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Abstract

Training with multiplicative noise scaling (MNS) is often destabilized by
momentum methods such as Nesterov’s acceleration, as gradient noise can
overwhelm the signal. A new method, SHANG++, is introduced to achieve
fast convergence while remaining robust under MNS. With only one-shot hy-
perparameter tuning, SHANG++ consistently reaches accuracy within 1%
of the noise-free setting across convex problems and deep networks. In ex-
periments, it outperforms existing accelerated methods in both robustness
and efficiency, demonstrating strong performance with minimal parameter
sensitivity.

1 Introduction

Empirical Risk Minimization (ERM) is central to modern large-scale machine learning, in-
cluding deep neural networks and reinforcement learning (Hastie et all, 2009). It is formu-
lated as

min f(z, X,Y),  f(@,X,Y) sz 2, X, Y;) = Zfz (1.1)
where {(X;,Y;)}Y is a large dataset (N > 1), and f;(x) is the loss for the i-th sample.
Efficiently computing the minimizer 2* = arg min,, f(x) is critical for training large models.

Exact gradient evaluation is expensive, so Stochastic Gradient Descent (SGD) uses mini-
batches:

1
0= 57 Vi) (12)
i€B

where B C {1,...,N} is a random batch of size M. SGD slows down when _the _condition
number k of f is large. Momentum methods such as Heavy Ball (HB) (Polyak, 1964) and
Nesterov accelerated gradient (NAG) (Nesterov}, 1983) are widely used to accelerate conver-
gence. In training deep neural networks, Adam (Adaptive Moment Estimation) (Kingma &
Ba, 2015) is a widely used optimization algorithm that combines momentum and adaptive
step sizes for fast and stable convergence.

The mini-batch estimator g(z) reduces the cost of computing V f(z) but introduces noise.
In regimes such as small-batch training or highly over-parameterized models, the variance
can scale with and even dominate the signal ||V f(2)||?.__This effect is modeled by the
multiplicative-noise scaling (MNS) condition (Wu et al), 2019; 2022; Gupta et all, 2024).

Definition 1.1 (Multiplicative Noise Scaling (MNS)). The stochastic gradient estimator g(z)
satisfies the MNS condition if there exists ¢ > 0 such that

E[lg(z) = Vf(@)IIP] < o®|Vf ()] (1.3)

Momentum methods are highly sensitive to stochastic noise (Devolder et all, 2014; |Aujol
& Dossal, 2015; Liu et al), 2018), and stability depends critically on parameter choices (Ki-
dambi et al), 2018; Liu & Belkin, 2020; Assran & Rabbatl, 2020; Ganesh et all, 2023). Gupta
et all (2024) showed that under MNS with o > 1, NAG fails to converge in both strongly
convex and convex settings.
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To address this, several corrections have been developed. Vaswani et al| (2019) introduced

a four-parameter NAG variant and proved convergence rate (1 — (1 -+ o)/ L)k in the
strongly convex case, where L/u is the condition number of f, and O(1/k?) in the convex
case. [Liu & Belkin (2020) proposed the Mass method with three parameters and a correction
term, though acceleration was shown only for over-parameterized linear models. Gupta
et al) (2024) later proposed AGNES, a three-parameter extension of NAG with the same
guarantees as Vaswani et al} (2019). More recently, Hermant et al} (2025) introduced SNAG,
a four-parameter variant that attains the same rates with a mild parameter adjustment.

From the viewpoint of provable convergence in convex settings, these algorithms are com-
petitive. Yet our deep-learning experiments show that they often lose acceleration under
high noige and can perform worse than SGD even with recommended hyperparameters (see
Section Ee) For instance, on CIFAR-100 with ResNet-50 and batch size 50, SGD reaches
58.326% test accuracy, while AGNES achieves only 42.82%. With a further reduction in
batch size, both AGNES and SNAG oscillate heavily with large performance swings, requir-
ing extra hyperparameter tuning.

Motivated by this gap, our goal is not only to design another accelerated method, but
to develop a complementary approach that (i) retains optimal theoretical guarantees, (ii)
reduces tuning effort, and (iii) improves stability. Our contributions emphasize simplic-
ity (fewer parameters), provable acceleration with explicit noise dependence, and robust
empirical behavior.

1. Section E presents SHANG++, a stochastic extension of HNAG (Chen & Lud, 2021)
for robust convergence under multiplicative noise, sharpening existing guarantees with
minimal hyperparameter complexity. SHANG-++ achieves accelerated rates of O(1/k?)
. ) 9 —k .
in convex settings and the fastest known rate (1 + HT‘/M/ (L — u)) for quadratic
strongly convex problems with multiplicative noise.

2. Section B validates SHANG++ on convex optimization, image classification, and gen-
erative modeling (on benchmark datasets MNIST, CIFAR-10, CIFAR-100). SHANG++
matches or improves upon NAG, SNAG, AGNES, and Adam, with clear advantages under
high multiplicative noise.

3. Section P tests robustness to multiplicative noise. At realistic noise levels (o < 0.5),
SHANG++ maintains near noise-free accuracy (within 1% degradation), supporting our
theory. These results show that stability can be achieved with fewer parameters and a
simpler design, improving earlier corrections such as AGNES and SNAG.

Notation. Let f : R? — R be differentiable. The Bregman divergence of f between
z,y € RY is
Dy(y,x) := f(y) — fz) = (V[f(z),y — ).
The function f is u-strongly convex if for some p > 0,
Dy(y.a) 2 Glly —al’, Ve,y R
It is L-smooth, for some L > 0, if its gradient is L-Lipschitz:
IVf(y) = V@) < Llly —l, Ve.yeR"

Let S, be the class of all differentiable functions that are both p-strongly convex and
L-smooth. For f € S, 1, the Bregman divergence satisfies

" L
Llle = yl> < Dy(ay) < Slla— g, Yo,y € RS, (1)

Parameters 1 and L are treated as known hyperparameters for the given problem. Their
adaptivity is beyond the scope of this work.

Limitation. Current convergence guarantees hold only for convex objectives under multi-
plicative noise scaling and do not extend directly to general non-convex landscapes.

Although SHANG++ reduces tuning complexity through one-shot, non-adaptive hyperpa-
rameters, its performance may still depend on accurate estimates of smoothness constants
(e.g., L,p). In highly non-convex settings or under very high noise, the one-shot strategy
may require refinement.
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2 Stochastic Hessian-driven Accelerated Nesterov Gradient

Qur_method is inspired by the second-order dynamical system introduced in Chen & Lucg
(2021)), known as the Hessian-driven Nesterov Accelerated Gradient (HNAG) flow:

v 4+ (v + p)a’ + VA f(x)z' + (1+ pB+8)V f(z) =0, (2.1)

where 8 > 0 is any continuously differentiable function on [0,00) and « is a time-scaling
factor. This second-order ODE can be equivalently reformulated as the first-order system:
I

Y= v 2 BVI(2), v%:ﬁm—w—%vﬂ@, NI (2.2)

which removes the explicit dependence on V2 f(x).

Methods. Discretizing (@) via a Gauss—Seidel-type scheme, adding an extra term
—m(xp41 — o)) to the z-update, and replacing V f(x)) with an unbiased estimator g(xy)
yield the Stochastic Hessian-driven Nesterov Accelerated Gradient (SHANG++) method:

Tk — Xk

TT = Vg — Trr1 — M(Trr1 — x) — Beg(Tr),

Vk — VL 1

LT = B (1 — vk41) — —9(@ns), (23)
(673 Yk Yk

Ve+1 — Ve

= M= Yk+1,
ag

where aj > 0 is the step size, m > 0 controls the extra noise-damping term, and g > 0
depends on «j and g, typically scaling as W

If the damping term is absorbed into the left-hand side, the xz-update becomes

Th4+1 — Tk
JlT =V — Ty — Brg(an), (2.4)

< Q.

where dk = Trma, =

SHANG++ can thus be interpreted as a modified discretization of the HNAG flow with a
reduced step size ay. The case m = 0 recovers SHANG, a direct stochastic extension of
HNAG. The “4++7” indicates two improvements: faster theoretical convergence and greater
robustness to noise.

With the param choices specified in Theorem Ell for the strongly convex case f € S, 1,
and in Theorem for p = 0, faster convergence guarantees can be established.

SHANG++ for Strongly Convex Minimization. Let f € S, with 0 < 4 < L < co. Define
the auxiliary function
* (12
fon(w) = f(z) = Gl — 27"

Clearly, Vf_,(2*) = 0. Since f € S, 1, it follows that f_, € So,r—,. Let g_,(xx) =
g(x)—p(xp —z*) denote a stochastic estimate of Vf_, (). Asno randomness is introduced
in the shift, the MNS condition

Elllg-pu(@r) = VI-p(@n)|?] < o®IVf-pulan)l®
still holds provided ([L.9) holds.

Setting v = p and m = By, and substituting g_,(zx) and z} =z — aBg_,(zx) into (@)
yields

+
Tkt — T
ek — o — g — Bu(wk — ),
! (2.5)

Vk4+1 — Uk * 1

Y TV ;g—u(ﬂ%ﬂ)-
Schemes (@) and (@) generate the same sequences (zy,vr)5°; the explicit appearance of
x* is only for analysis and does not affect the algorithm itself.
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Theorem 2.1. Let f € S, . Given 2§ = vy = w0, suppose (zg,vy) are generated by (
with g(x,) defined in (@) and MNS (B) holds. If the step size satisfies 0 < o < 775 i
and 8 = then

]

et
* /’l/ * — *
E[f (o) = Fouler)+ Sllow = 212] < (Lt (L 0%)0?) ™ (f (o) = (&),
If f is quadratic, a sharper rate holds:

Ef-u(af) = foula) + Sllon = a*P] < (14 20+ a®) ™ (f(@o) = f(")-

Proof. We give an outline of the proof and refer to the Appendix @ for the full details.

Let zlj = (x;, vi) and define the Lyapunov function
* [ *
E(H) = foulal) = f-ula )+ Sllok —2 2. (2.6)

Given (xx,v;) and g(zy), the quantities ;7 and xy11 are deterministic, while randomness
is introduced through g(xx+1) and consequently affects (x;_H, vg+1). The expectation E is
with respect to the randomness in g(zp41).

First of all, we have the sufficient decay of SGD for ac;:ﬂ = Ty — ofBg_p(xpyr): if
2 . . .
af = ey < (1+62)1(L7#), which is equvialent to a < ﬁ\/u/(L — p), then
(1+0%)a

a 2
E [f-u(@f1) = fou(@rs)] < —76||Vf—u(50k+1)\|2 == IV fp(re) | (2.7)

2p

Then by the definition of Bregmann divergence:
E(ziir) — E(z) = (VE(zk11), zh41 — ) — De(zF, 2041)- (2.8)
Expanding the first term and using the update in (@) gives

— (L4 BV fop(@rs1) = V(@) 241 — 2%) — aplogsr — 2|2

+ a9 (@rg1), vr — vpgr) AV op(@rp1) — 9—p(@rg1), v — 7).
The first two terms can be bounded by —(1 + Bu)a€(zky1) by using (Vf_.(xr41) —
Vi u(@*),2p41 — 2%) = Dy (Tpq1,2") + Dy (2%, 0541). After taking the expectation
E(Vf_p(xr+1) — 9—p(zk41), v — %)) = 0. The most difficult term is the expectation of
the cross term E [(9_,(k+1), U — Vk41)], as both g_,(2k11) and vg41 are random variables.
We use the identity 2(a,b) = ||a||*> 4 ||b]|*> — ||a — b]|* to obtain

(2.9)

UG (1) Uk — V1) = (=g (1) V(R — V1)

NG

2 2

o 2, M 2 QM 2
= S lg-uCansn) P + Sl = vl = 2 i - a°|
where the term involving wvgy1 — z* follows from %g,u(mkﬂ) — V(g — vpg1) =

ay/i (s g-p(wrir) — P552) = ay/a(a* — vgyr) by the update of vyy. Taking expecta-

tions termwise and applying the MNS condition to the first term yields the positive gradient
2 2

contribution %ZU)HVJ”_M(Z‘;CH)HQ, which can be canceled by the negative term in (@)

The positive £|lvy — vg41]/? is canceled by —&||vy — vg41]|? contained in —Dg(z;, z41).
Using Su = (1 + 02?)a, we obtain

E [E(Zktﬂ)] - g(zlj) <E [_(1 +(1+ UZ)Q)O“S'(ZZ;J] .
Moving & (z,‘:ﬂ) to the left-hand side yields the desired result.

When f is quadratic, the Bregman divergence is symmetric, Dy(zx41,2%) = Dy(x*, Tg41),
and the extra negative terms —SuaDy_ (2%, Tp41) — % kst —2*]|? < —a?E(2k41), which
sharpens the constant to 1 + 2o + 2. O
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When o = 0, SHANG++ reduces to the deterministic HNAG++ method of Chen & Xu
(2025). As o grows, convergence slows but acceleration is preserved. While Gupta et al.
(2024) interpret noise as inflating smoothness to (1 + 02)2L, our analysis shows it perturbs
both smoothness and curvature, giving L, = (1 + 02)L and j, = u/(1 + 02). The noise-
damping term in SHANG++ further reduces L, to (14 02)(L — u), explaining its stronger
stability.

Quadratic Loss Consider a special case of problem (@) the quadratic loss with Tikhonov
regularization (also known as weight decay), which is widely used in regression tasks. The
objective takes the form

a A 1 b
= N 6K el = X VI Gl @10)
where + > _1( —Y;)? is the empirical quadratic loss and 3||z|]3 is the regularizer

with A > 0. The lehonov regularizer ensures that the objective is A—strongly convex with
smoothness constant (L + A). Under multiplicative noise scaling, setting o« = v/fto /Ly =

1
P v/ A/L yields the accelerated convergence rate 1 — 2o = 1 — 24/ /L, in the leading
o

term.

Batching. Gradient noise can be reduced by increasing the mini-batch size M in (@) If
0% is the MNS constant for M = 1, then 032, = 0?/M. Another approach is to average K
independent gradient estimators, g% = % Efil gi, which gives an effective MNS constant of
0?2 /K. Both strategies reduce noise at the cost of higher computation, and a straightforward
analysis shows that averaging multiple estimates can accelerate convergence to some extent.

Variance decay under MNS. Beyond the expectation bound, we show geometric variance
decay of the Lyapunov energy. Specifically, by Theorem

Var (f-(ai) = fou(@®) + Slloe = 7)< (Flao) = F@)2(r? + Ka)*.

A sufficient (practically verifiable) condition is Ky < 1 — 72 where r = (1 +a +a?)71 is
the decay rate in Theorem and K5 collects the fluctuation constants. This holds, for
example, in low-condition regime, with a damped stepsize a + da (0 < § < 1) or with a
minibatch of larger M (or K independent multiple estimates). plete proofs and the
explicit expressions of related constants are provided in Appendixcﬁrn

SHANG++ Method for Convex Minimization Recall the modified step size &; = <&

1+mayg *

To facilitate analysis, we define an auxiliary time-scaling variable 7, = H”T’“ak Setting
o = %ﬂ and /(1 + 02) = apag L, for any fixed m > 0, we obtain:

Ve+1 — Vi . N

—_—=—14 = < - 2.11

Replacing the z-update in (@) with the equivalent modified discretization (@) and com-
bining it with (zﬁ) yields the following convergence result.

Theorem 2.2. Let f € Sp . Suppose that (zy,vg) are generated by the time-stepping
scheme (@) g(x) defined in (@) and MNS holds. Given xf = vg = x¢,m > 0, choose

the step size oy = %ﬂ’ Ye/(1+02) = ararL, and By = W, we have
(14 2m)(2 + 2m) X Ly

B | flof) = £+ B2 o -] < & (aio) = O( )

(k+2+2m)(k+3+2m

Proof. We provide a proof sketch; the full proof appears in Appendix @ Define xz' =
x — arPrg(zy) and Lyapunov function

£ = Faf) — Fa) + 2 o — a2 (2.12)
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where 4, = H;YZ%. Using v/(1 + 0?) = ararL, < /(1 + 0?) = &2L, and the L-
smoothness of f to obtain the upper bound of E [£(z, 1; Yk41)] — E(z7 5 9k)-

&2(1+ o2 St — 7 .
S0y G )+ B o] 213)

E {5(zk+1;’~7k)5(2;;5’k) ER 2

Using (), the last term less than —%Hvkﬂ — 2*||?. Then expaning the difference
E [S(zkH; V) — S(z,j; ﬁk)] and using the updates and agpi/v: = ay yield

E[~ar(Vf(zr1) = VI (@), 2pp1 — 27) + ar(g(@ni1), v — vr1) — De(2f, 20115 1))

(2.14)
For the cross term E [ax(g(2r+1), vk — vk+1)], by Cauchy-Schwarz and Young’s inequality,
- az(1+ o2 0!
E [t (g(@r+1), vk — vpg1)] < E k(%k)||Vf(33k+1)||2 + %Hvk — v (2.15)

~2 2
which are canceled respectively by the negative gradient term —%HV f(xp1)|* and
by —Dg (2, 2k4+1;9x). Putting everything together to obtain
E [E(2 0 Mnen)] = E(20 ) <~ [E(z0415Tk41)] (2.16)

Rearranging and substituting a; =

H‘fy’;ak = k+li2m yield the claimed rate. O

We compare the parameters
Lo

Tk 2 Tk o) 2
= H T 5 — = BT
(SHANG) T3 o2 oy Ly, (SHANGH++) T agapLs = o 1+ maog’

which reduces the effective Lipschitz constant from L, to . The noise-damping term

Lo
1+mayg
offsets part of the o2-induced amplification, improving stability by slowing down the effective
rate. Our experiments suggest that choosing m in the range [0, 1.5] provides a good trade-off.

3 Numerical Experiments

We design our experiments to validate the theoretical alignment, scalability, and robustness
of SHANG++ and SHANG (m = 0).

Throughout _this section, NAG refers to the stochastic version of Nesterov’s accelerated
gradient. (Nesterov, 1983) by replacing V f(z) by g(z). While SNAG refers to the method in
(Hermant et al), 2025), which can be treat as an alternative discretization of the HNAG flow
(Appendix [H). The stability of SNAG can be also explained with our theoretical analysis.

Convex optimization We first consider the family of objective functions from Gupta et al.
(2024):

fR SR ) 2], = <1,
d RN =K, d\x) =
1+d(Jz|—1), else,
for d > 2, with gradient estimators g(z) = (1+0Z)V f(z), where Z ~ N (0, I) is a standard
normal random variable. The functions f; belong to Sp r with L = d(d —1).

We compare SHANG and SHANG++ with SGD, NAG, AGNES (Gupta et all, 2024), and
SNAG (Hermant et all, 2025) under o € {0,10,50} and d € {4,16}. The parameters used
follow their optimal choices for the convex case. All simulations are initiali at g = 1,
and expectations are averaged over 200 independent runs. See Appendix for the full
experimental setup, hyperparameter choices, and results.

In Figure @7 SHANG and SHANG++ remain stable as o increases, while NAG diverges
at large noise. SHANG outperforms classical momentum methods, and SHANG++ further
accelerates convergence, showing that its noise-damping term improves both rates and sta-
bility. These results confirm robustness with minimal tuning and preserved acceleration
even under high noise.
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Figure 3.1: Performance of different algorithms under varying noise levels.

For deep learning tasks, we adopt SHANG++ with three explicit hyperparameters (a, 7y, m),
with 4 = 0 and 8 = a/~v, summarized in Algorithm [l where v is updated first by index
shifting.

Algorithm 1: SHANG+++ for Deep Learning

Input: Objective function f, initial point xg, step size «, time scaling factor ~,
noise-damping m, , iteration horizon T.
k(—l,vo%xo,lj(—fo,&(—ﬁ
while k¥ < T do
Gk < o7 2oien VSilwr) // stochastic gradient estimate

Uk 4= Vk—1 — S0k
vy

1 & _ 0 o
Tkl < 35Tk T 135 V% ~ 144 4 9k

k< k+1
end
return xr

Classification Tasks on MNIST, CIFAR-10 and CIFAR-100 We benchmark SHANG,
SHANG++, Adam (Kingma & Ba, 2015), SNAG, AGNES, NAG, SHB (SGD_with mo-
mentum), and plain SGD _on three tasks: training LeNet-5 on MNIST (LeCun et al), 1998),
ResNet-34 (He et al), 2016) on CIFAR-10 (Krizhevsky, 2009), and ResNet-50 on CIFAR-
100. Each model is trained for 50 epochs, and results are reported as mean =+ s.d. over five
random seeds.

For hyperparameter selection, SHANG and SHANG++ used o = 0.5 with + chosen from
grids: {1,1.5,2} for LeNet-5, {5, 10} for ResNet-34, and {10, 15} for ResNet-50. SHANG++
fixed m = 1.5. AGNES followed defaults (n,a,m) = (0.01,0.001,0.99); SNAG used (n, 3)
with n € {0.5,...,0.001}, 8 € {0.7,0.8,0.9,0.99}, where (0.05,0.9) performed best, consis-
tent with prior CIFAR work. Other baselines used n = 0.001 and momentum 0.99 when
applicable. After 25 epochs, all baseline learning rates (including AGNES’s correctio ere
decayed by 0.1, while v was doubled for our methods. Full details are in Appendix @

Figure @ shows ResNet-34/50 training and test losses on CIFAR-10/100. SHANG and
SHANG++ deliver competitive or superior performance to non-adaptive baselines. Batch
size strongly affects gradient variance: smaller batches increase noise, larger batches reduce
it. At 256, all methods are stable and gaps narrow; at 50, NAG, SNAG, and AGNES oscil-
late with wider bands (AGNES also plateaus higher). In contrast, SHANG and SHANG++
achieve the lowest losses with tight bands ss seeds. Adam remains competitive in ac-
curacy but shows noisier test loss. Table further summarizes results: SHANG and
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CIFAR10-ResNet34_batch50_forSrunsTraining Loss CIFAR10-ResNet34_batch256_forSrunsTraining Loss CIFAR100-ResNet50_batch50_forSrunsTraining Loss

— AGNES — AGNES
SNAG SNAG

ADAM ADAM
— sHaNG — sHaNG
— SHANG++ — SHANG++

100
100 \-V\E: A

o 10000 20000 30000 40000 50000 o 2000 4000 6000 8000 10000 o 10000 20000 30000 40000 50000

Figure 3.2: Training and test loss (log scale, running average with decay 0.99) on CIFAR-10 with
ResNet-34 (batch sizes 50 and 256) (Left and Middle Column) and CIFAR-100 with ResNet-50
(batch size 50) (Right Column).

SHANG++ often match or surpass AGNES and SNAG, while clearly improving over SGD
and NAG.

Table 3.1: Test accuracy of SGD, NAG, Adam, AGNES, SHANG, and SHANG++ on
MNIST (LeNet-5), CIFAR-10 (ResNet-34), and CIFAR-100 (ResNet-50). Here b is batch

size.

SGD NAG Adam AGNES SNAG SHANG SHANG++

LeNet-5 91.068 98.906 99.072  98.876 99.07 99.064 99.112
(b=50) +0.113 =£0.082 +0.071 +0.093 +0.085 =+0.018 +0.026

ResNet-34  79.908  86.428 87.378  70.492  77.654 87.15 87.398

(b=50) +£0.114 +0.805 £0.26 +£2.511 +2.7 +0.824 +0.502
ResNet-34  68.49  87.614 88.226 77.84 84.5 86.67 86.572
(b=256) £0.192 +£0.291 £0.106 £3.696  +0.92 +0.13 +0.169

ResNet-50  58.326  57.658  59.872 42.82 49.514  63.306 65.018
(b=50) £0.506 +1.443 +0.614 +£1.239 +£1.559 £0.934 +1.254

Robustness to Multiplicative Gradient Noise Our theory predicts that time-scale coupling
(o,7y) in SHANG and (o, 7, m) in SHANG++ mitigates multiplicative gradient noise. To
test this, we fix one hyperparameter configuration per optimizer and evaluate across o €
{0,0.05,0.1,0.2,0.5}. The effective noise is higher than nominal o, since minibatch SGD
adds sampling noise. This one-shot protocol isolates each optimizer’s robustness without
re-tuning. All_experiments use CIFAR-10 with ResNet-34, batch size 50, the same settings
as subsection B, trained for 100 epochs and averaged over three seeds. Fina idation error
at epoch 100 is reported; full setup and hyperparameters are in Appendixl@\

Figure @ shows mean final validation error under varying noise, and Table @ reports
relative degradation A(c) = (E(o) — E(0))/E(0), where E(o) is the mean Top-1 error at
noise level o (averaged over three seeds).

1. At 0 = 0, SHANG and SHANG++ reach 15.9%, outperforming SNAG (17.5%) and
AGNES (20.5%).

2. At 0 = 0.1, SHANG improves slightly (-0.3 pt), SHANG++ is nearly unchanged (-0.1
pt), SNAG improves marginally (-0.4 pt), while AGNES worsens (+3.3 pt).
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3. At 0 = 0.5, SHANG and SHANG++ remain near 16%, while SNAG rises to 17.6% and
AGNES drifts to 23.2% (~13.5% relative increase).

These results align with our Lyapunov analysis: time-scale coupling («,<y,m) suppresses
o? amplification, ensuring stable performance without re-tuning. SNAG is stable but less
accurate, while AGNES is most sensitive to noise.

Figure 3.3: Validation error under

Table 3.2: Relative change in final Top-1 error varying multiplicative noise level o
) X Lower is better.
compared with ¢ = 0 (lower is better; nega-
tive values indicate improvement). Values are s robustness (mean over seeds)
averaged over three seeds. =
Method Relative degradation A(%) at o
0.05 0.1 0.2 0.5 Do

—o— SHANG++

Top-1 error (%)

SHANG —-25 =21 -1.0 —0.2
SHANG++ +34 —06 —2.1 -0.9
AGNES —144 +16.0 +14.6 +13.5

SNAG 20 -21 —5.0 0.7 —

Image Reconstruction with Small Batch Size We further evaluate our algorithms on a
generative task of image reconstruction with small-batch training, using a lightweight U-
Net (Ronneberger et all, 2015) on CIFAR-10 with batch size 5. SHANG and SHANG++
are compared against SNAG, AGN NAG, S SHB, and Adam, with full experimental
details provided in the appendix . Figure shows training and test losses. Adam

CIFAR10-UNet_batch5_forSrunsTraining Loss CIFAR10-UNet_batch5_forSrunsTest Loss.

— sD
— sHB
— NaG
ADAM
SNAG 1072
—— AGNES
— SHANG
—— SHANG++

— sD
— sHB
— NaG
ADAM
SNAG
—— AGNES
— SHANG
—— SHANG++

o 100000 200000 300000 400000 500000 o 100000 200000 300000 400000 500000

Figure 3.4: Training and test loss (log scale, running average with decay 0.99) on CIFAR-10 using
U-Net with batch size 5.

achieves the lowest loss due to its adaptive learning rate, but both SHANG and SHANG++
outperform all other non-adaptive methods. In particular, SHANG++ shows stable and
efficient training even in this high-noise regime, highlighting its practical robustness. We

also cond comparative hyperparameter study; full settings and results are given in
Appendix .

4 Conclusion

We presented SHANG+++, an accelerated first-order stochastic optimizer for robust and sim-
ple training under multiplicative noise. Theoretically, it retains the optimal O(1/k?) rate in
convex settings and achieves the fastest known acceleration under MNS for quadratic prob-
lems. Empirically, across convex tasks, image classification, and generative reconstruction,
one-shot hyperparameter choices sustain near noise-free accuracy (within 1% for o < 0.5).
Compared with NAG, SNAG, AGNES, and Adam, SHANG++ shows greater stability in
small-batch or high-noise regimes while delivering competitive or improved accuracy, mak-
ing it a practical optimizer for large-scale noisy training.
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LLM usage

In preparing this manuscript, large language models (LLMs) were employed exclusively
to assist with language-related tasks, such as improving readability, grammar, and style.
The models were not used for research ideation, development of methods, data analysis, or
interpretation of results. All scientific content, including problem formulation, theoretical
analysis, and experimental validation, was conceived, executed, and verified entirely by
the authors. The authors bear full responsibility for the accuracy and integrity of the
manuscript.

Ethics statement

This work is purely theoretical and algorithmic, focusing on convex optimization methods.
It does not involve human subjects, sensitive data, or applications that raise ethical concerns
related to privacy, security, fairness, or potential harm. All experiments are based on publicly
available datasets or synthetic data generated by standard procedures. The authors believe
that this work fully adheres to the ICLR Code of Ethics.

Reproducibility statement

We have taken several measures to ensure the reproducibility of our results. All theoretical
assumptions are explicitly stated, and complete proofs are provided in the appendix. For
the experimental evaluation, we describe the setup, parameter choices, and baselines in
detail in the main text. The source code for our algorithms and experiments are available
as supplementary materials. Together, these resources should allow others to reproduce and
verify our theoretical and empirical findings.

A Supplement of Experiments

Here are some experimental setup and results that are not presented in the main text.

A.1 Supplement of the convex experiment

For the convex example in Section E, we compare SHANG and SHANG++ with SGD,
NAG, AGNES, and SNAG under o € {0,10,50} and d € {4,16}. The parameters used
follow their optimal choices for the convex case. For SHANG, oy = 1%5—1’ Ve = a2 L(1+0?)?

2 Oé2
and By = (ny’%, For SHANGH++, oy, = k%—l’ m= 1.5, v, = m(l +0?)2L and B, =
W; For AGNES, we adopted the best-performing parameters reported by the authors
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for this problem: learning rate n = m, correction step size o = #7 and momentum
_ _k _ 1 _ 1 k+l g _ _ _k?/(k+1)
my = 545 For SNAG, we use s = Iton) T = Tasenz 20 P = 1, ap = RO

For NAG, we used a learning rate of m and momentum parameter of kLH SGD
was also run with a learning rate of m All hyperparameter notations match those

used in the original publications; note, however, that symbol meanings may vary across
algorithms (e.g., o denotes the discretization step size in SHANG, while in AGNES it refers
to the correction step size). All simulations are initialized at zy = 1, and expectations are
averaged over 200 independent runs.

d=4,0=10

Figure A.1: Log-log plots of E [fq(xy)] for SHANG++ using m = 0.5 (black), m = 1 (olive),
m = 1.5 (orange), m = 2 (blue), m = 2.5 (green), m = 3 (red) with d = 4 (Top Row) and
d = 16 (Bottom Row), under noise levels o = 0 (Left Column), o = 10 (Middle Column)
and o = 50 (Right Column). From the figures, it can be observed that m < 1.5 provides a
good choice.

Figure @ highlights SHANG++’s stability across m: values m < 1.5 consistently yield
strong performance. Our theoretical variance-decay predictions directly manifest in practice.

A.2  Supplement of Classification Tasks

Setup. We benchmark SHANG, SHANG++, Adam, SNAG, AGNES, NAG, SHB (or SGD
with momentum) and SGD on the following tasks: training LeNet-5 on the MNIST dataset,
training ResNet-34 on the CIFAR-10 image dataset and training ResNet-50 on the CIFAR-
100 dataset with standard data augmentation (normalization, random crop, and random
flip). All models have pretrain set to True. For each dataset, we run all algorithms for 50
epochs with batch size 50 and report averages over five trials. After 25 epochs, the learning
rates for all baseline methods (excluding SHANG and SHANG++) are decayed by a factor
of 0.1; AGNES'’s correction step size is similarly reduced. For our methods, the time-scaling
factor v is doubled after 25 epochs.

For hyperparameter selection, our two methods were evaluated under three settings: a = 0.5
with v € {1,1.5,2} for LeNet-5, v € {5,10} for ResNet-34 and v € {10,15} for ResNet-50.
For SHANG++, we fixed m = 1.5. AGNES employed the default parameter configuration
recommended by its authors, (1, a,m) = (0.01,0.001,0.99), which has demonstrated strong
performance across various tasks. For SNAG, we adopt the two-parameter variant (7, 3)
proposed by the original authors for machine-learning tasks. Hyperparameters are selected
via a grid search, learning rate n € {0.5,0.1,0.05,0.01,0.005,0.001} and momentum S €
{0.7,0.8,0.9,0.99}. Among these, (n,8) = (0.05,0.9) yields the best performance, which
coincides with the parameter choice recommended by the original authors for training CNNs

12
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MNIST-LeNet5_batch50_forSrunsTraining Loss MNIST-LeNetS_batch50_forSrunsTest Loss MNIST-LeNetS_batch50_forSrunsTest Accuracy
0

Figure A.2: Training loss (log scale) (left), test loss (log scale) (middle) as a running average
with decay rate 0.99, and test accuracy (right) on the MNIST dataset using LeNet-5 trained
with batch size 50. The compared methods include SGD (gray), SHB (black), NAG (olive),
AGNES (blue), SNAG (orange), Adam (yellow), SHANG (green) and SHANG++ (red). In
SHANG, («a,v) = (0.5,2) and in SHANGH++, (a,y,m) = (0.5,2,1.5).

CIFAR10-ResNet34_batch50_forSrunsTraining Loss CIFAR10-ResNet34_batch50_forSrunsTest Loss CIFAR10-ResNet34_batch50_forSrunsTest Accuracy
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CIFAR10-ResNet34_batch256_forsrunsTraining Loss CIFAR10-ResNet34_batch256_forsrunsTest Loss CIFAR10-ResNet34_batch256_forSrunsTest Accurac y

— 56D

— s

— NG

— AGNES
SNAG
ADAM

— sHanG

— SHANG++

o 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000

Figure A.3: Training loss (log scale) (left), test loss (log scale) (middle) as a running average
with decay rate 0.99, and test accuracy (right) on the CIFAR-10 dataset using ResNet-34
trained with batch sizes 50 (Top Row) and 256 (Bottom Row). The compared methods
include SGD (gray), SHB (black), NAG (olive), AGNES (blue), SNAG (orange), Adam (yel-
low), SHANG (green) and SHANG++ (red). For the choice of v in SHANG and SHANG++,
v = 10.

on the CIFAR dataset. All other baseline algorithms used a fixed learning rate of n = 0.001;
for those involving momentum, the momentum coefficient was set to 0.99.

Results. Figures @, @, @, and @ depict the evolution of training/test loss and test
accuracy across datasets. Overall, SHANG and SHANG++ achieve competitive or superior
performance compared with non-adaptive baselines.

A.3 Batch-Size Scaling on CIFAR-10 (ResNet-34)

To further assess the robustness of our algorithms to stochastic gradient noise, we evaluate
all methods on CIFAR-10 with ResNet-34 under two batch-size settings: 50 and 256. Smaller
batches introduce higher gradient variance, whereas larger batches reduce the noise level.
Importantly, all hyperparameters are kept fixed across batch sizes to isolate the effect of
noise on algorithmic performance.
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Figure A.4: Training loss (log scale) (Left Column), test loss (log scale) (Middle Column) as
a running average with decay rate 0.99, and test accuracy (Right Column) on the MNIST
dataset using LeNet-5 (Top Row), CIFAR-10 dataset using ResNet-34 (Middle Row) and
CIFAR-100 dataset using ResNet-50 (Bottom Row) trained with batch size 50. The com-
pared methods include SHANG (green) and SHANG++ (red) under different parameter
choices.
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Figure A.5: Training loss (log scale) (left), test loss (log scale) (middle) as a running average
with decay rate 0.99, and test accuracy (right) on the CIFAR-100 dataset using ResNet-50
trained with batch size 50. The compared methods include SGD (gray), SHB (black), NAG
(olive), AGNES (blue), SNAG (orange), Adam (yellow), SHANG (green) and SHANG++
(red). For the choice of v in SHANG and SHANG++, v = 15.

Setup. All data augmentation and experiments setting follows Appendix @ Hyper-
parameters are held fixed across batch sizes: for SHANG/SHANG++ we use (a,7) =
(0.5,10)/(cr,v,m) = (0.5, 10, 1.5), and all baselines reuse their best settings from Appendix .
No re-tuning is performed when switching the batch size.

Results. Figure @ shows the training/test dynamics.
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o Small batch (50). Classical momentum variants (NAG, SNAG) and AGNES ex-
hibit larger oscillations and wider variance bands; AGNES also shows a higher
error plateau. In contrast, SHANG/SHANG++ produce the lowest losses among
non-adaptive methods and maintain narrow shaded regions, indicating markedly
improved stability across seeds. Adam remains competitive in accuracy but with
higher variance in test loss.

o Large batch (256). The gap between methods narrows: all optimizers become more
stable and the curves cluster. SHANG/SHANG++ continue to match the best-
performing baselines while preserving smooth convergence.

Robustness to multiplicative noise translates into tangible benefits in the small-batch regime:
with a single, fixed hyperparameterization (a = 0.5, = 10, m = 1.5), SHANG/SHANG++
achieve stable training and strong test accuracy without re-tuning, whereas competing
momentum methods are more sensitive (larger variance, higher plateaus). As batch size
increases, all methods stabilize and the performance gap diminishes, consistent with the
noise-abatement expected from larger batches.

A.4  Supplement of Robustness to Multiplicative Gradient Noise

All runs use an identical experimental setup: CIFAR-10 dataset, ResNet-34, batch size 50,
trained for 100 epochs, and averaged over three random seeds. Note that the actual gradient
noise level experienced by the optimizer is higher than the nominal o, because minibatch
stochastic gradient descent inherently introduces sampling noise. The multiplicative noise
we introduce,

9(xr) = (14 oN(0,1a))V f (1),

is therefore imposed on top of this intrinsic minibatch stochasticity. We record the final
validation error at epoch 100.

Discussion. The empirical trends align with our Lyapunov analysis: coupling the time
scales (a, v, m) suppresses the o2 amplification and yields stable behavior across noise levels
without retuning. SNAG—while reasonably stable—does not match the consistently low
error of SHANG/SHANG++, and AGNES is the most sensitive to increased multiplicative
noise.

A.5 Supplement of Image Reconstruction

We further evaluate our algorithms on a generative task—image reconstruction with small-
batch training, which introduces substantial gradient noise. Specifically, we train a
lightweight U-Net (Ronneberger et al), 2015) (base channels 32 — 64 — 128, with bilin-
ear up-sampling and feature concatenation) on CIFAR-10 using batch size 5. We compare
SHANG (a = 0.5, = 0.5) and SHANG++ (a = 0.5, = 0.5,m = 1) against SNAG,
AGNES, NAG, SGD, SHB, and Adam. All other experimental settings follow those in
earlier sections.

A.6 Hyperparameter comparison

To identify optimal hyperparameter configurations for our stochastic algorithms, we per
grid searches over a € (0.005,0.1) and « € (0.5,30) on MNIST and CIFAR-10 (Figures @I)‘
For SHANG++, we additionally vary m € (0.5,3) while keeping o« = 0.5 fixed. Results
indicate that: (1) & = 0.5 and m = 1.5 are generally effective across tasks; (2) Smaller
values work well for LeNet-5, while larger v are preferred for deeper networks like ResNet-34;
(3) SHANG+++ exhibits low sensitivity to m in practice, with performance remaining stable
across tested values. These findings confirm the practical usability and tuning simplicity of
our methods.
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Figure A.6: Training loss (log scale) on the MNIST dataset using LeNet-5 (Top row)
and CIFAR-10 dataset using ResNet-34 (Bottom row) trained with batch size 50. The
plots show results for SHANG (left) and SHANG++ (middle) under different combi-
nations of hyperparameters o € {0.1,0.5,0.01,0.05,0.005} (different color) and v €
{0.5,1,1.5,2,2.5,5,10,15,20} (different line style). The left two figures show that a = 0.5
and v € {1,1.5,2} are relatively good parameter choices. The rightmost plot illustrates
the performance of the ISHNAG method under different combinations of v € {1,1.5,2} (on
MNIST dataset), v € {2,5,10,15} (on CIFAR-10 dataset) and m € {0.5,1,1.5,2,2.5,3}
with « fixed at 0.5. The differences among various m values are minor for this task. In
practice, we typically choose m = 1.5.

B SHANG

B.1 model

Applying a Gauss-Seidel-type scheme to discretize HNAG flow (@) and replace the deter-
ministic gradient V f(xy) with its unbiased stochastic estimate g(zy), we can obtain the
Stochastic Hessian-driven Nesterov Accelerated Gradient (SHANG) method:

Tk+1 — Tk

71% = V% — Tpy1 — Brg(Tr)

Vk4+1 — Uk H 1

— = —\Tk+1 — Vk+1) — 9T+ B.1
T = ke~ v) — —ge) (B.1)

Ve+1 — Vi

= M= Vk+1
g

In the strongly convex case, we fix v = p and use a constant step size a; in general case, we
set p = 0 and allow both «aj and v; to vary. The coupling 8; > 0 depends on (ay, ;) and
typically scales as (1+02)ay /vk. Consequently, SHANG reduces to a two-parameter scheme
(a, B) in the strongly convex regime and a three-parameter scheme («,~, §) otherwise. For
practical tuning, tying 8 to a and v via 8 = «/v yields an effective two-parameter (a,7y)
algorithm. The SHANG method for deep learning tasks is described in Algorithm P
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Algorithm 2: SHANG for Deep Learning

Input: Objective function f, initial point xg, stepsize «, time scaling factor -, iteration
horizon T'.
n<+< 0, vy x9, X1 Xg
while k < T do
g < Vf(zk) // gradient estimate
J— (0%
Uk = Vk—1— 59k

Th1 = Tia®h + TiaVk — Tia 29k
k+—k+1

end

return xr

Observe that SHANG is the m = 0 special case of SHANG++. Table @ summarizes
the theoretical convergence complexities and the number of tunable parameters required
by leading stochastic optimization methods under multiplicative noise. As shown, SHANG
and SHANG++ achieve optimal theoretical guarantees while significantly reducing hyper-
parameter complexity.

Table B.1: Assume f is L-smooth and g(z) satisfies the multiplicative noise scaling (MNS)
condition (see Definition ﬁl) with constant ¢ > 0. This table summarizes the iteration
complexity of leading first-order stochastic optimization algorithms under optimal parameter
settings to reach e-precision.

Algorithm Convex Strongly Convex

SGD (1+0%)L (1+U2)%log(%)

(Hermant et al), 2025)
NAG V= VHS \ﬁlog(l)
—0 —0o m €
(Gupta et al), 2024)
L(14202%)(140%) L

AGNES L4207 ) (ko) 1+ 02)\/;10g(§)
(Gupta et all, 2024)

SNAG (1407 (1+0%)/Elog(2)
(Hermant et al), 2025)

SHANG (1+02)\/§ (1+02)\/%log(%)
(Our Algorithm m)

SHANG++ (1+0%),/Z (1+02) /B - 11+ /) log(2)
(Our Algorithm E)

SHANG++ for quadratic f (1+ 02)\/% % % —1(1+ m ﬁ)_l log(1)
(Our Algorithm B)

o |t~

B.2  Convergence Analysis for SHANG

Define the discrete Lyapunov function

E(zim) = F(@f) = Fa) + o — a7 | (B.2)

where z;” = (2}, v1), 2x = (@k,vx) and z* = (z*,2*). The following theorem establishes a

decay bound for E [£(z;vk)].

Theorem B.1. Let f € S, 1, (x,vx) be generated by SHANG (@) i =z — apBry(zy)
is an auxiliary variable. Assume g(z) (defined in (|L.2)) satisfies the MNS condition with
constant o. Given xar = Vg = X,
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(1) When 0 < p < L < 00, choose step size 0 < a < ﬁ\/% and 8 = @, we
have

E {f(xzﬂ) — fa") + %Hvkﬂ - 33*||2} < (1+a)"KHhey

2
(2) When p = 0, choose oy, = k%rl, Y = ai(l+40?)?L and B = W, we have

E £t = £ + B s =1 € o &80 = Og)

where & = f(zo) — f(z*) + §llwo — «*[|? and £)° = f(zo) — f(z*) + L||zwo — 2*|]2.
When o = 0, SHANG reduces to the deterministic HNAG method analyzed in Chen & Luo
(2021).

Before presenting the proof of Theorem @, we first establish several auxiliary lemmas,
beginning with one that relies on conditional expectations under the MNS assumption.

Lemma B.1. Let (2, F, {Fk}x>0,P) be a complete probability space with filtration {F}r>0.
Suppose xy, is generated by SHANG/SHANG+H+, g(xy) denotes the stochastic estimator of
V f(xr), then the following statements hold

L. Eg(xr) | Fi] = Vf(zg).

2. E[|lg(ax) — VF(@)l?] < oIV f(ar)]?.
E[(g(zk), V(zr)] = IV f(zx)|]?
E [llg(@i)l?] < (1+0?)||V f (k)|

Proof of Lemma @ First and second claim. This follows from Fubini’s theorem.

Third claim. For the third result, we observe that since f is a deterministic function, V f(x)
is Fr-measurable, then, by the Theorem 8.14 in Klenkd (2013), we have

E[(g(zr), V.f(zx))] = E[E [(g(xx), VF(2)) | Fill = ELE[g(ar) | Fal, VF(@r))] = E [[IVF(an)]|]
Fourth claim. For the fourth result, using the previous results, we have

E [llg(zi)lI”] = E [llg(zr) = V(@) + 2(g(zr), V. (2x)) = [V f ()]
=E [llg(zr) = V(@) I’] + B [2(g(xx), VI (@))] = [V ()]
<PV f(@p)l? + 2V F (@)l = IV £ ()|
= (1+ )|V f(zp)l

O

Under the MNS assumption, this setup of auxiliary variable ™ yields the following descent
lemma for smooth objectives.

Lemma B.2. Suppose that J}Z_ =ux, —ng(zk), [ € Ci’l. Given 0 < n < m, we have
E [f(x}) = f(z")] < flax) = f(z) - gHVf(ka)ll2
Proof of Lemma @ Using the L-smoothness of the function f:
fly) = f@) =(Vf(x),y—=) < *Hy—mHz v,y € R? (B.3)
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and Lemma @, under the assumption of 0 < n < 7y, We can obtain the desired result

1
L(14o

B (/)] <E [o0) ~ (e, 91} + £ lgCon]

= F() ~ Englan), o)) + E [ Elag(an)

2 0.2
< f(en) ~ VS @I + PP 9 s 2
0_2
= fw) — 1~ LTI 19 a2

< fex) = IV @)

O
Define an auxiliary variable xz =z — agBrg(xy), substitue it into (Eq@) yield:
Tk+1 — 332_
= — 2
ag
Vk41 — Uk 1% 1
— = —\Tg1 — V1) — —9(Trt1 (B4)
- %( + ) o (Th+1)
Ve4+1 — Vk
T A (S |
ag

The next lemma controls the decay of E [5(zlj+1; Yit1)]-

Lemma B.3. Let f € S, 1 with 0 < p < L < 00, Lyapunov function £ is defined by (@)
Given (vk,xg), (Tk+41,vk+1) are generated by (@) and x;_l = Zpt1 — i1 Bk+19(Trt1)-

_ 1
Assume 0 < apy18k+1 = apfr < Ttory Ve have

(14 ow)E [E(z, 15 7011)]

2 o2
Lapl+o7) (1+ ar)owBi) IV f(zre) 1> — =k

< Elafim) +E 3 L s | = Drlaf o)
V&

proof of Lemma @ By Lemma @, if 0 < agfr = art+18k4+1 < m, we obtain the
one-step decrease

E[E(zf, m11)] — EG=Fm)

a3
<E e - £ i) - EIV ) ©5)
— (0%
=E [azkﬂ;w — (5t + P o — 2| ’“f’“ IV £ ()2

Applying the Bregman divergence identity Chen & Teboullq (1993):
<Vf(y)—Vf(x),y—z>:Df(z,y)—i-Df(y,x)—Df(z,m) V,J?,y,ZERd (BG)
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together with the representation £(z;vy) = Dg(z, 2*;y) and the update rules into (@), we
obtain

E [E(z5 05 m+1)] — €53 )

E [(VE (i1 2ke1 — 7 = De(eis 2irni ) + "B gy — a2 = S0 ) }
<E [<Vf(l'k+1) —Vf(@"), xpq1 — %) + Vi (Vg1 — T, Vg1 — Uk) — Ds(z;, Zkt+15 k)
B -\ e
=E[—a(Vf(zre1) = V(") 2pt1 — 27) + ar(V [ (The1), vr — 27) — ke (g(Ths1), vhg1 — 27)
ok (1 — Ye+1)

Fopp(Vrp1 — 25, Tpp1 — Vpy1) + kg1 — %1 — De(z}f, zrt1; W)

2

P () P

(B.7)
By the definition of the Bregman divergence and the u-strong convexity of f, we have

(Vf(@rt1) = VI(@"), 2041 — %) = Dp(xpq1,27) + Dy (a7, Thy1)

. . B.S
> Dy(rina) + Ml ot O

and

Oék/j/ * *
T(kaﬂ —2*|? = zr = v |2 = o —2*[7) (B.9)
We denote fk+1 = o(xg, - ,Tk+1) the o-algebra generated by the k + 1 first inter-

ates {z;}*! generated by SHANG. Since f is a deterministic function, vj, — z* is Fgy1-
measurable then

app{Ves1 —°, Tpy1 — Vpg1) =

E[{g(zrt1), o0 — 27)] = E[E[{g(zhs1), 00 — 27) | Frpal]
=E[E[g(zps1) | Frra] vk — %))
=E[Vf(@kt1) vk — x")]

Now, we apply this result in reverse, and using Young Inequality, Cauchy-Schwarz Inequality
to obtain . .
E[ai(V f(@rr1), o6 — =) — aw(9(@h+1), ves1 — 27)]

= E [ (g(@rs1), vk — Vrs1)]
a% 2 Tk 2
<E 7||9(33k+1)H + 7\\% — Vg1 | (B.10)

oar(l+o
<E [’MIIW( I+ 2o = ol

In addition, using the identity of squares (for v) and Bregman divergence indentity (@)
(for T), we have the component form of

k
De (=, 215 9) = Dy (@) i) + G- o = v (B.11)
Substituting (@—) back into (@), we can obtain

E [E(z 15 m+1)] — €55 7)
[ L oi(1+0%)

<E _—akDf(askH,w*) +5( o — arB) |V f(zeg) P

—%Hvkﬂ —z*? - akMkaH —vpp||® = Dyl 7xk+1)} (B.12)
<E[-anDy(at, 0" + ;w — (14 ar)an ) IV (o)

~ T oes =22 = S s — v |2 = Dy (o )]
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By moving E [E(z], ;7k+1) = Dy 1, 2%) + 252 [Jogsr — 27| to the left side of the in-

equality to obtain the desired result. O

Now we begin to prove Theorem @

Proof. (1). When 0 < u < L < oo, set v = u. By Lemma @, if af <

(1+a)E [g(z;rH; ,u)}

1
m7 we have

1 a?(1+ o2 ap
< 8leg) + B |5 - (4 0)ad) VSl - Pl = vl - Dstaf o)
(B.13)
2 2
Assume aff = (H"; ) < (1+;2)L7 i.e., the step size satisfies 0 < a < H%\/% to ensure

that all the coefficients of the terms on the right side of the inequality, except for £ (z,:r7 1,
are non-positive. Thus,

E[E(zf 5 m)] < (14+a) '€ m) < (14 )" FFVE(z0; ) (B.14)
2). When p = 0. Assume oy, = k%rl, Y = ai(l+0%)%L and By = (H';’% Using Lemma
to obtain
E £ 5menn)] € T RE (i m) € s E(o0370) (B.15)
L k43R Sk 2)(k+3)T

O

Corollary B.1. Under the setting of Theorem @, SHANG achieves an e-precision solution
within the following number of iterations:

(1) When p = 0, with ay = ﬁ, Y = ai(l+0?)?L and B = 7(”;'2)0"67

k

k> \/2(f(x0) — &) +2(1 4+ 02)%L|zo — 2*|]?)

€

(2) When0<u<L<oo,witha:ﬁ\/%andﬂ:@,

k> (1+02)\/510g (f(l“o) —f(x*);— &|\zo —x*2) |

Corollary B.2. In the setting of Theorem @, f@h) <3 fa¥).

proof of Corollary @ We assume that all the conditions of Theorem @ have been met,

we have

E[l f(z}) = f@) ] =E[f(=) - f(a")] < O¢*
holds for some positive constant C'. Here 0 < ¢ < 1 is the decay factor. In fact, ¢ =
(1+ 1Jr%\/%)_l in strongly convex cases and g = i in convex cases. Since

2
7+2) (k+3)

P (Jim 1(eh) # 7)) = (Jim sup | fla) - 7o) > 0)

P (U Jim sup| F(a) — F(a*) [> i)
n=1

< 37 (i s 760~ 607 1> 1)
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For any ¢ = % > 0 and for any N € N, we have
P (kl'l)m sup | f(z) — f(z*) |> 6) <P(Fk>N st | flzf)— fl@*)[>e)
P (U{I fl@f) = fz*) |> €}>
k=1

P (| f(z) — f(a*) |>€)

o

£
Il

1

E [ f(zi) — f(@") ]

g

M

=~
Il
MR

qk

IN
o Q
8

=

=1

where in the penultimate step we use Markov’s inequality. The right-hand side of the
inequality above represents an infinite series, and by leveraging the convergence of this series,
we can conclude that the right-hand side can be made arbitrarily small. Consequently, the
left-hand side of the inequality must be zero, implying that P (limy .o f(z;) # f(z*)) = 0.

Therefore, f(z}7) converges in probability to f(z*). O

C SHANGH+

C.1 Proof of Theorem @

Setting v = p and m = S, and substituting g_,(x)) and :c; =z — afg_,(zx) into (@)
yield:

+
Tl — T
BT o~ i — Bulws - @)
V41 — Vg 1 1
L — x* — Vg1 — 79_#(xk+1) (C )
o 1

af = T — aBg_p(Trir)

We note that schemes (@) and (@) generate the same sequences zj and vy; the appearance
of * does not affect the algorithm itself. The form @) is introduced purely for theoretical
analysis.

Define the discrete Lyapunov function
* l’(‘ *
E(asm) = fop(@l) = fou(a®) + Gllow — 2| (C2)

The next lemma controls the decay of E [€(z; ; p)].

Lemma C.1. Let f € S,,1 with 0 < < L < oo, then f_,, € So,r—,. Lyapunov function &£
is defined by (C.2). Given (z,zk,vy), ($z+17$k+1,vk+1) are generated by (@) Assume

0<Oéﬂ§ WM,WG have

E [5(2;4_1;“)] - g(zljnuf)
<E {—(1 + ﬂ#)a(wa(xZH,x*) + Dy, (z*,2p41)) —

1,0?(1+0?
N Ch L
2 %

ap(2+ a)

5 [vpg1 — =*||?

(14 1+ Bu)a)aB) ||V fop(@es1)||* — Dy_, (x5, 2ps1)

22



Under review as a conference paper at ICLR 2026

Moreover, if f is quadratic, we have
E[E(z 0 m)] = €5 m)

au2+a) *
<E [—2(1 +Bmany (af et - HEED

1,0%(1+0?)

+5(

~ (L4204 B0))ad) [V Sy ons)l = Dy, (o] 00s)
proof of Lemma @ By Lemma @, if0 < af <
decrease N N

E [g(szrl;ﬂ)] - E(Zk )

<E[£Guriin) — £l i) - LIV Lu(orn) P

m, we obtain the one-step

(C.3)

Expand it yields
E [E(zf 1 m)] — E(=5 1)
E (Ve ) = Delef i) = GV ulone|P]

SE[(Vip(@r1) = Viop(@), 2 — a) + M(vk+1 — 2%, vpp1 — vg) — De(zf, 2415 1)
S

=E [—(1 + Bu)a(V fop(@rs1) = V-p(@), zp41 — %) — apllvgr — x*Hz - Ds(«zf:, 2415 [4)
+a(Vfop(@rir), vk — &) = g (Tp41), vp1 — 27) — aﬂvf—u(xlﬁl)”ﬂ

=E[-(1+Bua(Ds_, (Tpy1, ") + Df (@ whg1)) — aplloesr — 2¥)1® = De(zif, zrg; 1)
+alVoop (o)~ veas) = S IV lans )]

SE[-(1+Bu)a(Dy_, (x,,2") + fo,l(l“ s 2k41)) = apllvggr — 2¥)1? = De(2f s 213 1)

+al gl = o) = (4 (14 )0) o) P

(C.4)
Using the update for vg41 and Lemma @ yields the following bound.

E[a{g—p(Tr+1), vk — Vkt1)]

=K :<\jﬁg_“(m+l)’ \//j(vk - Uk+1)>:|

1 1, «
~ E |10+ g~ v - §||\7H<xk+1> - VAo = P
2
m a? M Vi — Uk
—E —||gw<mk+1>||2 # Bl = ol = g pons) - B
+o a2 "
<E an P+ Bl = vl = s — a1
) (C.5)
Substituting () and (@) into (@) to obtain
E [5(2:4_13 ,U'ﬂ - g(zlja /u')
+ * * 04/1(2 + a) * 12
<E|-(1+4Buwa(Dy_, (xf 1, 2%) + Dy, (a*, Tpy1)) — #Hvkﬂ — 2" (C.6)

(T (14 (14 Br)a)ad) IV p(ana)I — Dy, (o as)
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Moreover, if f is quadratic, we have
(Vfu(x) =Vf_ . (2%),x =) = Dy_ (v,2") + Dy_ (2%, x) =2Dy_ (x,2%) (C.7)
Substituting (@) back into (@)7 we have the following sharper decay bound:
E[E(z 5 m)] = E(=5 1)
o a2+ o) .
<E -2+ waDy., (ofa) - P o - a'P o)

2 2
LU (1421 4+ B))aB) V- (wes)I - Dy (2 i)

By moving E [5 (z 1 u)} to the left side of the inequality to obtain the desired result. O

Now we begin to prove Theorem @

Proof. By Lemma @ Assume B = (92 apd o8 <

1 .
m m,l.e.,0<a§

1
1402
E[£(z1m)] — €z )

<E |-+ atata(Dy, (ofoe) + Dy (o o) -

_H
T We have

(2 + @)

_x2
T o1 — 07|

1
O eI - D (o o)
2 2y —
—B |-+ (U oM)al(st) - S o — P+ ST D o
; 1+ i
—(1+ (14 o0*)a)aDs_, (x*, xps1) — 2((1 +i;;(UL a_);v) IVfu(zer)|? = Dy, (x;(agkgl)}
9

Slncea< Tory T , then ( 1+ 02 a<,/ <1 Thus,

E[f:(z,;*ﬂ;u)]s(lwﬂuo?) 221 1) < (L+a+(1+0%)a?) " FHDE () (C.10)

Moreover, if f is quadratic, using Lemma @, we have

E [5(’?]?4.1;#)] - 5(%?#)

* * 0% 2—|—O¢ «
<E|-(1 +OZ)C¥(DfﬂL(l’k+1,.T )-i—foH(x 7-73k+1)> - %varl g ||2
(1+a+o%a)a 1
- - D
2(1+0?)(L— M)va u(@ar) | f- (xkakarl)-
® « an(2 + « .
sE —(2a—|—a Dy, (i w") = ® Dy (af,y,27) = %HUI@JA —a*|?
20 + o 1
- _ -D
2(1+02)(L_ﬂ)”vf (@) |2 fop (@ Trep1)

204+a2
21+ 02)(L — 1)

=E |-(2a+ a2)5(z,j+1) - 0‘2fo“($;+1’$*) - IV f- (@) * = Dy_, (), xr41)

(C.11)
Thus,

E[E(zf 1 m)] < (1420 +0®) (2 1) < (1+2a + o)~ FFDE (205 1) (C.12)
L]
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. _ 1 u _ (1+02)a
Corollary C.1. Under the setting of Theorem R.1|, choose o = o\ o5 and 8 = —

SHANG++ guarantees an e-precision solution within the following number of iterations:

k> (1 +02)\/? <1 + \/E>_110g <M>

If f is quadratic,

1+02 [L 1 TR fxo) = f(z¥)
F=2 u_1<1+2(1+02) L—u) bg( )

C.2 Proof of Theorem @

To facilitate analysis, we define an auxiliary time-scaling factor J, = +7111ak . For any m > 0,
. _ 2 s an 2 A 2)2
setting a = 57, Gk = 19555 = wrirom and y, = ardr (1l + 0%)?L, we have

oy, oy (1+mag1)? (1 4+ may)? )
B k;+1—|—2m( 41+0%)’L 41 +0%)°L )
B 2 (E+2+2m)2  (k+142m)?2

Ve+1 — Ve 1+ may (a2+1(1 +0%)°L  ai(1402)>2L

_k+1—|—2m( _(l~:+2+2m)2)~ (C.13)
-T2 (k+ 1+ 2m)2/ Tk
- (14— = 5
Ut ST am) e
< —Fk+1

Define as'kF = ), — G Brg(xk), we can obtain the following equivalent form of SHANG++ for
convex problems:

Th+1 — xZ‘
— = = Uk — T+l
Qg
v - 1
e ——9(Tk+41) (C.14)
Ak Tk
Tetl Z T o —Vk+1
(675
Denote the discrete Lyapunov function by
. Yk *
E(5 k) = flal) = f@) + 5 o — 27| (C.15)

The following Lemma establishes a decay bound for E [5 (z ﬁk)}.

Lemma C.2. Let f € Sp 1, Lyapunov function € is defined by (C.15). Given (w,vk,z}),
(Tk+1,vE+1) are generated by () and xLl = Tp11 — pPrg(pt1). Assume 0 < qpfr =
Gn+1Br+1 < Fiygrys We have
(1+ax)E [5(22’_’_1; '~yk+1)]

1621+ 0?)

<E(z3A) + E | —arDy(x* 2py1) — Dy, 2pg1) + 5 ( — (14 )& Be) |V f (rg1) I
2 Yk
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proof of Lemma @ By Lemma @, if 0 < arfr = apr1Prr1 < m, we obtain the
one-step decrease

E [5(22;1;%“)} — &z 59m)

~ B a
<E [5(2k+1;’vk+1) —E(%55 ) — kﬁk

=E [&zm;m £ ) + WHW — 21 = AP ()
Expand the above equation and use the update to obtain
E [E(zf 1 k41)] — (25 9k)
E [<vs<zk+1;ak> fhr = 2) — DeCe 2 i) + P a2 = OB 2

E [(Vf(zr1) = V@), 0p41 — ) + T (Ops1 — 25, vi1 — vp) — De(2, Zk+1;'7k)

ag’y a
SO 2 - O )
- . "o A o Tk *
= —Qr k+1) — sy Vk+1 — k k+1),Vk — - k+1), Vk+1 —
B |0V S @) = V), =)+ 0T o = 2 = B gl ong - o)

kY N - ak/Bk
O a2 - Dt s ) — PV )| ]

2
) (C.17)
Using Young Inequality, Cauchy-Schwarz Inequality and % = ay, to obtain
- o O *
E |:ak<vf(xk+l)vvk —z") — ,’;Zk (9(Tht1)s Vg1 — @ >]
= E[an(g(@rt1), vk — vkt1)]
az Vi (C.18)
<& fgtonr)lP + Ll - vl
ai(l+o? Vi
<% ['“(Tﬂwmﬂw + By — P
Vi 2
Substituting () and () back into (), we can obtain
E [g(zlj+13'7k+1)] - 5(2133'719)
i o . 1 a2(1+02)
<E [OékDf(xk+1,1' ) — apDy(z", xp41) + 5(7]6( oA ) _ anBk) IV f(zrs) ||
Uk x
=B o - 2"~ Dyt ne)|
- - - N 1, a3(1+o0? -
< B |-an8(sfii ) — @Dy ) + 5 (T = (14 3008019 ) P
_Df(xzv karl)]
(C.19)

By moving E [5 (z,';_l; ’yk+1)] to the left side of the inequality to obtain the desired result. [

Now we prove the theorem @

Proof. Assume aj, = ki Ve = apdp (1l +02)%L and By, = (HU )O‘ . Then

1 A 1 A
agBr = Sl _ +~U D)ag (C.20)
Yk Yk
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Using Lemma @ to obtain
E [E(550Th)] < (1+ar) 7T ) < TLo(1+ @)™ € (=0 3 %0) (C21)
Since ay = m, then
~N— i+ 14 2m (1+2m)(2 + 2m)
o (1+a) =1k, 2 -
i=o(l + &) =i43+42m (k+3+2m)(k+2+2m)

O
Corollary C.2. Under the setting of Theorem @, choose m > 0, ai = k%_l, ag =

) 1+C:;:ak ’
Y& = apay(1+0?)2L and By = (H‘;%, SHANG++ guarantees to reach an e-precision at

the following interations:

k> \/(1 +2m)(2+ 2m)(f(xo) — f(2*) + m

Corollary C.3. Under the setting of Theorem @7 f@h) 3 f(a).

lzo — x*[1?)/e

D Variance Decay Analysis

We study the variance decay of the Lyapunov energy (@)

£ 1= £ = Flad) — F@*) + Loy — |2

under the unified stochastic model of SHANG and SHANG++. Throughout we work on a
probability space (2, F,P) with the post-update filtration Fj, := o(zo, vo, Co, - - -, Ck ), Where
each ( collects the randomness used to form the stochastic gradient at step k. We write

9k = g(zk, Gr) and g1 = g(Tk41, Crt1)-
Assumptions. We make the following standard assumptions.

Al. Smooth convexity. f € S, with 0 < pu < L < oco.

A2. Unbiasedness at the query point. Elgxt1 | Fr] = Vf(zr4+1). Equivalently, with
Eet1 = gkt1 — VI (@p41), E[Sk41 | Fi] = 0.

A3. Multiplicative noise scaling (MNS). E[||&x11]1? | Fi] < 2|V (zrs1)|*

A4. Bounded conditional kurtosis. There exists y > 1 such that E[||¢x.1]|* | Fi] <
X(E[ll€k+11? | fk])2 (e.g., x = 3 for Gaussian noise).

Unified stochastic model. The updates for SHANG/SHANG++ can be written as

T =z — R gk
Lh+1 — l‘z
— = = U — Tkt
(73]
Uyl —Vk  J 1 (D.1)
- = *(Ikﬂ - Uk+1) — —0gk+1
(673 Yk Vi
Ve4+1 — Vi
T an =B Vet
where oy > 0, 7% > 0, and we introduce &, = 1+°‘T’”ak and A = 1+77’§ak with m > 0.

Equivalently (and crucial for variance analysis), (x: 415 Vk+1) are affine in the fresh gradient
gi+1 while zp1 depends only on past randomness:

1 AL

+ + ~ _ ~

The1 = T a Ty + 7 Ta Vg — Ogt1Bet19k+1 = Thl — Qg1 Brt19k+1,
- p + ( Vi QpQg ) Qg

V41 = — X, + + - Vg — ————0k+1

T e rarp) A +ar) T e agp (e arp) (1 + ay) Yo+ gt
%H_l—i—aku 1+ak%

(D.2)
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By the filtration choice, xy41 is Fi-measurable and g1 uses fresh randomness (x4 1; hence
with &ky1 = gk+1 — Vf(zk+1) we have E[€x41 | Fx] = 0. This linear structure will allow us
to bound the one-step fluctuation 11 — E[€k+1 | Fi] and to propagate variance.

Lemma D.1 (One-step fluctuation). There exist explicit constants Ay, By, C, > 0 (functions
of ay, &, Yk, 14, L) such that, with &1,

ki1 = El€ri | Fil| < Auv/Erll€rr1]l + Brllérsall® + Culi

and

Ay, = (By(1+ B,L)\/2Ley + ByAgsi(ca + Bov/2Ler (G, 4, L))

B, = LB; +2'~7k+le2;

Cr = (LB2 + A41B2) Ley (a, Ar, L) o
where ¢ = max{rh L) o ma{ e (5
m) %} when p > 0 and ¢ = ~k when p = 0. B, = ar118k11
and B, = —%&

Yetogp”
proof of Lemma Ell Using &k41 := gk+1 — Vf(zr4+1), we can rewrite the updates of x:_H
and vgy1 as

2y = Uk — 61 Bropr V f (Tht1) — Gkt Brg 1841 = Uy — Byt
AL Q. ~ (D?))

=Vy———V - — =V, —B
Uki1 = Vi = o2 f(zrs1) ’)’k‘i‘akﬂflﬁ_l b — Bulkt1
_ + _ agp + y (a79e]
where Uy, = 1+ak$k + 1+akvk, Vi = mwk + (%Jrgw + (’Yk+lX:H)k(1+(Xk))vk,
Uk = Uk - Bfo(:Z?k_;,_l) and Vk = Vk - BUVf(Ik+1). Bm = dk+1ﬂk+1 and Bv = . are

e T )
positive constants. It should be noted that Uy, Uy, Vi, and V; are measurable with respect
to .Fk.

Let’s first focus on the left part of £41. Expanding f(xa_l) = f(Uk — By&k+1) at point Uy,
using Taylor series gives

f(Uk = Bobisr) = f(Ur) = (V£ (Uk), Bobisr) + (U, Ers1) (D.4)
where
1
O er1) =] [ (T FOmtBuicr) =V (00, ~Butirait 1< £ Batirl? = 222
(D.5)
Then
| flad ) = f(") —E[f(zf,,) — fz") | Fi] |
=| f(Uy — By&xs+1) — f(z*) — E [f(Uk — Byp&gr1) — f(x) | ]:k} |
(D.6)

=| ~(Vf(Ur), Buxs1) + r(Uk, 1) — E [T(Ukafk—&-l) \ ]'_k} |
2

. LB? LB?
< Bl VAU - ksl + =M€kl + =2 [ll€nrall® | Fi]

where the last step uses Cauchy-Schwarz inequality and (@)
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Since U, = Uy — B,V f(xkt1) = k41 — BoVf(xgy1) and a1 =
triangle inequality and smooth convexity of f, we have
IVFOO < IV F(Uk) = V(@) + [V f ()|

< LUy = @t || + 1V f (@) |
= (1+ B L)V f(zrra)l

< (14 BoL)V2Ly/f(zks1) — f(27)

1 + ay
TFar Tk T Trap Uk by

- = (D.7)
< (4 BOVIL [ () — 1) + o (7(w) — 16)
< (4 BDVIL - () — 10 + 1 D e

< (1 + B,L)\/2Ler (G, Ak, L)V Ex

1 ar L

where ¢1 (G, i, L) = max{ 5, 13557 }-

On the other hand,

LB?
2

Substituting (@) and (@) back into (@), we have
| flai) = f@) = E[f(e) = f(@) | Fi] |

— LBEc .
< Bo(1+ By L)v/2Ley (G, ks L)V Ex | x| + ) k1111 + L>B2o?cy (G, Yk, L)) Er
(D.9)

LB2%s?

E [|€kr1]? | Fi] <

|V f(zrs1)||* < L2B2o?cy (@, Ar, L)Ek (D.8)

For the middle part of &1, since

:)(/k'“’l * (12 — ﬁ/k-'rl ¥ * (12 ;)(/k"rlBiZ) 2 g 9 * B D 1
gy — ot = B0 - BB e 2 e (B - 0, Bugir), (D:10)
we have
V41 . V+1 «
T A
Ll A — o B T+ By > g 2| £ (D.11)
=| A1 (Ve — 2", By&iy1) + 5 (1€r+1 €k ll® | F] ) |
. - . Vi1 B2 Y41 B2
< BoYr Ve — 2| - [|€pa || + Tv\|§k+1ll2 +—5 E €111 | Fi]
Using triangle inequality and convexity of || - ||, we have
Vi — =
=[[Vk — 2" — ByV (1) |
Qg n ( Vi Qg ) .
< —x, + + — v — z¥|| + By||Vf(xk
H(’Yk +akﬂ)(1 +ak:) k Y + Qe ('716 +ak:/14)(1 +ak) || UH f( +1)||
Qpft o ( Ve QO ) «
< — ||z — = + — v — || + By ||V f(zk
el ol (e e o o+ Bl o)
Qg + o ( Yk QO ) «
< — . —x ||+ + — Vp — &
(v + agp) (1 + ax) I | i tagp (v +agp)(1+ ag) | |

2Ly (a, Vi, L)V E
(D.12)

Next, we will consider two cases.
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Case 1: p > 0. Using the strong convexity of f, we have
Vi — |

/24 + Tk akaku / ’Yk
< — z,)— flz*)+ ( + v

2L01(0~4k7’~Yka L) \% gk

< (e2(@, s k) + Buv/2Ler (G, A, L))V Er

(D.13)
~ _ /21 ) 5 2
where ¢3(&, p, ) = max{ (7k+a:li)(,f+dk)’ (Vk-zl:lklt + (’Yk+::/(j)k(,f+dk)) V ’7/7} Thus,
'Wchl * Vk+1
L L [ ke — 2|2 | fk] |

- ~ — Vi1 B2 . L
< Byt (c2(@, i) + Buv/2Ler (&, 1, L))/ Ex|| e || + 7k+21 [€ks111* + Ak 41BI Lo ey (e, Ar, L)Ex

(D.14)
Combining (@) and (), we have
| ki1 = E[Eppn | Fi] |

< ( 1 + B, L \/ 2Lcl(dk7;§/k}a L) + B’Uﬁ/k:-‘rl (02(da /-1/7’)%) + By ZLCI(dkvﬁ/kh L))) V gk”gk:-&-l”

l B + }/ ]BU 2 2 g 2 Q ’y l/ ag

Case 2: p=0.

Ve — 2*|| < |lo, — 2*|| + Bov/2Ler (G, 3, L)/ Ex
[9 — (D.lﬁ)
S ( % + B’U 2L01(aka’Vk»L)) V gk

Thus,

k k
| By a2 - [” e — 272 fk] |

N [2 — Vi1 B3 N .
< Byk+1( % + By 2Ler (G, Y, L))V E €1 || + %J; 1€k+111? + Fns1 By Lo c1 (G, Yk, L) Ex
(D.17)
Combining (@) and (), we have
| k1 — E [k | Fi] |

—— - 2 —
< (Be(1+ B.L)\/2Ley (G, Ak, L) +Bv’yk+1(\/% + By\/2Le1 (G, Ak, L))V El| et |

LB2 + 341 B2 ) .
4 BT 2 (LB2 + A B L (6, s D)o i
(D.18)
O
Proposition D.1 (Conditional variance bound). Let Sy := 2Lo%ci(ag,dx, L) with

1+ar 0 1+ak Ak

c1(ag, A1, L) = max{L 9% L1 Under assumptions (A2)-(A4) and the setting of
(In particular, stepsizes and hence Ay, By, Ck, Sk are Fy-measurable),

Lemma

Var(EkH | ]:k) S KZ,kg]§7 Kgyk = 3(14%5]@ + XB%S]% + Cg)

proof of Proposition @ By the definition of conditional variance,
Var(Ex i1 | Fi) = E[ (Ex1 — E [Exg | Fu))? | Fi] (D.19)
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From Lemma @ and inequality (z +y + 2)? < 3(2? + 9% + 22),

(Ers1 — E[Ersr | Fal)? < 3(A2Ek |11 + BEl|€usa||* + C2ER) (D.20)

Since Ag, By, Ck and & are all measurable with respect to the o-algebra Fj. Using assump-
tions (A2-A4) yields

E[&41l* | Fi] < o?|Vf(zrsn)|? < 2Lo%ci &), = Siéi (D.21)
and )
E [&ks1ll* | Fi] < X(E[Ik41l? | Fi])™ < xSi&k (D.22)
Taking E[- | Fi] in the previous inequality gives
Var(Epy1 | Fi) < 3(A2Sk + xB2SE + C3)E? (D.23)
O

Theorem D.1 (Geometric variance decay). Assume the drift inequality (from the expectation
analysis)
El€kt1 | Fi] < ¢ for some ¢ € (0, 1), (D.24)

and assumptions (A2)—(A4) hold. Let K j be given in Proposition @ and suppose Ky :=
supy, K2 < 1 — ¢* satisfied. Then with 6 := ¢® + K5 € (0,1), for all k > 0, given initial &,

Var(Ey 1) < 205!
Proof. By the law of total variance and Proposition EI,
Var(Ey41) = E[Var(Exs1 | Fi)] + Var (E[Ery1 | Fil) < KoE[EZ] + ¢° Var(Ex).  (D.25)
Since E[€F] = Var(&x) + (]E[Ek])2 and (Eq()), we get

Var(&11) < (Ka + ¢2) Var(&) + K (E[E4])” < (Ka + ¢) Var(&) + Ka(E[€])%¢** (D.26)

Solving this linear recursion yields

k
Var(5k+1) (KQ—H] )k+1 Var(Eo —|—K2 QZ K2—|—q k J 2] < (K +q )k“(Var(Eo) ( [50])2)
7=0
(D.27)
Since & is given by the initial point xg = wvp, it is a constant ,then Var(&) = 0 and
E[&] = &. O

Corollary D.1 (Upper bound of Ky in strongly convex setting). Define x = £ is the

condition number of f. Under the setting of Theorem @»@ and Assumptions (Al) (A4),
with Ky, = 3(A42S), + xBESE + C}F) defined above, we have the explicit upper bound

(1) For SHANG,
12a20%((3 + 0%)ag + 1)? + 12(x + 1)ago? ak <1
fe= {12aga2ﬁ(l+ (3+02)a§/€%)2+ 12(x+Dajots ar>1
where
(2) For SHANG++,

i 1(1 + (3 +0?)ag

12020 N2 L 19(x + Dado? (

-1

=

KQS 2
2 kK 2\ 5
P (1+ (3+02)a

12a30
0 k—1

K K
5_71)%)2 +12(x + 1)(1804/4:(?

wlw
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Proof. Case 1: SHANG. When m = 0, scheme (@) is algorithm SHANG. From Theorem
@ when v = =1 _ and g= Ut h
9 W_Maa_(l_;’_o.z)\/gan B— m , We nave

El€p+1 | Fi] < (1+ )" & = g€ (D.28)
and

o? 1 a
A:Ak:7(1+g +(1+O’)O[/{—~—m) 2Lcl+1+a02
B =By = CY—Q((l + 0%’k + —)

P oy 1+ a)?

o? 9

C:Ck M((1+J)QK+W)LJC1

S =5, =2Lc%
1 1 P
where ¢; = max{ 5, tf5r} and c2 = {3555 \ﬁ

: : 2\2 _ 1
(1): Assume ak <1, ie., & < (1+0%)7 so that ¢ = .

Since ¢; = 1_%0 and o’k = ﬁ < 1, we bound each term in Ks.
For the B2S? term, using B = ((1 +0%)2a?k + ﬁ),
a2 2
B%§% = [ ((1 + 032’k + %)] - (2uro?cr)?
2u ) (D.29)
2
= a'k?0tc? ((1 + 0220’k + m) < 4ajot,
where we used ¢; < 1 and o?k? = m We denote ag = ﬁ Hence 3xB252 <
12xago®.
For the C? term, note C = 2BLc 02 implies C? = B2S?. Hence
C? < 4ap o, (D.30)
so 3C2% <12 a% o
For the A2S term, splitting A = A; + Ay with
A= a—z((1+02)+(1+02)2a2H+#)\/2LC A= -2 ¢
1= [ (1+a)2 1, 2 = 1+ o 2
: (07 062
For A, since ¢y = 1(ﬁ+2)2 V2/ 1< +/2/1,
425 = 2 2 9umo?e < dro? o _yor O 202 (D31
= ——— 5 2uKkoc ko“cyr ———— =40 —— a0 .
227 (A4ap @ 7 a= V¥ a)y (It+ap 0

. 2 2
For Ay, using ¢; = and o’k = af < 1,

1
14+«
a2 2 2
A3S = {—\/QLcl} ((1 +0?) + (1 +0%)%a’k + ﬁ) -2Lo%¢c

w

2
:4a4ﬁzc§g2((1+a 2 +14+ (Ha)z) < dalo?- (34022 = 4(3 + 02)2alo?

(D.32)
Therefore, using (z +y)? < (1 + 7)2% + (1 + 1/7)y? with 7 = \/A35/A3S:
3A%S8 < 3(4/A2S + 1/ A3S)? 2(3 + 0%)ako + 2ap0)* = 124202 ((3 4 0*)ag +1)? (D.33)
Combining (|D.29)- () we have
Ky <12a202((3 4+ 0%)ao + 1)* + 12(x + Dago? (D.34)
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(2): Assume ak > 1, ie., k> (14 0%)?, so that ¢; = Tia k-

For the B252% and C? terms. We have

4,2 4 2 6,44
B28? = %((1+02)2a2n+ ﬁ) < %-4 < 4afotk (D.35)
Hence
3(xB*S? +C?) < 12(x+1)ajo*k (D.36)

For the A2S term,

A28 = LCQ 22La%c; < a72 . g . 2;m<7261 =402 a73H2 < 4al ok
(a2 T (1+a)? p (I+ap ™ = °°°
(D.37)
Moreover,
4a60 K 2 4802 k?
2a _ 2\2 2 1 2\2 22 6 2
(D.38)
Combining dfg?l) and (D.39),
3425 < 3(y/A25 + /A25) < 12a302VR(1 + (3 + 02)ag kt)? (D.39)
Adding (D.3) - (D.3) yields
Ky < 120202 VR(1 + (3 + 02)ag k)2 + 12(x + 1) aS ot (D.40)

Case 2: SHANG++. When m = Bu = (1 + 0?)«, scheme (@) is algorithm SHANG++.
2
From Theorem @, when v = u, a = m and 3 = 172 o have

o
El€kt1 | Fi] < (1+Ol-‘r0¢) 15k:q€k (D.41)
and
a? 1+ o2 (1+02%)2%a%k 1 !
A=A, =— 2L
k u(1+(1+02)a2 1+ (1+02)a2)? (1+a)2) AT a®
a? 1+ 0%)%a’k 1
B:Bsz( ( 0)2 2 2)
2u (14 (14+0%)a2)2  (1+a«)
2 2\2 2
C’:C’k:a—( (14 0%k 1 2)L0201

(1+(1+0%)a?)?  (1+a)
S =5, =2Lc%c,

1+(1+cr )a 14+a+ 2+a’2)a
+a+(1+02)a?? 1+a+(1+02 a? r} and ¢y = (I+a)(A+a+(1+02)a?)

Similar to the derivation of SHANG, we have
(1): Assume ak <1+ (1+ 0?)a?

K < 12a30°— = (1+ 3+ 0%)a, /ﬁ) +12(x + Dado( i —)? (D.42)

where ¢; = max{;

(2): Assume ak > 1+ (1+ 0?)a?

5 K 3
Ko < 12a30 W(1+(3+a )ag

K —

)+ 12(x + Dafo'n(——=)"  (D.43)

_
(k=D
O
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When does variance decay hold? By Theorem @, geometric variance decay
Var(&r) < E2(q° + Ka)*

follows whenever Ko < 1 — ¢2, where ¢ = (14 «)~! for SHANG and ¢ = (1 + a + a?)7!
for SHANG++. The bounds in Corollary make this condition directly checkable as a
function of the condition number x = L/u, the noise level o2 via ag = (1 + 02)~!, and the
stepsize a:

o In the low-condition regime (the branch with smaller ¢1), Ko scales like O(a%aQ) +
O(ago*) (for SHANG++ with a mild factor (k/(k — 1))P°""®), whereas 1 — ¢* =
O(a) = O(ao/V/k).

e In the high-condition regime (the branch with larger ¢;), the leading term is
Ky = O(ajo?\/k) + O(afo*r) (again with the expected (k/(k — 1)) corrections
for SHANG++), while still 1 — ¢? = O(ag/\/K).

Thus, for fixed x, smaller noise (larger ag) and moderate stepsizes make Ky < 1—¢? easier to
satisfy; for large k, the O(y/k) factor in the leading term of K5 becomes the main bottleneck.

How to enforce the condition in practice. Two standard knobs guarantee Ky < 1 — g2
without fine tuning:

1. Stepsize damping. Replace a by S« with 8 € (0,1]. Then the leading term in K»
scales like O(3%), whereas 1—¢? scales like O(3) (both for SHANG and SHANG++);
hence there exists 8y = Bo(k, 02, x) € (0,1] such that Ko < 1 — ¢ for all 3 < .

2. Mini-batching or averaging multiple independent estimates. Replacing o2 by o2 /M
reduces the leading term in Ky by a factor 1/M while leaving 1 — ¢? essentially
unchanged; the explicit constants in the corollary yield simple batch-size thresholds
(e.g., M 2 o%\/k up to the displayed constants). Section P also notes that averaging
multiple independent estimates does not incur additional computational costs.

E SNAG as a Discretization of the HNAG Flow

Under the multiplicative noise assumption, one of the most recent first-order stochastic
methods designed to overcome the divergence of NAG and accelerate SGD is the Stochastic
Nesterov Accelerated Gradient (SNAG) method (Hermant et al), 2025). Its iteration reads:

Thy1 = Q12 + (1 — Q1) Vi1 — Qip15 (),

; A (E.1)
Vg1 = Pog + (1 = B)zr — meg(xr),

where g(zy) is a stochastic gradient estimator, and dj41, S, B, and 7 are parameters.

By reparameterizing as

. 1 A 1 1 Qg1
Qg1 = ———, S=1Bkt1, B = T g kT T armae L (E.2)
1+ apq 1+T—H 1+W’7k+1
the SNAG scheme (@) becomes equivalent to the following update:
Tht1 — Tk
L = gt — @1 — Berrg(an),
Ok+1
Vk4+1 — Uk M 1
= T — Vks1) — ——g(2g), E.3
QL+1 ’Yk+1( +1) Ve+1 (i) (E:3)
VYe+1 — Vk
S <= e
Ap+1

Hence, SNAG can be interpreted as a new discretization of the HNAG flow (@)
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Parameter choices. For convex objectives f € Sé”b Hermant et al] (2025) shows that the
optimal parameters are

2

1 : k+1 i1 4 =
T 71 L 52)’ k= 571+ 522 -5 k=T k2
L(1+02) 2L(1+02?) 2+ A

This leads to
2 1

— — _ 2 22
QAp+1 = @7 W1 g1 = m7 Vet = kg (L +07)° L

For strongly convex objectives f € S, 1, the optimal parameters become

1 1 h=1 1 \/j . . 1
§ = ———, == —— =1——7\/5, ar=0=——"""——.
Li+o2) ™77 e /il 1+o2V I Ok 1+ E
Consequently,

1 1
(6% 1+O’2 \/:a OZB L(].+O'2)7 Y M( Oé)

The condition v = p(1 — «) indicates that, in the strongly convex case, the update for v is
more accurately viewed as applying a rescaled step size & = ;%= to the v—dynamics of the
HNAG flow:

Vk+1 — Uk 1
SR — vy — ;g(xk)-

In summary, the above parameter rearrangements confirm that the optimal choices in SNAG
are consistent. with those obtained from various discretization schemes of the HNAG flow,
see Chen & Lug (2021)) for details.
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