
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHANG++: Robust Stochastic Acceleration under Multi-
plicative Noise

Anonymous authors
Paper under double-blind review

Abstract

Training with multiplicative noise scaling (MNS) is often destabilized by
momentum methods such as Nesterov’s acceleration, as gradient noise can
overwhelm the signal. A new method, SHANG++, is introduced to achieve
fast convergence while remaining robust under MNS. With only one-shot hy-
perparameter tuning, SHANG++ consistently reaches accuracy within 1%
of the noise-free setting across convex problems and deep networks. In ex-
periments, it outperforms existing accelerated methods in both robustness
and efficiency, demonstrating strong performance with minimal parameter
sensitivity.

1 Introduction

Empirical Risk Minimization (ERM) is central to modern large-scale machine learning, in-
cluding deep neural networks and reinforcement learning (Hastie et al., 2009). It is formu-
lated as

min
x∈Rd

f(x,X, Y), f(x,X, Y) =
1

N

N∑
i=1

f(x,Xi, Yi) =
1

N

N∑
i=1

fi(x), (1.1)

where {(Xi, Yi)}Ni=1 is a large dataset (N ≫ 1), and fi(x) is the loss for the i-th sample.
Efficiently computing the minimizer x∗ = argminx f(x) is critical for training large models.
Exact gradient evaluation is expensive, so Stochastic Gradient Descent (SGD) uses mini-
batches:

g(x) =
1

M

∑
i∈B

∇fi(x), (1.2)

where B ⊂ {1, . . . , N} is a random batch of size M . SGD slows down when the condition
number κ of f is large. Momentum methods such as Heavy Ball (HB) (Polyak, 1964) and
Nesterov accelerated gradient (NAG) (Nesterov, 1983) are widely used to accelerate conver-
gence. In training deep neural networks, Adam (Adaptive Moment Estimation) (Kingma &
Ba, 2015) is a widely used optimization algorithm that combines momentum and adaptive
step sizes for fast and stable convergence.
The mini-batch estimator g(x) reduces the cost of computing ∇f(x) but introduces noise.
In regimes such as small-batch training or highly over-parameterized models, the variance
can scale with and even dominate the signal ∥∇f(x)∥2. This effect is modeled by the
multiplicative-noise scaling (MNS) condition (Wu et al., 2019; 2022; Gupta et al., 2024).
Definition 1.1 (Multiplicative Noise Scaling (MNS)). The stochastic gradient estimator g(x)
satisfies the MNS condition if there exists σ ≥ 0 such that

E
[
∥g(x)−∇f(x)∥2

]
≤ σ2∥∇f(x)∥2. (1.3)

Momentum methods are highly sensitive to stochastic noise (Devolder et al., 2014; Aujol
& Dossal, 2015; Liu et al., 2018), and stability depends critically on parameter choices (Ki-
dambi et al., 2018; Liu & Belkin, 2020; Assran & Rabbat, 2020; Ganesh et al., 2023). Gupta
et al. (2024) showed that under MNS with σ ≥ 1, NAG fails to converge in both strongly
convex and convex settings.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address this, several corrections have been developed. Vaswani et al. (2019) introduced
a four-parameter NAG variant and proved convergence rate

(
1− (1 + σ2)−1

√
µ/L

)k in the
strongly convex case, where L/µ is the condition number of f , and O(1/k2) in the convex
case. Liu & Belkin (2020) proposed the Mass method with three parameters and a correction
term, though acceleration was shown only for over-parameterized linear models. Gupta
et al. (2024) later proposed AGNES, a three-parameter extension of NAG with the same
guarantees as Vaswani et al. (2019). More recently, Hermant et al. (2025) introduced SNAG,
a four-parameter variant that attains the same rates with a mild parameter adjustment.
From the viewpoint of provable convergence in convex settings, these algorithms are com-
petitive. Yet our deep-learning experiments show that they often lose acceleration under
high noise and can perform worse than SGD even with recommended hyperparameters (see
Section 3). For instance, on CIFAR-100 with ResNet-50 and batch size 50, SGD reaches
58.326% test accuracy, while AGNES achieves only 42.82%. With a further reduction in
batch size, both AGNES and SNAG oscillate heavily with large performance swings, requir-
ing extra hyperparameter tuning.
Motivated by this gap, our goal is not only to design another accelerated method, but
to develop a complementary approach that (i) retains optimal theoretical guarantees, (ii)
reduces tuning effort, and (iii) improves stability. Our contributions emphasize simplic-
ity (fewer parameters), provable acceleration with explicit noise dependence, and robust
empirical behavior.
1. Section 2 presents SHANG++, a stochastic extension of HNAG (Chen & Luo, 2021)

for robust convergence under multiplicative noise, sharpening existing guarantees with
minimal hyperparameter complexity. SHANG++ achieves accelerated rates of O(1/k2)
in convex settings and the fastest known rate

(
1 + 2

1+σ2

√
µ/(L− µ)

)−k for quadratic
strongly convex problems with multiplicative noise.

2. Section 3 validates SHANG++ on convex optimization, image classification, and gen-
erative modeling (on benchmark datasets MNIST, CIFAR-10, CIFAR-100). SHANG++
matches or improves upon NAG, SNAG, AGNES, and Adam, with clear advantages under
high multiplicative noise.

3. Section 3 tests robustness to multiplicative noise. At realistic noise levels (σ ≤ 0.5),
SHANG++ maintains near noise-free accuracy (within 1% degradation), supporting our
theory. These results show that stability can be achieved with fewer parameters and a
simpler design, improving earlier corrections such as AGNES and SNAG.

Notation. Let f : Rd → R be differentiable. The Bregman divergence of f between
x, y ∈ Rd is

Df (y, x) := f(y)− f(x)− ⟨∇f(x), y − x⟩.
The function f is µ-strongly convex if for some µ > 0,

Df (y, x) ≥
µ

2
∥y − x∥2, ∀x, y ∈ Rd.

It is L-smooth, for some L > 0, if its gradient is L-Lipschitz:
∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥, ∀x, y ∈ Rd.

Let Sµ,L be the class of all differentiable functions that are both µ-strongly convex and
L-smooth. For f ∈ Sµ,L, the Bregman divergence satisfies

µ

2
∥x− y∥2 ≤ Df (x, y) ≤

L

2
∥x− y∥2, ∀x, y ∈ Rd, (1.4)

Parameters µ and L are treated as known hyperparameters for the given problem. Their
adaptivity is beyond the scope of this work.

Limitation. Current convergence guarantees hold only for convex objectives under multi-
plicative noise scaling and do not extend directly to general non-convex landscapes.
Although SHANG++ reduces tuning complexity through one-shot, non-adaptive hyperpa-
rameters, its performance may still depend on accurate estimates of smoothness constants
(e.g., L, µ). In highly non-convex settings or under very high noise, the one-shot strategy
may require refinement.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 Stochastic Hessian-driven Accelerated Nesterov Gradient

Our method is inspired by the second-order dynamical system introduced in Chen & Luo
(2021), known as the Hessian-driven Nesterov Accelerated Gradient (HNAG) flow:

γx′′ + (γ + µ)x′ + βγ∇2f(x)x′ + (1 + µβ + γβ′)∇f(x) = 0, (2.1)
where β > 0 is any continuously differentiable function on [0,∞) and γ is a time-scaling
factor. This second-order ODE can be equivalently reformulated as the first-order system:

x′ = v − x− β∇f(x), v′ =
µ

γ
(x− v)− 1

γ
∇f(x), γ′ = µ− γ, (2.2)

which removes the explicit dependence on ∇2f(x).

Methods. Discretizing (2.2) via a Gauss–Seidel–type scheme, adding an extra term
−m(xk+1 − xk) to the x-update, and replacing ∇f(xk) with an unbiased estimator g(xk)
yield the Stochastic Hessian-driven Nesterov Accelerated Gradient (SHANG++) method:

xk+1 − xk

αk
= vk − xk+1 −m(xk+1 − xk)− βkg(xk),

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
g(xk+1),

γk+1 − γk
αk

= µ− γk+1,

(2.3)

where αk > 0 is the step size, m ≥ 0 controls the extra noise-damping term, and βk > 0
depends on αk and γk, typically scaling as αk

γk/(1+σ2) .

If the damping term is absorbed into the left-hand side, the x-update becomes
xk+1 − xk

α̃k
= vk − xk+1 − βkg(xk), (2.4)

where α̃k = αk

1+mαk
≤ αk.

SHANG++ can thus be interpreted as a modified discretization of the HNAG flow with a
reduced step size α̃k. The case m = 0 recovers SHANG, a direct stochastic extension of
HNAG. The “++” indicates two improvements: faster theoretical convergence and greater
robustness to noise.
With the parameter choices specified in Theorem 2.1 for the strongly convex case f ∈ Sµ,L,
and in Theorem 2.2 for µ = 0, faster convergence guarantees can be established.

SHANG++ for Strongly Convex Minimization. Let f ∈ Sµ,L with 0 < µ < L <∞. Define
the auxiliary function

f−µ(x) = f(x)− µ
2 ∥x− x∗∥2.

Clearly, ∇f−µ(x
∗) = 0. Since f ∈ Sµ,L, it follows that f−µ ∈ S0,L−µ. Let g−µ(xk) :=

g(xk)−µ(xk−x∗) denote a stochastic estimate of∇f−µ(xk). As no randomness is introduced
in the shift, the MNS condition

E
[
∥g−µ(xk)−∇f−µ(xk)∥2

]
≤ σ2∥∇f−µ(xk)∥2

still holds provided (1.3) holds.

Setting γ = µ and m = βµ, and substituting g−µ(xk) and x+
k := xk − αβg−µ(xk) into (2.3)

yields
xk+1 − x+

k

α
= vk − xk+1 − βµ(xk+1 − x∗),

vk+1 − vk
α

= x∗ − vk+1 − 1
µg−µ(xk+1).

(2.5)

Schemes (2.5) and (2.3) generate the same sequences (xk, vk)
∞
0 ; the explicit appearance of

x∗ is only for analysis and does not affect the algorithm itself.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 2.1. Let f ∈ Sµ,L. Given x+
0 = v0 = x0, suppose (xk, vk) are generated by (2.5)

with g(xk) defined in (1.2) and MNS (1.3) holds. If the step size satisfies 0 < α ≤ 1
1+σ2

√
µ

L−µ

and β = α
µ/(1+σ2) , then

E
[
f−µ(x

+
k)− f−µ(x

∗) +
µ

2
∥vk − x∗∥2

]
≤ (1 + α+ (1 + σ2)α2)−k

(
f(x0)− f(x∗)

)
.

If f is quadratic, a sharper rate holds:

E
[
f−µ(x

+
k)− f−µ(x

∗) +
µ

2
∥vk − x∗∥2

]
≤ (1 + 2α+ α2)−k

(
f(x0)− f(x∗)

)
.

Proof. We give an outline of the proof and refer to the Appendix C.1 for the full details.
Let z+k = (x+

k , vk) and define the Lyapunov function

E(z+k) = f−µ(x
+
k)− f−µ(x

∗) +
µ

2
∥vk − x∗∥2. (2.6)

Given (xk, vk) and g(xk), the quantities x+
k and xk+1 are deterministic, while randomness

is introduced through g(xk+1) and consequently affects (x+
k+1, vk+1). The expectation E is

with respect to the randomness in g(xk+1).

First of all, we have the sufficient decay of SGD for x+
k+1 := xk+1 − αβg−µ(xk+1): if

αβ = α2

µ/(1+σ2) ≤
1

(1+σ2)(L−µ) , which is equvialent to α ≤ 1
(1+σ2)

√
µ/(L− µ), then

E
[
f−µ(x

+
k+1)− f−µ(xk+1)

]
≤ −αβ

2
∥∇f−µ(xk+1)∥2 = − (1 + σ2)α2

2µ
∥∇f−µ(xk+1)∥2. (2.7)

Then by the definition of Bregmann divergence:
E(zk+1)− E(z+k) = ⟨∇E(zk+1), zk+1 − z+k ⟩ −DE(z

+
k , zk+1). (2.8)

Expanding the first term and using the update in (2.5) gives
− (1 + βµ)α⟨∇f−µ(xk+1)−∇f−µ(x

∗), xk+1 − x∗⟩ − αµ∥vk+1 − x∗∥2

+ α⟨g−µ(xk+1), vk − vk+1⟩+ ⟨∇f−µ(xk+1)− g−µ(xk+1), vk − x∗⟩.
(2.9)

The first two terms can be bounded by −(1 + βµ)αE(zk+1) by using ⟨∇f−µ(xk+1) −
∇f−µ(x

∗), xk+1 − x∗⟩ = Df−µ
(xk+1, x

∗) + Df−µ
(x∗, xk+1). After taking the expectation

E(⟨∇f−µ(xk+1) − g−µ(xk+1), vk − x∗⟩) = 0. The most difficult term is the expectation of
the cross term E [⟨g−µ(xk+1), vk − vk+1⟩], as both g−µ(xk+1) and vk+1 are random variables.
We use the identity 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 to obtain

α⟨g−µ(xk+1), vk − vk+1⟩ = ⟨
α
√
µ
g−µ(xk+1),

√
µ(vk − vk+1)⟩

=
α2

2µ
∥g−µ(xk+1)∥2 +

µ

2
∥vk − vk+1∥2 −

α2µ

2
∥vk+1 − x∗∥2.

where the term involving vk+1 − x∗ follows from α√
µg−µ(xk+1) −

√
µ(vk − vk+1) =

α
√
µ
(
1
µg−µ(xk+1) − vk−vk+1

α

)
= α
√
µ
(
x∗ − vk+1

)
by the update of vk+1. Taking expecta-

tions termwise and applying the MNS condition to the first term yields the positive gradient
contribution α2(1+σ2)

2µ ∥∇f−µ(xk+1)∥2, which can be canceled by the negative term in (2.7).
The positive µ

2 ∥vk − vk+1∥2 is canceled by −µ
2 ∥vk − vk+1∥2 contained in −DE(z

+
k , zk+1).

Using βµ = (1 + σ2)α, we obtain
E
[
E(z+k+1)

]
− E(z+k) ≤ E

[
−(1 + (1 + σ2)α)αE(z+k+1)

]
.

Moving E(z+k+1) to the left-hand side yields the desired result.

When f is quadratic, the Bregman divergence is symmetric, Df (xk+1, x
∗) = Df (x

∗, xk+1),
and the extra negative terms −βµαDf−µ(x

∗, xk+1)− α2µ
2 ∥vk+1−x∗∥2 ≤ −α2E(zk+1), which

sharpens the constant to 1 + 2α+ α2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

When σ = 0, SHANG++ reduces to the deterministic HNAG++ method of Chen & Xu
(2025). As σ grows, convergence slows but acceleration is preserved. While Gupta et al.
(2024) interpret noise as inflating smoothness to (1 + σ2)2L, our analysis shows it perturbs
both smoothness and curvature, giving Lσ = (1 + σ2)L and µσ = µ/(1 + σ2). The noise-
damping term in SHANG++ further reduces Lσ to (1 + σ2)(L− µ), explaining its stronger
stability.

Quadratic Loss Consider a special case of problem (1.1): the quadratic loss with Tikhonov
regularization (also known as weight decay), which is widely used in regression tasks. The
objective takes the form

f(x) =
1

N

N∑
i=1

(x⊤Xi − Yi)
2 +

λ

2
∥x∥22 =

1

N
∥X⊤x− Y ∥22 +

λ

2
∥x∥22, (2.10)

where 1
N

∑N
i=1(x

⊤Xi − Yi)
2 is the empirical quadratic loss and λ

2 ∥x∥
2
2 is the regularizer

with λ > 0. The Tikhonov regularizer ensures that the objective is λ–strongly convex with
smoothness constant (L + λ). Under multiplicative noise scaling, setting α =

√
µσ/Lσ =

1

1 + σ2

√
λ/L yields the accelerated convergence rate 1− 2α = 1− 2

√
µσ/Lσ in the leading

term.

Batching. Gradient noise can be reduced by increasing the mini-batch size M in (1.2). If
σ2
1 is the MNS constant for M = 1, then σ2

M = σ2
1/M . Another approach is to average K

independent gradient estimators, gK = 1
K

∑K
i=1 gi, which gives an effective MNS constant of

σ2/K. Both strategies reduce noise at the cost of higher computation, and a straightforward
analysis shows that averaging multiple estimates can accelerate convergence to some extent.

Variance decay under MNS. Beyond the expectation bound, we show geometric variance
decay of the Lyapunov energy. Specifically, by Theorem D.1,

Var
(
f−µ(x

+
k)− f−µ(x

∗) +
µ

2
∥vk − x∗∥2

)
≤ (f(x0)− f(x∗))2(r2 +K2)

k.

A sufficient (practically verifiable) condition is K2 < 1 − r2, where r = (1 + α + α2)−1 is
the decay rate in Theorem 2.1 and K2 collects the fluctuation constants. This holds, for
example, in low-condition regime, with a damped stepsize α ← δα (0 < δ ≤ 1) or with a
minibatch of larger M (or K independent multiple estimates). Complete proofs and the
explicit expressions of related constants are provided in Appendix D.

SHANG++ Method for Convex Minimization Recall the modified step size α̃k = αk

1+mαk
.

To facilitate analysis, we define an auxiliary time-scaling variable γ̃k = γk

1+mαk
. Setting

αk = 2
k+1 and γk/(1 + σ2) = αkα̃kLσ, for any fixed m ≥ 0, we obtain:

γ̃k+1 − γ̃k
α̃k

= −(1 + 1

2(k + 1 + 2m)
)γ̃k+1 ≤ −γ̃k+1 (2.11)

Replacing the x-update in (2.3) with the equivalent modified discretization (2.4) and com-
bining it with (2.11) yields the following convergence result.
Theorem 2.2. Let f ∈ S0,L. Suppose that (xk, vk) are generated by the time-stepping
scheme (2.3). g(xk) defined in (1.2) and MNS holds. Given x+

0 = v0 = x0,m ≥ 0, choose
the step size αk = 2

k+1 , γk/(1 + σ2) = αkα̃kLσ and βk = αk

γk/(1+σ2) , we have

E
[
f(x+

k+1)− f(x∗) +
γ̃k+1

2
∥vk+1 − x∗∥2

]
≤ (1 + 2m)(2 + 2m)

(k + 2 + 2m)(k + 3 + 2m)
E(z0; γ̃0) = O(

Lσ

k2
)

Proof. We provide a proof sketch; the full proof appears in Appendix C.2. Define x+
k =

xk − α̃kβkg(xk) and Lyapunov function

E(z+k ; γ̃k) = f(x+
k)− f(x∗) +

γ̃k
2
∥vk − x∗∥2 (2.12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where γ̃k = γk

1+mαk
. Using γk/(1 + σ2) = αkα̃kLσ ⇔ γ̃k/(1 + σ2) = α̃2

kLσ and the L-
smoothness of f to obtain the upper bound of E

[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k).

E
[
E(zk+1; γ̃k)− E(z+k ; γ̃k)−

α̃2
k(1 + σ2)

2γ̃k
∥∇f(xk+1)∥2 +

γ̃k+1 − γ̃k
2

∥vk+1 − x∗∥2
]

(2.13)

Using (2.11), the last term less than − α̃kγ̃k+1

2 ∥vk+1 − x∗∥2. Then expaning the difference
E
[
E(zk+1; γ̃k)− E(z+k ; γ̃k)

]
and using the updates and αkγ̃k/γk = α̃k yield

E
[
−α̃k⟨∇f(xk+1)−∇f(x∗), xk+1 − x∗⟩+ α̃k⟨g(xk+1), vk − vk+1⟩ −DE(z

+
k , zk+1; γ̃k)

]
(2.14)

For the cross term E [α̃k⟨g(xk+1), vk − vk+1⟩], by Cauchy-Schwarz and Young’s inequality,

E [α̃k⟨g(xk+1), vk − vk+1⟩] ≤ E
[
α̃2
k(1 + σ2)

2γ̃k
∥∇f(xk+1)∥2 +

γ̃k
2
∥vk − vk+1∥2

]
(2.15)

which are canceled respectively by the negative gradient term − α̃2
k(1+σ2)
2γ̃k

∥∇f(xk+1)∥2 and
by −DE(z

+
k , zk+1; γ̃k). Putting everything together to obtain

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k) ≤ −α̃kE

[
E(z+k+1; γ̃k+1)

]
(2.16)

Rearranging and substituting α̃k = αk

1+mαk
= 2

k+1+2m yield the claimed rate.

We compare the parameters

(SHANG) γk
1 + σ2

= α2
kLσ, (SHANG++) γk

1 + σ2
= αkα̃kLσ = α2

k ·
Lσ

1 +mαk
,

which reduces the effective Lipschitz constant from Lσ to Lσ

1+mαk
. The noise-damping term

offsets part of the σ2–induced amplification, improving stability by slowing down the effective
rate. Our experiments suggest that choosing m in the range [0, 1.5] provides a good trade-off.

3 Numerical Experiments

We design our experiments to validate the theoretical alignment, scalability, and robustness
of SHANG++ and SHANG (m = 0).
Throughout this section, NAG refers to the stochastic version of Nesterov’s accelerated
gradient (Nesterov, 1983) by replacing ∇f(x) by g(x). While SNAG refers to the method in
(Hermant et al., 2025), which can be treat as an alternative discretization of the HNAG flow
(Appendix E). The stability of SNAG can be also explained with our theoretical analysis.

Convex optimization We first consider the family of objective functions from Gupta et al.
(2024):

fd : R→ R, fd(x) =

{
|x|d, |x| < 1,

1 + d(|x| − 1), else,
for d ≥ 2, with gradient estimators g(x) = (1+σZ)∇f(x), where Z ∼ N (0, Id) is a standard
normal random variable. The functions fd belong to S0,L with L = d(d− 1).
We compare SHANG and SHANG++ with SGD, NAG, AGNES (Gupta et al., 2024), and
SNAG (Hermant et al., 2025) under σ ∈ {0, 10, 50} and d ∈ {4, 16}. The parameters used
follow their optimal choices for the convex case. All simulations are initialized at x0 = 1,
and expectations are averaged over 200 independent runs. See Appendix A.1 for the full
experimental setup, hyperparameter choices, and results.
In Figure 3.1, SHANG and SHANG++ remain stable as σ increases, while NAG diverges
at large noise. SHANG outperforms classical momentum methods, and SHANG++ further
accelerates convergence, showing that its noise-damping term improves both rates and sta-
bility. These results confirm robustness with minimal tuning and preserved acceleration
even under high noise.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3.1: Performance of different algorithms under varying noise levels.

For deep learning tasks, we adopt SHANG++ with three explicit hyperparameters (α, γ,m),
with µ = 0 and β = α/γ, summarized in Algorithm 1, where v is updated first by index
shifting.

Algorithm 1: SHANG++ for Deep Learning
Input: Objective function f , initial point x0, step size α, time scaling factor γ,

noise-damping m, , iteration horizon T .
k ← 1, v0 ← x0, x1 ← x0, α̃← α

1+mα

while k ≤ T do
gk ← 1

M

∑
i∈B ∇fi(xk) // stochastic gradient estimate

vk ← vk−1 − α
γ gk

xk+1 ← 1
1+α̃xk + α̃

1+α̃vk −
α̃

1+α̃
α
γ gk

k ← k + 1
end
return xT

Classification Tasks on MNIST, CIFAR-10 and CIFAR-100 We benchmark SHANG,
SHANG++, Adam (Kingma & Ba, 2015), SNAG, AGNES, NAG, SHB (SGD with mo-
mentum), and plain SGD on three tasks: training LeNet-5 on MNIST (LeCun et al., 1998),
ResNet-34 (He et al., 2016) on CIFAR-10 (Krizhevsky, 2009), and ResNet-50 on CIFAR-
100. Each model is trained for 50 epochs, and results are reported as mean ± s.d. over five
random seeds.
For hyperparameter selection, SHANG and SHANG++ used α = 0.5 with γ chosen from
grids: {1, 1.5, 2} for LeNet-5, {5, 10} for ResNet-34, and {10, 15} for ResNet-50. SHANG++
fixed m = 1.5. AGNES followed defaults (η, α,m) = (0.01, 0.001, 0.99); SNAG used (η, β)
with η ∈ {0.5, . . . , 0.001}, β ∈ {0.7, 0.8, 0.9, 0.99}, where (0.05, 0.9) performed best, consis-
tent with prior CIFAR work. Other baselines used η = 0.001 and momentum 0.99 when
applicable. After 25 epochs, all baseline learning rates (including AGNES’s correction) were
decayed by 0.1, while γ was doubled for our methods. Full details are in Appendix A.2.
Figure 3.2 shows ResNet-34/50 training and test losses on CIFAR-10/100. SHANG and
SHANG++ deliver competitive or superior performance to non-adaptive baselines. Batch
size strongly affects gradient variance: smaller batches increase noise, larger batches reduce
it. At 256, all methods are stable and gaps narrow; at 50, NAG, SNAG, and AGNES oscil-
late with wider bands (AGNES also plateaus higher). In contrast, SHANG and SHANG++
achieve the lowest losses with tight bands across seeds. Adam remains competitive in ac-
curacy but shows noisier test loss. Table 3.1 further summarizes results: SHANG and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3.2: Training and test loss (log scale, running average with decay 0.99) on CIFAR-10 with
ResNet-34 (batch sizes 50 and 256) (Left and Middle Column) and CIFAR-100 with ResNet-50
(batch size 50) (Right Column).

SHANG++ often match or surpass AGNES and SNAG, while clearly improving over SGD
and NAG.
Table 3.1: Test accuracy of SGD, NAG, Adam, AGNES, SHANG, and SHANG++ on
MNIST (LeNet-5), CIFAR-10 (ResNet-34), and CIFAR-100 (ResNet-50). Here b is batch
size.

SGD NAG Adam AGNES SNAG SHANG SHANG++

LeNet-5 91.068 98.906 99.072 98.876 99.07 99.064 99.112

(b = 50) ±0.113 ±0.082 ±0.071 ±0.093 ±0.085 ±0.018 ±0.026
ResNet-34 79.908 86.428 87.378 70.492 77.654 87.15 87.398

(b = 50) ±0.114 ±0.805 ±0.26 ±2.511 ±2.7 ±0.824 ±0.502
ResNet-34 68.49 87.614 88.226 77.84 84.5 86.67 86.572

(b = 256) ±0.192 ±0.291 ±0.106 ±3.696 ±0.92 ±0.13 ±0.169
ResNet-50 58.326 57.658 59.872 42.82 49.514 63.306 65.018

(b = 50) ±0.506 ±1.443 ±0.614 ±1.239 ±1.559 ±0.934 ±1.254

Robustness to Multiplicative Gradient Noise Our theory predicts that time-scale coupling
(α, γ) in SHANG and (α, γ,m) in SHANG++ mitigates multiplicative gradient noise. To
test this, we fix one hyperparameter configuration per optimizer and evaluate across σ ∈
{0, 0.05, 0.1, 0.2, 0.5}. The effective noise is higher than nominal σ, since minibatch SGD
adds sampling noise. This one-shot protocol isolates each optimizer’s robustness without
re-tuning. All experiments use CIFAR-10 with ResNet-34, batch size 50, the same settings
as subsection 3, trained for 100 epochs and averaged over three seeds. Final validation error
at epoch 100 is reported; full setup and hyperparameters are in Appendix A.4.
Figure 3.3 shows mean final validation error under varying noise, and Table 3.2 reports
relative degradation ∆(σ) = (E(σ) − E(0))/E(0), where E(σ) is the mean Top-1 error at
noise level σ (averaged over three seeds).
1. At σ = 0, SHANG and SHANG++ reach 15.9%, outperforming SNAG (17.5%) and

AGNES (20.5%).
2. At σ = 0.1, SHANG improves slightly (-0.3 pt), SHANG++ is nearly unchanged (-0.1

pt), SNAG improves marginally (-0.4 pt), while AGNES worsens (+3.3 pt).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

3. At σ = 0.5, SHANG and SHANG++ remain near 16%, while SNAG rises to 17.6% and
AGNES drifts to 23.2% (≈13.5% relative increase).

These results align with our Lyapunov analysis: time-scale coupling (α, γ,m) suppresses
σ2 amplification, ensuring stable performance without re-tuning. SNAG is stable but less
accurate, while AGNES is most sensitive to noise.

Table 3.2: Relative change in final Top-1 error
compared with σ = 0 (lower is better; nega-
tive values indicate improvement). Values are
averaged over three seeds.

Method Relative degradation ∆(%) at σ

0.05 0.1 0.2 0.5

SHANG −2.5 −2.1 −1.0 −0.2
SHANG++ +3.4 −0.6 −2.1 −0.9
AGNES −14.4 +16.0 +14.6 +13.5

SNAG −2.0 −2.1 −5.0 0.7

Figure 3.3: Validation error under
varying multiplicative noise level σ.
Lower is better.

Image Reconstruction with Small Batch Size We further evaluate our algorithms on a
generative task of image reconstruction with small-batch training, using a lightweight U-
Net (Ronneberger et al., 2015) on CIFAR-10 with batch size 5. SHANG and SHANG++
are compared against SNAG, AGNES, NAG, SGD, SHB, and Adam, with full experimental
details provided in the appendix A.5. Figure 3.4 shows training and test losses. Adam

Figure 3.4: Training and test loss (log scale, running average with decay 0.99) on CIFAR-10 using
U-Net with batch size 5.

achieves the lowest loss due to its adaptive learning rate, but both SHANG and SHANG++
outperform all other non-adaptive methods. In particular, SHANG++ shows stable and
efficient training even in this high-noise regime, highlighting its practical robustness. We
also conduct a comparative hyperparameter study; full settings and results are given in
Appendix A.6.

4 Conclusion

We presented SHANG++, an accelerated first-order stochastic optimizer for robust and sim-
ple training under multiplicative noise. Theoretically, it retains the optimal O(1/k2) rate in
convex settings and achieves the fastest known acceleration under MNS for quadratic prob-
lems. Empirically, across convex tasks, image classification, and generative reconstruction,
one-shot hyperparameter choices sustain near noise-free accuracy (within 1% for σ ≤ 0.5).
Compared with NAG, SNAG, AGNES, and Adam, SHANG++ shows greater stability in
small-batch or high-noise regimes while delivering competitive or improved accuracy, mak-
ing it a practical optimizer for large-scale noisy training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Mahmoud Assran and Michael Rabbat. On the convergence of nesterov’s accelerated gra-

dient method in stochastic settings. In Proceedings of the 37th International Conference
on Machine Learning (ICML). PMLR, 2020.

Jean-François Aujol and Charles Dossal. Stability of over-relaxations for the forward-
backward algorithm, application to fista. SIAM Journal on Optimization, 25(4):2408–
2433, 2015.

G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm
using bregman functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

Long Chen and Hao Luo. A unified convergence analysis of first-order convex optimization
methods via strong lyapunov functions, 2021.

Long Chen and Zeyi Xu. Hnag++: A super-fast accelerated gradient method for convex
optimization, 2025. Under preparation.

Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth
convex optimization with inexact oracle. Mathematical Programming, 146:37–75, 2014.

Swetha Ganesh, Rohan Deb, Gugan Thoppe, and Amarjit Budhiraja. Does momentum help
in stochastic optimization? a sample complexity analysis. In Uncertainty in Artificial
Intelligence (UAI), pp. 602–612. PMLR, 2023.

Kanan Gupta, Jonathan W. Siegel, and Stephan Wojtowytsch. Nesterov acceleration despite
very noisy gradients. In Advances in Neural Information Processing Systems (NeurIPS),
2024.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, 2016.

Julien Hermant, Marien Renaud, Jean-François Aujol, Charles Dossal, and Aude Ronde-
pierre. Gradient correlation is a key ingredient to accelerate SGD with momentum. In
International Conference on Learning Representations (ICLR), 2025.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade. On the in-
sufficiency of existing momentum schemes for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015.

Achim Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer, 2013.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chaoyue Liu and Mikhail Belkin. Accelerating SGD with momentum for over-parameterized
learning. In International Conference on Learning Representations (ICLR), 2020.

Tianyi Liu, Zhehui Chen, Enlu Zhou, and Tuo Zhao. Toward deeper understanding of
nonconvex stochastic optimization with momentum using diffusion approximations, 2018.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention (MICCAI), 2015.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of SGD for
over-parameterized models and an accelerated perceptron. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pp. 1195–1204. PMLR, 2019.

Lei Wu, Mingze Wang, and Weijie J. Su. The alignment property of SGD noise and how
it helps select flat minima: A stability analysis. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Xiaoxia Wu, Simon S. Du, and Rachel Ward. Global convergence of adaptive gradient
methods for an over-parameterized neural network, 2019.

LLM usage

In preparing this manuscript, large language models (LLMs) were employed exclusively
to assist with language-related tasks, such as improving readability, grammar, and style.
The models were not used for research ideation, development of methods, data analysis, or
interpretation of results. All scientific content, including problem formulation, theoretical
analysis, and experimental validation, was conceived, executed, and verified entirely by
the authors. The authors bear full responsibility for the accuracy and integrity of the
manuscript.

Ethics statement

This work is purely theoretical and algorithmic, focusing on convex optimization methods.
It does not involve human subjects, sensitive data, or applications that raise ethical concerns
related to privacy, security, fairness, or potential harm. All experiments are based on publicly
available datasets or synthetic data generated by standard procedures. The authors believe
that this work fully adheres to the ICLR Code of Ethics.

Reproducibility statement

We have taken several measures to ensure the reproducibility of our results. All theoretical
assumptions are explicitly stated, and complete proofs are provided in the appendix. For
the experimental evaluation, we describe the setup, parameter choices, and baselines in
detail in the main text. The source code for our algorithms and experiments are available
as supplementary materials. Together, these resources should allow others to reproduce and
verify our theoretical and empirical findings.

A Supplement of Experiments

Here are some experimental setup and results that are not presented in the main text.

A.1 Supplement of the convex experiment

For the convex example in Section 3, we compare SHANG and SHANG++ with SGD,
NAG, AGNES, and SNAG under σ ∈ {0, 10, 50} and d ∈ {4, 16}. The parameters used
follow their optimal choices for the convex case. For SHANG, αk = 2

k+1 , γk = α2
kL(1+σ2)2

and βk = (1+σ2)αk

γk
; For SHANG++, αk = 2

k+1 , m = 1.5, γk =
α2

k

1+mαk
(1 + σ2)2L and βk =

(1+σ2)αk

γk
; For AGNES, we adopted the best-performing parameters reported by the authors

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

for this problem: learning rate η = 1
L(1+2σ2) , correction step size α = η

1+σ2 , and momentum
mk = k

k+5 . For SNAG, we use s = 1
L(1+σ2) , ηk = 1

L(1+σ2)2
k+1
2 , β = 1, αk = k2/(k+1)

2+(k2/(k+1)) .
For NAG, we used a learning rate of 1

L(1+σ2) and momentum parameter of k
k+3 . SGD

was also run with a learning rate of 1
L(1+σ2) . All hyperparameter notations match those

used in the original publications; note, however, that symbol meanings may vary across
algorithms (e.g., α denotes the discretization step size in SHANG, while in AGNES it refers
to the correction step size). All simulations are initialized at x0 = 1, and expectations are
averaged over 200 independent runs.

Figure A.1: Log-log plots of E [fd(xk)] for SHANG++ using m = 0.5 (black), m = 1 (olive),
m = 1.5 (orange), m = 2 (blue), m = 2.5 (green), m = 3 (red) with d = 4 (Top Row) and
d = 16 (Bottom Row), under noise levels σ = 0 (Left Column), σ = 10 (Middle Column)
and σ = 50 (Right Column). From the figures, it can be observed that m ≤ 1.5 provides a
good choice.

Figure A.1 highlights SHANG++’s stability across m: values m ≤ 1.5 consistently yield
strong performance. Our theoretical variance-decay predictions directly manifest in practice.

A.2 Supplement of Classification Tasks

Setup. We benchmark SHANG, SHANG++, Adam, SNAG, AGNES, NAG, SHB (or SGD
with momentum) and SGD on the following tasks: training LeNet-5 on the MNIST dataset,
training ResNet-34 on the CIFAR-10 image dataset and training ResNet-50 on the CIFAR-
100 dataset with standard data augmentation (normalization, random crop, and random
flip). All models have pretrain set to True. For each dataset, we run all algorithms for 50
epochs with batch size 50 and report averages over five trials. After 25 epochs, the learning
rates for all baseline methods (excluding SHANG and SHANG++) are decayed by a factor
of 0.1; AGNES’s correction step size is similarly reduced. For our methods, the time-scaling
factor γ is doubled after 25 epochs.
For hyperparameter selection, our two methods were evaluated under three settings: α = 0.5
with γ ∈ {1, 1.5, 2} for LeNet-5, γ ∈ {5, 10} for ResNet-34 and γ ∈ {10, 15} for ResNet-50.
For SHANG++, we fixed m = 1.5. AGNES employed the default parameter configuration
recommended by its authors, (η, α,m) = (0.01, 0.001, 0.99), which has demonstrated strong
performance across various tasks. For SNAG, we adopt the two-parameter variant (η, β)
proposed by the original authors for machine-learning tasks. Hyperparameters are selected
via a grid search, learning rate η ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001} and momentum β ∈
{0.7, 0.8, 0.9, 0.99}. Among these, (η, β) = (0.05, 0.9) yields the best performance, which
coincides with the parameter choice recommended by the original authors for training CNNs

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure A.2: Training loss (log scale) (left), test loss (log scale) (middle) as a running average
with decay rate 0.99, and test accuracy (right) on the MNIST dataset using LeNet-5 trained
with batch size 50. The compared methods include SGD (gray), SHB (black), NAG (olive),
AGNES (blue), SNAG (orange), Adam (yellow), SHANG (green) and SHANG++ (red). In
SHANG, (α, γ) = (0.5, 2) and in SHANG++, (α, γ,m) = (0.5, 2, 1.5).

Figure A.3: Training loss (log scale) (left), test loss (log scale) (middle) as a running average
with decay rate 0.99, and test accuracy (right) on the CIFAR-10 dataset using ResNet-34
trained with batch sizes 50 (Top Row) and 256 (Bottom Row). The compared methods
include SGD (gray), SHB (black), NAG (olive), AGNES (blue), SNAG (orange), Adam (yel-
low), SHANG (green) and SHANG++ (red). For the choice of γ in SHANG and SHANG++,
γ = 10.

on the CIFAR dataset. All other baseline algorithms used a fixed learning rate of η = 0.001;
for those involving momentum, the momentum coefficient was set to 0.99.

Results. Figures A.2, A.3, A.5, and A.4 depict the evolution of training/test loss and test
accuracy across datasets. Overall, SHANG and SHANG++ achieve competitive or superior
performance compared with non-adaptive baselines.

A.3 Batch-Size Scaling on CIFAR-10 (ResNet-34)

To further assess the robustness of our algorithms to stochastic gradient noise, we evaluate
all methods on CIFAR-10 with ResNet-34 under two batch-size settings: 50 and 256. Smaller
batches introduce higher gradient variance, whereas larger batches reduce the noise level.
Importantly, all hyperparameters are kept fixed across batch sizes to isolate the effect of
noise on algorithmic performance.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure A.4: Training loss (log scale) (Left Column), test loss (log scale) (Middle Column) as
a running average with decay rate 0.99, and test accuracy (Right Column) on the MNIST
dataset using LeNet-5 (Top Row), CIFAR-10 dataset using ResNet-34 (Middle Row) and
CIFAR-100 dataset using ResNet-50 (Bottom Row) trained with batch size 50. The com-
pared methods include SHANG (green) and SHANG++ (red) under different parameter
choices.

Figure A.5: Training loss (log scale) (left), test loss (log scale) (middle) as a running average
with decay rate 0.99, and test accuracy (right) on the CIFAR-100 dataset using ResNet-50
trained with batch size 50. The compared methods include SGD (gray), SHB (black), NAG
(olive), AGNES (blue), SNAG (orange), Adam (yellow), SHANG (green) and SHANG++
(red). For the choice of γ in SHANG and SHANG++, γ = 15.

Setup. All data augmentation and experiments setting follows Appendix A.2. Hyper-
parameters are held fixed across batch sizes: for SHANG/SHANG++ we use (α, γ) =
(0.5, 10)/(α, γ,m) = (0.5, 10, 1.5), and all baselines reuse their best settings from Appendix 3.
No re-tuning is performed when switching the batch size.

Results. Figure A.3 shows the training/test dynamics.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Small batch (50). Classical momentum variants (NAG, SNAG) and AGNES ex-
hibit larger oscillations and wider variance bands; AGNES also shows a higher
error plateau. In contrast, SHANG/SHANG++ produce the lowest losses among
non-adaptive methods and maintain narrow shaded regions, indicating markedly
improved stability across seeds. Adam remains competitive in accuracy but with
higher variance in test loss.

• Large batch (256). The gap between methods narrows: all optimizers become more
stable and the curves cluster. SHANG/SHANG++ continue to match the best-
performing baselines while preserving smooth convergence.

Robustness to multiplicative noise translates into tangible benefits in the small-batch regime:
with a single, fixed hyperparameterization (α = 0.5, γ = 10,m = 1.5), SHANG/SHANG++
achieve stable training and strong test accuracy without re-tuning, whereas competing
momentum methods are more sensitive (larger variance, higher plateaus). As batch size
increases, all methods stabilize and the performance gap diminishes, consistent with the
noise-abatement expected from larger batches.

A.4 Supplement of Robustness to Multiplicative Gradient Noise

All runs use an identical experimental setup: CIFAR-10 dataset, ResNet-34, batch size 50,
trained for 100 epochs, and averaged over three random seeds. Note that the actual gradient
noise level experienced by the optimizer is higher than the nominal σ, because minibatch
stochastic gradient descent inherently introduces sampling noise. The multiplicative noise
we introduce,

g(xk) = (1 + σN (0, Id))∇f(xk),

is therefore imposed on top of this intrinsic minibatch stochasticity. We record the final
validation error at epoch 100.

Discussion. The empirical trends align with our Lyapunov analysis: coupling the time
scales (α, γ,m) suppresses the σ2 amplification and yields stable behavior across noise levels
without retuning. SNAG—while reasonably stable—does not match the consistently low
error of SHANG/SHANG++, and AGNES is the most sensitive to increased multiplicative
noise.

A.5 Supplement of Image Reconstruction

We further evaluate our algorithms on a generative task—image reconstruction with small-
batch training, which introduces substantial gradient noise. Specifically, we train a
lightweight U-Net (Ronneberger et al., 2015) (base channels 32 → 64 → 128, with bilin-
ear up-sampling and feature concatenation) on CIFAR-10 using batch size 5. We compare
SHANG (α = 0.5, γ = 0.5) and SHANG++ (α = 0.5, γ = 0.5,m = 1) against SNAG,
AGNES, NAG, SGD, SHB, and Adam. All other experimental settings follow those in
earlier sections.

A.6 Hyperparameter comparison

To identify optimal hyperparameter configurations for our stochastic algorithms, we perform
grid searches over α ∈ (0.005, 0.1) and γ ∈ (0.5, 30) on MNIST and CIFAR-10 (Figures A.6).
For SHANG++, we additionally vary m ∈ (0.5, 3) while keeping α = 0.5 fixed. Results
indicate that: (1) α = 0.5 and m = 1.5 are generally effective across tasks; (2) Smaller γ
values work well for LeNet-5, while larger γ are preferred for deeper networks like ResNet-34;
(3) SHANG++ exhibits low sensitivity to m in practice, with performance remaining stable
across tested values. These findings confirm the practical usability and tuning simplicity of
our methods.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure A.6: Training loss (log scale) on the MNIST dataset using LeNet-5 (Top row)
and CIFAR-10 dataset using ResNet-34 (Bottom row) trained with batch size 50. The
plots show results for SHANG (left) and SHANG++ (middle) under different combi-
nations of hyperparameters α ∈ {0.1, 0.5, 0.01, 0.05, 0.005} (different color) and γ ∈
{0.5, 1, 1.5, 2, 2.5, 5, 10, 15, 20} (different line style). The left two figures show that α = 0.5
and γ ∈ {1, 1.5, 2} are relatively good parameter choices. The rightmost plot illustrates
the performance of the ISHNAG method under different combinations of γ ∈ {1, 1.5, 2} (on
MNIST dataset), γ ∈ {2, 5, 10, 15} (on CIFAR-10 dataset) and m ∈ {0.5, 1, 1.5, 2, 2.5, 3}
with α fixed at 0.5. The differences among various m values are minor for this task. In
practice, we typically choose m = 1.5.

B SHANG

B.1 model

Applying a Gauss-Seidel-type scheme to discretize HNAG flow (2.2) and replace the deter-
ministic gradient ∇f(xk) with its unbiased stochastic estimate g(xk), we can obtain the
Stochastic Hessian-driven Nesterov Accelerated Gradient (SHANG) method:

xk+1 − xk

αk
= vk − xk+1 − βkg(xk)

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
g(xk+1)

γk+1 − γk
αk

= µ− γk+1

(B.1)

In the strongly convex case, we fix γ = µ and use a constant step size α; in general case, we
set µ = 0 and allow both αk and γk to vary. The coupling βk > 0 depends on (αk, γk) and
typically scales as (1+σ2)αk/γk. Consequently, SHANG reduces to a two-parameter scheme
(α, β) in the strongly convex regime and a three-parameter scheme (α, γ, β) otherwise. For
practical tuning, tying β to α and γ via β = α/γ yields an effective two-parameter (α, γ)
algorithm. The SHANG method for deep learning tasks is described in Algorithm 2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2: SHANG for Deep Learning
Input: Objective function f , initial point x0, stepsize α, time scaling factor γ, iteration

horizon T .
n← 0, v0 ← x0, x1 ← x0

while k < T do
gk ← ∇f(xk) // gradient estimate
vk = vk−1 − α

γ gk

xk+1 = 1
1+αxk + α

1+αvk −
α

1+α
α
γ gk

k ← k + 1
end
return xT

Observe that SHANG is the m = 0 special case of SHANG++. Table B.1 summarizes
the theoretical convergence complexities and the number of tunable parameters required
by leading stochastic optimization methods under multiplicative noise. As shown, SHANG
and SHANG++ achieve optimal theoretical guarantees while significantly reducing hyper-
parameter complexity.
Table B.1: Assume f is L-smooth and g(x) satisfies the multiplicative noise scaling (MNS)
condition (see Definition 1.1) with constant σ ≥ 0. This table summarizes the iteration
complexity of leading first-order stochastic optimization algorithms under optimal parameter
settings to reach ε-precision.

Algorithm Convex Strongly Convex
SGD (1 + σ2)Lε (1 + σ2)Lµ log(1ε)

(Hermant et al., 2025)
NAG

√
1+σ2

1−σ2

√
L
ε

√
1+σ2

1−σ2

√
L
µ log(1ε)

(Gupta et al., 2024)
AGNES

√
L(1+2σ2)(1+σ2)

ε (1 + σ2)
√

L
µ log(1ε)

(Gupta et al., 2024)
SNAG (1 + σ2)

√
L
ε (1 + σ2)

√
L
µ log(1ε)

(Hermant et al., 2025)
SHANG (1 + σ2)

√
L
ε (1+ σ2)

√
L
µ log(1ε)

(Our Algorithm 1)
SHANG++ (1 + σ2)

√
L
ε (1+ σ2)

√
L
µ − 1(1+

√
µ

L−µ)
−1 log(1ε)

(Our Algorithm 2)
SHANG++ for quadratic f (1 + σ2)

√
L
ε

1+σ2

2

√
L
µ − 1(1+ 1

2(1+σ2)

√
µ

L−µ)
−1 log(1ε)

(Our Algorithm 2)

B.2 Convergence Analysis for SHANG

Define the discrete Lyapunov function

E(z+k ; γk) = f(x+
k)− f(x∗) +

γk
2
∥vk − x∗∥2 (B.2)

where z+k = (x+
k , vk), zk = (xk, vk) and z∗ = (x∗, x∗). The following theorem establishes a

decay bound for E
[
E(z+k ; γk)

]
.

Theorem B.1. Let f ∈ Sµ,L, (xk, vk) be generated by SHANG (B.1). x+
k = xk − αkβkg(xk)

is an auxiliary variable. Assume g(x) (defined in (1.2)) satisfies the MNS condition with
constant σ. Given x+

0 = v0 = x0,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(1) When 0 < µ < L < ∞, choose step size 0 < α ≤ 1
1+σ2

√
µ
L and β = (1+σ2)α

µ , we
have

E
[
f(x+

k+1)− f(x∗) +
µ

2
∥vk+1 − x∗∥2

]
≤ (1 + α)−(k+1)Eµ0

(2) When µ = 0, choose αk = 2
k+1 , γk = α2

k(1 + σ2)2L and βk = (1+σ2)αk

γk
, we have

E
[
f(x+

k+1)− f(x∗) +
γk+1

2
∥vk+1 − x∗∥2

]
≤ 2

(k + 2)(k + 3)
Eγ0

0 = O(1

k2
)

where Eµ0 = f(x0)− f(x∗) + µ
2 ∥x0 − x∗∥2 and Eγ0

0 = f(x0)− f(x∗) + γ0

2 ∥x0 − x∗∥2.

When σ = 0, SHANG reduces to the deterministic HNAG method analyzed in Chen & Luo
(2021).
Before presenting the proof of Theorem B.1, we first establish several auxiliary lemmas,
beginning with one that relies on conditional expectations under the MNS assumption.
Lemma B.1. Let (Ω,F , {Fk}k≥0,P) be a complete probability space with filtration {Fk}k≥0.
Suppose xk is generated by SHANG/SHANG++, g(xk) denotes the stochastic estimator of
∇f(xk), then the following statements hold
1. E [g(xk) | Fk] = ∇f(xk).

2. E
[
∥g(xk)−∇f(xk)∥2

]
≤ σ2∥∇f(xk)∥2.

3. E [⟨g(xk),∇f(xk)⟩] = ∥∇f(xk)∥2

4. E
[
∥g(xk)∥2

]
≤ (1 + σ2)∥∇f(xk)∥2

Proof of Lemma B.1. First and second claim. This follows from Fubini’s theorem.
Third claim. For the third result, we observe that since f is a deterministic function, ∇f(xk)
is Fk-measurable, then, by the Theorem 8.14 in Klenke (2013), we have

E [⟨g(xk),∇f(xk)⟩] = E [E [⟨g(xk),∇f(xk)⟩ | Fk]] = E [⟨E [g(xk) | Fk] ,∇f(xk)⟩] = E
[
∥∇f(xk)∥2

]
Fourth claim. For the fourth result, using the previous results, we have

E
[
∥g(xk)∥2

]
= E

[
∥g(xk)−∇f(xk)∥2 + 2⟨g(xk),∇f(xk)⟩ − ∥∇f(xk)∥2

]
= E

[
∥g(xk)−∇f(xk)∥2

]
+ E [2⟨g(xk),∇f(xk)⟩]− ∥∇f(xk)∥2

≤ σ2∥∇f(xk)∥2 + 2∥∇f(xk)∥2 − ∥∇f(xk)∥2

= (1 + σ2)∥∇f(xk)∥2

Under the MNS assumption, this setup of auxiliary variable x+ yields the following descent
lemma for smooth objectives.
Lemma B.2. Suppose that x+

k = xk − ηg(xk), f ∈ C1,1L . Given 0 < η ≤ 1
L(1+σ2) , we have

E
[
f(x+

k)− f(x∗)
]
≤ f(xk)− f(x∗)− η

2
∥∇f(xk)∥2

Proof of Lemma B.2. Using the L-smoothness of the function f :

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
∥y − x∥2 ∀x, y ∈ Rd (B.3)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

and Lemma B.1, under the assumption of 0 < η ≤ 1
L(1+σ2) , we can obtain the desired result

E
[
f(x+

k)
]
≤ E

[
f(xk)− ⟨ηg(xk),∇f(xk)⟩+

L

2
∥ηg(xk)∥2

]
= f(xk)− E [⟨ηg(xk),∇f(xk)⟩] + E

[
L

2
∥ηg(xk)∥2

]
≤ f(xk)− η∥∇f(xk)∥2 +

Lη2(1 + σ2)

2
∥∇f(xk)∥2

= f(xk)− η(1− L(1 + σ2)η

2
)∥∇f(xk)∥2

≤ f(xk)−
η

2
∥∇f(xk)∥2

Define an auxiliary variable x+
k = xk − αkβkg(xk), substitue it into (Eq.B.1) yield:

xk+1 − x+
k

αk
= vk − xk+1

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
g(xk+1)

γk+1 − γk
αk

= µ− γk+1

(B.4)

The next lemma controls the decay of E
[
E(z+k+1; γk+1)

]
.

Lemma B.3. Let f ∈ Sµ,L with 0 ≤ µ < L < ∞, Lyapunov function E is defined by (B.2).
Given (vk, x

+
k), (xk+1, vk+1) are generated by (B.4) and x+

k+1 = xk+1 − αk+1βk+1g(xk+1).
Assume 0 < αk+1βk+1 = αkβk ≤ 1

L(1+σ2) , we have

(1 + αk)E
[
E(z+k+1; γk+1)

]
≤ E(z+k ; γk) + E

[
1

2
(
α2
k(1 + σ2)

γk
− (1 + αk)αkβk)∥∇f(xk+1)∥2 −

αkµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]

proof of Lemma B.3. By Lemma B.2, if 0 < αkβk = αk+1βk+1 ≤ 1
L(1+σ2) , we obtain the

one-step decrease

E
[
E(z+k+1; γk+1)

]
− E(z+k ; γk)

≤ E
[
E(zk+1; γk+1)− E(z+k ; γk)−

αkβk

2
∥∇f(xk+1)∥2

]
= E

[
E(zk+1; γk)− E(z+k ; γk) +

γk+1 − γk
2

∥vk+1 − x∗∥2 − αkβk

2
∥∇f(xk+1)∥2

] (B.5)

Applying the Bregman divergence identity Chen & Teboulle (1993):

⟨∇f(y)−∇f(x), y − z⟩ = Df (z, y) +Df (y, x)−Df (z, x) ∀, x, y, z ∈ Rd (B.6)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

together with the representation E(z; γ) = DE(z, z
∗; γ) and the update rules into (B.5), we

obtain
E
[
E(z+k+1; γk+1)

]
− E(z+k ; γk)

≤ E
[
⟨∇E(zk+1; γk), zk+1 − z+k ⟩ −DE(z

+
k , zk+1; γk) +

γk+1 − γk
2

∥vk+1 − x∗∥2 − αkβk

2
∥∇f(xk+1)∥2

]
≤ E

[
⟨∇f(xk+1)−∇f(x∗), xk+1 − x+

k ⟩+ γk⟨vk+1 − x∗, vk+1 − vk⟩ −DE(z
+
k , zk+1; γk)

+
αk(µ− γk+1)

2
∥vk+1 − x∗∥2 − αkβk

2
∥∇f(xk+1)∥2

]
= E [−αk⟨∇f(xk+1)−∇f(x∗), xk+1 − x∗⟩+ αk⟨∇f(xk+1), vk − x∗⟩ − αk⟨g(xk+1), vk+1 − x∗⟩

+αkµ⟨vk+1 − x∗, xk+1 − vk+1⟩+
αk(µ− γk+1)

2
∥vk+1 − x∗∥2 −DE(z

+
k , zk+1; γk)

−αkβk

2
∥∇f(xk+1)∥2

]
(B.7)

By the definition of the Bregman divergence and the µ-strong convexity of f , we have
⟨∇f(xk+1)−∇f(x∗), xk+1 − x∗⟩ = Df (xk+1, x

∗) +Df (x
∗, xk+1)

≥ Df (xk+1, x
∗) +

µ

2
∥xk+1 − x∗∥2

(B.8)

and
αkµ⟨vk+1− x∗, xk+1− vk+1⟩ =

αkµ

2
(∥xk+1− x∗∥2−∥xk+1− vk+1∥2−∥vk+1− x∗∥2) (B.9)

We denote Fk+1 = σ(x0, · · · , xk+1) the σ-algebra generated by the k + 1 first inter-
ates {xi}k+1

i=1 generated by SHANG. Since f is a deterministic function, vk − x∗ is Fk+1-
measurable, then

E [⟨g(xk+1), vk − x∗⟩] = E [E [⟨g(xk+1), vk − x∗⟩ | Fk+1]]

= E [⟨E [g(xk+1) | Fk+1] , vk − x∗⟩]
= E [⟨∇f(xk+1), vk − x∗⟩]

Now, we apply this result in reverse, and using Young Inequality, Cauchy-Schwarz Inequality
to obtain

E [αk⟨∇f(xk+1), vk − x∗⟩ − αk⟨g(xk+1), vk+1 − x∗⟩]
= E [αk⟨g(xk+1), vk − vk+1⟩]

≤ E
[
α2
k

2γk
∥g(xk+1)∥2 +

γk
2
∥vk − vk+1∥2

]
≤ E

[
α2
k(1 + σ2)

2γk
∥∇f(xk+1)∥2 +

γk
2
∥vk − vk+1∥2

] (B.10)

In addition, using the identity of squares (for v) and Bregman divergence indentity (B.6)
(for x+), we have the component form of

DE(z
+
k , zk+1; γk) = Df (x

+
k , xk+1) +

γk
2
∥vk − vk+1∥2 (B.11)

Substituting (B.8-B.11) back into (B.7), we can obtain
E
[
E(z+k+1; γk+1)

]
− E(z+k ; γk)

≤ E
[
−αkDf (xk+1, x

∗) +
1

2
(
α2
k(1 + σ2)

γk
− αkβk)∥∇f(xk+1)∥2

−αkγk+1

2
∥vk+1 − x∗∥2 − αkµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]
≤ E

[
−αkDf (x

+
k+1, x

∗) +
1

2
(
α2
k(1 + σ2)

γk
− (1 + αk)αkβk)∥∇f(xk+1)∥2

−αkγk+1

2
∥vk+1 − x∗∥2 − αkµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]
(B.12)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

By moving E
[
E(z+k+1; γk+1) = Df (x

+
k+1, x

∗) + γk+1

2 ∥vk+1 − x∗∥2
]

to the left side of the in-
equality to obtain the desired result.

Now we begin to prove Theorem B.1.

Proof. (1). When 0 < µ < L <∞, set γ = µ. By Lemma B.3, if αβ ≤ 1
(1+σ2)L , we have

(1 + α)E
[
E(z+k+1;µ)

]
≤ E(z+k ;µ) + E

[
1

2
(
α2(1 + σ2)

µ
− (1 + α)αβ)∥∇f(xk+1)∥2 −

αµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]
(B.13)

Assume αβ = (1+σ2)α2

µ ≤ 1
(1+σ2)L , i.e., the step size satisfies 0 < α ≤ 1

1+σ2

√
µ
L to ensure

that all the coefficients of the terms on the right side of the inequality, except for E(z+k ;µ),
are non-positive. Thus,

E
[
E(z+k+1;µ)

]
≤ (1 + α)−1E(z+k ;µ) ≤ (1 + α)−(k+1)E(z0;µ) (B.14)

(2). When µ = 0. Assume αk = 2
k+1 , γk = α2

k(1 + σ2)2L and βk = (1+σ2)αk

γk
. Using Lemma

B.3 to obtain

E
[
E(z+k+1; γk+1)

]
≤ k + 1

k + 3
E(z+k ; γk) ≤

2

(k + 2)(k + 3)
E(z0; γ0) (B.15)

Corollary B.1. Under the setting of Theorem B.1, SHANG achieves an ε-precision solution
within the following number of iterations:

(1) When µ = 0, with αk = 2
k+1 , γk = α2

k(1 + σ2)2L and βk = (1+σ2)αk

γk
,

k ≥
√

2(f(x0)− f(x∗) + 2(1 + σ2)2L∥x0 − x∗∥2)
ε

(2) When 0 < µ < L <∞, with α = 1
1+σ2

√
µ
L and β = (1+σ2)α

µ ,

k ≥ (1 + σ2)

√
L

µ
log

(
f(x0)− f(x∗) + µ

2 ∥x0 − x∗∥2

ε

)
.

Corollary B.2. In the setting of Theorem B.1, f(x+
k)

a.s.→ f(x∗).

proof of Corollary B.2. We assume that all the conditions of Theorem B.1 have been met,
we have

E
[
| f(x+

k)− f(x∗) |
]
= E

[
f(x+

k)− f(x∗)
]
≤ Cqk

holds for some positive constant C. Here 0 < q < 1 is the decay factor. In fact, q =
(1 + 1

1+σ2

√
µ
L)

−1 in strongly convex cases and q = 2
(k+2)(k+3) in convex cases. Since

P
(

lim
k→∞

f(x+
k) ̸= f(x∗)

)
= P

(
lim
k→∞

sup | f(x+
k)− f(x∗) |> 0

)
= P

(∞⋃
n=1

lim
k→∞

sup | f(x+
k)− f(x∗) |> 1

n

)

≤
∞∑

n=1

P
(

lim
k→∞

sup | f(x+
k)− f(x∗) |> 1

n

)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

For any ε = 1
n > 0 and for any N ∈ N, we have

P
(

lim
k→∞

sup | f(x+
k)− f(x∗) |> ε

)
≤ P

(
∃k ≥ N s.t. | f(x+

k)− f(x∗) |> ε
)

= P

(∞⋃
k=1

{| f(x+
k)− f(x∗) |> ε}

)

≤
∞∑
k=1

P
(
| f(x+

k)− f(x∗) |> ε
)

≤
∞∑
k=1

E
[
| f(x+

k)− f(x∗) |
]

ε

≤ C

ε

∞∑
k=1

qk

where in the penultimate step we use Markov’s inequality. The right-hand side of the
inequality above represents an infinite series, and by leveraging the convergence of this series,
we can conclude that the right-hand side can be made arbitrarily small. Consequently, the
left-hand side of the inequality must be zero, implying that P

(
limk→∞ f(x+

k) ̸= f(x∗)
)
= 0.

Therefore, f(x+
k) converges in probability to f(x∗).

C SHANG++

C.1 Proof of Theorem 2.1

Setting γ = µ and m = βµ, and substituting g−µ(xk) and x+
k := xk − αβg−µ(xk) into (2.3)

yield:

xk+1 − x+
k

α
= vk − xk+1 − βµ(xk+1 − x∗)

vk+1 − vk
α

= x∗ − vk+1 −
1

µ
g−µ(xk+1)

x+
k+1 = xk+1 − αβg−µ(xk+1)

(C.1)

We note that schemes (2.5) and (2.3) generate the same sequences xk and vk; the appearance
of x∗ does not affect the algorithm itself. The form (2.5) is introduced purely for theoretical
analysis.
Define the discrete Lyapunov function

E(z+k ;µ) = f−µ(x
+
k)− f−µ(x

∗) +
µ

2
∥vk − x∗∥2 (C.2)

The next lemma controls the decay of E
[
E(z+k+1;µ)

]
.

Lemma C.1. Let f ∈ Sµ,L with 0 < µ < L < ∞, then f−µ ∈ S0,L−µ. Lyapunov function E
is defined by (C.2). Given (x+

k , xk, vk), (x+
k+1, xk+1, vk+1) are generated by (C.1). Assume

0 < αβ ≤ 1
(L−µ)(1+σ2) , we have

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1 + βµ)α

(
Df−µ

(x+
k+1, x

∗) +Df−µ
(x∗, xk+1)

)
− αµ(2 + α)

2
∥vk+1 − x∗∥2

+
1

2

(α2(1 + σ2)

µ
− (1 + (1 + βµ)α)αβ

)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Moreover, if f is quadratic, we have

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−2(1 + βµ)αDf−µ

(x+
k+1, x

∗)− αµ(2 + α)

2
∥vk+1 − x∗∥2

+
1

2

(α2(1 + σ2)

µ
− (1 + 2(1 + βµ)α)αβ

)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
proof of Lemma C.1. By Lemma B.2, if 0 < αβ ≤ 1

(L−µ)(1+σ2) , we obtain the one-step
decrease

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
E(zk+1;µ)− E(z+k ;µ)−

αβ

2
∥∇f−µ(xk+1)∥2

] (C.3)

Expand it yields

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
⟨∇E(zk+1;µ), zk+1 − z+k ⟩ −DE(z

+
k , zk+1;µ)−

αβ

2
∥∇f−µ(xk+1)∥2

]
≤ E

[
⟨∇f−µ(xk+1)−∇f−µ(x

∗), xk+1 − x+
k ⟩+ µ⟨vk+1 − x∗, vk+1 − vk⟩ −DE(z

+
k , zk+1;µ)

−αβ

2
∥∇f−µ(xk+1)∥2

]
= E

[
−(1 + βµ)α⟨∇f−µ(xk+1)−∇f−µ(x

∗), xk+1 − x∗⟩ − αµ∥vk+1 − x∗∥2 −DE(z
+
k , zk+1;µ)

+α⟨∇f−µ(xk+1), vk − x∗⟩ − α⟨g−µ(xk+1), vk+1 − x∗⟩ − αβ

2
∥∇f−µ(xk+1)∥2

]
= E

[
−(1 + βµ)α

(
Df−µ

(xk+1, x
∗) +Df−µ

(x∗, xk+1)
)
− αµ∥vk+1 − x∗∥2 −DE(z

+
k , zk+1;µ)

+α⟨∇g−µ(xk+1), vk − vk+1⟩ −
αβ

2
∥∇f−µ(xk+1)∥2

]
≤ E

[
−(1 + βµ)α

(
Df−µ(x

+
k+1, x

∗) +Df−µ(x
∗, xk+1)

)
− αµ∥vk+1 − x∗∥2 −DE(z

+
k , zk+1;µ)

+α⟨∇g−µ(xk+1), vk − vk+1⟩ − (1 + (1 + βµ)α)
αβ

2
∥∇f−µ(xk+1)∥2

]
(C.4)

Using the update for vk+1 and Lemma B.1 yields the following bound.
E [α⟨g−µ(xk+1), vk − vk+1⟩]

= E
[
⟨ α
√
µ
g−µ(xk+1),

√
µ(vk − vk+1)⟩

]
= E

[
1

2
∥ α
√
µ
g−µ(xk+1)∥2 +

1

2
∥√µ(vk − vk+1)∥2 −

1

2
∥ α
√
µ
g−µ(xk+1)−

√
µ(vk − vk+1)∥2

]
= E

[
α2

2µ
∥g−µ(xk+1)∥2 +

µ

2
∥vk − vk+1∥2 −

α2µ

2
∥ 1
µ
g−µ(xk+1)−

vk − vk+1

α
∥2
]

≤ E
[
α2(1 + σ2)

2µ
∥∇f−µ(xk+1)∥2 +

µ

2
∥vk − vk+1∥2 −

α2µ

2
∥vk+1 − x∗∥2

]
(C.5)

Substituting (B.11) and (C.5) into (C.4) to obtain

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1 + βµ)α

(
Df−µ

(x+
k+1, x

∗) +Df−µ
(x∗, xk+1)

)
− αµ(2 + α)

2
∥vk+1 − x∗∥2

+
1

2

(α2(1 + σ2)

µ
− (1 + (1 + βµ)α)αβ

)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

] (C.6)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Moreover, if f is quadratic, we have

⟨∇f−µ(x)−∇f−µ(x
∗), x− x∗⟩ = Df−µ(x, x

∗) +Df−µ(x
∗, x) = 2Df−µ(x, x

∗) (C.7)

Substituting (C.7) back into (C.6), we have the following sharper decay bound:

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−2(1 + βµ)αDf−µ

(x+
k+1, x

∗)− αµ(2 + α)

2
∥vk+1 − x∗∥2

+
1

2

(α2(1 + σ2)

µ
− (1 + 2(1 + βµ)α)αβ

)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

] (C.8)

By moving E
[
E(z+k+1;µ)

]
to the left side of the inequality to obtain the desired result.

Now we begin to prove Theorem 2.1.

Proof. By Lemma C.1, Assume β = (1+σ2)α
µ and αβ ≤ 1

(1+σ2)(L−µ) , i.e., 0 < α ≤
1

1+σ2

√
µ

L−µ , we have

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1 + α+ σ2α)α

(
Df−µ(x

+
k+1, x

∗) +Df−µ(x
∗, xk+1)

)
− αµ(2 + α)

2
∥vk+1 − x∗∥2

− (1 + α+ σ2α)α

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ(x

+
k , xk+1)

]
= E

[
−(1 + (1 + σ2)α)αE(z+k+1)−

α2µ

2
∥vk+1 − x∗∥2 + αµ((1 + σ2)α− 1)

2
∥vk+1 − x∗∥2

−(1 + (1 + σ2)α)αDf−µ
(x∗, xk+1)−

(1 + α+ σ2α)α

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
(C.9)

Since α ≤ 1
1+σ2

√
µ

L−µ , then (1 + σ2)α ≤
√

µ
L−µ ≤ 1. Thus,

E
[
E(z+k+1;µ)

]
≤ (1+α+(1+σ2)α2)−1E(z+k ;µ) ≤ (1+α+(1+σ2)α2)−(k+1)E(z0;µ) (C.10)

Moreover, if f is quadratic, using Lemma C.1, we have

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1 + α)α

(
Df−µ

(xk+1, x
∗) +Df−µ

(x∗, xk+1)
)
− αµ(2 + α)

2
∥vk+1 − x∗∥2

− (1 + α+ σ2α)α

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
≤ E

[
−(2α+ α2)Df−µ

(x+
k+1, x

∗)− α2Df−µ
(x+

k+1, x
∗)− αµ(2 + α)

2
∥vk+1 − x∗∥2

− 2α+ α2

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
= E

[
−(2α+ α2)E(z+k+1)− α2Df−µ

(x+
k+1, x

∗)− 2α+ α2

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
(C.11)

Thus,

E
[
E(z+k+1;µ)

]
≤ (1 + 2α+ α2)−1E(z+k ;µ) ≤ (1 + 2α+ α2)−(k+1)E(z0;µ) (C.12)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Corollary C.1. Under the setting of Theorem 2.1, choose α = 1
1+σ2

√
µ

L−µ and β = (1+σ2)α
µ ,

SHANG++ guarantees an ε-precision solution within the following number of iterations:

k ≥ (1 + σ2)

√
L

µ
− 1

(
1 +

√
µ

L− µ

)−1

log

(
f(x0)− f(x∗)

ε

)

If f is quadratic,

k ≥ 1 + σ2

2

√
L

µ
− 1

(
1 +

1

2(1 + σ2)

√
µ

L− µ

)−1

log

(
f(x0)− f(x∗)

ε

)

C.2 Proof of Theorem 2.2

To facilitate analysis, we define an auxiliary time-scaling factor γ̃k = γk

1+mαk
. For any m ≥ 0,

setting αk = 2
k+1 , α̃k = αk

1+mαk
= 2

k+1+2m and γk = αkα̃k(1 + σ2)2L, we have

γ̃k+1 − γ̃k
α̃k

=
1 +mαk

αk

(α2
k+1(1 + σ2)2L

(1 +mαk+1)2
− α2

k(1 + σ2)2L

(1 +mαk)2
)

=
k + 1 + 2m

2

(4(1 + σ2)2L

(k + 2 + 2m)2
− 4(1 + σ2)2L

(k + 1 + 2m)2
)

=
k + 1 + 2m

2

(
1− (k + 2 + 2m)2

(k + 1 + 2m)2
)
γ̃k+1

= −(1 + 1

2(k + 1 + 2m)
)γ̃k+1

≤ −γ̃k+1

(C.13)

Define x+
k = xk− α̃kβkg(xk), we can obtain the following equivalent form of SHANG++ for

convex problems:

xk+1 − x+
k

α̃k
= vk − xk+1

vk+1 − vk
αk

= − 1

γk
g(xk+1)

γ̃k+1 − γ̃k
α̃k

≤ −γ̃k+1

(C.14)

Denote the discrete Lyapunov function by

E(z+k ; γ̃k) = f(x+
k)− f(x∗) +

γ̃k
2
∥vk − x∗∥2 (C.15)

The following Lemma establishes a decay bound for E
[
E(z+k ; γ̃k)

]
.

Lemma C.2. Let f ∈ S0,L, Lyapunov function E is defined by (C.15). Given (xk, vk, x
+
k),

(xk+1, vk+1) are generated by (C.14) and x+
k+1 = xk+1 − α̃kβkg(xk+1). Assume 0 < α̃kβk =

α̃k+1βk+1 ≤ 1
L(1+σ2) , we have

(1 + α̃k)E
[
E(z+k+1; γ̃k+1)

]
≤ E(z+k ; γ̃k) + E

[
−α̃kDf (x

∗, xk+1)−Df (x
+
k , xk+1) +

1

2
(
α̃2
k(1 + σ2)

γ̃k
− (1 + α̃k)α̃kβk)∥∇f(xk+1)∥2

]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

proof of Lemma C.2. By Lemma B.2, if 0 < α̃kβk = α̃k+1βk+1 ≤ 1
L(1+σ2) , we obtain the

one-step decrease

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k)

≤ E
[
E(zk+1; γ̃k+1)− E(z+k ; γ̃k)−

α̃kβk

2
∥∇f(xk+1)∥2

]
= E

[
E(zk+1; γ̃k)− E(z+k ; γ̃k) +

γ̃k+1 − γ̃k
2

∥vk+1 − x∗∥2 − α̃kβk

2
∥∇f(xk+1)∥2

] (C.16)

Expand the above equation and use the update to obtain

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k)

≤ E
[
⟨∇E(zk+1; γ̃k), zk+1 − z+k ⟩ −DE(z

+
k , zk+1; γ̃k) +

γ̃k+1 − γ̃k
2

∥vk+1 − x∗∥2 − α̃kβk

2
∥∇f(xk+1)∥2

]
≤ E

[
⟨∇f(xk+1)−∇f(x∗), xk+1 − x+

k ⟩+ γ̃k⟨vk+1 − x∗, vk+1 − vk⟩ −DE(z
+
k , zk+1; γ̃k)

− α̃kγ̃k+1

2
∥vk+1 − x∗∥2 − α̃kβk

2
∥∇f(xk+1)∥2

]
= E

[
−α̃k⟨∇f(xk+1)−∇f(x∗), xk+1 − x∗⟩+ α̃k⟨∇f(xk+1), vk − x∗⟩ − αkγ̃k

γk
⟨g(xk+1), vk+1 − x∗⟩

− α̃kγ̃k+1

2
∥vk+1 − x∗∥2 −DE(z

+
k , zk+1; γ̃k)−

α̃kβk

2
∥∇f(xk+1)∥2

]
(C.17)

Using Young Inequality, Cauchy-Schwarz Inequality and αkγ̃k

γk
= α̃k to obtain

E
[
α̃k⟨∇f(xk+1), vk − x∗⟩ − αkγ̃k

γk
⟨g(xk+1), vk+1 − x∗⟩

]
= E [α̃k⟨g(xk+1), vk − vk+1⟩]

≤ E
[
α̃2
k

2γ̃k
∥g(xk+1)∥2 +

γ̃k
2
∥vk − vk+1∥2

]
≤ E

[
α̃2
k(1 + σ2)

2γ̃k
∥∇f(xk+1)∥2 +

γ̃k
2
∥vk − vk+1∥2

]
(C.18)

Substituting (B.11) and (C.18) back into (C.17), we can obtain

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k)

≤ E
[
−α̃kDf (xk+1, x

∗)− α̃kDf (x
∗, xk+1) +

1

2
(
α̃2
k(1 + σ2)

γ̃k
− α̃kβk)∥∇f(xk+1)∥2

− α̃kγ̃k+1

2
∥vk+1 − x∗∥2 −Df (x

+
k , xk+1)

]
≤ E

[
−α̃kE(z+k+1; γ̃k+1)− α̃kDf (x

∗, xk+1) +
1

2
(
α̃2
k(1 + σ2)

γ̃k
− (1 + α̃k)α̃kβk)∥∇f(xk+1)∥2

−Df (x
+
k , xk+1)

]
(C.19)

By moving E
[
E(z+k+1; γ̃k+1)

]
to the left side of the inequality to obtain the desired result.

Now we prove the theorem 2.2.

Proof. Assume αk = 2
k+1 , γk = αkα̃k(1 + σ2)2L and βk = (1+σ2)αk

γk
. Then

α̃kβk =
(1 + σ2)α̃kαk

γk
=

(1 + σ2)α̃2
k

γ̃k
(C.20)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Using Lemma C.2 to obtain
E
[
E(z+k+1; γ̃k+1)

]
≤ (1 + α̃k)

−1E(z+k ; γ̃k) ≤ Πk
i=0(1 + α̃i)

−1E(z+0 ; γ̃0) (C.21)
Since α̃k = 2

k+1+2m , then

Πk
i=0(1 + α̃i)

−1 = Πk
i=0

i+ 1 + 2m

i+ 3 + 2m
=

(1 + 2m)(2 + 2m)

(k + 3 + 2m)(k + 2 + 2m)

Corollary C.2. Under the setting of Theorem 2.2, choose m ≥ 0, αk = 2
k+1 , α̃k = αk

1+mαk
,

γk = αkα̃k(1 + σ2)2L and βk = (1+σ2)αk

γk
, SHANG++ guarantees to reach an ε-precision at

the following interations:

k ≥

√
(1 + 2m)(2 + 2m)(f(x0)− f(x∗) +

2(1 + σ2)2L

(1 + 2m)2
∥x0 − x∗∥2)/ε

Corollary C.3. Under the setting of Theorem 2.2, f(x+
k)

a.s.→ f(x∗).

D Variance Decay Analysis

We study the variance decay of the Lyapunov energy (B.2)

Ek := E(z+k ; γ̃k) = f(x+
k)− f(x∗) +

γ̃k
2
∥vk − x∗∥2

under the unified stochastic model of SHANG and SHANG++. Throughout we work on a
probability space (Ω,F ,P) with the post-update filtration Fk := σ(x0, v0, ζ0, . . . , ζk), where
each ζk collects the randomness used to form the stochastic gradient at step k. We write
gk := g(xk, ζk) and gk+1 := g(xk+1, ζk+1).

Assumptions. We make the following standard assumptions.

A1. Smooth convexity. f ∈ Sµ,L with 0 ≤ µ < L <∞.
A2. Unbiasedness at the query point. E[gk+1 | Fk] = ∇f(xk+1). Equivalently, with

ξk+1 := gk+1 −∇f(xk+1), E[ξk+1 | Fk] = 0.
A3. Multiplicative noise scaling (MNS). E[∥ξk+1∥2 | Fk] ≤ σ2∥∇f(xk+1)∥2.
A4. Bounded conditional kurtosis. There exists χ ≥ 1 such that E[∥ξk+1∥4 | Fk] ≤

χ
(
E[∥ξk+1∥2 | Fk]

)2 (e.g., χ = 3 for Gaussian noise).

Unified stochastic model. The updates for SHANG/SHANG++ can be written as
x+
k = xk − α̃kβk gk

xk+1 − x+
k

α̃k
= vk − xk+1

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
gk+1

γk+1 − γk
αk

= µ− γk+1.

(D.1)

where αk > 0, γk > 0, and we introduce α̃k = αk

1+mαk
and γ̃k = γk

1+mαk
with m ≥ 0.

Equivalently (and crucial for variance analysis), (x+
k+1, vk+1) are affine in the fresh gradient

gk+1 while xk+1 depends only on past randomness:

x+
k+1 =

1

1 + α̃k
x+
k +

α̃k

1 + α̃k
vk − α̃k+1βk+1gk+1 = xk+1 − α̃k+1βk+1gk+1,

vk+1 =
αkµ

(γk + αkµ)(1 + α̃k)
x+
k +

(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
vk −

αk

γk + αkµ
gk+1

γk+1 =
αk

1 + αk
µ+

1

1 + αk
γk

(D.2)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

By the filtration choice, xk+1 is Fk-measurable and gk+1 uses fresh randomness ζk+1; hence
with ξk+1 := gk+1 −∇f(xk+1) we have E[ξk+1 | Fk] = 0. This linear structure will allow us
to bound the one-step fluctuation Ek+1 − E[Ek+1 | Fk] and to propagate variance.
Lemma D.1 (One-step fluctuation). There exist explicit constants Ak, Bk, Ck ≥ 0 (functions
of αk, α̃k, γ̃k, µ, L) such that, with ξk+1,∣∣Ek+1 − E[Ek+1 | Fk]

∣∣ ≤ Ak

√
Ek∥ξk+1∥+Bk∥ξk+1∥2 + CkEk

and

Ak =
(
Bx(1 +BxL)

√
2Lc1 +Bvγ̃k+1(c2 +Bv

√
2Lc1(α̃k, γ̃k, L))

)
Bk =

LB2
x + γ̃k+1B

2
v

2

Ck = (LB2
x + γ̃k+1B

2
v)Lc1(α̃k, γ̃k, L)σ

2

where c1 = max{ 1
1+α̃k

, α̃k

1+α̃k

L
γ̃k
}, c2 = max{ αk

√
2µ

(γk+αkµ)(1+α̃k)
,
(

γk

γk+αkµ
+

α̃kαkµ
(γk+αkµ)(1+α̃k)

)√
2
γ̃k
} when µ > 0 and c2 =

√
2
γ̃k

when µ = 0. Bx = α̃k+1βk+1

and Bv = αk

γk+αkµ
.

proof of Lemma D.1. Using ξk+1 := gk+1 −∇f(xk+1), we can rewrite the updates of x+
k+1

and vk+1 as

x+
k+1 = Uk − α̃k+1βk+1∇f(xk+1)− α̃k+1βk+1ξk+1 = Ûk −Bxξk+1

vk+1 = Vk −
αk

γk + αkµ
∇f(xk+1)−

αk

γk + αkµ
ξk+1 = V̂k −Bvξk+1

(D.3)

where Uk = 1
1+α̃k

x+
k + α̃k

1+α̃k
vk, Vk = αkµ

(γk+αkµ)(1+α̃k)
x+
k +

(
γk

γk+αkµ
+ α̃kαkµ

(γk+αkµ)(1+α̃k)

)
vk,

Ûk = Uk−Bx∇f(xk+1) and V̂k = Vk−Bv∇f(xk+1). Bx = α̃k+1βk+1 and Bv = αk

γk+αkµ
are

positive constants. It should be noted that Uk, Ûk, Vk and V̂k are measurable with respect
to Fk.
Let’s first focus on the left part of Ek+1. Expanding f(x+

k+1) = f(Ûk −Bxξk+1) at point Ûk

using Taylor series gives

f(Ûk −Bxξk+1) = f(Ûk)− ⟨∇f(Ûk), Bxξk+1⟩+ r(Ûk, ξk+1) (D.4)

where

| r(Ûk, ξk+1) |=|
∫ 1

0

⟨∇f(Ûk−tBxξk+1)−∇f(Ûk),−Bxξk+1⟩dt |≤
L

2
∥Bxξk+1∥2 =

LB2
x

2
∥ξk+1∥2

(D.5)
Then

| f(x+
k+1)− f(x∗)− E

[
f(x+

k+1)− f(x∗) | Fk

]
|

=| f(Ûk −Bxξk+1)− f(x∗)− E
[
f(Ûk −Bxξk+1)− f(x∗) | Fk

]
|

=| −⟨∇f(Ûk), Bxξk+1⟩+ r(Ûk, ξk+1)− E
[
r(Ûk, ξk+1) | Fk

]
|

≤ Bx∥∇f(Ûk)∥ · ∥ξk+1∥+
LB2

x

2
∥ξk+1∥2 +

LB2
x

2
E
[
∥ξk+1∥2 | Fk

]
(D.6)

where the last step uses Cauchy-Schwarz inequality and (D.5).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Since Ûk = Uk − Bx∇f(xk+1) = xk+1 − Bx∇f(xk+1) and xk+1 = 1
1+α̃k

x+
k + α̃k

1+α̃k
vk, by

triangle inequality and smooth convexity of f , we have

∥∇f(Ûk)∥ ≤ ∥∇f(Ûk)−∇f(xk+1)∥+ ∥∇f(xk+1)∥
≤ L∥Ûk − xk+1∥+ ∥∇f(xk+1)∥
= (1 +BxL)∥∇f(xk+1)∥

≤ (1 +BxL)
√
2L
√

f(xk+1)− f(x∗)

≤ (1 +BxL)
√
2L

√
1

1 + α̃k
(f(x+

k)− f(x∗)) +
α̃k

1 + α̃k
(f(vk)− f(x∗))

≤ (1 +BxL)
√
2L

√
1

1 + α̃k
(f(x+

k)− f(x∗)) +
α̃k

1 + α̃k

L

2
∥vk − x∗∥2

≤ (1 +BxL)
√

2Lc1(α̃k, γ̃k, L)
√
Ek

(D.7)

where c1(α̃k, γ̃k, L) = max{ 1
1+α̃k

, α̃k

1+α̃k

L
γ̃k
}.

On the other hand,

LB2
x

2
E
[
∥ξk+1∥2 | Fk

]
≤ LB2

xσ
2

2
∥∇f(xk+1)∥2 ≤ L2B2

xσ
2c1(α̃k, γ̃k, L)Ek (D.8)

Substituting (D.7) and (D.8) back into (D.6), we have

| f(x+
k+1)− f(x∗)− E

[
f(x+

k+1)− f(x∗) | Fk

]
|

≤ Bx(1 +BxL)
√

2Lc1(α̃k, γ̃k, L)
√
Ek∥ξk+1∥+

LB2
x

2
∥ξk+1∥2 + L2B2

xσ
2c1(α̃k, γ̃k, L))Ek

(D.9)
For the middle part of Ek+1, since

γ̃k+1

2
∥vk+1 − x∗∥2 =

γ̃k+1

2
∥V̂k − x∗∥2 + γ̃k+1B

2
v

2
∥ξk+1∥2 − γ̃k+1⟨V̂k − x∗, Bvξk+1⟩, (D.10)

we have

| γ̃k+1

2
∥vk+1 − x∗∥2 − E

[
γ̃k+1

2
∥vk+1 − x∗∥2 | Fk

]
|

=| −γ̃k+1⟨V̂k − x∗, Bvξk+1⟩+
γ̃k+1B

2
v

2

(
∥ξk+1∥2 − E

[
∥ξk+1∥2 | Fk

])
|

≤ Bvγ̃k+1∥V̂k − x∗∥ · ∥ξk+1∥+
γ̃k+1B

2
v

2
∥ξk+1∥2 +

γ̃k+1B
2
v

2
E
[
∥ξk+1∥2 | Fk

]
(D.11)

Using triangle inequality and convexity of ∥ · ∥, we have

∥V̂k − x∗∥
= ∥Vk − x∗ −Bv∇f(xk+1)∥

≤ ∥ αkµ

(γk + αkµ)(1 + α̃k)
x+
k +

(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
vk − x∗∥+Bv∥∇f(xk+1)∥

≤ αkµ

(γk + αkµ)(1 + α̃k)
∥x+

k − x∗∥+
(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
∥vk − x∗∥+Bv∥∇f(xk+1)∥

≤ αkµ

(γk + αkµ)(1 + α̃k)
∥x+

k − x∗∥+
(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
∥vk − x∗∥

+Bv

√
2Lc1(α̃k, γ̃k, L)

√
Ek

(D.12)
Next, we will consider two cases.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Case 1: µ > 0. Using the strong convexity of f , we have

∥V̂k − x∗∥

≤ αk

√
2µ

(γk + αkµ)(1 + α̃k)

√
f(x+

k)− f(x∗) +
(γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)√ 2

γ̃k

√
γ̃k
2
∥vk − x∗∥

+Bv

√
2Lc1(α̃k, γ̃k, L)

√
Ek

≤
(
c2(α̃, µ, γk) +Bv

√
2Lc1(α̃k, γ̃k, L)

)√
Ek

(D.13)
where c2(α̃, µ, γk) = max{ αk

√
2µ

(γk+αkµ)(1+α̃k)
,
(

γk

γk+αkµ
+ α̃kαkµ

(γk+αkµ)(1+α̃k)

)√
2
γ̃k
}. Thus,

| γ̃k+1

2
∥vk+1 − x∗∥2 − E

[
γ̃k+1

2
∥vk+1 − x∗∥2 | Fk

]
|

≤ Bvγ̃k+1

(
c2(α̃, µ, γk) +Bv

√
2Lc1(α̃, µ, L)

)√
Ek∥ξk+1∥+

γ̃k+1B
2
v

2
∥ξk+1∥2 + γ̃k+1B

2
vLσ

2c1(α̃k, γ̃k, L)Ek
(D.14)

Combining (D.9) and (D.14), we have

| Ek+1 − E [Ek+1 | Fk] |

≤
(
Bx(1 +BxL)

√
2Lc1(α̃k, γ̃k, L) +Bvγ̃k+1(c2(α̃, µ, γk) +Bv

√
2Lc1(α̃k, γ̃k, L))

)√
Ek∥ξk+1∥

+
LB2

x + γ̃k+1B
2
v

2
∥ξk+1∥2 + (LB2

x + γ̃k+1B
2
v)Lc1(α̃k, γ̃k, L)σ

2Ek
(D.15)

Case 2: µ = 0.
∥V̂k − x∗∥ ≤ ∥vk − x∗∥+Bv

√
2Lc1(α̃k, γ̃k, L)

√
Ek

≤ (

√
2

γ̃k
+Bv

√
2Lc1(α̃k, γ̃k, L))

√
Ek

(D.16)

Thus,

| γ̃k+1

2
∥vk+1 − x∗∥2 − E

[
γ̃k+1

2
∥vk+1 − x∗∥2 | Fk

]
|

≤ Bvγ̃k+1(

√
2

γ̃k
+Bv

√
2Lc1(α̃k, γ̃k, L))

√
Ek∥ξk+1∥+

γ̃k+1B
2
v

2
∥ξk+1∥2 + γ̃k+1B

2
vLσ

2c1(α̃k, γ̃k, L)Ek
(D.17)

Combining (D.9) and (D.17), we have

| Ek+1 − E [Ek+1 | Fk] |

≤
(
Bx(1 +BxL)

√
2Lc1(α̃k, γ̃k, L) +Bvγ̃k+1(

√
2

γ̃k
+Bv

√
2Lc1(α̃k, γ̃k, L))

)√
Ek∥ξk+1∥

+
LB2

x + γ̃k+1B
2
v

2
∥ξk+1∥2 + (LB2

x + γ̃k+1B
2
v)Lc1(α̃k, γ̃k, L)σ

2Ek
(D.18)

Proposition D.1 (Conditional variance bound). Let Sk := 2Lσ2c1(α̃k, γ̃k, L) with
c1(α̃k, γ̃k, L) = max{ 1

1+α̃k
, α̃k

1+α̃k

L
γ̃k
}. Under assumptions (A2)–(A4) and the setting of

Lemma D.1 (In particular, stepsizes and hence Ak, Bk, Ck, Sk are Fk-measurable),

Var(Ek+1 | Fk) ≤ K2,kE2k , K2,k = 3
(
A2

kSk + χB2
kS

2
k + C2

k

)
proof of Proposition D.1. By the definition of conditional variance,

Var(Ek+1 | Fk) = E
[
(Ek+1 − E [Ek+1 | Fk])

2 | Fk

]
(D.19)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

From Lemma D.1 and inequality (x+ y + z)2 ≤ 3(x2 + y2 + z2),

(Ek+1 − E [Ek+1 | Fk])
2 ≤ 3

(
A2

kEk∥ξk+1∥2 +B2
k∥ξk+1∥4 + C2

kE2k
)

(D.20)

Since Ak, Bk, Ck and Ek are all measurable with respect to the σ-algebra Fk. Using assump-
tions (A2-A4) yields

E
[
∥ξk+1∥2 | Fk

]
≤ σ2∥∇f(xk+1)∥2 ≤ 2Lσ2c1Ek = SkEk (D.21)

and
E
[
∥ξk+1∥4 | Fk

]
≤ χ

(
E
[
∥ξk+1∥2 | Fk

])2 ≤ χS2
kE2k (D.22)

Taking E [· | Fk] in the previous inequality gives

Var(Ek+1 | Fk) ≤ 3(A2
kSk + χB2

kS
2
k + C2

k)E2k (D.23)

Theorem D.1 (Geometric variance decay). Assume the drift inequality (from the expectation
analysis)

E[Ek+1 | Fk] ≤ qEk for some q ∈ (0, 1), (D.24)
and assumptions (A2)–(A4) hold. Let K2,k be given in Proposition D.1 and suppose K2 :=
supk K2,k < 1− q2 satisfied. Then with θ := q2 +K2 ∈ (0, 1), for all k ≥ 0, given initial E0,

Var(Ek+1) ≤ E20θk+1

Proof. By the law of total variance and Proposition D.1,

Var(Ek+1) = E
[
V ar(Ek+1 | Fk)

]
+Var

(
E[Ek+1 | Fk]

)
≤ K2E[E2k] + q2 Var(Ek). (D.25)

Since E[E2k] = Var(Ek) +
(
E[Ek]

)2 and (Eq.(D.24)), we get

Var(Ek+1) ≤ (K2 + q2)Var(Ek) +K2

(
E[Ek]

)2 ≤ (K2 + q2)Var(Ek) +K2(E[E0])2q2k (D.26)

Solving this linear recursion yields

Var(Ek+1) ≤ (K2+q2)k+1 Var(E0)+K2(E[E0])2
k∑

j=0

(K2+q2)k−jq2j ≤ (K2+q2)k+1(Var(E0)+(E[E0])2)

(D.27)
Since E0 is given by the initial point x0 = v0, it is a constant ,then Var(E0) = 0 and
E[E0] = E0.

Corollary D.1 (Upper bound of K2,k in strongly convex setting). Define κ = L
µ is the

condition number of f . Under the setting of Theorem B.1-2.1 and Assumptions (A1)-(A4),
with K2,k = 3(A2

kSk + χB2
kS

2
k + C2

k) defined above, we have the explicit upper bound

(1) For SHANG,

K2 ≤

{
12a20σ

2((3 + σ2)a0 + 1)2 + 12(χ+ 1)a40σ
4 ακ ≤ 1

12a30σ
2
√
κ(1 + (3 + σ2)a

3
2
0 κ

1
4)2 + 12(χ+ 1) a60 σ

4 κ ακ ≥ 1

where

(2) For SHANG++,

K2 ≤


12a20σ

2 κ

κ− 1
(1 + (3 + σ2)a0

√
κ

κ− 1
)2 + 12(χ+ 1)a40σ

4(
κ

κ− 1
)2 ακ ≤ 1 + (1 + σ2)α2

12a30σ
2 κ2

(κ− 1)
3
2

(1 + (3 + σ2)a
3
2
0

κ

(κ− 1)
3
4

)2 + 12(χ+ 1)a60σ
4κ(

κ

κ− 1
)3 ακ ≥ 1 + (1 + σ2)α2

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Proof. Case 1: SHANG. When m = 0, scheme (D.1) is algorithm SHANG. From Theorem
B.1, when γ = µ, α = 1

(1+σ2)
√
κ

and β = (1+σ2)α
µ , we have

E[Ek+1 | Fk] ≤ (1 + α)−1Ek = qEk (D.28)
and

A = Ak =
α2

µ

(
1 + σ2 + (1 + σ2)2α2κ+

1

(1 + α)2
)√

2Lc1 +
α

1 + α
c2

B = Bk =
α2

2µ
((1 + σ2)2α2κ+

1

(1 + α)2
)

C = Ck =
α2

µ
((1 + σ2)2α2κ+

1

(1 + α)2
)Lσ2c1

S = Sk = 2Lσ2c1

where c1 = max{ 1
1+α ,

α
1+ακ} and c2 = 1+α+α2

(1+α)2

√
2
µ .

(1): Assume ακ ≤ 1, i.e., κ ≤ (1 + σ2)2, so that c1 = 1
1+α .

Since c1 = 1
1+α and α2κ = 1

(1+σ2)2 ≤ 1, we bound each term in K2.

For the B2S2 term, using B = α2

2µ ((1 + σ2)2α2κ+ 1
(1+α)2),

B2S2 =
[α2

2µ

(
(1 + σ2)2α2κ+ 1

(1+α)2

)]2
· (2µκσ2c1)

2

= α4κ2σ4c21

(
(1 + σ2)2α2κ+ 1

(1+α)2

)2
≤ 4 a40 σ

4,

(D.29)

where we used c1 ≤ 1 and α4κ2 = 1
(1+σ2)4 . We denote a0 = 1

1+σ2 . Hence 3χB2S2 ≤
12χa40σ

4.
For the C2 term, note C = 2BLc1σ

2 implies C2 = B2S2. Hence
C2 ≤ 4 a40 σ

4, (D.30)
so 3C2 ≤ 12 a40 σ

4.
For the A2S term, splitting A = A1 +A2 with

A1 :=
α2

µ

(
(1 + σ2) + (1 + σ2)2α2κ+ 1

(1+α)2

)√
2Lc1, A2 :=

α

1 + α
c2,

For A2, since c2 = 1+α+α2

(1+α)2

√
2/µ ≤

√
2/µ,

A2
2S =

α2

(1 + α)2
c22 · 2µκσ2c1 ≤ 4κσ2c1 ·

α2

(1 + α)2
= 4σ2 · α2κ

(1 + α)3
≤ 4a20σ

2 (D.31)

For A1, using c1 = 1
1+α and α2κ = a20 ≤ 1,

A2
1S =

[α2

µ

√
2Lc1

]2(
(1 + σ2) + (1 + σ2)2α2κ+ 1

(1+α)2

)2
· 2Lσ2c1

= 4α4κ2c21 σ
2
(
(1 + σ2)2 + 1 + 1

(1+α)2

)2
≤ 4 a40 σ

2 · (3 + σ2)2 = 4(3 + σ2)2a40σ
2

(D.32)
Therefore, using (x+ y)2 ≤ (1 + τ)x2 + (1 + 1/τ)y2 with τ =

√
A2

2S/A
2
1S:

3A2S ≤ 3(
√
A2

1S +
√
A2

2S)
2 ≤ 3(2(3 + σ2)a20σ + 2a0σ)

2 = 12a20σ
2((3 + σ2)a0 + 1)2 (D.33)

Combining (D.29)-(D.33), we have

K2 ≤ 12a20σ
2((3 + σ2)a0 + 1)2 + 12(χ+ 1)a40σ

4 (D.34)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

(2): Assume ακ ≥ 1, i.e., κ ≥ (1 + σ2)2, so that c1 = α
1+ακ.

For the B2S2 and C2 terms. We have

B2S2 =
α4κ2σ4

(1 + α)2

(
(1 + σ2)2α2κ+ 1

(1+α)2

)2
≤ α6κ4σ4

(1 + α)2
· 4 ≤ 4 a60 σ

4 κ (D.35)

Hence
3
(
χB2S2 + C2

)
≤ 12(χ+ 1) a60 σ

4 κ (D.36)

For the A2S term,

A2
2S =

α2

(1 + α)2
c22 · 2Lσ2c1 ≤

α2

(1 + α)2
· 2
µ
· 2µκσ2c1 = 4σ2 α3

(1 + α)3
κ2 ≤ 4 a30 σ

2
√
κ

(D.37)
Moreover,

A2
1S =

4α6σ2 κ4

(1 + α)2

(
(1+σ2)+(1+σ2)2α2κ+ 1

(1+α)2

)2
≤ 4α6σ2 κ4

(1 + α)2
·(3+σ2)2 ≤ 4(3+σ2)2 a60 σ

2 κ.

(D.38)
Combining (D.37) and (D.38),

3A2S ≤ 3(
√
A2

1S +
√
A2

2S)
2 ≤ 12a30σ

2
√
κ(1 + (3 + σ2)a

3
2
0 κ

1
4)2 (D.39)

Adding (D.35) - (D.39) yields

K2 ≤ 12a20σ
2
√
κ(1 + (3 + σ2)a

3
2
0 κ

1
4)2 + 12(χ+ 1) a60 σ

4 κ (D.40)

Case 2: SHANG++. When m = βµ = (1 + σ2)α, scheme (D.1) is algorithm SHANG++.
From Theorem 2.1, when γ = µ, α = 1

(1+σ2)
√
κ−1

and β = (1+σ2)α
µ , we have

E[Ek+1 | Fk] ≤ (1 + α+ α2)−1Ek = qEk (D.41)

and

A = Ak =
α2

µ

(1 + σ2

1 + (1 + σ2)α2
+

(1 + σ2)2α2κ

(1 + (1 + σ2)α2)2
+

1

(1 + α)2
)√

2Lc1 +
α

1 + α
c2

B = Bk =
α2

2µ
(

(1 + σ2)2α2κ

(1 + (1 + σ2)α2)2
+

1

(1 + α)2
)

C = Ck =
α2

µ
(

(1 + σ2)2α2κ

(1 + (1 + σ2)α2)2
+

1

(1 + α)2
)Lσ2c1

S = Sk = 2Lσ2c1

where c1 = max{ 1+(1+σ2)α2

1+α+(1+σ2)α2 ,
α

1+α+(1+σ2)α2κ} and c2 = 1+α+(2+σ2)α2

(1+α)(1+α+(1+σ2)α2)

√
2
µ .

Similar to the derivation of SHANG, we have
(1): Assume ακ ≤ 1 + (1 + σ2)α2.

K2 ≤ 12a20σ
2 κ

κ− 1
(1 + (3 + σ2)a0

√
κ

κ− 1
)2 + 12(χ+ 1)a40σ

4(
κ

κ− 1
)2 (D.42)

(2): Assume ακ ≥ 1 + (1 + σ2)α2.

K2 ≤ 12a30σ
2 κ2

(κ− 1)
3
2

(1 + (3 + σ2)a
3
2
0

κ

(κ− 1)
3
4

)2 + 12(χ+ 1)a60σ
4κ(

κ

κ− 1
)3 (D.43)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

When does variance decay hold? By Theorem D.1, geometric variance decay

Var(Ek) ≤ E20 (q2 +K2)
k

follows whenever K2 < 1 − q2, where q = (1 + α)−1 for SHANG and q = (1 + α + α2)−1

for SHANG++. The bounds in Corollary D.1 make this condition directly checkable as a
function of the condition number κ = L/µ, the noise level σ2 via a0 = (1 + σ2)−1, and the
stepsize α:

• In the low-condition regime (the branch with smaller c1), K2 scales like O
(
a20σ

2
)
+

O
(
a40σ

4
)

(for SHANG++ with a mild factor (κ/(κ − 1))powers), whereas 1 − q2 =

Θ(α) = Θ(a0/
√
κ).

• In the high-condition regime (the branch with larger c1), the leading term is
K2 = O

(
a30σ

2
√
κ
)
+ O

(
a60σ

4κ
)

(again with the expected (κ/(κ − 1)) corrections
for SHANG++), while still 1− q2 = Θ(a0/

√
κ).

Thus, for fixed κ, smaller noise (larger a0) and moderate stepsizes make K2 < 1−q2 easier to
satisfy; for large κ, the O(

√
κ) factor in the leading term of K2 becomes the main bottleneck.

How to enforce the condition in practice. Two standard knobs guarantee K2 < 1 − q2

without fine tuning:

1. Stepsize damping. Replace α by β α with β ∈ (0, 1]. Then the leading term in K2

scales likeO(β3), whereas 1−q2 scales likeO(β) (both for SHANG and SHANG++);
hence there exists β0 = β0(κ, σ

2, χ) ∈ (0, 1] such that K2 < 1− q2 for all β ≤ β0.
2. Mini-batching or averaging multiple independent estimates. Replacing σ2 by σ2/M

reduces the leading term in K2 by a factor 1/M while leaving 1 − q2 essentially
unchanged; the explicit constants in the corollary yield simple batch-size thresholds
(e.g., M ≳ σ2

√
κ up to the displayed constants). Section 2 also notes that averaging

multiple independent estimates does not incur additional computational costs.

E SNAG as a Discretization of the HNAG Flow

Under the multiplicative noise assumption, one of the most recent first-order stochastic
methods designed to overcome the divergence of NAG and accelerate SGD is the Stochastic
Nesterov Accelerated Gradient (SNAG) method (Hermant et al., 2025). Its iteration reads:

xk+1 = α̂k+1xk + (1− α̂k+1)vk+1 − α̂k+1s g(xk),

vk+1 = β̂vk + (1− β̂)xk − ηkg(xk),
(E.1)

where g(xk) is a stochastic gradient estimator, and α̂k+1, s, β̂, and ηk are parameters.
By reparameterizing as

α̂k+1 =
1

1 + αk+1
, s = αk+1βk+1, β̂ =

1

1 + αk+1µ
γk+1

, ηk =
1

1 + αk+1µ
γk+1

αk+1

γk+1
, (E.2)

the SNAG scheme (E.1) becomes equivalent to the following update:
xk+1 − xk

αk+1
= vk+1 − xk+1 − βk+1g(xk),

vk+1 − vk
αk+1

=
µ

γk+1
(xk − vk+1)−

1

γk+1
g(xk),

γk+1 − γk
αk+1

≤ µ− γk+1.

(E.3)

Hence, SNAG can be interpreted as a new discretization of the HNAG flow (2.2).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Parameter choices. For convex objectives f ∈ S1,10,L, Hermant et al. (2025) shows that the
optimal parameters are

s =
1

L(1 + σ2)
, ηk =

k + 1

2L(1 + σ2)2
, β̂ = 1, α̂k =

k2

k+1

2 + k2

k+1

.

This leads to

αk+1 =
2

k + 1− k+1
k+2

, αk+1βk+1 =
1

L(1 + σ2)
, γk+1 = αk+1

2
k+1 (1 + σ2)2L.

For strongly convex objectives f ∈ Sµ,L, the optimal parameters become

s =
1

L(1 + σ2)
, ηk = η =

1

(1 + σ2)
√
µL

, β̂ = 1− 1

1 + σ2

√
µ
L , α̂k = α̂ =

1

1 + 1
1+σ2

√
µ
L

.

Consequently,
α =

1

1 + σ2

√
µ
L , αβ =

1

L(1 + σ2)
, γ = µ(1− α).

The condition γ = µ(1− α) indicates that, in the strongly convex case, the update for v is
more accurately viewed as applying a rescaled step size α̃ = α

1−α to the v–dynamics of the
HNAG flow:

vk+1 − vk
α̃

= xk − vk+1 −
1

µ
g(xk).

In summary, the above parameter rearrangements confirm that the optimal choices in SNAG
are consistent with those obtained from various discretization schemes of the HNAG flow,
see Chen & Luo (2021) for details.

35

	Introduction
	Stochastic Hessian-driven Accelerated Nesterov Gradient
	Numerical Experiments
	Conclusion
	Supplement of Experiments
	Supplement of the convex experiment
	Supplement of Classification Tasks
	Batch-Size Scaling on CIFAR-10 (ResNet-34)
	Supplement of Robustness to Multiplicative Gradient Noise
	Supplement of Image Reconstruction
	Hyperparameter comparison

	SHANG
	model
	Convergence Analysis for SHANG

	SHANG++
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Variance Decay Analysis
	SNAG as a Discretization of the HNAG Flow

