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Abstract001

Text embedding models are essential for vari-002
ous natural language processing tasks, enabling003
the effective encoding of semantic informa-004
tion into dense vector representations. These005
models are typically optimized using triplets006
of (query, positive, negative) data pairs for con-007
trastive learning, where the negative samples008
play a critical role in enhancing the model’s009
ability to discern subtle semantic distinctions.010
In this work, we introduce a Multi-Granularity011
Hard-negative (MGH) synthesis framework012
that leverages large language models (LLMs)013
to generate diverse negative samples with vary-014
ing levels of similarity with the query. This015
approach facilitates a coarse-to-fine curricu-016
lum learning strategy during supervised train-017
ing, allowing the embedding model to progres-018
sively learn more nuanced semantic represen-019
tations. Meanwhile, we propose an Anchor020
Token Aware (ATA) pooling method that as-021
signs higher weights to anchor tokens based022
on aggregation patterns observed in LLMs, im-023
proving text embedding accuracy without in-024
creasing model complexity. Comprehensive025
experiments on the MTEB benchmark demon-026
strate that our methods achieve state-of-the-027
art performance, surpassing existing synthesis028
strategies both with synthetic data and when029
combined with public retrieval datasets.030

1 Introduction031

Text embedding models are designed to encode the032

semantic meaning of a given sequence of natural033

language words, sentences, or larger text spans into034

dense vector representations. These vector repre-035

sentations capture not only the lexical content of036

the text but also its syntactic and semantic nuances,037

facilitating a wide range of downstream natural lan-038

guage processing (NLP) tasks such as sentiment039

analysis, text clustering, and content-based infor-040

mation retrieval.041

Previous studies have explored the potential of042

leveraging large language models (LLMs) to gener-043
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Figure 1: Illustration of our proposed multi-granularity
hard-negative sample generation and coarse-to-fine
learning paradigm. ①~④ indicate the training order
of the synthetic negative samples.

ate synthetic data for text embedding training tasks 044

(Bonifacio et al., 2022; Wang et al., 2024; Lee et al., 045

2024b). The substantial volume of synthetic data 046

contributes to increased diversity, thereby improv- 047

ing the model’s robustness across various encoding 048

tasks. However, generating high-quality hard nega- 049

tive samples required by contrastive learning is a 050

challenging task for synthetic models, as an effec- 051

tive hard negative must maintain the right balance 052

in its distinction from the positive examples. If the 053

hard negative is overly similar to the query, it may 054

confuse the model with positive samples, whereas 055

if there is a significant difference in the content, the 056

model may struggle to extract useful information 057

from hard negative samples. 058

In this light, we propose a data synthesis frame- 059
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work to fully leverage the LLMs’ ability to identify060

the partial order of text similarity, facilitating the061

generation of multi-granularity synthetic data. By062

simultaneously generating hard negative samples063

at multiple similarity levels, the synthesized data064

not only improves overall quality but also allows065

for controlled difficulty of the negatives. In the sub-066

sequent supervised training, we use the generated067

difficulty-controllable data to implement coarse-to-068

fine curriculum learning. By progressively moving069

from simple to hard training samples, the embed-070

ding model learns increasingly complex representa-071

tions, resulting in improved stability and effective-072

ness.073

Moreover, as research increasingly focuses074

on effectively adapting large models into text075

embedding models, studies (Lee et al., 2024a;076

BehnamGhader et al., 2024) have explored con-077

verting causal attention to bidirectional attention to078

enhance embedding performance. In this context,079

two common methods to obtain embeddings from080

the hidden states of a sequence of tokens are mean081

pooling, which averages the final hidden states,082

and last token pooling, which uses the last hidden083

state of the <EOS> token as the sentence repre-084

sentation vector. However, mean pooling tends085

to dilute the critical information tokens when av-086

eraging across all tokens, which leads to a loss087

of significant features (Lee et al., 2024a). In con-088

trast, the last token pooling method is sensitive to089

noisy information within the sentence, resulting in090

instability in the encoding (Springer et al., 2024).091

Recently, NV-Embed (Lee et al., 2024a) addressed092

the insufficient pooling issue by adding a cross-093

attention layer over the tokens’ final hidden states094

in a dictionary learning method.095

However, we suggest that a simple yet effective096

pooling method can be utilized without introduc-097

ing additional parameters. Recent studies have098

revealed the aggregation pattern of large language099

models (Wang et al., 2023a; Huang et al., 2024), in-100

dicating that decoder-only models tend to aggregate101

textual information into anchor tokens at shallow102

layers and use these tokens to generate the next103

token in deeper layers.104

In this paper, we observe that the aggregation pat-105

tern still holds in models transformed from causal106

to bidirectional attention. By simply assigning107

greater weight to anchor tokens, we achieve im-108

proved accuracy in text embedding tasks compared109

to conventional pooling methods.110

Our contributions are summarized as follows:111

1. A MGH Data Synthesis Framework. We 112

propose a Multi-Granularity Hard-negative frame- 113

work that effectively generates diverse negative 114

samples of varying difficulty levels, fully leverag- 115

ing the large model’s capability to discern the par- 116

tial order of text similarity. The framework allows 117

for controlled progression in the difficulty of the 118

generated negative examples, enabling subsequent 119

text embedding models to learn a more accurate 120

embedding representation through a coarse-to-fine 121

manner. 122

2. An ATA Pooling Method. We propose an 123

Anchor Token Aware pooling method that effec- 124

tively leverages the aggregation pattern of LLMs 125

to acquire a more accurate sentence representation. 126

The model trained with ATA pooling outperformed 127

previous pooling methods and, when trained solely 128

on publicly available retrieval data without MTEB 129

training split, achieved the state-of-the-art model 130

on the MTEB leaderboard. 131

2 Method 132

2.1 Multi-granularity Synthetic Data 133

Generation 134

The overall framework of our proposed data synthe- 135

sis method is illustrated in Figure 1, which consists 136

of two primary stages. In accordance with the setup 137

of Wang et al. (2024), we begin by querying LLMs 138

to generate a list of potential tasks, categorized into 139

two types: (1) asymmetric text matching tasks com- 140

prising four subtasks including short-long match, 141

long-short match, long-long match, and short-short 142

match; (2) symmetric task represented by semantic 143

textual similarity (STS). The task brainstorming 144

process in stage 1 generates a wide range of em- 145

bedding tasks to enrich the diversity of synthetic 146

data. Further details of the task types are provided 147

in Appendix A.2. 148

In stage 2, using a diverse set of tasks as seeds, 149

we query the LLM to generate (query, positive, 150

negative) samples for subsequent contrastive su- 151

pervised training, which are then used in con- 152

trastive supervised training with a standard in- 153

foNCE objective to minimize the distance between 154

query and positive samples, while maximizing the 155

separation from negative samples: 156

L = − log
ϕ(q, d+)

ϕ(q, d+) +
∑

d−∈N (ϕ(q, d−))
(1) 157

where ϕ denotes the cosine similarity function, 158

q, d+ and d− represent the query, positive, and 159
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negative samples respectively. Recognizing that the160

quality of negative samples significantly impacts161

the supervised training of text-embedding models,162

we aim to fully leverage the large model’s ability163

to distinguish between different granularities of164

negative samples during the generation process. To165

be specific, we formulate the synthetic target as166

follows:167

SS = {(QS ,PS , {N S
k })} (2)168

where QS represents an example query, PS de-169

notes its corresponding positive sample, and {N S
k }170

refers to a set of hard negative samples with vary-171

ing levels of granularity indexed by k, which is set172

to 4 in following experiments.173

We use the template illustrated in Figure 2 to174

constrain the synthesizing format. Differing from175

Wang et al. (2024), our approach prompts LLM176

to simultaneously generate multiple hard negative177

samples {N S
k } for a single query QS . These nega-178

tive samples are ranked based on their similarity to179

the query, arranged in descending order from high-180

est to lowest. This approach allows large models181

to enforce similarity constraints when generating182

hard negative samples, effectively mitigating the183

uncontrolled variation in the hard negative sam-184

ple similarity during the synthetis process across185

different query samples. The effectiveness of this186

approach is demonstrated in Section 5 similarity187

statistics and a detailed case study.188

In addition to synthetic data, we also incorporate189

public retrieval datasets when training the text em-190

bedding model, which include {(QR,PR)} sample191

pairs. To integrate coarse-to-fine hard negative sam-192

ples into the subsequent training process, we regen-193

erate the negative samples of the retrieval dataset,194

denoted as {NR
k }, by querying LLM using the195

same multi-granularity approach. The refined re-196

trieval dataset, SR = {(QR,PR, {NR
k })}, is then197

combined with the synthetic dataset SS to form the198

complete training dataset S.199

With the multi-granularity dataset S, we adopt200

a curriculum learning strategy for supervised train-201

ing of the text embedding model. By adjusting202

the difficulty level k of the hard negatives, the203

model progressively learns from coarse-grained204

to fine-grained distinctions, achieving more sta-205

ble and effective embeddings. Specifically, during206

the supervised learning process, we gradually feed207

the negative samples into the model from {N4} to208

{N1}, allocating equal proportions (25% each) to209

{
  "query": "QUERY_TEXT",
  "positive_example": "POSITIVE_EXAMPLE_TEXT",
  ”hard_negative_examples": [
   {
    "similarity_level": "high",
 "text": "HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT”

},{
 "similarity_level": "medium",
     "text": "MEDIUM_HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT”

},{
 "similarity_level": "medium",
     "text": "MEDIUM_LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT”

},{
"similarity_level": "low",

     "text": "LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"}
  ]
}

The output should be formatted as a JSON object with a 
field indicating the relative similarity level. Use the 
following format as a guide:

Omitted for space limitations

Omitted for space limitations

Omitted for space limitations
Please generate four negative examples for contrastive 
learning based on the generated query and positive 
example. These examples should be arranged in order of 
decreasing similarity to the query, ranging from highly 
similar to dissimilar. Ensure the similarity spans a 
broad spectrum, and every negative example should be 
different, without repeating words from previous 
examples. Be creative!

Figure 2: The core template used for prompting LLMs
to generate multi-granularity hard negatives. Due to
space constraints, the full prompts are presented in Ap-
pendix A.1.

four difficulty levels. Further analysis in Section 210

4.1 demonstrates the effectiveness of the proposed 211

scheduling method. 212

2.2 Anchor Token Aware Pooling 213

After obtaining the hidden states of multiple to- 214

kens from the model’s final layer, an appropriate 215

approach is required to derive the sentence repre- 216

sentation vector v. In the widely adopted mean 217

pooling method, the last hidden states of all tokens 218

are averaged to form a sentence vector representa- 219

tion. This approach can result in the dilution of key 220

information in the text, as non-critical tokens are 221

averaged along with the more significant ones. 222

The proposed ATA pooling method aims to as- 223

sign greater weight to anchor tokens (Wang et al., 224

2023a), which aggregate more semantic informa- 225

tion compared to other tokens. This approach al- 226

lows the model to adaptively allocate weights to the 227

parts that are most pertinent to the task, resulting 228

in a more effective pooling operation. 229

Motivated by Huang et al. (2024), we calculate 230

the attention weight along the Key dimension of 231

the attention matrix to identify anchor tokens with 232

stronger representational capabilities. Compared to 233

traditional mean pooling, this allows us to assign 234
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higher weights to anchor tokens and more effec-235

tively filter out trivial tokens that do not contribute236

to the semantic information.237

Specifically, let Ah
L denote the attention matrix238

for the attention head h in the model’s final layer,239

and let ahij represent the corresponding value of240

Ah
L[i][j], which indicates the attention score be-241

tween Query i and Key j. We define the anchor242

weight of each Query as follows:243

wi =
H∑

h=1

S∑
j=1

log(ahij ·S+1), i ∈ [1, . . . , S] (3)244

245 where S represents the length of the token se-246

quence, and H denotes the number of attention247

heads. We multiply ahij by S because, while the248

sum of attention weights in the query dimension249

remains constant (i.e.
∑S

i=1 a
h
ij = 1), the expected250

value of each individual element decreases to 1
S as251

the sentence length increases. Multiplying by the252

sentence length helps to ensure stability across dif-253

ferent sentence lengths by maintaining consistent254

scaling in subsequent computations.255

After obtaining the anchor weights, we normal-256

ize them by applying a linear weight adjustment257

along the Query dimension to compute the weight258

corresponding to each token, denoted as w̃i, such259

that the sum of all w̃i equals 1:260

w̃i =
wi∑S
j=1wj

, i ∈ [1, . . . , S] (4)261

We then apply the normalized weights w̃i to262

reweight the hidden states HD ∈ RS×hid_dim and263

obtain the final sentence embedding v:264

v =

S∑
i=1

w̃i ×HD[i] (5)265

3 Experiments266

3.1 Data Synthetic Details267

To ensure a fair comparison with Wang et al. (2024),268

we generated an equivalent volume of synthetic269

data, maintaining a consistent total token consump-270

tion of 180M. In order to minimize the costs asso-271

ciated with data generation, we utilized the APIs272

of GPT-4o and DeepSeek-V2. We observed that273

compared to GPT-4o, DeepSeek-V2 is relatively274

less creative when generating the potential tasks275

in stage 1 and tends to produce repetitive negative276

samples during stage 2. Consequently, we relied277

on GPT-4o to complete all stage 1 generation pro-278

cesses. In stage 2, we initially used GPT-4o to279

generate a sufficient amount of data, which was 280

then input as seeds into DeepSeek-V2. Leveraging 281

the data cache provided by the DeepSeek-V2 API, 282

introducing additional seeds as input did not incur 283

significant additional costs. The distribution of syn- 284

thetic data across different task types is detailed in 285

Appendix A.3. 286

The retrieval dataset used in supervised learning 287

was curated by Springer et al. (2024), which consist 288

of approximately 1.5 million samples, covering a 289

variety of languages and retrieval scenarios. In line 290

with LLM2Vec (BehnamGhader et al., 2024), we 291

only used about one-third of the curated retrieval 292

dataset. For more details on the dataset composi- 293

tion, please refer to Appendix B.3. 294

3.2 Experimental Details 295

Model Setup. To validate the effectiveness of 296

our proposed fine-grained data synthesis frame- 297

work and the ATA pooling method, we perform ex- 298

periments following the open-sourced LLM2VEC 299

(BehnamGhader et al., 2024) model, while replac- 300

ing the supervised training stage with our method. 301

Specifically, we adopt Mistral-7B-Instruct-v0.2 302

(Jiang et al., 2023) as the base model. We then 303

transform the model’s attention pattern from causal 304

to bidirectional and integrate the LoRA weights 305

trained on the masked next-token prediction task 306

introduced in LLM2VEC, enabling the model to 307

better adapt to bidirectional attention patterns. This 308

setup serves as the starting point for our model. 309

Supervised Training. We adopt the standard In- 310

foNCE loss, with both in-batch negatives and hard 311

negatives utilized for training. To ensure a fair com- 312

parison, the prompt template follows Wang et al. 313

(2024), as illustrated in Appendix B.3. Supervised 314

training on the full dataset is conducted for 1600 315

steps, while training on public retrieval dataset is 316

performed for 1000 steps, with a batch size of 64 317

and gradient accumulation of 8 in both cases. All 318

training was performed on a single 80GB H100 319

GPU, taking approximately 32 hours to complete 320

1600 training steps. Further training hyperparame- 321

ters are represented in Appendix B.1. 322

Evaluation. We assess our model on the widely 323

used MTEB benchmark (Muennighoff et al., 2023), 324

which encompasses a wide variety of text embed- 325

ding tasks across different scenarios and domains. 326

The benchmark includes 56 English embedding 327

tasks organized into 7 categories: classification 328

(12), clustering (11), pair classification (3), rerank- 329

ing (4), retrieval (15), semantic textual similarity 330
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FT. Data Class.(12) Clust.(11) Pair.(3) Rerank.(4) Retr.(15) STS(10) Summ.(1) Avg.(56)
Sample Num Acc. V-Meas. AP MAP nDCG@10 Spear. Spear.

Models trained with synthetic data only
Mistralgpt-4o (Chen et al., 2024) 230K 77.7 47.7 83.9 58.7 46.7 80.9 30.7 62.2
Geckoo1b-768 (Lee et al., 2024b) 6.6M 70.3 46.8 86.2 57.6 53.2 83.1 32.2 62.6
E5mistral-7b (Wang et al., 2024) 500K 78.2 50.5 86.0 59.0 46.9 81.2 31.9 63.1

SPEED (Chen et al., 2024) 920K 78.3 48.6 86.3 59.8 48.1 82.6 31.7 63.4
MGH(Ours) 310K 78.6 49.7 86.1 60.1 51.2 82.3 31.6 64.5

Models trained with synthetic data & public available retrieval data
GTRxxl (Ni et al., 2022) 662K 67.4 42.4 86.1 56.7 48.5 78.4 30.6 59.0
text-embedding-3large

1 - 75.5 49.0 85.7 59.2 55.4 81.7 29.9 64.6
jina-embed (Sturua et al., 2024) - 82.6 45.3 84.0 58.1 53.9 85.8 29.7 65.5
Geckoo1b-768 (Lee et al., 2024b) >6.6M 81.2 47.5 87.6 58.9 55.7 85.1 32.6 66.3
E5mistral-7b (Wang et al., 2024) 1.8M 78.5 50.3 88.3 60.2 56.9 84.6 31.4 66.6

SPEED (Chen et al., 2024) 2.2M 78.4 49.3 88.2 60.8 56.5 85.5 31.1 66.5
MGH(Ours) 820K 78.8 50.1 87.9 59.8 57.5 85.6 31.3 67.0

Table 1: Full MTEB benchmark performance comparison of different synthesis models, with training conducted on
synthetic data only and both synthetic and public retrieval dataset. The highest performances are highlighted in
bold, while the second-highest are indicated with underlines. Numbers in parentheses in column headers indicate
the number of subtasks within each task category. FT. Data Sample Num. refers to the number of sample pairs used
for training.

(10), and summarization (1).331

3.3 Main Results332

Table 1 presents a comparison of the performance333

of our proposed method against existing data syn-334

thesis approaches on the MTEB dataset. The re-335

sults underscore the effectiveness of our data gen-336

eration framework, demonstrating superior perfor-337

mance in both the synthetic-only and full-data set-338

tings. In particular, on the more challenging re-339

trieval tasks, the full-data results achieved the best340

performance, underscoring the efficacy of our syn-341

thesis method.342

To evaluate the effectiveness of the proposed343

ATA pooling method, we compare our model with344

previous approaches that leverage LLMs for text345

embedding. However, previous research has indi-346

cated that incorporating the MTEB dataset’s train-347

ing split during the supervised training process in-348

troduces a significant amount of MTEB-related349

data, thereby increasing the risk of over-fitting (Li350

et al., 2024). Therefore, we opted not to include351

the second training phase proposed by NV-Embed,352

which utilizes the MTEB training split for a contin-353

uous training.354

Table 2 compares the performance of our ap-355

proach with existing models trained exclusively356

on publicly available retrieval data. Our model357

achieves state-of-the-art performance under the358

MTEB training split free setting, demonstrating359

the effectiveness of the ATA pooling method.360

1https://platform.openai.com/docs/guides/embeddings

Model MTEB Score
SGPT (Muennighoff, 2022) 58.93
UDEVER-bloom-7b (Zhang et al., 2023a) 60.63
ECHO (Springer et al., 2024) 64.68
LLM2Vec (BehnamGhader et al., 2024) 64.80
NV-Embed (Lee et al., 2024a) 64.18
bge-large-en-v1.5 (Xiao et al., 2024) 64.23
bge-en-icl w/o icl (Li et al., 2024) 64.83
bge-en-icl w/ icl (Li et al., 2024) 66.08
MGH(Ours) w/o icl 65.87
MGH(Ours) w/ icl 66.43

Table 2: Performance comparison of MTEB scores for
different models trained on publicly available retrieval
corpora, without introducing MTEB training split dur-
ing training.

4 Ablation Study 361

4.1 Data Synthesis and Training Strategies 362

In this section, we evaluate the effectiveness of the 363

proposed MGH synthesis framework through an 364

ablation study on a subset of the MTEB benchmark, 365

as used in Springer et al. (2024)2. We evaluate the 366

impact of data training order on supervised learn- 367

ing through the following experimental settings, 368

analyzing how the results evolve throughout the 369

training process over 1600 steps: 370

1. Curriculum Learning: Progressing from eas- 371

ier to more challenging hard negatives, as 372

adopted in our main approach. 373

2Conducting a full evaluation on the MTEB dataset is
computationally expensive, requiring over 200 hours on a
single H100 GPU. Therefore, a subset of the dataset was
selected for this study. Details of the subset composition can
be found in Appendix C.2.
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Figure 3: Trend of MTEB subset scores during super-
vised training across four experimental settings.

2. Reverse Curriculum Learning: Progressing374

hard negative samples from harder to easier.375

3. Random Ordering: Randomly inputting376

hard negative examples of varying difficulty.377

4. Fixed Difficulty Level: Consistently using378

hard negatives of a fixed difficulty level.379

The results in Figure 3 demonstrate that the cur-380

riculum learning strategy adopted by MGH not381

only achieves the best performance but also main-382

tains greater stability during training. In contrast,383

the random ordering strategy predictably exhibits384

fluctuations in the results, while the reverse curricu-385

lum learning method also fails to yield satisfactory386

training outcomes, as the model struggles to adapt387

to the reversed difficulty progression.388

Additionally, none of the four fixed difficulty389

settings outperformed the curriculum learning ap-390

proach. Among them, maintaining a difficulty level391

of 2 or 3 yielded relatively better results, while us-392

ing excessively low or high difficulty levels failed393

to converge to optimal outcomes. This suggests394

that overly simple negative examples may prevent395

the model from learning useful knowledge, and396

excessively difficult synthetic negatives may hin-397

der the model’s ability to distinguish them from398

positive examples at early training stages.399

4.2 Pooling Methods400

This section presents a detailed comparison of four401

pooling methods employed in embedding tasks,402

namely mean pooling, last token pooling, NV-403

Embed pooling (Lee et al., 2024a), and the pro-404

posed ATA pooling. The ablation experiments405

leveraged publicly available retrieval datasets only,406

adhering to the hyperparameter settings outlined in407

Section 3.2. The evaluation is conducted using the408

full MTEB benchmark, with Table 3 summarizing 409

their respective performances. 410

Pooling Method MTEB Score
mean pooling 65.41
last pooling 64.97
NV-Embed pooling 65.80
ATA pooling (Ours) 65.87

Table 3: Performance comparison of MTEB scores for
different pooling methods trained on publicly available
retrieval corpora.

The results suggest that conventional mean pool- 411

ing and last token pooling yield subpar perfor- 412

mance in text embedding tasks using bidirectional 413

models. On the other hand, both the NV-Embed 414

pooling and ATA pooling methods demonstrate fa- 415

vorable results, validating the necessity of adaptive 416

reweighting for the last hidden states. 417

5 Further Analysis 418

5.1 Difficulty of Synthesized Hard Negatives 419

To assess the granularity of generated negative sam- 420

ples, we use the model trained exclusively on pub- 421

licly available retrieval corpora, as described in 422

Section 4.2, to evaluate the similarity between the 423

four levels of synthesized Nk and the query Q. 424

Since this model was not exposed to the synthe- 425

sized negative samples during training, it serves as 426

an unbiased evaluator to assess the effectiveness of 427

our MGH framework in generating negative sam- 428

ples with different difficulty levels. 429

Negative Granularity Cosine Similarity
N1 (Hardest) 0.881
N2 (Medium) 0.857
N3 (Medium) 0.845
N4 (Easiest) 0.793

Table 4: Average cosine similarity between queries and
negative samples at different difficulty levels.

The experimental results in Table 4 demonstrate 430

that average cosine similarity between the negative 431

samples and the query increases progressively from 432

N4 to N1. This aligns with our initial hypothesis 433

that N1 (hardest) negative samples should be more 434

similar to the query than N4 (easiest), indicating 435

that our MGH framework effectively generates in- 436

creasingly challenging negative samples at higher 437

difficulty levels. 438
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Hard Negative 4: Sodium is often associated with salt in cooking and baking, as it is a crucial element for flavor and 
preservation. Its role in chemistry includes forming compounds such as NaCl, but it is better known for its culinary uses.

Hard Negative 3: The Latin name for Hydrogen is Hydrogenium, which corresponds to its symbol H. Hydrogen is the 
lightest element, and while not related to Sodium, it shares its essential role in chemical reactions.

Hard Negative 2: Sodium's chemical formula is Sod, derived from its Latin name Sodium. As an alkali metal, it is highly 
reactive and never found in its elemental state in nature.

Hard Negative 1: The Latin name for Sodium is Kalium, giving rise to its chemical symbol K. Sodium is an alkali metal 
with the atomic number 19 and is essential in the human body for regulating blood pressure and nerve function.

Positive: The Latin name for Sodium is Natrium, which is why its chemical symbol is Na. Sodium is a highly reactive alkali 
metal with atomic number 11, commonly found in nature as part of compounds like table salt (sodium chloride, NaCl). The 
name "Natrium" originates from the Arabic word natron, which refers to natural mineral deposits rich in sodium carbonate.

Query: What is the Latin name for the element Sodium, giving rise to its chemical formula Na?

Hard

Easy

Figure 4: An example of a multi-granularity hard negative synthesis, randomly selected for illustration.

5.2 Case Study439

How does MGH enhance hard negative sam-440

ple quality? We illustrate this through the ex-441

ample presented in Figure 4, which demonstrates442

how MGH effectively improves the quality of hard443

negative samples by leveraging multi-granularity444

similarity constraints.445

In this example, the data synthetic model is446

tasked with generate negative samples for the Latin447

name of the element Sodium. The GPT-4o model448

used in this case selects Potassium, which shares449

similar chemical properties with Sodium, as the450

most challenging hard negative example. Subse-451

quently, the model generates a fake Latin name for452

Sodium as a moderately confusable negative sam-453

ple, followed by answering element Hydrogen as454

a more distinguishable example. While the first455

three negative samples involve answering the Latin456

names of chemical elements, the last simplest neg-457

ative sample generated by the model focuses on458

Sodium but lacks any reference to its Latin name.459

As demonstrated in the example above, the460

MGH approach effectively distills world knowl-461

edge from LLMs, enabling the generation of multi-462

ple negative samples with varying granularities. As463

the examples progress from challenging to simple,464

the synthetic model’s outputs range from showing465

subtle differences in detail to being more easily dis-466

tinguishable. In this process, the subsequent nega-467

tive samples are adjusted based on the previously468

generated prefix, enabling a dynamic progression469

of negative sample difficulty, further enhancing the470

quality of negative sample generation.471

How does ATA reweight using aggregation pat-472

tern? As shown in the example from Figure 5,473

the aggregation pattern still remains when the base 474

model is transformed from causal to bidirectional 475

attention. The figure illustrates three prominent 476

anchor tokens: the initial token, the punctuation be- 477

tween the two sentences, and the [INST] template 478

appended to the end of the sentence. Accordingly, 479

these anchor tokens receive higher weight values 480

in the ATA weight calculation, contributing more 481

significantly to the subsequent computation of text 482

embeddings. 483

Through observations of numerous examples, 484

we found that most samples allocate a greater pro- 485

portion of the ATA weight to the three anchor pat- 486

terns mentioned above, with particular emphasis on 487

the [INST] token at the sentence’s end. Therefore, 488

the ATA pooling method captures the important 489

last token while also dynamically identifying key 490

positions within the preceding text. This approach 491

not only mitigates the stability issues associated 492

with relying solely on the last token but also as- 493

signs greater weight to tokens that are essential 494

for capturing the entire semantic meaning of the 495

input sequence, thereby facilitating more effective 496

embedding learning. 497

5.3 Cost of Synthetic Data 498

Although our model entails additional tokens to 499

generate multiple hard negatives per synthetic sam- 500

ple, the cost is offset by maintaining the same token 501

consumption (180M) as Wang et al. (2024), which 502

results in fewer synthetic samples being generated. 503

Under this fair comparison, the model trained with 504

our MGH strategy outperforms previous state-of- 505

the-art results, demonstrating that our method is 506

more effective under the same token consumption. 507

7



Figure 5: The upper part illustrates the summed results
of the model’s final layer attention weights across 32
attention heads3, while the lower part shows the cor-
responding ATA weights for each token. Example is
randomly selected in STS13 evaluation split.

6 Related Work508

LLM Based Text Embedding Models In recent509

years, as decoder-only models have scaled up in510

terms of parameters and training data, researchers511

have explored the possibility of transforming next-512

token prediction models into effective text embed-513

ding models through continued training. Neelakan-514

tan et al. (2022) was the first to apply the GPT-515

3 model to text embedding tasks, leveraging the516

<EOS> token as the representation vector. Subse-517

quent work by Ma et al. (2024) employed a similar518

last-token pooling method, fine-tuning the LLaMA-519

2 model.520

However, the autoregressive training objective521

imposes an inherent limitation on the model’s per-522

formance, as the causal attention mask prevents523

earlier tokens from accessing subsequent tokens.524

SGPT (Muennighoff, 2022) addressed this limita-525

tion by linearly assigning more weight to tokens526

at later positions, a strategy subsequently adopted527

by E5mistral-7b (Wang et al., 2024). LLM2Vec528

(BehnamGhader et al., 2024) transformed the529

model from causal to bidirectional attention by em-530

ploying a masked next-token prediction approach,531

followed by mean pooling for supervised learn-532

ing. Recent work by NV-Embed (Lee et al., 2024a)533

introduced an additional cross-attention layer for534

hidden state pooling, simultaneously removing535

3For space limitations, the individual attention maps from
all 32 attention heads are provided in Appendix D.2.

the causal mask. Additionally, Echo embeddings 536

(Springer et al., 2024) repeated a text twice and 537

used the second instance to compute the represen- 538

tation vector. In this work, we attempt to address 539

the insufficient pooling problem in LLM based em- 540

bedding models by an adaptive weighting strategy 541

using the model’s aggregation pattern. 542

Data Synthesis for Embedding Models High- 543

quality data is crucial for training effective text 544

embedding models. Previous studies (Nogueira 545

et al., 2019; Wang et al., 2023b) have explored 546

expansion-based approaches to augment document 547

and query data. With the advancements in large lan- 548

guage model (LLM) capabilities, recent research 549

has focused on leveraging LLMs to generate large 550

amounts of high-quality supervised training data 551

(Wang et al., 2024; Jeronymo et al., 2023; Sturua 552

et al., 2024). In domain-specific retrieval, studies 553

(Dai et al., 2022; Khramtsova et al., 2024) have 554

shown that LLM-generated query-document pairs 555

significantly improve embedding quality in domain- 556

specific retrieval tasks. Additionally, Gecko (Lee 557

et al., 2024b) curates web data to enable LLMs to 558

produce high-quality synthetic samples. Our work 559

focuses on how to enable large models to generate 560

multi-granularity synthetic negative examples, and 561

achieves more efficient and stable text embedding 562

model training by controlling the training difficulty. 563

7 Conclusion 564

In this work, we evaluate the importance of hard 565

negative granularity when training text embedding 566

models using contrastive learning. Through the 567

proposed MGH synthesis framework, we gener- 568

ate diverse negative samples at varying levels of 569

similarity, enabling the embedding model to learn 570

more nuanced semantic representations by coarse- 571

to-fine curriculum learning approach. Experimen- 572

tal results demonstrate that our methods achieve 573

state-of-the-art performance on the MTEB bench- 574

mark, outperforming existing synthesis strategies 575

both with synthetic-only and combined datasets. 576

Additionally, our proposed ATA pooling method 577

effectively leverages the aggregation patterns inher- 578

ent in large language models, improving sentence 579

pooling efficacy without introducing extra parame- 580

ters. Ablation studies confirm the effectiveness of 581

our MGH framework and ATA pooling method in 582

enhancing text embedding model performance and 583

training stability. 584
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8 Limitations585

Despite the effectiveness of our method, there are586

several limitations that should be acknowledged:587

(1) Due to the costs associated with API usage, we588

limited the synthetic data generation to the same589

token volume as used in previous studies (Wang590

et al., 2024). This constraint prevented us from591

exploring whether a larger synthetic dataset could592

further improve the performance of the text em-593

bedding model. We leave this exploration to future594

work, where more extensive synthetic data could be595

generated to assess the scalability and potential per-596

formance gains. (2) To facilitate comparisons with597

prior work (BehnamGhader et al., 2024; Springer598

et al., 2024), we used Mistral-7b-v0.2-Instruct as599

our base text embedding model. Given the con-600

tinuous advancements in 7b-level models, we plan601

to investigate more powerful models as our base602

embedding model in our future work.603
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A Experimental Details for Data810

Synthesis811

A.1 Prompts for Data Synthesis812

To enable large models to generate multiple hard813

negatives with varying granularities, we extend and814

refine the prompt template proposed by Wang et al.815

(2024). Specifically, we modify the original tem-816

plate to guide the model in producing negative sam-817

ples with different levels of similarity to the query,818

thereby enhancing the diversity and difficulty of819

the generated data. Table 6 illustrates the complete820

prompt template used to generate short-long match821

tasks as an example.822

A.2 Details of Task Categories823

During the task brainstorming process in synthesis824

stage 1, we followed Wang et al. (2024) to system-825

atically classify the potential tasks into two distinct826

categories: asymmetric tasks and symmetric tasks.827

The fundamental distinction lies in the semantic828

relationship between queries and their correspond-829

ing positive documents. In asymmetric tasks, the830

query and its relevant document exhibit semantic831

relevance but are not paraphrases of one another.832

Conversely, symmetric tasks are characterized by833

query-document pairs that preserve semantic equiv-834

alence through different linguistic formulations.835

A.3 Statistics on Synthesized Data836

Figure 6 illustrates the distribution of synthetic data837

across five different task types. In line with Wang838

et al. (2024), we adopted the same task ratio allo-839

cation, where Short-Long, Long-Short, and STS840

comprise the majority of the data, while Long-Long841

and Short-Short account for relatively smaller pro-842

portions.843

B Experimental Details for Supervised844

Training845

B.1 Hyperparameters846

We present the hyperparameters involved in the su-847

pervised training in Table 5. The max sequence848

length specifies that any text sequence exceeding849

Short-Long
40.4% Long-Short

28.2%

Short-Short

3.9%

Long-Long

3.9%

STS

23.5%

Figure 6: Distribution of the task categories in the syn-
thetic data

Hyperparameter Value
Batch Size 64
Gradient Accumulation Steps 8
Learning Rate 2e-5
Max Sequence Length 512
LoRA rank 16
LoRA α 32
Optimizer Adam
Training Steps - Synthetic Only 600
Training Steps - Public Only 1000
Training Steps - Synthetic & Public 1600
Warmup Steps - Synthetic Only 200
Warmup Steps - Public Only 300
Warmup Steps - Synthetic & Public 300

Table 5: Hyperparameters used in the experiments

this number of tokens is truncated in our text em- 850

bedding model. 851

B.2 Training Time 852

When training for 1600 steps on a single H100 853

GPU, the time required with and without ATA pool- 854

ing was 32.45 hours and 32.40 hours, respectively, 855

demonstrating that out proposed ATA pooling strat- 856

egy doesn’t adds additional computational over- 857

head compared to the LLM backbone. The slight 858

variations in training and inference time are likely 859

due to normal fluctuations in GPU workload and 860

system scheduling. 861

B.3 Public Retrieval Datasets 862

We follow the training data setup from previous 863

work (Springer et al., 2024; BehnamGhader et al., 864

2024), adopting the dataset configuration used by 865

Wang et al. (2024), which includes the following 866

datasets: ELI5 (Fan et al., 2019) (sample ratio 0.1) 867

, HotpotQA (Yang et al., 2018), FEVER (Thorne 868

et al., 2018), MIRACL (Zhang et al., 2023b), MS- 869

MARCO (Bajaj et al., 2016) passage ranking (sam- 870
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ple ratio 0.5) and document ranking (sample ratio871

0.2), NQ (Karpukhin et al., 2020), NLI (Gao et al.,872

2021), SQuAD (Karpukhin et al., 2020), TriviaQA873

(Karpukhin et al., 2020), Quora Duplicate Ques-874

tions (DataCanary et al., 2017) (sample ratio 0.1),875

Mr-TyDi (Zhang et al., 2021), DuReader (Qiu et al.,876

2022), and T2Ranking (Xie et al., 2023) (sample877

ratio 0.5). The full supervised training data has878

approximately 1.5M training examples. The in-879

structions applied to each dataset are in line with880

BehnamGhader et al. (2024), which are listed in881

Table 7.882

B.4 Similarity Function883

The cosine similarity was adopted as the similarity884

metric in Equation 1, which can be mathematically885

expressed as follows:886

ϕ =
ū · v̄

||ū|| × ||v̄||

C Experimental Details for Evaluation887

C.1 Prompts for MTEB Evaluation888

For a fair comparison with previous work (Wang889

et al., 2024; BehnamGhader et al., 2024; Lee et al.,890

2024a) evaluated on MTEB, we adopted the same891

set of prompt instructions used in their evaluations892

when assessing our model’s performance. The in-893

structions applied to each evaluation dataset are894

listed in Table 8.895

C.2 Subset Used for Ablation Study896

To speed up evaluation in the ablation study,897

we follow Springer et al. (2024) by selecting898

a representative subset of the MTEB evalua-899

tion benchmark, which includes the following900

datasets: FiQA2018, SCIDOCS, SciFact, NF-901

Corpus, TwitterSemEval2015, TwitterURLCorpus,902

ImdbClassification, AmazonReviewsClassification,903

TweetSentimentExtractionClassification, MTOP-904

DomainClassification, TwentyNewsgroupsClus-905

tering, BiorxivClusteringS2S, MedrxivCluster-906

ingS2S, StackOverflowDupQuestions, AskUbun-907

tuDupQuestions, SciDocsRR, BIOSSES, STS12,908

STS13, STS14, STS15, STS16, STS17, STS22,909

STSBenchmark, and SICK-R.910

D Additional Results911

D.1 Full MTEB Results912

In this section, we present the complete results for913

all 56 MTEB datasets across the three experimental914

settings of our main experiment: public retrieval 915

data only, synthetic data only, and full data. The 916

corresponding results are shown in Table 9. 917

D.2 Full Attention Matrices 918

As shown in Figure 7, after transforming the at- 919

tention mask of the base model (i.e. Mistral-7B- 920

Instruct-v0.2) from causal to bidirectional, the at- 921

tention heads continue to exhibit distinct patterns, 922

with some heads focus on tokens in their origi- 923

nal positions, while others show higher attention 924

scores across all query dimensions at the current 925

position (e.g. Head 1, Head 6, Head 21 and Head 926

22). The latter pattern reflects the characteristics 927

of anchor tokens, allowing for more effective ag- 928

gregation of information from the entire sentence. 929

Consequently, in our ATA pooling method, these 930

attention heads are assigned with greater pooling 931

weight. 932
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Brainstorm a list of potentially useful text retrieval tasks.

Here are a few examples for your reference:
- Retrieve relevant documents for a short keyword web search query that asks for weather information.
- Search for documents that answers a FAQ-style query on children’s nutrition.

Please adhere to the following guidelines:
- Specify what the query is, and what the desired documents are.
- Each retrieval task should cover a wide range of queries, and should not be too specific.

Your output must always be a python list of strings only, with about 20 elements, and each element corresponds to a distinct
retrieval task in one sentence. Do not explain yourself or output anything else. Be creative!
You have been assigned a retrieval task: {task}

Your mission is to write one text retrieval example for this task in the following JSON format. The JSON object must contain
the following keys:
- "user_query": a string, a random user search query specified by the retrieval task.
- "positive_document": a string, a relevant document for the user query.
- "hard_negative_document": a list of strings, hard negative documents that only appears relevant to the query.

The output should be formatted as a JSON object with a field indicating the relative similarity level of hard negative examples.
Use the following format as a guide:

{
"user_query": "QUERY_TEXT",
"positive_document": "POSITIVE_EXAMPLE_TEXT",
"hard_negative_document": [

{
"similarity_level": "high",
"text": "HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"

},{
"similarity_level": "medium",
"text": "MEDIUM_HIGH_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"

},{
"similarity_level": "medium",
"text": "MEDIUM_LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"
},{

"similarity_level": "low",
"text": "LOW_SIMILARITY_NEGATIVE_EXAMPLE_TEXT"

}
]

}

Please adhere to the following guidelines:
- The "user_query" should be {query_type}, {query_length}, {clarity}, and diverse in topic.
- All documents must be created independent of the query. Avoid copying the query verbatim. It’s acceptable if some parts of
the "positive_document" are not topically related to the query.
- All documents should be at least {num_words} words long.
- The "hard_negative_document" contains some useful information, but it should be less useful or comprehensive compared
to the "positive_document". Please generate four hard negative documents for contrastive learning based on the generated
query and positive example. These examples should be arranged in order of decreasing similarity to the query, ranging from
highly similar to dissimilar. Ensure the similarity spans a broad spectrum, and every negative example should be different,
without repeating words from previous examples.
- Both the query and documents should be in {language}.
- Do not provide any explanation in any document on why it is relevant or not relevant to the query.
- Both the query and documents require {difficulty} level education to understand.

Your output must always be a JSON object only, do not explain yourself or output anything else. Be creative!

Table 6: Prompt template for the short-long matching task. For placeholders, “{query_type}” ∈ {extremely long-tail,
long-tail, common}, “{query_length}” ∈ {less than 5 words, 5 to 15 words, at least 10 words}, “{difficulty}” ∈
{high school, college, PhD}, “{clarity}” ∈ {clear, understandable with some effort, ambiguous}, “{num_words}” ∈
{50, 100, 200, 300, 400, 500}.
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Task Name Instruction
NLI Given a premise, retrieve a hypothesis that is entailed by the premise

Retrieve semantically similar text
DuReader Given a Chinese search query, retrieve web passages that answer the question
ELI5 Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum
FEVER Given a claim, retrieve documents that support or refute the claim
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MIRACL Given a question, retrieve Wikipedia passages that answer the question
MrTyDi Given a question, retrieve Wikipedia passages that answer the question
MSMARCO Passage Given a web search query, retrieve relevant passages that answer the query
MSMARCO Document Given a web search query, retrieve relevant documents that answer the query
NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraDuplicates Given a question, retrieve questions that are semantically equivalent to the given

question
Find questions that have the same meaning as the input question

SQuAD Retrieve Wikipedia passages that answer the question
T2Ranking Given a Chinese search query, retrieve web passages that answer the question
TriviaQA Retrieve Wikipedia passages that answer the question

Table 7: The prompt instructions used for public retrieval datasets, following BehnamGhader et al. (2024)
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Task Name Instruction
AmazonCounterfactualClassification Classify a given Amazon customer review text as either counterfactual or not-

counterfactual
AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment
AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category
Banking77Classification Given a online banking query, find the corresponding intents
EmotionClassification Classify the emotion expressed in the given Twitter message into one of the six

emotions: anger, fear, joy, love, sadness, and surprise
ImdbClassification Classify the sentiment expressed in the given movie review text from the IMDB

dataset
MassiveIntentClassification Given a user utterance as query, find the user intents
MassiveScenarioClassification Given a user utterance as query, find the user scenarios
MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented conversation
MTOPIntentClassification Classify the intent of the given utterance in task-oriented conversation
ToxicConversationsClassif. Classify the given comments as either toxic or not toxic
TweetSentimentClassification Classify the sentiment of a given tweet as either positive, negative, or neutral
ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based on the titles and

abstracts
ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the titles
BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and abstracts
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles
MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and abstracts
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles
RedditClustering Identify the topic or theme of Reddit posts based on the titles
RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and posts
StackExchangeClustering Identify the topic or theme of StackExchange posts based on the titles
StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the given paragraphs
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum
TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet
TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet
AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum
MindSmallReranking Retrieve relevant news articles based on user browsing history
SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant papers
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum
ArguAna Given a claim, find documents that refute the claim
ClimateFEVER Given a claim about climate change, retrieve documents that support or refute the

claim
CQADupstackRetrieval Given a question, retrieve detailed question descriptions from Stackexchange that

are duplicates to the given question
DBPedia Given a query, retrieve relevant entity descriptions from DBPedia
FEVER Given a claim, retrieve documents that support or refute the claim
FiQA2018 Given a financial question, retrieve user replies that best answer the question
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MSMARCO Given a web search query, retrieve relevant passages that answer the query
NFCorpus Given a question, retrieve relevant documents that best answer the question
NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraRetrieval Given a question, retrieve questions that are semantically equivalent to the given

question
SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the given paper
SciFact Given a scientific claim, retrieve documents that support or refute the claim
Touche2020 Given a question, retrieve detailed and persuasive arguments that answer the question
TRECCOVID Given a query on COVID-19, retrieve documents that answer the query
STS* Retrieve semantically similar text.
SummEval Given a news summary, retrieve other semantically similar summaries

Table 8: The prompt instructions used for MTEB benchmark evaluation, following Wang et al. (2024). The "STS*"
instruction applies to all STS tasks.
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Dataset Public Retrieval Data Only Synthetic Data Only Full Dataset
AmazonCounterfactualClassification 80.1 78.7 79.2
AmazonPolarityClassification 94.0 94.4 95.9
AmazonReviewsClassification 51.8 54.1 55.8
ArguAna 60.2 51.4 61.3
ArxivClusteringP2P 48.1 50.7 50.3
ArxivClusteringS2S 46.0 47.2 46.9
AskUbuntuDupQuestions 64.2 66.3 66.1
BIOSSES 85.6 85.1 87.5
Banking77Classification 88.5 88.3 89.2
BiorxivClusteringP2P 37.7 43.8 42.7
BiorxivClusteringS2S 36.9 41.4 41.2
CQADupstackRetrieval 48.8 44.3 47.1
ClimateFEVER 35.4 26.0 37.8
DBPedia 51.5 45.8 52.3
EmotionClassification 51.2 53.4 51.9
FEVER 91.2 79.1 89.4
FiQA2018 54.1 45.8 55.8
HotpotQA 77.6 57.9 75.9
ImdbClassification 90.3 93.4 94.2
MSMARCO 43.4 29.3 42.4
MTOPDomainClassification 96.3 95.7 96.6
MTOPIntentClassification 86.5 87.4 87.0
MassiveIntentClassification 80.1 80.6 80.3
MassiveScenarioClassification 82.1 81.8 82.4
MedrxivClusteringP2P 32.2 34.8 33.6
MedrxivClusteringS2S 32.5 35.4 34.8
MindSmallReranking 32.5 33.8 33.3
NFCorpus 39.4 37.9 38.5
NQ 65.9 57.7 66.9
QuoraRetrieval 89.5 86.0 89.1
RedditClustering 63.9 61.7 64.8
RedditClusteringP2P 66.8 64.1 67.3
SCIDOCS 22.0 23.7 22.7
SICK-R 83.5 80.4 83.8
STS12 76.6 75.4 79.8
STS13 86.8 86.6 88.3
STS14 83.1 82.4 85.6
STS15 88.5 88.6 91.3
STS16 85.9 86.6 88.1
STS17 91.7 87.0 91.9
STS22 67.9 66.5 69.7
STSBenchmark 87.9 84.4 89.7
SciDocsRR 84.4 85.7 84.7
SciFact 78.6 74.1 76.4
SprintDuplicateQuestions 95.3 94.7 95.3
StackExchangeClustering 72.9 71.3 72.6
StackExchangeClusteringP2P 37.1 43.5 42.9
StackOverflowDupQuestions 54.1 54.7 55.0
SummEval 31.1 31.6 31.3
TRECCOVID 81.4 81.3 82.2
Touche2020 23.3 26.6 24.6
ToxicConversationsClassification 66.9 69.8 68.8
TweetSentimentExtractionClassification 63.7 65.3 64.8
TwentyNewsgroupsClustering 53.4 53.2 53.8
TwitterSemEval2015 81.1 77.5 81.5
TwitterURLCorpus 87.1 86.3 87.0
Average 65.9 64.5 67.0

Table 9: Complete MTEB evaluation results for each dataset. Detailed evaluation metrics and dataset information
are available in Muennighoff et al. (2023).
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Head 1 Head 2 Head 3 Head 4 Head 5

Head 6 Head 7 Head 8 Head 9 Head 10

Head 11 Head 12 Head 13 Head 14 Head 15

Head 16 Head 17 Head 18 Head 19 Head 20

Head 21 Head 22 Head 23 Head 24 Head 25

Head 26 Head 27 Head 28 Head 29 Head 30

Head 31 Head 32

Figure 7: The individual attention matrices from all 32 attention heads in the last layer of the bidirectional model,
obtained from a randomly selected example in the STS13 dataset.
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