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Abstract

Training with multiplicative noise scaling (MNS) is often destabilized by
momentum methods such as Nesterov’s acceleration, as gradient noise can
overwhelm the signal. A new method, SHANG++, is introduced to achieve
fast convergence while remaining robust under MNS. With only one-shot hy-
perparameter tuning, SHANG++ consistently reaches accuracy within 1%
of the noise-free setting across convex problems and deep networks. In ex-
periments, it outperforms existing accelerated methods in both robustness
and efficiency, demonstrating strong performance with minimal parameter
sensitivity.

1 Introduction

Empirical Risk Minimization (ERM) is central to modern large-scale machine learning, in-
cluding deep neural networks and reinforcement learning (Hastie et al., 2009). It is formu-
lated as

min
x∈Rd

f(x,X, Y ), f(x,X, Y ) =
1

N

N∑
i=1

f(x,Xi, Yi) =
1

N

N∑
i=1

fi(x), (1.1)

where {(Xi, Yi)}Ni=1 is a large dataset (N ≫ 1), and fi(x) is the loss for the i-th sample.
Efficiently computing the minimizer x∗ = argminx f(x) is critical for training large models.
Exact gradient evaluation is expensive, so Stochastic Gradient Descent (SGD) uses mini-
batches:

g(x) =
1

M

∑
i∈B

∇fi(x), (1.2)

where B ⊂ {1, . . . , N} is a random batch of size M . SGD slows down when the condition
number κ of f is large. Momentum methods such as Heavy Ball (HB) (Polyak, 1964) and
Nesterov accelerated gradient (NAG) (Nesterov, 1983) are widely used to accelerate conver-
gence. In training deep neural networks, Adam (Adaptive Moment Estimation) (Kingma &
Ba, 2015) is a widely used optimization algorithm that combines momentum and adaptive
step sizes for fast and stable convergence.
The mini-batch estimator g(x) reduces the cost of computing ∇f(x) but introduces noise.
In regimes such as small-batch training or highly over-parameterized models, the variance
can scale with and even dominate the signal ∥∇f(x)∥2. This effect is modeled by the
multiplicative-noise scaling (MNS) condition (Wu et al., 2019; 2022; Gupta et al., 2024).
Definition 1.1 (Multiplicative Noise Scaling (MNS)). The stochastic gradient estimator g(x)
satisfies the MNS condition if there exists σ ≥ 0 such that

E
[
∥g(x)−∇f(x)∥2

]
≤ σ2∥∇f(x)∥2. (1.3)

Momentum methods are highly sensitive to stochastic noise (Devolder et al., 2014; Aujol
& Dossal, 2015; Liu et al., 2018), and stability depends critically on parameter choices (Ki-
dambi et al., 2018; Liu & Belkin, 2020; Assran & Rabbat, 2020; Ganesh et al., 2023). Gupta
et al. (2024) showed that under MNS with σ ≥ 1, NAG fails to converge in both strongly
convex and convex settings.
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To address this, several corrections have been developed. Vaswani et al. (2019) introduced
a four-parameter NAG variant and proved convergence rate

(
1− (1 + σ2)−1

√
µ/L

)k in the
strongly convex case, where L/µ is the condition number of f , and O(1/k2) in the convex
case. Liu & Belkin (2020) proposed the Mass method with three parameters and a correction
term, though acceleration was shown only for over-parameterized linear models. Gupta
et al. (2024) later proposed AGNES, a three-parameter extension of NAG with the same
guarantees as Vaswani et al. (2019). More recently, Hermant et al. (2025) introduced SNAG,
a four-parameter variant that attains the same rates with a mild parameter adjustment.
From the viewpoint of provable convergence in convex settings, these algorithms are com-
petitive. Yet our deep-learning experiments show that they often lose acceleration under
high noise and can perform worse than SGD even with recommended hyperparameters (see
Section 3). For instance, on CIFAR-100 with ResNet-50 and batch size 50, SGD reaches
58.326% test accuracy, while AGNES achieves only 42.82%. With a further reduction in
batch size, both AGNES and SNAG oscillate heavily with large performance swings, requir-
ing extra hyperparameter tuning.
Motivated by this gap, our goal is not only to design another accelerated method, but
to develop a complementary approach that (i) retains optimal theoretical guarantees, (ii)
reduces tuning effort, and (iii) improves stability. Our contributions emphasize simplic-
ity (fewer parameters), provable acceleration with explicit noise dependence, and robust
empirical behavior.
1. Section 2 presents SHANG++, a stochastic extension of HNAG (Chen & Luo, 2021)

for robust convergence under multiplicative noise, sharpening existing guarantees with
minimal hyperparameter complexity. SHANG++ achieves accelerated rates of O(1/k2)
in convex settings and the fastest known rate

(
1 + 2

1+σ2

√
µ/(L− µ)

)−k for quadratic
strongly convex problems with multiplicative noise.

2. Section 3 validates SHANG++ on convex optimization, image classification, and gen-
erative modeling (on benchmark datasets MNIST, CIFAR-10, CIFAR-100). SHANG++
matches or improves upon NAG, SNAG, AGNES, and Adam, with clear advantages under
high multiplicative noise.

3. Section 3 tests robustness to multiplicative noise. At realistic noise levels (σ ≤ 0.5),
SHANG++ maintains near noise-free accuracy (within 1% degradation), supporting our
theory. These results show that stability can be achieved with fewer parameters and a
simpler design, improving earlier corrections such as AGNES and SNAG.

Notation. Let f : Rd → R be differentiable. The Bregman divergence of f between
x, y ∈ Rd is

Df (y, x) := f(y)− f(x)− ⟨∇f(x), y − x⟩.
The function f is µ-strongly convex if for some µ > 0,

Df (y, x) ≥
µ

2
∥y − x∥2, ∀x, y ∈ Rd.

It is L-smooth, for some L > 0, if its gradient is L-Lipschitz:
∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥, ∀x, y ∈ Rd.

Let Sµ,L be the class of all differentiable functions that are both µ-strongly convex and
L-smooth. For f ∈ Sµ,L, the Bregman divergence satisfies

µ

2
∥x− y∥2 ≤ Df (x, y) ≤

L

2
∥x− y∥2, ∀x, y ∈ Rd, (1.4)

Parameters µ and L are treated as known hyperparameters for the given problem. Their
adaptivity is beyond the scope of this work.

Limitation. Current convergence guarantees hold only for convex objectives under multi-
plicative noise scaling and do not extend directly to general non-convex landscapes.
Although SHANG++ reduces tuning complexity through one-shot, non-adaptive hyperpa-
rameters, its performance may still depend on accurate estimates of smoothness constants
(e.g., L, µ). In highly non-convex settings or under very high noise, the one-shot strategy
may require refinement.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 Stochastic Hessian-driven Accelerated Nesterov Gradient

Our method is inspired by the second-order dynamical system introduced in Chen & Luo
(2021), known as the Hessian-driven Nesterov Accelerated Gradient (HNAG) flow:

γx′′ + (γ + µ)x′ + βγ∇2f(x)x′ + (1 + µβ + γβ′)∇f(x) = 0, (2.1)
where β > 0 is any continuously differentiable function on [0,∞) and γ is a time-scaling
factor. This second-order ODE can be equivalently reformulated as the first-order system:

x′ = v − x− β∇f(x), v′ =
µ

γ
(x− v)− 1

γ
∇f(x), γ′ = µ− γ, (2.2)

which removes the explicit dependence on ∇2f(x).

Methods. Discretizing (2.2) via a Gauss–Seidel–type scheme, adding an extra term
−m(xk+1 − xk) to the x-update, and replacing ∇f(xk) with an unbiased estimator g(xk)
yield the Stochastic Hessian-driven Nesterov Accelerated Gradient (SHANG++) method:

xk+1 − xk

αk
= vk − xk+1 −m(xk+1 − xk)− βkg(xk),

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
g(xk+1),

γk+1 − γk
αk

= µ− γk+1,

(2.3)

where αk > 0 is the step size, m ≥ 0 controls the extra noise-damping term, and βk > 0
depends on αk and γk, typically scaling as αk

γk/(1+σ2) .

If the damping term is absorbed into the left-hand side, the x-update becomes
xk+1 − xk

α̃k
= vk − xk+1 − βkg(xk), (2.4)

where α̃k = αk

1+mαk
≤ αk.

SHANG++ can thus be interpreted as a modified discretization of the HNAG flow with a
reduced step size α̃k. The case m = 0 recovers SHANG, a direct stochastic extension of
HNAG. The “++” indicates two improvements: faster theoretical convergence and greater
robustness to noise.
With the parameter choices specified in Theorem 2.1 for the strongly convex case f ∈ Sµ,L,
and in Theorem 2.2 for µ = 0, faster convergence guarantees can be established.

SHANG++ for Strongly Convex Minimization. Let f ∈ Sµ,L with 0 < µ < L <∞. Define
the auxiliary function

f−µ(x) = f(x)− µ
2 ∥x− x∗∥2.

Clearly, ∇f−µ(x
∗) = 0. Since f ∈ Sµ,L, it follows that f−µ ∈ S0,L−µ. Let g−µ(xk) :=

g(xk)−µ(xk−x∗) denote a stochastic estimate of∇f−µ(xk). As no randomness is introduced
in the shift, the MNS condition

E
[
∥g−µ(xk)−∇f−µ(xk)∥2

]
≤ σ2∥∇f−µ(xk)∥2

still holds provided (1.3) holds.

Setting γ = µ and m = βµ, and substituting g−µ(xk) and x+
k := xk − αβg−µ(xk) into (2.3)

yields
xk+1 − x+

k

α
= vk − xk+1 − βµ(xk+1 − x∗),

vk+1 − vk
α

= x∗ − vk+1 − 1
µg−µ(xk+1).

(2.5)

Schemes (2.5) and (2.3) generate the same sequences (xk, vk)
∞
0 ; the explicit appearance of

x∗ is only for analysis and does not affect the algorithm itself.
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Theorem 2.1. Let f ∈ Sµ,L. Given x+
0 = v0 = x0, suppose (xk, vk) are generated by (2.5)

with g(xk) defined in (1.2) and MNS (1.3) holds. If the step size satisfies 0 < α ≤ 1
1+σ2

√
µ

L−µ

and β = α
µ/(1+σ2) , then

E
[
f−µ(x

+
k )− f−µ(x

∗) +
µ

2
∥vk − x∗∥2

]
≤ (1 + α+ (1 + σ2)α2)−k

(
f(x0)− f(x∗)

)
.

If f is quadratic, a sharper rate holds:

E
[
f−µ(x

+
k )− f−µ(x

∗) +
µ

2
∥vk − x∗∥2

]
≤ (1 + 2α+ α2)−k

(
f(x0)− f(x∗)

)
.

Proof. We give an outline of the proof and refer to the Appendix C.1 for the full details.
Let z+k = (x+

k , vk) and define the Lyapunov function

E(z+k ) = f−µ(x
+
k )− f−µ(x

∗) +
µ

2
∥vk − x∗∥2. (2.6)

Given (xk, vk) and g(xk), the quantities x+
k and xk+1 are deterministic, while randomness

is introduced through g(xk+1) and consequently affects (x+
k+1, vk+1). The expectation E is

with respect to the randomness in g(xk+1).

First of all, we have the sufficient decay of SGD for x+
k+1 := xk+1 − αβg−µ(xk+1): if

αβ = α2

µ/(1+σ2) ≤
1

(1+σ2)(L−µ) , which is equvialent to α ≤ 1
(1+σ2)

√
µ/(L− µ), then

E
[
f−µ(x

+
k+1)− f−µ(xk+1)

]
≤ −αβ

2
∥∇f−µ(xk+1)∥2 = − (1 + σ2)α2

2µ
∥∇f−µ(xk+1)∥2. (2.7)

Then by the definition of Bregmann divergence:
E(zk+1)− E(z+k ) = ⟨∇E(zk+1), zk+1 − z+k ⟩ −DE(z

+
k , zk+1). (2.8)

Expanding the first term and using the update in (2.5) gives
− (1 + βµ)α⟨∇f−µ(xk+1)−∇f−µ(x

∗), xk+1 − x∗⟩ − αµ∥vk+1 − x∗∥2

+ α⟨g−µ(xk+1), vk − vk+1⟩+ ⟨∇f−µ(xk+1)− g−µ(xk+1), vk − x∗⟩.
(2.9)

The first two terms can be bounded by −(1 + βµ)αE(zk+1) by using ⟨∇f−µ(xk+1) −
∇f−µ(x

∗), xk+1 − x∗⟩ = Df−µ
(xk+1, x

∗) + Df−µ
(x∗, xk+1). After taking the expectation

E(⟨∇f−µ(xk+1) − g−µ(xk+1), vk − x∗⟩) = 0. The most difficult term is the expectation of
the cross term E [⟨g−µ(xk+1), vk − vk+1⟩], as both g−µ(xk+1) and vk+1 are random variables.
We use the identity 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 to obtain

α⟨g−µ(xk+1), vk − vk+1⟩ = ⟨
α
√
µ
g−µ(xk+1),

√
µ(vk − vk+1)⟩

=
α2

2µ
∥g−µ(xk+1)∥2 +

µ

2
∥vk − vk+1∥2 −

α2µ

2
∥vk+1 − x∗∥2.

where the term involving vk+1 − x∗ follows from α√
µg−µ(xk+1) −

√
µ(vk − vk+1) =

α
√
µ
(
1
µg−µ(xk+1) − vk−vk+1

α

)
= α
√
µ
(
x∗ − vk+1

)
by the update of vk+1. Taking expecta-

tions termwise and applying the MNS condition to the first term yields the positive gradient
contribution α2(1+σ2)

2µ ∥∇f−µ(xk+1)∥2, which can be canceled by the negative term in (2.7).
The positive µ

2 ∥vk − vk+1∥2 is canceled by −µ
2 ∥vk − vk+1∥2 contained in −DE(z

+
k , zk+1).

Using βµ = (1 + σ2)α, we obtain
E
[
E(z+k+1)

]
− E(z+k ) ≤ E

[
−(1 + (1 + σ2)α)αE(z+k+1)

]
.

Moving E(z+k+1) to the left-hand side yields the desired result.

When f is quadratic, the Bregman divergence is symmetric, Df (xk+1, x
∗) = Df (x

∗, xk+1),
and the extra negative terms −βµαDf−µ(x

∗, xk+1)− α2µ
2 ∥vk+1−x∗∥2 ≤ −α2E(zk+1), which

sharpens the constant to 1 + 2α+ α2.
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When σ = 0, SHANG++ reduces to the deterministic HNAG++ method of Chen & Xu
(2025). As σ grows, convergence slows but acceleration is preserved. While Gupta et al.
(2024) interpret noise as inflating smoothness to (1 + σ2)2L, our analysis shows it perturbs
both smoothness and curvature, giving Lσ = (1 + σ2)L and µσ = µ/(1 + σ2). The noise-
damping term in SHANG++ further reduces Lσ to (1 + σ2)(L− µ), explaining its stronger
stability.

Quadratic Loss Consider a special case of problem (1.1): the quadratic loss with Tikhonov
regularization (also known as weight decay), which is widely used in regression tasks. The
objective takes the form

f(x) =
1

N

N∑
i=1

(x⊤Xi − Yi)
2 +

λ

2
∥x∥22 =

1

N
∥X⊤x− Y ∥22 +

λ

2
∥x∥22, (2.10)

where 1
N

∑N
i=1(x

⊤Xi − Yi)
2 is the empirical quadratic loss and λ

2 ∥x∥
2
2 is the regularizer

with λ > 0. The Tikhonov regularizer ensures that the objective is λ–strongly convex with
smoothness constant (L + λ). Under multiplicative noise scaling, setting α =

√
µσ/Lσ =

1

1 + σ2

√
λ/L yields the accelerated convergence rate 1− 2α = 1− 2

√
µσ/Lσ in the leading

term.

Batching. Gradient noise can be reduced by increasing the mini-batch size M in (1.2). If
σ2
1 is the MNS constant for M = 1, then σ2

M = σ2
1/M . Another approach is to average K

independent gradient estimators, gK = 1
K

∑K
i=1 gi, which gives an effective MNS constant of

σ2/K. Both strategies reduce noise at the cost of higher computation, and a straightforward
analysis shows that averaging multiple estimates can accelerate convergence to some extent.

Variance decay under MNS. Beyond the expectation bound, we show geometric variance
decay of the Lyapunov energy. Specifically, by Theorem D.1,

Var
(
f−µ(x

+
k )− f−µ(x

∗) +
µ

2
∥vk − x∗∥2

)
≤ (f(x0)− f(x∗))2(r2 +K2)

k.

A sufficient (practically verifiable) condition is K2 < 1 − r2, where r = (1 + α + α2)−1 is
the decay rate in Theorem 2.1 and K2 collects the fluctuation constants. This holds, for
example, in low-condition regime, with a damped stepsize α ← δα (0 < δ ≤ 1) or with a
minibatch of larger M (or K independent multiple estimates). Complete proofs and the
explicit expressions of related constants are provided in Appendix D.

SHANG++ Method for Convex Minimization Recall the modified step size α̃k = αk

1+mαk
.

To facilitate analysis, we define an auxiliary time-scaling variable γ̃k = γk

1+mαk
. Setting

αk = 2
k+1 and γk/(1 + σ2) = αkα̃kLσ, for any fixed m ≥ 0, we obtain:

γ̃k+1 − γ̃k
α̃k

= −(1 + 1

2(k + 1 + 2m)
)γ̃k+1 ≤ −γ̃k+1 (2.11)

Replacing the x-update in (2.3) with the equivalent modified discretization (2.4) and com-
bining it with (2.11) yields the following convergence result.
Theorem 2.2. Let f ∈ S0,L. Suppose that (xk, vk) are generated by the time-stepping
scheme (2.3). g(xk) defined in (1.2) and MNS holds. Given x+

0 = v0 = x0,m ≥ 0, choose
the step size αk = 2

k+1 , γk/(1 + σ2) = αkα̃kLσ and βk = αk

γk/(1+σ2) , we have

E
[
f(x+

k+1)− f(x∗) +
γ̃k+1

2
∥vk+1 − x∗∥2

]
≤ (1 + 2m)(2 + 2m)

(k + 2 + 2m)(k + 3 + 2m)
E(z0; γ̃0) = O(

Lσ

k2
)

Proof. We provide a proof sketch; the full proof appears in Appendix C.2. Define x+
k =

xk − α̃kβkg(xk) and Lyapunov function

E(z+k ; γ̃k) = f(x+
k )− f(x∗) +

γ̃k
2
∥vk − x∗∥2 (2.12)

5
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where γ̃k = γk

1+mαk
. Using γk/(1 + σ2) = αkα̃kLσ ⇔ γ̃k/(1 + σ2) = α̃2

kLσ and the L-
smoothness of f to obtain the upper bound of E

[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k).

E
[
E(zk+1; γ̃k)− E(z+k ; γ̃k)−

α̃2
k(1 + σ2)

2γ̃k
∥∇f(xk+1)∥2 +

γ̃k+1 − γ̃k
2

∥vk+1 − x∗∥2
]

(2.13)

Using (2.11), the last term less than − α̃kγ̃k+1

2 ∥vk+1 − x∗∥2. Then expaning the difference
E
[
E(zk+1; γ̃k)− E(z+k ; γ̃k)

]
and using the updates and αkγ̃k/γk = α̃k yield

E
[
−α̃k⟨∇f(xk+1)−∇f(x∗), xk+1 − x∗⟩+ α̃k⟨g(xk+1), vk − vk+1⟩ −DE(z

+
k , zk+1; γ̃k)

]
(2.14)

For the cross term E [α̃k⟨g(xk+1), vk − vk+1⟩], by Cauchy-Schwarz and Young’s inequality,

E [α̃k⟨g(xk+1), vk − vk+1⟩] ≤ E
[
α̃2
k(1 + σ2)

2γ̃k
∥∇f(xk+1)∥2 +

γ̃k
2
∥vk − vk+1∥2

]
(2.15)

which are canceled respectively by the negative gradient term − α̃2
k(1+σ2)
2γ̃k

∥∇f(xk+1)∥2 and
by −DE(z

+
k , zk+1; γ̃k). Putting everything together to obtain

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k) ≤ −α̃kE

[
E(z+k+1; γ̃k+1)

]
(2.16)

Rearranging and substituting α̃k = αk

1+mαk
= 2

k+1+2m yield the claimed rate.

We compare the parameters

(SHANG) γk
1 + σ2

= α2
kLσ, (SHANG++) γk

1 + σ2
= αkα̃kLσ = α2

k ·
Lσ

1 +mαk
,

which reduces the effective Lipschitz constant from Lσ to Lσ

1+mαk
. The noise-damping term

offsets part of the σ2–induced amplification, improving stability by slowing down the effective
rate. Our experiments suggest that choosing m in the range [0, 1.5] provides a good trade-off.

3 Numerical Experiments

We design our experiments to validate the theoretical alignment, scalability, and robustness
of SHANG++ and SHANG (m = 0).
Throughout this section, NAG refers to the stochastic version of Nesterov’s accelerated
gradient (Nesterov, 1983) by replacing ∇f(x) by g(x). While SNAG refers to the method in
(Hermant et al., 2025), which can be treat as an alternative discretization of the HNAG flow
(Appendix E). The stability of SNAG can be also explained with our theoretical analysis.

Convex optimization We first consider the family of objective functions from Gupta et al.
(2024):

fd : R→ R, fd(x) =

{
|x|d, |x| < 1,

1 + d(|x| − 1), else,
for d ≥ 2, with gradient estimators g(x) = (1+σZ)∇f(x), where Z ∼ N (0, Id) is a standard
normal random variable. The functions fd belong to S0,L with L = d(d− 1).
We compare SHANG and SHANG++ with SGD, NAG, AGNES (Gupta et al., 2024), and
SNAG (Hermant et al., 2025) under σ ∈ {0, 10, 50} and d ∈ {4, 16}. The parameters used
follow their optimal choices for the convex case. All simulations are initialized at x0 = 1,
and expectations are averaged over 200 independent runs. See Appendix A.1 for the full
experimental setup, hyperparameter choices, and results.
In Figure 3.1, SHANG and SHANG++ remain stable as σ increases, while NAG diverges
at large noise. SHANG outperforms classical momentum methods, and SHANG++ further
accelerates convergence, showing that its noise-damping term improves both rates and sta-
bility. These results confirm robustness with minimal tuning and preserved acceleration
even under high noise.
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Figure 3.1: Performance of different algorithms under varying noise levels.

For deep learning tasks, we adopt SHANG++ with three explicit hyperparameters (α, γ,m),
with µ = 0 and β = α/γ, summarized in Algorithm 1, where v is updated first by index
shifting.

Algorithm 1: SHANG++ for Deep Learning
Input: Objective function f , initial point x0, step size α, time scaling factor γ,

noise-damping m, , iteration horizon T .
k ← 1, v0 ← x0, x1 ← x0, α̃← α

1+mα

while k ≤ T do
gk ← 1

M

∑
i∈B ∇fi(xk) // stochastic gradient estimate

vk ← vk−1 − α
γ gk

xk+1 ← 1
1+α̃xk + α̃

1+α̃vk −
α̃

1+α̃
α
γ gk

k ← k + 1
end
return xT

Classification Tasks on MNIST, CIFAR-10 and CIFAR-100 We benchmark SHANG,
SHANG++, Adam (Kingma & Ba, 2015), SNAG, AGNES, NAG, SHB (SGD with mo-
mentum), and plain SGD on three tasks: training LeNet-5 on MNIST (LeCun et al., 1998),
ResNet-34 (He et al., 2016) on CIFAR-10 (Krizhevsky, 2009), and ResNet-50 on CIFAR-
100. Each model is trained for 50 epochs, and results are reported as mean ± s.d. over five
random seeds.
For hyperparameter selection, SHANG and SHANG++ used α = 0.5 with γ chosen from
grids: {1, 1.5, 2} for LeNet-5, {5, 10} for ResNet-34, and {10, 15} for ResNet-50. SHANG++
fixed m = 1.5. AGNES followed defaults (η, α,m) = (0.01, 0.001, 0.99); SNAG used (η, β)
with η ∈ {0.5, . . . , 0.001}, β ∈ {0.7, 0.8, 0.9, 0.99}, where (0.05, 0.9) performed best, consis-
tent with prior CIFAR work. Other baselines used η = 0.001 and momentum 0.99 when
applicable. After 25 epochs, all baseline learning rates (including AGNES’s correction) were
decayed by 0.1, while γ was doubled for our methods. Full details are in Appendix A.2.
Figure 3.2 shows ResNet-34/50 training and test losses on CIFAR-10/100. SHANG and
SHANG++ deliver competitive or superior performance to non-adaptive baselines. Batch
size strongly affects gradient variance: smaller batches increase noise, larger batches reduce
it. At 256, all methods are stable and gaps narrow; at 50, NAG, SNAG, and AGNES oscil-
late with wider bands (AGNES also plateaus higher). In contrast, SHANG and SHANG++
achieve the lowest losses with tight bands across seeds. Adam remains competitive in ac-
curacy but shows noisier test loss. Table 3.1 further summarizes results: SHANG and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3.2: Training and test loss (log scale, running average with decay 0.99) on CIFAR-10 with
ResNet-34 (batch sizes 50 and 256) (Left and Middle Column) and CIFAR-100 with ResNet-50
(batch size 50) (Right Column).

SHANG++ often match or surpass AGNES and SNAG, while clearly improving over SGD
and NAG.
Table 3.1: Test accuracy of SGD, NAG, Adam, AGNES, SHANG, and SHANG++ on
MNIST (LeNet-5), CIFAR-10 (ResNet-34), and CIFAR-100 (ResNet-50). Here b is batch
size.

SGD NAG Adam AGNES SNAG SHANG SHANG++

LeNet-5 91.068 98.906 99.072 98.876 99.07 99.064 99.112

(b = 50) ±0.113 ±0.082 ±0.071 ±0.093 ±0.085 ±0.018 ±0.026
ResNet-34 79.908 86.428 87.378 70.492 77.654 87.15 87.398

(b = 50) ±0.114 ±0.805 ±0.26 ±2.511 ±2.7 ±0.824 ±0.502
ResNet-34 68.49 87.614 88.226 77.84 84.5 86.67 86.572

(b = 256) ±0.192 ±0.291 ±0.106 ±3.696 ±0.92 ±0.13 ±0.169
ResNet-50 58.326 57.658 59.872 42.82 49.514 63.306 65.018

(b = 50) ±0.506 ±1.443 ±0.614 ±1.239 ±1.559 ±0.934 ±1.254

Robustness to Multiplicative Gradient Noise Our theory predicts that time-scale coupling
(α, γ) in SHANG and (α, γ,m) in SHANG++ mitigates multiplicative gradient noise. To
test this, we fix one hyperparameter configuration per optimizer and evaluate across σ ∈
{0, 0.05, 0.1, 0.2, 0.5}. The effective noise is higher than nominal σ, since minibatch SGD
adds sampling noise. This one-shot protocol isolates each optimizer’s robustness without
re-tuning. All experiments use CIFAR-10 with ResNet-34, batch size 50, the same settings
as subsection 3, trained for 100 epochs and averaged over three seeds. Final validation error
at epoch 100 is reported; full setup and hyperparameters are in Appendix A.4.
Figure 3.3 shows mean final validation error under varying noise, and Table 3.2 reports
relative degradation ∆(σ) = (E(σ) − E(0))/E(0), where E(σ) is the mean Top-1 error at
noise level σ (averaged over three seeds).
1. At σ = 0, SHANG and SHANG++ reach 15.9%, outperforming SNAG (17.5%) and

AGNES (20.5%).
2. At σ = 0.1, SHANG improves slightly (-0.3 pt), SHANG++ is nearly unchanged (-0.1

pt), SNAG improves marginally (-0.4 pt), while AGNES worsens (+3.3 pt).
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3. At σ = 0.5, SHANG and SHANG++ remain near 16%, while SNAG rises to 17.6% and
AGNES drifts to 23.2% (≈13.5% relative increase).

These results align with our Lyapunov analysis: time-scale coupling (α, γ,m) suppresses
σ2 amplification, ensuring stable performance without re-tuning. SNAG is stable but less
accurate, while AGNES is most sensitive to noise.

Table 3.2: Relative change in final Top-1 error
compared with σ = 0 (lower is better; nega-
tive values indicate improvement). Values are
averaged over three seeds.

Method Relative degradation ∆(%) at σ

0.05 0.1 0.2 0.5

SHANG −2.5 −2.1 −1.0 −0.2
SHANG++ +3.4 −0.6 −2.1 −0.9
AGNES −14.4 +16.0 +14.6 +13.5

SNAG −2.0 −2.1 −5.0 0.7

Figure 3.3: Validation error under
varying multiplicative noise level σ.
Lower is better.

Image Reconstruction with Small Batch Size We further evaluate our algorithms on a
generative task of image reconstruction with small-batch training, using a lightweight U-
Net (Ronneberger et al., 2015) on CIFAR-10 with batch size 5. SHANG and SHANG++
are compared against SNAG, AGNES, NAG, SGD, SHB, and Adam, with full experimental
details provided in the appendix A.5. Figure 3.4 shows training and test losses. Adam

Figure 3.4: Training and test loss (log scale, running average with decay 0.99) on CIFAR-10 using
U-Net with batch size 5.

achieves the lowest loss due to its adaptive learning rate, but both SHANG and SHANG++
outperform all other non-adaptive methods. In particular, SHANG++ shows stable and
efficient training even in this high-noise regime, highlighting its practical robustness. We
also conduct a comparative hyperparameter study; full settings and results are given in
Appendix A.6.

4 Conclusion

We presented SHANG++, an accelerated first-order stochastic optimizer for robust and sim-
ple training under multiplicative noise. Theoretically, it retains the optimal O(1/k2) rate in
convex settings and achieves the fastest known acceleration under MNS for quadratic prob-
lems. Empirically, across convex tasks, image classification, and generative reconstruction,
one-shot hyperparameter choices sustain near noise-free accuracy (within 1% for σ ≤ 0.5).
Compared with NAG, SNAG, AGNES, and Adam, SHANG++ shows greater stability in
small-batch or high-noise regimes while delivering competitive or improved accuracy, mak-
ing it a practical optimizer for large-scale noisy training.
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interpretation of results. All scientific content, including problem formulation, theoretical
analysis, and experimental validation, was conceived, executed, and verified entirely by
the authors. The authors bear full responsibility for the accuracy and integrity of the
manuscript.
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This work is purely theoretical and algorithmic, focusing on convex optimization methods.
It does not involve human subjects, sensitive data, or applications that raise ethical concerns
related to privacy, security, fairness, or potential harm. All experiments are based on publicly
available datasets or synthetic data generated by standard procedures. The authors believe
that this work fully adheres to the ICLR Code of Ethics.

Reproducibility statement

We have taken several measures to ensure the reproducibility of our results. All theoretical
assumptions are explicitly stated, and complete proofs are provided in the appendix. For
the experimental evaluation, we describe the setup, parameter choices, and baselines in
detail in the main text. The source code for our algorithms and experiments are available
as supplementary materials. Together, these resources should allow others to reproduce and
verify our theoretical and empirical findings.

A Supplement of Experiments

Here are some experimental setup and results that are not presented in the main text.

A.1 Supplement of the convex experiment

For the convex example in Section 3, we compare SHANG and SHANG++ with SGD,
NAG, AGNES, and SNAG under σ ∈ {0, 10, 50} and d ∈ {4, 16}. The parameters used
follow their optimal choices for the convex case. For SHANG, αk = 2

k+1 , γk = α2
kL(1+σ2)2

and βk = (1+σ2)αk

γk
; For SHANG++, αk = 2

k+1 , m = 1.5, γk =
α2

k

1+mαk
(1 + σ2)2L and βk =

(1+σ2)αk

γk
; For AGNES, we adopted the best-performing parameters reported by the authors
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for this problem: learning rate η = 1
L(1+2σ2) , correction step size α = η

1+σ2 , and momentum
mk = k

k+5 . For SNAG, we use s = 1
L(1+σ2) , ηk = 1

L(1+σ2)2
k+1
2 , β = 1, αk = k2/(k+1)

2+(k2/(k+1)) .
For NAG, we used a learning rate of 1

L(1+σ2) and momentum parameter of k
k+3 . SGD

was also run with a learning rate of 1
L(1+σ2) . All hyperparameter notations match those

used in the original publications; note, however, that symbol meanings may vary across
algorithms (e.g., α denotes the discretization step size in SHANG, while in AGNES it refers
to the correction step size). All simulations are initialized at x0 = 1, and expectations are
averaged over 200 independent runs.

Figure A.1: Log-log plots of E [fd(xk)] for SHANG++ using m = 0.5 (black), m = 1 (olive),
m = 1.5 (orange), m = 2 (blue), m = 2.5 (green), m = 3 (red) with d = 4 (Top Row) and
d = 16 (Bottom Row), under noise levels σ = 0 (Left Column), σ = 10 (Middle Column)
and σ = 50 (Right Column). From the figures, it can be observed that m ≤ 1.5 provides a
good choice.

Figure A.1 highlights SHANG++’s stability across m: values m ≤ 1.5 consistently yield
strong performance. Our theoretical variance-decay predictions directly manifest in practice.

A.2 Supplement of Classification Tasks

Setup. We benchmark SHANG, SHANG++, Adam, SNAG, AGNES, NAG, SHB (or SGD
with momentum) and SGD on the following tasks: training LeNet-5 on the MNIST dataset,
training ResNet-34 on the CIFAR-10 image dataset and training ResNet-50 on the CIFAR-
100 dataset with standard data augmentation (normalization, random crop, and random
flip). All models have pretrain set to True. For each dataset, we run all algorithms for 50
epochs with batch size 50 and report averages over five trials. After 25 epochs, the learning
rates for all baseline methods (excluding SHANG and SHANG++) are decayed by a factor
of 0.1; AGNES’s correction step size is similarly reduced. For our methods, the time-scaling
factor γ is doubled after 25 epochs.
For hyperparameter selection, our two methods were evaluated under three settings: α = 0.5
with γ ∈ {1, 1.5, 2} for LeNet-5, γ ∈ {5, 10} for ResNet-34 and γ ∈ {10, 15} for ResNet-50.
For SHANG++, we fixed m = 1.5. AGNES employed the default parameter configuration
recommended by its authors, (η, α,m) = (0.01, 0.001, 0.99), which has demonstrated strong
performance across various tasks. For SNAG, we adopt the two-parameter variant (η, β)
proposed by the original authors for machine-learning tasks. Hyperparameters are selected
via a grid search, learning rate η ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001} and momentum β ∈
{0.7, 0.8, 0.9, 0.99}. Among these, (η, β) = (0.05, 0.9) yields the best performance, which
coincides with the parameter choice recommended by the original authors for training CNNs
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Figure A.2: Training loss (log scale) (left), test loss (log scale) (middle) as a running average
with decay rate 0.99, and test accuracy (right) on the MNIST dataset using LeNet-5 trained
with batch size 50. The compared methods include SGD (gray), SHB (black), NAG (olive),
AGNES (blue), SNAG (orange), Adam (yellow), SHANG (green) and SHANG++ (red). In
SHANG, (α, γ) = (0.5, 2) and in SHANG++, (α, γ,m) = (0.5, 2, 1.5).

Figure A.3: Training loss (log scale) (left), test loss (log scale) (middle) as a running average
with decay rate 0.99, and test accuracy (right) on the CIFAR-10 dataset using ResNet-34
trained with batch sizes 50 (Top Row) and 256 (Bottom Row). The compared methods
include SGD (gray), SHB (black), NAG (olive), AGNES (blue), SNAG (orange), Adam (yel-
low), SHANG (green) and SHANG++ (red). For the choice of γ in SHANG and SHANG++,
γ = 10.

on the CIFAR dataset. All other baseline algorithms used a fixed learning rate of η = 0.001;
for those involving momentum, the momentum coefficient was set to 0.99.

Results. Figures A.2, A.3, A.5, and A.4 depict the evolution of training/test loss and test
accuracy across datasets. Overall, SHANG and SHANG++ achieve competitive or superior
performance compared with non-adaptive baselines.

A.3 Batch-Size Scaling on CIFAR-10 (ResNet-34)

To further assess the robustness of our algorithms to stochastic gradient noise, we evaluate
all methods on CIFAR-10 with ResNet-34 under two batch-size settings: 50 and 256. Smaller
batches introduce higher gradient variance, whereas larger batches reduce the noise level.
Importantly, all hyperparameters are kept fixed across batch sizes to isolate the effect of
noise on algorithmic performance.
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Figure A.4: Training loss (log scale) (Left Column), test loss (log scale) (Middle Column) as
a running average with decay rate 0.99, and test accuracy (Right Column) on the MNIST
dataset using LeNet-5 (Top Row), CIFAR-10 dataset using ResNet-34 (Middle Row) and
CIFAR-100 dataset using ResNet-50 (Bottom Row) trained with batch size 50. The com-
pared methods include SHANG (green) and SHANG++ (red) under different parameter
choices.

Figure A.5: Training loss (log scale) (left), test loss (log scale) (middle) as a running average
with decay rate 0.99, and test accuracy (right) on the CIFAR-100 dataset using ResNet-50
trained with batch size 50. The compared methods include SGD (gray), SHB (black), NAG
(olive), AGNES (blue), SNAG (orange), Adam (yellow), SHANG (green) and SHANG++
(red). For the choice of γ in SHANG and SHANG++, γ = 15.

Setup. All data augmentation and experiments setting follows Appendix A.2. Hyper-
parameters are held fixed across batch sizes: for SHANG/SHANG++ we use (α, γ) =
(0.5, 10)/(α, γ,m) = (0.5, 10, 1.5), and all baselines reuse their best settings from Appendix 3.
No re-tuning is performed when switching the batch size.

Results. Figure A.3 shows the training/test dynamics.
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• Small batch (50). Classical momentum variants (NAG, SNAG) and AGNES ex-
hibit larger oscillations and wider variance bands; AGNES also shows a higher
error plateau. In contrast, SHANG/SHANG++ produce the lowest losses among
non-adaptive methods and maintain narrow shaded regions, indicating markedly
improved stability across seeds. Adam remains competitive in accuracy but with
higher variance in test loss.

• Large batch (256). The gap between methods narrows: all optimizers become more
stable and the curves cluster. SHANG/SHANG++ continue to match the best-
performing baselines while preserving smooth convergence.

Robustness to multiplicative noise translates into tangible benefits in the small-batch regime:
with a single, fixed hyperparameterization (α = 0.5, γ = 10,m = 1.5), SHANG/SHANG++
achieve stable training and strong test accuracy without re-tuning, whereas competing
momentum methods are more sensitive (larger variance, higher plateaus). As batch size
increases, all methods stabilize and the performance gap diminishes, consistent with the
noise-abatement expected from larger batches.

A.4 Supplement of Robustness to Multiplicative Gradient Noise

All runs use an identical experimental setup: CIFAR-10 dataset, ResNet-34, batch size 50,
trained for 100 epochs, and averaged over three random seeds. Note that the actual gradient
noise level experienced by the optimizer is higher than the nominal σ, because minibatch
stochastic gradient descent inherently introduces sampling noise. The multiplicative noise
we introduce,

g(xk) = (1 + σN (0, Id))∇f(xk),

is therefore imposed on top of this intrinsic minibatch stochasticity. We record the final
validation error at epoch 100.

Discussion. The empirical trends align with our Lyapunov analysis: coupling the time
scales (α, γ,m) suppresses the σ2 amplification and yields stable behavior across noise levels
without retuning. SNAG—while reasonably stable—does not match the consistently low
error of SHANG/SHANG++, and AGNES is the most sensitive to increased multiplicative
noise.

A.5 Supplement of Image Reconstruction

We further evaluate our algorithms on a generative task—image reconstruction with small-
batch training, which introduces substantial gradient noise. Specifically, we train a
lightweight U-Net (Ronneberger et al., 2015) (base channels 32 → 64 → 128, with bilin-
ear up-sampling and feature concatenation) on CIFAR-10 using batch size 5. We compare
SHANG (α = 0.5, γ = 0.5) and SHANG++ (α = 0.5, γ = 0.5,m = 1) against SNAG,
AGNES, NAG, SGD, SHB, and Adam. All other experimental settings follow those in
earlier sections.

A.6 Hyperparameter comparison

To identify optimal hyperparameter configurations for our stochastic algorithms, we perform
grid searches over α ∈ (0.005, 0.1) and γ ∈ (0.5, 30) on MNIST and CIFAR-10 (Figures A.6).
For SHANG++, we additionally vary m ∈ (0.5, 3) while keeping α = 0.5 fixed. Results
indicate that: (1) α = 0.5 and m = 1.5 are generally effective across tasks; (2) Smaller γ
values work well for LeNet-5, while larger γ are preferred for deeper networks like ResNet-34;
(3) SHANG++ exhibits low sensitivity to m in practice, with performance remaining stable
across tested values. These findings confirm the practical usability and tuning simplicity of
our methods.
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Figure A.6: Training loss (log scale) on the MNIST dataset using LeNet-5 (Top row)
and CIFAR-10 dataset using ResNet-34 (Bottom row) trained with batch size 50. The
plots show results for SHANG (left) and SHANG++ (middle) under different combi-
nations of hyperparameters α ∈ {0.1, 0.5, 0.01, 0.05, 0.005} (different color) and γ ∈
{0.5, 1, 1.5, 2, 2.5, 5, 10, 15, 20} (different line style). The left two figures show that α = 0.5
and γ ∈ {1, 1.5, 2} are relatively good parameter choices. The rightmost plot illustrates
the performance of the ISHNAG method under different combinations of γ ∈ {1, 1.5, 2} (on
MNIST dataset), γ ∈ {2, 5, 10, 15} (on CIFAR-10 dataset) and m ∈ {0.5, 1, 1.5, 2, 2.5, 3}
with α fixed at 0.5. The differences among various m values are minor for this task. In
practice, we typically choose m = 1.5.

B SHANG

B.1 model

Applying a Gauss-Seidel-type scheme to discretize HNAG flow (2.2) and replace the deter-
ministic gradient ∇f(xk) with its unbiased stochastic estimate g(xk), we can obtain the
Stochastic Hessian-driven Nesterov Accelerated Gradient (SHANG) method:

xk+1 − xk

αk
= vk − xk+1 − βkg(xk)

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
g(xk+1)

γk+1 − γk
αk

= µ− γk+1

(B.1)

In the strongly convex case, we fix γ = µ and use a constant step size α; in general case, we
set µ = 0 and allow both αk and γk to vary. The coupling βk > 0 depends on (αk, γk) and
typically scales as (1+σ2)αk/γk. Consequently, SHANG reduces to a two-parameter scheme
(α, β) in the strongly convex regime and a three-parameter scheme (α, γ, β) otherwise. For
practical tuning, tying β to α and γ via β = α/γ yields an effective two-parameter (α, γ)
algorithm. The SHANG method for deep learning tasks is described in Algorithm 2.
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Algorithm 2: SHANG for Deep Learning
Input: Objective function f , initial point x0, stepsize α, time scaling factor γ, iteration

horizon T .
n← 0, v0 ← x0, x1 ← x0

while k < T do
gk ← ∇f(xk) // gradient estimate
vk = vk−1 − α

γ gk

xk+1 = 1
1+αxk + α

1+αvk −
α

1+α
α
γ gk

k ← k + 1
end
return xT

Observe that SHANG is the m = 0 special case of SHANG++. Table B.1 summarizes
the theoretical convergence complexities and the number of tunable parameters required
by leading stochastic optimization methods under multiplicative noise. As shown, SHANG
and SHANG++ achieve optimal theoretical guarantees while significantly reducing hyper-
parameter complexity.
Table B.1: Assume f is L-smooth and g(x) satisfies the multiplicative noise scaling (MNS)
condition (see Definition 1.1) with constant σ ≥ 0. This table summarizes the iteration
complexity of leading first-order stochastic optimization algorithms under optimal parameter
settings to reach ε-precision.

Algorithm Convex Strongly Convex
SGD (1 + σ2)Lε (1 + σ2)Lµ log( 1ε )

(Hermant et al., 2025)
NAG

√
1+σ2

1−σ2

√
L
ε

√
1+σ2

1−σ2

√
L
µ log( 1ε )

(Gupta et al., 2024)
AGNES

√
L(1+2σ2)(1+σ2)

ε (1 + σ2)
√

L
µ log( 1ε )

(Gupta et al., 2024)
SNAG (1 + σ2)

√
L
ε (1 + σ2)

√
L
µ log( 1ε )

(Hermant et al., 2025)
SHANG (1 + σ2)

√
L
ε (1+ σ2)

√
L
µ log(1ε )

(Our Algorithm 1)
SHANG++ (1 + σ2)

√
L
ε (1+ σ2)

√
L
µ − 1(1+

√
µ

L−µ )
−1 log(1ε )

(Our Algorithm 2)
SHANG++ for quadratic f (1 + σ2)

√
L
ε

1+σ2

2

√
L
µ − 1(1+ 1

2(1+σ2)

√
µ

L−µ )
−1 log(1ε )

(Our Algorithm 2)

B.2 Convergence Analysis for SHANG

Define the discrete Lyapunov function

E(z+k ; γk) = f(x+
k )− f(x∗) +

γk
2
∥vk − x∗∥2 (B.2)

where z+k = (x+
k , vk), zk = (xk, vk) and z∗ = (x∗, x∗). The following theorem establishes a

decay bound for E
[
E(z+k ; γk)

]
.

Theorem B.1. Let f ∈ Sµ,L, (xk, vk) be generated by SHANG (B.1). x+
k = xk − αkβkg(xk)

is an auxiliary variable. Assume g(x) (defined in (1.2)) satisfies the MNS condition with
constant σ. Given x+

0 = v0 = x0,
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(1) When 0 < µ < L < ∞, choose step size 0 < α ≤ 1
1+σ2

√
µ
L and β = (1+σ2)α

µ , we
have

E
[
f(x+

k+1)− f(x∗) +
µ

2
∥vk+1 − x∗∥2

]
≤ (1 + α)−(k+1)Eµ0

(2) When µ = 0, choose αk = 2
k+1 , γk = α2

k(1 + σ2)2L and βk = (1+σ2)αk

γk
, we have

E
[
f(x+

k+1)− f(x∗) +
γk+1

2
∥vk+1 − x∗∥2

]
≤ 2

(k + 2)(k + 3)
Eγ0

0 = O( 1

k2
)

where Eµ0 = f(x0)− f(x∗) + µ
2 ∥x0 − x∗∥2 and Eγ0

0 = f(x0)− f(x∗) + γ0

2 ∥x0 − x∗∥2.

When σ = 0, SHANG reduces to the deterministic HNAG method analyzed in Chen & Luo
(2021).
Before presenting the proof of Theorem B.1, we first establish several auxiliary lemmas,
beginning with one that relies on conditional expectations under the MNS assumption.
Lemma B.1. Let (Ω,F , {Fk}k≥0,P) be a complete probability space with filtration {Fk}k≥0.
Suppose xk is generated by SHANG/SHANG++, g(xk) denotes the stochastic estimator of
∇f(xk), then the following statements hold
1. E [g(xk) | Fk] = ∇f(xk).

2. E
[
∥g(xk)−∇f(xk)∥2

]
≤ σ2∥∇f(xk)∥2.

3. E [⟨g(xk),∇f(xk)⟩] = ∥∇f(xk)∥2

4. E
[
∥g(xk)∥2

]
≤ (1 + σ2)∥∇f(xk)∥2

Proof of Lemma B.1. First and second claim. This follows from Fubini’s theorem.
Third claim. For the third result, we observe that since f is a deterministic function, ∇f(xk)
is Fk-measurable, then, by the Theorem 8.14 in Klenke (2013), we have

E [⟨g(xk),∇f(xk)⟩] = E [E [⟨g(xk),∇f(xk)⟩ | Fk]] = E [⟨E [g(xk) | Fk] ,∇f(xk)⟩] = E
[
∥∇f(xk)∥2

]
Fourth claim. For the fourth result, using the previous results, we have

E
[
∥g(xk)∥2

]
= E

[
∥g(xk)−∇f(xk)∥2 + 2⟨g(xk),∇f(xk)⟩ − ∥∇f(xk)∥2

]
= E

[
∥g(xk)−∇f(xk)∥2

]
+ E [2⟨g(xk),∇f(xk)⟩]− ∥∇f(xk)∥2

≤ σ2∥∇f(xk)∥2 + 2∥∇f(xk)∥2 − ∥∇f(xk)∥2

= (1 + σ2)∥∇f(xk)∥2

Under the MNS assumption, this setup of auxiliary variable x+ yields the following descent
lemma for smooth objectives.
Lemma B.2. Suppose that x+

k = xk − ηg(xk), f ∈ C1,1L . Given 0 < η ≤ 1
L(1+σ2) , we have

E
[
f(x+

k )− f(x∗)
]
≤ f(xk)− f(x∗)− η

2
∥∇f(xk)∥2

Proof of Lemma B.2. Using the L-smoothness of the function f :

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
∥y − x∥2 ∀x, y ∈ Rd (B.3)
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and Lemma B.1, under the assumption of 0 < η ≤ 1
L(1+σ2) , we can obtain the desired result

E
[
f(x+

k )
]
≤ E

[
f(xk)− ⟨ηg(xk),∇f(xk)⟩+

L

2
∥ηg(xk)∥2

]
= f(xk)− E [⟨ηg(xk),∇f(xk)⟩] + E

[
L

2
∥ηg(xk)∥2

]
≤ f(xk)− η∥∇f(xk)∥2 +

Lη2(1 + σ2)

2
∥∇f(xk)∥2

= f(xk)− η(1− L(1 + σ2)η

2
)∥∇f(xk)∥2

≤ f(xk)−
η

2
∥∇f(xk)∥2

Define an auxiliary variable x+
k = xk − αkβkg(xk), substitue it into (Eq.B.1) yield:

xk+1 − x+
k

αk
= vk − xk+1

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
g(xk+1)

γk+1 − γk
αk

= µ− γk+1

(B.4)

The next lemma controls the decay of E
[
E(z+k+1; γk+1)

]
.

Lemma B.3. Let f ∈ Sµ,L with 0 ≤ µ < L < ∞, Lyapunov function E is defined by (B.2).
Given (vk, x

+
k ), (xk+1, vk+1) are generated by (B.4) and x+

k+1 = xk+1 − αk+1βk+1g(xk+1).
Assume 0 < αk+1βk+1 = αkβk ≤ 1

L(1+σ2) , we have

(1 + αk)E
[
E(z+k+1; γk+1)

]
≤ E(z+k ; γk) + E

[
1

2
(
α2
k(1 + σ2)

γk
− (1 + αk)αkβk)∥∇f(xk+1)∥2 −

αkµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]

proof of Lemma B.3. By Lemma B.2, if 0 < αkβk = αk+1βk+1 ≤ 1
L(1+σ2) , we obtain the

one-step decrease

E
[
E(z+k+1; γk+1)

]
− E(z+k ; γk)

≤ E
[
E(zk+1; γk+1)− E(z+k ; γk)−

αkβk

2
∥∇f(xk+1)∥2

]
= E

[
E(zk+1; γk)− E(z+k ; γk) +

γk+1 − γk
2

∥vk+1 − x∗∥2 − αkβk

2
∥∇f(xk+1)∥2

] (B.5)

Applying the Bregman divergence identity Chen & Teboulle (1993):

⟨∇f(y)−∇f(x), y − z⟩ = Df (z, y) +Df (y, x)−Df (z, x) ∀, x, y, z ∈ Rd (B.6)
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together with the representation E(z; γ) = DE(z, z
∗; γ) and the update rules into (B.5), we

obtain
E
[
E(z+k+1; γk+1)

]
− E(z+k ; γk)

≤ E
[
⟨∇E(zk+1; γk), zk+1 − z+k ⟩ −DE(z

+
k , zk+1; γk) +

γk+1 − γk
2

∥vk+1 − x∗∥2 − αkβk

2
∥∇f(xk+1)∥2

]
≤ E

[
⟨∇f(xk+1)−∇f(x∗), xk+1 − x+

k ⟩+ γk⟨vk+1 − x∗, vk+1 − vk⟩ −DE(z
+
k , zk+1; γk)

+
αk(µ− γk+1)

2
∥vk+1 − x∗∥2 − αkβk

2
∥∇f(xk+1)∥2

]
= E [−αk⟨∇f(xk+1)−∇f(x∗), xk+1 − x∗⟩+ αk⟨∇f(xk+1), vk − x∗⟩ − αk⟨g(xk+1), vk+1 − x∗⟩

+αkµ⟨vk+1 − x∗, xk+1 − vk+1⟩+
αk(µ− γk+1)

2
∥vk+1 − x∗∥2 −DE(z

+
k , zk+1; γk)

−αkβk

2
∥∇f(xk+1)∥2

]
(B.7)

By the definition of the Bregman divergence and the µ-strong convexity of f , we have
⟨∇f(xk+1)−∇f(x∗), xk+1 − x∗⟩ = Df (xk+1, x

∗) +Df (x
∗, xk+1)

≥ Df (xk+1, x
∗) +

µ

2
∥xk+1 − x∗∥2

(B.8)

and
αkµ⟨vk+1− x∗, xk+1− vk+1⟩ =

αkµ

2
(∥xk+1− x∗∥2−∥xk+1− vk+1∥2−∥vk+1− x∗∥2) (B.9)

We denote Fk+1 = σ(x0, · · · , xk+1) the σ-algebra generated by the k + 1 first inter-
ates {xi}k+1

i=1 generated by SHANG. Since f is a deterministic function, vk − x∗ is Fk+1-
measurable, then

E [⟨g(xk+1), vk − x∗⟩] = E [E [⟨g(xk+1), vk − x∗⟩ | Fk+1]]

= E [⟨E [g(xk+1) | Fk+1] , vk − x∗⟩]
= E [⟨∇f(xk+1), vk − x∗⟩]

Now, we apply this result in reverse, and using Young Inequality, Cauchy-Schwarz Inequality
to obtain

E [αk⟨∇f(xk+1), vk − x∗⟩ − αk⟨g(xk+1), vk+1 − x∗⟩]
= E [αk⟨g(xk+1), vk − vk+1⟩]

≤ E
[
α2
k

2γk
∥g(xk+1)∥2 +

γk
2
∥vk − vk+1∥2

]
≤ E

[
α2
k(1 + σ2)

2γk
∥∇f(xk+1)∥2 +

γk
2
∥vk − vk+1∥2

] (B.10)

In addition, using the identity of squares (for v) and Bregman divergence indentity (B.6)
(for x+), we have the component form of

DE(z
+
k , zk+1; γk) = Df (x

+
k , xk+1) +

γk
2
∥vk − vk+1∥2 (B.11)

Substituting (B.8-B.11) back into (B.7), we can obtain
E
[
E(z+k+1; γk+1)

]
− E(z+k ; γk)

≤ E
[
−αkDf (xk+1, x

∗) +
1

2
(
α2
k(1 + σ2)

γk
− αkβk)∥∇f(xk+1)∥2

−αkγk+1

2
∥vk+1 − x∗∥2 − αkµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]
≤ E

[
−αkDf (x

+
k+1, x

∗) +
1

2
(
α2
k(1 + σ2)

γk
− (1 + αk)αkβk)∥∇f(xk+1)∥2

−αkγk+1

2
∥vk+1 − x∗∥2 − αkµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]
(B.12)
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By moving E
[
E(z+k+1; γk+1) = Df (x

+
k+1, x

∗) + γk+1

2 ∥vk+1 − x∗∥2
]

to the left side of the in-
equality to obtain the desired result.

Now we begin to prove Theorem B.1.

Proof. (1). When 0 < µ < L <∞, set γ = µ. By Lemma B.3, if αβ ≤ 1
(1+σ2)L , we have

(1 + α)E
[
E(z+k+1;µ)

]
≤ E(z+k ;µ) + E

[
1

2
(
α2(1 + σ2)

µ
− (1 + α)αβ)∥∇f(xk+1)∥2 −

αµ

2
∥xk+1 − vk+1∥2 −Df (x

+
k , xk+1)

]
(B.13)

Assume αβ = (1+σ2)α2

µ ≤ 1
(1+σ2)L , i.e., the step size satisfies 0 < α ≤ 1

1+σ2

√
µ
L to ensure

that all the coefficients of the terms on the right side of the inequality, except for E(z+k ;µ),
are non-positive. Thus,

E
[
E(z+k+1;µ)

]
≤ (1 + α)−1E(z+k ;µ) ≤ (1 + α)−(k+1)E(z0;µ) (B.14)

(2). When µ = 0. Assume αk = 2
k+1 , γk = α2

k(1 + σ2)2L and βk = (1+σ2)αk

γk
. Using Lemma

B.3 to obtain

E
[
E(z+k+1; γk+1)

]
≤ k + 1

k + 3
E(z+k ; γk) ≤

2

(k + 2)(k + 3)
E(z0; γ0) (B.15)

Corollary B.1. Under the setting of Theorem B.1, SHANG achieves an ε-precision solution
within the following number of iterations:

(1) When µ = 0, with αk = 2
k+1 , γk = α2

k(1 + σ2)2L and βk = (1+σ2)αk

γk
,

k ≥
√

2(f(x0)− f(x∗) + 2(1 + σ2)2L∥x0 − x∗∥2)
ε

(2) When 0 < µ < L <∞, with α = 1
1+σ2

√
µ
L and β = (1+σ2)α

µ ,

k ≥ (1 + σ2)

√
L

µ
log

(
f(x0)− f(x∗) + µ

2 ∥x0 − x∗∥2

ε

)
.

Corollary B.2. In the setting of Theorem B.1, f(x+
k )

a.s.→ f(x∗).

proof of Corollary B.2. We assume that all the conditions of Theorem B.1 have been met,
we have

E
[
| f(x+

k )− f(x∗) |
]
= E

[
f(x+

k )− f(x∗)
]
≤ Cqk

holds for some positive constant C. Here 0 < q < 1 is the decay factor. In fact, q =
(1 + 1

1+σ2

√
µ
L )

−1 in strongly convex cases and q = 2
(k+2)(k+3) in convex cases. Since

P
(

lim
k→∞

f(x+
k ) ̸= f(x∗)

)
= P

(
lim
k→∞

sup | f(x+
k )− f(x∗) |> 0

)
= P

( ∞⋃
n=1

lim
k→∞

sup | f(x+
k )− f(x∗) |> 1

n

)

≤
∞∑

n=1

P
(

lim
k→∞

sup | f(x+
k )− f(x∗) |> 1

n

)
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For any ε = 1
n > 0 and for any N ∈ N, we have

P
(

lim
k→∞

sup | f(x+
k )− f(x∗) |> ε

)
≤ P

(
∃k ≥ N s.t. | f(x+

k )− f(x∗) |> ε
)

= P

( ∞⋃
k=1

{| f(x+
k )− f(x∗) |> ε}

)

≤
∞∑
k=1

P
(
| f(x+

k )− f(x∗) |> ε
)

≤
∞∑
k=1

E
[
| f(x+

k )− f(x∗) |
]

ε

≤ C

ε

∞∑
k=1

qk

where in the penultimate step we use Markov’s inequality. The right-hand side of the
inequality above represents an infinite series, and by leveraging the convergence of this series,
we can conclude that the right-hand side can be made arbitrarily small. Consequently, the
left-hand side of the inequality must be zero, implying that P

(
limk→∞ f(x+

k ) ̸= f(x∗)
)
= 0.

Therefore, f(x+
k ) converges in probability to f(x∗).

C SHANG++

C.1 Proof of Theorem 2.1

Setting γ = µ and m = βµ, and substituting g−µ(xk) and x+
k := xk − αβg−µ(xk) into (2.3)

yield:

xk+1 − x+
k

α
= vk − xk+1 − βµ(xk+1 − x∗)

vk+1 − vk
α

= x∗ − vk+1 −
1

µ
g−µ(xk+1)

x+
k+1 = xk+1 − αβg−µ(xk+1)

(C.1)

We note that schemes (2.5) and (2.3) generate the same sequences xk and vk; the appearance
of x∗ does not affect the algorithm itself. The form (2.5) is introduced purely for theoretical
analysis.
Define the discrete Lyapunov function

E(z+k ;µ) = f−µ(x
+
k )− f−µ(x

∗) +
µ

2
∥vk − x∗∥2 (C.2)

The next lemma controls the decay of E
[
E(z+k+1;µ)

]
.

Lemma C.1. Let f ∈ Sµ,L with 0 < µ < L < ∞, then f−µ ∈ S0,L−µ. Lyapunov function E
is defined by (C.2). Given (x+

k , xk, vk), (x+
k+1, xk+1, vk+1) are generated by (C.1). Assume

0 < αβ ≤ 1
(L−µ)(1+σ2) , we have

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1 + βµ)α

(
Df−µ

(x+
k+1, x

∗) +Df−µ
(x∗, xk+1)

)
− αµ(2 + α)

2
∥vk+1 − x∗∥2

+
1

2

(α2(1 + σ2)

µ
− (1 + (1 + βµ)α)αβ

)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
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Moreover, if f is quadratic, we have

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−2(1 + βµ)αDf−µ

(x+
k+1, x

∗)− αµ(2 + α)

2
∥vk+1 − x∗∥2

+
1

2

(α2(1 + σ2)

µ
− (1 + 2(1 + βµ)α)αβ

)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
proof of Lemma C.1. By Lemma B.2, if 0 < αβ ≤ 1

(L−µ)(1+σ2) , we obtain the one-step
decrease

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
E(zk+1;µ)− E(z+k ;µ)−

αβ

2
∥∇f−µ(xk+1)∥2

] (C.3)

Expand it yields

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
⟨∇E(zk+1;µ), zk+1 − z+k ⟩ −DE(z

+
k , zk+1;µ)−

αβ

2
∥∇f−µ(xk+1)∥2

]
≤ E

[
⟨∇f−µ(xk+1)−∇f−µ(x

∗), xk+1 − x+
k ⟩+ µ⟨vk+1 − x∗, vk+1 − vk⟩ −DE(z

+
k , zk+1;µ)

−αβ

2
∥∇f−µ(xk+1)∥2

]
= E

[
−(1 + βµ)α⟨∇f−µ(xk+1)−∇f−µ(x

∗), xk+1 − x∗⟩ − αµ∥vk+1 − x∗∥2 −DE(z
+
k , zk+1;µ)

+α⟨∇f−µ(xk+1), vk − x∗⟩ − α⟨g−µ(xk+1), vk+1 − x∗⟩ − αβ

2
∥∇f−µ(xk+1)∥2

]
= E

[
−(1 + βµ)α

(
Df−µ

(xk+1, x
∗) +Df−µ

(x∗, xk+1)
)
− αµ∥vk+1 − x∗∥2 −DE(z

+
k , zk+1;µ)

+α⟨∇g−µ(xk+1), vk − vk+1⟩ −
αβ

2
∥∇f−µ(xk+1)∥2

]
≤ E

[
−(1 + βµ)α

(
Df−µ(x

+
k+1, x

∗) +Df−µ(x
∗, xk+1)

)
− αµ∥vk+1 − x∗∥2 −DE(z

+
k , zk+1;µ)

+α⟨∇g−µ(xk+1), vk − vk+1⟩ − (1 + (1 + βµ)α)
αβ

2
∥∇f−µ(xk+1)∥2

]
(C.4)

Using the update for vk+1 and Lemma B.1 yields the following bound.
E [α⟨g−µ(xk+1), vk − vk+1⟩]

= E
[
⟨ α
√
µ
g−µ(xk+1),

√
µ(vk − vk+1)⟩

]
= E

[
1

2
∥ α
√
µ
g−µ(xk+1)∥2 +

1

2
∥√µ(vk − vk+1)∥2 −

1

2
∥ α
√
µ
g−µ(xk+1)−

√
µ(vk − vk+1)∥2

]
= E

[
α2

2µ
∥g−µ(xk+1)∥2 +

µ

2
∥vk − vk+1∥2 −

α2µ

2
∥ 1
µ
g−µ(xk+1)−

vk − vk+1

α
∥2
]

≤ E
[
α2(1 + σ2)

2µ
∥∇f−µ(xk+1)∥2 +

µ

2
∥vk − vk+1∥2 −

α2µ

2
∥vk+1 − x∗∥2

]
(C.5)

Substituting (B.11) and (C.5) into (C.4) to obtain

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1 + βµ)α

(
Df−µ

(x+
k+1, x

∗) +Df−µ
(x∗, xk+1)

)
− αµ(2 + α)

2
∥vk+1 − x∗∥2

+
1

2

(α2(1 + σ2)

µ
− (1 + (1 + βµ)α)αβ

)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

] (C.6)
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Moreover, if f is quadratic, we have

⟨∇f−µ(x)−∇f−µ(x
∗), x− x∗⟩ = Df−µ(x, x

∗) +Df−µ(x
∗, x) = 2Df−µ(x, x

∗) (C.7)

Substituting (C.7) back into (C.6), we have the following sharper decay bound:

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−2(1 + βµ)αDf−µ

(x+
k+1, x

∗)− αµ(2 + α)

2
∥vk+1 − x∗∥2

+
1

2

(α2(1 + σ2)

µ
− (1 + 2(1 + βµ)α)αβ

)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

] (C.8)

By moving E
[
E(z+k+1;µ)

]
to the left side of the inequality to obtain the desired result.

Now we begin to prove Theorem 2.1.

Proof. By Lemma C.1, Assume β = (1+σ2)α
µ and αβ ≤ 1

(1+σ2)(L−µ) , i.e., 0 < α ≤
1

1+σ2

√
µ

L−µ , we have

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1 + α+ σ2α)α

(
Df−µ(x

+
k+1, x

∗) +Df−µ(x
∗, xk+1)

)
− αµ(2 + α)

2
∥vk+1 − x∗∥2

− (1 + α+ σ2α)α

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ(x

+
k , xk+1)

]
= E

[
−(1 + (1 + σ2)α)αE(z+k+1)−

α2µ

2
∥vk+1 − x∗∥2 + αµ((1 + σ2)α− 1)

2
∥vk+1 − x∗∥2

−(1 + (1 + σ2)α)αDf−µ
(x∗, xk+1)−

(1 + α+ σ2α)α

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
(C.9)

Since α ≤ 1
1+σ2

√
µ

L−µ , then (1 + σ2)α ≤
√

µ
L−µ ≤ 1. Thus,

E
[
E(z+k+1;µ)

]
≤ (1+α+(1+σ2)α2)−1E(z+k ;µ) ≤ (1+α+(1+σ2)α2)−(k+1)E(z0;µ) (C.10)

Moreover, if f is quadratic, using Lemma C.1, we have

E
[
E(z+k+1;µ)

]
− E(z+k ;µ)

≤ E
[
−(1 + α)α

(
Df−µ

(xk+1, x
∗) +Df−µ

(x∗, xk+1)
)
− αµ(2 + α)

2
∥vk+1 − x∗∥2

− (1 + α+ σ2α)α

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
≤ E

[
−(2α+ α2)Df−µ

(x+
k+1, x

∗)− α2Df−µ
(x+

k+1, x
∗)− αµ(2 + α)

2
∥vk+1 − x∗∥2

− 2α+ α2

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
= E

[
−(2α+ α2)E(z+k+1)− α2Df−µ

(x+
k+1, x

∗)− 2α+ α2

2(1 + σ2)(L− µ)
∥∇f−µ(xk+1)∥2 −Df−µ

(x+
k , xk+1)

]
(C.11)

Thus,

E
[
E(z+k+1;µ)

]
≤ (1 + 2α+ α2)−1E(z+k ;µ) ≤ (1 + 2α+ α2)−(k+1)E(z0;µ) (C.12)
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Corollary C.1. Under the setting of Theorem 2.1, choose α = 1
1+σ2

√
µ

L−µ and β = (1+σ2)α
µ ,

SHANG++ guarantees an ε-precision solution within the following number of iterations:

k ≥ (1 + σ2)

√
L

µ
− 1

(
1 +

√
µ

L− µ

)−1

log

(
f(x0)− f(x∗)

ε

)

If f is quadratic,

k ≥ 1 + σ2

2

√
L

µ
− 1

(
1 +

1

2(1 + σ2)

√
µ

L− µ

)−1

log

(
f(x0)− f(x∗)

ε

)

C.2 Proof of Theorem 2.2

To facilitate analysis, we define an auxiliary time-scaling factor γ̃k = γk

1+mαk
. For any m ≥ 0,

setting αk = 2
k+1 , α̃k = αk

1+mαk
= 2

k+1+2m and γk = αkα̃k(1 + σ2)2L, we have

γ̃k+1 − γ̃k
α̃k

=
1 +mαk

αk

(α2
k+1(1 + σ2)2L

(1 +mαk+1)2
− α2

k(1 + σ2)2L

(1 +mαk)2
)

=
k + 1 + 2m

2

( 4(1 + σ2)2L

(k + 2 + 2m)2
− 4(1 + σ2)2L

(k + 1 + 2m)2
)

=
k + 1 + 2m

2

(
1− (k + 2 + 2m)2

(k + 1 + 2m)2
)
γ̃k+1

= −(1 + 1

2(k + 1 + 2m)
)γ̃k+1

≤ −γ̃k+1

(C.13)

Define x+
k = xk− α̃kβkg(xk), we can obtain the following equivalent form of SHANG++ for

convex problems:

xk+1 − x+
k

α̃k
= vk − xk+1

vk+1 − vk
αk

= − 1

γk
g(xk+1)

γ̃k+1 − γ̃k
α̃k

≤ −γ̃k+1

(C.14)

Denote the discrete Lyapunov function by

E(z+k ; γ̃k) = f(x+
k )− f(x∗) +

γ̃k
2
∥vk − x∗∥2 (C.15)

The following Lemma establishes a decay bound for E
[
E(z+k ; γ̃k)

]
.

Lemma C.2. Let f ∈ S0,L, Lyapunov function E is defined by (C.15). Given (xk, vk, x
+
k ),

(xk+1, vk+1) are generated by (C.14) and x+
k+1 = xk+1 − α̃kβkg(xk+1). Assume 0 < α̃kβk =

α̃k+1βk+1 ≤ 1
L(1+σ2) , we have

(1 + α̃k)E
[
E(z+k+1; γ̃k+1)

]
≤ E(z+k ; γ̃k) + E

[
−α̃kDf (x

∗, xk+1)−Df (x
+
k , xk+1) +

1

2
(
α̃2
k(1 + σ2)

γ̃k
− (1 + α̃k)α̃kβk)∥∇f(xk+1)∥2

]
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proof of Lemma C.2. By Lemma B.2, if 0 < α̃kβk = α̃k+1βk+1 ≤ 1
L(1+σ2) , we obtain the

one-step decrease

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k)

≤ E
[
E(zk+1; γ̃k+1)− E(z+k ; γ̃k)−

α̃kβk

2
∥∇f(xk+1)∥2

]
= E

[
E(zk+1; γ̃k)− E(z+k ; γ̃k) +

γ̃k+1 − γ̃k
2

∥vk+1 − x∗∥2 − α̃kβk

2
∥∇f(xk+1)∥2

] (C.16)

Expand the above equation and use the update to obtain

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k)

≤ E
[
⟨∇E(zk+1; γ̃k), zk+1 − z+k ⟩ −DE(z

+
k , zk+1; γ̃k) +

γ̃k+1 − γ̃k
2

∥vk+1 − x∗∥2 − α̃kβk

2
∥∇f(xk+1)∥2

]
≤ E

[
⟨∇f(xk+1)−∇f(x∗), xk+1 − x+

k ⟩+ γ̃k⟨vk+1 − x∗, vk+1 − vk⟩ −DE(z
+
k , zk+1; γ̃k)

− α̃kγ̃k+1

2
∥vk+1 − x∗∥2 − α̃kβk

2
∥∇f(xk+1)∥2

]
= E

[
−α̃k⟨∇f(xk+1)−∇f(x∗), xk+1 − x∗⟩+ α̃k⟨∇f(xk+1), vk − x∗⟩ − αkγ̃k

γk
⟨g(xk+1), vk+1 − x∗⟩

− α̃kγ̃k+1

2
∥vk+1 − x∗∥2 −DE(z

+
k , zk+1; γ̃k)−

α̃kβk

2
∥∇f(xk+1)∥2

]
(C.17)

Using Young Inequality, Cauchy-Schwarz Inequality and αkγ̃k

γk
= α̃k to obtain

E
[
α̃k⟨∇f(xk+1), vk − x∗⟩ − αkγ̃k

γk
⟨g(xk+1), vk+1 − x∗⟩

]
= E [α̃k⟨g(xk+1), vk − vk+1⟩]

≤ E
[
α̃2
k

2γ̃k
∥g(xk+1)∥2 +

γ̃k
2
∥vk − vk+1∥2

]
≤ E

[
α̃2
k(1 + σ2)

2γ̃k
∥∇f(xk+1)∥2 +

γ̃k
2
∥vk − vk+1∥2

]
(C.18)

Substituting (B.11) and (C.18) back into (C.17), we can obtain

E
[
E(z+k+1; γ̃k+1)

]
− E(z+k ; γ̃k)

≤ E
[
−α̃kDf (xk+1, x

∗)− α̃kDf (x
∗, xk+1) +

1

2
(
α̃2
k(1 + σ2)

γ̃k
− α̃kβk)∥∇f(xk+1)∥2

− α̃kγ̃k+1

2
∥vk+1 − x∗∥2 −Df (x

+
k , xk+1)

]
≤ E

[
−α̃kE(z+k+1; γ̃k+1)− α̃kDf (x

∗, xk+1) +
1

2
(
α̃2
k(1 + σ2)

γ̃k
− (1 + α̃k)α̃kβk)∥∇f(xk+1)∥2

−Df (x
+
k , xk+1)

]
(C.19)

By moving E
[
E(z+k+1; γ̃k+1)

]
to the left side of the inequality to obtain the desired result.

Now we prove the theorem 2.2.

Proof. Assume αk = 2
k+1 , γk = αkα̃k(1 + σ2)2L and βk = (1+σ2)αk

γk
. Then

α̃kβk =
(1 + σ2)α̃kαk

γk
=

(1 + σ2)α̃2
k

γ̃k
(C.20)
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Using Lemma C.2 to obtain
E
[
E(z+k+1; γ̃k+1)

]
≤ (1 + α̃k)

−1E(z+k ; γ̃k) ≤ Πk
i=0(1 + α̃i)

−1E(z+0 ; γ̃0) (C.21)
Since α̃k = 2

k+1+2m , then

Πk
i=0(1 + α̃i)

−1 = Πk
i=0

i+ 1 + 2m

i+ 3 + 2m
=

(1 + 2m)(2 + 2m)

(k + 3 + 2m)(k + 2 + 2m)

Corollary C.2. Under the setting of Theorem 2.2, choose m ≥ 0, αk = 2
k+1 , α̃k = αk

1+mαk
,

γk = αkα̃k(1 + σ2)2L and βk = (1+σ2)αk

γk
, SHANG++ guarantees to reach an ε-precision at

the following interations:

k ≥

√
(1 + 2m)(2 + 2m)(f(x0)− f(x∗) +

2(1 + σ2)2L

(1 + 2m)2
∥x0 − x∗∥2)/ε

Corollary C.3. Under the setting of Theorem 2.2, f(x+
k )

a.s.→ f(x∗).

D Variance Decay Analysis

We study the variance decay of the Lyapunov energy (B.2)

Ek := E(z+k ; γ̃k) = f(x+
k )− f(x∗) +

γ̃k
2
∥vk − x∗∥2

under the unified stochastic model of SHANG and SHANG++. Throughout we work on a
probability space (Ω,F ,P) with the post-update filtration Fk := σ(x0, v0, ζ0, . . . , ζk), where
each ζk collects the randomness used to form the stochastic gradient at step k. We write
gk := g(xk, ζk) and gk+1 := g(xk+1, ζk+1).

Assumptions. We make the following standard assumptions.

A1. Smooth convexity. f ∈ Sµ,L with 0 ≤ µ < L <∞.
A2. Unbiasedness at the query point. E[gk+1 | Fk] = ∇f(xk+1). Equivalently, with

ξk+1 := gk+1 −∇f(xk+1), E[ξk+1 | Fk] = 0.
A3. Multiplicative noise scaling (MNS). E[∥ξk+1∥2 | Fk] ≤ σ2∥∇f(xk+1)∥2.
A4. Bounded conditional kurtosis. There exists χ ≥ 1 such that E[∥ξk+1∥4 | Fk] ≤

χ
(
E[∥ξk+1∥2 | Fk]

)2 (e.g., χ = 3 for Gaussian noise).

Unified stochastic model. The updates for SHANG/SHANG++ can be written as
x+
k = xk − α̃kβk gk

xk+1 − x+
k

α̃k
= vk − xk+1

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
gk+1

γk+1 − γk
αk

= µ− γk+1.

(D.1)

where αk > 0, γk > 0, and we introduce α̃k = αk

1+mαk
and γ̃k = γk

1+mαk
with m ≥ 0.

Equivalently (and crucial for variance analysis), (x+
k+1, vk+1) are affine in the fresh gradient

gk+1 while xk+1 depends only on past randomness:

x+
k+1 =

1

1 + α̃k
x+
k +

α̃k

1 + α̃k
vk − α̃k+1βk+1gk+1 = xk+1 − α̃k+1βk+1gk+1,

vk+1 =
αkµ

(γk + αkµ)(1 + α̃k)
x+
k +

( γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
vk −

αk

γk + αkµ
gk+1

γk+1 =
αk

1 + αk
µ+

1

1 + αk
γk

(D.2)
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By the filtration choice, xk+1 is Fk-measurable and gk+1 uses fresh randomness ζk+1; hence
with ξk+1 := gk+1 −∇f(xk+1) we have E[ξk+1 | Fk] = 0. This linear structure will allow us
to bound the one-step fluctuation Ek+1 − E[Ek+1 | Fk] and to propagate variance.
Lemma D.1 (One-step fluctuation). There exist explicit constants Ak, Bk, Ck ≥ 0 (functions
of αk, α̃k, γ̃k, µ, L) such that, with ξk+1,∣∣Ek+1 − E[Ek+1 | Fk]

∣∣ ≤ Ak

√
Ek∥ξk+1∥+Bk∥ξk+1∥2 + CkEk

and

Ak =
(
Bx(1 +BxL)

√
2Lc1 +Bvγ̃k+1(c2 +Bv

√
2Lc1(α̃k, γ̃k, L))

)
Bk =

LB2
x + γ̃k+1B

2
v

2

Ck = (LB2
x + γ̃k+1B

2
v)Lc1(α̃k, γ̃k, L)σ

2

where c1 = max{ 1
1+α̃k

, α̃k

1+α̃k

L
γ̃k
}, c2 = max{ αk

√
2µ

(γk+αkµ)(1+α̃k)
,
(

γk

γk+αkµ
+

α̃kαkµ
(γk+αkµ)(1+α̃k)

)√
2
γ̃k
} when µ > 0 and c2 =

√
2
γ̃k

when µ = 0. Bx = α̃k+1βk+1

and Bv = αk

γk+αkµ
.

proof of Lemma D.1. Using ξk+1 := gk+1 −∇f(xk+1), we can rewrite the updates of x+
k+1

and vk+1 as

x+
k+1 = Uk − α̃k+1βk+1∇f(xk+1)− α̃k+1βk+1ξk+1 = Ûk −Bxξk+1

vk+1 = Vk −
αk

γk + αkµ
∇f(xk+1)−

αk

γk + αkµ
ξk+1 = V̂k −Bvξk+1

(D.3)

where Uk = 1
1+α̃k

x+
k + α̃k

1+α̃k
vk, Vk = αkµ

(γk+αkµ)(1+α̃k)
x+
k +

(
γk

γk+αkµ
+ α̃kαkµ

(γk+αkµ)(1+α̃k)

)
vk,

Ûk = Uk−Bx∇f(xk+1) and V̂k = Vk−Bv∇f(xk+1). Bx = α̃k+1βk+1 and Bv = αk

γk+αkµ
are

positive constants. It should be noted that Uk, Ûk, Vk and V̂k are measurable with respect
to Fk.
Let’s first focus on the left part of Ek+1. Expanding f(x+

k+1) = f(Ûk −Bxξk+1) at point Ûk

using Taylor series gives

f(Ûk −Bxξk+1) = f(Ûk)− ⟨∇f(Ûk), Bxξk+1⟩+ r(Ûk, ξk+1) (D.4)

where

| r(Ûk, ξk+1) |=|
∫ 1

0

⟨∇f(Ûk−tBxξk+1)−∇f(Ûk),−Bxξk+1⟩dt |≤
L

2
∥Bxξk+1∥2 =

LB2
x

2
∥ξk+1∥2

(D.5)
Then

| f(x+
k+1)− f(x∗)− E

[
f(x+

k+1)− f(x∗) | Fk

]
|

=| f(Ûk −Bxξk+1)− f(x∗)− E
[
f(Ûk −Bxξk+1)− f(x∗) | Fk

]
|

=| −⟨∇f(Ûk), Bxξk+1⟩+ r(Ûk, ξk+1)− E
[
r(Ûk, ξk+1) | Fk

]
|

≤ Bx∥∇f(Ûk)∥ · ∥ξk+1∥+
LB2

x

2
∥ξk+1∥2 +

LB2
x

2
E
[
∥ξk+1∥2 | Fk

]
(D.6)

where the last step uses Cauchy-Schwarz inequality and (D.5).
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Since Ûk = Uk − Bx∇f(xk+1) = xk+1 − Bx∇f(xk+1) and xk+1 = 1
1+α̃k

x+
k + α̃k

1+α̃k
vk, by

triangle inequality and smooth convexity of f , we have

∥∇f(Ûk)∥ ≤ ∥∇f(Ûk)−∇f(xk+1)∥+ ∥∇f(xk+1)∥
≤ L∥Ûk − xk+1∥+ ∥∇f(xk+1)∥
= (1 +BxL)∥∇f(xk+1)∥

≤ (1 +BxL)
√
2L
√

f(xk+1)− f(x∗)

≤ (1 +BxL)
√
2L

√
1

1 + α̃k
(f(x+

k )− f(x∗)) +
α̃k

1 + α̃k
(f(vk)− f(x∗))

≤ (1 +BxL)
√
2L

√
1

1 + α̃k
(f(x+

k )− f(x∗)) +
α̃k

1 + α̃k

L

2
∥vk − x∗∥2

≤ (1 +BxL)
√

2Lc1(α̃k, γ̃k, L)
√
Ek

(D.7)

where c1(α̃k, γ̃k, L) = max{ 1
1+α̃k

, α̃k

1+α̃k

L
γ̃k
}.

On the other hand,

LB2
x

2
E
[
∥ξk+1∥2 | Fk

]
≤ LB2

xσ
2

2
∥∇f(xk+1)∥2 ≤ L2B2

xσ
2c1(α̃k, γ̃k, L)Ek (D.8)

Substituting (D.7) and (D.8) back into (D.6), we have

| f(x+
k+1)− f(x∗)− E

[
f(x+

k+1)− f(x∗) | Fk

]
|

≤ Bx(1 +BxL)
√

2Lc1(α̃k, γ̃k, L)
√
Ek∥ξk+1∥+

LB2
x

2
∥ξk+1∥2 + L2B2

xσ
2c1(α̃k, γ̃k, L))Ek

(D.9)
For the middle part of Ek+1, since

γ̃k+1

2
∥vk+1 − x∗∥2 =

γ̃k+1

2
∥V̂k − x∗∥2 + γ̃k+1B

2
v

2
∥ξk+1∥2 − γ̃k+1⟨V̂k − x∗, Bvξk+1⟩, (D.10)

we have

| γ̃k+1

2
∥vk+1 − x∗∥2 − E

[
γ̃k+1

2
∥vk+1 − x∗∥2 | Fk

]
|

=| −γ̃k+1⟨V̂k − x∗, Bvξk+1⟩+
γ̃k+1B

2
v

2

(
∥ξk+1∥2 − E

[
∥ξk+1∥2 | Fk

] )
|

≤ Bvγ̃k+1∥V̂k − x∗∥ · ∥ξk+1∥+
γ̃k+1B

2
v

2
∥ξk+1∥2 +

γ̃k+1B
2
v

2
E
[
∥ξk+1∥2 | Fk

]
(D.11)

Using triangle inequality and convexity of ∥ · ∥, we have

∥V̂k − x∗∥
= ∥Vk − x∗ −Bv∇f(xk+1)∥

≤ ∥ αkµ

(γk + αkµ)(1 + α̃k)
x+
k +

( γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
vk − x∗∥+Bv∥∇f(xk+1)∥

≤ αkµ

(γk + αkµ)(1 + α̃k)
∥x+

k − x∗∥+
( γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
∥vk − x∗∥+Bv∥∇f(xk+1)∥

≤ αkµ

(γk + αkµ)(1 + α̃k)
∥x+

k − x∗∥+
( γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)
∥vk − x∗∥

+Bv

√
2Lc1(α̃k, γ̃k, L)

√
Ek

(D.12)
Next, we will consider two cases.
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Case 1: µ > 0. Using the strong convexity of f , we have

∥V̂k − x∗∥

≤ αk

√
2µ

(γk + αkµ)(1 + α̃k)

√
f(x+

k )− f(x∗) +
( γk
γk + αkµ

+
α̃kαkµ

(γk + αkµ)(1 + α̃k)

)√ 2

γ̃k

√
γ̃k
2
∥vk − x∗∥

+Bv

√
2Lc1(α̃k, γ̃k, L)

√
Ek

≤
(
c2(α̃, µ, γk) +Bv

√
2Lc1(α̃k, γ̃k, L)

)√
Ek

(D.13)
where c2(α̃, µ, γk) = max{ αk

√
2µ

(γk+αkµ)(1+α̃k)
,
(

γk

γk+αkµ
+ α̃kαkµ

(γk+αkµ)(1+α̃k)

)√
2
γ̃k
}. Thus,

| γ̃k+1

2
∥vk+1 − x∗∥2 − E

[
γ̃k+1

2
∥vk+1 − x∗∥2 | Fk

]
|

≤ Bvγ̃k+1

(
c2(α̃, µ, γk) +Bv

√
2Lc1(α̃, µ, L)

)√
Ek∥ξk+1∥+

γ̃k+1B
2
v

2
∥ξk+1∥2 + γ̃k+1B

2
vLσ

2c1(α̃k, γ̃k, L)Ek
(D.14)

Combining (D.9) and (D.14), we have

| Ek+1 − E [Ek+1 | Fk] |

≤
(
Bx(1 +BxL)

√
2Lc1(α̃k, γ̃k, L) +Bvγ̃k+1(c2(α̃, µ, γk) +Bv

√
2Lc1(α̃k, γ̃k, L))

)√
Ek∥ξk+1∥

+
LB2

x + γ̃k+1B
2
v

2
∥ξk+1∥2 + (LB2

x + γ̃k+1B
2
v)Lc1(α̃k, γ̃k, L)σ

2Ek
(D.15)

Case 2: µ = 0.
∥V̂k − x∗∥ ≤ ∥vk − x∗∥+Bv

√
2Lc1(α̃k, γ̃k, L)

√
Ek

≤ (

√
2

γ̃k
+Bv

√
2Lc1(α̃k, γ̃k, L))

√
Ek

(D.16)

Thus,

| γ̃k+1

2
∥vk+1 − x∗∥2 − E

[
γ̃k+1

2
∥vk+1 − x∗∥2 | Fk

]
|

≤ Bvγ̃k+1(

√
2

γ̃k
+Bv

√
2Lc1(α̃k, γ̃k, L))

√
Ek∥ξk+1∥+

γ̃k+1B
2
v

2
∥ξk+1∥2 + γ̃k+1B

2
vLσ

2c1(α̃k, γ̃k, L)Ek
(D.17)

Combining (D.9) and (D.17), we have

| Ek+1 − E [Ek+1 | Fk] |

≤
(
Bx(1 +BxL)

√
2Lc1(α̃k, γ̃k, L) +Bvγ̃k+1(

√
2

γ̃k
+Bv

√
2Lc1(α̃k, γ̃k, L))

)√
Ek∥ξk+1∥

+
LB2

x + γ̃k+1B
2
v

2
∥ξk+1∥2 + (LB2

x + γ̃k+1B
2
v)Lc1(α̃k, γ̃k, L)σ

2Ek
(D.18)

Proposition D.1 (Conditional variance bound). Let Sk := 2Lσ2c1(α̃k, γ̃k, L) with
c1(α̃k, γ̃k, L) = max{ 1

1+α̃k
, α̃k

1+α̃k

L
γ̃k
}. Under assumptions (A2)–(A4) and the setting of

Lemma D.1 (In particular, stepsizes and hence Ak, Bk, Ck, Sk are Fk-measurable),

Var(Ek+1 | Fk) ≤ K2,kE2k , K2,k = 3
(
A2

kSk + χB2
kS

2
k + C2

k

)
proof of Proposition D.1. By the definition of conditional variance,

Var(Ek+1 | Fk) = E
[
(Ek+1 − E [Ek+1 | Fk])

2 | Fk

]
(D.19)
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From Lemma D.1 and inequality (x+ y + z)2 ≤ 3(x2 + y2 + z2),

(Ek+1 − E [Ek+1 | Fk])
2 ≤ 3

(
A2

kEk∥ξk+1∥2 +B2
k∥ξk+1∥4 + C2

kE2k
)

(D.20)

Since Ak, Bk, Ck and Ek are all measurable with respect to the σ-algebra Fk. Using assump-
tions (A2-A4) yields

E
[
∥ξk+1∥2 | Fk

]
≤ σ2∥∇f(xk+1)∥2 ≤ 2Lσ2c1Ek = SkEk (D.21)

and
E
[
∥ξk+1∥4 | Fk

]
≤ χ

(
E
[
∥ξk+1∥2 | Fk

] )2 ≤ χS2
kE2k (D.22)

Taking E [· | Fk] in the previous inequality gives

Var(Ek+1 | Fk) ≤ 3(A2
kSk + χB2

kS
2
k + C2

k)E2k (D.23)

Theorem D.1 (Geometric variance decay). Assume the drift inequality (from the expectation
analysis)

E[Ek+1 | Fk] ≤ qEk for some q ∈ (0, 1), (D.24)
and assumptions (A2)–(A4) hold. Let K2,k be given in Proposition D.1 and suppose K2 :=
supk K2,k < 1− q2 satisfied. Then with θ := q2 +K2 ∈ (0, 1), for all k ≥ 0, given initial E0,

Var(Ek+1) ≤ E20θk+1

Proof. By the law of total variance and Proposition D.1,

Var(Ek+1) = E
[
V ar(Ek+1 | Fk)

]
+Var

(
E[Ek+1 | Fk]

)
≤ K2E[E2k ] + q2 Var(Ek). (D.25)

Since E[E2k ] = Var(Ek) +
(
E[Ek]

)2 and (Eq.(D.24)), we get

Var(Ek+1) ≤ (K2 + q2)Var(Ek) +K2

(
E[Ek]

)2 ≤ (K2 + q2)Var(Ek) +K2(E[E0])2q2k (D.26)

Solving this linear recursion yields

Var(Ek+1) ≤ (K2+q2)k+1 Var(E0)+K2(E[E0])2
k∑

j=0

(K2+q2)k−jq2j ≤ (K2+q2)k+1(Var(E0)+(E[E0])2)

(D.27)
Since E0 is given by the initial point x0 = v0, it is a constant ,then Var(E0) = 0 and
E[E0] = E0.

Corollary D.1 (Upper bound of K2,k in strongly convex setting). Define κ = L
µ is the

condition number of f . Under the setting of Theorem B.1-2.1 and Assumptions (A1)-(A4),
with K2,k = 3(A2

kSk + χB2
kS

2
k + C2

k) defined above, we have the explicit upper bound

(1) For SHANG,

K2 ≤

{
12a20σ

2((3 + σ2)a0 + 1)2 + 12(χ+ 1)a40σ
4 ακ ≤ 1

12a30σ
2
√
κ(1 + (3 + σ2)a

3
2
0 κ

1
4 )2 + 12(χ+ 1) a60 σ

4 κ ακ ≥ 1

where

(2) For SHANG++,

K2 ≤


12a20σ

2 κ

κ− 1
(1 + (3 + σ2)a0

√
κ

κ− 1
)2 + 12(χ+ 1)a40σ

4(
κ

κ− 1
)2 ακ ≤ 1 + (1 + σ2)α2

12a30σ
2 κ2

(κ− 1)
3
2

(1 + (3 + σ2)a
3
2
0

κ

(κ− 1)
3
4

)2 + 12(χ+ 1)a60σ
4κ(

κ

κ− 1
)3 ακ ≥ 1 + (1 + σ2)α2
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Proof. Case 1: SHANG. When m = 0, scheme (D.1) is algorithm SHANG. From Theorem
B.1, when γ = µ, α = 1

(1+σ2)
√
κ

and β = (1+σ2)α
µ , we have

E[Ek+1 | Fk] ≤ (1 + α)−1Ek = qEk (D.28)
and

A = Ak =
α2

µ

(
1 + σ2 + (1 + σ2)2α2κ+

1

(1 + α)2
)√

2Lc1 +
α

1 + α
c2

B = Bk =
α2

2µ
((1 + σ2)2α2κ+

1

(1 + α)2
)

C = Ck =
α2

µ
((1 + σ2)2α2κ+

1

(1 + α)2
)Lσ2c1

S = Sk = 2Lσ2c1

where c1 = max{ 1
1+α ,

α
1+ακ} and c2 = 1+α+α2

(1+α)2

√
2
µ .

(1): Assume ακ ≤ 1, i.e., κ ≤ (1 + σ2)2, so that c1 = 1
1+α .

Since c1 = 1
1+α and α2κ = 1

(1+σ2)2 ≤ 1, we bound each term in K2.

For the B2S2 term, using B = α2

2µ ((1 + σ2)2α2κ+ 1
(1+α)2 ),

B2S2 =
[α2

2µ

(
(1 + σ2)2α2κ+ 1

(1+α)2

)]2
· (2µκσ2c1)

2

= α4κ2σ4c21

(
(1 + σ2)2α2κ+ 1

(1+α)2

)2
≤ 4 a40 σ

4,

(D.29)

where we used c1 ≤ 1 and α4κ2 = 1
(1+σ2)4 . We denote a0 = 1

1+σ2 . Hence 3χB2S2 ≤
12χa40σ

4.
For the C2 term, note C = 2BLc1σ

2 implies C2 = B2S2. Hence
C2 ≤ 4 a40 σ

4, (D.30)
so 3C2 ≤ 12 a40 σ

4.
For the A2S term, splitting A = A1 +A2 with

A1 :=
α2

µ

(
(1 + σ2) + (1 + σ2)2α2κ+ 1

(1+α)2

)√
2Lc1, A2 :=

α

1 + α
c2,

For A2, since c2 = 1+α+α2

(1+α)2

√
2/µ ≤

√
2/µ,

A2
2S =

α2

(1 + α)2
c22 · 2µκσ2c1 ≤ 4κσ2c1 ·

α2

(1 + α)2
= 4σ2 · α2κ

(1 + α)3
≤ 4a20σ

2 (D.31)

For A1, using c1 = 1
1+α and α2κ = a20 ≤ 1,

A2
1S =

[α2

µ

√
2Lc1

]2(
(1 + σ2) + (1 + σ2)2α2κ+ 1

(1+α)2

)2
· 2Lσ2c1

= 4α4κ2c21 σ
2
(
(1 + σ2)2 + 1 + 1

(1+α)2

)2
≤ 4 a40 σ

2 · (3 + σ2)2 = 4(3 + σ2)2a40σ
2

(D.32)
Therefore, using (x+ y)2 ≤ (1 + τ)x2 + (1 + 1/τ)y2 with τ =

√
A2

2S/A
2
1S:

3A2S ≤ 3(
√
A2

1S +
√
A2

2S)
2 ≤ 3(2(3 + σ2)a20σ + 2a0σ)

2 = 12a20σ
2((3 + σ2)a0 + 1)2 (D.33)

Combining (D.29)-(D.33), we have

K2 ≤ 12a20σ
2((3 + σ2)a0 + 1)2 + 12(χ+ 1)a40σ

4 (D.34)
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(2): Assume ακ ≥ 1, i.e., κ ≥ (1 + σ2)2, so that c1 = α
1+ακ.

For the B2S2 and C2 terms. We have

B2S2 =
α4κ2σ4

(1 + α)2

(
(1 + σ2)2α2κ+ 1

(1+α)2

)2
≤ α6κ4σ4

(1 + α)2
· 4 ≤ 4 a60 σ

4 κ (D.35)

Hence
3
(
χB2S2 + C2

)
≤ 12(χ+ 1) a60 σ

4 κ (D.36)

For the A2S term,

A2
2S =

α2

(1 + α)2
c22 · 2Lσ2c1 ≤

α2

(1 + α)2
· 2
µ
· 2µκσ2c1 = 4σ2 α3

(1 + α)3
κ2 ≤ 4 a30 σ

2
√
κ

(D.37)
Moreover,

A2
1S =

4α6σ2 κ4

(1 + α)2

(
(1+σ2)+(1+σ2)2α2κ+ 1

(1+α)2

)2
≤ 4α6σ2 κ4

(1 + α)2
·(3+σ2)2 ≤ 4(3+σ2)2 a60 σ

2 κ.

(D.38)
Combining (D.37) and (D.38),

3A2S ≤ 3(
√
A2

1S +
√
A2

2S)
2 ≤ 12a30σ

2
√
κ(1 + (3 + σ2)a

3
2
0 κ

1
4 )2 (D.39)

Adding (D.35) - (D.39) yields

K2 ≤ 12a20σ
2
√
κ(1 + (3 + σ2)a

3
2
0 κ

1
4 )2 + 12(χ+ 1) a60 σ

4 κ (D.40)

Case 2: SHANG++. When m = βµ = (1 + σ2)α, scheme (D.1) is algorithm SHANG++.
From Theorem 2.1, when γ = µ, α = 1

(1+σ2)
√
κ−1

and β = (1+σ2)α
µ , we have

E[Ek+1 | Fk] ≤ (1 + α+ α2)−1Ek = qEk (D.41)

and

A = Ak =
α2

µ

( 1 + σ2

1 + (1 + σ2)α2
+

(1 + σ2)2α2κ

(1 + (1 + σ2)α2)2
+

1

(1 + α)2
)√

2Lc1 +
α

1 + α
c2

B = Bk =
α2

2µ
(

(1 + σ2)2α2κ

(1 + (1 + σ2)α2)2
+

1

(1 + α)2
)

C = Ck =
α2

µ
(

(1 + σ2)2α2κ

(1 + (1 + σ2)α2)2
+

1

(1 + α)2
)Lσ2c1

S = Sk = 2Lσ2c1

where c1 = max{ 1+(1+σ2)α2

1+α+(1+σ2)α2 ,
α

1+α+(1+σ2)α2κ} and c2 = 1+α+(2+σ2)α2

(1+α)(1+α+(1+σ2)α2)

√
2
µ .

Similar to the derivation of SHANG, we have
(1): Assume ακ ≤ 1 + (1 + σ2)α2.

K2 ≤ 12a20σ
2 κ

κ− 1
(1 + (3 + σ2)a0

√
κ

κ− 1
)2 + 12(χ+ 1)a40σ

4(
κ

κ− 1
)2 (D.42)

(2): Assume ακ ≥ 1 + (1 + σ2)α2.

K2 ≤ 12a30σ
2 κ2

(κ− 1)
3
2

(1 + (3 + σ2)a
3
2
0

κ

(κ− 1)
3
4

)2 + 12(χ+ 1)a60σ
4κ(

κ

κ− 1
)3 (D.43)
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When does variance decay hold? By Theorem D.1, geometric variance decay

Var(Ek) ≤ E20 (q2 +K2)
k

follows whenever K2 < 1 − q2, where q = (1 + α)−1 for SHANG and q = (1 + α + α2)−1

for SHANG++. The bounds in Corollary D.1 make this condition directly checkable as a
function of the condition number κ = L/µ, the noise level σ2 via a0 = (1 + σ2)−1, and the
stepsize α:

• In the low-condition regime (the branch with smaller c1), K2 scales like O
(
a20σ

2
)
+

O
(
a40σ

4
)

(for SHANG++ with a mild factor (κ/(κ − 1))powers), whereas 1 − q2 =

Θ(α) = Θ(a0/
√
κ).

• In the high-condition regime (the branch with larger c1), the leading term is
K2 = O

(
a30σ

2
√
κ
)
+ O

(
a60σ

4κ
)

(again with the expected (κ/(κ − 1)) corrections
for SHANG++), while still 1− q2 = Θ(a0/

√
κ).

Thus, for fixed κ, smaller noise (larger a0) and moderate stepsizes make K2 < 1−q2 easier to
satisfy; for large κ, the O(

√
κ) factor in the leading term of K2 becomes the main bottleneck.

How to enforce the condition in practice. Two standard knobs guarantee K2 < 1 − q2

without fine tuning:

1. Stepsize damping. Replace α by β α with β ∈ (0, 1]. Then the leading term in K2

scales likeO(β3), whereas 1−q2 scales likeO(β) (both for SHANG and SHANG++);
hence there exists β0 = β0(κ, σ

2, χ) ∈ (0, 1] such that K2 < 1− q2 for all β ≤ β0.
2. Mini-batching or averaging multiple independent estimates. Replacing σ2 by σ2/M

reduces the leading term in K2 by a factor 1/M while leaving 1 − q2 essentially
unchanged; the explicit constants in the corollary yield simple batch-size thresholds
(e.g., M ≳ σ2

√
κ up to the displayed constants). Section 2 also notes that averaging

multiple independent estimates does not incur additional computational costs.

E SNAG as a Discretization of the HNAG Flow

Under the multiplicative noise assumption, one of the most recent first-order stochastic
methods designed to overcome the divergence of NAG and accelerate SGD is the Stochastic
Nesterov Accelerated Gradient (SNAG) method (Hermant et al., 2025). Its iteration reads:

xk+1 = α̂k+1xk + (1− α̂k+1)vk+1 − α̂k+1s g(xk),

vk+1 = β̂vk + (1− β̂)xk − ηkg(xk),
(E.1)

where g(xk) is a stochastic gradient estimator, and α̂k+1, s, β̂, and ηk are parameters.
By reparameterizing as

α̂k+1 =
1

1 + αk+1
, s = αk+1βk+1, β̂ =

1

1 + αk+1µ
γk+1

, ηk =
1

1 + αk+1µ
γk+1

αk+1

γk+1
, (E.2)

the SNAG scheme (E.1) becomes equivalent to the following update:
xk+1 − xk

αk+1
= vk+1 − xk+1 − βk+1g(xk),

vk+1 − vk
αk+1

=
µ

γk+1
(xk − vk+1)−

1

γk+1
g(xk),

γk+1 − γk
αk+1

≤ µ− γk+1.

(E.3)

Hence, SNAG can be interpreted as a new discretization of the HNAG flow (2.2).
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Parameter choices. For convex objectives f ∈ S1,10,L, Hermant et al. (2025) shows that the
optimal parameters are

s =
1

L(1 + σ2)
, ηk =

k + 1

2L(1 + σ2)2
, β̂ = 1, α̂k =

k2

k+1

2 + k2

k+1

.

This leads to

αk+1 =
2

k + 1− k+1
k+2

, αk+1βk+1 =
1

L(1 + σ2)
, γk+1 = αk+1

2
k+1 (1 + σ2)2L.

For strongly convex objectives f ∈ Sµ,L, the optimal parameters become

s =
1

L(1 + σ2)
, ηk = η =

1

(1 + σ2)
√
µL

, β̂ = 1− 1

1 + σ2

√
µ
L , α̂k = α̂ =

1

1 + 1
1+σ2

√
µ
L

.

Consequently,
α =

1

1 + σ2

√
µ
L , αβ =

1

L(1 + σ2)
, γ = µ(1− α).

The condition γ = µ(1− α) indicates that, in the strongly convex case, the update for v is
more accurately viewed as applying a rescaled step size α̃ = α

1−α to the v–dynamics of the
HNAG flow:

vk+1 − vk
α̃

= xk − vk+1 −
1

µ
g(xk).

In summary, the above parameter rearrangements confirm that the optimal choices in SNAG
are consistent with those obtained from various discretization schemes of the HNAG flow,
see Chen & Luo (2021) for details.
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