient ∇f(xk) with its unbiased stochastic estimate g(xk), we can obtain the Stochastic Hessian-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Epoch

10 2

10 1

100

101

Tr
ai

ni
ng

 L
os

s (
lo

g
sc

al
e)

Grid search over (,) for SHANG on MNIST
 (Color)

= 0.5
= 0.1
= 0.01
= 0.05
= 0.005

 (Linestyle)
= 0.5
= 1
= 1.5
= 2
= 2.5
= 5
= 10
= 15
= 20

 (Linestyle)
= 0.5
= 1
= 1.5
= 2
= 2.5
= 5
= 10
= 15
= 20

2 4 6 8 10
Epoch

100

2 × 100

3 × 100

4 × 100

Tr
ai

ni
ng

 L
os

s (
lo

g
sc

al
e)

Grid search over (,) for SHANG on CIFAR10
 (Color)

= 0.5
= 0.1
= 0.01
= 0.05
= 0.005

 (Linestyle)
= 0.5
= 1
= 1.5
= 2
= 2.5
= 5
= 10
= 15
= 20
= 30

 (Linestyle)
= 0.5
= 1
= 1.5
= 2
= 2.5
= 5
= 10
= 15
= 20
= 30

2 4 6 8 10
Epoch

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s (
lo

g
sc

al
e)

Grid search over (,) for SHANG++ on MNIST
 (Color)

= 0.5
= 0.1
= 0.01
= 0.05
= 0.005

 (Linestyle)
= 0.5
= 1
= 1.5
= 2
= 2.5
= 5
= 10
= 15
= 20
= 30

 (Linestyle)
= 0.5
= 1
= 1.5
= 2
= 2.5
= 5
= 10
= 15
= 20
= 30

2 4 6 8 10
Epoch

100

2 × 100

3 × 100

4 × 100

Tr
ai

ni
ng

 L
os

s (
lo

g
sc

al
e)

Grid search over (,) for SHANG++ on CIFAR10
 (Color)

= 0.5
= 0.1
= 0.01
= 0.05
= 0.005

 (Linestyle)
= 0.5
= 1
= 1.5
= 2
= 2.5
= 5
= 10
= 15
= 20
= 30

 (Linestyle)
= 0.5
= 1
= 1.5
= 2
= 2.5
= 5
= 10
= 15
= 20
= 30

2 4 6 8 10
Epoch

10 2

10 1

Tr
ai

ni
ng

 L
os

s (
lo

g
sc

al
e)

Grid search over (m,) for SHANG++ on MNIST
m (Color)

m = 0.5
m = 1
m = 1.5
m = 2
m = 2.5
m = 3

 (Linestyle)
= 1
= 1.5
= 2

 (Linestyle)
= 1
= 1.5
= 2

2 4 6 8 10
Epoch

100

2 × 100

Tr
ai

ni
ng

 L
os

s (
lo

g
sc

al
e)

Grid search over (m,) for SHANG++ on CIFAR10
m (Color)

m = 0.5
m = 1
m = 1.5
m = 2
m = 2.5
m = 3

 (Linestyle)
= 2
= 5
= 10
= 15

 (Linestyle)
= 2
= 5
= 10
= 15

Figure A.7: Training loss (log scale) on the MNIST dataset using LeNet-5 (Left column) and CIFAR-
10 dataset using ResNet-34 (Right column) trained with batch size 50. The plots show results for
SHANG (top row) and SHANG++ (middle row) under different combinations of hyperparameters α ∈
{0.1, 0.5, 0.01, 0.05, 0.005} (different color) and γ ∈ {0.5, 1, 1.5, 2, 2.5, 5, 10, 15, 20} (different line
style). The left two figures show that α = 0.5 and γ ∈ {1, 1.5, 2} are relatively good parameter
choices. The plots in bottom row illustrate the performance of the SHANG++ method under different
combinations of γ ∈ {1, 1.5, 2} (on MNIST dataset), γ ∈ {2, 5, 10, 15} (on CIFAR-10 dataset) and
m ∈ {0.5, 1, 1.5, 2, 2.5, 3} with α fixed at 0.5. The differences among various m values are minor
for this task. In practice, we typically choose m = 1.5. When using a very small batch size, m can
be appropriately reduced.

driven Nesterov Accelerated Gradient (SHANG) method:
xk+1 − xk

αk
= vk − xk+1 − βkg(xk)

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
g(xk+1)

γk+1 − γk
αk

= µ− γk+1

(B.1)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In the strongly convex case, we fix γ = µ and use a constant step size α; in general case, we set
µ = 0 and allow both αk and γk to vary. The coupling βk > 0 depends on (αk, γk) and typically
scales as (1 + σ2)αk/γk. Consequently, SHANG reduces to a two-parameter scheme (α, β) in the
strongly convex regime and a three-parameter scheme (α, γ, β) otherwise. For practical tuning, tying
β to α and γ via β = α/γ yields an effective two-parameter (α, γ) algorithm. The SHANG method
for deep learning tasks is described in Algorithm 2.

Algorithm 2: SHANG for Deep Learning
Input: Objective function f , initial point x0, stepsize α, time scaling factor γ, iteration horizon

T .
n← 0, v0 ← x0, x1 ← x0

while k < T do
gk ← ∇f(xk) // gradient estimate
vk = vk−1 − α

γ gk

xk+1 = 1
1+αxk + α

1+αvk −
α

1+α
α
γ gk

k ← k + 1
end
return xT

Observe that SHANG is the m = 0 special case of SHANG++. Table B.1 summarizes the theoretical
convergence complexities and the number of tunable parameters required by leading stochastic
optimization methods under multiplicative noise. As shown, SHANG and SHANG++ achieve
optimal theoretical guarantees while significantly reducing hyperparameter complexity.

Table B.1: Assume f is L-smooth and g(x) satisfies the multiplicative noise scaling (MNS) condition
(see Definition 1.1) with constant σ ≥ 0. This table summarizes the iteration complexity of leading
first-order stochastic optimization algorithms under optimal parameter settings to reach ε-precision.

Algorithm Convex Strongly Convex

SGD (1 + σ2)Lε (1 + σ2)Lµ log(1ε)

(Hermant et al., 2025)

NAG
√

1+σ2

1−σ2

√
L
ε

√
1+σ2

1−σ2

√
L
µ log(1ε)

(Gupta et al., 2024)

AGNES
√

L(1+2σ2)(1+σ2)
ε (1 + σ2)

√
L
µ log(1ε)

(Gupta et al., 2024)

SNAG (1 + σ2)
√

L
ε (1 + σ2)

√
L
µ log(1ε)

(Hermant et al., 2025)

SHANG (1 + σ2)
√

L
ε (1+ σ2)

√
L
µ log(1ε)

SHANG++ (1 + σ2)
√

L
ε (1+ σ2)

√
L
µ log(1ε)

B.2 CONVERGENCE ANALYSIS FOR SHANG

Define the discrete Lyapunov function

E(z+k ; γk) = f(x+
k)− f(x⋆) +

γk
2
∥vk − x⋆∥2 (B.2)

where z+k = (x+
k , vk), zk = (xk, vk) and z∗ = (x⋆, x⋆). The following theorem establishes a decay

bound for E
[
E(z+k ; γk)

]
.

Theorem B.1. Let f ∈ Sµ,L, (xk, vk) be generated by SHANG (B.1). x+
k = xk − αkβkg(xk) is an

auxiliary variable. Assume g(x) (defined in (1.2)) satisfies the MNS condition with constant σ. Given
x+
0 = v0 = x0,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(1) When 0 < µ < L <∞, choose step size 0 < α ≤ 1
1+σ2

√
µ
L and β = (1+σ2)α

µ , we have

E
[
f(x+

k+1)− f(x⋆) +
µ

2
∥vk+1 − x⋆∥2

]
≤ (1 + α)−(k+1)Eµ0

(2) When µ = 0, choose αk = 2
k+1 , γk = α2

k(1 + σ2)2L and βk = (1+σ2)αk

γk
, we have

E
[
f(x+

k+1)− f(x⋆) +
γk+1

2
∥vk+1 − x⋆∥2

]
≤ 2

(k + 2)(k + 3)
Eγ0

0 = O(1

k2
)

where Eµ0 = f(x0)− f(x⋆) + µ
2 ∥x0 − x⋆∥2 and Eγ0

0 = f(x0)− f(x⋆) + γ0

2 ∥x0 − x⋆∥2.

When σ = 0, SHANG reduces to the deterministic HNAG method analyzed in Chen & Luo (2021).

Before presenting the proof of Theorem B.1, we first establish several auxiliary lemmas, beginning
with one that relies on conditional expectations under the MNS assumption.

Lemma B.1. Let (Ω,F , {Fk}k≥0,P) be a complete probability space with filtration {Fk}k≥0.
Suppose xk is generated by SHANG/SHANG++, g(xk) denotes the stochastic estimator of ∇f(xk),
then the following statements hold

1. E [g(xk) | Fk] = ∇f(xk).

2. E
[
∥g(xk)−∇f(xk)∥2

]
≤ σ2∥∇f(xk)∥2.

3. E [⟨g(xk),∇f(xk)⟩] = ∥∇f(xk)∥2

4. E
[
∥g(xk)∥2

]
≤ (1 + σ2)∥∇f(xk)∥2

Proof of Lemma B.1. First and second claim. This follows from Fubini’s theorem.

Third claim. For the third result, we observe that since f is a deterministic function, ∇f(xk) is
Fk-measurable, then, by the Theorem 8.14 in Klenke (2013), we have

E [⟨g(xk),∇f(xk)⟩] = E [E [⟨g(xk),∇f(xk)⟩ | Fk]] = E [⟨E [g(xk) | Fk] ,∇f(xk)⟩] = E
[
∥∇f(xk)∥2

]
Fourth claim. For the fourth result, using the previous results, we have

E
[
∥g(xk)∥2

]
= E

[
∥g(xk)−∇f(xk)∥2 + 2⟨g(xk),∇f(xk)⟩ − ∥∇f(xk)∥2

]
= E

[
∥g(xk)−∇f(xk)∥2

]
+ E [2⟨g(xk),∇f(xk)⟩]− ∥∇f(xk)∥2

≤ σ2∥∇f(xk)∥2 + 2∥∇f(xk)∥2 − ∥∇f(xk)∥2

= (1 + σ2)∥∇f(xk)∥2

Under the MNS assumption, this setup of auxiliary variable x+ yields the following descent lemma
for smooth objectives.

Lemma B.2. Suppose that x+
k = xk − ηg(xk), f ∈ C1,1L . Given 0 < η ≤ 1

L(1+σ2) , we have

E
[
f(x+

k)− f(x⋆)
]
≤ f(xk)− f(x⋆)− η

2
∥∇f(xk)∥2

Proof of Lemma B.2. Using the L-smoothness of the function f :

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
∥y − x∥2 ∀x, y ∈ Rd (B.3)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

and Lemma B.1, under the assumption of 0 < η ≤ 1
L(1+σ2) , we can obtain the desired result

E
[
f(x+

k)
]
≤ E

[
f(xk)− ⟨ηg(xk),∇f(xk)⟩+

L

2
∥ηg(xk)∥2

]
= f(xk)− E [⟨ηg(xk),∇f(xk)⟩] + E

[
L

2
∥ηg(xk)∥2

]
≤ f(xk)− η∥∇f(xk)∥2 +

Lη2(1 + σ2)

2
∥∇f(xk)∥2

= f(xk)− η(1− L(1 + σ2)η

2
)∥∇f(xk)∥2

≤ f(xk)−
η

2
∥∇f(xk)∥2

Define an auxiliary variable x+
k = xk − αkβkg(xk), substitue it into (Eq.B.1) yield:

xk+1 − x+
k

αk
= vk − xk+1

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
g(xk+1)

γk+1 − γk
αk

= µ− γk+1

(B.4)

The next lemma controls the decay of E
[
E(z+k+1; γk+1)

]
.

Lemma B.3. Let f ∈ Sµ,L with 0 ≤ µ < L <∞, Lyapunov function E is defined by (B.2). Given
(vk, x

+
k), (xk+1, vk+1) are generated by (B.4) and x+

k+1 = xk+1 − αk+1βk+1g(xk+1). Assume
0 < αk+1βk+1 = αkβk ≤ 1

L(1+σ2) , we have

(1 + αk)E
[
E(z+k+1; γk+1)

]
≤ E(z+k ; γk) + E

[
1

2
(
α2
k(1 + σ2)

γk
− (1 + αk)αkβk)∥∇f(xk+1)∥2 −

αkµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]

proof of Lemma B.3. By Lemma B.2, if 0 < αkβk = αk+1βk+1 ≤ 1
L(1+σ2) , we obtain the one-step

decrease

E
[
E(z+k+1; γk+1)

]
− E(z+k ; γk)

≤ E
[
E(zk+1; γk+1)− E(z+k ; γk)−

αkβk

2
∥∇f(xk+1)∥2

]
= E

[
E(zk+1; γk)− E(z+k ; γk) +

γk+1 − γk
2

∥vk+1 − x⋆∥2 − αkβk

2
∥∇f(xk+1)∥2

] (B.5)

Applying the Bregman divergence identity Chen & Teboulle (1993):

⟨∇f(y)−∇f(x), y − z⟩ = Df (z, y) +Df (y, x)−Df (z, x) ∀, x, y, z ∈ Rd (B.6)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

together with the representation E(z; γ) = DE(z, z
∗; γ) and the update rules into (B.5), we obtain

E
[
E(z+k+1; γk+1)

]
− E(z+k ; γk)

≤ E
[
⟨∇E(zk+1; γk), zk+1 − z+k ⟩ −DE(z

+
k , zk+1; γk) +

γk+1 − γk
2

∥vk+1 − x⋆∥2 − αkβk

2
∥∇f(xk+1)∥2

]
≤ E

[
⟨∇f(xk+1)−∇f(x⋆), xk+1 − x+

k ⟩+ γk⟨vk+1 − x⋆, vk+1 − vk⟩ −DE(z
+
k , zk+1; γk)

+
αk(µ− γk+1)

2
∥vk+1 − x⋆∥2 − αkβk

2
∥∇f(xk+1)∥2

]
= E [−αk⟨∇f(xk+1)−∇f(x⋆), xk+1 − x⋆⟩+ αk⟨∇f(xk+1), vk − x⋆⟩ − αk⟨g(xk+1), vk+1 − x⋆⟩

+αkµ⟨vk+1 − x⋆, xk+1 − vk+1⟩+
αk(µ− γk+1)

2
∥vk+1 − x⋆∥2 −DE(z

+
k , zk+1; γk)

−αkβk

2
∥∇f(xk+1)∥2

]
(B.7)

By the definition of the Bregman divergence and the µ-strong convexity of f , we have

⟨∇f(xk+1)−∇f(x⋆), xk+1 − x⋆⟩ = Df (xk+1, x
⋆) +Df (x

⋆, xk+1)

≥ Df (xk+1, x
⋆) +

µ

2
∥xk+1 − x⋆∥2

(B.8)

and

αkµ⟨vk+1 − x⋆, xk+1 − vk+1⟩ =
αkµ

2
(∥xk+1 − x⋆∥2 −∥xk+1 − vk+1∥2 −∥vk+1 − x⋆∥2) (B.9)

We denote Fk+1 = σ(x0, · · · , xk+1) the σ-algebra generated by the k + 1 first interates {xi}k+1
i=1

generated by SHANG. Since f is a deterministic function, vk − x⋆ is Fk+1-measurable, then

E [⟨g(xk+1), vk − x⋆⟩] = E [E [⟨g(xk+1), vk − x⋆⟩ | Fk+1]]

= E [⟨E [g(xk+1) | Fk+1] , vk − x⋆⟩]
= E [⟨∇f(xk+1), vk − x⋆⟩]

Now, we apply this result in reverse, and using Young Inequality, Cauchy-Schwarz Inequality to
obtain

E [αk⟨∇f(xk+1), vk − x⋆⟩ − αk⟨g(xk+1), vk+1 − x⋆⟩]
= E [αk⟨g(xk+1), vk − vk+1⟩]

≤ E
[
α2
k

2γk
∥g(xk+1)∥2 +

γk
2
∥vk − vk+1∥2

]
≤ E

[
α2
k(1 + σ2)

2γk
∥∇f(xk+1)∥2 +

γk
2
∥vk − vk+1∥2

] (B.10)

In addition, using the identity of squares (for v) and Bregman divergence indentity (B.6) (for x+), we
have the component form of

DE(z
+
k , zk+1; γk) = Df (x

+
k , xk+1) +

γk
2
∥vk − vk+1∥2 (B.11)

Substituting (B.8-B.11) back into (B.7), we can obtain

E
[
E(z+k+1; γk+1)

]
− E(z+k ; γk)

≤ E
[
−αkDf (xk+1, x

⋆) +
1

2
(
α2
k(1 + σ2)

γk
− αkβk)∥∇f(xk+1)∥2

−αkγk+1

2
∥vk+1 − x⋆∥2 − αkµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]
≤ E

[
−αkDf (x

+
k+1, x

⋆) +
1

2
(
α2
k(1 + σ2)

γk
− (1 + αk)αkβk)∥∇f(xk+1)∥2

−αkγk+1

2
∥vk+1 − x⋆∥2 − αkµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]
(B.12)

By moving E
[
E(z+k+1; γk+1) = Df (x

+
k+1, x

⋆) + γk+1

2 ∥vk+1 − x⋆∥2
]

to the left side of the inequal-
ity to obtain the desired result.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Now we begin to prove Theorem B.1.

Proof. (1). When 0 < µ < L <∞, set γ = µ. By Lemma B.3, if αβ ≤ 1
(1+σ2)L , we have

(1 + α)E
[
E(z+k+1;µ)

]
≤ E(z+k ;µ) + E

[
1

2
(
α2(1 + σ2)

µ
− (1 + α)αβ)∥∇f(xk+1)∥2 −

αµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]
(B.13)

Assume αβ = (1+σ2)α2

µ ≤ 1
(1+σ2)L , i.e., the step size satisfies 0 < α ≤ 1

1+σ2

√
µ
L to ensure that all

the coefficients of the terms on the right side of the inequality, except for E(z+k ;µ), are non-positive.
Thus,

E
[
E(z+k+1;µ)

]
≤ (1 + α)−1E(z+k ;µ) ≤ (1 + α)−(k+1)E(z0;µ) (B.14)

(2). When µ = 0. Assume αk = 2
k+1 , γk = α2

k(1 + σ2)2L and βk = (1+σ2)αk

γk
. Using Lemma B.3

to obtain

E
[
E(z+k+1; γk+1)

]
≤ k + 1

k + 3
E(z+k ; γk) ≤

2

(k + 2)(k + 3)
E(z0; γ0) (B.15)

Corollary B.1. Under the setting of Theorem B.1, SHANG achieves an ε-precision solution within
the following number of iterations:

(1) When µ = 0, with αk = 2
k+1 , γk = α2

k(1 + σ2)2L and βk = (1+σ2)αk

γk
,

k ≥
√

2(f(x0)− f(x⋆) + 2(1 + σ2)2L∥x0 − x⋆∥2)
ε

(2) When 0 < µ < L <∞, with α = 1
1+σ2

√
µ
L and β = (1+σ2)α

µ ,

k ≥ (1 + σ2)

√
L

µ
log

(
f(x0)− f(x⋆) + µ

2 ∥x0 − x⋆∥2

ε

)
.

Corollary B.2. In the setting of Theorem B.1, f(x+
k)

a.s.→ f(x⋆).

proof of Corollary B.2. We assume that all the conditions of Theorem B.1 have been met, we have

E
[
| f(x+

k)− f(x⋆) |
]
= E

[
f(x+

k)− f(x⋆)
]
≤ Cqk

holds for some positive constant C. Here 0 < q < 1 is the decay factor. In fact, q = (1+ 1
1+σ2

√
µ
L)

−1

in strongly convex cases and q = 2
(k+2)(k+3) in convex cases. Since

P
(

lim
k→∞

f(x+
k) ̸= f(x⋆)

)
= P

(
lim sup
k→∞

| f(x+
k)− f(x⋆) |> 0

)
= P

(∞⋃
n=1

lim sup
k→∞

| f(x+
k)− f(x⋆) |> 1

n

)

≤
∞∑

n=1

P
(
lim sup
k→∞

| f(x+
k)− f(x⋆) |> 1

n

)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

For any fixed ε = 1
n > 0 and for any N ∈ N, we have

P
(
lim sup
k→∞

| f(x+
k)− f(x⋆) |> ε

)
≤ P

(
∃k ≥ N s.t. | f(x+

k)− f(x⋆) |> ε
)

= P

 ⋃
k≥N

{| f(x+
k)− f(x⋆) |> ε}


≤
∑
k≥N

P
(
| f(x+

k)− f(x⋆) |> ε
)

≤
∑
k≥N

E
[
| f(x+

k)− f(x⋆) |
]

ε

≤ C

ε

∑
k≥N

qk

≤ C

ε

qN

1− q

where in the penultimate step we use Markov’s inequality. For a fixed ε = 1/n, the inequality above
holds for any N . Letting N →∞, the right-hand side converges to 0, hence the probability on the
left-hand side is zero. Since{

lim
k→∞

f(x+
k) ̸= f(x⋆)

}
=

∞⋃
n=1

{
lim sup
k→∞

|f(x+
k)− f(x⋆)| ≥ 1/n

}
,

taking a countable union over all ε = 1/n yields P(limk→∞ f(x+
k) ̸= f(x⋆)) = 0.

C SHANG++

C.1 PROOF OF THEOREM 2.1

Setting γ = µ, SHANG++ (2.4) can be rewritten in the following equivalent form:

xk+1 − x+
k

α̃
= vk − xk+1

vk+1 − vk
α

= xk+1 − vk+1 −
1

µ
g(xk+1)

x+
k+1 = xk+1 − α̃βg(xk+1)

(C.1)

where α̃ = α
1+mα or α = α̃

1−mα̃ .

For this equivalent form of SHANG++, we obtain the following convergence result.

Theorem C.1. Let f ∈ Sµ,L. Given x+
0 = v0 = x0, suppose (xk, vk) are generated by (C.1) with

g(xk) defined in (1.2) and MNS (1.3) holds. Given 0 ≤ m ≤ 1, if the step size satisfies α = α̃
1−mα̃

with 0 < α̃ ≤ 1
1+σ2

√
µ
L and β = α̃

µ/(1+σ2) , then

E
[
f(x+

k)− f(x⋆) +
µ(1 + α)

2(1 +mα)
∥vk − x⋆∥2

]
≤ (1+α̃)−k

(
f(x0)−f(x⋆)+

µ(1 + α)

2(1 +mα)
∥v0−x⋆∥2

)
.

Define the discrete Lyapunov function

E(z+k ;µ) = f(x+
k)− f(x⋆) +

µ(1 + α)

2(1 +mα)
∥vk − x⋆∥2 (C.2)

The next lemma controls the decay of E
[
E(z+k+1;µ)

]
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Lemma C.1. Let f ∈ Sµ,L with 0 < µ < L <∞. Lyapunov function E is defined by (C.2). Given
(x+

k , xk, vk), (x+
k+1, xk+1, vk+1) are generated by (C.1). Assume 0 < α̃β ≤ 1

L(1+σ2) , we have

(1 + (1 +mα)α̃)E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1−m)αα̃(f(x+

k+1)− f(x⋆))− α̃µ

2
∥vk − xk+1∥2

−Df (x
+
k , xk+1;µ) +

(α̃α(1 + σ2)

2µ
− α̃β

2
(1 + (1 + α)α̃)

)
∥∇f(xk+1)∥2

]

proof of Lemma C.1. By Lemma B.2, if 0 < α̃β ≤ 1
L(1+σ2) , we obtain the one-step decrease

E
[
E(z+k+1;µ)

]
− E(z+k ;µ) ≤ E

[
E(zk+1;µ)− E(z+k ;µ)−

α̃β

2
∥∇f(xk+1)∥2

]
(C.3)

Expand it yields

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
⟨∇E(zk+1;µ), zk+1 − z+k ⟩ −DE(z

+
k , zk+1;µ)−

α̃β

2
∥∇f(xk+1)∥2

]
= E

[
⟨∇f(xk+1)−∇f(x⋆), xk+1 − x+

k ⟩+
µ(1 + α)

(1 +mα)
⟨vk+1 − x⋆, vk+1 − vk⟩ −DE(z

+
k , zk+1;µ)

− α̃β

2
∥∇f(xk+1)∥2

]
= E

[
α̃⟨∇f(xk+1)−∇f(x⋆), vk − xk+1⟩+ α

µ(1 + α)

(1 +mα)
⟨vk+1 − x⋆, xk+1 − vk+1 −

1

µ
g(xk+1)⟩

−DE(z
+
k , zk+1;µ)−

α̃β

2
∥∇f(xk+1)∥2

]
= E [−α̃⟨∇f(xk+1)−∇f(x⋆), xk+1 − x⋆⟩+ (1 + α)α̃⟨∇g(xk+1), vk − vk+1⟩ − αα̃⟨g(xk+1), vk − x⋆⟩

+µ(1 + α)α̃⟨vk+1 − x⋆, xk+1 − vk+1⟩ −DE(z
+
k , zk+1;µ)−

α̃β

2
∥∇f(xk+1)∥2

]
(C.4)

where in the last step, we rewrote the coefficient as α µ(1+α)
(1+mα) = µ(1 + α)α̃, and use

E [⟨∇f(xk+1), vk − x⋆⟩] = E [⟨g(xk+1), vk − x⋆⟩].
Using (B.8, B.9) and B.11), we further bound (C.4) as

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

= E
[
−α̃Df (xk+1, x

⋆)− µ(1 + α)α̃

2
∥vk+1 − x⋆∥2 − µ(1 + α)α̃

2
∥vk+1 − xk+1∥2 +

µαα̃

2
∥xk+1 − x⋆∥2

−Df (x
+
k , xk+1;µ)−

µ(1 + α)

2(1 +mα)
∥vk − vk+1∥2 −

α̃β

2
∥∇f(xk+1)∥2

+(1 + α)α̃⟨∇g(xk+1), vk − vk+1⟩ − αα̃⟨g(xk+1), vk − x⋆⟩]
(C.5)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

For the terms in last line, using the update for vk+1 in (C.1) yields the following bound.

E [(1 + α)α̃⟨g(xk+1), vk − vk+1⟩]

= E
[
(1 + α)α̃αµ⟨ 1

µ
g(xk+1),

vk − vk+1

α
⟩
]

= E
[
(1 + α)α̃αµ

2

(
∥ 1
µ
g(xk+1)∥2 + ∥

vk − vk+1

α
∥2 − ∥vk − vk+1

α
− 1

µ
g(xk+1)∥2

)]
= E

[
(1 + α)α̃α

2µ
∥g(xk+1)∥2 +

(1 + α)α̃µ

2α
∥vk − vk+1∥2 −

(1 + α)α̃αµ

2
∥xk+1 − vk+1∥2

]
≤ E

[
α̃α(1 + σ2)

2µ
∥∇f(xk+1)∥2 +

α2α̃

2µ
∥g(xk+1)∥2 +

(1 + α)µ

2(1 +mα)
∥vk − vk+1∥2

− (1 + α)α̃αµ

2
∥xk+1 − vk+1∥2

]
(C.6)

where in the last step, we split the coefficient of ∥g(xk+1)∥2 into α̃α
2µ and α2α̃

2µ , and then use
Lemma B.1 to control the first term.

By the update for vk+1, we have vk − v⋆ = (1+ α)(vk+1 − xk+1) + (xk+1 − x⋆) + α
µg(xk+1) and

vk − xk+1 = (1 + α)(vk+1 − xk+1) +
α
µg(xk+1), then

E [−αα̃⟨g(xk+1), vk − v⋆⟩]

= E
[
−αα̃⟨g(xk+1), (1 + α)(vk+1 − xk+1) + (xk+1 − x⋆) +

α

µ
g(xk+1)⟩

]
= E

[
−α̃µ⟨α

µ
g(xk+1), (1 + α)(vk+1 − xk+1)⟩ − αα̃⟨g(xk+1), xk+1 − x⋆⟩ − α2α̃

µ
∥g(xk+1)∥2

]
= E

[
α̃µ

2

(
− ∥α

µ
g(xk+1) + (1 + α)(vk+1 − xk+1)∥2 + ∥

α

µ
g(xk+1)∥2 + ∥(1 + α)(vk+1 − xk+1)∥2

)
−αα̃⟨∇f(xk+1), xk+1 − x⋆⟩ − α2α̃

µ
∥g(xk+1)∥2

]
= E

[
− α̃µ

2
∥vk − xk+1∥2 +

α2α̃

2µ
∥g(xk+1)∥2 +

α̃(1 + α)2µ

2
∥vk+1 − xk+1∥2

−αα̃(Df (xk+1, x
⋆) +Df (x

⋆, xk+1))−
α2α̃

µ
∥g(xk+1)∥2

]
≤ E

[
− α̃µ

2
∥vk − xk+1∥2 −

α2α̃

2µ
∥g(xk+1)∥2 +

α̃(1 + α)2µ

2
∥vk+1 − xk+1∥2

−αα̃Df (xk+1, x
⋆)− αα̃µ

2
∥xk+1 − x⋆∥2

]
(C.7)

Substituating (C.6) and (C.7) back into (C.5), we have

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

= E
[
−(1 + α)α̃Df (xk+1, x

⋆)− µ(1 + α)α̃

2
∥vk+1 − x⋆∥2 − α̃µ

2
∥vk − xk+1∥2

−Df (x
+
k , xk+1;µ) +

(α̃α(1 + σ2)

2µ
− α̃β

2

)
∥∇f(xk+1)∥2

]
= E

[
−(1 + α)α̃(f(xk+1)− f(x⋆))− µ(1 + α)α̃

2
∥vk+1 − x⋆∥2 − α̃µ

2
∥vk − xk+1∥2

−Df (x
+
k , xk+1;µ) +

(α̃α(1 + σ2)

2µ
− α̃β

2

)
∥∇f(xk+1)∥2

]
(C.8)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Using Lemma B.2 to obtain

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1 + α)α̃(f(x+

k+1)− f(x⋆))− α̃
(1 + α)µ

2
∥vk+1 − x⋆∥2 − α̃µ

2
∥vk − xk+1∥2

−Df (x
+
k , xk+1;µ) +

(α̃α(1 + σ2)

2µ
− α̃β

2
(1 + (1 + α)α̃)

)
∥∇f(xk+1)∥2

]
= E

[
−(1 +mα)α̃E(z+k+1;µ)− (1−m)αα̃(f(x+

k+1)− f(x⋆))− α̃µ

2
∥vk − xk+1∥2

−Df (x
+
k , xk+1;µ) +

(α̃α(1 + σ2)

2µ
− α̃β

2
(1 + (1 + α)α̃)

)
∥∇f(xk+1)∥2

]
(C.9)

By moving E
[
E(z+k+1;µ)

]
to the left side of the inequality to obtain the desired result.

Now we begin to prove Theorem C.1.

Proof. Under the parameter choices 0 < α̃ ≤ 1
1+σ2

√
µ
L and β = α̃(1+σ2)

µ , we have α̃β ≤ 1
(1+σ2)L .

According to Lemma C.1, in order to obtain the decay of E
[
E(z+k+1;µ)

]
, we need the last term

E
[(α̃α(1+σ2)

2µ − α̃β
2 (1 + (1 + α)α̃)

)
∥∇f(xk+1)∥2

]
to be non-positive.

Using α = α̃
1−mα̃ , we have

α̃α(1 + σ2)

2µ
=

α̃2(1 + σ2)

2µ(1−mα̃)
=

α̃β

2(1−mα̃)

and

1

1−mα̃
− 1− (1 + α)α̃ =

1

1−mα̃
− 1− (1 +

α̃

1−mα̃
)α̃ =

(m− 1)α̃(1 + α̃)

1−mα̃
≤ 0

holds when 0 ≤ m ≤ 1.

Therefore, we have

(1 + (1 +mα)α̃)E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1−m)αα̃(f(x+

k+1)− f(x⋆))− α̃µ

2
∥vk − xk+1∥2 −Df (x

+
k , xk+1;µ)

] (C.10)

which implies that

E
[
E(z+k+1;µ)

]
≤ (1 + (1 +mα)α̃)−1E

[
E(z+k ;µ)

]
≤ (1 + (1 +mα)α̃)−k−1E(z0;µ)

Corollary C.1. Under the setting of Theorem C.1, choose α̃ = 1
1+σ2

√
µ
L , β = (1+σ2)α̃

µ , and
α = α̃

1−mα̃ with 0 ≤ m ≤ 1, SHANG++ guarantees an ε-precision solution within the following
number of iterations:

k ≥ (1 + σ2)

√
L

µ
log

(
f(x0)− f(x⋆) + µ

2 ∥v0 − x⋆∥2

ε

)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.2 PROOF OF THEOREM 2.2

To facilitate analysis, we define an auxiliary time-scaling factor γ̃k = γk

1+mαk
. For any m ≥ 0, setting

αk = 2
k+1 , α̃k = αk

1+mαk
= 2

k+1+2m and γk = αkα̃k(1 + σ2)2L, we have

γ̃k+1 − γ̃k
α̃k

=
1 +mαk

αk

(α2
k+1(1 + σ2)2L

(1 +mαk+1)2
− α2

k(1 + σ2)2L

(1 +mαk)2
)

=
k + 1 + 2m

2

(4(1 + σ2)2L

(k + 2 + 2m)2
− 4(1 + σ2)2L

(k + 1 + 2m)2
)

=
k + 1 + 2m

2

(
1− (k + 2 + 2m)2

(k + 1 + 2m)2
)
γ̃k+1

= −(1 + 1

2(k + 1 + 2m)
)γ̃k+1

≤ −γ̃k+1

(C.11)

Define x+
k = xk− α̃kβkg(xk), we can obtain the following equivalent form of SHANG++ for convex

problems:

xk+1 − x+
k

α̃k
= vk − xk+1

vk+1 − vk
αk

= − 1

γk
g(xk+1)

γ̃k+1 − γ̃k
α̃k

≤ −γ̃k+1

(C.12)

Denote the discrete Lyapunov function by

E(z+k ; γ̃k) = f(x+
k)− f(x⋆) +

γ̃k
2
∥vk − x⋆∥2 (C.13)

The following Lemma establishes a decay bound for E
[
E(z+k ; γ̃k)

]
.

Lemma C.2. Let f ∈ S0,L, Lyapunov function E is defined by (C.13). Given (xk, vk, x
+
k),

(xk+1, vk+1) are generated by (C.12) and x+
k+1 = xk+1 − α̃kβkg(xk+1). Assume 0 < α̃kβk =

α̃k+1βk+1 ≤ 1
L(1+σ2) , we have

(1 + α̃k)E
[
E(z+k+1; γ̃k+1)

]
≤ E(z+k ; γ̃k) + E

[
−α̃kDf (x

⋆, xk+1)−Df (x
+
k , xk+1) +

1

2
(
α̃2
k(1 + σ2)

γ̃k
− (1 + α̃k)α̃kβk)∥∇f(xk+1)∥2

]

proof of Lemma C.2. By Lemma B.2, if 0 < α̃kβk = α̃k+1βk+1 ≤ 1
L(1+σ2) , we obtain the one-step

decrease

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k)

≤ E
[
E(zk+1; γ̃k+1)− E(z+k ; γ̃k)−

α̃kβk

2
∥∇f(xk+1)∥2

]
= E

[
E(zk+1; γ̃k)− E(z+k ; γ̃k) +

γ̃k+1 − γ̃k
2

∥vk+1 − x⋆∥2 − α̃kβk

2
∥∇f(xk+1)∥2

] (C.14)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Expand the above equation and use the update to obtain

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k)

≤ E
[
⟨∇E(zk+1; γ̃k), zk+1 − z+k ⟩ −DE(z

+
k , zk+1; γ̃k) +

γ̃k+1 − γ̃k
2

∥vk+1 − x⋆∥2 − α̃kβk

2
∥∇f(xk+1)∥2

]
≤ E

[
⟨∇f(xk+1)−∇f(x⋆), xk+1 − x+

k ⟩+ γ̃k⟨vk+1 − x⋆, vk+1 − vk⟩ −DE(z
+
k , zk+1; γ̃k)

− α̃kγ̃k+1

2
∥vk+1 − x⋆∥2 − α̃kβk

2
∥∇f(xk+1)∥2

]
= E

[
−α̃k⟨∇f(xk+1)−∇f(x⋆), xk+1 − x⋆⟩+ α̃k⟨∇f(xk+1), vk − x⋆⟩ − αkγ̃k

γk
⟨g(xk+1), vk+1 − x⋆⟩

− α̃kγ̃k+1

2
∥vk+1 − x⋆∥2 −DE(z

+
k , zk+1; γ̃k)−

α̃kβk

2
∥∇f(xk+1)∥2

]
(C.15)

Using Young Inequality, Cauchy-Schwarz Inequality and αkγ̃k

γk
= α̃k to obtain

E
[
α̃k⟨∇f(xk+1), vk − x⋆⟩ − αkγ̃k

γk
⟨g(xk+1), vk+1 − x⋆⟩

]
= E [α̃k⟨g(xk+1), vk − vk+1⟩]

≤ E
[
α̃2
k

2γ̃k
∥g(xk+1)∥2 +

γ̃k
2
∥vk − vk+1∥2

]
≤ E

[
α̃2
k(1 + σ2)

2γ̃k
∥∇f(xk+1)∥2 +

γ̃k
2
∥vk − vk+1∥2

]
(C.16)

Substituting (B.11) and (C.16) back into (C.15), we can obtain

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k)

≤ E
[
−α̃kDf (xk+1, x

⋆)− α̃kDf (x
⋆, xk+1) +

1

2
(
α̃2
k(1 + σ2)

γ̃k
− α̃kβk)∥∇f(xk+1)∥2

− α̃kγ̃k+1

2
∥vk+1 − x⋆∥2 −Df (x

+
k , xk+1)

]
≤ E

[
−α̃kE(z+k+1; γ̃k+1)− α̃kDf (x

⋆, xk+1) +
1

2
(
α̃2
k(1 + σ2)

γ̃k
− (1 + α̃k)α̃kβk)∥∇f(xk+1)∥2

−Df (x
+
k , xk+1)

]
(C.17)

By moving E
[
E(z+k+1; γ̃k+1)

]
to the left side of the inequality to obtain the desired result.

Now we prove the theorem 2.2.

Proof. Assume αk = 2
k+1 , γk = αkα̃k(1 + σ2)2L and βk = (1+σ2)αk

γk
. Then

α̃kβk =
(1 + σ2)α̃kαk

γk
=

(1 + σ2)α̃2
k

γ̃k
(C.18)

Using Lemma C.2 to obtain

E
[
E(z+k+1; γ̃k+1)

]
≤ (1 + α̃k)

−1E(z+k ; γ̃k) ≤ Πk
i=0(1 + α̃i)

−1E(z+0 ; γ̃0) (C.19)

Since α̃k = 2
k+1+2m , then

Πk
i=0(1 + α̃i)

−1 = Πk
i=0

i+ 1 + 2m

i+ 3 + 2m
=

(1 + 2m)(2 + 2m)

(k + 3 + 2m)(k + 2 + 2m)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Corollary C.2. Under the setting of Theorem 2.2, choose m ≥ 0, αk = 2
k+1 , α̃k = αk

1+mαk
,

γk = αkα̃k(1 + σ2)2L and βk = (1+σ2)αk

γk
, SHANG++ guarantees to reach an ε-precision at the

following interations:

k ≥

√
(1 + 2m)(2 + 2m)(f(x0)− f(x⋆) +

2(1 + σ2)2L

(1 + 2m)2
∥x0 − x⋆∥2)/ε

Corollary C.3. Under the setting of Theorem 2.2 and C.1, f(x+
k)

a.s.→ f(x⋆).

The proof is fully analogous to that of Corollary B.2, with the only difference being the decay-rate
parameter q in the final step.

D VARIANCE DECAY ANALYSIS

We study the variance decay of the Lyapunov energy (B.2)

Ek := E(z+k ; γ̃k) = f(x+
k)− f(x⋆) +

γ̃k
2
∥vk − x⋆∥2

under the unified stochastic model of SHANG and SHANG++. Throughout we work on a probability
space (Ω,F ,P) with the post-update filtration Fk := σ(x0, v0, ζ0, . . . , ζk), where each ζk collects
the randomness used to form the stochastic gradient at step k. We write gk := g(xk, ζk) and
gk+1 := g(xk+1, ζk+1).

Assumptions. We make the following standard assumptions.

A1. Smooth convexity. f ∈ Sµ,L with 0 ≤ µ < L <∞.
A2. Unbiasedness at the query point. E[gk+1 | Fk] = ∇f(xk+1). Equivalently, with ξk+1 :=

gk+1 −∇f(xk+1), E[ξk+1 | Fk] = 0.
A3. Multiplicative noise scaling (MNS). E[∥ξk+1∥2 | Fk] ≤ σ2∥∇f(xk+1)∥2.
A4. Bounded conditional kurtosis. There exists χ ≥ 1 such that E[∥ξk+1∥4 | Fk] ≤

χ
(
E[∥ξk+1∥2 | Fk]

)2
(e.g., χ = 3 for Gaussian noise).

Unified stochastic model. The updates for SHANG/SHANG++ can be written as

x+
k = xk − α̃kβk gk

xk+1 − x+
k

α̃k
= vk − xk+1

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
gk+1

γk+1 − γk
αk

= µ− γk+1.

(D.1)

where αk > 0, γk > 0, and we introduce α̃k = αk

1+mαk
and γ̃k = γk

1+mαk
with m ≥ 0. Equivalently

(and crucial for variance analysis), (x+
k+1, vk+1) are affine in the fresh gradient gk+1 while xk+1

depends only on past randomness:

x+
k+1 =

1

1 + α̃k
x+
k +

α̃k

1 + α̃k
vk − α̃k+1βk+1gk+1 = xk+1 − α̃k+1βk+1gk+1,

vk+1 =
αkµ

(γk + αkµ)(1 + α̃k)
x+
k +

(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
vk −

αk

γk + αkµ
gk+1

γk+1 =
αk

1 + αk
µ+

1

1 + αk
γk

(D.2)
By the filtration choice, xk+1 is Fk-measurable and gk+1 uses fresh randomness ζk+1; hence with
ξk+1 := gk+1 −∇f(xk+1) we have E[ξk+1 | Fk] = 0. This linear structure will allow us to bound
the one-step fluctuation Ek+1 − E[Ek+1 | Fk] and to propagate variance.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Lemma D.1 (One-step fluctuation). There exist explicit constants Ak, Bk, Ck ≥ 0 (functions of
αk, α̃k, γ̃k, µ, L) such that, with ξk+1,∣∣Ek+1 − E[Ek+1 | Fk]

∣∣ ≤ Ak

√
Ek∥ξk+1∥+Bk∥ξk+1∥2 + CkEk

and
Ak =

(
Bx(1 +BxL)

√
2Lc1 +Bvγ̃k+1(c2 +Bv

√
2Lc1(α̃k, γ̃k, L))

)
Bk =

LB2
x + γ̃k+1B

2
v

2

Ck = (LB2
x + γ̃k+1B

2
v)Lc1(α̃k, γ̃k, L)σ

2

where c1 = max{ 1
1+α̃k

, α̃k

1+α̃k

L
γ̃k
}, c2 = max{ αk

√
2µ

(γk+αkµ)(1+α̃k)
,
(

γk

γk+αkµ
+ α̃kαkµ

(γk+αkµ)(1+α̃k)

)√
2
γ̃k
}

when µ > 0 and c2 =
√

2
γ̃k

when µ = 0. Bx = α̃k+1βk+1 and Bv = αk

γk+αkµ
.

proof of Lemma D.1. Using ξk+1 := gk+1 − ∇f(xk+1), we can rewrite the updates of x+
k+1 and

vk+1 as
x+
k+1 = Uk − α̃k+1βk+1∇f(xk+1)− α̃k+1βk+1ξk+1 = Ûk −Bxξk+1

vk+1 = Vk −
αk

γk + αkµ
∇f(xk+1)−

αk

γk + αkµ
ξk+1 = V̂k −Bvξk+1

(D.3)

where Uk = 1
1+α̃k

x+
k + α̃k

1+α̃k
vk, Vk = αkµ

(γk+αkµ)(1+α̃k)
x+
k +

(
γk

γk+αkµ
+ α̃kαkµ

(γk+αkµ)(1+α̃k)

)
vk,

Ûk = Uk − Bx∇f(xk+1) and V̂k = Vk − Bv∇f(xk+1). Bx = α̃k+1βk+1 and Bv = αk

γk+αkµ
are

positive constants. It should be noted that Uk, Ûk, Vk and V̂k are measurable with respect to Fk.

Let’s first focus on the left part of Ek+1. Expanding f(x+
k+1) = f(Ûk −Bxξk+1) at point Ûk using

Taylor series gives

f(Ûk −Bxξk+1) = f(Ûk)− ⟨∇f(Ûk), Bxξk+1⟩+ r(Ûk, ξk+1) (D.4)

where

| r(Ûk, ξk+1) |=|
∫ 1

0

⟨∇f(Ûk−tBxξk+1)−∇f(Ûk),−Bxξk+1⟩dt |≤
L

2
∥Bxξk+1∥2 =

LB2
x

2
∥ξk+1∥2

(D.5)
Then

| f(x+
k+1)− f(x⋆)− E

[
f(x+

k+1)− f(x⋆) | Fk

]
|

=| f(Ûk −Bxξk+1)− f(x⋆)− E
[
f(Ûk −Bxξk+1)− f(x⋆) | Fk

]
|

=| −⟨∇f(Ûk), Bxξk+1⟩+ r(Ûk, ξk+1)− E
[
r(Ûk, ξk+1) | Fk

]
|

≤ Bx∥∇f(Ûk)∥ · ∥ξk+1∥+
LB2

x

2
∥ξk+1∥2 +

LB2
x

2
E
[
∥ξk+1∥2 | Fk

]
(D.6)

where the last step uses Cauchy-Schwarz inequality and (D.5).

Since Ûk = Uk − Bx∇f(xk+1) = xk+1 − Bx∇f(xk+1) and xk+1 = 1
1+α̃k

x+
k + α̃k

1+α̃k
vk, by

triangle inequality and smooth convexity of f , we have

∥∇f(Ûk)∥ ≤ ∥∇f(Ûk)−∇f(xk+1)∥+ ∥∇f(xk+1)∥
≤ L∥Ûk − xk+1∥+ ∥∇f(xk+1)∥
= (1 +BxL)∥∇f(xk+1)∥

≤ (1 +BxL)
√
2L
√
f(xk+1)− f(x⋆)

≤ (1 +BxL)
√
2L

√
1

1 + α̃k
(f(x+

k)− f(x⋆)) +
α̃k

1 + α̃k
(f(vk)− f(x⋆))

≤ (1 +BxL)
√
2L

√
1

1 + α̃k
(f(x+

k)− f(x⋆)) +
α̃k

1 + α̃k

L

2
∥vk − x⋆∥2

≤ (1 +BxL)
√

2Lc1(α̃k, γ̃k, L)
√
Ek

(D.7)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

where c1(α̃k, γ̃k, L) = max{ 1
1+α̃k

, α̃k

1+α̃k

L
γ̃k
}.

On the other hand,

LB2
x

2
E
[
∥ξk+1∥2 | Fk

]
≤ LB2

xσ
2

2
∥∇f(xk+1)∥2 ≤ L2B2

xσ
2c1(α̃k, γ̃k, L)Ek (D.8)

Substituting (D.7) and (D.8) back into (D.6), we have

| f(x+
k+1)− f(x⋆)− E

[
f(x+

k+1)− f(x⋆) | Fk

]
|

≤ Bx(1 +BxL)
√
2Lc1(α̃k, γ̃k, L)

√
Ek∥ξk+1∥+

LB2
x

2
∥ξk+1∥2 + L2B2

xσ
2c1(α̃k, γ̃k, L))Ek

(D.9)

For the middle part of Ek+1, since

γ̃k+1

2
∥vk+1 − x⋆∥2 =

γ̃k+1

2
∥V̂k − x⋆∥2 + γ̃k+1B

2
v

2
∥ξk+1∥2 − γ̃k+1⟨V̂k − x⋆, Bvξk+1⟩, (D.10)

we have

| γ̃k+1

2
∥vk+1 − x⋆∥2 − E

[
γ̃k+1

2
∥vk+1 − x⋆∥2 | Fk

]
|

=| −γ̃k+1⟨V̂k − x⋆, Bvξk+1⟩+
γ̃k+1B

2
v

2

(
∥ξk+1∥2 − E

[
∥ξk+1∥2 | Fk

])
|

≤ Bvγ̃k+1∥V̂k − x⋆∥ · ∥ξk+1∥+
γ̃k+1B

2
v

2
∥ξk+1∥2 +

γ̃k+1B
2
v

2
E
[
∥ξk+1∥2 | Fk

]
(D.11)

Using triangle inequality and convexity of ∥ · ∥, we have

∥V̂k − x⋆∥
= ∥Vk − x⋆ −Bv∇f(xk+1)∥

≤ ∥ αkµ

(γk + αkµ)(1 + α̃k)
x+
k +

(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
vk − x⋆∥+Bv∥∇f(xk+1)∥

≤ αkµ

(γk + αkµ)(1 + α̃k)
∥x+

k − x⋆∥+
(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
∥vk − x⋆∥+Bv∥∇f(xk+1)∥

≤ αkµ

(γk + αkµ)(1 + α̃k)
∥x+

k − x⋆∥+
(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
∥vk − x⋆∥

+Bv

√
2Lc1(α̃k, γ̃k, L)

√
Ek

(D.12)

Next, we will consider two cases.

Case 1: µ > 0. Using the strong convexity of f , we have

∥V̂k − x⋆∥

≤ αk

√
2µ

(γk + αkµ)(1 + α̃k)

√
f(x+

k)− f(x⋆) +
(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)√ 2

γ̃k

√
γ̃k
2
∥vk − x⋆∥

+Bv

√
2Lc1(α̃k, γ̃k, L)

√
Ek

≤
(
c2(α̃, µ, γk) +Bv

√
2Lc1(α̃k, γ̃k, L)

)√
Ek

(D.13)
where c2(α̃, µ, γk) = max{ αk

√
2µ

(γk+αkµ)(1+α̃k)
,
(

γk

γk+αkµ
+ α̃kαkµ

(γk+αkµ)(1+α̃k)

)√
2
γ̃k
}. Thus,

| γ̃k+1

2
∥vk+1 − x⋆∥2 − E

[
γ̃k+1

2
∥vk+1 − x⋆∥2 | Fk

]
|

≤ Bvγ̃k+1

(
c2(α̃, µ, γk) +Bv

√
2Lc1(α̃, µ, L)

)√
Ek∥ξk+1∥+

γ̃k+1B
2
v

2
∥ξk+1∥2 + γ̃k+1B

2
vLσ

2c1(α̃k, γ̃k, L)Ek
(D.14)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Combining (D.9) and (D.14), we have

| Ek+1 − E [Ek+1 | Fk] |

≤
(
Bx(1 +BxL)

√
2Lc1(α̃k, γ̃k, L) +Bvγ̃k+1(c2(α̃, µ, γk) +Bv

√
2Lc1(α̃k, γ̃k, L))

)√
Ek∥ξk+1∥

+
LB2

x + γ̃k+1B
2
v

2
∥ξk+1∥2 + (LB2

x + γ̃k+1B
2
v)Lc1(α̃k, γ̃k, L)σ

2Ek
(D.15)

Case 2: µ = 0.
∥V̂k − x⋆∥ ≤ ∥vk − x⋆∥+Bv

√
2Lc1(α̃k, γ̃k, L)

√
Ek

≤ (

√
2

γ̃k
+Bv

√
2Lc1(α̃k, γ̃k, L))

√
Ek

(D.16)

Thus,

| γ̃k+1

2
∥vk+1 − x⋆∥2 − E

[
γ̃k+1

2
∥vk+1 − x⋆∥2 | Fk

]
|

≤ Bvγ̃k+1(

√
2

γ̃k
+Bv

√
2Lc1(α̃k, γ̃k, L))

√
Ek∥ξk+1∥+

γ̃k+1B
2
v

2
∥ξk+1∥2 + γ̃k+1B

2
vLσ

2c1(α̃k, γ̃k, L)Ek
(D.17)

Combining (D.9) and (D.17), we have

| Ek+1 − E [Ek+1 | Fk] |

≤
(
Bx(1 +BxL)

√
2Lc1(α̃k, γ̃k, L) +Bvγ̃k+1(

√
2

γ̃k
+Bv

√
2Lc1(α̃k, γ̃k, L))

)√
Ek∥ξk+1∥

+
LB2

x + γ̃k+1B
2
v

2
∥ξk+1∥2 + (LB2

x + γ̃k+1B
2
v)Lc1(α̃k, γ̃k, L)σ

2Ek
(D.18)

Proposition D.1 (Conditional variance bound). Let Sk := 2Lσ2c1(α̃k, γ̃k, L) with c1(α̃k, γ̃k, L) =
max{ 1

1+α̃k
, α̃k

1+α̃k

L
γ̃k
}. Under assumptions (A2)–(A4) and the setting of Lemma D.1 (In particular,

stepsizes and hence Ak, Bk, Ck, Sk are Fk-measurable),

Var(Ek+1 | Fk) ≤ K2,kE2k , K2,k = 3
(
A2

kSk + χB2
kS

2
k + C2

k

)
proof of Proposition D.1. By the definition of conditional variance,

Var(Ek+1 | Fk) = E
[
(Ek+1 − E [Ek+1 | Fk])

2 | Fk

]
(D.19)

From Lemma D.1 and inequality (x+ y + z)2 ≤ 3(x2 + y2 + z2),

(Ek+1 − E [Ek+1 | Fk])
2 ≤ 3

(
A2

kEk∥ξk+1∥2 +B2
k∥ξk+1∥4 + C2

kE2k
)

(D.20)

Since Ak, Bk, Ck and Ek are all measurable with respect to the σ-algebra Fk. Using assumptions
(A2-A4) yields

E
[
∥ξk+1∥2 | Fk

]
≤ σ2∥∇f(xk+1)∥2 ≤ 2Lσ2c1Ek = SkEk (D.21)

and
E
[
∥ξk+1∥4 | Fk

]
≤ χ

(
E
[
∥ξk+1∥2 | Fk

])2 ≤ χS2
kE2k (D.22)

Taking E [· | Fk] in the previous inequality gives

Var(Ek+1 | Fk) ≤ 3(A2
kSk + χB2

kS
2
k + C2

k)E2k (D.23)

Theorem D.1 (Geometric variance decay). Assume the drift inequality (from the expectation analysis)

E[Ek+1 | Fk] ≤ qEk for some q ∈ (0, 1), (D.24)

and assumptions (A2)–(A4) hold. Let K2,k be given in Proposition D.1 and suppose K2 :=
supk K2,k < 1 − q2 satisfied. Then with θ := q2 + K2 ∈ (0, 1), for all k ≥ 0, given initial
E0,

Var(Ek+1) ≤ E20θk+1

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Proof. By the law of total variance and Proposition D.1,

Var(Ek+1) = E
[
V ar(Ek+1 | Fk)

]
+Var

(
E[Ek+1 | Fk]

)
≤ K2E[E2k] + q2 Var(Ek). (D.25)

Since E[E2k] = Var(Ek) +
(
E[Ek]

)2
and (Eq.(D.24)), we get

Var(Ek+1) ≤ (K2 + q2)Var(Ek) +K2

(
E[Ek]

)2 ≤ (K2 + q2)Var(Ek) +K2(E[E0])2q2k (D.26)

Solving this linear recursion yields

Var(Ek+1) ≤ (K2+q2)k+1 Var(E0)+K2(E[E0])2
k∑

j=0

(K2+q2)k−jq2j ≤ (K2+q2)k+1(Var(E0)+(E[E0])2)

(D.27)
Since E0 is given by the initial point x0 = v0, it is a constant ,then Var(E0) = 0 and E[E0] = E0.

Corollary D.1 (Upper bound of K2,k in strongly convex setting). Define κ = L
µ is the condition

number of f . Under the setting of Theorem B.1-2.1 and Assumptions (A1)-(A4), with K2,k =
3(A2

kSk + χB2
kS

2
k + C2

k) defined above, we have the explicit upper bound

(1) For SHANG,

K2 ≤

{
12a20σ

2((3 + σ2)a0 + 1)2 + 12(χ+ 1)a40σ
4 ακ ≤ 1

12a30σ
2
√
κ(1 + (3 + σ2)a

3
2
0 κ

1
4)2 + 12(χ+ 1) a60 σ

4 κ ακ ≥ 1

(2) For SHANG++,

K2 ≤

{
12a20σ

2
(
(3 + σ2)a0 + 1

)2
+ 12(χ+ 1)a40σ

4, α̃κ ≤ 1

12a30σ
2
√
κ
(
1 + (3 + σ2)a

3/2
0 κ1/4

)2
+ 12(χ+ 1)a60σ

4κ, α̃κ ≥ 1

Proof. Case 1: SHANG. When m = 0, scheme (D.1) is algorithm SHANG. From Theorem B.1,
when γ = µ, α = 1

(1+σ2)
√
κ

and β = (1+σ2)α
µ , we have

E[Ek+1 | Fk] ≤ (1 + α)−1Ek = qEk (D.28)

and

A = Ak =
α2

µ

(
1 + σ2 + (1 + σ2)2α2κ+

1

(1 + α)2
)√

2Lc1 +
α

1 + α
c2

B = Bk =
α2

2µ
((1 + σ2)2α2κ+

1

(1 + α)2
)

C = Ck =
α2

µ
((1 + σ2)2α2κ+

1

(1 + α)2
)Lσ2c1

S = Sk = 2Lσ2c1

where c1 = max{ 1
1+α ,

α
1+ακ} and c2 = 1+α+α2

(1+α)2

√
2
µ .

(1): Assume ακ ≤ 1, i.e., κ ≤ (1 + σ2)2, so that c1 = 1
1+α .

Since c1 = 1
1+α and α2κ = 1

(1+σ2)2 ≤ 1, we bound each term in K2.

For the B2S2 term, using B = α2

2µ ((1 + σ2)2α2κ+ 1
(1+α)2),

B2S2 =
[α2

2µ

(
(1 + σ2)2α2κ+ 1

(1+α)2

)]2
· (2µκσ2c1)

2

= α4κ2σ4c21

(
(1 + σ2)2α2κ+ 1

(1+α)2

)2
≤ 4 a40 σ

4,

(D.29)

where we used c1 ≤ 1 and α4κ2 = 1
(1+σ2)4 . We denote a0 = 1

1+σ2 . Hence 3χB2S2 ≤ 12χa40σ
4.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

For the C2 term, note C = 2BLc1σ
2 implies C2 = B2S2. Hence

C2 ≤ 4 a40 σ
4, (D.30)

so 3C2 ≤ 12 a40 σ
4.

For the A2S term, splitting A = A1 +A2 with

A1 :=
α2

µ

(
(1 + σ2) + (1 + σ2)2α2κ+ 1

(1+α)2

)√
2Lc1, A2 :=

α

1 + α
c2,

For A2, since c2 = 1+α+α2

(1+α)2

√
2/µ ≤

√
2/µ,

A2
2S =

α2

(1 + α)2
c22 · 2µκσ2c1 ≤ 4κσ2c1 ·

α2

(1 + α)2
= 4σ2 · α2κ

(1 + α)3
≤ 4a20σ

2 (D.31)

For A1, using c1 = 1
1+α and α2κ = a20 ≤ 1,

A2
1S =

[α2

µ

√
2Lc1

]2(
(1 + σ2) + (1 + σ2)2α2κ+ 1

(1+α)2

)2
· 2Lσ2c1

= 4α4κ2c21 σ
2
(
(1 + σ2)2 + 1 + 1

(1+α)2

)2
≤ 4 a40 σ

2 · (3 + σ2)2 = 4(3 + σ2)2a40σ
2

(D.32)
Therefore, using (x+ y)2 ≤ (1 + τ)x2 + (1 + 1/τ)y2 with τ =

√
A2

2S/A
2
1S:

3A2S ≤ 3(
√
A2

1S +
√

A2
2S)

2 ≤ 3(2(3 + σ2)a20σ + 2a0σ)
2 = 12a20σ

2((3 + σ2)a0 + 1)2 (D.33)

Combining (D.29)-(D.33), we have

K2 ≤ 12a20σ
2((3 + σ2)a0 + 1)2 + 12(χ+ 1)a40σ

4 (D.34)

(2): Assume ακ ≥ 1, i.e., κ ≥ (1 + σ2)2, so that c1 = α
1+ακ.

For the B2S2 and C2 terms. We have

B2S2 =
α4κ2σ4

(1 + α)2

(
(1 + σ2)2α2κ+ 1

(1+α)2

)2
≤ α6κ4σ4

(1 + α)2
· 4 ≤ 4 a60 σ

4 κ (D.35)

Hence
3
(
χB2S2 + C2

)
≤ 12(χ+ 1) a60 σ

4 κ (D.36)

For the A2S term,

A2
2S =

α2

(1 + α)2
c22·2Lσ2c1 ≤

α2

(1 + α)2
· 2
µ
·2µκσ2c1 = 4σ2 α3

(1 + α)3
κ2 ≤ 4 a30 σ

2
√
κ (D.37)

Moreover,

A2
1S =

4α6σ2 κ4

(1 + α)2

(
(1+σ2)+(1+σ2)2α2κ+ 1

(1+α)2

)2
≤ 4α6σ2 κ4

(1 + α)2
·(3+σ2)2 ≤ 4(3+σ2)2 a60 σ

2 κ.

(D.38)
Combining (D.37) and (D.38),

3A2S ≤ 3(
√
A2

1S +
√

A2
2S)

2 ≤ 12a30σ
2
√
κ(1 + (3 + σ2)a

3
2
0 κ

1
4)2 (D.39)

Adding (D.35) - (D.39) yields

K2 ≤ 12a20σ
2
√
κ(1 + (3 + σ2)a

3
2
0 κ

1
4)2 + 12(χ+ 1) a60 σ

4 κ (D.40)

Case 2: SHANG++. When m = 1, scheme (D.1) is algorithm SHANG++. From Theorem 2.1, when
γ = µ, α̃ = 1

(1+σ2)
√
κ

, α = α̃
1−α̃ and β = (1+σ2)α̃

µ , we have

E[Ek+1 | Fk] ≤ (1 + α)−1Ek = qEk (D.41)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

and

A = Ak =
α̃2

µ

(
1 + σ2 + (1 + σ2)2α̃2κ+ 1

)√
2Lc1 + α̃2c2

B = Bk =
α̃2

2µ
((1 + σ2)2α̃2κ+ 1)

C = Ck = α̃c1σ
2κ(α̃2(1 + σ2)2κ+ 1)

S = Sk = 2Lσ2c1

where c1 = max{ 1
1+α̃ ,

α̃
1+α̃κ} and c2 = max{ α̃

1+α̃

√
2
µ , (

1
1+α + α̃

1+α̃
α

1+α)
√

2
µ}.

Similar to the derivation of SHANG, we have

(1): Case α̃κ ≤ 1. In this case κ ≤ (1 + σ2)2 and hence c1 = 1
1+α̃ ≤ 1.

K2 ≤ 12a20σ
2
(
(3 + σ2)a0 + 1

)2
+ 12(χ+ 1)a40σ

4 (D.42)

(2): Case α̃κ ≥ 1. In this case κ ≥ (1 + σ2)2 and c1 = α̃
1+α̃κ.

K2 ≤ 12a30σ
2
√
κ
(
1 + (3 + σ2)a

3/2
0 κ1/4

)2
+ 12(χ+ 1)a60σ

4κ (D.43)

When does variance decay hold? By Theorem D.1, geometric variance decay

Var(Ek) ≤ E20 (q2 +K2)
k

holds whenever K2 < 1 − q2, where q = (1 + α)−1. The bounds in Corollary D.1 make this
condition directly checkable as a function of the condition number κ = L/µ, the noise level σ2 via
a0 = (1 + σ2)−1, and the stepsize α:

• In the low-condition regime (the branch with smaller c1), K2 scales like

K2 = O
(
a20σ

2
)
+ O

(
a40σ

4
)

for both SHANG and SHANG++, whereas 1− q2 = Θ(α) = Θ(a0/
√
κ).

• In the high-condition regime (the branch with larger c1), the leading term is

K2 = O
(
a30σ

2
√
κ
)
+ O

(
a60σ

4κ
)
,

while we still have 1 − q2 = Θ(a0/
√
κ). The same scaling holds for both SHANG and

SHANG++; only the constant factors differ mildly.

Thus, for fixed κ, smaller noise (larger a0) and moderate stepsizes make K2 < 1 − q2 easier to
satisfy; for large κ, the O(

√
κ) factor in the leading term of K2 becomes the main bottleneck.

How to enforce the condition in practice. Two standard knobs guarantee K2 < 1− q2 without fine
tuning:

1. Stepsize damping. Replace α by β α with β ∈ (0, 1]. Then the leading term in K2 scales
like O(β3), whereas 1− q2 scales like O(β) (for both SHANG and SHANG++); hence
there exists β0 = β0(κ, σ

2, χ) ∈ (0, 1] such that K2 < 1− q2 for all β ≤ β0.

2. Mini-batching or averaging multiple independent estimates. Replacing σ2 by σ2/M reduces
the leading term in K2 by a factor 1/M while leaving 1 − q2 essentially unchanged; the
explicit constants in the corollary yield simple batch-size thresholds (e.g., M ≳ σ2

√
κ

up to the displayed constants). Averaging M independent estimates incurs almost no
extra computational cost compared with performing M successive iterations using a single
estimate.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

E SNAG AS A DISCRETIZATION OF THE HNAG FLOW

Under the multiplicative noise assumption, one of the most recent first-order stochastic methods de-
signed to overcome the divergence of NAG and accelerate SGD is the Stochastic Nesterov Accelerated
Gradient (SNAG) method (Nesterov, 2012) (Hermant et al., 2025). Its iteration reads:

xk+1 = α̂k+1xk + (1− α̂k+1)vk+1 − α̂k+1s g(xk),

vk+1 = β̂vk + (1− β̂)xk − ηkg(xk),
(E.1)

where g(xk) is a stochastic gradient estimator, and α̂k+1, s, β̂, and ηk are parameters.

By reparameterizing as

α̂k+1 =
1

1 + αk+1
, s = αk+1βk+1, β̂ =

1

1 + αk+1µ
γk+1

, ηk =
1

1 + αk+1µ
γk+1

αk+1

γk+1
, (E.2)

the SNAG scheme (E.1) becomes equivalent to the following update:

xk+1 − xk

αk+1
= vk+1 − xk+1 − βk+1g(xk),

vk+1 − vk
αk+1

=
µ

γk+1
(xk − vk+1)−

1

γk+1
g(xk),

γk+1 − γk
αk+1

≤ µ− γk+1.

(E.3)

Hence, SNAG can be interpreted as a new discretization of the HNAG flow (2.3).

Parameter choices. For convex objectives f ∈ S1,10,L, Hermant et al. (2025) shows that the optimal
parameters are

s =
1

L(1 + σ2)
, ηk =

k + 1

2L(1 + σ2)2
, β̂ = 1, α̂k =

k2

k+1

2 + k2

k+1

.

This leads to

αk+1 =
2

k + 1− k+1
k+2

, αk+1βk+1 =
1

L(1 + σ2)
, γk+1 = αk+1

2
k+1 (1 + σ2)2L.

For strongly convex objectives f ∈ Sµ,L, the optimal parameters become

s =
1

L(1 + σ2)
, ηk = η =

1

(1 + σ2)
√
µL

, β̂ = 1− 1

1 + σ2

√
µ
L , α̂k = α̂ =

1

1 + 1
1+σ2

√
µ
L

.

Consequently,

α =
1

1 + σ2

√
µ
L , αβ =

1

L(1 + σ2)
, γ = µ(1− α).

The condition γ = µ(1 − α) indicates that, in the strongly convex case, the update for v is more
accurately viewed as applying a rescaled step size α̃ = α

1−α to the v–dynamics of the HNAG flow:

vk+1 − vk
α̃

= xk − vk+1 −
1

µ
g(xk).

In summary, the above parameter rearrangements confirm that the optimal choices in SNAG are
consistent with those obtained from various discretization schemes of the HNAG flow, see Chen &
Luo (2021) for details.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

F RELATED WORK

Accelerated variants of SGD have been extensively studied. A natural idea is to combine SGD with
first-order momentum methods, such as the Heavy-Ball (HB) and Nesterov’s Accelerated Gradient
(NAG) algorithms, in order to achieve faster convergence through momentum. However, in stochastic
settings, gradient noise often weakens or even destroys the acceleration effect. Kidambi et al. (2018);
Sutskever et al. (2013); Yuan et al. (2016); Nemirovski et al. (2009); Ghadimi & Lan (2012) have
shown that both HB and NAG fail to accelerate SGD in expectation under gradient noise. In practice,
the apparent superiority of momentum methods largely stems from large mini-batching, which reduces
the variance of stochastic gradients and brings the stochastic dynamics closer to the deterministic
regime.

To address this, many efforts have been devoted to developing truly accelerated first order stochastic
momentum methods. Starting from (Jain et al., 2018), a series of accelerated stochastic algorithms
have been proposed (Liu & Belkin, 2020; Vaswani et al., 2019; Even et al., 2021; Bollapragada
et al., 2022; Laborde & Oberman, 2020; Gupta et al., 2024; Hermant et al., 2025), aiming to preserve
acceleration while maintaining robustness under stochastic noise. These methods introduce various
variance-control mechanisms, adaptive damping, or noise-aware correction terms to balance efficiency
and stability.

Noise modeling is essential for understanding and improving stochastic optimization. While early
studies assume additive noise with bounded variance, empirical studies show that SGD noise is
anisotropic (concentrated in a low-rank subspace) and state-dependent in deep neural networks
(Wu et al., 2022a), and often exhibits heavy-tailed non-Gaussian fluctuations (Zhao et al., 2024;
Hodgkinson & Mahoney, 2021; Zhou et al., 2020). Additive noise with bounded variance often
fails in deep learning, where gradient noise may scale with the signal norm or exhibit low-rank and
heavy-tailed characteristics (Wojtowytsch, 2023; Wu et al., 2022b). In particular, the noise variance
scales with the loss or gradient norm while covariance spectra are highly skewed, with only a few
large eigen-directions. These non-classical properties observed in practice as multiplicative (Wu
et al., 2019; Gupta et al., 2024; Hodgkinson & Mahoney, 2021), low-rank/degenerate(Damian et al.,
2021; Li et al., 2022; Bassily et al., 2018; Wojtowytsch, 2021; 2023), and heavy-tailed gradient noise.
These insights motivate the design of optimizers that are resilient to complex, non-Gaussian noise
structures.

40

	Introduction
	Stochastic Hessian-driven Accelerated Nesterov Gradient
	Numerical Experiments
	Conclusion
	Supplement of Experiments
	Supplement of the convex experiment
	Supplement of Classification Tasks
	Batch-Size Scaling on CIFAR-10 (ResNet-34)
	Supplement of Robustness to Multiplicative Gradient Noise
	Additional classification task on ImageNet-100 with ResNet-34
	Supplement of Image Reconstruction
	Hyperparameter comparison

	SHANG
	model
	Convergence Analysis for SHANG

	SHANG++
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Variance Decay Analysis
	SNAG as a Discretization of the HNAG Flow
	Related Work

