

SHANG++: ROBUST STOCHASTIC ACCELERATION UNDER MULTIPLICATIVE NOISE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Training with multiplicative noise scaling (MNS) is often destabilized by momen-
 012 tum methods such as Nesterov’s acceleration, as gradient noise can overwhelm
 013 the signal. A new method, SHANG++, is introduced to achieve fast convergence
 014 while remaining robust under MNS. With only one-shot hyperparameter tuning,
 015 SHANG++ consistently reaches accuracy within 1% of the noise-free setting across
 016 convex problems and deep networks. In experiments, it outperforms existing accel-
 017 erated methods in both robustness and efficiency, demonstrating strong performance
 018 with minimal parameter sensitivity.

1 INTRODUCTION

022 Empirical Risk Minimization (ERM) is central to modern large-scale machine learning, including deep
 023 neural networks and reinforcement learning (Hastie et al., 2009). Given a large dataset $\{(X_i, Y_i)\}_{i=1}^N$,
 024 where Y_i denotes the label of data X_i and $N \gg 1$, the training objective is

$$026 \min_x f(x), \quad f(x) = \frac{1}{N} \sum_{i=1}^N f_i(x), \quad (1.1)$$

029 where x denotes the network parameters and $f_i(x)$ is the loss associated with sample (X_i, Y_i) . We
 030 use x instead of θ for consistency with the optimization formulation. Efficiently computing the
 031 minimizer $x^* = \arg \min_x f(x)$ is critical for training neural network with large data.

032 Exact gradient evaluation is expensive, so Stochastic Gradient Descent (SGD) uses mini-batches:

$$034 g(x) = \frac{1}{M} \sum_{i \in B} \nabla f_i(x), \quad (1.2)$$

036 where $B \subset \{1, \dots, N\}$ is a random batch of size M . SGD slows down when the condition number
 037 of f is large. Momentum methods such as Heavy Ball (HB) (Polyak, 1964) and Nesterov accelerated
 038 gradient (NAG) (Nesterov, 1983) are widely used to accelerate convergence. In training deep neural
 039 networks, Adam (Adaptive Moment Estimation) (Kingma & Ba, 2015) is a widely used optimization
 040 algorithm that combines momentum and adaptive step sizes for fast and stable convergence.

041 The mini-batch estimator $g(x)$ reduces the cost of computing $\nabla f(x)$ but introduces noise. In regimes
 042 such as small-batch training or highly over-parameterized models, the variance can scale with and
 043 even dominate the signal $\|\nabla f(x)\|^2$. This effect is modeled by the multiplicative-noise scaling (MNS)
 044 condition (Wu et al., 2019; 2022b; Gupta et al., 2024). [Hodgkinson & Mahoney \(2021\)](#) further shows
 045 that multiplicative noise induces geometric distortions in the loss landscape, beyond the smoothing
 046 effects of additive noise.

047 **Definition 1.1** (Multiplicative Noise Scaling (MNS)). The stochastic gradient estimator $g(x)$ satisfies
 048 the MNS condition if there exists $\sigma \geq 0$ such that

$$050 \mathbb{E} [\|g(x) - \nabla f(x)\|^2] \leq \sigma^2 \|\nabla f(x)\|^2. \quad (1.3)$$

052 **Related work.** Accelerated variants of SGD have been extensively studied. However, momen-
 053 tum methods are highly sensitive to stochastic noise (Devolder et al., 2014; Aujol & Dossal,
 2015; Liu et al., 2018), and stability depends critically on parameter choices (Kidambi et al.,

054 2018), (Liu & Belkin, 2020; Assran & Rabbat, 2020; Ganesh et al., 2023). Gupta et al. (2024) fur-
 055 ther showed that under MNS with $\sigma \geq 1$, NAG fails to converge even in convex and strongly convex
 056 settings. In practice, the apparent benefits of momentum largely arise from large mini-batches, which
 057 reduce gradient variance and make the dynamics closer to the deterministic regime.

058 To address these issues, a series of corrections have been developed. Following Jain et al. (2018),
 059 many accelerated stochastic algorithms have been proposed (Liu & Belkin, 2020; Vaswani et al.,
 060 2019; Even et al., 2021; Bollapragada et al., 2022; Laborde & Oberman, 2020; Gupta et al., 2024;
 061 Hermant et al., 2025), aiming to retain acceleration while improving robustness to noise. Vaswani
 062 et al. (2019) introduced a four-parameter NAG variant with optimal accelerated rates; Liu & Belkin
 063 (2020) proposed the Mass method with a three-parameter correction, though acceleration was proved
 064 only for over-parameterized linear models; Gupta et al. (2024) developed AGNES with guarantees
 065 matching Vaswani et al. (2019); and Hermant et al. (2025) analyzed SNAG, a four-parameter variant
 066 in Nesterov’s framework (Nesterov, 2012), showing similar rates under mild tuning. A more detailed
 067 discussion appears in Appendix F.

068 From the viewpoint of convex theory, these algorithms are competitive. However, our deep-learning
 069 experiments show that they often lose acceleration under high noise and can perform worse than
 070 SGD even with recommended hyperparameters (see Section 3). For example, on CIFAR-100 with
 071 ResNet-50 and batch size 50, SGD attains 58.326% test accuracy whereas AGNES reaches only
 072 42.82%. With smaller batches, both AGNES and SNAG exhibit strong oscillations and require
 073 additional hyperparameter tuning.

074 **Contribution.** Motivated by this gap, our goal is not only to design another accelerated method,
 075 but to develop a complementary approach that (i) retains optimal theoretical guarantees, (ii) reduces
 076 tuning effort, and (iii) improves stability. Our contributions emphasize simplicity (fewer parameters),
 077 provable acceleration with explicit noise dependence, and robust empirical behavior.

- 079 1. We begin with SHANG, a stochastic extension of HNAG (Chen & Luo, 2021). Unlike the
 080 classical Heavy-Ball method, HNAG includes the Hessian term $\nabla^2 f(x) x'$, yielding a more
 081 accurate continuous-time model of NAG. SHANG inherits this structure and already demonstrates
 082 noise-suppression behavior.
- 083 2. We then refine SHANG into SHANG++ using the **μ -shift principle**: replacing f with $f_{-\mu}(x) =$
 084 $f(x) - \frac{\mu}{2} \|x - x^*\|^2$ reduces the effective Lipschitz constant and introduces a correction term
 085 $-\beta\mu(x_{k+1} - x_k)$. SHANG++ generalizes this to a flexible correction $-m(x_{k+1} - x_k)$ that does
 086 not require strong convexity, and helps mitigate the multiplicative-noise-induced rescaling of the
 087 key constants μ and L . The **μ -shift mechanism and its noise-suppression effect are new and absent**
 088 from HNAG. SHANG++ achieves optimal accelerated rates in both convex and strongly convex
 089 settings with multiplicative noise.
- 090 3. We evaluate SHANG++ on convex optimization, image classification, and generative modeling
 091 tasks (MNIST, CIFAR-10, CIFAR-100). SHANG++ matches or outperforms NAG, SNAG,
 092 AGNES, and Adam, with clear advantages under high multiplicative noise in Section 3.
- 093 4. Section 3 further examines robustness to multiplicative noise. For realistic noise levels ($\sigma \leq 0.5$),
 094 SHANG++ retains near noise-free accuracy (within 1% degradation), demonstrating that stability
 095 can be achieved with fewer parameters and a simpler design than earlier corrections such as
 096 AGNES and SNAG.

097 **Limitation.** Current convergence guarantees cover only convex objectives under multiplicative-
 098 noise scaling and do not yet extend to general nonconvex landscapes. Empirically, the method typi-
 099 cally enters locally convex basins after leaving unstable saddle regions, suggesting that similar stability
 100 mechanisms operate in deep networks. We are exploring extensions under the Polyak-Łojasiewicz
 101 condition and weak-convexity assumptions, where our Lyapunov framework naturally applies.

102 Although SHANG++ reduces tuning complexity through one-shot, non-adaptive hyperparameters, its
 103 performance may still depend on accurate estimates of smoothness constants (e.g., L, μ). In highly
 104 non-convex settings or under very high noise, the one-shot strategy may require refinement.

105 **Notation.** Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be differentiable. The Bregman divergence of f between $x, y \in \mathbb{R}^d$ is

$$D_f(y, x) := f(y) - f(x) - \langle \nabla f(x), y - x \rangle.$$

108 The function f is μ -strongly convex if for some $\mu > 0$, $D_f(y, x) \geq \frac{\mu}{2}\|y - x\|^2$, $\forall x, y \in \mathbb{R}^d$.
 109

110 It is L -smooth, for some $L > 0$, if its gradient is L -Lipschitz:

$$111 \quad \|\nabla f(y) - \nabla f(x)\| \leq L\|y - x\|, \quad \forall x, y \in \mathbb{R}^d. \\ 112$$

113 Let $\mathcal{S}_{\mu, L}$ be the class of all differentiable functions that are both μ -strongly convex and L -smooth.
 114 For $f \in \mathcal{S}_{\mu, L}$, the Bregman divergence satisfies

$$115 \quad \frac{\mu}{2}\|x - y\|^2 \leq D_f(x, y) \leq \frac{L}{2}\|x - y\|^2, \quad \forall x, y \in \mathbb{R}^d, \\ 116 \quad (1.4)$$

117 **Bregman divergence here is used purely as an analytical tool in the Lyapunov analysis.** Parameters μ
 118 and L are treated as known hyperparameters for the given problem. Their adaptivity is beyond the
 119 scope of this work.

121 2 STOCHASTIC HESSIAN-DRIVEN ACCELERATED NESTEROV GRADIENT

123 **Flow.** To accelerate gradient descent, Polyak introduced a momentum term, which incorporates
 124 information from previous iterates, inspired by the “heavy-ball” ODE model (Polyak, 1964):

$$125 \quad x'' + \theta x' + \eta \nabla f(x) = 0. \quad (2.1)$$

127 However, the discrete heavy-ball method $x_{k+1} = x_k - \gamma \nabla f(x_k) + \beta(x_k - x_{k-1})$ can diverge; see
 128 Lessard et al. (2016); Goujaud et al. (2025) for non-convergent examples.

129 We will use the second-order dynamical system introduced in Chen & Luo (2019; 2021), known as
 130 the Hessian-driven Nesterov Accelerated Gradient (HNAG) flow:

$$132 \quad \gamma x'' + (\gamma + \mu)x' + \beta\gamma \nabla^2 f(x)x' + (1 + \mu\beta)\nabla f(x) = 0, \quad (2.2)$$

133 where $\beta > 0$ is a parameter and γ is a time-scaling function. Compared with the classical HB flow
 134 (2.1), the additional Hessian-driven term $\nabla^2 f(x)x'$ captures how the local curvature of f affects the
 135 damping strength of the dynamics. As shown in Chen & Luo (2019), this curvature aware mechanism
 136 provides a more accurate continuous-time description of NAG. The second-order ODE (2.2) can be
 137 equivalently reformulated as the first-order system:

$$138 \quad x' = v - x - \beta \nabla f(x), \quad v' = \frac{\mu}{\gamma}(x - v) - \frac{1}{\gamma} \nabla f(x), \quad \gamma' = \mu - \gamma, \quad (2.3)$$

140 which removes the explicit dependence on $\nabla^2 f(x)$.

142 **Methods.** Discretizing (2.3) via a Gauss–Seidel–type scheme, adding an extra term $-m(x_{k+1} - x_k)$
 143 to the x -update, and replacing $\nabla f(x_k)$ with an unbiased estimator $g(x_k)$ yield the Stochastic Hessian-
 144 driven Nesterov Accelerated Gradient (SHANG++) method:

$$145 \quad \begin{cases} \frac{x_{k+1} - x_k}{\alpha_k} = v_k - x_{k+1} - m(x_{k+1} - x_k) - \beta_k g(x_k), \\ \frac{v_{k+1} - v_k}{\alpha_k} = \frac{\mu}{\gamma_k}(x_{k+1} - v_{k+1}) - \frac{1}{\gamma_k} g(x_{k+1}), \\ \frac{\gamma_{k+1} - \gamma_k}{\alpha_k} = \mu - \gamma_{k+1}, \end{cases} \quad (2.4)$$

152 where $\alpha_k > 0$ is the step size, $m \geq 0$ controls the extra noise-damping term $-m(x_{k+1} - x_k)$, and
 153 $\beta_k > 0$ depends on α_k and γ_k , typically scaling as $\frac{\alpha_k}{\gamma_k/(1+\sigma^2)}$.

154 If the damping term is absorbed into the left-hand side, the x -update becomes

$$156 \quad \frac{x_{k+1} - x_k}{\tilde{\alpha}_k} = v_k - x_{k+1} - \beta_k g(x_k), \quad (2.5)$$

158 where $\tilde{\alpha}_k = \frac{\alpha_k}{1+m\alpha_k} \leq \alpha_k$. SHANG++ can thus be interpreted as a modified discretization of the
 159 HNAG flow with a reduced step size $\tilde{\alpha}_k$. The case $m = 0$ recovers SHANG, a direct stochastic
 160 extension of HNAG. The “++” indicates two improvements: faster theoretical convergence and greater
 161 robustness to noise. With the parameter choices specified in Theorem 2.1 for the strongly convex
 case $f \in \mathcal{S}_{\mu, L}$, and in Theorem 2.2 for $\mu = 0$, accelerated convergence rate can be established.

SHANG++ for Strongly Convex Minimization. Setting $\gamma = \mu$ and $m = 1$ when $f \in \mathcal{S}_{\mu,L}$ with $0 < \mu < L < \infty$. Define the auxiliary variable $x_k^+ := x_k - \tilde{\alpha}\beta g(x_k)$. Then SHANG++ can be rewritten in the following form:

$$\begin{aligned} \frac{x_{k+1} - x_k^+}{\tilde{\alpha}} &= v_k - x_{k+1}, \\ \frac{v_{k+1} - v_k}{\alpha} &= x_{k+1} - v_{k+1} - \frac{1}{\mu}g(x_{k+1}). \end{aligned} \quad (2.6)$$

where $\tilde{\alpha} = \frac{\alpha}{1+\alpha}$. Schemes (2.6) and (2.4) generate the same sequences $(x_k, v_k)_0^\infty$; the explicit appearance of x_k^+ is only for analysis and does not affect the algorithm itself.

Theorem 2.1. Let $f \in \mathcal{S}_{\mu,L}$. Given $x_0^+ = v_0 = x_0$, suppose (x_k, x_k^+, v_k) are generated by (2.6) with $g(x_k)$ defined in (1.2) and MNS (1.3) holds. If the step size satisfies $\alpha = \frac{\tilde{\alpha}}{1-\tilde{\alpha}}$ with $0 < \tilde{\alpha} \leq \frac{1}{1+\sigma^2}\sqrt{\frac{\mu}{L}}$, and $\beta = \frac{\tilde{\alpha}}{\mu/(1+\sigma^2)}$, then

$$\mathbb{E} \left[f(x_k^+) - f(x^*) + \frac{\mu}{2} \|v_k - x^*\|^2 \right] \leq (1 + \alpha)^{-k} (f(x_0) - f(x^*) + \frac{\mu}{2} \|v_0 - x^*\|^2).$$

We give a proof sketch of Theorem 2.1 and refer to Appendix C.1 for full details, which cover the range $0 \leq m \leq 1$; Theorem 2.1 treats the optimal special case $m = 1$ and shows that $\mathbb{E}[f(x_k) - f(x^*)]$ contracts linearly at rate $\mathcal{O} \left((1 - \frac{1}{1+\sigma^2}\sqrt{\mu/L})^k \right)$. Note that $m = \beta\mu \leq \sqrt{\mu/L}$ is also a particular instance with $0 \leq m \leq 1$.

Proof. Let $z_k^+ = (x_k^+, v_k)$ and define the Lyapunov function

$$\mathcal{E}(z_k^+) = f(x_k^+) - f(x^*) + \frac{\mu}{2} \|v_k - x^*\|^2. \quad (2.7)$$

Given (x_k, v_k) and $g(x_k)$, the quantities x_k^+ and x_{k+1} are deterministic, while randomness is introduced through $g(x_{k+1})$ and consequently affects (x_{k+1}^+, v_{k+1}) . The expectation \mathbb{E} is with respect to the randomness in $g(x_{k+1})$.

First of all, we have the sufficient decay of SGD for $x_{k+1}^+ := x_{k+1} - \tilde{\alpha}\beta(x_{k+1})$: if $\tilde{\alpha}\beta = \frac{\tilde{\alpha}^2}{\mu/(1+\sigma^2)} \leq \frac{1}{(1+\sigma^2)L}$, which is equivalent to $\tilde{\alpha} \leq \frac{1}{(1+\sigma^2)}\sqrt{\mu/L}$, then

$$\mathbb{E} [f(x_{k+1}^+) - f(x_{k+1})] \leq -\tilde{\alpha}\beta/2 \cdot \|\nabla f(x_{k+1})\|^2 = -(1 + \sigma^2)\tilde{\alpha}^2/2\mu \cdot \|\nabla f(x_{k+1})\|^2. \quad (2.8)$$

By the definition of Bregman divergence, $\mathcal{E}(z_{k+1}) - \mathcal{E}(z_k^+) = \langle \nabla \mathcal{E}(z_{k+1}), z_{k+1} - z_k^+ \rangle - D_{\mathcal{E}}(z_k^+, z_{k+1})$. Expanding the term $\langle \nabla \mathcal{E}(z_{k+1}), z_{k+1} - z_k^+ \rangle$ and using the update in (2.6) gives

$$\begin{aligned} & -\tilde{\alpha} \langle \nabla f(x_{k+1}) - \nabla f(x^*), x_{k+1} - x^* \rangle - \frac{\alpha\mu}{2} \|v_{k+1} - x^*\|^2 - \frac{\alpha\mu}{2} \|v_{k+1} - x_{k+1}\|^2 \\ & + \frac{\alpha\mu}{2} \|x_{k+1} - x^*\|^2 + \alpha \langle g(x_{k+1}), v_k - v_{k+1} \rangle - (\alpha - \tilde{\alpha}) \langle g(x_{k+1}), v_k - x^* \rangle \\ & + \tilde{\alpha} \langle \nabla f(x_{k+1}) - g(x_{k+1}), v_k - x^* \rangle \end{aligned} \quad (2.9)$$

After taking the expectation $\mathbb{E}(\langle \nabla f(x_{k+1}) - g(x_{k+1}), v_k - x^* \rangle) = 0$. We use $v_k - x^* = (1 + \alpha)(v_{k+1} - x_{k+1}) + (x_{k+1} - x^*) + \frac{\alpha}{\mu}g(x_{k+1})$ and the identity $2\langle a, b \rangle = \|a\|^2 + \|b\|^2 - \|a - b\|^2$ to bound the cross term $-(\alpha - \tilde{\alpha}) \langle g(x_{k+1}), v_k - x^* \rangle = -\alpha\tilde{\alpha} \langle g(x_{k+1}), v_k - x^* \rangle$:

$$\begin{aligned} & -\tilde{\alpha}\mu \langle \frac{\alpha}{\mu}g(x_{k+1}), (1 + \alpha)(v_{k+1} - x_{k+1}) \rangle - \alpha\tilde{\alpha} \langle g(x_{k+1}), x_{k+1} - x^* \rangle - \frac{\alpha^2\tilde{\alpha}}{\mu} \|g(x_{k+1})\|^2 \\ & = -\frac{\tilde{\alpha}\mu}{2} \|v_k - x_{k+1}\|^2 - \frac{\alpha^2\tilde{\alpha}}{2\mu} \|g(x_{k+1})\|^2 + \frac{\alpha(1 + \alpha)\mu}{2} \|v_{k+1} - x_{k+1}\|^2 - \alpha\tilde{\alpha} \langle g(x_{k+1}), x_{k+1} - x^* \rangle \end{aligned} \quad (2.10)$$

The last term can be combined with the first term of (2.9) after taking expectations, and using strong convexity we obtain:

$$-\alpha \langle \nabla f(x_{k+1}) - \nabla f(x^*), x_{k+1} - x^* \rangle \leq -\alpha(f(x_{k+1}) - f(x^*) + \frac{\mu}{2} \|x_{k+1} - x^*\|^2) \quad (2.11)$$

This negative contribution cancels the corresponding positive term in (2.9). The most difficult term is the expectation of the cross term $\mathbb{E}[\langle g(x_{k+1}), v_k - v_{k+1} \rangle]$, as both $g(x_{k+1})$ and v_{k+1} are random variables. Using the identity $2\langle a, b \rangle = \|a\|^2 + \|b\|^2 - \|a - b\|^2$ again to obtain

$$\alpha \langle g(x_{k+1}), v_k - v_{k+1} \rangle = \frac{\alpha^2}{2\mu} \|g(x_{k+1})\|^2 + \frac{\mu}{2} \|v_k - v_{k+1}\|^2 - \frac{\alpha^2 \mu}{2} \|v_{k+1} - x_{k+1}\|^2, \quad (2.12)$$

where the term involving $v_{k+1} - x_{k+1}$ follows from $\frac{v_k - v_{k+1}}{\alpha} - \frac{1}{\mu} g(x_{k+1}) = v_{k+1} - x_{k+1}$ by the update of v_{k+1} . The positive $\frac{\mu}{2} \|v_k - v_{k+1}\|^2$ is canceled by $-\frac{\mu}{2} \|v_k - v_{k+1}\|^2$ contained in $-D_{\mathcal{E}}(z_k^+, z_{k+1})$. The stochastic gradient term splits into two parts: one part is directly canceled by the corresponding negative term in (2.10). For the remaining part, taking expectations termwise and applying the MNS condition yields the positive gradient contribution $\frac{\tilde{\alpha}\alpha(1+\sigma^2)}{2\mu} \|\nabla f(x_{k+1})\|^2$, which is then canceled by the negative term in the sufficient decay condition (2.8), together with the additional negative term generated by applying the same sufficient decay condition to $f(x_{k+1}) - f(x^*)$. **This cancellation motivates our choice of (α, β, m) .**

Combining all the above estimates, we obtain,

$$\mathbb{E}[\mathcal{E}(z_{k+1}^+)] - \mathcal{E}(z_k^+) \leq \mathbb{E}[-\alpha \mathcal{E}(z_{k+1}^+)].$$

Moving $\mathcal{E}(z_{k+1}^+)$ to the left-hand side yields the desired result. \square

When $\sigma = 0$, SHANG++ reduces to the deterministic HNAG++ method of Chen & Xu (2025). As σ grows, convergence slows but acceleration is preserved. While Gupta et al. (2024) interpret noise as inflating smoothness to $(1 + \sigma^2)L$, our analysis shows it perturbs both smoothness and curvature, giving $L_\sigma = (1 + \sigma^2)L$ and $\mu_\sigma = \mu/(1 + \sigma^2)$. **We compare the parameters**

$$(\text{SHANG}) \quad 0 < \alpha \leq \sqrt{\frac{\mu_\sigma}{L_\sigma}} \quad (\text{SHANG++}) \quad 0 < \alpha \leq \frac{1}{1 - \tilde{\alpha}} \sqrt{\frac{\mu_\sigma}{L_\sigma}},$$

The noise-damping term in SHANG++ further reduces the effective Lipschitz constant from L_σ to $(1 - \tilde{\alpha})L_\sigma$ and increase the effective strongly convex constant from μ_σ to $\mu_\sigma/(1 - \tilde{\alpha})$, explaining its stronger stability.

SHANG++ Method for Convex Minimization Recall the modified step size $\tilde{\alpha}_k = \frac{\alpha_k}{1 + m\alpha_k}$. To facilitate analysis, we define an auxiliary time-scaling variable $\tilde{\gamma}_k = \frac{\gamma_k}{1 + m\alpha_k}$. Setting $\alpha_k = \frac{2}{k+1}$ and $\gamma_k/(1 + \sigma^2) = \alpha_k \tilde{\alpha}_k L_\sigma$, for any fixed $m \geq 0$, we obtain:

$$\frac{\tilde{\gamma}_{k+1} - \tilde{\gamma}_k}{\tilde{\alpha}_k} = -(1 + \frac{1}{2(k+1+2m)}) \tilde{\gamma}_{k+1} \leq -\tilde{\gamma}_{k+1} \quad (2.13)$$

Replacing the x -update in (2.4) with the equivalent modified discretization (2.5) and combining it with (2.13) yields the following convergence result. The full proof appears in Appendix C.2.

Theorem 2.2. *Let $f \in \mathcal{S}_{0,L}$. Suppose that (x_k, v_k) are generated by the time-stepping scheme (2.4). $g(x_k)$ defined in (1.2) and MNS holds. Given $x_0^+ = v_0 = x_0$, $m \geq 0$, choose the step size $\alpha_k = \frac{2}{k+1}$, $\gamma_k/(1 + \sigma^2) = \alpha_k \tilde{\alpha}_k L_\sigma$ and $\beta_k = \frac{\alpha_k}{\gamma_k/(1 + \sigma^2)}$, we have*

$$\mathbb{E} \left[f(x_{k+1}^+) - f(x^*) + \frac{\tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 \right] \leq \frac{(1+2m)(2+2m)}{(k+2+2m)(k+3+2m)} \mathcal{E}(z_0; \tilde{\gamma}_0) = \mathcal{O}(\frac{L_\sigma}{k^2})$$

We compare the parameters

$$(\text{SHANG}) \quad \frac{\gamma_k}{1 + \sigma^2} = \alpha_k^2 L_\sigma, \quad (\text{SHANG++}) \quad \frac{\gamma_k}{1 + \sigma^2} = \alpha_k \tilde{\alpha}_k L_\sigma = \alpha_k^2 \cdot \frac{L_\sigma}{1 + m\alpha_k},$$

which reduces the effective Lipschitz constant from L_σ to $\frac{L_\sigma}{1 + m\alpha_k}$. The noise-damping term offsets part of the σ^2 -induced amplification, improving stability by slowing down the effective rate. Our experiments suggest that choosing m in the range $[0, 1.5]$ provides a good trade-off.

Other Convergence Results. *Quadratic Loss.* Consider a special case of problem (1.1): the quadratic loss with Tikhonov regularization (also known as weight decay), which is widely used in regression tasks. The objective takes the form

$$f(x) = \frac{1}{N} \sum_{i=1}^N (x^\top X_i - Y_i)^2 + \frac{\lambda}{2} \|x\|_2^2 = \frac{1}{N} \|X^\top x - Y\|_2^2 + \frac{\lambda}{2} \|x\|_2^2, \quad (2.14)$$

where $\frac{1}{N} \sum_{i=1}^N (x^\top X_i - Y_i)^2$ is the empirical quadratic loss and $\frac{\lambda}{2} \|x\|_2^2$ is the regularizer with $\lambda > 0$. The Tikhonov regularizer ensures that the objective is λ -strongly convex with smoothness constant $(L + \lambda)$. Under multiplicative noise scaling, setting $\alpha = \frac{1}{1 - \tilde{\alpha}} \sqrt{\mu_\sigma / L_\sigma}$ yields the accelerated convergence rate $(1 - \frac{1}{1 + \sigma^2} \sqrt{\lambda / (L + \lambda)})$ in the leading term.

Batching. Gradient noise can be reduced by increasing the mini-batch size M in (1.2). If σ_1^2 is the MNS constant for $M = 1$, then $\sigma_M^2 = \sigma_1^2/M$. Another approach is to average K independent gradient estimators, $g^K = \frac{1}{K} \sum_{i=1}^K g_i$, which gives an effective MNS constant of σ^2/K . Both strategies reduce noise at the cost of higher computation, and a straightforward analysis shows that averaging multiple estimates can accelerate convergence to some extent.

Variance decay under MNS. Beyond the expectation bound, we show geometric variance decay of the Lyapunov energy. Specifically, by Theorem D.1,

$$\text{Var} \left(f_{-\mu}(x_k^+) - f_{-\mu}(x^*) + \frac{\mu}{2} \|v_k - x^*\|^2 \right) \leq (f(x_0) - f(x^*))^2 (r^2 + K_2)^k.$$

A sufficient (practically verifiable) condition is $K_2 < 1 - r^2$, where $r = (1 + \alpha)^{-1}$ is the decay rate in Theorem 2.1 and K_2 collects the fluctuation constants. This holds, for example, in low-condition regime, with a damped stepsize $\alpha \leftarrow \delta\alpha$ ($0 < \delta \leq 1$) or with a minibatch of larger M (or K independent multiple estimates). Complete proofs and the explicit expressions of related constants are provided in Appendix D.

3 NUMERICAL EXPERIMENTS

We design our experiments to validate the theoretical alignment, scalability, and robustness of SHANG++ and SHANG ($m = 0$).

For deep learning tasks, we adopt SHANG++ with three explicit hyperparameters (α, γ, m) , with $\mu = 0$ and $\beta = \alpha/\gamma$, summarized in Algorithm 1, where v is updated first by index shifting. Here we fix $\beta = \alpha/\gamma$ to simplify tuning. Although theory suggests $\beta = (1 + \sigma^2)\alpha/\gamma$, estimating σ is unreliable, and the fixed ratio provides stable performance with implicit noise scaling. Adaptive choices of σ offered little practical improvement.

SHANG++ incurs no extra per-iteration cost compared with standard momentum methods: each update requires one gradient evaluation and a constant number of vector operations.

Algorithm 1: SHANG++ for Deep Learning

Input: Objective function f , initial point x_0 , step size α , time scaling factor γ , noise-damping m , iteration horizon T .

$$k \leftarrow 1, v_0 \leftarrow x_0, x_1 \leftarrow x_0, \tilde{\alpha} \leftarrow \frac{\alpha}{1 + m\alpha}$$

while $k \leq T$ **do**

$$g_k \leftarrow \frac{1}{M} \sum_i$$

$$v_k \leftarrow v_{k-1} - \frac{\alpha}{\gamma} g_k$$

$$x_{k+1} \leftarrow \frac{1}{\gamma} x_k + \dots$$

$$x_{k+1} = \frac{1+\tilde{\alpha}}{1+\tilde{\alpha}} x_k + \frac{1}{1+\tilde{\alpha}} v_k + \frac{1}{1+\tilde{\alpha}} \gamma g_k$$

$n \leftarrow n + 1$

end
return α

return x_T

Throughout this section, NAG refers to the stochastic version of Nesterov's accelerated gradient (Nesterov, 1983) by replacing $\nabla f(x)$ by $g(x)$. While SNAG refers to the method in (Hermant et al.,

2025), which can be treated as an alternative discretization of the HNAG flow (Appendix E). The stability of SNAG can be also explained with our theoretical analysis. Similarly SHB is the stochastic version of Heavy-Ball method (SGD with momentum).

Convex optimization We first consider the family of objective functions from Gupta et al. (2024):

$$f_d : \mathbb{R} \rightarrow \mathbb{R}, \quad f_d(x) = \begin{cases} |x|^d, & |x| < 1, \\ 1 + d(|x| - 1), & \text{else,} \end{cases}$$

for $d \geq 2$, with gradient estimators $g(x) = (1 + \sigma Z)\nabla f(x)$, where $Z \sim \mathcal{N}(0, I_d)$ is a standard normal random variable. The functions f_d belong to $\mathcal{S}_{0,L}$ with $L = d(d - 1)$.

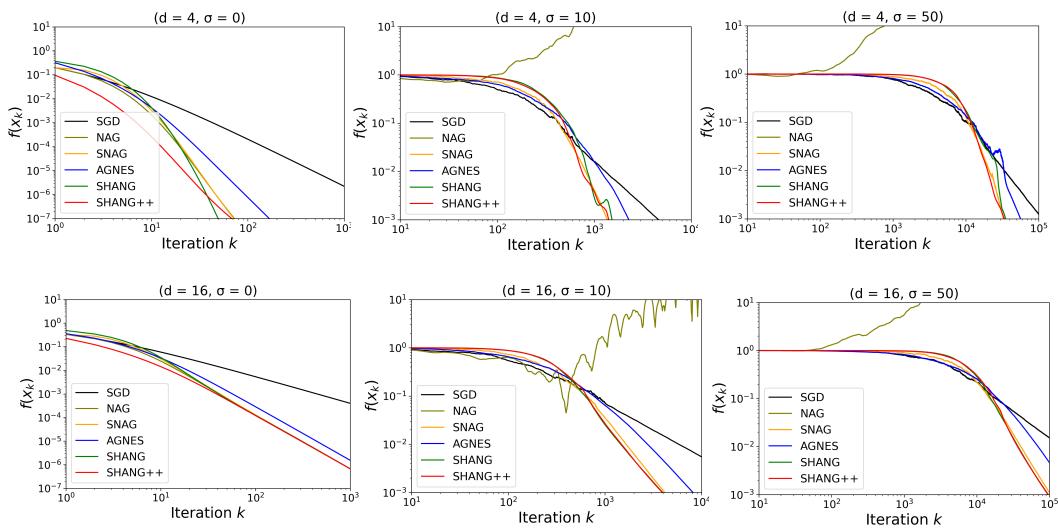


Figure 3.1: Performance of different algorithms under varying noise levels.

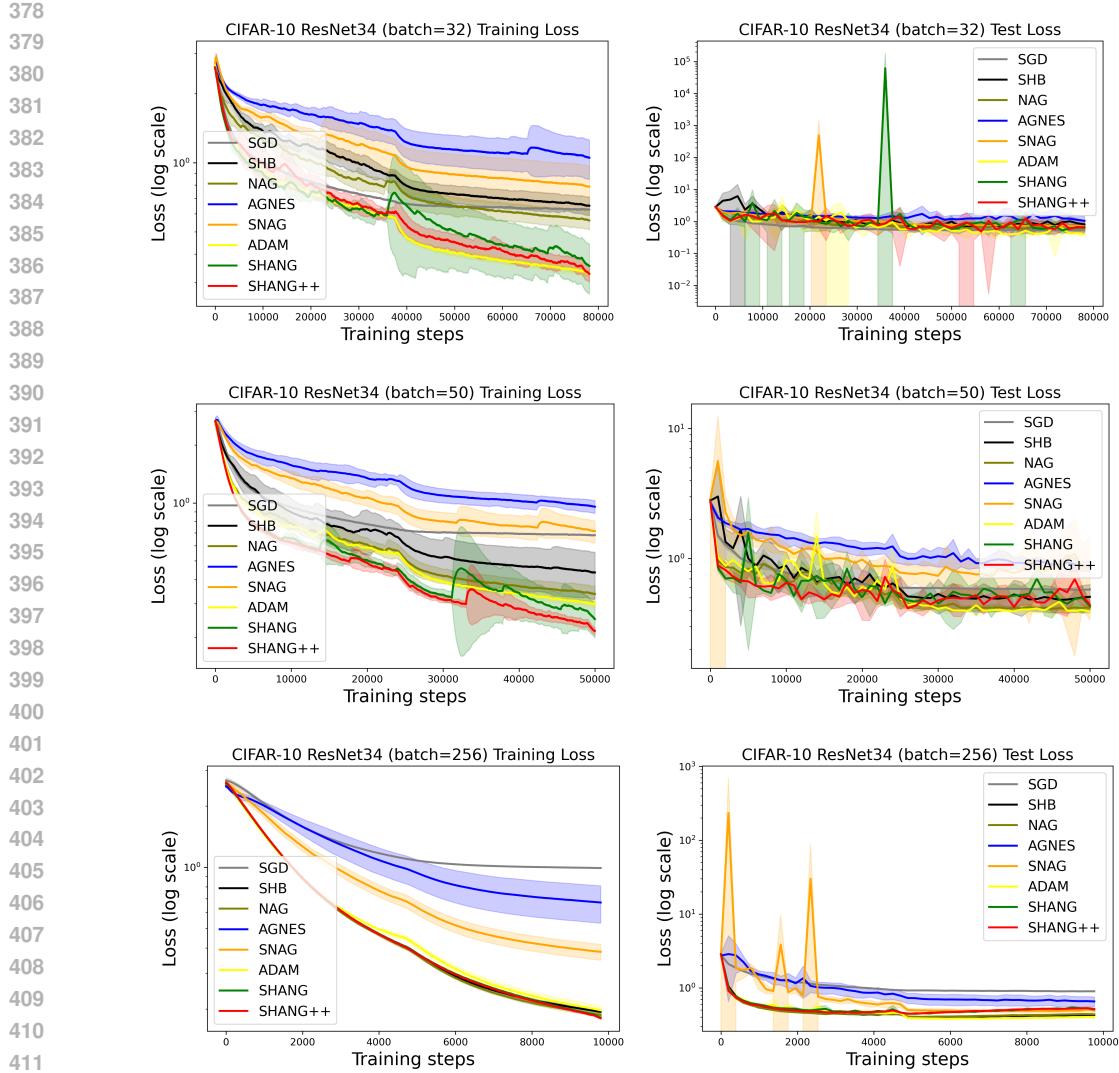
We compare SHANG and SHANG++ with SGD, NAG, AGNES (Gupta et al., 2024), and SNAG (Hermant et al., 2025) under $\sigma \in \{0, 10, 50\}$ and $d \in \{4, 16\}$. The parameters used follow their optimal choices for the convex case. All simulations are initialized at $x_0 = 1$, and expectations are averaged over 200 independent runs. See Appendix A.1 for the full experimental setup, hyperparameter choices, and results.

In Figure 3.1, both SHANG and SHANG++ remain stable as the noise level σ increases, whereas NAG diverges under large noise. **SHANG is generally very competitive, with SHANG++ showing consistently slightly better behavior than the other accelerated stochastic schemes.** These results suggest that the proposed methods are reasonably robust to noisy gradients with modest tuning, while maintaining accelerated-like behavior in the high-noise regime.

Classification Tasks on MNIST, CIFAR-10 and CIFAR-100 We benchmark on three training tasks: LeNet-5 on MNIST (LeCun et al., 1998), ResNet-34 (He et al., 2016) on CIFAR-10 (Krizhevsky, 2009), and ResNet-50 on CIFAR-100. Each model is trained for 50 epochs, and results are reported as mean \pm s.d. over five random seeds.

For hyperparameter selection, SHANG and SHANG++ used $\alpha = 0.5$ with γ chosen from grids: $\{1, 1.5, 2\}$ for LeNet-5, $\{5, 10\}$ for ResNet-34, and $\{10, 15\}$ for ResNet-50. SHANG++ fixed $m = 1.5$. AGNES followed defaults $(\eta, \alpha, m) = (0.01, 0.001, 0.99)$; SNAG used (η, β) with $\eta \in \{0.5, \dots, 0.001\}$, $\beta \in \{0.7, 0.8, 0.9, 0.99\}$, where $(0.05, 0.9)$ performed best, consistent with prior CIFAR work. Other baselines used $\eta = 0.001$ and momentum 0.99 when applicable. After 25 epochs, all baseline learning rates (including AGNES’s correction) were decayed by 0.1, while γ was doubled for our methods. Full details are in Appendix A.2.

Figure 3.2 reports SHANG with $(\alpha, \gamma) = (0.5, 10)$ and SHANG++ with $(\alpha, \gamma, m) = (0.5, 10, 1.5)$, while Figure 3.3 reports the corresponding results for $(\alpha, \gamma) = (0.5, 15)$ and $(\alpha, \gamma, m) = (0.5, 15, 1.5)$. Figure 3.2 shows the training and test losses of ResNet-34 on CIFAR-10 under



413 Figure 3.2: Training loss (left) and test loss (right) in log scale (running average with decay 0.99) on CIFAR-10
414 with ResNet-34, for batch sizes 32 (top row), 50 (middle row), and 256 (bottom row).

415
416
417 different batch sizes, with all algorithmic hyperparameters kept fixed across batch sizes. Batch
418 size strongly affects gradient variance: smaller batches increase noise, larger batches reduce it. At
419 256, all methods are stable and gaps narrow; at 50, NAG, SNAG, and AGNES oscillate with wider
420 bands (AGNES also plateaus higher). At batch size 32, differences among methods become more
421 pronounced.

422 Even under extreme noise, SHANG and SHANG++ consistently outperform other first-order stochastic
423 momentum methods. Notably, when the batch size falls below 50, AGNES and SNAG lose
424 their acceleration advantage over SGD, whereas SHANG, SHANG++, and Adam still offer clear
425 improvements (though Adam is not directly comparable). As also observed by Hermant et al. (2025),
426 non-variance-reduced accelerated methods often lose acceleration at very small batch sizes; however,
427 SHANG and SHANG++ appear to remain robust down to relatively smaller thresholds.

428 Figure 3.3 shows ResNet-50 training and test losses on CIFAR-100. SHANG and SHANG++ deliver
429 competitive or superior performance to non-adaptive baselines. An interesting observation is that
430 SGD attains the lowest test loss, yet this does not correspond to the best classification accuracy
431 (see Figure A.3). This mismatch is aligned with prior findings: SGD on cross-entropy with hard
labels is a likely cause of “confidently wrong” predictions (Thulasidasan et al., 2020). Table 3.1

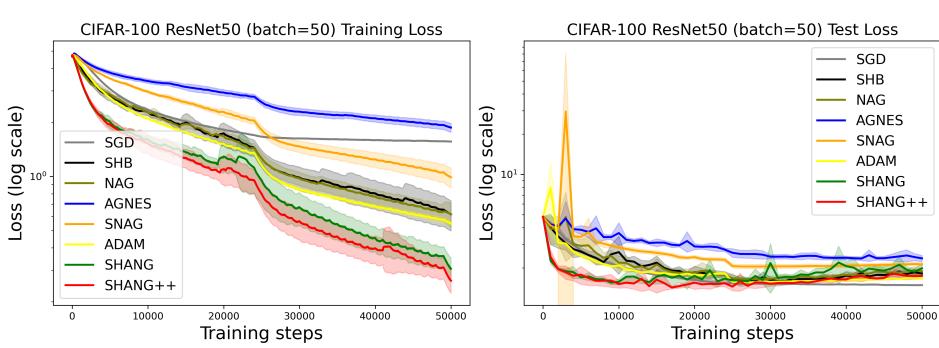


Figure 3.3: Training, test loss (log scale, running average with decay 0.99) on CIFAR-100 with ResNet-50 (batch size 50).

further summarizes the mean final test accuracy over five independent runs: SHANG and SHANG++ are comparable to Adam, often surpass AGNES and SNAG, and clearly improve over SGD and NAG. The slightly lower absolute accuracies arise because we use intentionally small batch sizes and only 50 training epochs to stress-test optimizer stability rather than to reach full convergence; with standard, longer training schedules, baselines attain their usual performance and the relative ranking of the methods remains essentially unchanged.

Table 3.1: Test accuracy of SGD, SHB, NAG, Adam, AGNES, SHANG, and SHANG++ on MNIST (LeNet-5), CIFAR-10 (ResNet-34), and CIFAR-100 (ResNet-50). Here b is batch size.

	SGD	SHB	NAG	Adam	AGNES	SNAG	SHANG	SHANG++
LeNet-5	91.07	98.98	98.9	99.07	98.88	99.07	99.06	99.11
($b = 50$)	± 0.11	± 0.05	± 0.08	± 0.07	± 0.09	± 0.08	± 0.02	± 0.03
ResNet-34	81.74	78.9	81.28	86.99	67.45	75.58	84.5	85.36
($b = 32$)	± 0.38	± 1.67	± 1.58	± 0.14	± 7.7	± 6.02	± 2	± 1.42
ResNet-34	79.91	84.59	86.43	87.38	70.49	77.65	87.15	87.4
($b = 50$)	± 0.11	± 2.62	± 0.81	± 0.26	± 2.51	± 2.7	± 0.82	± 0.5
ResNet-34	68.49	87.6	87.61	88.23	77.84	84.5	86.67	86.57
($b = 256$)	± 0.19	± 0.27	± 0.29	± 0.11	± 3.7	± 0.92	± 0.13	± 0.17
ResNet-50	58.31	58.17	57.66	59.87	42.82	49.51	63.31	65.02
($b = 50$)	± 0.51	± 1.99	± 1.44	± 0.61	± 1.24	± 1.56	± 0.93	± 1.25

Robustness to Multiplicative Gradient Noise Our theory predicts that time-scale coupling (α, γ) in SHANG and (α, γ, m) in SHANG++ mitigates multiplicative gradient noise. To test this, we fix one hyperparameter configuration per optimizer and evaluate across $\sigma \in \{0, 0.05, 0.1, 0.2, 0.5\}$. The effective noise is higher than nominal σ , since minibatch SGD adds sampling noise. This one-shot protocol isolates each optimizer’s robustness without re-tuning. All experiments use CIFAR-10 with ResNet-34, batch size 50, the same settings as subsection 3, trained for 100 epochs and averaged over three seeds. Final validation error at epoch 100 is reported; full setup and hyperparameters are in Appendix A.4.

Figure 3.4 shows the mean final classification error rate under varying noise levels, and Table 3.2 reports the relative degradation $\Delta(\sigma) = (\mathbb{E}(\sigma) - \mathbb{E}(0))/\mathbb{E}(0)$, where $\mathbb{E}(\sigma)$ denotes the mean classification error rate (averaged over three seeds) at noise level σ .

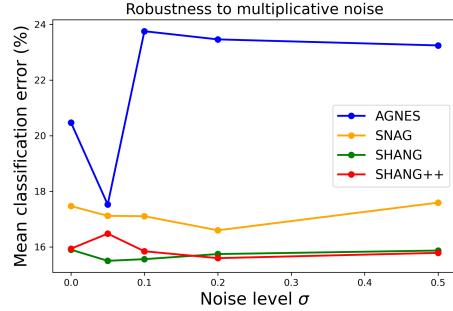
1. At $\sigma = 0$, SHANG and SHANG++ reach 15.9%, outperforming SNAG (17.5%) and AGNES (20.5%).
2. At $\sigma = 0.1$, SHANG slightly improves to 15.6 %, SHANG++ remains stable at 15.9%, SNAG marginally improves to 17.1%, while AGNES degrades to 23.8%.
3. At $\sigma = 0.5$, SHANG and SHANG++ remain near 16%, while SNAG rises to 17.6% and AGNES drifts to 23.2% ($\approx 13.5\%$ relative increase).

486 These results align with our Lyapunov analysis: time-scale coupling (α, γ, m) suppresses σ^2 amplification, ensuring stable performance without re-tuning. SNAG is stable but less accurate, while
 487 AGNES is most sensitive to noise.
 488

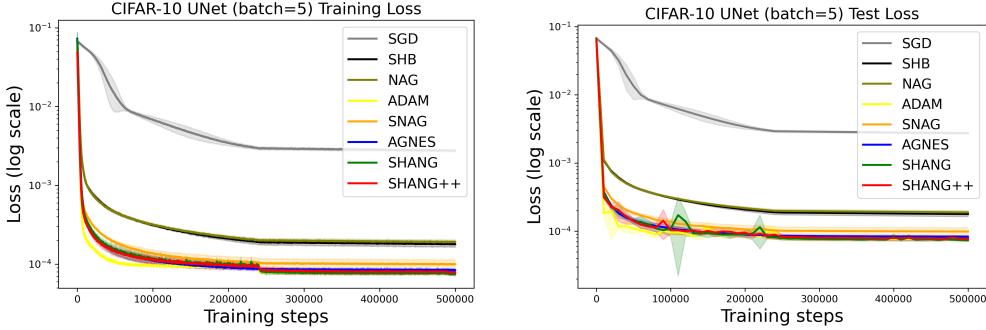
489 Table 3.2: Relative change in final classification
 490 error compared with $\sigma = 0$ (lower is better; negative
 491 values indicate improvement). Values are averaged
 492 over three seeds.
 493

Method	Relative degradation $\Delta(\%)$ at σ			
	0.05	0.1	0.2	0.5
SHANG	-2.5	-2.1	-1.0	-0.2
SHANG++	+3.4	-0.6	-2.1	-0.9
AGNES	-14.4	+16.0	+14.6	+13.5
SNAG	-2.0	-2.1	-5.0	0.7

Figure 3.4: Validation error under varying multiplicative noise level σ . Lower is better.



504 **Image Reconstruction with Small Batch Size** We further evaluate our algorithms on a generative
 505 task of image reconstruction with small-batch training, using a lightweight U-Net (Ronneberger
 506 et al., 2015) on CIFAR-10 with batch size 5. SHANG and SHANG++ are compared against SNAG,
 507 AGNES, NAG, SGD, SHB, and Adam, with full experimental details provided in the appendix A.6.
 508 Figure 3.5 shows training and test losses. Adam achieves the lowest loss due to its adaptive learning



521 Figure 3.5: Training and test loss (log scale, running average with decay 0.99) on CIFAR-10 using U-Net with
 522 batch size 5.

523 rate, but both SHANG and SHANG++ outperform all other non-adaptive methods. In particular,
 524 SHANG++ shows stable and efficient training even in this high-noise regime, highlighting its practical
 525 robustness. **We additionally include a sanity-check experiment on ImageNet-100 with ResNet-34**
 526 **in Appendix A.5, which shows that SHANG and SHANG++ remain competitive with classical**
 527 **momentum methods on this larger-scale task, and we also conduct a comparative hyperparameter**
 528 **study, with full settings and results given in Appendix A.7.**

4 CONCLUSION

532 We presented SHANG++, an accelerated first-order stochastic optimizer for robust and simple
 533 training under multiplicative noise. Theoretically, it retains the optimal accelerated rate in both
 534 convex and strongly convex settings under the MNS condition. Empirically, across convex tasks,
 535 image classification, and generative reconstruction, one-shot hyperparameter choices sustain near
 536 noise-free accuracy (within 1% for $\sigma \leq 0.5$). Compared with other stochastic momentum methods,
 537 SHANG++ demonstrates enhanced stability under small-batch or high-noise conditions, with accuracy
 538 exceeding baselines and comparable to Adam. **These properties make SHANG++ a practical, scalable**
 539 **optimizer for large-scale, noise-intensive training. Its empirical success on nonconvex problems**
 further suggests that extending the theory beyond convexity is a natural next step.

540 REFERENCES
541

542 Mahmoud Assran and Michael Rabbat. On the convergence of nesterov’s accelerated gradient method
543 in stochastic settings. In *Proceedings of the 37th International Conference on Machine Learning*
544 (*ICML*). PMLR, 2020.

545 Jean-François Aujol and Charles Dossal. Stability of over-relaxations for the forward-backward
546 algorithm, application to fista. *SIAM Journal on Optimization*, 25(4):2408–2433, 2015.

547 Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of sgd in non-convex
548 over-parametrized learning, 2018. URL <https://arxiv.org/abs/1811.02564>.

549 Raghu Bollapragada, Tyler Chen, and Rachel Ward. On the fast convergence of minibatch heavy ball
550 momentum. In *arXiv preprint arXiv:2206.07553*, 2022.

551 G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm using
552 bregman functions. *SIAM Journal on Optimization*, 3(3):538–543, 1993.

553 Long Chen and Hao Luo. First order optimization methods based on hessian-driven nesterov
554 accelerated gradient flow. *arXiv preprint arXiv:1912.09276*, 2019.

555 Long Chen and Hao Luo. A unified convergence analysis of first-order convex optimization methods
556 via strong lyapunov functions, 2021.

557 Long Chen and Zeyi Xu. Hnag++: A super-fast accelerated gradient method for strongly convex
558 optimization, 2025. URL <https://arxiv.org/abs/2510.16680>.

559 Alex Damian, Tengyu Ma, and Jason D. Lee. Label noise sgd provably prefers flat global minimizers.
560 In *In Advances in Neural Information Processing Systems*, 2021.

561 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale hier-
562 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
563 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

564 Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
565 optimization with inexact oracle. *Mathematical Programming*, 146:37–75, 2014.

566 Mathieu Even, Raphaël Berthier, Francis Bach, Nicolas Flammarion, Pierre Gaillard, Hadrien
567 Hendrikx, Laurent Massoulié, and Adrien Taylor. A continuized view on nesterov acceleration for
568 stochastic gradient descent and randomized gossip. In *arXiv preprint arXiv:2106.07644*, 2021.

569 Swetha Ganesh, Rohan Deb, Gugan Thoppe, and Amarjit Budhiraja. Does momentum help in
570 stochastic optimization? a sample complexity analysis. In *Uncertainty in Artificial Intelligence*
571 (*UAI*), pp. 602–612. PMLR, 2023.

572 Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly
573 convex stochastic composite optimization i: A generic algorithmic framewor. *SIAM Journal on*
574 *Optimization*, 22(4):1469–1492, 2012.

575 Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Provable non-accelerations of the heavy-
576 ball method: B. goujaud et al. *Mathematical Programming*, pp. 1–59, 2025.

577 Kanan Gupta, Jonathan W. Siegel, and Stephan Wojtowytsc. Nesterov acceleration despite very
578 noisy gradients. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

579 Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning: Data*
580 *Mining, Inference, and Prediction*. Springer, 2009.

581 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
582 recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
583 770–778, 2016.

584 Julien Hermant, Marien Renaud, Jean-François Aujol, Charles Dossal, and Aude Rondepierre.
585 Gradient correlation is a key ingredient to accelerate SGD with momentum. In *International*
586 *Conference on Learning Representations (ICLR)*, 2025.

594 Liam Hodgkinson and Michael W. Mahoney. Multiplicative noise and heavy tails in stochastic
 595 optimization. In *International Conference on Machine Learning (ICML)*, pp. 4262–4274. PMLR,
 596 2021.

597 Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerating
 598 stochastic gradient descent for least squares regression. In *In Conference On Learning Theory*,
 599 2018.

600 Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade. On the insufficiency of
 601 existing momentum schemes for stochastic optimization. In *International Conference on Learning
 602 Representations (ICLR)*, 2018.

603 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International
 604 Conference on Learning Representations (ICLR)*, 2015.

605 Achim Klenke. *Probability Theory: A Comprehensive Course*. Universitext. Springer, 2013.

606 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
 607 of Toronto, 2009.

608 Maxime Laborde and Adam Oberman. A lyapunov analysis for accelerated gradient methods: from
 609 deterministic to stochastic case. In *In International Conference on Artificial Intelligence and
 610 Statistics*, pp. 602–612. PMLR, 2020.

611 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 612 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

613 Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization
 614 algorithms via integral quadratic constraints. *SIAM Journal on Optimization*, 26(1):57–95, 2016.

615 Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss? –a
 616 mathematical framework. In *In International Conference on Learning Representations*, 2022.

617 Chaoyue Liu and Mikhail Belkin. Accelerating SGD with momentum for over-parameterized learning.
 618 In *International Conference on Learning Representations (ICLR)*, 2020.

619 Tianyi Liu, Zhehui Chen, Enlu Zhou, and Tuo Zhao. Toward deeper understanding of nonconvex
 620 stochastic optimization with momentum using diffusion approximations, 2018.

621 Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
 622 approximation approach to stochastic programming. *SIAM Journal on optimization*, 19(4):1574–
 623 1609, 2009.

624 Yurii Nesterov. A method of solving a convex programming problem with convergence rate $\mathcal{O}(1/k^2)$.
 625 *Soviet Mathematics Doklady*, 27:372–376, 1983.

626 Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
 627 *SIAM Journal on Optimization*, 22(2):341–362, 2012. doi: 10.1137/100802001. URL <https://doi.org/10.1137/100802001>.

628 Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. *USSR
 629 Computational Mathematics and Mathematical Physics*, 4(5):1–17, 1964.

630 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 631 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*,
 632 2015.

633 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
 634 and momentum in deep learning. In *In International Conference on Machine Learning (ICML)*, pp.
 635 1139–1147, 2013.

636 Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
 637 On mixup training: Improved calibration and predictive uncertainty for deep neural networks,
 638 2020. URL <https://arxiv.org/abs/1905.11001>.

648 Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of SGD for over-
 649 parameterized models and an accelerated perceptron. In *International Conference on Artificial*
 650 *Intelligence and Statistics (AISTATS)*, pp. 1195–1204. PMLR, 2019.

651

652 Stephan Wojtowytzsch. Stochastic gradient descent with noise of machine learning type. part ii:
 653 Continuous time analysis, 2021. URL <https://arxiv.org/abs/2106.02588>.

654

655 Stephan Wojtowytzsch. Stochastic gradient descent with noise of machine learning type. part i:
 656 Discrete time analysis. *Journal of Nonlinear Science*, 33, 2023.

657

658 Lei Wu, Mingze Wang, and Weijie J.Su. The alignment property of sgd noise and how it helps
 659 select flat minima: A stability analysis. In *Advances in Neural Information Processing Systems*
 660 (*NeurIPS*), 2022a.

661

662 Lei Wu, Mingze Wang, and Weijie J. Su. The alignment property of SGD noise and how it helps
 663 select flat minima: A stability analysis. In *Advances in Neural Information Processing Systems*
 664 (*NeurIPS*), 2022b.

665 Xiaoxia Wu, Simon S. Du, and Rachel Ward. Global convergence of adaptive gradient methods for
 666 an over-parameterized neural network, 2019.

667

668 Kun Yuan, Bicheng Ying, and Ali H Sayed. On the influence of momentum acceleration on online
 669 learning. *The Journal of Machine Learning Research*, 17:6602–6667, 2016.

670

671 Puning Zhao, Jiafei Wu, Zhe Liu, Chong Wang, Rongfei Fan, and Qingming Li. Differential private
 672 stochastic optimization with heavy-tailed data: Towards optimal rates, 2024. URL <https://arxiv.org/abs/2408.09891>.

673

674 Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and E. Weinan. Towards theoretically
 675 understanding why sgd generalizes better than adam in deep learning. In *In Proceedings of the*
 676 *34th International Conference on Neural Information Processing Systems*, 2020.

677

678 LLM USAGE

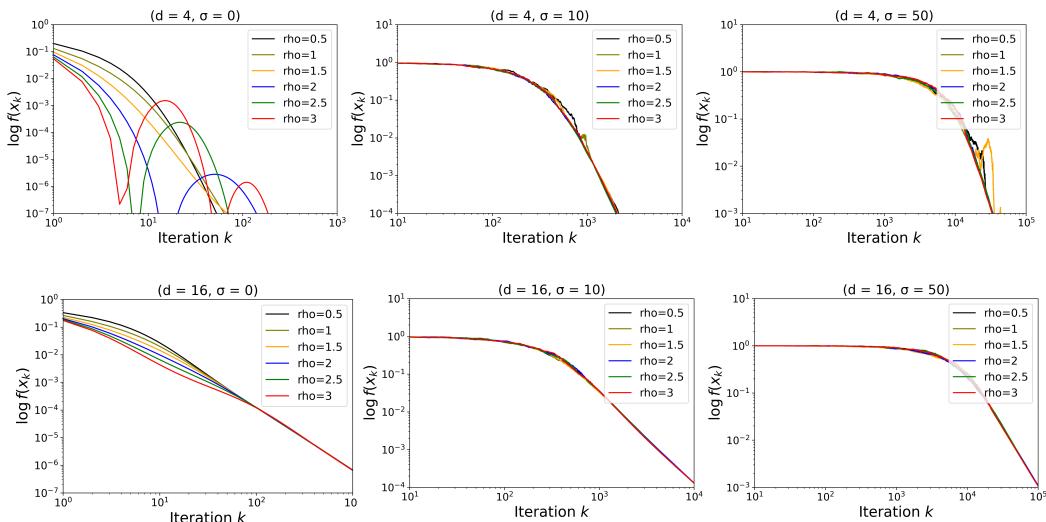
679 In preparing this manuscript, large language models (LLMs) were employed exclusively to assist
 680 with language-related tasks, such as improving readability, grammar, and style. The models were not
 681 used for research ideation, development of methods, data analysis, or interpretation of results. All
 682 scientific content, including problem formulation, theoretical analysis, and experimental validation,
 683 was conceived, executed, and verified entirely by the authors. The authors bear full responsibility for
 684 the accuracy and integrity of the manuscript.

687 ETHICS STATEMENT

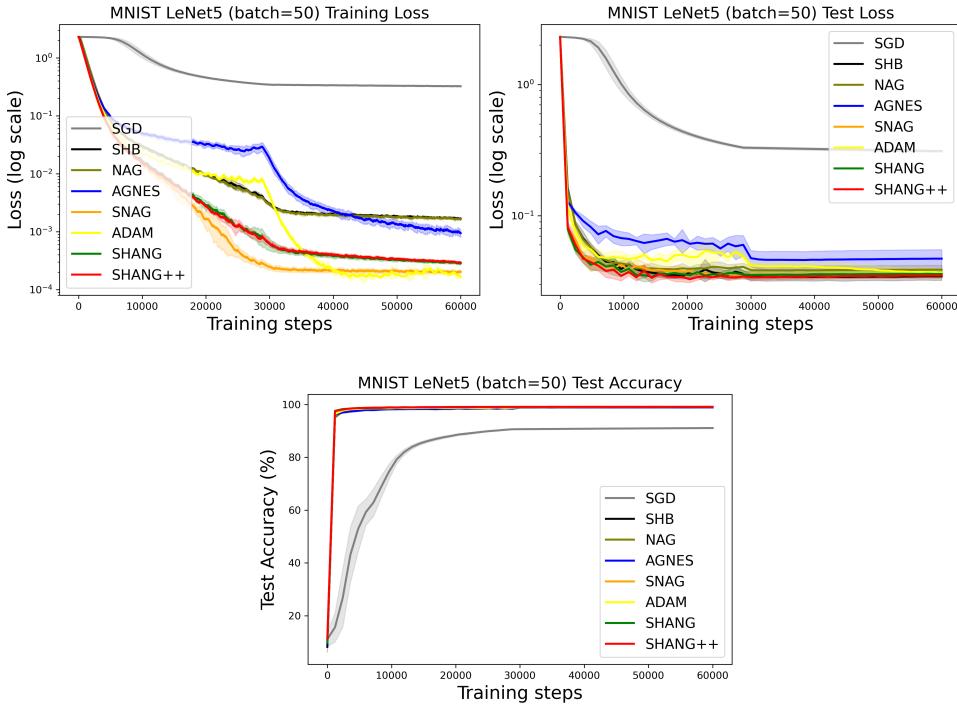
688 This work is purely theoretical and algorithmic, focusing on convex optimization methods. It does not
 689 involve human subjects, sensitive data, or applications that raise ethical concerns related to privacy,
 690 security, fairness, or potential harm. All experiments are based on publicly available datasets or
 691 synthetic data generated by standard procedures. The authors believe that this work fully adheres to
 692 the ICLR Code of Ethics.

695 REPRODUCIBILITY STATEMENT

696 We have taken several measures to ensure the reproducibility of our results. All theoretical assump-
 697 tions are explicitly stated, and complete proofs are provided in the appendix. For the experimental
 698 evaluation, we describe the setup, parameter choices, and baselines in detail in the main text. The
 699 source code for our algorithms and experiments are available as supplementary materials. Together,
 700 these resources should allow others to reproduce and verify our theoretical and empirical findings.

702 **A SUPPLEMENT OF EXPERIMENTS**
703704 Here are some experimental setup and results that are not presented in the main text.
705706 **A.1 SUPPLEMENT OF THE CONVEX EXPERIMENT**
707708 For the convex example in Section 3, we compare SHANG and SHANG++ with SGD, NAG, AGNES,
709 and SNAG under $\sigma \in \{0, 10, 50\}$ and $d \in \{4, 16\}$. The parameters used follow their optimal
710 choices for the convex case. For SHANG, $\alpha_k = \frac{2}{k+1}$, $\gamma_k = \alpha_k^2 L(1 + \sigma^2)^2$ and $\beta_k = \frac{(1 + \sigma^2)\alpha_k}{\gamma_k}$;
711 For SHANG++, $\alpha_k = \frac{2}{k+1}$, $m = 1.5$, $\gamma_k = \frac{\alpha_k^2}{1 + m\alpha_k}(1 + \sigma^2)^2 L$ and $\beta_k = \frac{(1 + \sigma^2)\alpha_k}{\gamma_k}$; For AGNES,
712 we adopted the best-performing parameters reported by the authors for this problem: learning rate
713 $\eta = \frac{1}{L(1 + 2\sigma^2)}$, correction step size $\alpha = \frac{\eta}{1 + \sigma^2}$, and momentum $m_k = \frac{k}{k+5}$. For SNAG, we use
714 $s = \frac{1}{L(1 + \sigma^2)}$, $\eta_k = \frac{1}{L(1 + \sigma^2)^2} \frac{k+1}{2}$, $\beta = 1$, $\alpha_k = \frac{k^2/(k+1)}{2 + (k^2/(k+1))}$. For NAG, we used a learning rate
715 of $\frac{1}{L(1 + \sigma^2)}$ and momentum parameter of $\frac{k}{k+3}$. SGD was also run with a learning rate of $\frac{1}{L(1 + \sigma^2)}$.
716 All hyperparameter notations match those used in the original publications; note, however, that
717 symbol meanings may vary across algorithms (e.g., α denotes the discretization step size in SHANG,
718 while in AGNES it refers to the correction step size). All simulations are initialized at $x_0 = 1$, and
719 expectations are averaged over 200 independent runs.
720731 **Figure A.1:** Log-log plots of $\mathbb{E} [f_d(x_k)]$ for SHANG++ using $m = 0.5$ (black), $m = 1$ (olive),
732 $m = 1.5$ (orange), $m = 2$ (blue), $m = 2.5$ (green), $m = 3$ (red) with $d = 4$ (Top Row) and $d = 16$
733 (Bottom Row), under noise levels $\sigma = 0$ (Left Column), $\sigma = 10$ (Middle Column) and $\sigma = 50$ (Right
734 Column). From the figures, it can be observed that $m \leq 1.5$ provides a good choice.
735736 Figure A.1 highlights SHANG++’s stability across m : values $m \leq 1.5$ consistently yield strong
737 performance. Our theoretical variance-decay predictions directly manifest in practice.
738739 **A.2 SUPPLEMENT OF CLASSIFICATION TASKS**
740741 **Setup.** We benchmark SHANG, SHANG++, Adam, SNAG, AGNES, NAG, SHB (or SGD with
742 momentum) and SGD on the following tasks: training LeNet-5 on the MNIST dataset, training
743 ResNet-34 on the CIFAR-10 image dataset and training ResNet-50 on the CIFAR-100 dataset with
744 standard data augmentation (normalization, random crop, and random flip). All models have pretrain
745 set to True. For each dataset, we run all algorithms for 50 epochs with batch size 50 and report
746 averages over five trials. After 25 epochs, the learning rates for all baseline methods (excluding
747 SHANG and SHANG++) are decayed by a factor of 0.1; AGNES’s correction step size is similarly
748 reduced. For our methods, the time-scaling factor γ is doubled after 25 epochs. **This learning-rate**

756 schedule follows Gupta et al. (2024) and helps the baselines achieve better performance on deep
 757 learning tasks. SHANG and SHANG++ do not use an explicit learning rate; their effective learning
 758 rate is controlled by the time-scaling parameter γ , with effective learning rate $1/\gamma$ (see Algorithm 1).
 759 To implement an analogous decay, we increase γ after 25 epochs (thereby reducing the effective step
 760 size $1/\gamma$), so that all methods undergo a comparable mid-training learning-rate reduction.



785 Figure A.2: Training loss (log scale) (left), test loss (log scale) (middle) as a running average with
 786 decay rate 0.99, and test accuracy (right) on the MNIST dataset using LeNet-5 trained with batch size
 787 50. The compared methods include SGD (gray), SHB (black), NAG (olive), AGNES (blue), SNAG
 788 (orange), Adam (yellow), SHANG (green) and SHANG++ (red). In SHANG, $(\alpha, \gamma) = (0.5, 2)$ and
 789 in SHANG++, $(\alpha, \gamma, m) = (0.5, 2, 1.5)$.

790 For hyperparameter selection, our two methods were evaluated under three settings: $\alpha = 0.5$ with
 791 $\gamma \in \{1, 1.5, 2\}$ for LeNet-5, $\gamma \in \{5, 10\}$ for ResNet-34 and $\gamma \in \{10, 15\}$ for ResNet-50. For
 792 SHANG++, we fixed $m = 1.5$. AGNES employed the default parameter configuration recommended
 793 by its authors, $(\eta, \alpha, m) = (0.01, 0.001, 0.99)$, which has demonstrated strong performance across
 794 various tasks. For SNAG, we adopt the two-parameter variant (η, β) proposed by the original
 795 authors for machine-learning tasks. Hyperparameters are selected via a grid search, learning rate $\eta \in$
 796 $\{0.5, 0.1, 0.05, 0.01, 0.005, 0.001\}$ and momentum $\beta \in \{0.7, 0.8, 0.9, 0.99\}$. Among these, $(\eta, \beta) =$
 797 $(0.05, 0.9)$ yields the best performance, which coincides with the parameter choice recommended by
 798 the original authors for training CNNs on the CIFAR dataset. All other baseline algorithms used a
 799 fixed learning rate of $\eta = 0.001$; for those involving momentum, the momentum coefficient was set
 800 to 0.99.

801 **Results.** Figures A.2, A.3, A.4 and A.5 depict the evolution of training/test loss and test accuracy
 802 across datasets. Overall, SHANG and SHANG++ achieve competitive or superior performance
 803 compared with non-adaptive baselines.

806 A.3 BATCH-SIZE SCALING ON CIFAR-10 (RESNET-34)

808 To further assess the robustness of our algorithms to stochastic gradient noise, we evaluate all
 809 methods on CIFAR-10 with ResNet-34 under three batch-size settings: 32, 50 and 256. Smaller
 batches introduce higher gradient variance, whereas larger batches reduce the noise level. Importantly,

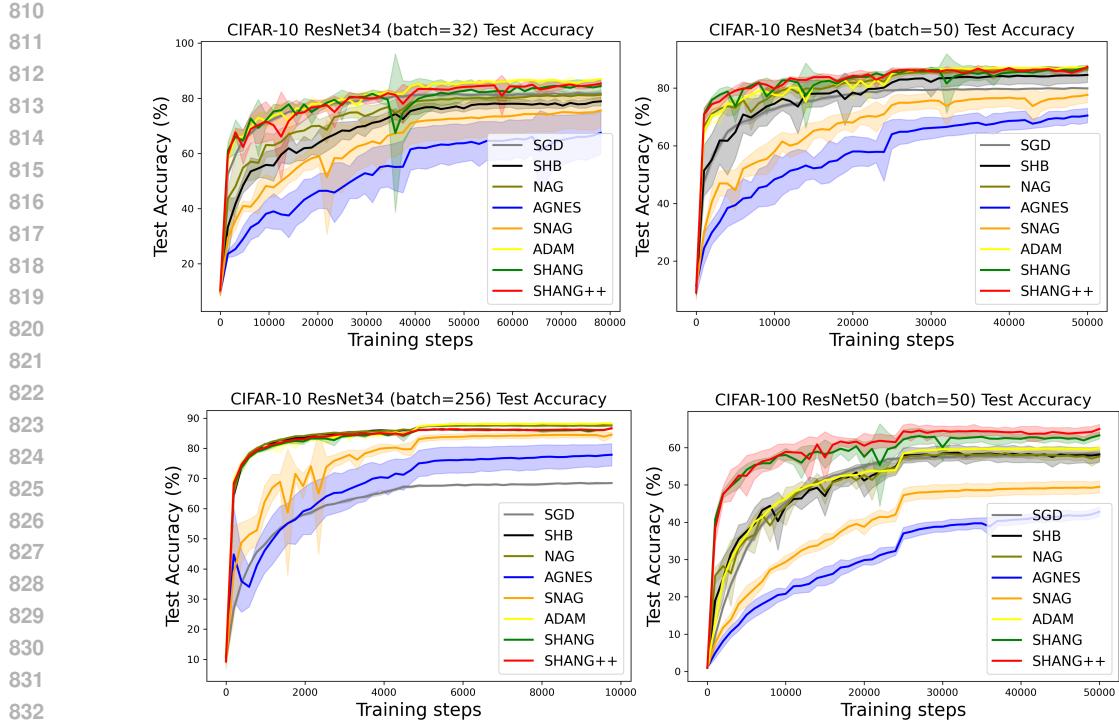


Figure A.3: Test accuracy on CIFAR10 with ResNet-34 and CIFAR-100 with ResNet-50.

all hyperparameters are kept fixed across batch sizes to isolate the effect of noise on algorithmic performance.

Setup. All data augmentation and experiments setting follows Appendix A.2. Hyperparameters are held fixed across batch sizes: for SHANG/SHANG++ we use $(\alpha, \gamma) = (0.5, 10) / (\alpha, \gamma, m) = (0.5, 10, 1.5)$, and all baselines reuse their best settings from Appendix 3. No re-tuning is performed when switching the batch size.

Results. Figure 3.2 shows the training/test dynamics.

- *Small batch (32).* Under the smallest batch size, classical momentum variants SHB, SNAG and AGNES exhibit a clear loss of acceleration relative to SGD, while SHANG and SHANG++ consistently retain accelerated convergence.
- *Small batch (50).* NAG, SNAG and AGNES exhibit larger oscillations and wider variance bands; AGNES also shows a higher error plateau. In contrast, SHANG/SHANG++ produce the lowest losses among non-adaptive methods and maintain narrow shaded regions, indicating markedly improved stability across seeds. Adam remains competitive in accuracy but with higher variance in test loss.
- *Large batch (256).* The gap between methods narrows: all optimizers become more stable and the curves cluster. SHANG/SHANG++ continue to match the best-performing baselines while preserving smooth convergence.

Robustness to multiplicative noise translates into tangible benefits in the small-batch regime: with a single, fixed hyperparameterization ($\alpha = 0.5, \gamma = 10, m = 1.5$), SHANG/SHANG++ achieve stable training and strong test accuracy without re-tuning, whereas competing momentum methods are more sensitive (larger variance, higher plateaus). As batch size increases, all methods stabilize and the performance gap diminishes, consistent with the noise-abatement expected from larger batches.

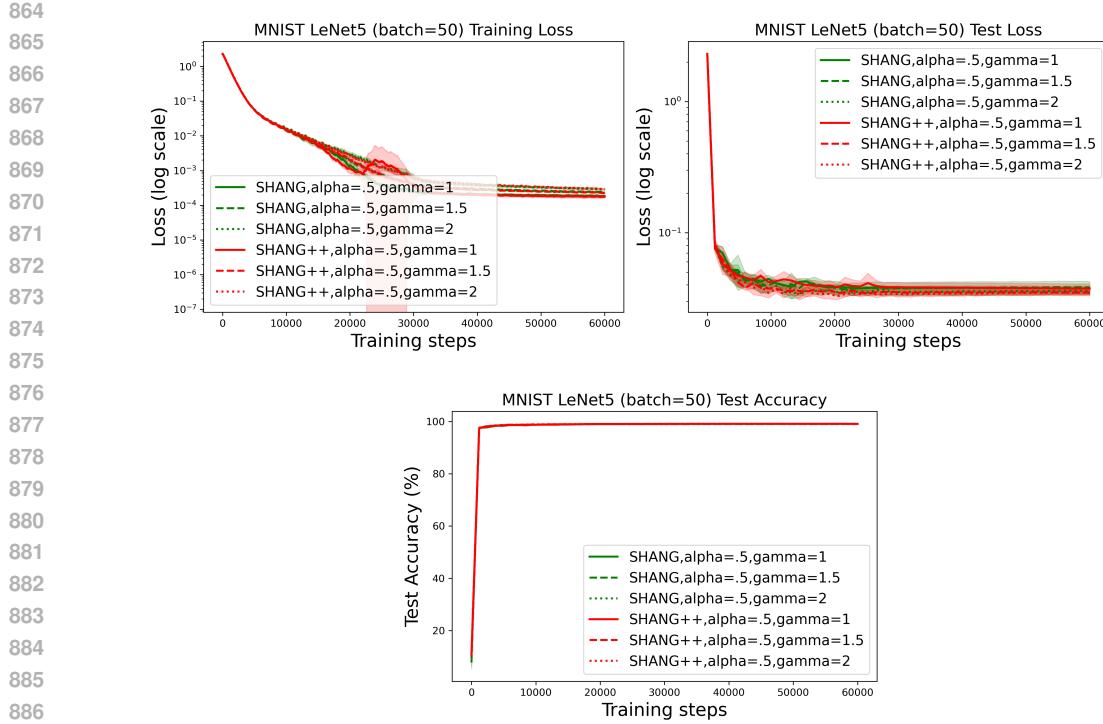


Figure A.4: Training loss (log scale), test loss (log scale) as a running average with decay rate 0.99, and test accuracy on the MNIST dataset using LeNet-5 trained with batch size 50. The compared methods include SHANG (green) and SHANG++ (red) under different parameter choices.

A.4 SUPPLEMENT OF ROBUSTNESS TO MULTIPLICATIVE GRADIENT NOISE

All runs use an identical experimental setup: CIFAR-10 dataset, ResNet-34, batch size 50, trained for 100 epochs, and averaged over three random seeds. Once initialized, no hyperparameters were adjusted or re-tuned during the experiments. This fixed-parameter setup allows us to isolate the effect of increasing multiplicative noise and directly observe each optimizer’s inherent stability. Specifically, SHANG with $(\alpha = 0.5, \gamma = 10)$, SHANG++ with $(\alpha = 0.5, \gamma = 10, m = 1.5)$, AGNES with $(\eta = 0.01, \alpha = 0.001, m = 0.99)$ and SNAG with $(\eta = 0.05, m = 0.9)$. Note that the actual gradient noise level experienced by the optimizer is higher than the nominal σ , because minibatch stochastic gradient descent inherently introduces sampling noise. The multiplicative noise we introduce,

$$g(x_k) = (1 + \sigma \mathcal{N}(0, I_d)) \nabla f(x_k),$$

is therefore imposed on top of this intrinsic minibatch stochasticity. We record the final validation error at epoch 100.

Discussion. The empirical trends align with our Lyapunov analysis: coupling the time scales (α, γ, m) suppresses the σ^2 amplification and yields stable behavior across noise levels without retuning. SNAG—while reasonably stable—does not match the consistently low error of SHANG/SHANG++, and AGNES is the most sensitive to increased multiplicative noise.

A.5 ADDITIONAL CLASSIFICATION TASK ON IMAGENET-100 WITH RESNET-34

We further evaluate all methods on the ImageNet-100 (Deng et al., 2009) subset using ResNet-34 with input size 224×224 and batch size 64. We adopt the standard ImageNet data augmentation: random resized crops to 224×224 with scale in $[0.08, 1.0]$, random horizontal flips, and normalization with the ImageNet mean and standard deviation. The model is trained for 40 epochs. For hyperparameter selection, SHANG uses $(\alpha = 0.5, \gamma = 3)$ and SHANG++ uses $(\alpha = 0.5, \gamma = 3, m = 1)$. AGNES follows the default $(\eta = 0.01, \alpha = 0.001, m = 0.99)$; SNAG uses $(\eta = 0.05, \beta = 0.9)$. Other

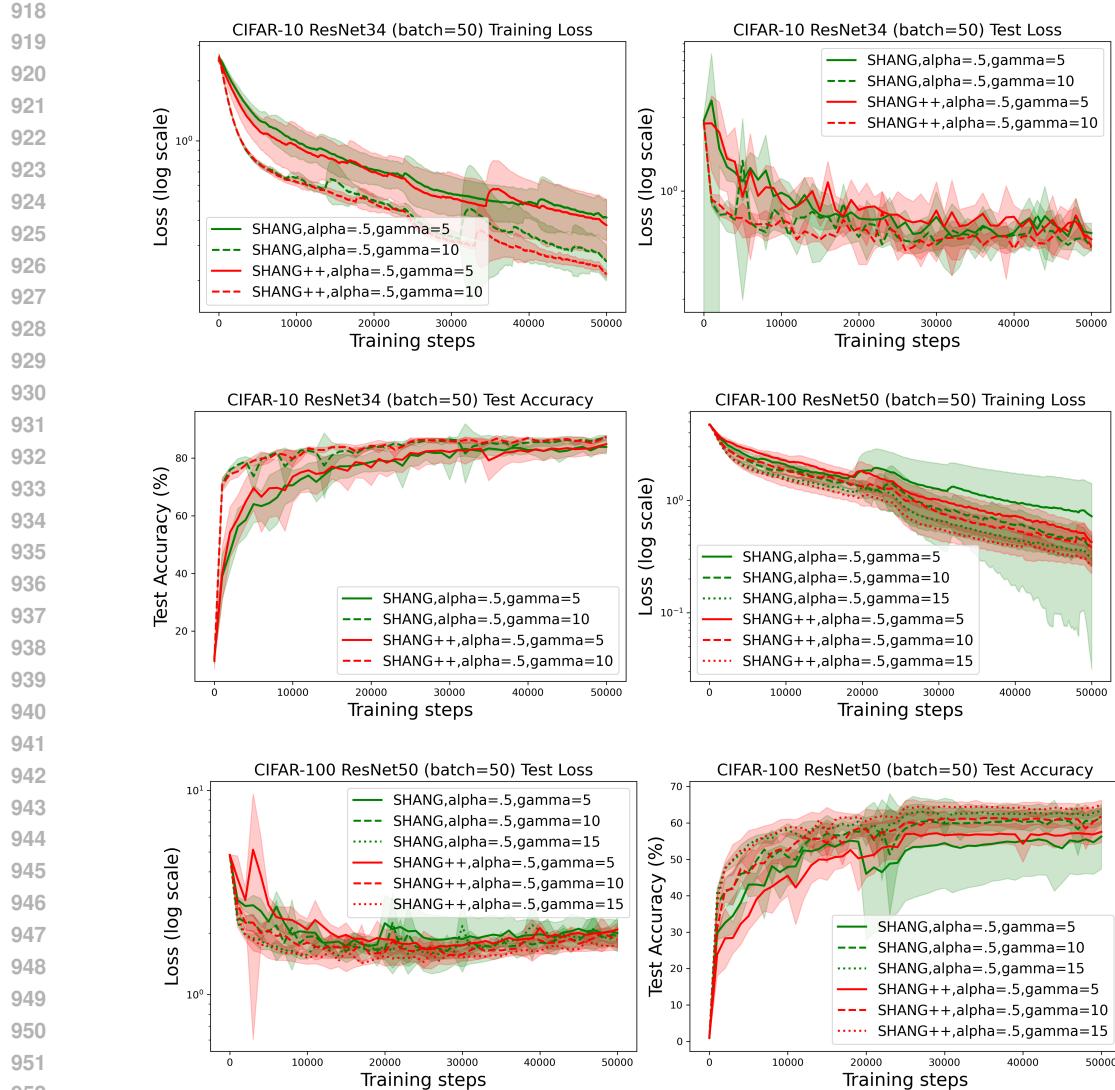


Figure A.5: Training loss (log scale), test loss (log scale) as a running average with decay rate 0.99, and test accuracy on the MNIST dataset using CIFAR-10 dataset using ResNet-34 and CIFAR-100 dataset using ResNet-50 trained with batch size 50. The compared methods include SHANG (green) and SHANG++ (red) under different parameter choices.

baselines use $\eta = 0.001$ and momentum 0.99 when applicable. After 25 epochs, all baseline learning rates (including AGNES's correction) are decayed by a factor of 0.1, while γ is doubled for our methods. Due to computational constraints, we report a single representative run.

Figure A.6 shows the training/test loss and test accuracy. SHANG and SHANG++ achieve test losses comparable to the best classical momentum baselines (SHB and NAG), while clearly outperforming AGNES, SNAG, and Adam. In terms of final test accuracy, SHANG and SHANG++ reach about 98.1%, within roughly 0.4 percentage points of SHB (98.49%) and NAG (98.53%). This is unsurprising: on this relatively benign ImageNet-100 setup with a moderate batch size, all well-tuned momentum methods behave very similarly, and classical SHB and NAG are known to be extremely strong baselines. Our goal here is not to dominate them in this regime, but to demonstrate that SHANG and SHANG++ remain fully competitive on a larger-scale task. Their main advantages appear in the noisier, small-batch regimes (e.g., CIFAR-10 and U-Net) highlighted in the main text, where classical momentum becomes less stable.

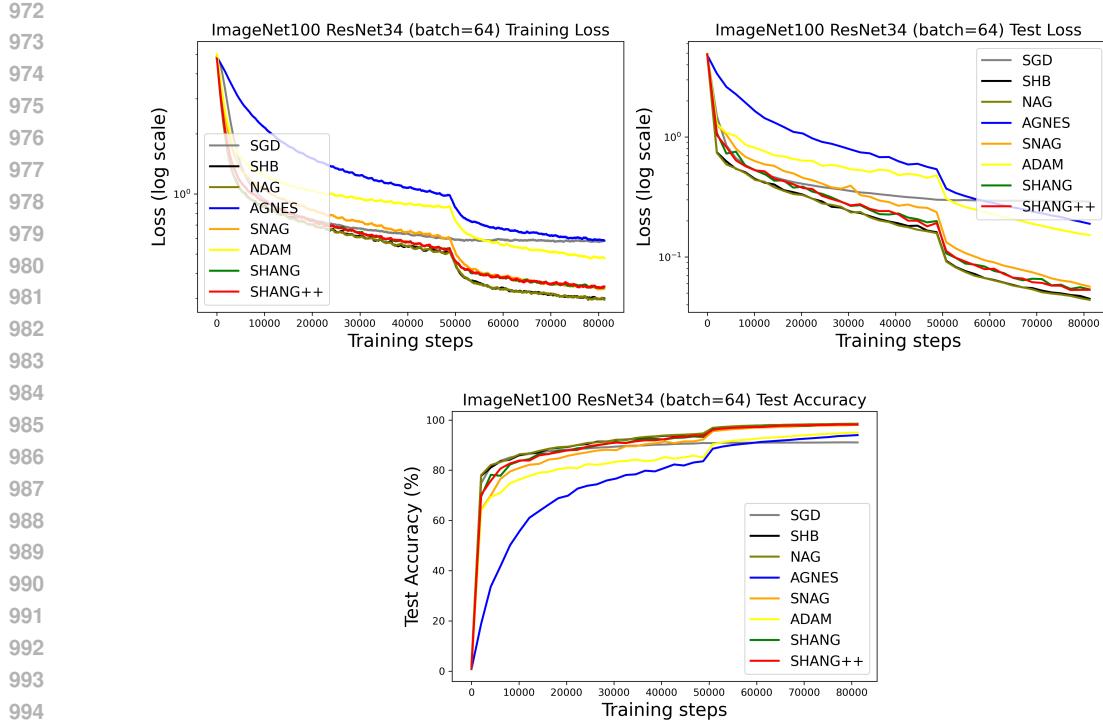


Figure A.6: Training loss (log scale), test loss (log scale) as a running average with decay rate 0.99, and test accuracy on the ImageNet-100 dataset using ResNet-34 trained with batch size 64.

A.6 SUPPLEMENT OF IMAGE RECONSTRUCTION

We further evaluate our algorithms on a generative task—image reconstruction with small-batch training, which introduces substantial gradient noise. Specifically, we train a lightweight U-Net (Ronneberger et al., 2015) (base channels $32 \rightarrow 64 \rightarrow 128$, with bilinear up-sampling and feature concatenation) on CIFAR-10 using batch size 5. We compare SHANG ($\alpha = 0.5, \gamma = 0.5$) and SHANG++ ($\alpha = 0.5, \gamma = 0.5, m = 1$) against SNAG, AGNES, NAG, SGD, SHB, and Adam. All other experimental settings follow those in earlier sections.

A.7 HYPERPARAMETER COMPARISON

To identify optimal hyperparameter configurations for our stochastic algorithms, we perform grid searches over $\alpha \in (0.005, 0.1)$ and $\gamma \in (0.5, 30)$ on MNIST and CIFAR-10 (Figures A.7). For SHANG++, we additionally vary $m \in (0.5, 3)$ while keeping $\alpha = 0.5$ fixed. Results indicate that: (1) $\alpha = 0.5$ and $m = 1.5$ are generally effective across tasks; (2) Smaller γ values work well for LeNet-5, while larger γ are preferred for deeper networks like ResNet-34; (3) SHANG++ exhibits low sensitivity to m in practice, with performance remaining stable across tested values. These findings confirm the practical usability and tuning simplicity of our methods.

B SHANG

B.1 MODEL

Applying a Gauss-Seidel-type scheme to discretize HNAG flow (2.3) and replace the deterministic gradient $\nabla f(x_k)$ with its unbiased stochastic estimate $g(x_k)$, we can obtain the Stochastic Hessian-

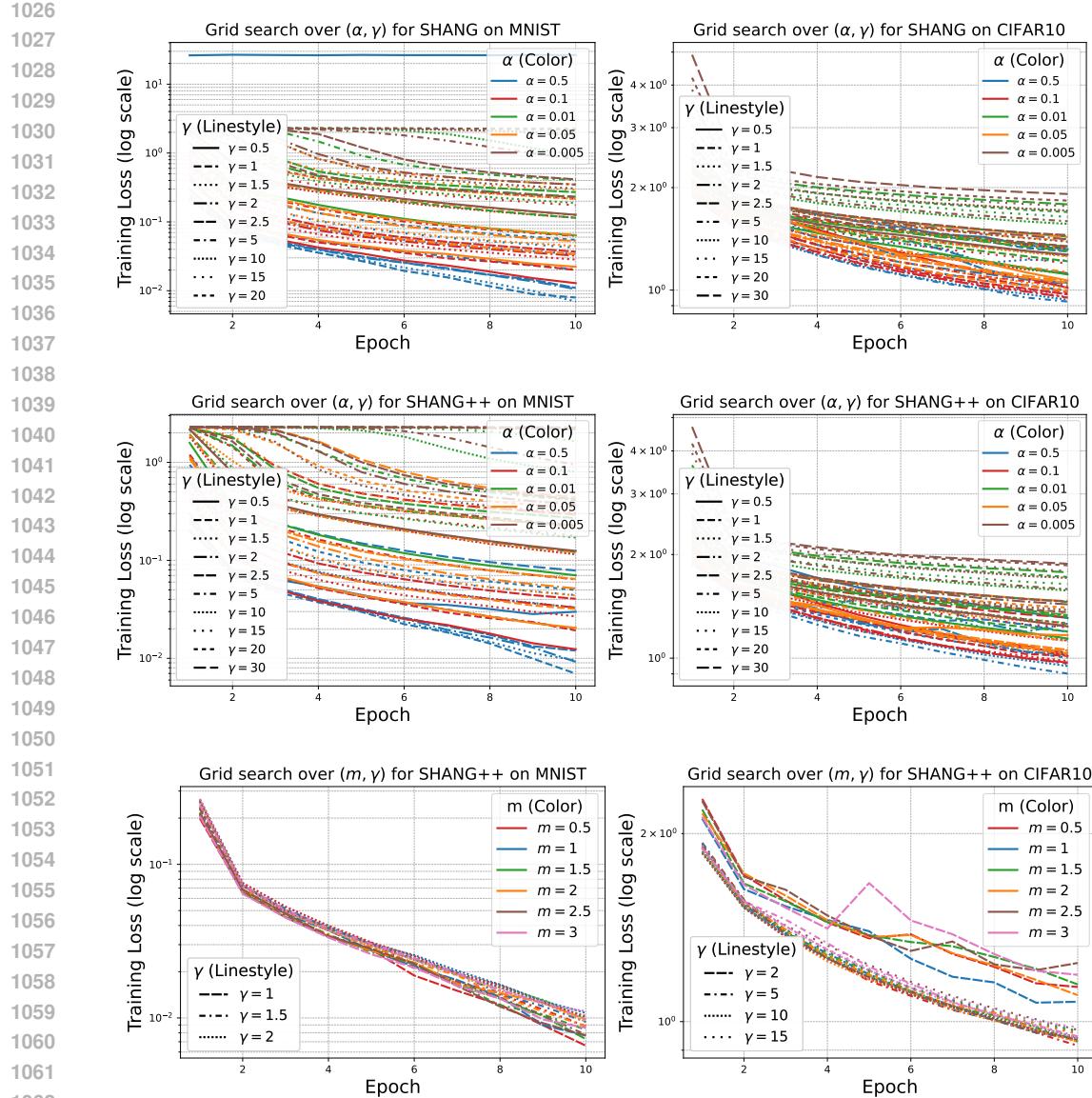


Figure A.7: Training loss (log scale) on the MNIST dataset using LeNet-5 (Left column) and CIFAR-10 dataset using ResNet-34 (Right column) trained with batch size 50. The plots show results for SHANG (top row) and SHANG++ (middle row) under different combinations of hyperparameters $\alpha \in \{0.1, 0.5, 0.01, 0.05, 0.005\}$ (different color) and $\gamma \in \{0.5, 1, 1.5, 2, 2.5, 5, 10, 15, 20\}$ (different line style). The left two figures show that $\alpha = 0.5$ and $\gamma \in \{1, 1.5, 2\}$ are relatively good parameter choices. The plots in bottom row illustrate the performance of the SHANG++ method under different combinations of $\gamma \in \{1, 1.5, 2\}$ (on MNIST dataset), $\gamma \in \{2, 5, 10, 15\}$ (on CIFAR-10 dataset) and $m \in \{0.5, 1, 1.5, 2, 2.5, 3\}$ with α fixed at 0.5. The differences among various m values are minor for this task. In practice, we typically choose $m = 1.5$. When using a very small batch size, m can be appropriately reduced.

driven Nesterov Accelerated Gradient (SHANG) method:

$$\begin{aligned}\frac{x_{k+1} - x_k}{\alpha_k} &= v_k - x_{k+1} - \beta_k g(x_k) \\ \frac{v_{k+1} - v_k}{\alpha_k} &= \frac{\mu}{\gamma_k} (x_{k+1} - v_{k+1}) - \frac{1}{\gamma_k} g(x_{k+1}) \\ \frac{\gamma_{k+1} - \gamma_k}{\alpha_k} &= \mu - \gamma_{k+1}\end{aligned}\tag{B.1}$$

1080 In the strongly convex case, we fix $\gamma = \mu$ and use a constant step size α ; in general case, we set
 1081 $\mu = 0$ and allow both α_k and γ_k to vary. The coupling $\beta_k > 0$ depends on (α_k, γ_k) and typically
 1082 scales as $(1 + \sigma^2)\alpha_k/\gamma_k$. Consequently, SHANG reduces to a two-parameter scheme (α, β) in the
 1083 strongly convex regime and a three-parameter scheme (α, γ, β) otherwise. For practical tuning, tying
 1084 β to α and γ via $\beta = \alpha/\gamma$ yields an effective two-parameter (α, γ) algorithm. The SHANG method
 1085 for deep learning tasks is described in Algorithm 2.

Algorithm 2: SHANG for Deep Learning

1088 **Input:** Objective function f , initial point x_0 , stepsize α , time scaling factor γ , iteration horizon
 1089 T .
 1090 $n \leftarrow 0, v_0 \leftarrow x_0, x_1 \leftarrow x_0$
 1091 **while** $k < T$ **do**
 1092 $g_k \leftarrow \nabla f(x_k)$ // gradient estimate
 1093 $v_k = v_{k-1} - \frac{\alpha}{\gamma} g_k$
 1094 $x_{k+1} = \frac{1}{1+\alpha} x_k + \frac{\alpha}{1+\alpha} v_k - \frac{\alpha}{1+\alpha} \frac{\alpha}{\gamma} g_k$
 1095 $k \leftarrow k + 1$
 1096 **end**
 1097 **return** x_T

1098 Observe that SHANG is the $m = 0$ special case of SHANG++. Table B.1 summarizes the theoretical
 1099 convergence complexities and the number of tunable parameters required by leading stochastic
 1100 optimization methods under multiplicative noise. As shown, SHANG and SHANG++ achieve
 1101 optimal theoretical guarantees while significantly reducing hyperparameter complexity.

1102 Table B.1: Assume f is L -smooth and $g(x)$ satisfies the multiplicative noise scaling (MNS) condition
 1103 (see Definition 1.1) with constant $\sigma \geq 0$. This table summarizes the iteration complexity of leading
 1104 first-order stochastic optimization algorithms under optimal parameter settings to reach ε -precision.

Algorithm	Convex	Strongly Convex
SGD (Hermant et al., 2025)	$(1 + \sigma^2) \frac{L}{\varepsilon}$	$(1 + \sigma^2) \frac{L}{\mu} \log(\frac{1}{\varepsilon})$
NAG (Gupta et al., 2024)	$\sqrt{\frac{1+\sigma^2}{1-\sigma^2}} \sqrt{\frac{L}{\varepsilon}}$	$\sqrt{\frac{1+\sigma^2}{1-\sigma^2}} \sqrt{\frac{L}{\mu}} \log(\frac{1}{\varepsilon})$
AGNES (Gupta et al., 2024)	$\sqrt{\frac{L(1+2\sigma^2)(1+\sigma^2)}{\varepsilon}}$	$(1 + \sigma^2) \sqrt{\frac{L}{\mu}} \log(\frac{1}{\varepsilon})$
SNAG (Hermant et al., 2025)	$(1 + \sigma^2) \sqrt{\frac{L}{\varepsilon}}$	$(1 + \sigma^2) \sqrt{\frac{L}{\mu}} \log(\frac{1}{\varepsilon})$
SHANG	$(1 + \sigma^2) \sqrt{\frac{L}{\varepsilon}}$	$(1 + \sigma^2) \sqrt{\frac{L}{\mu}} \log(\frac{1}{\varepsilon})$
SHANG++	$(1 + \sigma^2) \sqrt{\frac{L}{\varepsilon}}$	$(1 + \sigma^2) \sqrt{\frac{L}{\mu}} \log(\frac{1}{\varepsilon})$

B.2 CONVERGENCE ANALYSIS FOR SHANG

1126 Define the discrete Lyapunov function

$$1127 \mathcal{E}(z_k^+; \gamma_k) = f(x_k^+) - f(x^*) + \frac{\gamma_k}{2} \|v_k - x^*\|^2 \quad (B.2)$$

1129 where $z_k^+ = (x_k^+, v_k)$, $z_k = (x_k, v_k)$ and $z^* = (x^*, x^*)$. The following theorem establishes a decay
 1130 bound for $\mathbb{E} [\mathcal{E}(z_k^+; \gamma_k)]$.

1132 **Theorem B.1.** Let $f \in \mathcal{S}_{\mu, L}$, (x_k, v_k) be generated by SHANG (B.1). $x_k^+ = x_k - \alpha_k \beta_k g(x_k)$ is an
 1133 auxiliary variable. Assume $g(x)$ (defined in (1.2)) satisfies the MNS condition with constant σ . Given
 $x_0^+ = v_0 = x_0$,

1134 (1) When $0 < \mu < L < \infty$, choose step size $0 < \alpha \leq \frac{1}{1+\sigma^2} \sqrt{\frac{\mu}{L}}$ and $\beta = \frac{(1+\sigma^2)\alpha}{\mu}$, we have
 1135

$$1136 \quad 1137 \quad \mathbb{E} \left[f(x_{k+1}^+) - f(x^*) + \frac{\mu}{2} \|v_{k+1} - x^*\|^2 \right] \leq (1 + \alpha)^{-(k+1)} \mathcal{E}_0^\mu$$

1138

1139 (2) When $\mu = 0$, choose $\alpha_k = \frac{2}{k+1}$, $\gamma_k = \alpha_k^2 (1 + \sigma^2)^2 L$ and $\beta_k = \frac{(1+\sigma^2)\alpha_k}{\gamma_k}$, we have
 1140

$$1141 \quad 1142 \quad \mathbb{E} \left[f(x_{k+1}^+) - f(x^*) + \frac{\gamma_{k+1}}{2} \|v_{k+1} - x^*\|^2 \right] \leq \frac{2}{(k+2)(k+3)} \mathcal{E}_0^{\gamma_0} = \mathcal{O}(\frac{1}{k^2})$$

1143

1144 where $\mathcal{E}_0^\mu = f(x_0) - f(x^*) + \frac{\mu}{2} \|x_0 - x^*\|^2$ and $\mathcal{E}_0^{\gamma_0} = f(x_0) - f(x^*) + \frac{\gamma_0}{2} \|x_0 - x^*\|^2$.
 1145

1146 When $\sigma = 0$, SHANG reduces to the deterministic HNAG method analyzed in Chen & Luo (2021).
 1147

1148 Before presenting the proof of Theorem B.1, we first establish several auxiliary lemmas, beginning
 1149 with one that relies on conditional expectations under the MNS assumption.
 1150

Lemma B.1. Let $(\Omega, \mathcal{F}, \{\mathcal{F}_k\}_{k \geq 0}, \mathbb{P})$ be a complete probability space with filtration $\{\mathcal{F}_k\}_{k \geq 0}$.
 1151 Suppose x_k is generated by SHANG/SHANG++, $g(x_k)$ denotes the stochastic estimator of $\nabla f(x_k)$,
 1152 then the following statements hold
 1153

- 1154 1. $\mathbb{E}[g(x_k) | \mathcal{F}_k] = \nabla f(x_k)$.
- 1155 2. $\mathbb{E}[\|g(x_k) - \nabla f(x_k)\|^2] \leq \sigma^2 \|\nabla f(x_k)\|^2$.
- 1156 3. $\mathbb{E}[\langle g(x_k), \nabla f(x_k) \rangle] = \|\nabla f(x_k)\|^2$
- 1157 4. $\mathbb{E}[\|g(x_k)\|^2] \leq (1 + \sigma^2) \|\nabla f(x_k)\|^2$

1158

1159 1160 *Proof of Lemma B.1. First and second claim.* This follows from Fubini's theorem.
 1161

1162 **Third claim.** For the third result, we observe that since f is a deterministic function, $\nabla f(x_k)$ is
 1163 \mathcal{F}_k -measurable, then, by the Theorem 8.14 in Klenke (2013), we have
 1164

$$1165 \quad \mathbb{E}[\langle g(x_k), \nabla f(x_k) \rangle] = \mathbb{E}[\mathbb{E}[\langle g(x_k), \nabla f(x_k) \rangle | \mathcal{F}_k]] = \mathbb{E}[\langle \mathbb{E}[g(x_k) | \mathcal{F}_k], \nabla f(x_k) \rangle] = \mathbb{E}[\|\nabla f(x_k)\|^2]$$

1166

1167 **Fourth claim.** For the fourth result, using the previous results, we have
 1168

$$1169 \quad \mathbb{E}[\|g(x_k)\|^2] = \mathbb{E}[\|g(x_k) - \nabla f(x_k)\|^2 + 2\langle g(x_k), \nabla f(x_k) \rangle - \|\nabla f(x_k)\|^2]$$

1170 $= \mathbb{E}[\|g(x_k) - \nabla f(x_k)\|^2] + \mathbb{E}[2\langle g(x_k), \nabla f(x_k) \rangle] - \|\nabla f(x_k)\|^2$

1171 $\leq \sigma^2 \|\nabla f(x_k)\|^2 + 2\|\nabla f(x_k)\|^2 - \|\nabla f(x_k)\|^2$

1172 $= (1 + \sigma^2) \|\nabla f(x_k)\|^2$

1173

1174 \square

1175
 1176 Under the MNS assumption, this setup of auxiliary variable x^+ yields the following descent lemma
 1177 for smooth objectives.
 1178

1179 **Lemma B.2.** Suppose that $x_k^+ = x_k - \eta g(x_k)$, $f \in \mathcal{C}_L^{1,1}$. Given $0 < \eta \leq \frac{1}{L(1+\sigma^2)}$, we have
 1180

$$1181 \quad \mathbb{E}[f(x_k^+) - f(x^*)] \leq f(x_k) - f(x^*) - \frac{\eta}{2} \|\nabla f(x_k)\|^2$$

1182

1183 *Proof of Lemma B.2.* Using the L -smoothness of the function f :
 1184

$$1185 \quad 1186 \quad f(y) - f(x) - \langle \nabla f(x), y - x \rangle \leq \frac{L}{2} \|y - x\|^2 \quad \forall x, y \in \mathbb{R}^d \quad (\text{B.3})$$

1187

1188 and Lemma B.1, under the assumption of $0 < \eta \leq \frac{1}{L(1+\sigma^2)}$, we can obtain the desired result
 1189

$$\begin{aligned}
 1191 \quad \mathbb{E}[f(x_k^+)] &\leq \mathbb{E}\left[f(x_k) - \langle \eta g(x_k), \nabla f(x_k) \rangle + \frac{L}{2} \|\eta g(x_k)\|^2\right] \\
 1192 \quad &= f(x_k) - \mathbb{E}[\langle \eta g(x_k), \nabla f(x_k) \rangle] + \mathbb{E}\left[\frac{L}{2} \|\eta g(x_k)\|^2\right] \\
 1193 \quad &\leq f(x_k) - \eta \|\nabla f(x_k)\|^2 + \frac{L\eta^2(1+\sigma^2)}{2} \|\nabla f(x_k)\|^2 \\
 1194 \quad &= f(x_k) - \eta\left(1 - \frac{L(1+\sigma^2)\eta}{2}\right) \|\nabla f(x_k)\|^2 \\
 1195 \quad &\leq f(x_k) - \frac{\eta}{2} \|\nabla f(x_k)\|^2
 \end{aligned}$$

1200 □
 1201

1202 Define an auxiliary variable $x_k^+ = x_k - \alpha_k \beta_k g(x_k)$, substitute it into (Eq.B.1) yield:
 1203

$$\begin{aligned}
 1204 \quad \frac{x_{k+1} - x_k^+}{\alpha_k} &= v_k - x_{k+1} \\
 1205 \quad \frac{v_{k+1} - v_k}{\alpha_k} &= \frac{\mu}{\gamma_k} (x_{k+1} - v_{k+1}) - \frac{1}{\gamma_k} g(x_{k+1}) \\
 1206 \quad \frac{\gamma_{k+1} - \gamma_k}{\alpha_k} &= \mu - \gamma_{k+1}
 \end{aligned} \tag{B.4}$$

1207 The next lemma controls the decay of $\mathbb{E}[\mathcal{E}(z_{k+1}^+; \gamma_{k+1})]$.
 1208

1209 **Lemma B.3.** *Let $f \in \mathcal{S}_{\mu, L}$ with $0 \leq \mu < L < \infty$, Lyapunov function \mathcal{E} is defined by (B.2). Given
 1210 (v_k, x_k^+) , (x_{k+1}, v_{k+1}) are generated by (B.4) and $x_{k+1}^+ = x_{k+1} - \alpha_{k+1} \beta_{k+1} g(x_{k+1})$. Assume
 1211 $0 < \alpha_{k+1} \beta_{k+1} = \alpha_k \beta_k \leq \frac{1}{L(1+\sigma^2)}$, we have*
 1212

$$\begin{aligned}
 1213 \quad &(1 + \alpha_k) \mathbb{E}[\mathcal{E}(z_{k+1}^+; \gamma_{k+1})] \\
 1214 \quad &\leq \mathcal{E}(z_k^+; \gamma_k) + \mathbb{E}\left[\frac{1}{2} \left(\frac{\alpha_k^2(1+\sigma^2)}{\gamma_k} - (1 + \alpha_k)\alpha_k \beta_k\right) \|\nabla f(x_{k+1})\|^2 - \frac{\alpha_k \mu}{2} \|x_{k+1} - v_{k+1}\|^2 - D_f(x_k^+, x_{k+1})\right]
 \end{aligned}$$

1215
 1216
 1217
 1218 proof of Lemma B.3. By Lemma B.2, if $0 < \alpha_k \beta_k = \alpha_{k+1} \beta_{k+1} \leq \frac{1}{L(1+\sigma^2)}$, we obtain the one-step
 1219 decrease
 1220

$$\begin{aligned}
 1221 \quad &\mathbb{E}[\mathcal{E}(z_{k+1}^+; \gamma_{k+1})] - \mathcal{E}(z_k^+; \gamma_k) \\
 1222 \quad &\leq \mathbb{E}\left[\mathcal{E}(z_{k+1}; \gamma_{k+1}) - \mathcal{E}(z_k^+; \gamma_k) - \frac{\alpha_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2\right] \\
 1223 \quad &= \mathbb{E}\left[\mathcal{E}(z_{k+1}; \gamma_k) - \mathcal{E}(z_k^+; \gamma_k) + \frac{\gamma_{k+1} - \gamma_k}{2} \|v_{k+1} - x^*\|^2 - \frac{\alpha_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2\right]
 \end{aligned} \tag{B.5}$$

1224 Applying the Bregman divergence identity Chen & Teboulle (1993):
 1225

$$\langle \nabla f(y) - \nabla f(x), y - z \rangle = D_f(z, y) + D_f(y, x) - D_f(z, x) \quad \forall x, y, z \in \mathbb{R}^d \tag{B.6}$$

1242 together with the representation $\mathcal{E}(z; \gamma) = D_{\mathcal{E}}(z, z^*; \gamma)$ and the update rules into (B.5), we obtain
1243 $\mathbb{E} [\mathcal{E}(z_{k+1}^+; \gamma_{k+1})] - \mathcal{E}(z_k^+; \gamma_k)$
1244 $\leq \mathbb{E} \left[\langle \nabla \mathcal{E}(z_{k+1}; \gamma_k), z_{k+1} - z_k^+ \rangle - D_{\mathcal{E}}(z_k^+, z_{k+1}; \gamma_k) + \frac{\gamma_{k+1} - \gamma_k}{2} \|v_{k+1} - x^*\|^2 - \frac{\alpha_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2 \right]$
1245 $\leq \mathbb{E} \left[\langle \nabla f(x_{k+1}) - \nabla f(x^*), x_{k+1} - x_k^+ \rangle + \gamma_k \langle v_{k+1} - x^*, v_{k+1} - v_k \rangle - D_{\mathcal{E}}(z_k^+, z_{k+1}; \gamma_k) \right.$
1246 $\quad + \frac{\alpha_k(\mu - \gamma_{k+1})}{2} \|v_{k+1} - x^*\|^2 - \frac{\alpha_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2 \left. \right]$
1247 $= \mathbb{E} \left[-\alpha_k \langle \nabla f(x_{k+1}) - \nabla f(x^*), x_{k+1} - x^* \rangle + \alpha_k \langle \nabla f(x_{k+1}), v_k - x^* \rangle - \alpha_k \langle g(x_{k+1}), v_{k+1} - x^* \rangle \right.$
1248 $\quad + \alpha_k \mu \langle v_{k+1} - x^*, x_{k+1} - v_{k+1} \rangle + \frac{\alpha_k(\mu - \gamma_{k+1})}{2} \|v_{k+1} - x^*\|^2 - D_{\mathcal{E}}(z_k^+, z_{k+1}; \gamma_k) \right.$
1249 $\quad \left. - \frac{\alpha_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2 \right]$
1250 $\quad \left. \right] \quad (B.7)$

1251 By the definition of the Bregman divergence and the μ -strong convexity of f , we have
1252

$$\begin{aligned} \langle \nabla f(x_{k+1}) - \nabla f(x^*), x_{k+1} - x^* \rangle &= D_f(x_{k+1}, x^*) + D_f(x^*, x_{k+1}) \\ &\geq D_f(x_{k+1}, x^*) + \frac{\mu}{2} \|x_{k+1} - x^*\|^2 \end{aligned} \quad (B.8)$$

1253 and
1254

$$\alpha_k \mu \langle v_{k+1} - x^*, x_{k+1} - v_{k+1} \rangle = \frac{\alpha_k \mu}{2} (\|x_{k+1} - x^*\|^2 - \|x_{k+1} - v_{k+1}\|^2 - \|v_{k+1} - x^*\|^2) \quad (B.9)$$

1255 We denote $\mathcal{F}_{k+1} = \sigma(x_0, \dots, x_{k+1})$ the σ -algebra generated by the $k+1$ first interates $\{x_i\}_{i=1}^{k+1}$
1256 generated by SHANG. Since f is a deterministic function, $v_k - x^*$ is \mathcal{F}_{k+1} -measurable, then
1257

$$\begin{aligned} \mathbb{E} [\langle g(x_{k+1}), v_k - x^* \rangle] &= \mathbb{E} [\mathbb{E} [\langle g(x_{k+1}), v_k - x^* \rangle | \mathcal{F}_{k+1}]] \\ &= \mathbb{E} [\langle \mathbb{E} [g(x_{k+1}) | \mathcal{F}_{k+1}], v_k - x^* \rangle] \\ &= \mathbb{E} [\langle \nabla f(x_{k+1}), v_k - x^* \rangle] \end{aligned}$$

1258 Now, we apply this result in reverse, and using Young Inequality, Cauchy-Schwarz Inequality to
1259 obtain
1260

$$\begin{aligned} \mathbb{E} [\alpha_k \langle \nabla f(x_{k+1}), v_k - x^* \rangle - \alpha_k \langle g(x_{k+1}), v_{k+1} - x^* \rangle] &= \mathbb{E} [\alpha_k \langle g(x_{k+1}), v_k - v_{k+1} \rangle] \\ &\leq \mathbb{E} \left[\frac{\alpha_k^2}{2\gamma_k} \|g(x_{k+1})\|^2 + \frac{\gamma_k}{2} \|v_k - v_{k+1}\|^2 \right] \\ &\leq \mathbb{E} \left[\frac{\alpha_k^2(1 + \sigma^2)}{2\gamma_k} \|\nabla f(x_{k+1})\|^2 + \frac{\gamma_k}{2} \|v_k - v_{k+1}\|^2 \right] \end{aligned} \quad (B.10)$$

1261 In addition, using the identity of squares (for v) and Bregman divergence indentity (B.6) (for x^+), we
1262 have the component form of
1263

$$D_{\mathcal{E}}(z_k^+, z_{k+1}; \gamma_k) = D_f(x_k^+, x_{k+1}) + \frac{\gamma_k}{2} \|v_k - v_{k+1}\|^2 \quad (B.11)$$

1264 Substituting (B.8-B.11) back into (B.7), we can obtain
1265

$$\begin{aligned} \mathbb{E} [\mathcal{E}(z_{k+1}^+; \gamma_{k+1})] - \mathcal{E}(z_k^+; \gamma_k) &\leq \mathbb{E} \left[-\alpha_k D_f(x_{k+1}, x^*) + \frac{1}{2} \left(\frac{\alpha_k^2(1 + \sigma^2)}{\gamma_k} - \alpha_k \beta_k \right) \|\nabla f(x_{k+1})\|^2 \right. \\ &\quad \left. - \frac{\alpha_k \gamma_{k+1}}{2} \|v_{k+1} - x^*\|^2 - \frac{\alpha_k \mu}{2} \|x_{k+1} - v_{k+1}\|^2 - D_f(x_k^+, x_{k+1}) \right] \\ &\leq \mathbb{E} \left[-\alpha_k D_f(x_{k+1}^+, x^*) + \frac{1}{2} \left(\frac{\alpha_k^2(1 + \sigma^2)}{\gamma_k} - (1 + \alpha_k) \alpha_k \beta_k \right) \|\nabla f(x_{k+1})\|^2 \right. \\ &\quad \left. - \frac{\alpha_k \gamma_{k+1}}{2} \|v_{k+1} - x^*\|^2 - \frac{\alpha_k \mu}{2} \|x_{k+1} - v_{k+1}\|^2 - D_f(x_k^+, x_{k+1}) \right] \end{aligned} \quad (B.12)$$

1266 By moving $\mathbb{E} [\mathcal{E}(z_{k+1}^+; \gamma_{k+1})] = D_f(x_{k+1}^+, x^*) + \frac{\gamma_{k+1}}{2} \|v_{k+1} - x^*\|^2$ to the left side of the inequality
1267 to obtain the desired result. \square

1296 Now we begin to prove Theorem B.1.
 1297
 1298

1299 *Proof.* (1). When $0 < \mu < L < \infty$, set $\gamma = \mu$. By Lemma B.3, if $\alpha\beta \leq \frac{1}{(1+\sigma^2)L}$, we have
 1300

$$\begin{aligned} 1301 \quad & (1+\alpha)\mathbb{E}[\mathcal{E}(z_{k+1}^+; \mu)] \\ 1302 \quad & \leq \mathcal{E}(z_k^+; \mu) + \mathbb{E}\left[\frac{1}{2}\left(\frac{\alpha^2(1+\sigma^2)}{\mu} - (1+\alpha)\alpha\beta\right)\|\nabla f(x_{k+1})\|^2 - \frac{\alpha\mu}{2}\|x_{k+1} - v_{k+1}\|^2 - D_f(x_k^+, x_{k+1})\right] \end{aligned} \quad (\text{B.13})$$

1305 Assume $\alpha\beta = \frac{(1+\sigma^2)\alpha^2}{\mu} \leq \frac{1}{(1+\sigma^2)L}$, i.e., the step size satisfies $0 < \alpha \leq \frac{1}{1+\sigma^2}\sqrt{\frac{\mu}{L}}$ to ensure that all
 1306 the coefficients of the terms on the right side of the inequality, except for $\mathcal{E}(z_k^+; \mu)$, are non-positive.
 1307 Thus,
 1308

$$\mathbb{E}[\mathcal{E}(z_{k+1}^+; \mu)] \leq (1+\alpha)^{-1}\mathcal{E}(z_k^+; \mu) \leq (1+\alpha)^{-(k+1)}\mathcal{E}(z_0; \mu) \quad (\text{B.14})$$

1311 (2). When $\mu = 0$. Assume $\alpha_k = \frac{2}{k+1}$, $\gamma_k = \alpha_k^2(1+\sigma^2)^2L$ and $\beta_k = \frac{(1+\sigma^2)\alpha_k}{\gamma_k}$. Using Lemma B.3
 1312 to obtain
 1313

$$\mathbb{E}[\mathcal{E}(z_{k+1}^+; \gamma_{k+1})] \leq \frac{k+1}{k+3}\mathcal{E}(z_k^+; \gamma_k) \leq \frac{2}{(k+2)(k+3)}\mathcal{E}(z_0; \gamma_0) \quad (\text{B.15})$$

□

1318 **Corollary B.1.** *Under the setting of Theorem B.1, SHANG achieves an ε -precision solution within
 1319 the following number of iterations:*

1321 (1) *When $\mu = 0$, with $\alpha_k = \frac{2}{k+1}$, $\gamma_k = \alpha_k^2(1+\sigma^2)^2L$ and $\beta_k = \frac{(1+\sigma^2)\alpha_k}{\gamma_k}$,*

$$1324 \quad k \geq \sqrt{\frac{2(f(x_0) - f(x^*) + 2(1+\sigma^2)^2L\|x_0 - x^*\|^2)}{\varepsilon}}$$

1327 (2) *When $0 < \mu < L < \infty$, with $\alpha = \frac{1}{1+\sigma^2}\sqrt{\frac{\mu}{L}}$ and $\beta = \frac{(1+\sigma^2)\alpha}{\mu}$,*

$$1330 \quad k \geq (1+\sigma^2)\sqrt{\frac{L}{\mu}} \log\left(\frac{f(x_0) - f(x^*) + \frac{\mu}{2}\|x_0 - x^*\|^2}{\varepsilon}\right).$$

1333 **Corollary B.2.** *In the setting of Theorem B.1, $f(x_k^+) \xrightarrow{a.s.} f(x^*)$.*

1335
 1336 *proof of Corollary B.2.* We assume that all the conditions of Theorem B.1 have been met, we have
 1337

$$1338 \quad \mathbb{E}[|f(x_k^+) - f(x^*)|] = \mathbb{E}[f(x_k^+) - f(x^*)] \leq Cq^k$$

1340 holds for some positive constant C . Here $0 < q < 1$ is the decay factor. In fact, $q = (1 + \frac{1}{1+\sigma^2}\sqrt{\frac{\mu}{L}})^{-1}$
 1341 in strongly convex cases and $q = \frac{2}{(k+2)(k+3)}$ in convex cases. Since
 1342

$$\begin{aligned} 1343 \quad & \mathbb{P}\left(\lim_{k \rightarrow \infty} f(x_k^+) \neq f(x^*)\right) = \mathbb{P}\left(\limsup_{k \rightarrow \infty} |f(x_k^+) - f(x^*)| > 0\right) \\ 1344 \quad & = \mathbb{P}\left(\bigcup_{n=1}^{\infty} \limsup_{k \rightarrow \infty} |f(x_k^+) - f(x^*)| > \frac{1}{n}\right) \\ 1345 \quad & \leq \sum_{n=1}^{\infty} \mathbb{P}\left(\limsup_{k \rightarrow \infty} |f(x_k^+) - f(x^*)| > \frac{1}{n}\right) \end{aligned}$$

1350 For any fixed $\varepsilon = \frac{1}{n} > 0$ and for any $N \in \mathbb{N}$, we have
 1351

$$\begin{aligned}
 1352 \quad & \mathbb{P} \left(\limsup_{k \rightarrow \infty} |f(x_k^+) - f(x^*)| > \varepsilon \right) \leq \mathbb{P} (\exists k \geq N \text{ s.t. } |f(x_k^+) - f(x^*)| > \varepsilon) \\
 1353 \quad & = \mathbb{P} \left(\bigcup_{k \geq N} \{ |f(x_k^+) - f(x^*)| > \varepsilon \} \right) \\
 1354 \quad & \leq \sum_{k \geq N} \mathbb{P} (|f(x_k^+) - f(x^*)| > \varepsilon) \\
 1355 \quad & \leq \sum_{k \geq N} \frac{\mathbb{E} [|f(x_k^+) - f(x^*)|]}{\varepsilon} \\
 1356 \quad & \leq \frac{C}{\varepsilon} \sum_{k \geq N} q^k \\
 1357 \quad & \leq \frac{C}{\varepsilon} \frac{q^N}{1 - q}
 \end{aligned}$$

1358 where in the penultimate step we use Markov's inequality. For a fixed $\varepsilon = 1/n$, the inequality above
 1359 holds for any N . Letting $N \rightarrow \infty$, the right-hand side converges to 0, hence the probability on the
 1360 left-hand side is zero. Since

$$1361 \quad \left\{ \lim_{k \rightarrow \infty} f(x_k^+) \neq f(x^*) \right\} = \bigcup_{n=1}^{\infty} \left\{ \limsup_{k \rightarrow \infty} |f(x_k^+) - f(x^*)| \geq 1/n \right\},$$

1362 taking a countable union over all $\varepsilon = 1/n$ yields $\mathbb{P}(\lim_{k \rightarrow \infty} f(x_k^+) \neq f(x^*)) = 0$. \square
 1363

1364 C SHANG++

1365 C.1 PROOF OF THEOREM 2.1

1366 Setting $\gamma = \mu$, SHANG++ (2.4) can be rewritten in the following equivalent form:

$$\begin{aligned}
 1367 \quad & \frac{x_{k+1} - x_k^+}{\tilde{\alpha}} = v_k - x_{k+1} \\
 1368 \quad & \frac{v_{k+1} - v_k}{\alpha} = x_{k+1} - v_{k+1} - \frac{1}{\mu} g(x_{k+1}) \\
 1369 \quad & x_{k+1}^+ = x_{k+1} - \tilde{\alpha} \beta g(x_{k+1})
 \end{aligned} \tag{C.1}$$

1370 where $\tilde{\alpha} = \frac{\alpha}{1+m\alpha}$ or $\alpha = \frac{\tilde{\alpha}}{1-m\tilde{\alpha}}$.

1371 For this equivalent form of SHANG++, we obtain the following convergence result.

1372 **Theorem C.1.** *Let $f \in \mathcal{S}_{\mu,L}$. Given $x_0^+ = v_0 = x_0$, suppose (x_k, v_k) are generated by (C.1) with
 1373 $g(x_k)$ defined in (1.2) and MNS (1.3) holds. Given $0 \leq m \leq 1$, if the step size satisfies $\alpha = \frac{\tilde{\alpha}}{1-m\tilde{\alpha}}$
 1374 with $0 < \tilde{\alpha} \leq \frac{1}{1+\sigma^2} \sqrt{\frac{\mu}{L}}$ and $\beta = \frac{\tilde{\alpha}}{\mu/(1+\sigma^2)}$, then*

$$1375 \quad \mathbb{E} \left[f(x_k^+) - f(x^*) + \frac{\mu(1+\alpha)}{2(1+m\alpha)} \|v_k - x^*\|^2 \right] \leq (1+\tilde{\alpha})^{-k} \left(f(x_0) - f(x^*) + \frac{\mu(1+\alpha)}{2(1+m\alpha)} \|v_0 - x^*\|^2 \right).$$

1376 Define the discrete Lyapunov function
 1377

$$1378 \quad \mathcal{E}(z_k^+; \mu) = f(x_k^+) - f(x^*) + \frac{\mu(1+\alpha)}{2(1+m\alpha)} \|v_k - x^*\|^2 \tag{C.2}$$

1379 The next lemma controls the decay of $\mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)]$.

1404 **Lemma C.1.** Let $f \in \mathcal{S}_{\mu, L}$ with $0 < \mu < L < \infty$. Lyapunov function \mathcal{E} is defined by (C.2). Given
 1405 (x_k^+, x_k, v_k) , $(x_{k+1}^+, x_{k+1}, v_{k+1})$ are generated by (C.1). Assume $0 < \tilde{\alpha}\beta \leq \frac{1}{L(1+\sigma^2)}$, we have
 1406

$$\begin{aligned} & (1 + (1 + m\alpha)\tilde{\alpha})\mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)] - \mathcal{E}(z_k^+; \mu) \\ & \leq \mathbb{E} \left[-(1 - m)\alpha\tilde{\alpha}(f(x_{k+1}^+) - f(x^*)) - \frac{\tilde{\alpha}\mu}{2}\|v_k - x_{k+1}\|^2 \right. \\ & \quad \left. - D_f(x_k^+, x_{k+1}; \mu) + \left(\frac{\tilde{\alpha}\alpha(1 + \sigma^2)}{2\mu} - \frac{\tilde{\alpha}\beta}{2}(1 + (1 + \alpha)\tilde{\alpha}) \right) \|\nabla f(x_{k+1})\|^2 \right] \end{aligned}$$

1418
 1419 *proof of Lemma C.1.* By Lemma B.2, if $0 < \tilde{\alpha}\beta \leq \frac{1}{L(1+\sigma^2)}$, we obtain the one-step decrease
 1420

$$\mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)] - \mathcal{E}(z_k^+; \mu) \leq \mathbb{E} \left[\mathcal{E}(z_{k+1}; \mu) - \mathcal{E}(z_k^+; \mu) - \frac{\tilde{\alpha}\beta}{2}\|\nabla f(x_{k+1})\|^2 \right] \quad (\text{C.3})$$

1425 Expand it yields
 1426

$$\begin{aligned} & \mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)] - \mathcal{E}(z_k^+; \mu) \\ & \leq \mathbb{E} \left[\langle \nabla \mathcal{E}(z_{k+1}; \mu), z_{k+1} - z_k^+ \rangle - D_{\mathcal{E}}(z_k^+, z_{k+1}; \mu) - \frac{\tilde{\alpha}\beta}{2}\|\nabla f(x_{k+1})\|^2 \right] \\ & = \mathbb{E} \left[\langle \nabla f(x_{k+1}) - \nabla f(x^*), x_{k+1} - x_k^+ \rangle + \frac{\mu(1 + \alpha)}{(1 + m\alpha)} \langle v_{k+1} - x^*, v_{k+1} - v_k \rangle - D_{\mathcal{E}}(z_k^+, z_{k+1}; \mu) \right. \\ & \quad \left. - \frac{\tilde{\alpha}\beta}{2}\|\nabla f(x_{k+1})\|^2 \right] \\ & = \mathbb{E} \left[\tilde{\alpha} \langle \nabla f(x_{k+1}) - \nabla f(x^*), v_k - x_{k+1} \rangle + \alpha \frac{\mu(1 + \alpha)}{(1 + m\alpha)} \langle v_{k+1} - x^*, x_{k+1} - v_{k+1} - \frac{1}{\mu}g(x_{k+1}) \rangle \right. \\ & \quad \left. - D_{\mathcal{E}}(z_k^+, z_{k+1}; \mu) - \frac{\tilde{\alpha}\beta}{2}\|\nabla f(x_{k+1})\|^2 \right] \\ & = \mathbb{E} \left[-\tilde{\alpha} \langle \nabla f(x_{k+1}) - \nabla f(x^*), x_{k+1} - x^* \rangle + (1 + \alpha)\tilde{\alpha} \langle \nabla g(x_{k+1}), v_k - v_{k+1} \rangle - \alpha\tilde{\alpha} \langle g(x_{k+1}), v_k - x^* \rangle \right. \\ & \quad \left. + \mu(1 + \alpha)\tilde{\alpha} \langle v_{k+1} - x^*, x_{k+1} - v_{k+1} \rangle - D_{\mathcal{E}}(z_k^+, z_{k+1}; \mu) - \frac{\tilde{\alpha}\beta}{2}\|\nabla f(x_{k+1})\|^2 \right] \quad (\text{C.4}) \end{aligned}$$

1445 where in the last step, we rewrote the coefficient as $\alpha \frac{\mu(1 + \alpha)}{(1 + m\alpha)} = \mu(1 + \alpha)\tilde{\alpha}$, and use
 1446 $\mathbb{E} [\langle \nabla f(x_{k+1}), v_k - x^* \rangle] = \mathbb{E} [\langle g(x_{k+1}), v_k - x^* \rangle]$.
 1447

1448 Using (B.8, B.9) and B.11), we further bound (C.4) as
 1449

$$\begin{aligned} & \mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)] - \mathcal{E}(z_k^+; \mu) \\ & = \mathbb{E} \left[-\tilde{\alpha}D_f(x_{k+1}, x^*) - \frac{\mu(1 + \alpha)\tilde{\alpha}}{2}\|v_{k+1} - x^*\|^2 - \frac{\mu(1 + \alpha)\tilde{\alpha}}{2}\|v_{k+1} - x_{k+1}\|^2 + \frac{\mu\alpha\tilde{\alpha}}{2}\|x_{k+1} - x^*\|^2 \right. \\ & \quad \left. - D_f(x_k^+, x_{k+1}; \mu) - \frac{\mu(1 + \alpha)}{2(1 + m\alpha)}\|v_k - v_{k+1}\|^2 - \frac{\tilde{\alpha}\beta}{2}\|\nabla f(x_{k+1})\|^2 \right. \\ & \quad \left. + (1 + \alpha)\tilde{\alpha} \langle \nabla g(x_{k+1}), v_k - v_{k+1} \rangle - \alpha\tilde{\alpha} \langle g(x_{k+1}), v_k - x^* \rangle \right] \quad (\text{C.5}) \end{aligned}$$

1458 For the terms in last line, using the update for v_{k+1} in (C.1) yields the following bound.
 1459

$$\begin{aligned}
 & \mathbb{E}[(1+\alpha)\tilde{\alpha}\langle g(x_{k+1}), v_k - v_{k+1} \rangle] \\
 &= \mathbb{E}\left[(1+\alpha)\tilde{\alpha}\alpha\mu\langle \frac{1}{\mu}g(x_{k+1}), \frac{v_k - v_{k+1}}{\alpha} \rangle\right] \\
 &= \mathbb{E}\left[\frac{(1+\alpha)\tilde{\alpha}\alpha\mu}{2}(\|\frac{1}{\mu}g(x_{k+1})\|^2 + \|\frac{v_k - v_{k+1}}{\alpha}\|^2 - \|\frac{v_k - v_{k+1}}{\alpha} - \frac{1}{\mu}g(x_{k+1})\|^2)\right] \\
 &= \mathbb{E}\left[\frac{(1+\alpha)\tilde{\alpha}\alpha}{2\mu}\|g(x_{k+1})\|^2 + \frac{(1+\alpha)\tilde{\alpha}\mu}{2\alpha}\|v_k - v_{k+1}\|^2 - \frac{(1+\alpha)\tilde{\alpha}\alpha\mu}{2}\|x_{k+1} - v_{k+1}\|^2\right] \\
 &\leq \mathbb{E}\left[\frac{\tilde{\alpha}\alpha(1+\sigma^2)}{2\mu}\|\nabla f(x_{k+1})\|^2 + \frac{\alpha^2\tilde{\alpha}}{2\mu}\|g(x_{k+1})\|^2 + \frac{(1+\alpha)\mu}{2(1+m\alpha)}\|v_k - v_{k+1}\|^2\right. \\
 &\quad \left.- \frac{(1+\alpha)\tilde{\alpha}\alpha\mu}{2}\|x_{k+1} - v_{k+1}\|^2\right]
 \end{aligned} \tag{C.6}$$

1473 where in the last step, we split the coefficient of $\|g(x_{k+1})\|^2$ into $\frac{\tilde{\alpha}\alpha}{2\mu}$ and $\frac{\alpha^2\tilde{\alpha}}{2\mu}$, and then use
 1474 Lemma B.1 to control the first term.
 1475

1476 By the update for v_{k+1} , we have $v_k - v^* = (1+\alpha)(v_{k+1} - x_{k+1}) + (x_{k+1} - x^*) + \frac{\alpha}{\mu}g(x_{k+1})$ and
 1477 $v_k - x_{k+1} = (1+\alpha)(v_{k+1} - x_{k+1}) + \frac{\alpha}{\mu}g(x_{k+1})$, then
 1478

$$\begin{aligned}
 & \mathbb{E}[-\alpha\tilde{\alpha}\langle g(x_{k+1}), v_k - v^* \rangle] \\
 &= \mathbb{E}\left[-\alpha\tilde{\alpha}\langle g(x_{k+1}), (1+\alpha)(v_{k+1} - x_{k+1}) + (x_{k+1} - x^*) + \frac{\alpha}{\mu}g(x_{k+1}) \rangle\right] \\
 &= \mathbb{E}\left[-\tilde{\alpha}\mu\langle \frac{\alpha}{\mu}g(x_{k+1}), (1+\alpha)(v_{k+1} - x_{k+1}) \rangle - \alpha\tilde{\alpha}\langle g(x_{k+1}), x_{k+1} - x^* \rangle - \frac{\alpha^2\tilde{\alpha}}{\mu}\|g(x_{k+1})\|^2\right] \\
 &= \mathbb{E}\left[\frac{\tilde{\alpha}\mu}{2}\left(-\|\frac{\alpha}{\mu}g(x_{k+1}) + (1+\alpha)(v_{k+1} - x_{k+1})\|^2 + \|\frac{\alpha}{\mu}g(x_{k+1})\|^2 + \|(1+\alpha)(v_{k+1} - x_{k+1})\|^2\right)\right. \\
 &\quad \left.- \alpha\tilde{\alpha}\langle \nabla f(x_{k+1}), x_{k+1} - x^* \rangle - \frac{\alpha^2\tilde{\alpha}}{\mu}\|g(x_{k+1})\|^2\right] \\
 &= \mathbb{E}\left[-\frac{\tilde{\alpha}\mu}{2}\|v_k - x_{k+1}\|^2 + \frac{\alpha^2\tilde{\alpha}}{2\mu}\|g(x_{k+1})\|^2 + \frac{\tilde{\alpha}(1+\alpha)^2\mu}{2}\|v_{k+1} - x_{k+1}\|^2\right. \\
 &\quad \left.- \alpha\tilde{\alpha}(D_f(x_{k+1}, x^*) + D_f(x^*, x_{k+1})) - \frac{\alpha^2\tilde{\alpha}}{\mu}\|g(x_{k+1})\|^2\right] \\
 &\leq \mathbb{E}\left[-\frac{\tilde{\alpha}\mu}{2}\|v_k - x_{k+1}\|^2 - \frac{\alpha^2\tilde{\alpha}}{2\mu}\|g(x_{k+1})\|^2 + \frac{\tilde{\alpha}(1+\alpha)^2\mu}{2}\|v_{k+1} - x_{k+1}\|^2\right. \\
 &\quad \left.- \alpha\tilde{\alpha}D_f(x_{k+1}, x^*) - \frac{\alpha\tilde{\alpha}\mu}{2}\|x_{k+1} - x^*\|^2\right]
 \end{aligned} \tag{C.7}$$

1500 Substituting (C.6) and (C.7) back into (C.5), we have
 1501

$$\begin{aligned}
 & \mathbb{E}[\mathcal{E}(z_{k+1}^+; \mu)] - \mathcal{E}(z_k^+; \mu) \\
 &= \mathbb{E}\left[-(1+\alpha)\tilde{\alpha}D_f(x_{k+1}, x^*) - \frac{\mu(1+\alpha)\tilde{\alpha}}{2}\|v_{k+1} - x^*\|^2 - \frac{\tilde{\alpha}\mu}{2}\|v_k - x_{k+1}\|^2\right. \\
 &\quad \left.- D_f(x_k^+, x_{k+1}; \mu) + \left(\frac{\tilde{\alpha}\alpha(1+\sigma^2)}{2\mu} - \frac{\tilde{\alpha}\beta}{2}\right)\|\nabla f(x_{k+1})\|^2\right] \\
 &= \mathbb{E}\left[-(1+\alpha)\tilde{\alpha}(f(x_{k+1}) - f(x^*)) - \frac{\mu(1+\alpha)\tilde{\alpha}}{2}\|v_{k+1} - x^*\|^2 - \frac{\tilde{\alpha}\mu}{2}\|v_k - x_{k+1}\|^2\right. \\
 &\quad \left.- D_f(x_k^+, x_{k+1}; \mu) + \left(\frac{\tilde{\alpha}\alpha(1+\sigma^2)}{2\mu} - \frac{\tilde{\alpha}\beta}{2}\right)\|\nabla f(x_{k+1})\|^2\right]
 \end{aligned} \tag{C.8}$$

1512 Using Lemma B.2 to obtain
 1513

$$\begin{aligned}
 1514 \quad & \mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)] - \mathcal{E}(z_k^+; \mu) \\
 1515 \quad & \leq \mathbb{E} \left[-(1 + \alpha)\tilde{\alpha}(f(x_{k+1}^+) - f(x^*)) - \tilde{\alpha} \frac{(1 + \alpha)\mu}{2} \|v_{k+1} - x^*\|^2 - \frac{\tilde{\alpha}\mu}{2} \|v_k - x_{k+1}\|^2 \right. \\
 1516 \quad & \quad \left. - D_f(x_k^+, x_{k+1}; \mu) + \left(\frac{\tilde{\alpha}\alpha(1 + \sigma^2)}{2\mu} - \frac{\tilde{\alpha}\beta}{2} (1 + (1 + \alpha)\tilde{\alpha}) \right) \|\nabla f(x_{k+1})\|^2 \right] \quad (C.9) \\
 1517 \quad & = \mathbb{E} \left[-(1 + m\alpha)\tilde{\alpha}\mathcal{E}(z_{k+1}^+; \mu) - (1 - m)\alpha\tilde{\alpha}(f(x_{k+1}^+) - f(x^*)) - \frac{\tilde{\alpha}\mu}{2} \|v_k - x_{k+1}\|^2 \right. \\
 1518 \quad & \quad \left. - D_f(x_k^+, x_{k+1}; \mu) + \left(\frac{\tilde{\alpha}\alpha(1 + \sigma^2)}{2\mu} - \frac{\tilde{\alpha}\beta}{2} (1 + (1 + \alpha)\tilde{\alpha}) \right) \|\nabla f(x_{k+1})\|^2 \right] \\
 1519 \quad & \\
 1520 \quad & \\
 1521 \quad & \\
 1522 \quad & \\
 1523 \quad & \\
 1524 \quad &
 \end{aligned}$$

1525 By moving $\mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)]$ to the left side of the inequality to obtain the desired result. \square
 1526

1527
 1528 Now we begin to prove Theorem C.1.
 1529

1530
 1531 *Proof.* Under the parameter choices $0 < \tilde{\alpha} \leq \frac{1}{1+\sigma^2} \sqrt{\frac{\mu}{L}}$ and $\beta = \frac{\tilde{\alpha}(1+\sigma^2)}{\mu}$, we have $\tilde{\alpha}\beta \leq \frac{1}{(1+\sigma^2)L}$.
 1532 According to Lemma C.1, in order to obtain the decay of $\mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)]$, we need the last term
 1533 $\mathbb{E} \left[\left(\frac{\tilde{\alpha}\alpha(1+\sigma^2)}{2\mu} - \frac{\tilde{\alpha}\beta}{2} (1 + (1 + \alpha)\tilde{\alpha}) \right) \|\nabla f(x_{k+1})\|^2 \right]$ to be non-positive.
 1534

1535 Using $\alpha = \frac{\tilde{\alpha}}{1-m\tilde{\alpha}}$, we have
 1536

$$\frac{\tilde{\alpha}\alpha(1 + \sigma^2)}{2\mu} = \frac{\tilde{\alpha}^2(1 + \sigma^2)}{2\mu(1 - m\tilde{\alpha})} = \frac{\tilde{\alpha}\beta}{2(1 - m\tilde{\alpha})}$$

1537 and
 1538

$$\frac{1}{1 - m\tilde{\alpha}} - 1 - (1 + \alpha)\tilde{\alpha} = \frac{1}{1 - m\tilde{\alpha}} - 1 - \left(1 + \frac{\tilde{\alpha}}{1 - m\tilde{\alpha}}\right)\tilde{\alpha} = \frac{(m - 1)\tilde{\alpha}(1 + \tilde{\alpha})}{1 - m\tilde{\alpha}} \leq 0$$

1539 holds when $0 \leq m \leq 1$.
 1540

1541 Therefore, we have
 1542

$$\begin{aligned}
 1543 \quad & (1 + (1 + m\alpha)\tilde{\alpha})\mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)] - \mathcal{E}(z_k^+; \mu) \\
 1544 \quad & \leq \mathbb{E} \left[-(1 - m)\alpha\tilde{\alpha}(f(x_{k+1}^+) - f(x^*)) - \frac{\tilde{\alpha}\mu}{2} \|v_k - x_{k+1}\|^2 - D_f(x_k^+, x_{k+1}; \mu) \right] \quad (C.10) \\
 1545 \quad &
 \end{aligned}$$

1546 which implies that
 1547

$$\mathbb{E} [\mathcal{E}(z_{k+1}^+; \mu)] \leq (1 + (1 + m\alpha)\tilde{\alpha})^{-1} \mathbb{E} [\mathcal{E}(z_k^+; \mu)] \leq (1 + (1 + m\alpha)\tilde{\alpha})^{-k-1} \mathcal{E}(z_0; \mu)$$

1548 \square
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558 **Corollary C.1.** Under the setting of Theorem C.1, choose $\tilde{\alpha} = \frac{1}{1+\sigma^2} \sqrt{\frac{\mu}{L}}$, $\beta = \frac{(1+\sigma^2)\tilde{\alpha}}{\mu}$, and
 1559 $\alpha = \frac{\tilde{\alpha}}{1-m\tilde{\alpha}}$ with $0 \leq m \leq 1$, SHANG++ guarantees an ε -precision solution within the following
 1560 number of iterations:
 1561

$$1562 \quad k \geq (1 + \sigma^2) \sqrt{\frac{L}{\mu}} \log \left(\frac{f(x_0) - f(x^*) + \frac{\mu}{2} \|v_0 - x^*\|^2}{\varepsilon} \right)$$

1566 C.2 PROOF OF THEOREM 2.2
15671568 To facilitate analysis, we define an auxiliary time-scaling factor $\tilde{\gamma}_k = \frac{\gamma_k}{1+m\alpha_k}$. For any $m \geq 0$, setting
1569 $\alpha_k = \frac{2}{k+1}$, $\tilde{\alpha}_k = \frac{\alpha_k}{1+m\alpha_k} = \frac{2}{k+1+2m}$ and $\gamma_k = \alpha_k \tilde{\alpha}_k (1+\sigma^2)^2 L$, we have
1570

1571
$$\begin{aligned} \frac{\tilde{\gamma}_{k+1} - \tilde{\gamma}_k}{\tilde{\alpha}_k} &= \frac{1+m\alpha_k}{\alpha_k} \left(\frac{\alpha_{k+1}^2 (1+\sigma^2)^2 L}{(1+m\alpha_{k+1})^2} - \frac{\alpha_k^2 (1+\sigma^2)^2 L}{(1+m\alpha_k)^2} \right) \\ &= \frac{k+1+2m}{2} \left(\frac{4(1+\sigma^2)^2 L}{(k+2+2m)^2} - \frac{4(1+\sigma^2)^2 L}{(k+1+2m)^2} \right) \\ &= \frac{k+1+2m}{2} \left(1 - \frac{(k+2+2m)^2}{(k+1+2m)^2} \right) \tilde{\gamma}_{k+1} \\ &= -(1 + \frac{1}{2(k+1+2m)}) \tilde{\gamma}_{k+1} \\ &\leq -\tilde{\gamma}_{k+1} \end{aligned} \tag{C.11}$$

1583 Define $x_k^+ = x_k - \tilde{\alpha}_k \beta_k g(x_k)$, we can obtain the following equivalent form of SHANG++ for convex
1584 problems:
1585

1586
$$\begin{aligned} \frac{x_{k+1} - x_k^+}{\tilde{\alpha}_k} &= v_k - x_{k+1} \\ \frac{v_{k+1} - v_k}{\alpha_k} &= -\frac{1}{\gamma_k} g(x_{k+1}) \\ \frac{\tilde{\gamma}_{k+1} - \tilde{\gamma}_k}{\tilde{\alpha}_k} &\leq -\tilde{\gamma}_{k+1} \end{aligned} \tag{C.12}$$

1593 Denote the discrete Lyapunov function by
1594

1595
$$\mathcal{E}(z_k^+; \tilde{\gamma}_k) = f(x_k^+) - f(x^*) + \frac{\tilde{\gamma}_k}{2} \|v_k - x^*\|^2 \tag{C.13}$$

1598 The following Lemma establishes a decay bound for $\mathbb{E} [\mathcal{E}(z_k^+; \tilde{\gamma}_k)]$.
16001601 **Lemma C.2.** *Let $f \in \mathcal{S}_{0,L}$, Lyapunov function \mathcal{E} is defined by (C.13). Given (x_k, v_k, x_k^+) ,
1602 (x_{k+1}, v_{k+1}) are generated by (C.12) and $x_{k+1}^+ = x_{k+1} - \tilde{\alpha}_k \beta_k g(x_{k+1})$. Assume $0 < \tilde{\alpha}_k \beta_k =$
1603 $\tilde{\alpha}_{k+1} \beta_{k+1} \leq \frac{1}{L(1+\sigma^2)}$, we have*
1604

1605
$$\begin{aligned} &(1 + \tilde{\alpha}_k) \mathbb{E} [\mathcal{E}(z_{k+1}^+; \tilde{\gamma}_{k+1})] \\ &\leq \mathcal{E}(z_k^+; \tilde{\gamma}_k) + \mathbb{E} \left[-\tilde{\alpha}_k D_f(x^*, x_{k+1}) - D_f(x_k^+, x_{k+1}) + \frac{1}{2} \left(\frac{\tilde{\alpha}_k^2 (1+\sigma^2)}{\tilde{\gamma}_k} - (1 + \tilde{\alpha}_k) \tilde{\alpha}_k \beta_k \right) \|\nabla f(x_{k+1})\|^2 \right] \end{aligned}$$

1609
1610
1611
1612 *proof of Lemma C.2.* By Lemma B.2, if $0 < \tilde{\alpha}_k \beta_k = \tilde{\alpha}_{k+1} \beta_{k+1} \leq \frac{1}{L(1+\sigma^2)}$, we obtain the one-step
1613 decrease
1614

1615
$$\begin{aligned} &\mathbb{E} [\mathcal{E}(z_{k+1}^+; \tilde{\gamma}_{k+1})] - \mathcal{E}(z_k^+; \tilde{\gamma}_k) \\ &\leq \mathbb{E} \left[\mathcal{E}(z_{k+1}; \tilde{\gamma}_{k+1}) - \mathcal{E}(z_k^+; \tilde{\gamma}_k) - \frac{\tilde{\alpha}_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2 \right] \\ &= \mathbb{E} \left[\mathcal{E}(z_{k+1}; \tilde{\gamma}_k) - \mathcal{E}(z_k^+; \tilde{\gamma}_k) + \frac{\tilde{\gamma}_{k+1} - \tilde{\gamma}_k}{2} \|v_{k+1} - x^*\|^2 - \frac{\tilde{\alpha}_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2 \right] \end{aligned} \tag{C.14}$$

1620

Expand the above equation and use the update to obtain

1621

1622

$$\begin{aligned}
 & \mathbb{E} [\mathcal{E}(z_{k+1}^+; \tilde{\gamma}_{k+1})] - \mathcal{E}(z_k^+; \tilde{\gamma}_k) \\
 & \leq \mathbb{E} \left[\langle \nabla \mathcal{E}(z_{k+1}; \tilde{\gamma}_k), z_{k+1} - z_k^+ \rangle - D_{\mathcal{E}}(z_k^+, z_{k+1}; \tilde{\gamma}_k) + \frac{\tilde{\gamma}_{k+1} - \tilde{\gamma}_k}{2} \|v_{k+1} - x^*\|^2 - \frac{\tilde{\alpha}_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2 \right] \\
 & \leq \mathbb{E} \left[\langle \nabla f(x_{k+1}) - \nabla f(x^*), x_{k+1} - x_k^+ \rangle + \tilde{\gamma}_k \langle v_{k+1} - x^*, v_{k+1} - v_k \rangle - D_{\mathcal{E}}(z_k^+, z_{k+1}; \tilde{\gamma}_k) \right. \\
 & \quad \left. - \frac{\tilde{\alpha}_k \tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 - \frac{\tilde{\alpha}_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2 \right] \\
 & = \mathbb{E} \left[-\tilde{\alpha}_k \langle \nabla f(x_{k+1}) - \nabla f(x^*), x_{k+1} - x^* \rangle + \tilde{\alpha}_k \langle \nabla f(x_{k+1}), v_k - x^* \rangle - \frac{\alpha_k \tilde{\gamma}_k}{\gamma_k} \langle g(x_{k+1}), v_{k+1} - x^* \rangle \right. \\
 & \quad \left. - \frac{\tilde{\alpha}_k \tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 - D_{\mathcal{E}}(z_k^+, z_{k+1}; \tilde{\gamma}_k) - \frac{\tilde{\alpha}_k \beta_k}{2} \|\nabla f(x_{k+1})\|^2 \right] \tag{C.15}
 \end{aligned}$$

1623

1624

Using Young Inequality, Cauchy-Schwarz Inequality and $\frac{\alpha_k \tilde{\gamma}_k}{\gamma_k} = \tilde{\alpha}_k$ to obtain

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

$$\begin{aligned}
 & \mathbb{E} \left[\tilde{\alpha}_k \langle \nabla f(x_{k+1}), v_k - x^* \rangle - \frac{\alpha_k \tilde{\gamma}_k}{\gamma_k} \langle g(x_{k+1}), v_{k+1} - x^* \rangle \right] \\
 & = \mathbb{E} [\tilde{\alpha}_k \langle g(x_{k+1}), v_k - v_{k+1} \rangle] \\
 & \leq \mathbb{E} \left[\frac{\tilde{\alpha}_k^2}{2\tilde{\gamma}_k} \|g(x_{k+1})\|^2 + \frac{\tilde{\gamma}_k}{2} \|v_k - v_{k+1}\|^2 \right] \tag{C.16} \\
 & \leq \mathbb{E} \left[\frac{\tilde{\alpha}_k^2(1 + \sigma^2)}{2\tilde{\gamma}_k} \|\nabla f(x_{k+1})\|^2 + \frac{\tilde{\gamma}_k}{2} \|v_k - v_{k+1}\|^2 \right]
 \end{aligned}$$

1636

1637

Substituting (B.11) and (C.16) back into (C.15), we can obtain

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

$$\begin{aligned}
 & \mathbb{E} [\mathcal{E}(z_{k+1}^+; \tilde{\gamma}_{k+1})] - \mathcal{E}(z_k^+; \tilde{\gamma}_k) \\
 & \leq \mathbb{E} \left[-\tilde{\alpha}_k D_f(x_{k+1}, x^*) - \tilde{\alpha}_k D_f(x^*, x_{k+1}) + \frac{1}{2} \left(\frac{\tilde{\alpha}_k^2(1 + \sigma^2)}{\tilde{\gamma}_k} - \tilde{\alpha}_k \beta_k \right) \|\nabla f(x_{k+1})\|^2 \right. \\
 & \quad \left. - \frac{\tilde{\alpha}_k \tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 - D_f(x_k^+, x_{k+1}) \right] \\
 & \leq \mathbb{E} \left[-\tilde{\alpha}_k \mathcal{E}(z_{k+1}^+; \tilde{\gamma}_{k+1}) - \tilde{\alpha}_k D_f(x^*, x_{k+1}) + \frac{1}{2} \left(\frac{\tilde{\alpha}_k^2(1 + \sigma^2)}{\tilde{\gamma}_k} - (1 + \tilde{\alpha}_k) \tilde{\alpha}_k \beta_k \right) \|\nabla f(x_{k+1})\|^2 \right. \\
 & \quad \left. - D_f(x_k^+, x_{k+1}) \right] \tag{C.17}
 \end{aligned}$$

By moving $\mathbb{E} [\mathcal{E}(z_{k+1}^+; \tilde{\gamma}_{k+1})]$ to the left side of the inequality to obtain the desired result. \square

1659

Now we prove the theorem 2.2.

1660

1661

1662

Proof. Assume $\alpha_k = \frac{2}{k+1}$, $\gamma_k = \alpha_k \tilde{\alpha}_k (1 + \sigma^2)^2 L$ and $\beta_k = \frac{(1 + \sigma^2) \alpha_k}{\gamma_k}$. Then

1663

1664

1665

$$\tilde{\alpha}_k \beta_k = \frac{(1 + \sigma^2) \tilde{\alpha}_k \alpha_k}{\gamma_k} = \frac{(1 + \sigma^2) \tilde{\alpha}_k^2}{\tilde{\gamma}_k} \tag{C.18}$$

1666

Using Lemma C.2 to obtain

1667

1668

$$\mathbb{E} [\mathcal{E}(z_{k+1}^+; \tilde{\gamma}_{k+1})] \leq (1 + \tilde{\alpha}_k)^{-1} \mathcal{E}(z_k^+; \tilde{\gamma}_k) \leq \prod_{i=0}^k (1 + \tilde{\alpha}_i)^{-1} \mathcal{E}(z_0^+; \tilde{\gamma}_0) \tag{C.19}$$

1669

1670

Since $\tilde{\alpha}_k = \frac{2}{k+1+2m}$, then

1671

1672

1673

$$\prod_{i=0}^k (1 + \tilde{\alpha}_i)^{-1} = \prod_{i=0}^k \frac{i+1+2m}{i+3+2m} = \frac{(1+2m)(2+2m)}{(k+3+2m)(k+2+2m)} \tag{C.19}$$

\square

1674 **Corollary C.2.** *Under the setting of Theorem 2.2, choose $m \geq 0$, $\alpha_k = \frac{2}{k+1}$, $\tilde{\alpha}_k = \frac{\alpha_k}{1+m\alpha_k}$,*
 1675 *$\gamma_k = \alpha_k \tilde{\alpha}_k (1 + \sigma^2)^2 L$ and $\beta_k = \frac{(1+\sigma^2)\alpha_k}{\gamma_k}$, SHANG++ guarantees to reach an ε -precision at the*
 1676 *following interations:*

$$1678 \quad k \geq \sqrt{(1+2m)(2+2m)(f(x_0) - f(x^*) + \frac{2(1+\sigma^2)^2 L}{(1+2m)^2} \|x_0 - x^*\|^2) / \varepsilon}$$

1681 **Corollary C.3.** *Under the setting of Theorem 2.2 and C.1, $f(x_k^+) \xrightarrow{a.s.} f(x^*)$.*

1683 The proof is fully analogous to that of Corollary B.2, with the only difference being the decay-rate
 1684 parameter q in the final step.

1686 D VARIANCE DECAY ANALYSIS

1688 We study the variance decay of the Lyapunov energy (B.2)

$$1690 \quad \mathcal{E}_k := \mathcal{E}(z_k^+; \tilde{\gamma}_k) = f(x_k^+) - f(x^*) + \frac{\tilde{\gamma}_k}{2} \|v_k - x^*\|^2$$

1692 under the unified stochastic model of SHANG and SHANG++. Throughout we work on a probability
 1693 space $(\Omega, \mathcal{F}, \mathbb{P})$ with the *post-update* filtration $\mathcal{F}_k := \sigma(x_0, v_0, \zeta_0, \dots, \zeta_k)$, where each ζ_k collects
 1694 the randomness used to form the stochastic gradient at step k . We write $g_k := g(x_k, \zeta_k)$ and
 1695 $g_{k+1} := g(x_{k+1}, \zeta_{k+1})$.

1696 **Assumptions.** We make the following standard assumptions.

- 1698 A1. **Smooth convexity.** $f \in \mathcal{S}_{\mu, L}$ with $0 \leq \mu < L < \infty$.
- 1699 A2. **Unbiasedness at the query point.** $\mathbb{E}[g_{k+1} \mid \mathcal{F}_k] = \nabla f(x_{k+1})$. Equivalently, with $\xi_{k+1} :=$
 1700 $g_{k+1} - \nabla f(x_{k+1})$, $\mathbb{E}[\xi_{k+1} \mid \mathcal{F}_k] = 0$.
- 1702 A3. **Multiplicative noise scaling (MNS).** $\mathbb{E}[\|\xi_{k+1}\|^2 \mid \mathcal{F}_k] \leq \sigma^2 \|\nabla f(x_{k+1})\|^2$.
- 1703 A4. **Bounded conditional kurtosis.** There exists $\chi \geq 1$ such that $\mathbb{E}[\|\xi_{k+1}\|^4 \mid \mathcal{F}_k] \leq$
 1704 $\chi (\mathbb{E}[\|\xi_{k+1}\|^2 \mid \mathcal{F}_k])^2$ (e.g., $\chi = 3$ for Gaussian noise).

1706 **Unified stochastic model.** The updates for SHANG/SHANG++ can be written as

$$1707 \quad \begin{aligned} x_k^+ &= x_k - \tilde{\alpha}_k \beta_k g_k \\ 1708 \quad \frac{x_{k+1} - x_k^+}{\tilde{\alpha}_k} &= v_k - x_{k+1} \\ 1709 \quad \frac{v_{k+1} - v_k}{\alpha_k} &= \frac{\mu}{\gamma_k} (x_{k+1} - v_{k+1}) - \frac{1}{\gamma_k} g_{k+1} \\ 1710 \quad \frac{\gamma_{k+1} - \gamma_k}{\alpha_k} &= \mu - \gamma_{k+1}. \end{aligned} \tag{D.1}$$

1715 where $\alpha_k > 0$, $\gamma_k > 0$, and we introduce $\tilde{\alpha}_k = \frac{\alpha_k}{1+m\alpha_k}$ and $\tilde{\gamma}_k = \frac{\gamma_k}{1+m\alpha_k}$ with $m \geq 0$. Equivalently
 1716 (and crucial for variance analysis), (x_{k+1}^+, v_{k+1}) are *affine in the fresh gradient* g_{k+1} while x_{k+1}
 1717 depends only on past randomness:

$$1719 \quad \begin{aligned} x_{k+1}^+ &= \frac{1}{1 + \tilde{\alpha}_k} x_k^+ + \frac{\tilde{\alpha}_k}{1 + \tilde{\alpha}_k} v_k - \tilde{\alpha}_{k+1} \beta_{k+1} g_{k+1} = x_{k+1} - \tilde{\alpha}_{k+1} \beta_{k+1} g_{k+1}, \\ 1720 \quad v_{k+1} &= \frac{\alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} x_k^+ + \left(\frac{\gamma_k}{\gamma_k + \alpha_k \mu} + \frac{\tilde{\alpha}_k \alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} \right) v_k - \frac{\alpha_k}{\gamma_k + \alpha_k \mu} g_{k+1} \\ 1721 \quad \gamma_{k+1} &= \frac{\alpha_k}{1 + \alpha_k} \mu + \frac{1}{1 + \alpha_k} \gamma_k \end{aligned} \tag{D.2}$$

1726 By the filtration choice, x_{k+1} is \mathcal{F}_k -measurable and g_{k+1} uses fresh randomness ζ_{k+1} ; hence with
 1727 $\xi_{k+1} := g_{k+1} - \nabla f(x_{k+1})$ we have $\mathbb{E}[\xi_{k+1} \mid \mathcal{F}_k] = 0$. This linear structure will allow us to bound
 1728 the one-step fluctuation $\mathcal{E}_{k+1} - \mathbb{E}[\mathcal{E}_{k+1} \mid \mathcal{F}_k]$ and to propagate variance.

1728 **Lemma D.1** (One-step fluctuation). *There exist explicit constants $A_k, B_k, C_k \geq 0$ (functions of
1729 $\alpha_k, \tilde{\alpha}_k, \tilde{\gamma}_k, \mu, L$) such that, with ξ_{k+1} ,*

$$1731 \quad |\mathcal{E}_{k+1} - \mathbb{E}[\mathcal{E}_{k+1} | \mathcal{F}_k]| \leq A_k \sqrt{\mathcal{E}_k} \|\xi_{k+1}\| + B_k \|\xi_{k+1}\|^2 + C_k \mathcal{E}_k$$

1732 and

$$1733 \quad A_k = (B_x(1 + B_x L) \sqrt{2Lc_1} + B_v \tilde{\gamma}_{k+1} (c_2 + B_v \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)}))$$

$$1734 \quad B_k = \frac{LB_x^2 + \tilde{\gamma}_{k+1} B_v^2}{2}$$

$$1736 \quad C_k = (LB_x^2 + \tilde{\gamma}_{k+1} B_v^2) L c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L) \sigma^2$$

1738 where $c_1 = \max\{\frac{1}{1+\tilde{\alpha}_k}, \frac{\tilde{\alpha}_k}{1+\tilde{\alpha}_k} \frac{L}{\tilde{\gamma}_k}\}$, $c_2 = \max\{\frac{\alpha_k \sqrt{2\mu}}{(\gamma_k + \alpha_k \mu)(1+\tilde{\alpha}_k)}, \left(\frac{\gamma_k}{\gamma_k + \alpha_k \mu} + \frac{\tilde{\alpha}_k \alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1+\tilde{\alpha}_k)}\right) \sqrt{\frac{2}{\tilde{\gamma}_k}}\}$

1739 when $\mu > 0$ and $c_2 = \sqrt{\frac{2}{\tilde{\gamma}_k}}$ when $\mu = 0$. $B_x = \tilde{\alpha}_{k+1} \beta_{k+1}$ and $B_v = \frac{\alpha_k}{\gamma_k + \alpha_k \mu}$.

1741 proof of Lemma D.1. Using $\xi_{k+1} := g_{k+1} - \nabla f(x_{k+1})$, we can rewrite the updates of x_{k+1}^+ and
1742 v_{k+1} as

$$1744 \quad x_{k+1}^+ = U_k - \tilde{\alpha}_{k+1} \beta_{k+1} \nabla f(x_{k+1}) - \tilde{\alpha}_{k+1} \beta_{k+1} \xi_{k+1} = \hat{U}_k - B_x \xi_{k+1} \quad (D.3)$$

$$1745 \quad v_{k+1} = V_k - \frac{\alpha_k}{\gamma_k + \alpha_k \mu} \nabla f(x_{k+1}) - \frac{\alpha_k}{\gamma_k + \alpha_k \mu} \xi_{k+1} = \hat{V}_k - B_v \xi_{k+1}$$

1747 where $U_k = \frac{1}{1+\tilde{\alpha}_k} x_k^+ + \frac{\tilde{\alpha}_k}{1+\tilde{\alpha}_k} v_k$, $V_k = \frac{\alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1+\tilde{\alpha}_k)} x_k^+ + \left(\frac{\gamma_k}{\gamma_k + \alpha_k \mu} + \frac{\tilde{\alpha}_k \alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1+\tilde{\alpha}_k)}\right) v_k$,
1748 $\hat{U}_k = U_k - B_x \nabla f(x_{k+1})$ and $\hat{V}_k = V_k - B_v \nabla f(x_{k+1})$. $B_x = \tilde{\alpha}_{k+1} \beta_{k+1}$ and $B_v = \frac{\alpha_k}{\gamma_k + \alpha_k \mu}$ are
1749 positive constants. It should be noted that U_k, \hat{U}_k, V_k and \hat{V}_k are measurable with respect to \mathcal{F}_k .

1752 Let's first focus on the left part of \mathcal{E}_{k+1} . Expanding $f(x_{k+1}^+) = f(\hat{U}_k - B_x \xi_{k+1})$ at point \hat{U}_k using
1753 Taylor series gives

$$1754 \quad f(\hat{U}_k - B_x \xi_{k+1}) = f(\hat{U}_k) - \langle \nabla f(\hat{U}_k), B_x \xi_{k+1} \rangle + r(\hat{U}_k, \xi_{k+1}) \quad (D.4)$$

1756 where

$$1757 \quad |r(\hat{U}_k, \xi_{k+1})| = \left| \int_0^1 \langle \nabla f(\hat{U}_k - t B_x \xi_{k+1}) - \nabla f(\hat{U}_k), -B_x \xi_{k+1} \rangle dt \right| \leq \frac{L}{2} \|B_x \xi_{k+1}\|^2 = \frac{LB_x^2}{2} \|\xi_{k+1}\|^2 \quad (D.5)$$

1760 Then

$$1761 \quad |f(x_{k+1}^+) - f(x^*) - \mathbb{E}[f(x_{k+1}^+) - f(x^*) | \mathcal{F}_k]|$$

$$1762 \quad = |f(\hat{U}_k - B_x \xi_{k+1}) - f(x^*) - \mathbb{E}[f(\hat{U}_k - B_x \xi_{k+1}) - f(x^*) | \mathcal{F}_k]|$$

$$1763 \quad = |- \langle \nabla f(\hat{U}_k), B_x \xi_{k+1} \rangle + r(\hat{U}_k, \xi_{k+1}) - \mathbb{E}[r(\hat{U}_k, \xi_{k+1}) | \mathcal{F}_k]| \quad (D.6)$$

$$1764 \quad \leq B_x \|\nabla f(\hat{U}_k)\| \cdot \|\xi_{k+1}\| + \frac{LB_x^2}{2} \|\xi_{k+1}\|^2 + \frac{LB_x^2}{2} \mathbb{E}[\|\xi_{k+1}\|^2 | \mathcal{F}_k]$$

1768 where the last step uses Cauchy-Schwarz inequality and (D.5).

1769 Since $\hat{U}_k = U_k - B_x \nabla f(x_{k+1}) = x_{k+1} - B_x \nabla f(x_{k+1})$ and $x_{k+1} = \frac{1}{1+\tilde{\alpha}_k} x_k^+ + \frac{\tilde{\alpha}_k}{1+\tilde{\alpha}_k} v_k$, by
1770 triangle inequality and smooth convexity of f , we have

$$1771 \quad \|\nabla f(\hat{U}_k)\| \leq \|\nabla f(\hat{U}_k) - \nabla f(x_{k+1})\| + \|\nabla f(x_{k+1})\|$$

$$1772 \quad \leq L \|\hat{U}_k - x_{k+1}\| + \|\nabla f(x_{k+1})\|$$

$$1773 \quad = (1 + B_x L) \|\nabla f(x_{k+1})\|$$

$$1774 \quad \leq (1 + B_x L) \sqrt{2L} \sqrt{f(x_{k+1}) - f(x^*)} \quad (D.7)$$

$$1775 \quad \leq (1 + B_x L) \sqrt{2L} \sqrt{\frac{1}{1+\tilde{\alpha}_k} (f(x_k^+) - f(x^*)) + \frac{\tilde{\alpha}_k}{1+\tilde{\alpha}_k} (f(v_k) - f(x^*))}$$

$$1776 \quad \leq (1 + B_x L) \sqrt{2L} \sqrt{\frac{1}{1+\tilde{\alpha}_k} (f(x_k^+) - f(x^*)) + \frac{\tilde{\alpha}_k}{1+\tilde{\alpha}_k} \frac{L}{2} \|v_k - x^*\|^2}$$

$$1777 \quad \leq (1 + B_x L) \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)} \sqrt{\mathcal{E}_k}$$

1782 where $c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L) = \max\{\frac{1}{1+\tilde{\alpha}_k}, \frac{\tilde{\alpha}_k}{1+\tilde{\alpha}_k} \frac{L}{\tilde{\gamma}_k}\}$.
 1783

1784 On the other hand,

1785
$$\frac{LB_x^2}{2} \mathbb{E} [\|\xi_{k+1}\|^2 | \mathcal{F}_k] \leq \frac{LB_x^2 \sigma^2}{2} \|\nabla f(x_{k+1})\|^2 \leq L^2 B_x^2 \sigma^2 c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L) \mathcal{E}_k \quad (\text{D.8})$$

 1786

1787 Substituting (D.7) and (D.8) back into (D.6), we have

1788
$$\begin{aligned} & |f(x_{k+1}^+) - f(x^*) - \mathbb{E}[f(x_{k+1}^+) - f(x^*) | \mathcal{F}_k]| \\ & \leq B_x(1 + B_x L) \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)} \sqrt{\mathcal{E}_k} \|\xi_{k+1}\| + \frac{LB_x^2}{2} \|\xi_{k+1}\|^2 + L^2 B_x^2 \sigma^2 c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L) \mathcal{E}_k \end{aligned} \quad (\text{D.9})$$

 1789

1790 For the middle part of \mathcal{E}_{k+1} , since

1791
$$\frac{\tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 = \frac{\tilde{\gamma}_{k+1}}{2} \|\hat{V}_k - x^*\|^2 + \frac{\tilde{\gamma}_{k+1} B_v^2}{2} \|\xi_{k+1}\|^2 - \tilde{\gamma}_{k+1} \langle \hat{V}_k - x^*, B_v \xi_{k+1} \rangle, \quad (\text{D.10})$$

 1792

1793 we have

1794
$$\begin{aligned} & \left| \frac{\tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 - \mathbb{E} \left[\frac{\tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 | \mathcal{F}_k \right] \right| \\ & = \left| -\tilde{\gamma}_{k+1} \langle \hat{V}_k - x^*, B_v \xi_{k+1} \rangle + \frac{\tilde{\gamma}_{k+1} B_v^2}{2} (\|\xi_{k+1}\|^2 - \mathbb{E} [\|\xi_{k+1}\|^2 | \mathcal{F}_k]) \right| \\ & \leq B_v \tilde{\gamma}_{k+1} \|\hat{V}_k - x^*\| \cdot \|\xi_{k+1}\| + \frac{\tilde{\gamma}_{k+1} B_v^2}{2} \|\xi_{k+1}\|^2 + \frac{\tilde{\gamma}_{k+1} B_v^2}{2} \mathbb{E} [\|\xi_{k+1}\|^2 | \mathcal{F}_k] \end{aligned} \quad (\text{D.11})$$

 1795

1796 Using triangle inequality and convexity of $\|\cdot\|$, we have

1797
$$\begin{aligned} & \|\hat{V}_k - x^*\| \\ & = \|V_k - x^* - B_v \nabla f(x_{k+1})\| \\ & \leq \left\| \frac{\alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} x_k^+ + \left(\frac{\gamma_k}{\gamma_k + \alpha_k \mu} + \frac{\tilde{\alpha}_k \alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} \right) v_k - x^* \right\| + B_v \|\nabla f(x_{k+1})\| \\ & \leq \left\| \frac{\alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} x_k^+ - x^* \right\| + \left(\frac{\gamma_k}{\gamma_k + \alpha_k \mu} + \frac{\tilde{\alpha}_k \alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} \right) \|v_k - x^*\| + B_v \|\nabla f(x_{k+1})\| \\ & \leq \left\| \frac{\alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} x_k^+ - x^* \right\| + \left(\frac{\gamma_k}{\gamma_k + \alpha_k \mu} + \frac{\tilde{\alpha}_k \alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} \right) \|v_k - x^*\| \\ & \quad + B_v \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)} \sqrt{\mathcal{E}_k} \end{aligned} \quad (\text{D.12})$$

 1798

1799 Next, we will consider two cases.

1800 **Case 1:** $\mu > 0$. Using the strong convexity of f , we have

1801
$$\begin{aligned} & \|\hat{V}_k - x^*\| \\ & \leq \frac{\alpha_k \sqrt{2\mu}}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} \sqrt{f(x_k^+) - f(x^*)} + \left(\frac{\gamma_k}{\gamma_k + \alpha_k \mu} + \frac{\tilde{\alpha}_k \alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} \right) \sqrt{\frac{2}{\tilde{\gamma}_k}} \sqrt{\frac{\tilde{\gamma}_k}{2}} \|v_k - x^*\| \\ & \quad + B_v \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)} \sqrt{\mathcal{E}_k} \\ & \leq (c_2(\tilde{\alpha}, \mu, \gamma_k) + B_v \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)}) \sqrt{\mathcal{E}_k} \end{aligned} \quad (\text{D.13})$$

 1802

1803 where $c_2(\tilde{\alpha}, \mu, \gamma_k) = \max\{\frac{\alpha_k \sqrt{2\mu}}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)}, \left(\frac{\gamma_k}{\gamma_k + \alpha_k \mu} + \frac{\tilde{\alpha}_k \alpha_k \mu}{(\gamma_k + \alpha_k \mu)(1 + \tilde{\alpha}_k)} \right) \sqrt{\frac{2}{\tilde{\gamma}_k}}\}$. Thus,

1804
$$\begin{aligned} & \left| \frac{\tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 - \mathbb{E} \left[\frac{\tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 | \mathcal{F}_k \right] \right| \\ & \leq B_v \tilde{\gamma}_{k+1} (c_2(\tilde{\alpha}, \mu, \gamma_k) + B_v \sqrt{2Lc_1(\tilde{\alpha}, \mu, L)}) \sqrt{\mathcal{E}_k} \|\xi_{k+1}\| + \frac{\tilde{\gamma}_{k+1} B_v^2}{2} \|\xi_{k+1}\|^2 + \tilde{\gamma}_{k+1} B_v^2 L \sigma^2 c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L) \mathcal{E}_k \end{aligned} \quad (\text{D.14})$$

 1805

1836 Combining (D.9) and (D.14), we have
1837
1838
$$|\mathcal{E}_{k+1} - \mathbb{E}[\mathcal{E}_{k+1} | \mathcal{F}_k]|$$

1839
$$\leq (B_x(1 + B_x L) \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)} + B_v \tilde{\gamma}_{k+1} (c_2(\tilde{\alpha}, \mu, \gamma_k) + B_v \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)})) \sqrt{\mathcal{E}_k} \|\xi_{k+1}\|$$

1840
$$+ \frac{LB_x^2 + \tilde{\gamma}_{k+1} B_v^2}{2} \|\xi_{k+1}\|^2 + (LB_x^2 + \tilde{\gamma}_{k+1} B_v^2) L c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L) \sigma^2 \mathcal{E}_k$$

1841
1842 (D.15)

1843 **Case 2:** $\mu = 0$.

1844
$$\|\hat{V}_k - x^*\| \leq \|v_k - x^*\| + B_v \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)} \sqrt{\mathcal{E}_k}$$

1845
1846
$$\leq (\sqrt{\frac{2}{\tilde{\gamma}_k}} + B_v \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)}) \sqrt{\mathcal{E}_k}$$

1847

1848 Thus,

1849
$$|\frac{\tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 - \mathbb{E} \left[\frac{\tilde{\gamma}_{k+1}}{2} \|v_{k+1} - x^*\|^2 \mid \mathcal{F}_k \right]|$$

1850
1851
$$\leq B_v \tilde{\gamma}_{k+1} (\sqrt{\frac{2}{\tilde{\gamma}_k}} + B_v \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)}) \sqrt{\mathcal{E}_k} \|\xi_{k+1}\| + \frac{\tilde{\gamma}_{k+1} B_v^2}{2} \|\xi_{k+1}\|^2 + \tilde{\gamma}_{k+1} B_v^2 L \sigma^2 c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L) \mathcal{E}_k$$

1852
1853 (D.17)

1854 Combining (D.9) and (D.17), we have

1855
$$|\mathcal{E}_{k+1} - \mathbb{E}[\mathcal{E}_{k+1} | \mathcal{F}_k]|$$

1856
1857
$$\leq (B_x(1 + B_x L) \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)} + B_v \tilde{\gamma}_{k+1} (\sqrt{\frac{2}{\tilde{\gamma}_k}} + B_v \sqrt{2Lc_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)}) \sqrt{\mathcal{E}_k} \|\xi_{k+1}\|$$

1858
1859
$$+ \frac{LB_x^2 + \tilde{\gamma}_{k+1} B_v^2}{2} \|\xi_{k+1}\|^2 + (LB_x^2 + \tilde{\gamma}_{k+1} B_v^2) L c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L) \sigma^2 \mathcal{E}_k$$

1860
1861 (D.18)

□

1862
1863 **Proposition D.1** (Conditional variance bound). *Let $S_k := 2L\sigma^2 c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L)$ with $c_1(\tilde{\alpha}_k, \tilde{\gamma}_k, L) = \max\{\frac{1}{1+\tilde{\alpha}_k}, \frac{\tilde{\alpha}_k}{1+\tilde{\alpha}_k} \frac{L}{\tilde{\gamma}_k}\}$. Under assumptions (A2)–(A4) and the setting of Lemma D.1 (In particular, stepsizes and hence A_k, B_k, C_k, S_k are \mathcal{F}_k -measurable),*

1864
$$\text{Var}(\mathcal{E}_{k+1} | \mathcal{F}_k) \leq K_{2,k} \mathcal{E}_k^2, \quad K_{2,k} = 3(A_k^2 S_k + \chi B_k^2 S_k^2 + C_k^2)$$

1865

1866 proof of Proposition D.1. By the definition of conditional variance,

1867
$$\text{Var}(\mathcal{E}_{k+1} | \mathcal{F}_k) = \mathbb{E}[(\mathcal{E}_{k+1} - \mathbb{E}[\mathcal{E}_{k+1} | \mathcal{F}_k])^2 | \mathcal{F}_k] \quad (\text{D.19})$$

1868

1869 From Lemma D.1 and inequality $(x + y + z)^2 \leq 3(x^2 + y^2 + z^2)$,

1870
$$(\mathcal{E}_{k+1} - \mathbb{E}[\mathcal{E}_{k+1} | \mathcal{F}_k])^2 \leq 3(A_k^2 \mathcal{E}_k \|\xi_{k+1}\|^2 + B_k^2 \|\xi_{k+1}\|^4 + C_k^2 \mathcal{E}_k^2) \quad (\text{D.20})$$

1871

1872 Since A_k, B_k, C_k and \mathcal{E}_k are all measurable with respect to the σ -algebra \mathcal{F}_k . Using assumptions
1873 (A2–A4) yields

1874
$$\mathbb{E}[\|\xi_{k+1}\|^2 | \mathcal{F}_k] \leq \sigma^2 \|\nabla f(x_{k+1})\|^2 \leq 2L\sigma^2 c_1 \mathcal{E}_k = S_k \mathcal{E}_k \quad (\text{D.21})$$

1875

1876 and

1877
$$\mathbb{E}[\|\xi_{k+1}\|^4 | \mathcal{F}_k] \leq \chi (\mathbb{E}[\|\xi_{k+1}\|^2 | \mathcal{F}_k])^2 \leq \chi S_k^2 \mathcal{E}_k^2 \quad (\text{D.22})$$

1878

1879 Taking $\mathbb{E}[\cdot | \mathcal{F}_k]$ in the previous inequality gives

1880
$$\text{Var}(\mathcal{E}_{k+1} | \mathcal{F}_k) \leq 3(A_k^2 S_k + \chi B_k^2 S_k^2 + C_k^2) \mathcal{E}_k^2 \quad (\text{D.23})$$

1881

□

1882 **Theorem D.1** (Geometric variance decay). *Assume the drift inequality (from the expectation analysis)*

1883
$$\mathbb{E}[\mathcal{E}_{k+1} | \mathcal{F}_k] \leq q \mathcal{E}_k \quad \text{for some } q \in (0, 1), \quad (\text{D.24})$$

1884

1885 and assumptions (A2)–(A4) hold. Let $K_{2,k}$ be given in Proposition D.1 and suppose $K_2 := \sup_k K_{2,k} < 1 - q^2$ satisfied. Then with $\theta := q^2 + K_2 \in (0, 1)$, for all $k \geq 0$, given initial
1886 \mathcal{E}_0 ,

1887
$$\text{Var}(\mathcal{E}_{k+1}) \leq \mathcal{E}_0^2 \theta^{k+1}$$

1888

1890 *Proof.* By the law of total variance and Proposition D.1,

$$1892 \text{Var}(\mathcal{E}_{k+1}) = \mathbb{E}[\text{Var}(\mathcal{E}_{k+1} | \mathcal{F}_k)] + \text{Var}(\mathbb{E}[\mathcal{E}_{k+1} | \mathcal{F}_k]) \leq K_2 \mathbb{E}[\mathcal{E}_k^2] + q^2 \text{Var}(\mathcal{E}_k). \quad (\text{D.25})$$

1893 Since $\mathbb{E}[\mathcal{E}_k^2] = \text{Var}(\mathcal{E}_k) + (\mathbb{E}[\mathcal{E}_k])^2$ and (Eq.(D.24)), we get

$$1895 \text{Var}(\mathcal{E}_{k+1}) \leq (K_2 + q^2) \text{Var}(\mathcal{E}_k) + K_2 (\mathbb{E}[\mathcal{E}_k])^2 \leq (K_2 + q^2) \text{Var}(\mathcal{E}_k) + K_2 (\mathbb{E}[\mathcal{E}_0])^2 q^{2k} \quad (\text{D.26})$$

1896 Solving this linear recursion yields

$$1899 \text{Var}(\mathcal{E}_{k+1}) \leq (K_2 + q^2)^{k+1} \text{Var}(\mathcal{E}_0) + K_2 (\mathbb{E}[\mathcal{E}_0])^2 \sum_{j=0}^k (K_2 + q^2)^{k-j} q^{2j} \leq (K_2 + q^2)^{k+1} (\text{Var}(\mathcal{E}_0) + (\mathbb{E}[\mathcal{E}_0])^2) \quad (\text{D.27})$$

1902 Since \mathcal{E}_0 is given by the initial point $x_0 = v_0$, it is a constant, then $\text{Var}(\mathcal{E}_0) = 0$ and $\mathbb{E}[\mathcal{E}_0] = \mathcal{E}_0$. \square

1904 **Corollary D.1** (Upper bound of $K_{2,k}$ in strongly convex setting). Define $\kappa = \frac{L}{\mu}$ is the condition
1905 number of f . Under the setting of Theorem B.1-2.1 and Assumptions (A1)-(A4), with $K_{2,k} =$
1906 $3(A_k^2 S_k + \chi B_k^2 S_k^2 + C_k^2)$ defined above, we have the explicit upper bound

1907 (1) For SHANG,

$$1909 K_2 \leq \begin{cases} 12a_0^2 \sigma^2 ((3 + \sigma^2)a_0 + 1)^2 + 12(\chi + 1)a_0^4 \sigma^4 & \alpha \kappa \leq 1 \\ 1910 12a_0^3 \sigma^2 \sqrt{\kappa} (1 + (3 + \sigma^2)a_0^{\frac{3}{2}} \kappa^{\frac{1}{4}})^2 + 12(\chi + 1)a_0^6 \sigma^4 \kappa & \alpha \kappa \geq 1 \end{cases}$$

1913 (2) For SHANG++,

$$1914 K_2 \leq \begin{cases} 12a_0^2 \sigma^2 ((3 + \sigma^2)a_0 + 1)^2 + 12(\chi + 1)a_0^4 \sigma^4, & \tilde{\alpha} \kappa \leq 1 \\ 1915 12a_0^3 \sigma^2 \sqrt{\kappa} (1 + (3 + \sigma^2)a_0^{3/2} \kappa^{1/4})^2 + 12(\chi + 1)a_0^6 \sigma^4 \kappa, & \tilde{\alpha} \kappa \geq 1 \end{cases}$$

1918 **Proof. Case 1: SHANG.** When $m = 0$, scheme (D.1) is algorithm SHANG. From Theorem B.1,
1919 when $\gamma = \mu$, $\alpha = \frac{1}{(1+\sigma^2)\sqrt{\kappa}}$ and $\beta = \frac{(1+\sigma^2)\alpha}{\mu}$, we have

$$1921 \mathbb{E}[\mathcal{E}_{k+1} | \mathcal{F}_k] \leq (1 + \alpha)^{-1} \mathcal{E}_k = q \mathcal{E}_k \quad (\text{D.28})$$

1922 and

$$\begin{aligned} 1923 A &= A_k = \frac{\alpha^2}{\mu} \left(1 + \sigma^2 + (1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right) \sqrt{2Lc_1} + \frac{\alpha}{1 + \alpha} c_2 \\ 1924 B &= B_k = \frac{\alpha^2}{2\mu} \left((1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right) \\ 1925 C &= C_k = \frac{\alpha^2}{\mu} \left((1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right) L \sigma^2 c_1 \\ 1926 S &= S_k = 2L \sigma^2 c_1 \end{aligned}$$

1927 where $c_1 = \max\{\frac{1}{1+\alpha}, \frac{\alpha}{1+\alpha} \kappa\}$ and $c_2 = \frac{1+\alpha+\alpha^2}{(1+\alpha)^2} \sqrt{\frac{2}{\mu}}$.

1928 (1): Assume $\alpha \kappa \leq 1$, i.e., $\kappa \leq (1 + \sigma^2)^2$, so that $c_1 = \frac{1}{1+\alpha}$.

1929 Since $c_1 = \frac{1}{1+\alpha}$ and $\alpha^2 \kappa = \frac{1}{(1+\sigma^2)^2} \leq 1$, we bound each term in K_2 .

1930 For the $B^2 S^2$ term, using $B = \frac{\alpha^2}{2\mu} \left((1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right)$,

$$\begin{aligned} 1931 B^2 S^2 &= \left[\frac{\alpha^2}{2\mu} \left((1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right) \right]^2 \cdot (2\mu \kappa \sigma^2 c_1)^2 \\ 1932 &= \alpha^4 \kappa^2 \sigma^4 c_1^2 \left((1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right)^2 \leq 4a_0^4 \sigma^4, \end{aligned} \quad (\text{D.29})$$

1933 where we used $c_1 \leq 1$ and $\alpha^4 \kappa^2 = \frac{1}{(1+\sigma^2)^4}$. We denote $a_0 = \frac{1}{1+\sigma^2}$. Hence $3\chi B^2 S^2 \leq 12\chi a_0^4 \sigma^4$.

1944 For the C^2 term, note $C = 2BLc_1\sigma^2$ implies $C^2 = B^2S^2$. Hence
 1945

$$1946 \quad C^2 \leq 4a_0^4\sigma^4, \quad (D.30)$$

1947 so $3C^2 \leq 12a_0^4\sigma^4$.
 1948

1949 For the A^2S term, splitting $A = A_1 + A_2$ with

$$1950 \quad A_1 := \frac{\alpha^2}{\mu} \left((1 + \sigma^2) + (1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right) \sqrt{2Lc_1}, \quad A_2 := \frac{\alpha}{1 + \alpha} c_2,$$

1953 For A_2 , since $c_2 = \frac{1+\alpha+\alpha^2}{(1+\alpha)^2} \sqrt{2/\mu} \leq \sqrt{2/\mu}$,

$$1955 \quad A_2^2 S = \frac{\alpha^2}{(1 + \alpha)^2} c_2^2 \cdot 2\mu\kappa\sigma^2 c_1 \leq 4\kappa\sigma^2 c_1 \cdot \frac{\alpha^2}{(1 + \alpha)^2} = 4\sigma^2 \cdot \frac{\alpha^2 \kappa}{(1 + \alpha)^3} \leq 4a_0^2\sigma^2 \quad (D.31)$$

1957 For A_1 , using $c_1 = \frac{1}{1+\alpha}$ and $\alpha^2\kappa = a_0^2 \leq 1$,

$$1959 \quad A_1^2 S = \left[\frac{\alpha^2}{\mu} \sqrt{2Lc_1} \right]^2 \left((1 + \sigma^2) + (1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right)^2 \cdot 2L\sigma^2 c_1 \\ 1960 \quad = 4\alpha^4 \kappa^2 c_1^2 \sigma^2 \left((1 + \sigma^2)^2 + 1 + \frac{1}{(1 + \alpha)^2} \right)^2 \leq 4a_0^4 \sigma^2 \cdot (3 + \sigma^2)^2 = 4(3 + \sigma^2)^2 a_0^4 \sigma^2 \quad (D.32)$$

1964 Therefore, using $(x + y)^2 \leq (1 + \tau)x^2 + (1 + 1/\tau)y^2$ with $\tau = \sqrt{A_2^2 S / A_1^2 S}$:

$$1966 \quad 3A^2 S \leq 3(\sqrt{A_1^2 S} + \sqrt{A_2^2 S})^2 \leq 3(2(3 + \sigma^2)a_0^2\sigma + 2a_0\sigma)^2 = 12a_0^2\sigma^2((3 + \sigma^2)a_0 + 1)^2 \quad (D.33)$$

1968 Combining (D.29)-(D.33), we have

$$1969 \quad K_2 \leq 12a_0^2\sigma^2((3 + \sigma^2)a_0 + 1)^2 + 12(\chi + 1)a_0^4\sigma^4 \quad (D.34)$$

1971 **(2): Assume** $\alpha\kappa \geq 1$, i.e., $\kappa \geq (1 + \sigma^2)^2$, **so that** $c_1 = \frac{\alpha}{1 + \alpha}\kappa$.
 1972

1973 For the B^2S^2 and C^2 terms. We have

$$1974 \quad B^2 S^2 = \frac{\alpha^4 \kappa^2 \sigma^4}{(1 + \alpha)^2} \left((1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right)^2 \leq \frac{\alpha^6 \kappa^4 \sigma^4}{(1 + \alpha)^2} \cdot 4 \leq 4a_0^6 \sigma^4 \kappa \quad (D.35)$$

1976 Hence

$$1977 \quad 3(\chi B^2 S^2 + C^2) \leq 12(\chi + 1)a_0^6 \sigma^4 \kappa \quad (D.36)$$

1979 For the A^2S term,

$$1981 \quad A_2^2 S = \frac{\alpha^2}{(1 + \alpha)^2} c_2^2 \cdot 2L\sigma^2 c_1 \leq \frac{\alpha^2}{(1 + \alpha)^2} \cdot \frac{2}{\mu} \cdot 2\mu\kappa\sigma^2 c_1 = 4\sigma^2 \frac{\alpha^3}{(1 + \alpha)^3} \kappa^2 \leq 4a_0^3 \sigma^2 \sqrt{\kappa} \quad (D.37)$$

1983 Moreover,

$$1985 \quad A_1^2 S = \frac{4\alpha^6 \sigma^2 \kappa^4}{(1 + \alpha)^2} \left((1 + \sigma^2) + (1 + \sigma^2)^2 \alpha^2 \kappa + \frac{1}{(1 + \alpha)^2} \right)^2 \leq \frac{4\alpha^6 \sigma^2 \kappa^4}{(1 + \alpha)^2} \cdot (3 + \sigma^2)^2 \leq 4(3 + \sigma^2)^2 a_0^6 \sigma^2 \kappa. \quad (D.38)$$

1987 Combining (D.37) and (D.38),

$$1989 \quad 3A^2 S \leq 3(\sqrt{A_1^2 S} + \sqrt{A_2^2 S})^2 \leq 12a_0^3 \sigma^2 \sqrt{\kappa} (1 + (3 + \sigma^2)a_0^{\frac{3}{2}} \kappa^{\frac{1}{4}})^2 \quad (D.39)$$

1991 Adding (D.35) - (D.39) yields

$$1993 \quad K_2 \leq 12a_0^2 \sigma^2 \sqrt{\kappa} (1 + (3 + \sigma^2)a_0^{\frac{3}{2}} \kappa^{\frac{1}{4}})^2 + 12(\chi + 1)a_0^6 \sigma^4 \kappa \quad (D.40)$$

1994 **Case 2: SHANG++.** When $m = 1$, scheme (D.1) is algorithm SHANG++. From Theorem 2.1, when

1995 $\gamma = \mu$, $\tilde{\alpha} = \frac{1}{(1 + \sigma^2)\sqrt{\kappa}}$, $\alpha = \frac{\tilde{\alpha}}{1 - \tilde{\alpha}}$ and $\beta = \frac{(1 + \sigma^2)\tilde{\alpha}}{\mu}$, we have

$$1997 \quad \mathbb{E}[\mathcal{E}_{k+1} \mid \mathcal{F}_k] \leq (1 + \alpha)^{-1} \mathcal{E}_k = q\mathcal{E}_k \quad (D.41)$$

1998 and

$$A = A_k = \frac{\tilde{\alpha}^2}{\mu} (1 + \sigma^2 + (1 + \sigma^2)^2 \tilde{\alpha}^2 \kappa + 1) \sqrt{2Lc_1} + \tilde{\alpha}^2 c_2$$

$$B = B_k = \frac{\tilde{\alpha}^2}{2\mu} ((1 + \sigma^2)^2 \tilde{\alpha}^2 \kappa + 1)$$

$$C = C_k = \tilde{\alpha} c_1 \sigma^2 \kappa (\tilde{\alpha}^2 (1 + \sigma^2)^2 \kappa + 1)$$

$$S = S_k = 2L\sigma^2 c_1$$

2007 where $c_1 = \max\{\frac{1}{1+\tilde{\alpha}}, \frac{\tilde{\alpha}}{1+\tilde{\alpha}} \kappa\}$ and $c_2 = \max\{\frac{\tilde{\alpha}}{1+\tilde{\alpha}} \sqrt{\frac{2}{\mu}}, (\frac{1}{1+\tilde{\alpha}} + \frac{\tilde{\alpha}}{1+\tilde{\alpha}} \frac{\kappa}{1+\tilde{\alpha}}) \sqrt{\frac{2}{\mu}}\}$.

2009 Similar to the derivation of SHANG, we have

2010 (1): **Case** $\tilde{\alpha}\kappa \leq 1$. In this case $\kappa \leq (1 + \sigma^2)^2$ and hence $c_1 = \frac{1}{1+\tilde{\alpha}} \leq 1$.

2012
$$K_2 \leq 12a_0^2\sigma^2((3 + \sigma^2)a_0 + 1)^2 + 12(\chi + 1)a_0^4\sigma^4 \quad (\text{D.42})$$

2014 (2): **Case** $\tilde{\alpha}\kappa \geq 1$. In this case $\kappa \geq (1 + \sigma^2)^2$ and $c_1 = \frac{\tilde{\alpha}}{1+\tilde{\alpha}} \kappa$.

2016
$$K_2 \leq 12a_0^3\sigma^2\sqrt{\kappa}(1 + (3 + \sigma^2)a_0^{3/2}\kappa^{1/4})^2 + 12(\chi + 1)a_0^6\sigma^4\kappa \quad (\text{D.43})$$

2018 \square 2020 **When does variance decay hold?** By Theorem D.1, geometric variance decay

2022
$$\text{Var}(\mathcal{E}_k) \leq \mathcal{E}_0^2(q^2 + K_2)^k$$

2024 holds whenever $K_2 < 1 - q^2$, where $q = (1 + \alpha)^{-1}$. The bounds in Corollary D.1 make this
2025 condition directly checkable as a function of the condition number $\kappa = L/\mu$, the noise level σ^2 via
2026 $a_0 = (1 + \sigma^2)^{-1}$, and the stepsize α :2027 • In the *low-condition* regime (the branch with smaller c_1), K_2 scales like

2029
$$K_2 = \mathcal{O}(a_0^2\sigma^2) + \mathcal{O}(a_0^4\sigma^4)$$

2031 for both SHANG and SHANG++, whereas $1 - q^2 = \Theta(\alpha) = \Theta(a_0/\sqrt{\kappa})$.2032 • In the *high-condition* regime (the branch with larger c_1), the leading term is

2034
$$K_2 = \mathcal{O}(a_0^3\sigma^2\sqrt{\kappa}) + \mathcal{O}(a_0^6\sigma^4\kappa),$$

2035 while we still have $1 - q^2 = \Theta(a_0/\sqrt{\kappa})$. The same scaling holds for both SHANG and
2036 SHANG++; only the constant factors differ mildly.2038 Thus, for fixed κ , smaller noise (larger a_0) and moderate stepsizes make $K_2 < 1 - q^2$ easier to
2039 satisfy; for large κ , the $\mathcal{O}(\sqrt{\kappa})$ factor in the leading term of K_2 becomes the main bottleneck.2041 **How to enforce the condition in practice.** Two standard knobs guarantee $K_2 < 1 - q^2$ without fine
2042 tuning:

1. *Stepsize damping.* Replace α by $\beta\alpha$ with $\beta \in (0, 1]$. Then the leading term in K_2 scales like $\mathcal{O}(\beta^3)$, whereas $1 - q^2$ scales like $\mathcal{O}(\beta)$ (for both SHANG and SHANG++); hence there exists $\beta_0 = \beta_0(\kappa, \sigma^2, \chi) \in (0, 1]$ such that $K_2 < 1 - q^2$ for all $\beta \leq \beta_0$.
2. *Mini-batching or averaging multiple independent estimates.* Replacing σ^2 by σ^2/M reduces the leading term in K_2 by a factor $1/M$ while leaving $1 - q^2$ essentially unchanged; the explicit constants in the corollary yield simple batch-size thresholds (e.g., $M \gtrsim \sigma^2\sqrt{\kappa}$ up to the displayed constants). Averaging M independent estimates incurs almost no extra computational cost compared with performing M successive iterations using a single estimate.

2052 E SNAG AS A DISCRETIZATION OF THE HNAG FLOW

2054 Under the multiplicative noise assumption, one of the most recent first-order stochastic methods de-
 2055 signed to overcome the divergence of NAG and accelerate SGD is the Stochastic Nesterov Accelerated
 2056 Gradient (SNAG) method (Nesterov, 2012) (Hermant et al., 2025). Its iteration reads:

$$2058 \quad \begin{aligned} x_{k+1} &= \hat{\alpha}_{k+1} x_k + (1 - \hat{\alpha}_{k+1}) v_{k+1} - \hat{\alpha}_{k+1} s g(x_k), \\ 2059 \quad v_{k+1} &= \hat{\beta} v_k + (1 - \hat{\beta}) x_k - \eta_k g(x_k), \end{aligned} \quad (E.1)$$

2061 where $g(x_k)$ is a stochastic gradient estimator, and $\hat{\alpha}_{k+1}$, s , $\hat{\beta}$, and η_k are parameters.

2062 By reparameterizing as

$$2064 \quad \hat{\alpha}_{k+1} = \frac{1}{1 + \alpha_{k+1}}, \quad s = \alpha_{k+1} \beta_{k+1}, \quad \hat{\beta} = \frac{1}{1 + \frac{\alpha_{k+1} \mu}{\gamma_{k+1}}}, \quad \eta_k = \frac{1}{1 + \frac{\alpha_{k+1} \mu}{\gamma_{k+1}}} \frac{\alpha_{k+1}}{\gamma_{k+1}}, \quad (E.2)$$

2067 the SNAG scheme (E.1) becomes equivalent to the following update:

$$2069 \quad \begin{aligned} \frac{x_{k+1} - x_k}{\alpha_{k+1}} &= v_{k+1} - x_{k+1} - \beta_{k+1} g(x_k), \\ 2070 \quad \frac{v_{k+1} - v_k}{\alpha_{k+1}} &= \frac{\mu}{\gamma_{k+1}} (x_k - v_{k+1}) - \frac{1}{\gamma_{k+1}} g(x_k), \\ 2071 \quad \frac{\gamma_{k+1} - \gamma_k}{\alpha_{k+1}} &\leq \mu - \gamma_{k+1}. \end{aligned} \quad (E.3)$$

2076 Hence, SNAG can be interpreted as a new discretization of the HNAG flow (2.3).

2078 **Parameter choices.** For convex objectives $f \in \mathcal{S}_{0,L}^{1,1}$, Hermant et al. (2025) shows that the optimal
 2079 parameters are

$$2081 \quad s = \frac{1}{L(1 + \sigma^2)}, \quad \eta_k = \frac{k+1}{2L(1 + \sigma^2)^2}, \quad \hat{\beta} = 1, \quad \hat{\alpha}_k = \frac{\frac{k^2}{k+1}}{2 + \frac{k^2}{k+1}}.$$

2084 This leads to

$$2086 \quad \alpha_{k+1} = \frac{2}{k+1 - \frac{k+1}{k+2}}, \quad \alpha_{k+1} \beta_{k+1} = \frac{1}{L(1 + \sigma^2)}, \quad \gamma_{k+1} = \alpha_{k+1} \frac{2}{k+1} (1 + \sigma^2)^2 L.$$

2089 For strongly convex objectives $f \in \mathcal{S}_{\mu,L}$, the optimal parameters become

$$2091 \quad s = \frac{1}{L(1 + \sigma^2)}, \quad \eta_k = \eta = \frac{1}{(1 + \sigma^2)\sqrt{\mu L}}, \quad \hat{\beta} = 1 - \frac{1}{1 + \sigma^2} \sqrt{\frac{\mu}{L}}, \quad \hat{\alpha}_k = \hat{\alpha} = \frac{1}{1 + \frac{1}{1 + \sigma^2} \sqrt{\frac{\mu}{L}}}.$$

2094 Consequently,

$$2095 \quad \alpha = \frac{1}{1 + \sigma^2} \sqrt{\frac{\mu}{L}}, \quad \alpha \beta = \frac{1}{L(1 + \sigma^2)}, \quad \gamma = \mu(1 - \alpha).$$

2098 The condition $\gamma = \mu(1 - \alpha)$ indicates that, in the strongly convex case, the update for v is more
 2099 accurately viewed as applying a rescaled step size $\tilde{\alpha} = \frac{\alpha}{1 - \alpha}$ to the v -dynamics of the HNAG flow:

$$2101 \quad \frac{v_{k+1} - v_k}{\tilde{\alpha}} = x_k - v_{k+1} - \frac{1}{\mu} g(x_k).$$

2104 In summary, the above parameter rearrangements confirm that the optimal choices in SNAG are
 2105 consistent with those obtained from various discretization schemes of the HNAG flow, see Chen &
 Luo (2021) for details.

2106 **F RELATED WORK**
2107

2108 Accelerated variants of SGD have been extensively studied. A natural idea is to combine SGD with
2109 first-order momentum methods, such as the Heavy-Ball (HB) and Nesterov’s Accelerated Gradient
2110 (NAG) algorithms, in order to achieve faster convergence through momentum. However, in stochastic
2111 settings, gradient noise often weakens or even destroys the acceleration effect. Kidambi et al. (2018);
2112 Sutskever et al. (2013); Yuan et al. (2016); Nemirovski et al. (2009); Ghadimi & Lan (2012) have
2113 shown that both HB and NAG fail to accelerate SGD in expectation under gradient noise. In practice,
2114 the apparent superiority of momentum methods largely stems from large mini-batching, which reduces
2115 the variance of stochastic gradients and brings the stochastic dynamics closer to the deterministic
2116 regime.

2117 To address this, many efforts have been devoted to developing truly accelerated first order stochastic
2118 momentum methods. Starting from (Jain et al., 2018), a series of accelerated stochastic algorithms
2119 have been proposed (Liu & Belkin, 2020; Vaswani et al., 2019; Even et al., 2021; Bollapragada
2120 et al., 2022; Laborde & Oberman, 2020; Gupta et al., 2024; Hermant et al., 2025), aiming to preserve
2121 acceleration while maintaining robustness under stochastic noise. These methods introduce various
2122 variance-control mechanisms, adaptive damping, or noise-aware correction terms to balance efficiency
2123 and stability.

2124 Noise modeling is essential for understanding and improving stochastic optimization. While early
2125 studies assume additive noise with bounded variance, empirical studies show that SGD noise is
2126 anisotropic (concentrated in a low-rank subspace) and state-dependent in deep neural networks
2127 (Wu et al., 2022a), and often exhibits heavy-tailed non-Gaussian fluctuations (Zhao et al., 2024;
2128 Hodgkinson & Mahoney, 2021; Zhou et al., 2020). Additive noise with bounded variance often
2129 fails in deep learning, where gradient noise may scale with the signal norm or exhibit low-rank and
2130 heavy-tailed characteristics (Wojtowytsh, 2023; Wu et al., 2022b). In particular, the noise variance
2131 scales with the loss or gradient norm while covariance spectra are highly skewed, with only a few
2132 large eigen-directions. These non-classical properties observed in practice as multiplicative (Wu
2133 et al., 2019; Gupta et al., 2024; Hodgkinson & Mahoney, 2021), low-rank/degenerate(Damian et al.,
2134 2021; Li et al., 2022; Bassily et al., 2018; Wojtowytsh, 2021; 2023), and heavy-tailed gradient noise.
2135 These insights motivate the design of optimizers that are resilient to complex, non-Gaussian noise
2136 structures.

2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159