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ABSTRACT

Training with multiplicative noise scaling (MNS) is often destabilized by momen-
tum methods such as Nesterov’s acceleration, as gradient noise can overwhelm
the signal. A new method, SHANG++, is introduced to achieve fast convergence
while remaining robust under MNS. With only one-shot hyperparameter tuning,
SHANG-++ consistently reaches accuracy within 1% of the noise-free setting across
convex problems and deep networks. In experiments, it outperforms existing accel-
erated methods in both robustness and efficiency, demonstrating strong performance
with minimal parameter sensitivity.

1 INTRODUCTION

Empirical Risk Minimization (ERM) is central to modern large-scale machine learning, including deep
neural networks and reinforcement learning (Hastie et al.,[2009). Given a large dataset { (X, Y;) f\;l,

where Y; denotes the label of data X; and N > 1, the training objective is

1 N
min f(z),  flo) =5 fila), (L.1)
=1

where = denotes the network parameters and f;(x) is the loss associated with sample (X;,Y;). We
use x instead of @ for consistency with the optimization formulation. Efficiently computing the
minimizer 2* = arg min, f(x) is critical for training neural network with large data.

Exact gradient evaluation is expensive, so Stochastic Gradient Descent (SGD) uses mini-batches:

1
9(x) = 37 >_ Viil), (12)
i€B
where B C {1,..., N} is arandom batch of size M. SGD slows down when the condition number

of f is large. Momentum methods such as Heavy Ball (HB) (Polyak} [1964) and Nesterov accelerated
gradient (NAG) (Nesterovl [1983) are widely used to accelerate convergence. In training deep neural
networks, Adam (Adaptive Moment Estimation) (Kingma & Ba, 2015) is a widely used optimization
algorithm that combines momentum and adaptive step sizes for fast and stable convergence.

The mini-batch estimator g(x) reduces the cost of computing V f(z) but introduces noise. In regimes
such as small-batch training or highly over-parameterized models, the variance can scale with and
even dominate the signal |V f()||%. This effect is modeled by the multiplicative-noise scaling (MNS)
condition (Wu et al., 2019; |2022b; \Gupta et al., 2024])). Hodgkinson & Mahoney|(2021) further shows
that multiplicative noise induces geometric distortions in the loss landscape, beyond the smoothing
effects of additive noise.

Definition 1.1 (Multiplicative Noise Scaling (MNS)). The stochastic gradient estimator g(x) satisfies
the MNS condition if there exists o > 0 such that

E [lg(z) — VI (@)|?] < o?|VSf(x)|>. (1.3)
Related work. Accelerated variants of SGD have been extensively studied. However, momen-

tum methods are highly sensitive to stochastic noise (Devolder et al. 2014} |Aujol & Dossall
2015} |Liu et al.l 2018), and stability depends critically on parameter choices (Kidambi et al.,
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[2018), (Liu & Belkin| 2020} [Assran & Rabbat, [2020; [Ganesh et al., [2023)). [Gupta et al.| (2024) fur-

ther showed that under MNS with o > 1, NAG fails to converge even in convex and strongly convex
settings. In practice, the apparent benefits of momentum largely arise from large mini-batches, which
reduce gradient variance and make the dynamics closer to the deterministic regime.

To address these issues, a series of corrections have been developed. Following Jain et al.[(2018]),
many accelerated stochastic algorithms have been proposed (Liu & Belkin| 2020; [Vaswani et al ]
2019; [Even et al}, 2021} [Bollapragada et al,[2022}; [Laborde & Oberman), 2020; (Gupta et al.,[2024;
Hermant et al., 2025)), aiming to retain acceleration while improving robustness to noise. Vaswani
et al. (2019) introduced a four-parameter NAG variant with optimal accelerated rates; |Liu & Belkin
(2020) proposed the Mass method with a three-parameter correction, though acceleration was proved
only for over-parameterized linear models; |Gupta et al.[(2024) developed AGNES with guarantees
matching [Vaswani et al.|(2019)); and Hermant et al.| (2025) analyzed SNAG, a four-parameter variant
in Nesterov’s framework (Nesterov, |2012), showing similar rates under mild tuning. A more detailed
discussion appears in Appendix

From the viewpoint of convex theory, these algorithms are competitive. However, our deep-learning
experiments show that they often lose acceleration under high noise and can perform worse than
SGD even with recommended hyperparameters (see Section [3). For example, on CIFAR-100 with
ResNet-50 and batch size 50, SGD attains 58.326% test accuracy whereas AGNES reaches only
42.82%. With smaller batches, both AGNES and SNAG exhibit strong oscillations and require
additional hyperparameter tuning.

Contribution. Motivated by this gap, our goal is not only to design another accelerated method,
but to develop a complementary approach that (i) retains optimal theoretical guarantees, (ii) reduces
tuning effort, and (iii) improves stability. Our contributions emphasize simplicity (fewer parameters),
provable acceleration with explicit noise dependence, and robust empirical behavior.

1. We begin with SHANG, a stochastic extension of HNAG (Chen & Luo|, 2021). Unlike the
classical Heavy-Ball method, HNAG includes the Hessian term VZ f(z)2’, yielding a more
accurate continuous-time model of NAG. SHANG inherits this structure and already demonstrates
noise-suppression behavior.

2. We then refine SHANG into SHANG++ using the y-shift principle: replacing f with f_,(z) =
f(z) — &|lz — x*||? reduces the effective Lipschitz constant and introduces a correction term
—Bu(xps1 — zk). SHANG++ generalizes this to a flexible correction —m(z41 — 2y ) that does
not require strong convexity, and helps mitigate the multiplicative-noise—induced rescaling of the
key constants p and L. The p-shift mechanism and its noise-suppression effect are new and absent
from HNAG. SHANG++ achieves optimal accelerated rates in both convex and strongly convex
settings with multiplicative noise.

3. We evaluate SHANG++ on convex optimization, image classification, and generative modeling
tasks (MNIST, CIFAR-10, CIFAR-100). SHANG++ matches or outperforms NAG, SNAG,
AGNES, and Adam, with clear advantages under high multiplicative noise in Section 3]

4. Section |z|further examines robustness to multiplicative noise. For realistic noise levels (o < 0.5),
SHANGH++ retains near noise-free accuracy (within 1% degradation), demonstrating that stability
can be achieved with fewer parameters and a simpler design than earlier corrections such as
AGNES and SNAG.

Limitation. Current convergence guarantees cover only convex objectives under multiplicative-
noise scaling and do not yet extend to general nonconvex landscapes. Empirically, the method typi-
cally enters locally convex basins after leaving unstable saddle regions, suggesting that similar stability
mechanisms operate in deep networks. We are exploring extensions under the Polyak—t.ojasiewicz
condition and weak-convexity assumptions, where our Lyapunov framework naturally applies.

Although SHANG++ reduces tuning complexity through one-shot, non-adaptive hyperparameters, its
performance may still depend on accurate estimates of smoothness constants (e.g., L, pt). In highly
non-convex settings or under very high noise, the one-shot strategy may require refinement.

Notation. Let f : R¢ — R be differentiable. The Bregman divergence of f between z,y € R? is

Dy(y,x) = fy) = f(x) = (V[(2),y — 2).
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The function f is p-strongly convex if for some p > 0, Dy (y, ) > &|ly — z||>, Vz,y € R%
It is L-smooth, for some L > 0, if its gradient is L-Lipschitz:
IVf(y) = V(@) < Llly—=fl, Vz,yeR

Let S, 1. be the class of all differentiable functions that are both ji-strongly convex and L-smooth.
For f € S, 1, the Bregman divergence satisfies

I L
Sle=yl* < Dy@,y) < Sllz—yl?, Va,yeRr, (1.4)

Bregman divergence here is used purely as an analytical tool in the Lyapunov analysis. Parameters p
and L are treated as known hyperparameters for the given problem. Their adaptivity is beyond the
scope of this work.

2 STOCHASTIC HESSIAN-DRIVEN ACCELERATED NESTEROV GRADIENT

Flow. To accelerate gradient descent, Polyak introduced a momentum term, which incorporates
information from previous iterates, inspired by the “heavy-ball” ODE model (Polyak,|1964]):

" +0x' +nV f(z) = 0. 2.1)

However, the discrete heavy-ball method 41 = 2 — YV f(x) + S(zr — xx—1) can diverge; see

Lessard et al.|(2016)); (Goujaud et al.| (2025) for non-convergent examples.

We will use the second-order dynamical system introduced in|[Chen & Luo| (2019 [2021)), known as
the Hessian-driven Nesterov Accelerated Gradient (HNAG) flow:

va' + (v + p)a’ + ByVAf(x)a + (1+ pB)V f(z) =0, (22)

where 3 > 0 is a parameter and -y is a time-scaling function. Compared with the classical HB flow
(2.1), the additional Hessian-driven term V2 f(x)a’ captures how the local curvature of f affects the
damping strength of the dynamics. As shown in[Chen & Luo|(2019)), this curvature aware mechanism
provides a more accurate continuous-time description of NAG. The second-order ODE (2.2) can be
equivalently reformulated as the first-order system:

' =v—xz—pBVf(x), v’=g(x—v)—%vf(x), v =p—r, (2.3)

which removes the explicit dependence on V2 f(z).

Methods. Discretizing (2.3)) via a Gauss—Seidel-type scheme, adding an extra term —m (g1 —xg)
to the z-update, and replacing V f () with an unbiased estimator g(zy,) yield the Stochastic Hessian-
driven Nesterov Accelerated Gradient (SHANG++) method:

Tp41 — Tk

iT = Uk — Ti1 — M(Tpt1 — k) — Brg (),

Vk+1 — Vk 1

L = ﬁ(xk+1 — ’Uk+1) — 7g(mk+1)a (24)
(a8 Vi Tk

Ve+1 — Ve

— = H = Vk+1,
(677

where oy, > 0 is the step size, m > 0 controls the extra noise-damping term —m(z41 — ) , and
Br > 0 depends on ay, and 7y, typically scaling as W

If the damping term is absorbed into the left-hand side, the z-update becomes
Tl — Xk
= = v ke~ Brgla), (2.5)

where &), = —2— < . SHANG++ can thus be interpreted as a modified discretization of the
1+may Ip

HNAG flow with a reduced step size &. The case m = 0 recovers SHANG, a direct stochastic
extension of HNAG. The “++” indicates two improvements: faster theoretical convergence and greater
robustness to noise. With the parameter choices specified in Theorem [2.T] for the strongly convex
case f € S;,1, and in Theorem@for u = 0, accelerated convergence rate can be established.
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SHANG++ for Strongly Convex Minimization. Setting v = yand m = 1 when f € S, 1, with

0 < 1 < L < oo. Define the auxiliary variable z; := 2, — &B8g(x;). Then SHANG++ can be
rewritten in the following form:

+
Tht1 — .’Ek . _
= = Vg Th41,
a (2.6)
V41 — Vg 1
T = Tk+1 — Vk+1 — ﬁg(xk-‘rl)'

where & = 1. Schemes (2.6) and (2.4) generate the same sequences (g, v )5°; the explicit
appearance of xﬁ is only for analysis and does not affect the algorithm itself.

Theorem 2.1. Let f € S,, 1. Given xf = vg = w0, suppose (x, :cﬁ, v ) are generated by @ with
g(xy) defined in (1.2) and MNS holds. If the step size satisfies o« = 19 with0 < & < ﬁ VE
and B = then

E[f(f) = f@*) + Slve =" 2] < (1 +a) ™ (F@o) = £@*) + Sllvo — 2 |[2).

We give a proof sketch of Theorem[2.T]and refer to Appendix [C.1|for full details, which cover the range
0 < m < 1; Theorem 2.1]treats the optimal special case m = 1 and shows that E[f(zy) — f(z*)]

contracts linearly at rate O ((1 — ﬁ /L/L)"’). Note that m = Bu < \/u/L is also a particular
instance with 0 < m < 1.

Proof. Let 2} = (x}}, vi,) and define the Lyapunov function

E0) = Faf) = (@) + Sllow — 2] @7

Given (z, vy) and g(z), the quantities mz and x11 are deterministic, while randomness is intro-
duced through g(zy1) and consequently affects (z; 1> Vk+1)- The expectation E is with respect to
the randomness in g(zg41).

First of all, we have the sufficient decay of SGD for m;H = X1 — B (xp4r): if QB = #igz)) <
ﬁ, which is equvialent to & < ﬁ V/1t/L, then
E [f(zf1) = flzes1)] < =aB/2- [V )l = (1 +0%)a% /20 |V (i) |*. (28)
By the definition of Bregman divergence, &(zp41) — E(2¢) = (VE(zk41), 2141 — 2) —
Dg (2, 2k+1). Expanding the term (VE(2x41), 2541 — 2; ) and using the update in gives
— &V (@) = V@) wr = 2) = T loee = 2P = Tllvesn - @l

« ~
+ 7M||xk+1 — 2?4+ alg(@rs1), vk — vrg1) — (o — @) {g(Tpy1), vk — ) 2.9)

+a(Vf(zry1) — 9(@hg1), ve — %)

After taking the expectation E((V f(zx+1) — 9(xg+1), v — 2*)) = 0. We use v, — 2* = (1 +
@)Uk t1 — Bs1) + (@s1 — o)+ 2g(zpsy) and the identity 2(a, b) — [lal]2 + [ — [la — b]]

to bound the cross term —(a — &)(g(xk+1), vk — %) = —ad{g(Tr4+1), v — T*):
2~
.« N a’a
- O‘,U<;9(1'k+1)a (14 @) (Vrt1 = rt1)) — @@(g(Thy1), Thyr — 27) — e lg(zasa)]®
~ 2~
« a‘a a(l+a ~
=~ o = sl = G o) P+ S5 s = oual? - adlgloni) oui - o)

(2.10)
The last term can be combined with the first term of (2.9) after taking expectations, and using strong
convexity we obtain:

—a(Vf(2rp1) = V(@) w1 — 27) < —alf(zr) — f(27) + g”karl —a**) @1

4
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This negative contribution cancels the corresponding positive term in (2.9). The most difficult term is
the expectation of the cross term E [(g(Zx+t1), Vk — Uk+1)], as both g(x41) and vy are random
variables. Using the identity 2(a, b) = ||aH2 + ||b]|*> — |la — ]| again to obtain

a’ 2 M s QPu 2
a(g(Try1), Uk — Vpg1) = ZHQ(%H)H + §||Uk = Upp1]]” — THWH —rppalt,  (2.12)

where the term involving vj1 — @441 follows from =2k — 1

29(Trp1) = Vrp1 — Ty bY
the update of vy41. The positive 4 |lvy — vj41]|? is canceled by —£ |lvy, — vj41]|* contained in
—Dg(Z;:, zk+1). The stochastic gradient term splits into two parts: one part is directly canceled
by the corresponding negative term in (2.10). For the remaining part, taking expectations termwise

. .. . .. . . . v 1+ 2 2
and applying the MNS condition yields the positive gradient contribution % IV f(xp+)]%
which is then canceled by the negative term in the sufficient decay condition , together with the
additional negative term generated by applying the same sufficient decay condition to f(zp41) —
f(a*). This cancellation motivates our choice of (v, 3, m).

Combining all the above estimates, we obtain,
E [S(Z;H)] — E(z,j) <E [—aé‘(z,jﬂ)] .

Moving £ (z,jﬂ) to the left-hand side yields the desired result. O

When o = 0, SHANG++ reduces to the deterministic HNAG++ method of |(Chen & Xu| (2025). As o
grows, convergence slows but acceleration is preserved. While |Gupta et al.| (2024)) interpret noise as
inflating smoothness to (1 + o)L, our analysis shows it perturbs both smoothness and curvature,
giving L, = (1 + ¢?)L and py, = p/(1 + 02). We compare the parameters

Ho

Ho  (SHANG++) 0<a <

SHANG <
( ) O<asy /7 1—a\l L,

The noise-damping term in SHANG++ further reduces the effective Lipschitz constant from L, to
(1 — &)L, and increase the effective strongly convex constant from i, to 11, /(1 — &), explaining its
stronger stability.

SHANG++ Method for Convex Minimization Recall the modified step size &y = 7 +’;’;ak To
facilitate analysis, we define an auxiliary time-scaling variable J, = 7 ﬁm’“ak . Setting oy, = 57 +1 and
& /(1 + 0?) = ayay L, for any fixed m > 0, we obtain:

Ve+1 — Tk 1 - .

—_— =14 < - 2.13

Replacing the 2-update in (2.4) with the equivalent modified discretization (2.3)) and combining it
with (2.13) yields the following convergence result. The full proof appears in Appendix [C.2]

Theorem 2.2. Let f € Sy 1. Suppose that (xy, vy,) are generated by the time-stepping scheme .
g(xy,) defined in and MNS holds. Given x(‘f = vg = x9,m > 0, choose the step size o, =
/(1 +0°) = aray Ly and By =

P
k=+1’
7%/(‘){’3_02), we have

(1+2m)(24 2m)
(k+2+42m)(k+ 3+ 2m)

B | flof) = £a) 4 B2 o -] < £(z00) = O(1%)

We compare the parameters

Tk ~ 2 La’

Yk
— _ —apapLl, =af  ——2—
02 7 1+ may’

(SHANG) .
g

=a?L,, (SHANG++)

ﬁ. The noise-damping term offsets

which reduces the effective Lipschitz constant from L, to
part of the o>~induced amplification, improving stability by slowing down the effective rate. Our

experiments suggest that choosing m in the range [0, 1.5] provides a good trade-off.
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Other Convergence Results. Quadratic Loss. Consider a special case of problem (I.1): the
quadratic loss with Tikhonov regularization (also known as weight decay), which is widely used in
regression tasks. The objective takes the form

— 1 T 2 A 2 _ 1 T 2 A 2
= T X - 4 Sl = X T - YIB Sl @1

where + Zﬁl( T X; —Y;)? is the empirical quadratic loss and 3 ||z||3 is the regularizer with A > 0.
The Tikhonov regularizer ensures that the objective is A— strongly convex with smoothness constant

1
—\/ lio / L, yields the accelerated
—

(L + ). Under multiplicative noise scaling, setting o = 1

convergence rate (1 — A/(L + X)) in the leading term.

1+<7'2

Batching. Gradient noise can be reduced by increasing the mini-batch size M in . If 02 is
the MNS constant for M = 1 then 02, = 02 /M. Another approach is to average K independent

gradient estimators, g% = 7 Zi:l gi, which gives an effective MNS constant of 02/K. Both
strategies reduce noise at the cost of higher computation, and a straightforward analysis shows that
averaging multiple estimates can accelerate convergence to some extent.

Variance decay under MNS. Beyond the expectation bound, we show geometric variance decay of the
Lyapunov energy. Specifically, by Theorem[D.1]

Var (f-pu(ay) = fp(a®) + %Hvk —a*|?) < (f(wo) = f(2*))*(r? + K2)".

A sufficient (practically verifiable) condition is K5 < 1 — 72, where r = (1 + «)~! is the decay rate
in Theorem @and K> collects the fluctuation constants. This holds, for example, in low-condition
regime, with a damped stepsize a < da (0 < § < 1) or with a minibatch of larger M (or K
independent multiple estimates). Complete proofs and the explicit expressions of related constants
are provided in Appendix

3 NUMERICAL EXPERIMENTS

We design our experiments to validate the theoretical alignment, scalability, and robustness of
SHANG++ and SHANG (m = 0).

For deep learning tasks, we adopt SHANG++ with three exphc1t hyperparameters (v, m), with

= 0and 8 = /7, summarized in Algorlthml where v is updated first by index sh1ft1ng Here
we fix f = «/ to simplify tuning. Although theory suggests 5§ = (1 + o )a/'), estimating o is
unreliable, and the fixed ratio provides stable performance with implicit noise scaling. Adaptive
choices of ¢ offered little practical improvement.

SHANG++ incurs no extra per-iteration cost compared with standard momentum methods: each
update requires one gradient evaluation and a constant number of vector operations.

Algorithm 1: SHANG++ for Deep Learning
Input: Objective function f, initial point xg, step size «, time scaling factor v, noise-damping
m, , iteration horizon T'.
k <+ 1,v9 < g, T1 < X0, O
while £ < T do
gk ﬁ > e VSi(ze) // stochastic gradient estimate
Uk 4= Uk—1 — S gk

1+ma

Trt1 < TaTh i — Tia s O
k<« k+1

end

return xp

Throughout this section, NAG refers to the stochastic version of Nesterov’s accelerated gradient
(Nesterov}, |[1983)) by replacing V f(x) by g(x). While SNAG refers to the method in (Hermant et al.,
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[2025), which can be treat as an alternative discretization of the HNAG flow (Appendix [E). The
stability of SNAG can be also explained with our theoretical analysis. Similarly SHB is the stochastic
version of Heavy-Ball method (SGD with momentum).

Convex optimization We first consider the family of objective functions from Gupta et al.| (2024):

fIR SR o) |z, =] <1,
d RN — K, alT) =
1+d(|z] — 1), else,

for d > 2, with gradient estimators g(z) = (1 + 0Z)V f(x), where Z ~ N(0, 1) is a standard
normal random variable. The functions f; belong to S 1, with L = d(d — 1).

(d=4,0=0) (d=4,0=10) (d=4,0=50)

— SGD
— NAG
SNAG
107°{ — AGNES
—— SHANG

-1{ — SGD
— NAG

SNAG
10-2{ — AGNES
—— SHANG

X 1071 — SGD
= —— NAG
SNAG
10724 — AGNES
—— SHANG

—— SHANG++ —— SHANG++ —— SHANG++

-3 1072
10° 10 10? 10° 10! 102 10° 10* 10! 102 10° 10¢ 10°

Iteration k Iteration k Iteration k

(d=16,0=0) " (d =16, 0=10) (d =16, 0 = 50)

o

-3 — SGD
—— NAG

-1 —— SGD
— NAG

X 1071, — SGD
= — NAG
SNAG SNAG
10-5{ — AGNES 10-2] — AGNES
— SHANG —— SHANG
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— SHANG
—— SHANG++

3 -3
10° 101": ; klo2 10° 10! 10?2 . 10° To¢ 107 To? o ot 105
eration Iteration k Iteration k

Figure 3.1: Performance of different algorithms under varying noise levels.

We compare SHANG and SHANG++ with SGD, NAG, AGNES (Gupta et al., [2024), and SNAG
(Hermant et al.l 2025) under o € {0, 10,50} and d € {4,16}. The parameters used follow their
optimal choices for the convex case. All simulations are initialized at zo = 1, and expectations are av-
eraged over 200 independent runs. See Appendix [A.T]for the full experimental setup, hyperparameter
choices, and results.

In Figure@ both SHANG and SHANG++ remain stable as the noise level o increases, whereas
NAG diverges under large noise. SHANG is generally very competitive, with SHANG++ showing
consistently slightly better behavior than the other accelerated stochastic schemes. These results
suggest that the proposed methods are reasonably robust to noisy gradients with modest tuning, while
maintaining accelerated-like behavior in the high-noise regime.

Classification Tasks on MNIST, CIFAR-10 and CIFAR-100 We benchmark on three train-

ing tasks: LeNet-5 on MNIST (LeCun et al] [1998), ResNet-34 (He et al 2016) on CIFAR-
10 (Krizhevskyl, 2009), and ResNet-50 on CIFAR-100. Each model is trained for 50 epochs, and

results are reported as mean = s.d. over five random seeds.

For hyperparameter selection, SHANG and SHANG++ used a@ = 0.5 with  chosen from grids:
{1,1.5,2} for LeNet-5, {5,10} for ResNet-34, and {10, 15} for ResNet-50. SHANG++ fixed
m = 1.5. AGNES followed defaults (7, «,m) = (0.01,0.001,0.99); SNAG used (7, 3) with
n € {0.5,...,0.001}, 8 € {0.7,0.8,0.9,0.99}, where (0.05, 0.9) performed best, consistent with
prior CIFAR work. Other baselines used 7 = 0.001 and momentum 0.99 when applicable. After 25
epochs, all baseline learning rates (including AGNES’s correction) were decayed by 0.1, while v was
doubled for our methods. Full details are in Appendix [A.2]

Figure [3.2]reports SHANG with (c,7) = (0.5, 10) and SHANG++ with (e, v, m) = (0.5, 10, 1.5),
while Figure reports the corresponding results for («,y) = (0.5,15) and («a,vy,m) =
(0.5,15,1.5). Figure shows the training and test losses of ResNet-34 on CIFAR-10 under
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Figure 3.2: Training loss (left) and test loss (right) in log scale (running average with decay 0.99) on CIFAR-10
with ResNet-34, for batch sizes 32 (top row), 50 (middle row), and 256 (bottom row).

different batch sizes, with all algorithmic hyperparameters kept fixed across batch sizes. Batch
size strongly affects gradient variance: smaller batches increase noise, larger batches reduce it. At
256, all methods are stable and gaps narrow; at 50, NAG, SNAG, and AGNES oscillate with wider
bands (AGNES also plateaus higher). At batch size 32, differences among methods become more
pronounced.

Even under extreme noise, SHANG and SHANG++ consistently outperform other first-order stochas-
tic momentum methods. Notably, when the batch size falls below 50, AGNES and SNAG lose
their acceleration advantage over SGD, whereas SHANG, SHANG++, and Adam still offer clear
improvements (though Adam is not directly comparable). As also observed by [Hermant et al.| (2025,
non-variance-reduced accelerated methods often lose acceleration at very small batch sizes; however,
SHANG and SHANG++ appear to remain robust down to relatively smaller thresholds.

Figure 3.3 shows ResNet-50 training and test losses on CIFAR-100. SHANG and SHANG++ deliver
competitive or superior performance to non-adaptive baselines. An interesting observation is that
SGD attains the lowest test loss, yet this does not correspond to the best classification accuracy
(see Figure [A3). This mismatch is aligned with prior findings: SGD on cross-entropy with hard
labels is a likely cause of “confidently wrong” predictions (Thulasidasan et al] [2020). Table 31]
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Figure 3.3: Training, test loss (log scale, running average with decay 0.99) on CIFAR-100 with ResNet-50
(batch size 50).

further summarizes the mean final test accuracy over five independent runs: SHANG and SHANG++
are comparable to Adam, often surpass AGNES and SNAG, and clearly improve over SGD and
NAG. The slightly lower absolute accuracies arise because we use intentionally small batch sizes and
only 50 training epochs to stress-test optimizer stability rather than to reach full convergence; with
standard, longer training schedules, baselines attain their usual performance and the relative ranking
of the methods remains essentially unchanged.

Table 3.1: Test accuracy of SGD, SHB, NAG, Adam, AGNES, SHANG, and SHANG++ on MNIST
(LeNet-5), CIFAR-10 (ResNet-34), and CIFAR-100 (ResNet-50). Here b is batch size.

SGD SHB NAG Adam AGNES SNAG SHANG SHANG++

LeNet-5 91.07 9898 989 99.07 9888  99.07  99.06 99.11
(b=50) +0.11 =£0.05 =£0.08 =+0.07 £0.09 +£0.08 =+0.02 +0.03

ResNet-34 81.74 789 81.28 86.99 6745 75.58 84.5 85.36
(b=32) +0.38 =£1.67 +£1.58 +0.14 7.7 =£6.02 +2 +1.42
ResNet-34 79.91 84.59 86.43 8738 7049  77.65 87.15 87.4
(b=50) +0.11 =+2.62 =+0.81 +0.26 +£2.51 +2.7 +0.82 +0.5
ResNet-34 68.49 87.6 87.61 8823 77.84 84.5 86.67 86.57

(b=256) +£0.19 =+0.27 +0.29 =+0.11 +£3.7 +0.92 +0.13 +0.17
ResNet-50 58.31 58.17 57.66 59.87  42.82  49.51 63.31 65.02
(b=50) 051 =£1.99 =+1.44 +0.61 £1.24 +£1.56 +0.93 +1.25

Robustness to Multiplicative Gradient Noise Our theory predicts that time-scale coupling («, )
in SHANG and (o, v, m) in SHANG++ mitigates multiplicative gradient noise. To test this, we fix
one hyperparameter configuration per optimizer and evaluate across o € {0,0.05,0.1,0.2,0.5}. The
effective noise is higher than nominal o, since minibatch SGD adds sampling noise. This one-shot
protocol isolates each optimizer’s robustness without re-tuning. All experiments use CIFAR-10 with
ResNet-34, batch size 50, the same settings as subsection[3] trained for 100 epochs and averaged over
three seeds. Final validation error at epoch 100 is reported; full setup and hyperparameters are in

Appendix [A-4]

Figure [3.4] shows the mean final classification error rate under varying noise levels, and Table

-2 reports the relative degradation A(o) = (E(o) — E(0))/E(0), where E(c) denotes the mean

classification error rate (averaged over three seeds) at noise level o.

1. At o = 0, SHANG and SHANG++ reach 15.9%, outperforming SNAG (17.5%) and AGNES
(20.5%).

2. At o = 0.1, SHANG slightly improves to 15.6 %, SHANG++ remains stable at 15.9%, SNAG
marginally improves to 17.1%, while AGNES degrades to 23.8%.

3. Ato = 0.5, SHANG and SHANG++ remain near 16%, while SNAG rises to 17.6% and AGNES
drifts to 23.2% (=13.5% relative increase).
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These results align with our Lyapunov analysis: time-scale coupling («,y, m) suppresses o am-
plification, ensuring stable performance without re-tuning. SNAG is stable but less accurate, while
AGNES is most sensitive to noise.

Figure 3.4: Validation error under varying mul-

Table 3.2: Relative change in final classification tiplicative noise level o. Lower is better.
error compared with o = 0 (lower is better; negative
values indicate improvement). Values are averaged 5 Robustness to multiplicative noise
over three seeds. S
E 22
Method Relative degradation A(%) at o g —e— AGNES
005 01 02 05 £” S
5 —e— SHANG++
SHANG -25 =21 -10 -0.2 LA
SHANG++ +3.4 —0.6 —2.1 —-0.9 S
AGNES ~ —144 4160 +146 +135 Er] <
SNAG 20 21 —50 07 YY" Noselevelo

Image Reconstruction with Small Batch Size We further evaluate our algorithms on a generative
task of image reconstruction with small-batch training, using a lightweight U-Net
on CIFAR-10 with batch size 5. SHANG and SHANG++ are compared against SNAG,
AGNES, NAG, SGD, SHB, and Adam, with full experimental details provided in the appendix @
Figure[3.5]shows training and test losses. Adam achieves the lowest loss due to its adaptive learning

CIFAR-10 UNet (batch=5) Training Loss CIFAR-10 UNet (batch=5) Test Loss

107! 10t
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o 107 —— SHANG++ o — SHANG++
3 3
| -
104 VAN
1074
0 100000 200000 300000 400000 500000 o 100000 200000 300000 400000 500000
Training steps Training steps

Figure 3.5: Training and test loss (log scale, running average with decay 0.99) on CIFAR-10 using U-Net with
batch size 5.

rate, but both SHANG and SHANG++ outperform all other non-adaptive methods. In particular,
SHANG-++ shows stable and efficient training even in this high-noise regime, highlighting its practical
robustness. We additionally include a sanity-check experiment on ImageNet-100 with ResNet-34
in Appendix [AZ3] which shows that SHANG and SHANG++ remain competitive with classical
momentum methods on this larger-scale task, and we also conduct a comparative hyperparameter
study, with full settings and results given in Appendix [A.7]

4 CONCLUSION

We presented SHANG++, an accelerated first-order stochastic optimizer for robust and simple
training under multiplicative noise. Theoretically, it retains the optimal accelerated rate in both
convex and strongly convex settings under the MNS condition. Empirically, across convex tasks,
image classification, and generative reconstruction, one-shot hyperparameter choices sustain near
noise-free accuracy (within 1% for o < 0.5). Compared with other stochastic momentum methods,
SHANG-++ demonstrates enhanced stability under small-batch or high-noise conditions, with accuracy
exceeding baselines and comparable to Adam. These properties make SHANG++ a practical, scalable
optimizer for large-scale, noise-intensive training. Its empirical success on nonconvex problems
further suggests that extending the theory beyond convexity is a natural next step.

10
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A SUPPLEMENT OF EXPERIMENTS
Here are some experimental setup and results that are not presented in the main text.

A.1 SUPPLEMENT OF THE CONVEX EXPERIMENT

For the convex example in Section[3] we compare SHANG and SHANG++ with SGD, NAG, AGNES,
and SNAG under 0 € {0,10,50} and d € {4,16}. The parameters used follow their optimal
2
choices for the convex case. For SHANG, o}, = I%&-l’ Y = a2L(1 + ¢%)? and B, = OJ”;%;
2 2
For SHANG++, a, = 727, m = 1.5, 7 = 1722—(1 + 0)2L and 3, = 12)%%; For AGNES,

1+mag
we adopted the best-performing parameters reported by the authors for this problem: learning rate
n = m, correction step size o = 1;’7, and momentum my = kiﬁ For SNAG, we use

_ 1 _ 1 k+1 o _ _ _k*/(k+D) :
5= Ttory Mk = T3o?2 2 o =1 a = TR (i) For NAG, we used a learning rate
of m and momentum parameter of kLH SGD was also run with a learning rate of ﬁ
All hyperparameter notations match those used in the original publications; note, however, that
symbol meanings may vary across algorithms (e.g., a denotes the discretization step size in SHANG,
while in AGNES it refers to the correction step size). All simulations are initialized at xo = 1, and

expectations are averaged over 200 independent runs.
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Figure A.1: Log-log plots of E [f4(x)] for SHANG++ using m = 0.5 (black), m = 1 (olive),
m = 1.5 (orange), m = 2 (blue), m = 2.5 (green), m = 3 (red) with d = 4 (Top Row) and d = 16
(Bottom Row), under noise levels o = 0 (Left Column), o = 10 (Middle Column) and ¢ = 50 (Right
Column). From the figures, it can be observed that m < 1.5 provides a good choice.

Figure [A.T] highlights SHANG++’s stability across m: values m < 1.5 consistently yield strong
performance. Our theoretical variance-decay predictions directly manifest in practice.

A.2 SUPPLEMENT OF CLASSIFICATION TASKS

Setup. We benchmark SHANG, SHANG++, Adam, SNAG, AGNES, NAG, SHB (or SGD with
momentum) and SGD on the following tasks: training LeNet-5 on the MNIST dataset, training
ResNet-34 on the CIFAR-10 image dataset and training ResNet-50 on the CIFAR-100 dataset with
standard data augmentation (normalization, random crop, and random flip). All models have pretrain
set to True. For each dataset, we run all algorithms for 50 epochs with batch size 50 and report
averages over five trials. After 25 epochs, the learning rates for all baseline methods (excluding
SHANG and SHANG++) are decayed by a factor of 0.1; AGNES’s correction step size is similarly
reduced. For our methods, the time-scaling factor 7 is doubled after 25 epochs. This learning-rate
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schedule follows |Gupta et al.| (2024) and helps the baselines achieve better performance on deep
learning tasks. SHANG and SHANG++ do not use an explicit learning rate; their effective learning
rate is controlled by the time-scaling parameter -y, with effective learning rate 1/ (see Algorithm .
To implement an analogous decay, we increase y after 25 epochs (thereby reducing the effective step
size 1/7), so that all methods undergo a comparable mid-training learning-rate reduction.

MNIST LeNet5 (batch=50) Training Loss MNIST LeNet5 (batch=50) Test Loss
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100 —— SHB
— 100 — NAG
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© 107 ©
Q —— SGD 9 SNAG
o —— SHB o ADAM
L2 102{ — NAG ~ o —— SHANG
" —— AGNES \ " —— SHANG++
wn w
o SNAG O 10!
10 ADAM -
—— SHANG
—— SHANG++ s ~ —_—
1074
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Training steps Training steps

MNIST LeNet5 (batch=50) Test Accuracy

=
S
3

®
3

S

> —— SGD

g ® — SHB

3 — NAG

é 40 —— AGNES

2 SNAG

@ " ADAM
—— SHANG
—— SHANG++

0 10000 20000 30000 40000 50000 60000
Training steps

Figure A.2: Training loss (log scale) (left), test loss (log scale) (middle) as a running average with
decay rate 0.99, and test accuracy (right) on the MNIST dataset using LeNet-5 trained with batch size
50. The compared methods include SGD (gray), SHB (black), NAG (olive), AGNES (blue), SNAG
(orange), Adam (yellow), SHANG (green) and SHANG++ (red). In SHANG, («,y) = (0.5,2) and
in SHANG++, (o, v, m) = (0.5,2,1.5).

For hyperparameter selection, our two methods were evaluated under three settings: a = 0.5 with
~v € {1,1.5,2} for LeNet-5, v € {5,10} for ResNet-34 and v € {10,15} for ResNet-50. For
SHANG++, we fixed m = 1.5. AGNES employed the default parameter configuration recommended
by its authors, (1, ,m) = (0.01,0.001,0.99), which has demonstrated strong performance across
various tasks. For SNAG, we adopt the two-parameter variant (), 5) proposed by the original
authors for machine-learning tasks. Hyperparameters are selected via a grid search, learning rate n €
{0.5,0.1,0.05,0.01,0.005, 0.001} and momentum 5 € {0.7,0.8,0.9,0.99}. Among these, (7, 5) =
(0.05, 0.9) yields the best performance, which coincides with the parameter choice recommended by
the original authors for training CNNs on the CIFAR dataset. All other baseline algorithms used a
fixed learning rate of n = 0.001; for those involving momentum, the momentum coefficient was set
to 0.99.

Results. Figures[A2] [A3] [A:4] and [A-5] depict the evolution of training/test loss and test accuracy
across datasets. Overall, SHANG and SHANG++ achieve competitive or superior performance
compared with non-adaptive baselines.

A.3 BATCH-SIZE SCALING ON CIFAR-10 (RESNET-34)
To further assess the robustness of our algorithms to stochastic gradient noise, we evaluate all

methods on CIFAR-10 with ResNet-34 under three batch-size settings: 32, 50 and 256. Smaller
batches introduce higher gradient variance, whereas larger batches reduce the noise level. Importantly,
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Figure A.3: Test accuracy on CIFAR10 with ResNet-34 and CIFAR-100 with ResNet-50.

all hyperparameters are kept fixed across batch sizes to isolate the effect of noise on algorithmic
performance.

Setup. All data augmentation and experiments setting follows Appendix [A.2] Hyperparameters
are held fixed across batch sizes: for SHANG/SHANG++ we use («,y) = (0.5,10)/(c,y,m) =

(0.5,10, 1.5), and all baselines reuse their best settings from Appendix [3| No re-tuning is performed
when switching the batch size.

Results. Figure[3.2]shows the training/test dynamics.

Small batch (32). Under the smallest batch size, classical momentum variants SHB, SNAG
and AGNES exhibit a clear loss of acceleration relative to SGD, while SHANG and
SHANG-++ consistently retain accelerated convergence.

Small batch (50). NAG, SNAG and AGNES exhibit larger oscillations and wider variance
bands; AGNES also shows a higher error plateau. In contrast, SHANG/SHANG++ produce
the lowest losses among non-adaptive methods and maintain narrow shaded regions, indicat-

ing markedly improved stability across seeds. Adam remains competitive in accuracy but
with higher variance in test loss.

Large batch (256). The gap between methods narrows: all optimizers become more stable
and the curves cluster. SHANG/SHANG++ continue to match the best-performing baselines
while preserving smooth convergence.

Robustness to multiplicative noise translates into tangible benefits in the small-batch regime: with a
single, fixed hyperparameterization (o = 0.5,y = 10, m = 1.5), SHANG/SHANG++ achieve stable
training and strong test accuracy without re-tuning, whereas competing momentum methods are more
sensitive (larger variance, higher plateaus). As batch size increases, all methods stabilize and the
performance gap diminishes, consistent with the noise-abatement expected from larger batches.
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Figure A.4: Training loss (log scale), test loss (log scale) as a running average with decay rate 0.99,
and test accuracy on the MNIST dataset using LeNet-5 trained with batch size 50. The compared
methods include SHANG (green) and SHANG++ (red) under different parameter choices.

A.4 SUPPLEMENT OF ROBUSTNESS TO MULTIPLICATIVE GRADIENT NOISE

All runs use an identical experimental setup: CIFAR-10 dataset, ResNet-34, batch size 50, trained
for 100 epochs, and averaged over three random seeds. Once initialized, no hyperparameters were
adjusted or re-tuned during the experiments. This fixed-parameter setup allows us to isolate the
effect of increasing multiplicative noise and directly observe each optimizer’s inherent stability.
Specifically, SHANG with (a« = 0.5, = 10), SHANG++ with (o = 0.5,7 = 10,m = 1.5),
AGNES with (n = 0.01,« = 0.001,m = 0.99) and SNAG with (n = 0.05,m = 0.9). Note that
the actual gradient noise level experienced by the optimizer is higher than the nominal o, because
minibatch stochastic gradient descent inherently introduces sampling noise. The multiplicative noise
we introduce,
glar) = (1+ 0N (0, 1)V f (),

is therefore imposed on top of this intrinsic minibatch stochasticity. We record the final validation
error at epoch 100.

Discussion. The empirical trends align with our Lyapunov analysis: coupling the time scales
(a,y,m) suppresses the o2 amplification and yields stable behavior across noise levels with-
out retuning. SNAG—while reasonably stable—does not match the consistently low error of
SHANG/SHANG++, and AGNES is the most sensitive to increased multiplicative noise.

A.5 ADDITIONAL CLASSIFICATION TASK ON IMAGENET-100 WITH RESNET-34

We further evaluate all methods on the ImageNet-100 subset using ResNet-34 with
input size 224 x 224 and batch size 64. We adopt the standard ImageNet data augmentation: random
resized crops to 224 x 224 with scale in [0.08, 1.0], random horizontal flips, and normalization with
the ImageNet mean and standard deviation. The model is trained for 40 epochs. For hyperparameter
selection, SHANG uses (a = 0.5,y = 3) and SHANG++ uses (a = 0.5,y = 3,m = 1). AGNES
follows the default (n = 0.01,« = 0.001,m = 0.99); SNAG uses (n = 0.05,3 = 0.9). Other
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Figure A.5: Training loss (log scale), test loss (log scale) as a running average with decay rate 0.99,
and test accuracy on the MNIST dataset usingCIFAR-10 dataset using ResNet-34 and CIFAR-100
dataset using ResNet-50 trained with batch size 50. The compared methods include SHANG (green)
and SHANG++ (red) under different parameter choices.

baselines use 7 = 0.001 and momentum 0.99 when applicable. After 25 epochs, all baseline learning
rates (including AGNES’s correction) are decayed by a factor of 0.1, while ~ is doubled for our
methods. Due to computational constraints, we report a single representative run.

Figure[A.6]shows the training/test loss and test accuracy. SHANG and SHANG++ achieve test losses
comparable to the best classical momentum baselines (SHB and NAG), while clearly outperforming
AGNES, SNAG, and Adam. In terms of final test accuracy, SHANG and SHANG++ reach about
98.1%, within roughly 0.4 percentage points of SHB (98.49%) and NAG (98.53%). This is unsur-
prising: on this relatively benign ImageNet-100 setup with a moderate batch size, all well-tuned
momentum methods behave very similarly, and classical SHB and NAG are known to be extremely
strong baselines. Our goal here is not to dominate them in this regime, but to demonstrate that
SHANG and SHANG++ remain fully competitive on a larger-scale task. Their main advantages
appear in the noisier, small-batch regimes (e.g., CIFAR-10 and U-Net) highlighted in the main text,
where classical momentum becomes less stable.
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Figure A.6: Training loss (log scale), test loss (log scale) as a running average with decay rate 0.99,
and test accuracy on the ImageNet-100 dataset using ResNet-34 trained with batch size 64.

A.6 SUPPLEMENT OF IMAGE RECONSTRUCTION

We further evaluate our algorithms on a generative task—image reconstruction with small-batch
training, which introduces substantial gradient noise. Specifically, we train a lightweight U-Net (Ron-
neberger et al.l 2015) (base channels 32 — 64 — 128, with bilinear up-sampling and feature
concatenation) on CIFAR-10 using batch size 5. We compare SHANG (o = 0.5,y = 0.5) and
SHANG++ (o = 0.5,y = 0.5, m = 1) against SNAG, AGNES, NAG, SGD, SHB, and Adam. All
other experimental settings follow those in earlier sections.

A.7 HYPERPARAMETER COMPARISON

To identify optimal hyperparameter configurations for our stochastic algorithms, we perform grid
searches over a € (0.005,0.1) and v € (0.5,30) on MNIST and CIFAR-10 (Figures[A.7). For
SHANG++, we additionally vary m € (0.5, 3) while keeping o = 0.5 fixed. Results indicate that:
(1) @ = 0.5 and m = 1.5 are generally effective across tasks; (2) Smaller « values work well for
LeNet-5, while larger y are preferred for deeper networks like ResNet-34; (3) SHANG++ exhibits
low sensitivity to m in practice, with performance remaining stable across tested values. These
findings confirm the practical usability and tuning simplicity of our methods.

B SHANG

B.1 MODEL

Applying a Gauss-Seidel-type scheme to discretize HNAG flow (2.3 and replace the deterministic
gradient V f () with its unbiased stochastic estimate g(xy), we can obtain the Stochastic Hessian-
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Figure A.7: Training loss (log scale) on the MNIST dataset using LeNet-5 (Left column) and CIFAR-
10 dataset using ResNet-34 (Right column) trained with batch size 50. The plots show results for
SHANG (top row) and SHANG++ (middle row) under different combinations of hyperparameters o €
{0.1,0.5,0.01,0.05,0.005} (different color) and v € {0.5,1,1.5,2,2.5,5,10, 15,20} (different line
style). The left two figures show that « = 0.5 and v € {1,1.5,2} are relatively good parameter
choices. The plots in bottom row illustrate the performance of the SHANG++ method under different
combinations of v € {1, 1.5,2} (on MNIST dataset), v € {2, 5,10, 15} (on CIFAR-10 dataset) and
m € {0.5,1,1.5,2,2.5,3} with « fixed at 0.5. The differences among various m values are minor
for this task. In practice, we typically choose m = 1.5. When using a very small batch size, m can
be appropriately reduced.

driven Nesterov Accelerated Gradient (SHANG) method:

Tk+1 — Tk

R ok — 1 — Brg(Tk)
ag

Vi1 — Uk 1

has L ﬁ(karl —Vkt1) — —9(Tr11) (B.1)
(677 Yk Tk

Ye+1 — Ve

= U= Vk+1
ay,
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In the strongly convex case, we fix 7 = p and use a constant step size «; in general case, we set
= 0 and allow both a, and ~;, to vary. The coupling 8, > 0 depends on (o, %) and typically
scales as (1 + 0%)ay /vx. Consequently, SHANG reduces to a two-parameter scheme («, 3) in the
strongly convex regime and a three-parameter scheme («, v, 3) otherwise. For practical tuning, tying
B to aand v via 5 = a/~ yields an effective two-parameter («, ) algorithm. The SHANG method
for deep learning tasks is described in Algorithm 2]

Algorithm 2: SHANG for Deep Learning
Input: Objective function f, initial point x, stepsize «, time scaling factor -y, iteration horizon
T.
n<+ 0, vy x9, X1 X0
while £ < T do
gr < Vf(zk) // gradient estimate
— (673
Vk = Vk-1 = S 9k
Thi1 = gk + 19Uk — Tig SOk
k+—k+1
end
return zr

Observe that SHANG is the m = 0 special case of SHANG++. Table [B.T|summarizes the theoretical
convergence complexities and the number of tunable parameters required by leading stochastic
optimization methods under multiplicative noise. As shown, SHANG and SHANG++ achieve
optimal theoretical guarantees while significantly reducing hyperparameter complexity.

Table B.1: Assume f is L-smooth and g(x) satisfies the multiplicative noise scaling (MNS) condition
(see Definition[I.1]) with constant ¢ > 0. This table summarizes the iteration complexity of leading
first-order stochastic optimization algorithms under optimal parameter settings to reach e-precision.

Algorithm Convex Strongly Convex
SGD (1+0?%)L (1+0%) = log(2)
(Hermant et al., [2025))

2 2
NAG Vi /E o2/ 5 log(2)

(Gupta et al., [2024)

(72 0'2
AGNES R (14 62), [L10g(4)

(Gupta et al., [2024)

SNAG (1402),/L (1+02)\/%10g(g)
(Hermant et al., [2025)

SHANG (1402),/L (1+a2)\/%10g(§)
SHANG++ (1+0%)y/2 (1+”2)\/’i‘10g(%)

B.2 CONVERGENCE ANALYSIS FOR SHANG

Define the discrete Lyapunov function

* k *
EGEm) = F@h) = fla) + Slon — | (B.2)
where 2} = (2}, vi), 2 = (@, vi) and 2* = (z*, 2*). The following theorem establishes a decay

bound for E [£(2;vk)].

Theorem B.1. Let f € S, 1, (1, vi) be generated by SHANG (IBZ]) xﬁ =z — arBrg(xk) is an

auxiliary variable. Assume g(x) (defined in ) satisfies the MNS condition with constant o. Given

xa' = Uy = X,
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(14+0?)a

(1) When()<,u<L<oo,ch00sestepsize()<a§H_%\/%andﬁ: m

, we have

E[f@f) = £@*) + Ellonss - a)2] < (14 a) " gf

(2) When p = 0, choose oy, = %4-1’ Ve = ai(1+02)2L and By, = (Hf;%, we have

2 1

(k+2)(k +3) & =003)

E[f(@f) = F@) + 25 oes —a*|2] <

where & = f(x0) — f(2*) + §llzo — 2*||* and £ = f(w0) — f(z*) + Flwo — ¥

When ¢ = 0, SHANG reduces to the deterministic HNAG method analyzed in|Chen & Luo|(2021)).

Before presenting the proof of Theorem [B.T] we first establish several auxiliary lemmas, beginning
with one that relies on conditional expectations under the MNS assumption.

Lemma B.1. Ler (Q, F,{Fj}k>0,P) be a complete probability space with filtration {Fy}i>o.
Suppose xy, is generated by SHANG/SHANG++, g(x,) denotes the stochastic estimator of V f (xy),
then the following statements hold

1. Elg(zy) | Fu] = Vf(zk).

2. E[llg(zx) = Vf(xp)l?] < o?IVF(ze)]>
3. E[(g(ax), V()] = [V f(z)]?

4. E [[lg(zp)lI?] < A+ *)[Vfzp)l?

Proof of Lemma|B.1} First and second claim. This follows from Fubini’s theorem.

Third claim. For the third result, we observe that since f is a deterministic function, V f(xy) is
Fi-measurable, then, by the Theorem 8.14 in Klenke| (2013)), we have

E [(g(zx), Vf(z))] = E[E[(g(zx), V[ (zr)) | Fill = E[E [g(ax) | Fi], VI (zx))] = E[IV f(2x)]?]
Fourth claim. For the fourth result, using the previous results, we have

E [llgle)l*] = E [llg(zr) — VI (z)lI* + 2(g(@r), VI (21)) = [V f (2)[]]
=E [llg(zx) = VI (@) P] + E[2(g(wr), VI (@r))] = IV f ()]
< PV @i)ll? + 2V @)1 = [V f ()l
= (140 IVf (i)l

O

Under the MNS assumption, this setup of auxiliary variable x™ yields the following descent lemma
for smooth objectives.

Lemma B.2. Suppose that z;7 = x), — ng(zy,), f € Ci’l. Given 0 < n < , we have

1
L(+o?)

E [f(z) = f(@)] < fla) — f(=") = gHVf(wk)ll2

Proof of Lemma|B.2} Using the L-smoothness of the function f:
L
F@) = f@) = (Vf@)y—a) < Sy —=[* Yo,y R (B.3)
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and Lemma under the assumption of 0 < n < m, we can obtain the desired result

E ()] <E [ o) — (ig(en). V1) + £ oo

— o) ~ Eltnglen). VS @) + B | gt

2 0_2
< fa) ~ Vol + PEEETD 19 pay)?
0_2
= fw) — 1~ LTI 9 p a2

2
< fex) = IV @)

O]
Define an auxiliary variable :17: =z, — aiBrg(xy), substitue it into (Eq i yield:
Lhtt 7 Ty —x;ﬁ =V —x
an k k+1
Vgl — Uk M 1
——— = —(Tpq1 — Vpy1) — —9(Trp1 (B.4)
o ’yk< + +1) ’ykg( +1)
Y41 — Vk
— = H = Vk+1
Qg

The next lemma controls the decay of E [£ (2], 15 r+1)]-

Lemma B.3. Let f € S, with0 < i < L < oo, Lyapunov function £ is defined by (B.2). Given
(U, 952) (T+1,Vk+1) are generated by and JUL1 = Tht1 — Qpt1Bk+19(Tp1). Assume
0 < aps1Bri1 = b < prrygey, we have

(1+ ax)E [E(z,j]rl; 'Yk+1)]

1,02(1+ 02 a
< 8l + & | () (1t a9/ ) P - S ks = v 2 = Dylaf o)

proofofLemma@ By Lemma if 0 < apfr = apr1Prr1 < m we obtain the one-step
decrease

E [E(z 15 m+1)] — G55 )

<E [5(2k+1;7k+1) —&(zf ) — kP IV f(@rs1)|?

2 (B.5)
— !
=E [5<zk+1;vk> () + BT P g )2
Applying the Bregman divergence identity [Chen & Teboulle| (1993)):
(Vf(y) = Vf(2),y = 2) = Dy(2,y) + D(y,2) = Dy(z,2) V,z,y,z €R? (B.6)
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together with the representation £(z;v) = Dg(z, 2*; ) and the update rules into (B.5)), we obtain
E [E(zf )] — €2 m)

<E [(VE(zkt1;7k), 21 — 2 ) — De(z, zig1; ) +

Vkt1 — Yk w2 kB
5 Ilowsr — a7 5
<E[(Vf(@rs1) — V@), 2hr1 — 2 ) + Y (vrrr — 2% vkgr — ve) — De (2], 20413 70)

+MHW+1 o O‘k‘TBkva(ka)HQ
=E[-ap(Vf(zpt1) — V(@) zp11 — %) + an(Vf(@ps1), 06 — %) — e {g(Tht1), Vpp1 — )

Q. — Tk
w\lvm —a*|* = De (%, 2115 )

||Vf($k+1)\|2

*
Fappu(ver1 — 25, Tpg1 — Vpy1) +

o B

SV f (i) P

B.7)
By the definition of the Bregman divergence and the p-strong convexity of f, we have

(Vf(@r41) = V(@) 2h41 — 2%) = Dy(@p41,37) + Dy (2", Trr1)

|2 (B.8)

> Dy(Tpq1,2") + ngkH -

and
Qp

2
We denote Fj 1 = o(z0,- -,y 1) the o-algebra generated by the k + 1 first interates {z;}**]

generated by SHANG. Since f is a deterministic function, vy, — x* is Fj1-measurable, then
E[(9(zr+1), 06 — 27)] = E[E [(g(zr+1), v& — 27) | Froqr]
=E[(E [9(zr+1) | Frs1],ve — 27)]
=E[(Vf(@k+1), 00 — 27)]

Now, we apply this result in reverse, and using Young Inequality, Cauchy-Schwarz Inequality to
obtain

app(vpsr = 2 w1 = vp1) = == ([Tt — 22 = [2rpr = opsa |2 = Joea — 2*[1) B9)

E[ap(Vf(@rs1), v — @) — an{g(@p41), Vo1 — )]
= E[ag(g(rt1), vk — vky1)]

O‘i 2, Tk 2
<E |5 g@e+)I” + 5 1ok — vea |l (B.10)
2’}% 2
oz (1+0°) Vi
<& | v )l + o - ol
Yk 2

In addition, using the identity of squares (for v) and Bregman divergence indentity (for 1), we
have the component form of

De(zf, zes1ime) = Dy (@, weg1) + %kHUk — g |? (B.11)

Substituting (B.8}{B.TT) back into (B.7), we can obtain

E [E(z i) — €z 5)

1,a2(1+ 062
<E|—arDf(wrer, ") + 2(k<%) — BV f ()2
o . AL
~ 2 oy — 22 = 2 arss — v = Dyl @) (B.12)
[ 1,02(1+ 02
<E|-apDys(z),,2") + 2(16(%) — (14 ar)owBi) |V f (zr41) |12

Ak Vi+1 Qg
*THWH —a*|® - T”xk+1 — vy | = Df(l’:, $k+1)]
By moving E [£(2], ;Y1) = Dyp(a;, 1, 3%) + 252 [lugg1 — 2*[|?] to the left side of the inequal-
ity to obtain the desired result. O
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Now we begin to prove Theorem [B.T]

Proof. (1). When 0 < u < L < oo, sety = . By Lemma if af < m, we have

(1+ QB [z )]

1,02(1+0?) afp
<E(zfp) +E 5(7 — (14 a)aB) IV f(zes1) I — 7||$k+1 —vps1l® = Dy, wpq)
(B.13)
2 2
Assume o8 = (1+<Z Ja® (1+1172)L, i.e., the step size satisfies 0 < a < H%\/% to ensure that all

the coefficients of the terms on the right side of the inequality, except for £ (z,j, [t), are non-positive.
Thus,

E[E(z 5] <1 +a) E(5n) < 1+ o) *TE (20 1) (B.14)

(2). When po = 0. Assume o = ki-s—l Ve = ai(l + 02)2L and 5, = (ny’% Using Lemma
to obtain
k+1 2

E [5(2«;;1;%“)} < g(%j;’}%) < )5(2’0;’}/0) (B.15)

(k+2)(k + 3
O

Corollary B.1. Under the setting of Theorem[B.1| SHANG achieves an e-precision solution within
the following number of iterations:

A+o?)ou,

(1) When p = 0, with oy, = k—il Ve = ai(1+02)2L and By, = o

k> \/Z(f(xo) — f(@*) +2(1 + 02)%Llzo — 2*||?)

3

(2) When 0 < i < L < 00, with & = 3\ /F and f = 14702,

k> <1+02>ﬁlog (f(%) _f<f”*>+‘£llxo—m*2) .

3

Corollary B.2. In the setting of Theorem f(as;i') 8 fa).

proof of Corollary[B.2] We assume that all the conditions of Theorem [B:T|have been met, we have
E[| flzi) = f(@) [] =E[f(=) - f(a")] < O¢*

holds for some positive constant C'. Here 0 < g < 1 is the decay factor. In fact, ¢ = (14 14-% \/% )71
2

m in convex cases. Since

in strongly convex cases and g =

P (Jim 1) # %)) = (tmsup | flaf) - 7[> 0)

k— o0

k—o0

P (U limsup| f() ~ /(@) [> }1)

n=1
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For any fixed ¢ = % > 0 and for any N € N, we have

P (limsup | f(z)) — f(@*) |> €> <P(3k>N st f(zf)— f@*)[>e)

k—oc0

=P | JUs@)—ra)[>e}

where in the penultimate step we use Markov’s inequality. For a fixed e = 1/n, the inequality above
holds for any N. Letting N — oo, the right-hand side converges to 0, hence the probability on the
left-hand side is zero. Since

(i fa) # 1)} = U {tmsup |7 — £ = 1/},

ne—1 k—oc0

taking a countable union over all e = 1/n yields P(limy_, f(z) # f(2*)) = 0. ]

C SHANG++

C.1 PROOF OF THEOREM 2]

Setting v = 1, SHANG++ (2:4) can be rewritten in the following equivalent form:

+
BTk — gy — 2
5 +
Vg+1 — Vg 1 C.1
———— = Tpq1 — Ukl — —9(Thy1) €D
« e

Ty = Thp1 — aBg(Trer)

&

where & = [l

1+ma or o =

For this equivalent form of SHANG++, we obtain the following convergence result.

Theorem C.1. Let f € Su,1- Given xg = vy = xo, suppose (T, vy) are generated by (-) wzth
g(x) defined in (|1.2) and MNS . holds Given 0 < m < 1, if the step size satisfies o = —2—

1-ma
. ~ 1
with 0 < & S 1402 \/Zandﬁ W’ then

p(1+ a)

p(1+ a)
2(1 + ma)

B[ ) - 1) + o = 7] < (14)*(Flan)—F(2*)+ 2 s =),

Define the discrete Lyapunov function

p(l + o)

* (|2
_— — C.2
2(1 —|—mo¢) ||Uk * H ( )

E(zlsp) = fz)) = f(@™) +
The next lemma controls the decay of E [£(z;, 15 1)].
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1404
1405
1406
1407
1aos (14 (1 +ma)a)E [E(z ;1)) — EG=;

1409 k;+17:u Zk; 7:u’)

:ﬂ? <E|-(1-m)aa(f(zi,) - f(z*")) - %Hvk — @i

1412 aa(l+o%) @

- ~Dyaf i + (CUET R0 (14 0)@) 19 () P
1414

1415

1416

1417

1418

1419 proof of Lemma[C] By Lemma if0<ap < m, we obtain the one-step decrease
1420
1421
1422
1423
1424
1425
1426
1427

1428 =+ +
E|& : —E&(z;
e [ (2 1) = E(z5 )

ap
:22? <E [(VE(zk41; 1), 2k11 — 21 ) — De(2, 213 1) — 2||Vf($k+1>||2:|
1432 [
1433 — B i
1434 -
ap
1435 *7||Vf($k+1)H2
1436

s . p(l+a)
122; =E _04<Vf($k+1) = Vf(@*), v — Tpp1) + 0T ma)

1439 af
a0 —De (2, 213 1) — 7||Vf(33k+1)||2

::2; =E [_d<vf($k+1) - Vf(l‘*),xk-i-l — x*) + (1 + a)d(Vg(xk+l)7vk — Uk+1> _ ad<g(xk+1)’ vk — 1‘*>

- " «Q
5 (1l oo — ) — De(ef anin) - IV o))
1444

1445
1446 where in the last step, we rewrote the coefficient as «

1427 E[(Vf(@rg1), 00 — 2%)] = E[{g(zh41), v6 — 27)].
1448 Using (B8} [B9) and [B-TT), we further bound (C4) as
1449
1450
st E[E(l3m)] - €50
1452 ) X (1
1453 = E|—aDj(zrg,27) -
1454

p(l+a)
1455 -D (.’L'+,£L'k 1,/1)_7
e Pl Tt 2(1 + ma)

1457 +(1 + )a(Vg(xri1), vk — Vpg1) — @@(g(xpq1), V8 — )]

Lemma C.1. Let f € S, 1 with0 < i < L < oo. Lyapunov function & is defined by (C2). Given
(x;, T, Uk), (:czﬂ, ki1, Vpt1) are generated by . Assume 0 < a8 < m we have

E[E(zf, 5 m)] —E(5Fn) <E [5(2k+1;ﬂ) —E(zm) — 6;6|Vf($k+1)||2] (C3)

Expand it yields

p(l+a)

(VI(@e) = V@), e — ) + (1+ma)

(V41 — 2%, V1 — vk) — De (2, 213 1)

1
<Uk+1“x*vxk+1“Uk+1‘_};9($k+l»

(C.4)

p(dta) w(l + «)a, and use

(1+ma)

*H2 o /,L(l + Oé)d

a)a
[vk1 — 9

ad
lonss = w2+ = s — |2
aB
[or — vrga |1 = 7\|Vf($k+1)||2
(C.5)
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For the terms in last line, using the update for v, in (C.I)) yields the following bound.

E[(14 a)a(g(@ri1), vk — vrs1)]

[ N 1 Vp — U
=E|(1+ a)dap(-g(@pe), =)
I 1 o
(1 +a)aap 1 2, Uk~ Uktla Uk — Ukt1 1 2
e E B — — — _ —
S (gl | = gt )
[(1+ a)aa (1+a)ap (14 a)aau
= B | I ) P+ S o — v 2 - S s
[aa(l+0?) 0% 2, (+a)u 2
<E|————||V —_— ———||op, —
< B | 2T ) + G o) + g el — ol
1+ a)aa
—%”xkﬂ — v |?
(C.6)
~ 2~
where in the last step, we split the coefficient of ||g(zx41)/? into 5, and %, and then use

Lemma[B:I]to control the first term.

By the update for vy, 11, we have v, — v* = (1 + @) (Vi1 — Tp+1) + (X1 — %) + %g($k+1) and
U — Tpt1 = (14 @) (Ukg1 — Th41) + 5 9(Tk11), then

E[—1%§<g(xk+¢),vk-v*ﬂ

- e
=E |—ad(g(zr11), (1 + a)(vgs1 — Trg1) + (T — 27) + ;9($k+1)>
~ o ~ * 04261 2
=E *Mﬂﬁﬂﬂﬁﬂil+aXWﬁ1*mmﬂ>*aa@@%H%$H1*$>*‘;ﬁ@@wuw

QL a a
=E ‘5’(“H};g($k+1)-F(1'+'a)(Uk+4 —'$k+4)H2-%H};9($k+1)H2-%|K1'+-a)(vk+1 — z41)|?)

- L afa 9
~06(V f(zin). 7her —27) = © (i)

L 9~ ~ 2
QL oo a(l+a)’p
=E —7””1@ — wpp|® + ﬂ“g(mkﬂ)HQ + f””k—&-l — zpp?

- N N a’a
~ad(Ds(ons,) + Dyl onsn) - oo P

~ 2~
(0% a“o
<E | =S o = arll? = S g

a(l+ a)?
2+ Ly ?

- 21 2
- ad
~aaD; (o) = “E o — |
(C.7)
Substituating and (C.7) back into (C.3), we have
E [E(zf 5 m)] — E(z55 1)
[ B 1+a)a a
—E |-+ @)aDy (e - P e Sy
st e (G0 t0?) aB .|
Df(xk,xk_,_l,u)—l— ( 2 9 )”Vf(xk-i-l)‘l | (C.8)
[ N w1+ a)a ap
—E [+ a(f i) - f@) - B e By
ao(l + o2 af |
~Dyfatansrin) + (P - )9 (o) P
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Using Lemma[B2]to obtain

E [g(zjktrl; M)] - S(Z]j, M)

<E |-+ a)alf(atn) ~ £@) ~ 6 E P o a2 = By )2
~Dytaf i) + (UG - P14 1+ a) 19 ) o)
= B [~(1+ ma)a€ (=i i) — (1 = mad(f(efy) = 1) = Lok — opl?

~Dyaanssn) + (T - P (14 0)0) 97wl

By moving E [5 (zk Y ,uﬂ to the left side of the inequality to obtain the desired result. O

Now we begin to prove Theorem [C.1]

Proof. Under the parameter choices 0 < & < 1 + zy/F and 8 = LU) , we have a3 < ﬁ
According to Lemma L in order to obtain the decay of E [5 (z,C 1 /J)], we need the last term

E {(%:0) 0‘5(1 + (14 a)a)) ||Vf(3:k+1)||2] to be non-positive.

Usinga—m,we have
aa(l4+0%)  &*(1+0?) aps
24 ~ 2u(l—ma)  2(1 —ma)
and
1 1 a . (m-1al+a)
—1— 1 —-1-(1 = <0
1—m (I+ae)a=1— = (L4150 l—ma

holds when 0 < m < 1.

Therefore, we have

1+ (14 ma)a)E [S(z,;"H; u)] - E(z,;"; 1)
A C.10
B[~ - maafet,,) - 1) - Ll - el - Dytaf ain)]

which implies that
E[E(zfim)] < (14 (1 +ma)a)” 'E[E(%550)] < @+ (14 ma)a) "€ (205 p)

O

Corollary C.1. Under the setting of Theorem choose & = H%\/%’ B = %, and

1j‘nd with 0 < m < 1, SHANG++ guarantees an e-precision solution within the following
number of iterations:

’f>(1+a2>\/510g(f($°)‘f<$*>j’5||vo—x*||2>
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C.2 PROOF OF THEOREM [2.2]

To facilitate analysis, we define an auxiliary time-scaling factor y, = 1 +Zr’;ak . For any m > 0, setting

_ _2 5 Qg _ 2 _ ~ 2\2
Ok = 57> Ok = Tomar = fgrrom and = apai(1 + 0?)?L, we have

«%H—&k:1+wmwa@A1+HFL_aﬂ1+ﬁPL)
dk Q. (1 +mak+1)2 (1 +mak)2
_k+142m, 4(1+407%)%L 4(1+0%)°L
- 2 ((k+2+2m)2_(k+1+2m)2)

kb lm (22w 11
- 2 (k+ 1+ 2m)2/ Tk
= —(1 _ A
( J’2(1~c+1+2m))7"+1
< —Vet1

Define m: =z, — & Prg(xy), we can obtain the following equivalent form of SHANG++ for convex
problems:

Th+1 — xZ‘
——= = U — T4
g
v -0 1
— = ——g(ar) (C.12)
Qg Tk
Tl Z < Fp
Qg
Denote the discrete Lyapunov function by
= Vi .
E(2ifs ) = f(a) = F(@*) + 5 floe — 2] (C.13)

The following Lemma establishes a decay bound for E [€(z;; 9x)].

Lemma C.2. Let f € 8o, Lyapunov function € is defined by (C.13). Given (zy, vk, z}),
(Tk+1,Vk+1) are generated by and :17;;_1 = Zpt1 — QpPrg(Tps1). Assume 0 < apfy =
W1 Bkt1 < 71:(1-1‘!-02)’ we have

(1 + &k)]E [g(zz_Jrl; '?k-i—l)]
B N . 1 a3(1+ 02 o
< E(:30) + B |=anDy(a* ) = Dyt ons) + 5 (EET) = (14 a9 (o)

proofofLemma By Lemma if 0 < apfr = gr1Pk+1 < 7L(1i02), we obtain the one-step
decrease
E [E(z5 05 0+1)] — €253 9)

- - a
<E [5(2k+1§’7k+1) — &z ) — kP

9 ||Vf(90k+1)||2 (C.14)

- . Vrt+1 — Vi o B
— & [eorniin) — £ 30) + LT s o2 = 202
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Expand the above equation and use the update to obtain
E [E(zf 03 041)] — E(=37%)

. _ Vi+1 — 7 N o B
<E [(VE(ZHM%),%H —2) — De(z, 2h115 %) + Thtl 0k % —

Tk lvk4r —
2 2
<E[(V(xr1) = V@), 21 — 2) + Ak (orgr — 27, vrg1 — k) — De (2], 2rs13 98)

Vi1 o B
SOy = a2 = S )

IV £ (@ra)

Yk
Tk

=E [def(fﬂkH) = V(@) wppa = 27) + @V (), vp — 27) = (9(zrt1), Ve — 27)

QR . - Qg
=B o = 2P - Delef i) — IV )P
N (C.15)
Using Young Inequality, Cauchy-Schwarz Inequality and O‘szk = @y to obtain
~ * oy *
E {aMVf(ka),vk —z) — ;Zk (9(xk+1), VEr1 — @ >]
= E[ar(g(zr+1), vk — Vk+1)]
a2 T (C.16)
<E [ gl + o - vl
a2(1 402 0
<B [T fa )l + 22 oy = v
2’}% 2

Substituting and (C.16) back into (C:13)), we can obtain
E [5(2’,;:1; :Yk-&-l)] - S(Z;V%)

X L 1 62(1+02)
< B =Dy (o, o) - @Dyla onn) + 5 (T = 6|9 o) P
QkYk+1 x
- — [vrt1 — 2*I* = Dy(xf, wp41)
[ . . N 1 a2(1+ 02 .
<E | =€z 1 Ak41) — ae Dy (™, zpp) + z(k(%) — (1 + an)anBe) IV f(zrs1)|?
—Dy (i, wr41)]
(C.17)
By moving E [€(z;7, 15 Jk+1)] to the left side of the inequality to obtain the desired result. O
Now we prove the theorem [2.2]
Proof. Assume o, = k%rl, Y = apar(l+ 02)?L and By = % Then
1 2\ 5 1 2\ ~2
G = LT o (14 07)d, (C.18)
Tk Yk
Using Lemma[C.2]to obtain
E [E(z 5 Ah1)] < (14 an) 7 (55 0) < T_o(1+a@) ™ E(= 3 50) (C.19)
Since &, = m, then
L4+ 1+ 2 142 2+2
o1+ Gg) ! = T i 2m (L 2m)(2 4 2m)
i+3+2m (k+34+2m)(k+2+2m)
[
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(€7

Corollary C.2. Under the setting of Theorem choose m > 0, o, = %H, ap = Trman
2
Vi = agd(l + 02)2L and By, = (IJ“;%, SHANG++ guarantees to reach an e-precision at the

following interations:

2(1 + 02)2L

= \/(1+2m)(2+2m)(f(wo)—f(w*)+ T amy lvo — 2/

Corollary C.3. Under the setting of Theoremand ]‘(1?) L8 F(ar).

The proof is fully analogous to that of Corollary [B:2} with the only difference being the decay-rate
parameter ¢ in the final step.

D VARIANCE DECAY ANALYSIS

We study the variance decay of the Lyapunov energy
~ * :}/k *
E = (55 ) = f@)) = f@) + S o — [

under the unified stochastic model of SHANG and SHANG++. Throughout we work on a probability
space (92, F,P) with the post-update filtration Fy := o (o, vo, o, - - - , (), Where each (i, collects
the randomness used to form the stochastic gradient at step k. We write g := g(zg, (k) and

Gr+1 = G(Trt1, CGotr)-
Assumptions. We make the following standard assumptions.

Al. Smooth convexity. f € S, 1 with0 < u < L < oo.

A2. Unbiasedness at the query point. E[g;.+1 | Fix] = V f(xg+1). Equivalently, with £;41 :=
grr1 = VI (@pt1), Bl€es1 | Fi] = 0.
A3. Multiplicative noise scaling (MNS). E[||¢41]1? | Fi] < 02|V f(zr21)]?.

A4. Bounded conditional kurtosis. There exists Y > 1 such that E[||&x11[* | Fi] <
X (E[||€x+1]1? | ]-'k])2 (e.g., x = 3 for Gaussian noise).
Unified stochastic model. The updates for SHANG/SHANG++ can be written as
z = xK — arBr gk
Th+1 — l'_k‘—
— Y = Up — T4l
Qg
Vi+1 — Vg 1 (Dl)
s LU ﬂ(2101<+1 — Vkt1) — —Gkt1
Qg Tk Tk
Ye+1 — Vk
= U= Vel
ag
where o > 0, v, > 0, and we introduce & = 1+aTkak and Y, = 7 Jﬁak with m > 0. Equivalently

(and crucial for variance analysis), (mz 1> Vk+1) are affine in the fresh gradient gy, while x4,
depends only on past randomness:

1 Qg

+ + ~ _ -

Tha1 = 77 o Ty + 1+ar Vi — Okt 1Bet19k41 = Thil — Okt1Brt19k+1,
_ Qg 4 ( Vk Qg Qe i ) Qg

Vgt1 = — T, + + = Vg — ————0k+1

T (e app) (L +ag) Ve + oy (v + app)(1 + ag) Yo+ agp”
%H*l—i—akﬂ 1+ak%

(D.2)

By the filtration choice, x1 is Fi-measurable and gi1 uses fresh randomness (j.1; hence with
Ekt1 := gk+1 — Vf(xry1) we have E[€x41 | Fi] = 0. This linear structure will allow us to bound
the one-step fluctuation &1 — E[Ek+1 | Fi] and to propagate variance.
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Lemma D.1 (One-step fluctuation). There exist explicit constants Ay, By, Cyx > 0 (functions of
Ok, Ok, Vs 1, L) such that, with &1,

|1 — Bl€ri1 | Fil] < Aev/Ekllhsall + Bllérarll® + Ciéi
and
Ak = (Bx(l + BIL)\/ 2L01 + Bv”?k+1(62 + BU 2L01 (dk, ’S/k, L)))
LB2 + 3341 B3
2
Cr = (LB2 + 41 B2) Ley (G, Ar, L) o

_ 1 ap akV2u Vi QO b 2
where c; = max{ 1+a, 0 1+ag 'Yk} G2 = maX{ (Vetarp)(1+ag)’ \ vetagp + (vietakrp)(1+ax) “"/k}

when p > 0 and co = /% when u=0. By = ai41Pk+1 and B,

By =

- "/k"!‘oékﬂ

proof of Lemma[D1} Using &ky1 := grt1 — V.f(2r41), We can rewrite the updates of x7, ; and
Vk+1 as
wf ) = Up = Q1 Bt VI (@ht1) = @1 e €esr = Uk — Babr

AL Qe ~ (D.3)
Vo1 = Vi — — % () — —F g = Vi — B,
b= Ve — oo f(Trs1) o~ +0lkll£k+1 k k1
— + — _ agp .t O Ot o
where Uy, = 1+akl‘k + 1+akvk’ Vie = (7k+akﬁ)(1+dk)xk + (%Jraku + (”rkJra:u)k(lerk))vk’
Uy = Uy — ByV f(wps1) and Vi, = Vi — BV f(2311). By = Gy1 P41 and By, = e are

positive constants. It should be noted that Uy, Uk, Vi and Vk are measurable with respect to Fy.

Let’s first focus on the left part of ;1. Expanding f(xal) = f(Ur — Bp&pr) at point Uy, using
Taylor series gives

F(Ok = Butsr) = F(Ux) = (Vf(Uk), Bubisr) + r(Uk, &) (D.4)
where
. 1 A . L LB
| 7(Uk, €kt1) [=| / (Vf(Ur—tBy&41) =V [ (Uk), = Bu&pt1)dt [< §||Bxfk+1||2 2 |€x1a[I®
’ (D.5)
Then
| flai) = f@*) —E[f(zif,) — f@®) | Fi] |
= (O = Batirn) = f@*) = E [£(0 = Buern) = F@*) | e |
=| ~(Vf(Ur), Ba&rs1) + (U, Epp1) — E {T(Ulm&cﬂ) \ ]:k} | B0)
A LB? LB?
< Bl VAU - ksl + == €kall® + =5 2E [ll€hrall® | ]
where the last step uses Cauchy-Schwarz inequality and (D.3).
Since Uy = Uk — BoVf(2r41) = @rp1 — BoVf(wrr1) and 2xp1 = o + 155-vk, by
triangle inequality and smooth convexity of f, we have
IVFOI < IVFOk) = V(@) + [V f (@)l
< LUk — || + IV f (@rg) |
= (14 B L)|IVf(zr41)|
< (14 B, L)V2Lv/f(xky1) — f(a¥)
i (D.7)
<( Fl@) = f@) + 5 T (f (k) = f(z*))
ap L
< O = I @)+ e ok — a2

< (1+ B L)\/2Ler (i, 3k, D)V/Ex
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~ o~ 1 5, L
where ¢1 (G, Ji, L) = max{ 5, 175, it
On the other hand,

L32

IV f(zrs1)|I* < L*B2o?cy (G, Vi, L)Ex (D.8)

o LB%s?
E [|I6ks1l” | Fi] < 5

Substituting @) and (D.8) back into (D.6), we have
| flafy) = ) —E[f(z,) — f(a*) | Fi] |

< By (1+ By L)\/2Lex (G, ks L)V E ||t | + B; ||§1<+1||2 + L*B2o”c1 (6w, A, L)) Ex
D.9)

For the middle part of &1, since

Vi v > * Bu
T oy — a7 = LG 2P BB e P Sy (Vi — 2%, Buira), (D.10)
we have
:)(/k 1 * ;j/k 1 *
R e K P A
e v B 7k+1B 2 2 (D.11)
=| =Ar+1(Vk — 2", Bo&pt1) + (N&k+1ll* = E [ll€p+al* | Fi] ) | :
~ ¥ * ’Vk v ’Yk Bv
SBM%HW@*$H'Mm4w+‘iL‘ﬂ&+N2 R [[l€r? | Fi]
2
Using triangle inequality and convexity of || - ||, we have
Vi, — 2|
= Vi — 2 = BoV f (i)
Qpft i ( Vi Qg ) x
< — T, + + — v, — z¥|| + By ||Vf(x
| (e +arm)(X+ar) * "\t awn | (i +arm)(+ar)/ " I IV F @l
o b + * ( Yk QO ) *
< — ||z, —x7|| + + — vy — x| + By||Vf(z
(’Yk+akﬂ)(1+ak)|‘ k || Y+ Qg ('Yk‘i‘akﬂ)(l‘i‘ak:) || k || H ( k+1)||
pH +_ o ( Tk QpQpf ) N
< — xr; —x7|| + + — Vv — T
rramran I G e T e an 1

2Lcl(dkv;$/k7 L) V gk:

(D.12)
Next, we will consider two cases.
Case 1: 1 > 0. Using the strong convexity of f, we have
Vi — 2]

apyV2p n Yk QQpfl [2 [k x
< = xy) — flaz*) + ( + = ) —\/ S llvg—x
(v + agp) (1 + dx) feg) = 1) Ve tagp (v +app)(I+ag)/ VAV 2 o |

+ B’U V 2L01(0~4k7’~Yk7L) V gk

< (ca(@, 1, k) + Bov/2Ler (G, A, L)) VER

(D.13)

~ o \/T ~ 2
where CZ(O"#”W) o max{ (7k+g:ﬂ)(,f+&k)’ (’Yk-‘:lgzku + (7k+$:§)k(lib+dk)> V ’Tk} Thus,

k+ k
| B WP—EP+WWH—xWH]

. - _ V1 B2 N o
< Bkt (c2(@, i) + Buv/2Le1 (&, 1, L))/ Exl| kv || + %Hgkﬁ-l 12 + A1 BiLo?cr (e, Ar, L)Ex
(D.14)
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Combining (D.9) and (D-T4)), we have
| Ekr —E €y | Fi] |
S (BZL’(l + B:L’L) 2L01 (d]m 5%7 L) + B’U&k‘l’l (CQ(dv M, 7]@) + Bv 2Lcl (&k/’?ka L))) V €k||€k+1||

LB2 + %1 B2 g g,
+ %kaﬂ”g + (LB + i1 B2) Lea (G, A, L) o
(D.15)

Case 2: = 0.

Vi — 2*|| < |lvk, — 2*|| + Bov/2Ler (G, A, L)/ Ex
vR _ (D.16)
S ( % + B’U 2L01(aka’)’k»L)) V gk
Thus,

Vr+1 Vre+1
| 2 oy =P = B | Bt oy - o7 5

2

N 2 —— Vi1 B2 - .-
< BoVi+1(y/ e + Byv/2Le1 (G Ay L)V Er |41 || + Tt |€k+111* + An+1BELo*c1 (G, Ar, L)Ex

(D.17)
Combining and (D.17), we have
| k1 — E [k | Fi] |

~ ~ ~/ 2 O o]
< (Bz(1+ ByL)v/2Ley (G, 3, L) + Bv7k+1(\/;+ Byv/2Ley(én, Ak, D))V EklI€k1
LB2 + 4411 B2 ; ik,
#II&H I + (LB} + k1B Lea (@, i, L) Ex
(D.18)
O

Proposition D.1 (Conditional variance bound). Let Sy == 2Lo?cy (G, Yk, L) with 1 (&, Vi, L) =
max{%&k, 1j_‘gk ,Y%} Under assumptions (A2)—(A4) and the setting of Lemma (In particular,
stepsizes and hence Ay, By, Ck, Sk are F-measurable),

Var(EkH | .Fk) S K27k»(€13’ K2,k = 3(14%8/6 + XB,?SE + Ci)

proof of Proposition[D.]] By the definition of conditional variance,

Var(Ei1 | Fir) = E[ (Exs1 — E[Ert1 | Fil)? | Fi (D.19)
From LemmaD.1|and inequality (z + y + 2)? < 3(2? + ¢ + 22),
(Erir — EErpr | Fil)® < 3(AREklkral® + BRleral* + CZER) (D.20)

Since Ay, By, Cy and & are all measurable with respect to the o-algebra Fj. Using assumptions
(A2-A4) yields

E [||fk+1||2 | ]:k] < 02||Vf(xk+1)\|2 < 2L0’2015k = Sip& (D.21)
and 4 2 2 2 02
E [l | Fe] < x(E (i€ ll® | Fi] )™ < xSiéx (D22)
Taking E [ | Fy] in the previous inequality gives
Var(Ery1 | Fi) < 3(A2Sk + xB2SE + C3)E? (D.23)
O

Theorem D.1 (Geometric variance decay). Assume the drift inequality (from the expectation analysis)

E[€k+1 | Fr] < ¢k for some q € (0,1), (D.24)
and assumptions (A2)—(A4) hold. Let K, be given in Proposition @ and suppose Ky =
supy Ko < 1 — ¢? satisfied. Then with § = ¢*> + Ky € (0,1), for all k > 0, given initial

&o,
Var(Epy1) < E2OMT!
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Proof. By the law of total variance and Proposition[D-1]
Var(E11) = E[Var(Eps1 | Fr)] + Var (E[€xt1 | Fil) < KoE[EF] + ¢ Var(&).  (D.25)
Since E[€?] = Var(&) + (E[Ek])Q and (Eq. ), we get
Var(E41) < (Ks + ¢2) Var(€x) + Ko (E[&])” < (Ko + ¢2) Var(&x) + Ka(E[€0])%¢?* (D.26)

Solving this linear recursion yields

k
Var(Ep41) < (Ka+¢?) ! Var(&)+K2(E[&])? Y (Ka+q*) g% < (Katq*)M ! (Var(&)+(E[£0])?)
7=0

(D.27)
Since & is given by the initial point zy = vy, it is a constant ,then Var(&y) = 0 and E[§)] = &. O

Corollary D.1 (Upper bound of K5, in strongly convex setting). Define x = ﬁ is the condition
number of f. Under the setting of Theorem @-@ and Assumptions (Al)-(A4), with Ko}, =
3(A2S), + xB2SE + C3) defined above, we have the explicit upper bound

(1) For SHANG,
12a202((3 + 0%)ag +1)* + 12(x + 1)ago™ ak <1
3
12a30%/k(1 + (3—|—a2)a§/ﬁ)2—|—12(x+1)a8 otk ak >1
(2) For SHANG++,
- {12a302((3 +02)ag+1)" +12(x + Dago?,  an<1
2 <

12a30*v/k(1+ (34 0’2)0,3/2/-61/4)2 +12(x + Dabo’s, ar >1

Proof. Case 1: SHANG When m = 0, scheme (D-T) is algorithm SHANG. From Theorem [B-1]

when v = u, a = m and 5 = 1++)a,we have
[5k+1 |]:k] (1 —i—oz) 5 = q& (D.28)
and
a? 1 o
A=A, =—(1 1+0?)2%a’k + ——)V/2L
k= u(+0 + ( +0)aﬁ+(1+a)2) ct 7o
B =B = Oﬁ((l + 032’k + #)
24 (1+«)?
C=C= a—Q((l + 0%’k + ————)Lo%c;
0 (14 a)?

S =5, =2Lc%¢
1 1 2 /2
where ¢; = max{ 1, 7%} and c2 = {TT05 \g
1

(1): Assume ax < 1,ie,x < (1+0%)% so that ¢; = .

Since ¢; = 1+ and a2k = m < 1, we bound each term in K.
For the B2S? term, using B = ((1 +02)2a2k + ﬁ)
2 2
B?S5?% = [2 ((1 +0?) %’k + m)] - (2ukoer)?
® (D.29)

2
= 044,%20'40%((1 +02) %’k + ﬁ) < 4dagot,

where we used ¢; < 1 and a*k? = m We denote ag = 1757 Hence 3xB5? < 12yago”.

36



Under review as a conference paper at ICLR 2026

For the C? term, note C' = 2B Lc;0? implies C? = B2S?. Hence
C% < 4afo?, (D.30)
$03C? < 12ajo?

For the A%S term, splitting A = A; + Ay with
2

(8] [0
A= —((1 +0%) + (14 0%’ + m)\/%cl, Ag 1= o,
W + a
For A, since ¢y = 1("1’3‘_20‘ 2/ <2/,
A28 2 oike?er < 4ro? o 42 _E 42 (D.31)
= ———5 5 2uKkoc ko) —— =40 — .
22T Qrap@ Hras U1+ )2 1tap="%

For Ay, using ¢; = - and o’k = ao <1,

T
2 2
A3S = [% \/2Lcl] ((1 +0%) + (1+0%)%a?k + m) -2Lo%c;

2
=4a*k23 02((1 +o2)2 41+ m) < 4ajo?- (34 0%)? =43+ 0%)2ado?
(D.32)
Therefore, using (z + y)? < (1 + 7)z% + (14 1/7)y? with 7 = /A3S5/A2S:

3A%8 < 3(y/A3S +1/A35)% < 3(2(3 + 0?)ago + 2a90)? = 12a30°((3 + 0?)ag + 1)? (D.33)
Combining (D.29)-(D.33), we have

Ky <12a20%((3 + 0%)ag + 1)* + 12(x + 1)ago? (D.34)
0 0
(2): Assume ak > 1,i.e., k> (1 +02)%,so that c; = TR
For the B2S2 and C? terms. We have
4,2 4 9 6,4, 4
2 a2 a K-o 2\2 2 1 a"K-o 6 4

B=S m((l—FO’)O{H—‘rW) < m 4§40,00'/4, (D35)

Hence
3(xB*S* +C?) < 12(x+1)ajo'k (D.36)

For the A2%S term,

A28 — o? 297520, < o’ 2 _ a? 2~ 3 2
2 —m02'2 g C1 < m — 2,[,“{(7 c1 = 40 m/{ < 4(1,00' \/E (D37)
Moreover,
40802 K 2 40802 k*
20 _ 2 2\2 2 1 2\2 2 6 2
AIS W((I—FU )+(1+0’ ) (0% KH_W) S W (3+O’) < 4(3+O’ ) a O K.
(D.38)
Combining (D.37) and (D.38),
3425 < 3(\/A25 4+ \/A28)? < 12a302VR(1 + (3 + o)ag k)2 (D.39)
Adding (D:33) - (D.39) yields
Ky < 120202 VR(1 + (3 + 02)ag k)2 + 12(x + 1) aS ot (D.40)

Case 2: SHANG++. When m = 1, scheme is algorithm SHANG++. From Theorem [2.1] when
and 8 = W, we have

'Y:,U’d:m’a: 137&
E[€ri1 | Fi) < (1+ )71 = ¢& (D.41)
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and
~2
A:Ak:a—(l—i—UQ—i—( 1+0?) +1)v/2Ley + @cy
7
6{2
B =B, =—((1+0%)%?k+1)
2u

C =C) = ac10?k(&*(1 + 0%)*k + 1)
S:Sk:2LU C1

where ¢; = max{ = A H_a,k;} and cp = max{H_%\/g (1+a + H_al%l)\/g}.

Similar to the derivation of SHANG, we have
(1): Case ax < 1. In this case k < (1 + 02)? and hence ¢; = == < 1.

&
Ky < 12a20%((3 + 0)ag +1)° + 12(x + Dado* (D.42)
(2): Case ax > 1. In this case k > (1 +02)? and ¢; = 1%@“'
Ky < 12a802\/g(1 +(3+ 02)a§/2m1/4)2 +12(x + Dado*s (D.43)

When does variance decay hold? By Theorem[D.1] geometric variance decay
Var(&r) < &5(¢° + K2)*

holds whenever K5 < 1 — ¢?, where ¢ = (1 + «)~!. The bounds in Corollary make this
condition directly checkable as a function of the condition number x = L/, the noise level o2 via

ag = (1 + 02)~1, and the stepsize a:
* In the low-condition regime (the branch with smaller c;), K> scales like
Ky = 0(ao?) + O(ago)
for both SHANG and SHANG++, whereas 1 — ¢ = O(a) = O(ag/\/k).

* In the high-condition regime (the branch with larger c,), the leading term is
Ky = O(ajo®Vk) + O(afo’r),

while we still have 1 — ¢?> = O(ag/+/k). The same scaling holds for both SHANG and
SHANG++; only the constant factors differ mildly.

Thus, for fixed x, smaller noise (larger ag) and moderate stepsizes make Ko < 1 — q? easier to
satisfy; for large s, the O(+/k) factor in the leading term of K5 becomes the main bottleneck.

How to enforce the condition in practice. Two standard knobs guarantee K> < 1 — ¢ without fine
tuning:

1. Stepsize damping. Replace a by 8 a with 8 € (0, 1]. Then the leading term in K scales
like O(/3%), whereas 1 — ¢? scales like O(3) (for both SHANG and SHANG++); hence
there exists By = Bo(k, 02, x) € (0,1] such that Ko < 1 — ¢ for all 8 < .

2. Mini-batching or averaging multiple independent estimates. Replacing o by o /M reduces
the leading term in K5 by a factor 1/M while leaving 1 — ¢° essentially unchanged; the
explicit constants in the corollary yield simple batch-size thresholds (e.g., M > o%\/k
up to the displayed constants). Averaging M independent estimates incurs almost no
extra computational cost compared with performing M successive iterations using a single
estimate.
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E SNAG AS A DISCRETIZATION OF THE HNAG FLow

Under the multiplicative noise assumption, one of the most recent first-order stochastic methods de-
signed to overcome the divergence of NAG and accelerate SGD is the Stochastic Nesterov Accelerated
Gradient (SNAG) method (Nesterov, 2012) (Hermant et al., [2025)). Its iteration reads:

Tpt1 = Opr12k + (1 — Qpg1)Vp41 — G185 9(2k),

A . (E.1)
V1 = Bog + (1 = B)ag — meg(wr),
where g(z,) is a stochastic gradient estimator, and &1, S, B , and 7, are parameters.
By reparameterizing as
. 1 A 1 1 Q41
a =— s=«a , = — 0, = ———— E.2
T T e k1B, B 1+ L,;:f =TT 762”,:1“ Vi1 E2)
the SNAG scheme (E.I)) becomes equivalent to the following update:
Th+1 — Tk
TR = 1 — T — Brrg(an),
Qp41
Vg1 — Uk M 1
= = ——(ak — vpp1) — ——g(an), (E.3)
Q41 Ve+1 Ve+1
Ye+1 — Vi
UL L
Q41

Hence, SNAG can be interpreted as a new discretization of the HNAG flow (2.3).

Parameter choices. For convex objectives f € Sé ’i, Hermant et al.[(2025) shows that the optimal
parameters are

k2
Uk S O T ==
L1+02) 7 2L(1+ 022’ r Ok 24
This leads to
ay 12# o418 1=¥ Vi1 = Qg1 (14 0%)2L
Aoy et S gy e S eenm( e

For strongly convex objectives f € S, 1, the optimal parameters become

1 1 . 1 1
y Mk ="1N= ’ ﬂi]‘i \/Ea G =a = :
L(1+0?) (I+0%)vuL 1+o2V - 1+ 7=VE
Consequently,

1 1
= — 22 = " = ]_— .
=1 \ﬁ af Iato7 p(l = a)

The condition v = p(1 — «) indicates that, in the strongly convex case, the update for v is more
accurately viewed as applying a rescaled step size & = 12 to the v—dynamics of the HNAG flow:

Va1 — Uk 1
% =Tk — Vg+1 — pg(xk)

In summary, the above parameter rearrangements confirm that the optimal choices in SNAG are
consistent with those obtained from various discretization schemes of the HNAG flow, see (Chen &
Luo|(2021) for details.
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F RELATED WORK

Accelerated variants of SGD have been extensively studied. A natural idea is to combine SGD with
first-order momentum methods, such as the Heavy-Ball (HB) and Nesterov’s Accelerated Gradient
(NAG) algorithms, in order to achieve faster convergence through momentum. However, in stochastic
settings, gradient noise often weakens or even destroys the acceleration effect. |Kidambi et al.[(2018));
Sutskever et al. (2013)); |Yuan et al.| (2016)); Nemirovski et al.| (2009); Ghadimi & Lan| (2012) have
shown that both HB and NAG fail to accelerate SGD in expectation under gradient noise. In practice,
the apparent superiority of momentum methods largely stems from large mini-batching, which reduces
the variance of stochastic gradients and brings the stochastic dynamics closer to the deterministic
regime.

To address this, many efforts have been devoted to developing truly accelerated first order stochastic
momentum methods. Starting from (Jain et al.} 2018)), a series of accelerated stochastic algorithms
have been proposed (Liu & Belkin, [2020; [Vaswani et al., [2019; [Even et al., 2021} |Bollapragada
et al.} 2022} [Laborde & Oberman, [2020; \Gupta et al., 2024} [Hermant et al.| |2025)), aiming to preserve
acceleration while maintaining robustness under stochastic noise. These methods introduce various
variance-control mechanisms, adaptive damping, or noise-aware correction terms to balance efficiency
and stability.

Noise modeling is essential for understanding and improving stochastic optimization. While early
studies assume additive noise with bounded variance, empirical studies show that SGD noise is
anisotropic (concentrated in a low-rank subspace) and state-dependent in deep neural networks
(Wu et al} 2022a)), and often exhibits heavy-tailed non-Gaussian fluctuations (Zhao et al.| [2024;
Hodgkinson & Mahoney, 2021} Zhou et al., |2020). Additive noise with bounded variance often
fails in deep learning, where gradient noise may scale with the signal norm or exhibit low-rank and
heavy-tailed characteristics (Wojtowytsch, [2023; [Wu et al., 2022b). In particular, the noise variance
scales with the loss or gradient norm while covariance spectra are highly skewed, with only a few
large eigen-directions. These non-classical properties observed in practice as multiplicative (Wu
et al., 2019; |Gupta et al., [2024; |Hodgkinson & Mahoney, [2021)), low-rank/degenerate(Damian et al.|
20215 L1 et al.} 2022} Bassily et al., 2018} 'Wojtowytsch, [2021; 2023)), and heavy-tailed gradient noise.
These insights motivate the design of optimizers that are resilient to complex, non-Gaussian noise
structures.
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