
Estimating the Generalization in Deep Neural
Networks via Sparsity

Yang Zhao Hao Zhang Xiuyuan Hu
Department of Electronic Engineering

Tsinghua University
{zhao-yang, haozhang}@tsinghua.edu.cn, huxy22@mails.tsinghua.edu.cn

Abstract

Generalization is the key capability for deep neural networks (DNNs). However,
it is challenging to give a reliable measure of the generalization ability of a DNN
via only its nature. In this paper, we propose a novel method for estimating the
generalization gap based on network sparsity. Two key sparsity quantities are
extracted from the training results alone, which could present close relationship
with model generalization. Then a simple linear model involving two key quantities
are constructed to give accurate estimation of the generalization gap. By training
DNNs with a wide range of generalization gap on popular datasets, we show that
our key quantities and linear model could be efficient tools for estimating the
generalization gap of DNNs.

1 Introduction

Deep neural networks (DNNs) have achieved great success in many real-world tasks [17, 33, 12, 31,
30], owing to their extraordinary generalization ability on unseen data by training with finite samples,
even though they could be heavily overparameterized compared to the number of training samples.
But meanwhile, due to their excessive capacity, DNNs are demonstrated to easily fit training data
with arbitrary random labels or even pure noise, obviously without generalizing [38]. So, a critical
question raises: given a DNN, how could we estimate its generalization ability via only its nature?

Many works strive to unveil which attributes would have an underlying impact on the generalization
or emerge in a generalized DNN. This may generally include the complexity or capacity, the stability
or the robustness, and the sparsity of DNNs. Particularly, some of these works try to evaluate the
generalization bounds that is as tight as possible while also hoping to demystify the mechanism of
generalization. Despite somehow providing potential solutions on the mentioned problem, currently
there remains barriers between the generalization bounds and how they could give precise estimation
of the generalization in practice. Further, margin-based works leverage the prior knowledge to solve
this problem, but due to the unbounded scales, they fail to give acceptable results at times.

In this paper, we quantitatively investigate the network generalization from the perspective of a
particular nature of DNNs, i.e., the sparsity of network units. Two key quantities with close relation
with both DNN sparsity and generalization are extracted from the training results. They have strict
bounds within an appropriate range to ensure the accurate estimation of network generalization. A
practical linear model for estimating the generalization gap of DNNs is built by the two proposed
quantities. We empirically found that units in DNNs trained on real data exhibit decreasing sparsity
as the fraction of corrupted labels increases. By investigating several DNN models with a wide
range of generalization gap, we found that both of the two proposed quantities are highly correlated
with generalization gap in an approximately linear manner. This ensures satisfactory results when
performing estimation on practical networks using training samples and appropriate linear model.

ATTRIB: Workshop on Attributing Model Behavior at Scale at NeurIPS 2023.

With extensive experiments on various datasets, we show that our linear model could give a reliable
estimation of the generalization gap in DNNs and better results compared to the margin-based method.

2 Related Works

For generalization estimation in DNNs, a conventional line is that generalization should be bounded
based on certain measurements of the model complexity or capacity of DNNs where VC dimension
[4, 21] and Rademacher complexity [6, 29, 36] are typically used. However, this approach appears
unreasonable as [38] show that DNNs are able to fit any possible labels, regardless of whether or not
regularization techniques are employed.

Afterward, bounding the generalization based on stability or robustness seem to have received more
attention. As for stability, it investigates the change of outputs when perturbing inputs or models.
Generally, for keeping the network stable, generalized DNNs are expected to stay in the flat landscape
neighboring the minima [18, 20, 16, 15, 40]. However, it is still controversial in regards to how to
appropriately gauge the "flatness" of a minimum. [27] argue that the definition provided by [20]
could not well capture the generalization behavior. In addition, [11] point that sharp minima may
also leads to the generalization when using different definitions of flatness. In contrast to stability,
robustness investigates the variation of outputs with respect to the input space. One typical evaluation
of robustness is the margin of the predictions, where generalized DNNs are supposed to have large
margin to ensure the prediction robustness [34, 13]. In particular, [5] use the margin distribution of
the outputs and normalized it with the spectral norm. Based on this margin distribution, [19] further
use the margin distribution of hidden layers to give an estimation of generalization. But meanwhile,
[3] argue that methods in [5, 28] could not yet give bounds of sample complexity better than naive
parameter counting.

Sparsity of the network unit is considered as an important sign that units present highly specialized
[41] and can perceive the intrinsic natural features to provide basis for generalization on unseen data.
This is particularly significant for CNN units since they are found to be conceptually aligned with our
vision cognition [9, 14]. Trained units can present specific natural concepts that gives disentangled
representations for different classes [8, 9]. [41] show that for CNNs, only several conceptual related
units are necessary for each category, and [26, 22] claim that generalization should not rely on the
single direction of the units. Based on empirical observations, sparsity over networks is found to be
very helpful for generalization [7, 23, 24]. So methods such as dropout regularization are proposed
for inducing the DNNs to become sparse during training [35, 32, 37, 25, 1].

3 Method

DNNs are bio-inspired artificial neural networks that generally consist of multiple layers where each
layer is a collection of certain amount of units. Similar to neuroscience, a unit in DNNs1 generally
behaves as a perceptive node, and makes responses to the inputs. Given an input I , the unit U is
expected to present specific function preference and would be highly responded if it could capture
the feature of this input, f : I → U .

Consider a classification problem with a training dataset D including N classes {Dk}Nk=1, D =
D1 ∪ · · · ∪DN . To obtain excellent generalization on unseen data, units are trained to be functionally
specialized to perceive diverse intrinsic natural features hidden in a dataset. For a single class, only a
small group of units, which are function-correlated to the common features of this class, would be
highly active. Therefore, this results in the sparsity of units. On the contrary, due to the its excessive
capacity, it is possible for DNN to just "memorize" each sample in the class and then simply "mark"
it as belonging to this class. In this situation, much more units are needed to be active since they
could not give true perception in regards to class-specific intrinsic features. In this way, we would
begin with identifying the group of units which are highly active on samples in the specific class Dj .

3.1 Cumulative Unit Ablation

In general, unit ablation operation is supposed to be able to make connections between DNN sparsity
and generalization. Single unit ablation individually checks each unit that would cause a performance

1For CNNs, it refers to the activated feature map outputted by the corresponding convolutional filter

2

well generalized DNN poor generalized DNN

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n
0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g

 a
c
c
u
ra

c
y

number of units ablated n

chance

A B

Figure 1: (A) Example of E(n,Dj) (blue) and Er(n,Dj) (green), where the two markers represent
for the two turning points n0(Dj) and n0(Dj). (B) The turning points and the enclosed areas (painted
in gray) regarding DNNs with well generalization (left) and poor generalization (right).

deterioration when being removed2 from the DNN. However, this tells nearly no information on the
collaborative effect of a group of units. Here, we introduce the cumulative unit ablation for studying
the group effect of units to the given network model. In cumulative unit ablation, units at a given
layer are first arranged into a listR which is ranked by the quantity of certain attribute of a unit,

R =< h(U0), h(U1), · · · , h(Ui) > (1)

where < · > is the sorted list and h(Ui) denotes a given attribute of the unit Ui, such as L1-norm
[41], class selectivity [26], topological entropy [39] etc. Since we are focusing on the group of units
that are highly active to Dj , we use the L1-norm value of the unit as the target attribute h(Ui) in the
cumulative ablation, i.e. h(Ui) =

∑
x,y Ui(x, y). In this way, units in the listR would be ordered

based on its L1-norm value h(Ui).

Then after ranking, units are removed progressively from the head unit to the end unit in this ordered
listR, and in the meantime, the evaluation of performance is recorded as a characterization of the
growing effect of this attribute to the DNN.

During our implementation, we would perform the cumulative unit ablation on Dj twice, separately
according to two different ordered lists. One isR, sorted by the descending rank of h(Ui), and the
other one isRr, sorted by the ascending rank of h(Ui). Correspondingly, the two evolution curves of
network accuracy with respect to the number of units being removed (notated as n) could be recorded,
where E(n,Dj) denotes the accuracy evolution on the ascending rank and Er(n,Dj) denotes the
other. Fig.1A illustrates typically E(n,Dj) and Er(n,Dj).

Notably, compared to units at the shallow layers, units in the deeper layers are considered to perceive
"high-level" class-related features [9] and give more representative of the specific class. Units in
deeper layers tend to be more sparse, which means that cumulative unit ablation would present more
significant effect. So practical implementations could focus on the deeper layers to give better results.

3.2 Turning Points

With the ordered list in descending rankR on Dj , highly active units are removed at the beginning of
the evolution process. So the accuracy experiences a continuous decrease since the neural network
gradually lose its function on extracting the features in this class. Notably, the accuracy may reach
below chance level accchance after some critical units are removed and then remain this situation with
little variation until all units are removed. We mark the minimum number of removed units causing a
complete damage to the function for the DNN on the dataset Dj as the turning point of E(n,Dj),

n0(Dj) = inf{n|E(n,Dj) ≤ accchance} (2)

Apparently, if n0(Dj) is large, it means that the majority of units have positive contribution to Dj , so
it requires the deactivation of more critical units to completely lose response to Dj .

On the contrary, with the ordered list in ascending rankRr, units that are highly active toDj would be
preserved at the beginning and removed near the end of the evolution process. So the corresponding

2Removing or ablating a unit is generally implemented via forcing the elements in this unit to be all
deactivated. For example, for ReLU activation, a unit is assigned to all zeros if being removed

3

Er(n,Dj) generally experiences a continual slight increase at the early stage of evolution, and this
would keep in the most time during the evolution until the accuracy reaches at the maximum. After
this point, the accuracy would drop abruptly to below chance level. Similarly, we mark the maximal
point as the turning point of Er(n,Dj),

nr0(Dj) = argmax
n

Er(n,Dj) (3)

Notably, M −nr0(Dj) represents the minimum number of units being activated jointly that could give
the most performance. If nr0(Dj) is large, it means that for Dj , most units are unrelated in function
and activating only a small number of critical units would be able to provide the best effect.

3.3 Key Quantities and Estimation of Generalization Gap in DNNs

From previous demonstration, units that are highly active to Dj should be more sparse for DNNs
with better generalization. This means that performance would be more sensitive to the removals of
these "important" units during ablation for well generalized DNNs. In other words, both E(n,Dj)
and Er(n,Dj) are more steep than those in "memorized" networks, as shown in Fig.1B.

For DNNs with better generalization, it is expected that n0(Dj) should be smaller while nr0(Dj)
should be larger. So we could simply combine the two values,

ζ(Dj) =
n0(Dj) +M − nr0(Dj)

2M
(4)

where ζ(Dj) ∈ [0, 1]. The smaller the value is, the sparser the critical units are in the DNN on the
classification of Dj . This is one of the key quantity derived from cumulative unit ablation.

On the other hand, impacted by the two turning points, the area enclosed by the two curves E(n,Dj)
and Er(n,Dj) should be also valuable. In addition to ζ(Dj), we have another key quantity,

κ(Dj) =
1

M

M∑
n=0

|Er(n,Dj)− E(n,Dj)| (5)

Here, the coefficient 1
M is used to adjust the area value to fall in the range from 0 to 1. Opposite to

ζ(Dj), the larger κ(Dj) indicates the critical units are sparser in the DNN on the classification of Dj .

For dataset {Dk}Nk=1 of all classes, we could simply use the average to make fusion for the two
characterization on various data classes to achieve the ensemble effect,

φ(D) = 1

N

N∑
j=1

φ(Dj), φ ∈ {ζ, κ} (6)

The ζ(D) and κ(D) are in high correlation to the generalization of DNN. In fact, they could be
utilized to estimate the generalization ability via a simple linear model,

ĝ(D) = a · ζ(D) + b · κ(D) + c (7)
where a, b and c are the parameters of this linear model. During our investigations, we find a simple
linear model is sufficient in this situation since the two quantities and the generalization present a
highly negative linear relationship. It should be noted that for clarity, in the following sections we
will use the word "model" to refer to this linear model that predicts the generalization gap of DNNs,
and use the word "network" to refer to trained neural network models.

4 Experimental Results

In this section, we are going to implement our method on the classification task of CIFAR100 by
using VGG16 architecture [33]. Additional results by using other network architectures and ImageNet
dataset [10] could be found in the Appendix section.

Experiment Setting For obtaining networks with a wide range of generalization gap, we randomly
corrupt the labels with certain percentage for each class in the dataset as [38]. Meanwhile, we also
use different training recipes to obtain the networks with diverse generalization gap, such as varying
the common regularizations like weight decay, batch normalization, dropout, etc. All the networks
are trained to reach at almost 1.0 accuracy on training set. We have trained 80 networks in total and
their generalization errors (accuracy on testing set) are ranged from 0.294 to 0.987.

4

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

corruption 0.0 corruption 0.2 corruption 0.4 corruption 0.6 corruption 0.8 corruption 1.0A

B

Figure 2: Results of networks trained via datasets with partially randomized labels. (A) The evolution
example curves of accuracy E(n,Dj) and Er(n,Dj) on a single class. (B) Scatter plot between the
two quantities ζ(D) and κ(D) across all the classes in the separate corrupted datasets.

Key quantities of networks trained with partially randomized labels. We calculate the two key
quantities of networks that are trained with exactly the same training strategy but on datasets with
different percentage of randomized labels.

Firstly, we perform the cumulative unit ablation for the networks on their training dataset. Fig.2A
shows the two evolution curves E(n,Dj) and Er(n,Dj) on the same class from the datasets sepa-
rately with 0, 0.2, 0.4, 0.6, 0.8, 1.0 fractions of randomized labels. In the figure, markers with a black
border denote the two turning points and the area enclosed by the two curves is painted with gray.
We could see that as the fraction of randomized labels goes higher, the first turning point n0(Dj)
gradually increase while the second turning point nr0(Dj) decrease. In addition to the two turning
points, the area becomes smaller as well.

Then, we calculate the two quantities ζ(D) and κ(D) for these networks on all the classes. Fig.2B
makes the scatter plot of the point pair (ζ(Dj), κ(Dj)) for all the 100 classes. According to previous
demonstration, for better generalization, ζ(D) should be smaller while κ(D) should be larger. This
makes that the quantity pair should locate around the top left corner of the scatter figure. As expected,
the point group moves from the top left regularly to right bottom corner as the fraction of label
corruption increases. This confirms that when networks are trained with partially randomized labels,
the two sparsity quantities could effectively indicate the generalization ability of these networks.

Estimating the generalization of trained networks. After the calculation of the two sparsity
quantities ζ(D) and κ(D) for all 80 the trained networks, we are going to estimate their generalization.

We begin with marking the quantity pair (ζ(D), κ(D)) of each network with a scatter plot, as shown
in Fig.3A. In this figure, the colors of points vary progressively from red to purple, which indicates
the true generalization gap of networks from small to large. As expected, the point of networks
with better generalization ability mostly lie in the top right corner of figure while these with poor
generalization ability lie in the bottom left corner. In the meantime, we could clearly find that the two
quantities ζ(D) and κ(D) are negatively correlated, but not in a linear manner.

Then, we gives two scatters plots in the Fig.3B, one for ζ(D) and generalization gap (left) and the
other one for κ(D) and generalization gap (right). We could see that as the generalization gap goes
higher, the ζ(D) increase while the κ(D) decrease. This confirms that both of the two quantities
could indeed provide efficient indication of the generalization ability of networks.

Next, we randomly split all the 80 trained networks into two sets by fractions of 0.9 and 0.1. The
set with 72 networks is used as the training networks to build the linear model for estimating the
generalization gap via Eq.7, and the other set with 8 networks is used as a testing networks to check
the effectiveness of this linear model after fitting. Clearly, the estimation here is a typical linear
regression problem and could simply be solved by using least square.

Fig.3C(1) illustrates the results of linear fitting, where y = x is the reference line for the perfect
fitting. We could see that the training points scattered closely to the reference line, showing that
the two key quantities and the generalization gap may be highly linearly correlated. The Pearson
correlation coefficient between the estimated generalization gaps and the true values of the training
networks is 0.979, confirming their linear relationship. For testing, the fitted linear model performs

5

A

C

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2940

0.3805

0.4670

0.5535

0.6400

0.7265

0.8130

0.8995

0.9860

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

generalization gap

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

generalization gap

0.00 0.01 0.02 0.03 0.04
0

10

20

30

40

c
o

u
n

t
SSR

B

D E

0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

 training networks

 testing networks

 line x = y

e
s
ti
m

a
te

d
 g

e
n

e
ra

liz
a

ti
o

n
 g

a
p

true generalization gap
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
 training networks

 testing networks

 line x = y

e
s
ti
m

a
te

d
 g

e
n

e
ra

liz
a

ti
o

n
 g

a
p

true generalization gap

Figure 3: (A) Scatter plot between the two quantities ζ(D) and κ(D). (B) Scatter plots of gener-
alization gap separately with respect to ζ(D) (left) and κ(D) (right). (C) Scatter plot between the
estimated generalization gap and the true generalization gap, where the blue points denote the training
networks and the red points denote testing networks. (D) Histogram of SSRs of the 100 repeated tests.
(E) Scatter plot between the true generalization gap and that estimated by margin-based method.

well on these networks in the testing set. In addition, we use the summation of squared residuals
(SSR) [2] as a yardstick for checking the predicting effect on testing networks. SSR is a conventional
measurement of the performance of fitted models and usually used for model selection. In our case, it
is 0.023, which is very small and indicates this model is ready to give excellent prediction in practice.

For checking the stability of estimation when using our method, we repeat the previous estimation
100 times and each time use a new splitted dataset but still with the same fraction. Fig.3D presents
the statistical results of RSS with respect to all the testing sets. For the 100 splits, all the RSSs keep
in a low value below 0.035. This verifies the overall validity of two quantities ζ(D) and κ(D) to be
indicators of generalization ability and the effectiveness of linear model for generalization estimation.

Comparison with margin-based estimation. Lastly, we give comparisons of our method with
margin-based method proposed in [19]. Typically, this method collects the margin distribution on a
given dataset and use key features of this distribution as arguments for fitting the generalization gap.

Here, we keep previous setups and the dataset being the same as used in Fig.3C. Fig.3E shows the
corresponding estimation results. We could see that although the margin based model could estimate
the generalization gap to some extent, it presents with worse linear correlation (Pearson correlation
coefficient is 0.75) than our method. When predicting the generalization gap of testing networks, it
presents a larger SSR, which is almost 0.5.

We suppose that two possible factors might lead to the errors via margin-based method. One is
that due to the non-linearity, margins in DNNs are actually intractable. Currently, the distance of a
sample to the margin is approximately acquired by using the first-order Taylor approximation [13],
which will bring error into the estimation. The second factor is that the calculated margins are not
bounded in scales. This may lead to that for different models, their margins can differ by orders of
magnitude considering the distinct training settings. In this way, the corresponding linear model
may be ill-conditioned. During our implementation, we found that for some cases (especially for the
networks trained with batch normalization), this problem becomes even worse.

5 Conclusion

We propose a method for reliably estimating the generalization ability of DNNs, where we use
specific-designed cumulative unit ablation to capture two key sparsity quantities. These quantities are
found strong linearly correlated with generalization ability, so a linear model is built for generalization
estimation. Extensive experiments show that our linear model can give accurate estimation in practice.

6

References
[1] Alessandro Achille and Stefano Soatto. On the emergence of invariance and disentangling in deep

representations. arXiv, abs/1706.01350, 2017.

[2] Thomas J Archdeacon. Correlation and regression analysis: a historian’s guide. Univ of Wisconsin Press,
1994.

[3] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep
nets via a compression approach. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 254–263. PMLR, 2018.

[4] Peter L Bartlett. The sample complexity of pattern classification with neural networks: the size of
the weights is more important than the size of the network. IEEE transactions on Information Theory,
44(2):525–536, 1998.

[5] Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 6240–6249, 2017.

[6] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[7] Brian Bartoldson, Ari S. Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[8] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection: Quanti-
fying interpretability of deep visual representations. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 3319–3327. IEEE Computer
Society, 2017.

[9] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Àgata Lapedriza, Bolei Zhou, and Antonio Torralba. Under-
standing the role of individual units in a deep neural network. Proc. Natl. Acad. Sci. USA, 117(48):30071–
30078, 2020.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[11] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep
nets. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 1019–1028. PMLR, 2017.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[13] Gamaleldin F. Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large margin
deep networks for classification. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pages 850–860, 2018.

[14] Ruth Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful perturbation.
arXiv, abs/1704.03296, 2017.

[15] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

7

[16] Alon Gonen and Shai Shalev-Shwartz. Fast rates for empirical risk minimization of strict saddle problems.
In Satyen Kale and Ohad Shamir, editors, Proceedings of the 30th Conference on Learning Theory, COLT
2017, Amsterdam, The Netherlands, 7-10 July 2017, volume 65 of Proceedings of Machine Learning
Research, pages 1043–1063. PMLR, 2017.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pages 770–778, 2016.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Comput., 9(1):1–42, 1997.

[19] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization gap in
deep networks with margin distributions. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[20] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generalization gap and sharp minima. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings, 2017.

[21] Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bounding the generaliza-
tion error of combined classifiers. The Annals of Statistics, 30(1):1–50, 2002.

[22] Matthew L. Leavitt and Ari S. Morcos. Selectivity considered harmful: evaluating the causal impact of
class selectivity in dnns. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[23] Shiwei Liu. Learning sparse neural networks for better generalization. In Christian Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020,
pages 5190–5191. ijcai.org, 2020.

[24] Shiwei Liu, Decebal Constantin Mocanu, and Mykola Pechenizkiy. On improving deep learning general-
ization with adaptive sparse connectivity. arXiv preprint, abs/1906.11626, 2019.

[25] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through l0
regularization. arXiv preprint, abs/1712.01312, 2017.

[26] Ari S. Morcos, David G. T. Barrett, Neil C. Rabinowitz, and Matthew Botvinick. On the importance of
single directions for generalization. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

[27] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generalization in
deep learning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5947–5956, 2017.

[28] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

[29] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural networks.
In Conference on Learning Theory, pages 1376–1401. PMLR, 2015.

[30] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 779–788. IEEE Computer Society, 2016.

[31] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. CoRR, abs/1506.01497, 2015.

[32] Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regularization
for deep neural networks. Neurocomputing, 241:81–89, 2017.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

8

[34] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel R. D. Rodrigues. Robust large margin deep
neural networks. IEEE Trans. Signal Process., 65(16):4265–4280, 2017.

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[36] Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu, and Tie-Yan Liu. On the depth of deep neural
networks: A theoretical view. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30,
2016.

[37] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 2074–2082, 2016.

[38] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, 2017.

[39] Yang Zhao and Hao Zhang. Quantitative performance assessment of cnn units via topological entropy
calculation. In International Conference on Learning Representations, 2021.

[40] Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving generalization
in deep learning. In International Conference on Machine Learning, pages 26982–26992. PMLR, 2022.

[41] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Revisiting the importance of individual units in
cnns via ablation. arXiv preprint, abs/1806.02891, 2018.

A Experiments on ImageNet

Dataset and networks. In this section, the classification task is performed on the ImageNet dataset by using
the same VGG16 architecture. Five networks are trained from scratch and eventually have different generalization
ability. Without randomly corrupting labels, here we only alter the training strategies like momentum or dropout
for changing the networks. Since classification on ImageNet is commonly supposed as a more difficult task, it is
harder for networks to reach zero training error. Table 1 shows the training and testing accuracies of all the 5
networks used in our experiments, where the generalization gap ranges from 0.054 to 0.564.

Model Training Acc Testing Acc Gap

Model A 0.732 0.657 0.075
Model B 0.730 0.600 0.130
Model C 0.818 0.543 0.275
Model D 0.828 0.444 0.384
Model E 0.978 0.374 0.604

Table 1: Training and testing accuracies of 5 networks.

Results. Similarly, the cumulative unit ablation is performed for each network on all the class in the dataset at
first. Fig.4A shows almost the same tendency of the turning points (n0(Dj) and nr

0(Dj)) and accuracy curve
(E(n,Dj) and Er(n,Dj)) as the result on CIFAR100.

Next, ζ(D) and κ(D) are calculated based on the two curves across all the classes. Fig.4B presents the scatter
plot of all the quantity pairs (ζ(Dj), κ(Dj)) . We could see that as the generalization ability of networks
becomes worse, their quantity pairs move gradually towards the bottom right direction. Besides, we could also
find that the quantity pairs of those networks with better generalization would be more gathered, especially with
respect to the ζ(D).

Then, Fig.4C(1) shows the similar scatter plot of the quantity pair (ζ(D), κ(D)) for the five networks. The
colors are in the same scale with it used in Fig.3A. As we could see that from the top right corner to the left
bottom, the generalization gap gradually increases. This is the same with the regularity in in Fig.3A, and again
provides evidence in the correlation between the two sparsity quantities and network generalization gap.

Fig.4C(2) visualizes the linear relation between ζ(D) and generalization gap for five networks. ζ(D) has an
extremely strong linear correlation with generalization gap, where the Pearson correlation coefficient reaches
remarkably 0.998. Even use κ(D) instead of ζ(D), the results in Fig.4C(3) still shows a well degree of linear

9

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

number of units ablated n

 E(n) and Er(n)

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

g
e

n
e

ra
liz

a
ti
o

n
 g

a
p

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

g
e

n
e

ra
liz

a
ti
o

n
 g

a
p

estimated generalization gap
0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

g
e

n
e

ra
liz

a
ti
o

n
 g

a
p

0.0 0.2 0.4 0.6
0.4

0.6

0.8

1.0

1.2

Model AA Model B Model C Model D Model E

B

C

(1) (2) (3) (4)

Figure 4: (A) The evolution example curves of accuracy E(n,Dj) and Er(n,Dj) for the five
networks. (B) Scatter plot between the two quantities ζ(D) and κ(D) across all the classes in the
ImageNet dataset. (C) Scatter plots between different quantities.

correlation with Pearson correlation 0.967. This support strongly that ζ(D) and κ(D) are both really effective
characterizations of the generalization of DNNs.

Fig.4C(4) shows that the points with respect to five networks lies very closely to the reference line, indicating
that the estimated generalization gap and the true gap are almost equal. Also, the SSR here is only 0.004.

B Experiments with MobileNet on CIFAR100

For this experiment, we use the MobileNet architecture (Howard AG et al. 2017) for classifying CIFAR100.
When training the networks, we still partially corrupt the dataset with the same fractions as being used in the
VGG16. Similarly, to get networks with different generalization gaps, we use the same training strategies as
them in VGG16 except for the dropout and batch normalization.

The results are presented in Fig.5. As expected, we could see in Fig.5A that when the fraction of corrupted labels
becomes higher, n0(Dj) becomes gradually larger while nr

0(Dj) becomes smaller, and meanwhile, the area
becomes smaller as well. This is the same with VGG16 (Fig.3A in the paper). Then, Fig.5B shows the quantity
pair (ζ(D), κ(D)) of each network with a scatter plot. The quantity pair of networks with better generalization
ability mostly lie in the top right corner, and contrarily these with poor generalization ability lie in the bottom
left corner. By using our estimation model, Fig.5C shows the estimated generalization gap of all the networks.
We could see that the points are scattered closely between the reference line x = y. In the meantime, the SSR of
this fitting is 0.074, which demonstrates the effectiveness of our model.

C Experiments with ResNet34 on CIFAR100

For this experiment, we change the network architecture to ResNet34 (He et al. 2016) for classifying CIFAR100.
When training the networks, all the strategies are the same with them used in MobileNet for obtaining the
networks with diverse generalization gaps.

Fig.6 presents the results. All the figures in the Fig.6 are in the same meaning with Fig.5. And we get the similar
results with the results when using VGG16 and MobileNet. The SSR here is 0.122, which shows again the
effectiveness of our model.

10

corruption 0.0 corruption 0.2 corruption 0.4 corruption 0.6 corruption 0.8 corruption 1.0A

B

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

0.5000

0.5608

0.6215

0.6823

0.7430

0.8038

0.8645

0.9253

0.9860

0.6

0.8

1.0

0.6 0.8 1.0

true generalization gap

e
s
ti
m

a
te

d
 g

e
n

e
ra

liz
a
ti
o

n
 g

a
p line x = yC

Figure 5: Results on MobileNet. (A) The evolution example curves of accuracy E(n,Dj) and
Er(n,Dj) on dataset with separate corruption fraction of labels in {0, 0.2, 0.4, 0.6, 0.8, 1.0}. (B)
Scatter plot between the two key quantities ζ(D) and κ(D) across all the networks. The color of each
point indicates the generalization gap, where red represents the smallest value and purple represents
the largest. (C) Scatter plot between the estimated generalization gap and the true generalization gap.

corruption 0.0 corruption 0.2 corruption 0.4 corruption 0.6 corruption 0.8 corruption 1.0A

B C

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

tr
a

in
in

g
 a

c
c
u

ra
c
y

number of units ablated n

 E(n) and Er(n)

0.4 0.5 0.6 0.7 0.8

0.4

0.6

0.8

1.0

0.5000

0.5608

0.6215

0.6823

0.7430

0.8038

0.8645

0.9253

0.9860

0.6

0.8

1.0

0.6 0.8 1.0

true generalization gap

e
s
ti
m

a
te

d
 g

e
n

e
ra

liz
a
ti
o

n
 g

a
p

Figure 6: Results on ResNet34. The meaning of all the figures is the same with Fig.5.

D Implementation Details of Experiments

Implementation with VGG16 on CIFAR100. In this experiment, the networks we used are the stan-
dard VGG16 architecture. To get networks with a wider range of generalization, we perform the following
implementations when training,

• Build network with or without batch normalization.

• Use dropout at the fully connected layers with rate from {0, 0.3, 0.5}.

• Use SGD optimizer with momentum from {0, 0.5, 0.9}.

• Use L2 regularization with coefficient from {0, 0.0001}.

• Use batch size from {128, 256, 512}.

• Use or not use data augmentation with random cropping, horizontal flipping and rotation.

• Partially corrupt labels in the training dataset with fractions from {0, 0.2, 0.4, 0.6, 0.8, 1.0}.

11

Implementation with VGG16 on ImageNet. In this experiment, the networks we used are still the
standard VGG16 architecture. And the following implementations are performed when training,

• Model A. The hyper-parameters are the same as those in the paper (Simonyan and Zisserman 2015).

• Model B. The hyper-parameters are the same as those in Model A, except for not using the data
augmentation strategy.

• Model C. The hyper-parameters are the same as those in Model B, except for changing the momentum
to 0.

• Model D. The hyper-parameters are the same as those in Model C, except for that only the first fully
connected layer use the dropout with the rate of 0.3.

• Model E. None of the conventional training enhancement technique is applied. Basically, It is Model
D without using dropout and l2 regularization.

Units in cumulative unit ablation. For our cumulative unit ablation, we choose units at the "block5_conv3"
layer, which is the last convolution layer in VGG16 architecture.

E Code Release

The code is available at github.

https://github.com/zhaoyang-0204/generalization-estimating.git

12

	Introduction
	Related Works
	Method
	Cumulative Unit Ablation
	Turning Points
	Key Quantities and Estimation of Generalization Gap in DNNs

	Experimental Results
	Conclusion
	Experiments on ImageNet
	Experiments with MobileNet on CIFAR100
	Experiments with ResNet34 on CIFAR100
	Implementation Details of Experiments
	Code Release

