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Practical Private Aggregation in Federated Learning
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Abstract—Federated learning (FL) enables multiple worker
devices share local models trained on their private data to collab-
oratively train a machine learning model. However, local models
are proved to imply the information about the private data and,
thus, introduce much vulnerabilities to inference attacks where
the adversary reconstructs or infers the sensitive information
about the private data (e.g., labels, memberships, etc.) from
the local models. To address this issue, existing works proposed
homomorphic encryption, secure multiparty computation (SMC),
and differential privacy methods. Nevertheless, the homomor-
phic encryption and SMC-based approaches are not applicable to
large-scale FL scenarios as they incur substantial additional com-
munication and computation costs and require secure channels to
delivery keys. Moreover, differential privacy brings a substantial
tradeoff between privacy budget and model performance. In this
article, we propose a novel FL framework, which can protect the
data privacy of worker devices against the inference attacks with
minimal accuracy cost and low computation and communication
cost, and does not rely on the secure pairwise communication
channels. The main idea is to generate the lightweight keys based
on computational Diffie–Hellman (CDH) problem to encrypt the
local models, and the FL server can only get the sum of the local
models of all worker devices without knowing the exact local
model of any specific worker device. The extensive experimental
results on three real-world data sets validate that the proposed FL
framework can protect the data privacy of worker devices, and
only incurs a small constant of computation and communication
cost and a drop in test accuracy of no more than 1%.

Index Terms—Computational Diffie–Hellman (CDH), data pri-
vacy, federated learning (FL), inference attacks.

I. INTRODUCTION

TO PROTECT the data privacy of worker devices in cen-
tralized machine learning, federated learning (FL) was

proposed to enable multiple worker devices to share local
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models trained on their private data to the FL server [1], [2],
[3], [4]. However, existing works show that these local mod-
els imply the information about the private data and, thus,
introduce much vulnerabilities to inference attacks.

Although these local models contain significantly less
information about the private data, the adversary can still
reconstruct worker devices private data or infer the sensitive
information about the private data, e.g., labels, memberships,
properties, etc., and these are called inference attacks [5], [6].
Specifically, in FL system, worker devices train the local mod-
els on their private data, and then share these local models with
the honest-but-curious FL server that aggregates the local mod-
els to obtain the global model [7]. Although the private data
remains well-preserved privacy, the local models entail the
privacy disclosure of the private data. Moreover, the recent
works [8], [9], [10], [11] have shown that FL is susceptible
to inference attacks where the adversary (i.e., the honest-
but-curious FL server) can reconstruct the private data or
infer sensitive information about the private data. Furthermore,
worker devices are vulnerable to serious attacks, i.e., spams,
even blackmails and physical violence, in the event of pri-
vate data being inferred. Therefore, it is desirable to design
a privacy-preserving algorithm to prevent the adversary from
getting the exact local models while collaboratively training
the global model [12].

Existing works concerning privacy-preserving FL can be
largely classified into homomorphic encryption, secure mul-
tiparty computation (SMC), and differential privacy methods.
Specifically, the works [13], [14], [15] designed homomorphic
encryption schemes that allow the FL server to perform arith-
metic operations on ciphertexts. Other kinds of works [16],
[17], [18], [19] apply SMC to FL settings to enable worker
devices to encrypt and/or secret-share their local models to the
honest-but-curious FL server. In addition, the studies [6], [20],
[21], [22], [23], [24], [25], [26], [27] designed local differ-
ential privacy schemes that perturb local models via injecting
noise before sending the local models to the honest-but-curious
FL server. Nevertheless, the homomorphic encryption and
SMC-based approaches are not applicable to large-scale FL
scenarios as they incur substantial additional communication
and computation cost [28]. Moreover, they require the secure
channels to delivery keys to worker devices. In addition, dif-
ferential privacy brings a substantial tradeoff between privacy
budget and model performance.

To this end, we propose a novel FL framework which can
protect the data privacy of worker devices against the inference
attacks with minimal accuracy cost and low computation and
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communication cost, and does not rely on the secure pairwise
communication channels. Motivated by the existing work [29],
our main idea is to generate the lightweight keys based on
the computational Diffie–Hellman (CDH) problem to encrypt
the local models, and the FL server can only get the sum of
the local models of all worker devices without knowing the
exact local model of any a specific worker device. Finally, we
conduct extensive experiments on three real-world data sets,
CIFAR-10, MNIST, and Fashion-MNIST, and compare our
work to the existing work federated averaging (FedAvg) [30].
The experimental results validate that our proposed FL frame-
work is desirable as it protects the local models with a small
constant of computation and communication cost and a drop
in test accuracy of no more than 1% at most. Overall, the main
contributions of this article are as follows.

1) The proposed FL framework can protect worker devices’
local models from being disclosed to the honest-but-
curious worker devices, the honest-but-curious FL sever,
and any untrusted third party, and does not rely on the
secure channels and any trusted party in FL.

2) The proposed FL framework can obtain the test accuracy
which is almost equal to that of the initial FL in most
cases, and more importantly, only incurs a small con-
stant of computation and communication cost for each
worker device, making our work quite lightweight than
the existing works.

3) We conduct extensive experiments, and the results vali-
date that the proposed FL framework is applicable to the
practical FL scenarios where a larger number of worker
devices participant in FL, and their local data are highly
nonindependent and identically distributed (Non-IID).

The remainder of this article is organized as follows.
Section II reviews the related work. Section III introduces the
preliminary knowledge. Section IV describes the design of the
proposed FL framework in detail, followed by the theoretical
analysis in Section V. Thereafter, Section VI evaluates the
proposed FL framework. Finally, Section VII concludes this
article.

II. RELATED WORK

We first review existing works concerning the inference
attacks on FL and then review the corresponding privacy-
preserving mechanisms in FL.

A. Inference Attacks on FL

Inferring Class Representative: The existing work [8]
exploits generative adversarial network (GAN) to generate imi-
tated data which appears to come from the same distribution
with the training data. The adversary performs like a nor-
mal worker device participating in training. But it used the
real-time feature of FL to train a GAN. The GAN aims at
class representative. Only when all class members are similar,
the GAN is effective. However, training a GAN needs sub-
stantial amount of computational resources. Another work [5]
proposed a new class of model inversion attack, which is
based on the confidence values and, moreover, applied the

attack to both the decision trees for lifestyle surveys and neural
networks for facial recognition.

Inferring Membership: Member inference attack can infer
whether a specific data is involved in training. Such mem-
bership information can reveal more sensitive information of
users. For example, if the adversary inferred a specific user’s
data participating in an FL that trains a certain disease diag-
nosis model, then the adversary can know the health status.
The existing work [31] infers which words are in the training
batched of benign worker device at a deep natural language
processing (NLP). The work [32] proposed a gradient ascent
attack to trick the FL server to expose more information about
the local data to infer the membership information of users.

Inferring Properties: Attribute inference attack includes pas-
sive attack and active attack [31]. Both of them assume the
adversary has an extra training data set labeled with correct tar-
get property. Passive attack sets a binary classifier by observing
the training process. Active attack tricks the FL server to
extract more information, it is stronger than passive attack.
The existing work [6] designed passive and active inference
attacks that utilize the updates and can infer when a specific
user first appears in the training.

Inferring Training Inputs and Labels: The existing work [9]
proposed deep leakage from gradients (DLGs) which can
easily “steal” training data with only 20 lines codes. They
recovered the image at pixel level, and the acquired text was
matched. Different from previous attack methods, this attack is
more threatening. Furthermore, the work [10] greatly improved
the accuracy of label inference based on shared gradients,
and proposed the correlation between the tag and the gradient
symbol.

B. Privacy-Preserving FL

The privacy-preserving mechanism in FL can be largely
classified into homomorphic encryption, SMC, and differential
privacy.

1) Homomorphic Encryption: Many works tried to apply
homomorphic encryption to FL, aiming to protect the local
models of worker devices from the honest-but-curious FL
server which may actively or passively infer the users’
information from the received local models. For instance,
the existing works [13], [14], [15], [33], [34] proposed
privacy-preserving machine learning via Paillier encryption.
The studies [14], [35], [36] designed a privacy-preserving
machine learning system that combines LWE-based encryp-
tion. Likewise, the literatures [15], [37], [38] proposed privacy-
preserving machine learning via ring-LWE-based encryption.
Those works use their framework combined with encryption
algorithms, among which commonly used are Paillier encryp-
tion, LWE-based encryption and ring-LWE-based encryption.
However, the privacy preservation provided in these works
spend extra communication cost and computation cost. We
have summarized the communication cost and the computation
cost in Table I.

In order to reduce the cost of homomorphic encryption,
many researches have designed lightweight homomorphic
encryption algorithms. For example, the study [33] proposed

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:33:20 UTC from IEEE Xplore.  Restrictions apply. 



320 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 1, 1 JANUARY 2023

TABLE I
COMMUNICATION AND COMPUTATION COST OF OUR WORK AND SEVERAL EXISTING WORKS

TABLE II
PROS AND CONS OF THE PROPOSAL AS COMPARED WITH THE EXISTING RELATED SCHEMES

that parameters are encrypted after gradient compression
and shearing, and literature [34] used an improved Paillier
algorithm which can speed up the training by 25%–28%.
Moreover, work [39] deployed a subset of the model weights
in plaintext to improve the overall performance. Another
study [40] used leveled homomorphic encryption to reduce
the computational cost. Similarly, work [41] proposed apply-
ing partial homomorphic encryption to improved the overall
efficiency. However, the encryption key needs to be distributed
to users through a secure channel in these works. In con-
trast, in this article, we proposed a novel FL framework
which can protect the data privacy of worker devices against
the inference attacks with the minimal accuracy cost and
lowest computation and communication cost, and more impor-
tantly does not rely on the secure pairwise communication
channel.

2) Secure Multiparty Computation: SMC enables different
participants with private inputs to perform a joint computa-
tion on their inputs without revealing them to each other. The
existing work [16] designed secure two-party computation for
linear regression, logistic regression, and stochastic gradient
descent (SGD) method. The study [17] applied SMC to FL
setting to against the passive and active adversary. Another
literature [18] focused on the secure two-party computation
and additive secret sharing, and proposed a hybrid framework.
Nevertheless, SMC provides a high level of privacy and accu-
racy at the expense of large computation and communication
cost.

3) Differential Privacy: Differential privacy can be classi-
fied into centralized differential privacy and local differential
privacy. But only local differential privacy can be applicable
to the FL settings. The existing work [20] used differential
privacy to provide strong privacy guarantees for training data
in a black-box fashion. The follow-up work [21] designed a
local differential privacy mechanism for the SGD algorithm.
Another work [6] designed the locally differentially private
mechanism for statistical learning problems to prevent the
adversary from reconstructing the users’ local data. Thereafter,
the existing works [22], [23] proposed new locally differen-
tially private mechanism for FL, and work [24] combined
locally differentially private and homomorphic encryption. The
latest works [25], [26], [27] focused on applying locally dif-
ferentially privacy to the high-dimensional local models with
continuous values. However, in locally differentially private,

a lot of noise is injected into the local models or local data,
thus incurring huge utility degradation.

We have summarized the pros and cons of the proposal and
the existing related schemes in Table II.

III. PRELIMINARIES

A. Federated Learning

FL was proposed to solve the privacy security problem
and data isolated island problem [11], [42], [43]. FL enables
worker devices to train the model locally with their private
data and only upload their local model parameters to the FL
server to update the global model. It is proved that the global
model can still converge and maintain high accuracy.

In every global iteration, each worker device ci downloads
the global parameters Wg from the FL server. Next, it updates
its local model parameters wi using its private data set Di

and, e.g., SGD, wi = wi − α�w. �w = ([∂f (wi, Di)]/∂wi)

denotes the gradient, and α denotes the learning rate. Then,
each ci uploads its local model parameters wi to the FL server.
Finally, the FL server aggregates the local models of all worker
devices to update the global parameters Wg for the next global
iteration.

B. Disclosure of Data Privacy in FL

When updating the local model parameters, the neural
network needs to go through two processes: 1) forward
propagation and 2) backpropagation. The forward propaga-
tion obtains the gradient parameters, and the backpropagation
updates the parameters according to the gradient. So, it can
be seen that the gradient w is the differential of the model
to the parameters, and the parameter updating is the linear
change of the gradient. In other words, the local model param-
eters wi are a specific mapping of exact local data, and the
information of local data of worker devices may be leaked
from these local model parameters. As shown in Fig. 1, in
FL, the honest-but-curious FL server and insecure transmission
channels are easy to cause the leakage of local model param-
eters. What is more, a large number of inference attacks have
been proposed, such as member inference, attribute inference,
model inversion, etc., which have brought great challenges
to FL. For example, Zhu et al. [9] proposed DLG, which
can easily reconstruct training data with only 20 lines codes.
In summary, it is desirable to design privacy-preserving FL
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Fig. 1. Illustration of the data privacy disclosure in FL, where wi is the local
model parameters and Wg is the global parameter.

framework to prevent the privacy disclosure from the local
model parameters.

C. Threat Model and Problem Definition

Threat Model: We assume that each worker device and the
FL server are honest-but-curious. All worker devices and the
FL server are trying to infer the training data of other worker
devices (i.e., the local data). They honestly complete the train-
ing process according to the FL protocol. In addition, the
communication channels among worker devices and the FL
server are not secure. Other organizations, e.g., hacker may
steal the transmitted data from the insecure channels.

Problem Definition: In this article, we consider the feder-
ated average algorithm, which means the FL server updates the
global parameters by calculating Wg = (w1+w2+· · ·+wn)/n.
It can be seen from the formula that if the FL server can cal-
culate the sum of local model parameters

∑n
k=1 wi directly

without knowing the exact local model parameters of any a
specific worker device, the worker devices do not need to send
the exact local model parameters to the FL server. On this
basis, even the communication channels are not secure, the
adversary cannot infer any information about the local data
sets, as the worker devices do not upload the exact local model
parameters. Therefore, we only need to guarantee that the FL
server can compute the accurate sum of local model param-
eters when worker devices send the encrypted local model
parameters to the FL sever, and that it is computationally
expensive for any adversary (e.g., the honest-but-curious FL
server, hacker, or the honest-but-curious worker devices) to
obtain the exact local parameters of a specific worker device
with the help of the encrypted local model parameters.

D. Security Model

Specially, we assume that all the communication chan-
nels in our algorithm are insecure. Anyone (the FL server,
worker devices) can steal the public parameters and cipher-
text being transferred. In the worst case, we need to overcome
the challenge of the collusion attack. We take advantage of
the computational difficulty of the CDH problem. Any prob-
abilistic polynomial time adversary (PPTA) is computational
expensive to solve the following problem [29].

TABLE III
FREQUENTLY USED NOTATIONS AND THE

CORRESPONDING EXPLANATIONS

Fig. 2. Overview of our system.

We consider the following problems in the multiplicative
group G with generator g.

Definition 1 [Decisional Diffie–Hellman (DDH) Problem
in G]: The DDH problem is defined as follows: given
g, ga, gb, gc ∈ G where a, b, c ∈ Z, decide if gab = gc.

Definition 2 (CDH Problem in G): The CDH problem is
defined as follows: given g, ga, gb ∈ G where a, b ∈ Z,
compute gab without knowing a or b.

CDH is harder than DDH. Anyone who can solve the CDH
problem can compute gab to solve the DDH problem. Our
algorithm is based on the assumption that it is computational
expensive to solve the CDH problem.

IV. DESIGN OF THE PROPOSED FL FRAMEWORK

Our main idea is to enable the worker devices to send the
encrypted local model parameters to the FL server and the FL
server can get the accurate sum of all worker devices’ local
model parameters at the same time. Even the channels are not
secure and parties in FL are honest-but-curious, the adversary
cannot infer the exact local parameters and, thus, cannot fur-
ther infer the local data of worker devices. In this section,
we will introduce the design of the proposed FL framework
in detail. Fig. 2 shows an overview of our system frame-
work. Table III summarizes the notations frequently used in
this article.

A. Overview

We need to design a series of keys Ki ∈ G to encrypt
the local model parameters wi. Then, we need to calculate∑n

i=1 wi in FL server. In the encryption process, the ciphertext
is obtained by multiplying the plaintext and the secret key Ki,
as shown in (3). While in the decryption process, the cipher-
text are multiplied, as shown in (4). Therefore, these secret
keys Ki should satisfy

∏n
i=1Ki = 1 mod q2, where q is a big
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positive integer. The FL server can obtain the sum of local
model parameters by (1) and (2). Privacy security is reflected
in that worker devices can easily get their own key Ki, but
it is computationally expensive for any adversary to calculate
the keys. Overall, the proposed FL framework mainly consists
of three steps in each global iteration, which is to be intro-
duced in Section IV-C. Our work is motivated by the existing
work [29], and we use the similar idea to design our work.
The difference is that we concentrate on the FL and, thus, we
are facing different challenges. Interested readers can refer to
the work [29] for more details.

B. Definitions

For calculating
∑n

i=1 wi, we introduce some formulas

(1 + p)n = 1 + np mod p2. (1)

From the above equation, we can get that
n∏

i=1

(1 + p)wi =
n∏

i=1

(1 + pwi)

=
(

1 + p
n∑

i=1

wi

)

mod p2. (2)

From the above formula, we can calculate
∑n

i=1 wi. We
choose a q-order cyclic multiplicative group G defined as
<g>, where g is generator. g is a prime number, and p should
larger than the sum of parameters. Then, we divided worker
devices and the FL server into a group (as shown in Fig. 1).
In each epoch, the FL server calculates the sum of all local
model parameters

∑n
i=1 wi in this group to update the global

model.

C. Methodology

In this part, we describe more details about the three steps.
Step 1: Each worker device ci downloads the global param-

eters Wg from the FL server. Next, they update their local
parameters wi by their local data sets Di, respectively. In local
training, we use SGD to update the next local model parameter
wi(t+1) = wit − α([∂f (wit, Di)]/∂wit), where t donates cur-
rent training epoch and α donates the learning rate. In order
to support algorithms over floating-point numbers, the model
parameters wi should be mapped to integers. To address the
challenge, we have designed the following strategy: first, add
a large enough positive integer to make all parameters posi-
tive, wi + q, q ∈ N+. Second, in order to ensure the accuracy,
we will retain m decimal places, then expanding it to integer,
di = 10m ∗ [wi + q]. Parameter m donates the number of dec-
imal places reserved, and di donates the quantized parameter.
After decrypting the ciphertext, the FL server will calculate∑n

i=1 wi according to the following strategy.
Step 2: 1) Each worker device randomly generates a num-

ber ki ∈ Zq. The FL server generates kn+1 as worker device
cn+1. Then, they calculate Xi = gki ∈ G as public parame-
ters, where g is a prime number and 2) each worker device
ci sends Xi ∈ G to her neighbor worker devices After
receiving the public parameters, each worker device ci cal-
culates Ki = ([Xi+1]/[Xi−1])ki ∈ G as a secret parameter.

Particularly, Kn+1 = (X1/Xn)
kn+1 and K1 = (X2/Xn+1)

k1 .
In order to encrypt di, each worker device ci first computes
(1+dip). Then, the worker devices get the ciphertext (i.e., the
encrypted local model parameters) by multiplying their own
secret parameter Ki

Li = (1 + dip) ∗ Ki (3)

where Li donates the ciphertext. The FL server keeps its own
secret parameters Kn+1, and it does not need to do the above
calculation. In fact, the FL server does not have parameters
dn+1 for calculation. Finally, worker devices can upload the
ciphertexts Li to the FL server.

Step 3: Upon receiving the ciphertexts Li from worker
devices, the FL server calculates the following L:

L = Kn+1

n∏

i=1

Li mod p2

=
(

gk1/gkn
)kn+1

n∏

i=1

(1 + dip)
(

gki+1/gki−1
)ki

mod p2

=
(

1 + p
n∑

i=1

di

)

g
∑n

i=1 ki+1ki−kiki−1 mod p2

=
(

1 + p
n∑

i=1

di

)

mod p2. (4)

Then, the FL server calculates (L−1)/p = ∑n
i=1 di mod p2

to recover
∑n

i=1 di. Thereafter, the FL server does the inverse
transformation of the linear transformation mentioned in
Step 1 to get

∑n
i=1 wi. Finally, the FL server updates the

global parameters Wg according to the aggregation rules (i.e.,
FedAvg).

In a training epoch, we have n + 1 devices, including the
FL server and n worker devices. When a certain worker device
drop calls, We only need to rearrange the worker devices and
repeat step 2, which will not affect the training process.

V. THEORETICAL ANALYSIS OF PERFORMANCE

In this section, we analyze the data privacy this work pro-
vides and the computation and communication cost this work
incurs.

A. Security Analysis

In our algorithm, public parameters need to be exchanged
between work devices. So, we need at least two worker devices
to participate in the training. Since only the FL server knows
the sum of parameters, as long as there are two participants,
the FL server is not able to infer any worker devices’ local
data set.

Theorem 1: Our practical private aggregation is secure
based on CDH in G.

Proof: For any ciphertext in the process of our algorithm,
we have

Li = (1 + dip) ∗ Ki = (1 + dip) ∗ g(ki+1−ki−1)ki . (5)

Given (1 + dip) ∗ Ki to infer di, any adversary has to
obtain the secret parameter Ki = g(ki+1−ki−1)ki . Note that
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TABLE IV
COMPUTATION AND COMMUNICATION COSTS

any adversary can only obtain Xi−1 = gki−1 , Xi = gki ,
and Xi+1 = gki+1 from the insecure communication chan-
nel or honest-but-curious FL server. Then, a PPTA can have
Xi+1/Xi−1 = gki+1−ki−1 and Xi = gki . Obviously, to solve
g(ki+1−ki−1)ki , it is a CDH problem defined in G. Therefore,
inferring worker device’s private data during our training pro-
cess is at least as hard as a CDH problem in G for any PPTA
and, thus, our work is secure based on CDH in G.

Next, we analyze the security of our work tolerant to the
collusion attacks of t adversaries, and we get the following
results.

Theorem 2: Our practical private aggregation tolerant to
collusion attacks of t adversaries is secure based on CDH in G.

Proof: Given (1 + dip) ∗ Ki to infer di, any adversary has
to solve the secret parameter

Ki =
(

gki+t+1/gki−1
)ki+tki+t−1,...ki+2ki+1ki

. (6)

Collusive adversaries can manipulate the value ki+t+1−ki−1.
For a certain adversary, he can collude with t − 1 adversarial
worker devices to get t − 1 random numbers k′

is in the expo-
nent. Although, there are t + 1 random numbers k′

is in the
exponent, at least two random numbers remain unknown to
the adversaries. Therefore, the following exponent:

(ki+t+1 − ki−1)ki+tki+t−1, . . . ki+2ki+1ki (7)

remains unknown. The adversaries still cannot solve Ki

with gki .
Let Ai−1 be a certain adversary and let Ai+1, · · · , Ai+t+1 be

t − 1 remaining adversarial worker devices. Then, adversarial
worker devices can obtain

(
gki+t+1/gki−1

)ki+tki+t−1,...ki+2ki+1
(8)

from the t + 1th round of the exchanges and gri from the first
round of the exchanges, and they have to solve Ki. However,
this is a CDH problem.

Therefore, launching collusion attack in our work is at least
as hard as a CDH problem in G for any PPTA. Thus, our work
is secure based on CDH in G.

B. Complexity Analysis

We analyze the computation and communication cost of the
proposed FL framework, which is shown in Table IV. For an
overview of the comparative work, we briefly summarize its
cost in Table IV at the same time. The computation complexity
of Setup, Encrypt, and aggregation is O(1), O(1), and O(n).
Since the Setup and Encrypt are performed by the worker
devices and, thus, computation cost of each worker device
is O(1). The aggregation is conducted by the FL server and,
thus, computation cost of the FL server is O(n). In each global

TABLE V
CNN ARCHITECTURES FOR MNIST AND FASHION-MNIST

iteration, Setup, Encrypt, and aggregation are conducted one
time and, thus, incur the communication cost O(| p |), O(| p |),
and O(n | p |), respectively, where | p | is the length of p.
The computation and communication costs of the FL server
in FedAvg are O(n) and O(n | ωi |), where | ωi | is the length
of local model ωi. The computation and communication costs
of each worker device in FedAvg are O(1) and O(| ωi |).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
FL framework.

A. Experimental Setup

Data Set: We use three classical data sets: 1) CIFAR-10;
2) MNIST; and 3) Fashion-MNIST. The MNIST data set
is from the National Institute of Standards and Technology
(MNIST). It contains 60 000 training data and 10 000 testing
data. All of the data are 28 28 grayscale images. The Fashion-
MNIST data set is the same as MNIST except that it is clothes
picture. It is more complex than MNIST. The CIFAR-10 data
set contains 60 000 RGB color images of 32 32.

Data Set Pretreatment: First, we divide the training set into
ten groups, where the parameter 10 donates the number of data
classes. For the Non-IDD setting, we select a fraction d of
training data with the mth label and distribute them to the mth
group, where d donates the degree of Non-IDD. The remaining
training data are randomly assigned to the ten groups. d = 1
means that each group’s training data have completely differ-
ent labels. In our experiment, we set d = 0, d = 0.5, d = 0.8,
and d = 1, respectively. Then, we randomly select a group
for each worker devices, and randomly extract the required
amount of data from this group.

Definition 3 [Attack Error (AE)]: We define the mean
square error between the dummy picture and the original
picture as the AE.

Machine Learning Models: For MNIST and Fashion-
MNIST, we use convolutions neural networks (CNNs) with
the architecture described in Table V. For CIFAR-10, we also
use CNN, but the CNN is more complex. Its architecture is
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(a) (b) (c) (d)

Fig. 3. Test accuracies of our work and FedAvg varying with the level of Non-IID on the data set, CIFAR-10. (a) Level of Non-IID 0. (b) Level of Non-IID
0.5. (c) Level of Non-IID 0.8. (d) Level of Non-IID 1.

(a) (b) (c) (d)

Fig. 4. Test accuracies of our work and FedAvg varying with the level of Non-IID on the data set, MNIST. (a) Level of Non-IID 0. (b) Level of Non-IID
0.5. (c) Level of Non-IID 0.8. (d) Level of Non-IID 1.

TABLE VI
CNN ARCHITECTURES FOR CIFAR-10

described in Table VI. Our work does not focus on achieving
high accuracy of the global model. It is intended to protect the
local models from the honest-but-curious FL server, worker
devices, and any other attackers while incurring a small drop
in test accuracy.

Parameter Settings: In local model training, we use SGD.
We set the learning rate to 0.01, local batch size to 32, and
local epoch to 1. For the global epochs, different data set and
different variables will affect the convergence speed of the
global model, so we set appropriate global epochs for various
situations. The FL sever uses FedAvg to update the global
model (i.e., parameters) Wg. In default settings, the number of
worker devices is 10, the number of significant digits m is 7,
and the degree of non-IID is 0.5.

Comparative Works: We compare our work with the existing
work FedAvg [30], the differential privacy algorithm (here-
after DP) and Cheon et al. [44] (hereafter CKKS). In FedAvg,
worker devices locally training local models and send local
models to the FL server. The FL server updates the global
model via averaging the sum of all local models. In DP,
Gaussian noise is added to the local model parameters to pro-
tect the data privacy, and the accuracy of the global model will
be affected by the noise. The adversary can reconstruct the

local data with noisy using the uploaded parameters. CKKS
is a homomorphic encryption scheme for floating-point num-
bers. It supports an approximate addition and multiplication of
encrypted messages. The local model parameters are encoded
and converted in plaintext for further encryption. The encod-
ing process is to map complex vectors into polynomials. After
encrypting the plaintext, the ciphertext is truncated into a
smaller modulus, which leads to rounding of plaintext. The
significant figures which contain a main message are added a
noise, and the FL server decrypts the ciphertext and outputs an
approximate value of plaintext with a predetermined precision.

Attack Mode: We use DLG to verify the confidentiality of
the algorithm. The main idea of DLG is to assume the virtual
input and label, calculate the virtual gradient, optimize the
distance between the virtual gradient and the real gradient, and
make the virtual data close to the original data by matching
the gradient.

Metrics: We use test accuracy as the evaluation metric. We
consider three factors that may affect our work, i.e., the num-
ber of worker devices for training, the degree of Non-IID of
worker devices’ local data, and the number of significant dig-
its we keep when amplifying and rounding worker devices’
local model parameters.

B. Experimental Results

1) Impact of the Level of Non-IID: Figs. 3–5 show the
impact of the level of Non-IID on the test accuracy in the
three data sets. We can observe that with the increment of
the degree of Non-IID, the global model is more difficult to
converge, and the test accuracy is more fluctuating in the test
data set. But, the test accuracy converges in the end. In addi-
tion, we can see that the test accuracy of our work in the
three data sets are almost equal to that of FedAvg. The test
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(a) (b) (c) (d)

Fig. 5. Test accuracies of our work and FedAvg varying with the level of Non-IID on the data set, Fashion-MNIST. (a) Level of Non-IID 0. (b) Level of
Non-IID 0.5. (c) Level of Non-IID 0.8. (d) Level of Non-IID 1.

(a) (b) (c) (d)

Fig. 6. Test accuracies of our work and FedAvg varying with the number of worker devices on the data set, CIFAR-10. (a) Number of worker devices 10.
(b) Number of worker devices 40. (c) Number of worker devices 80. (d) Number of worker devices 100.

(a) (b) (c) (d)

Fig. 7. Test accuracies of our work and FedAvg varying with the number of worker devices on the data set, MNIST. (a) Number of worker devices 10.
(b) Number of worker devices 40. (c) Number of worker devices 80. (d) Number of worker devices 100.

(a) (b) (c) (d)

Fig. 8. Test accuracies of our work and FedAvg varying with the number of worker devices on the data set, Fashion-MNIST. (a) Number of worker devices
10. (b) Number of worker devices 40. (c) Number of worker devices 80. (d) Number of worker devices 100.

accuracy of our algorithm is at most 1% in Fig. 3(c) and 0.4%
in Fig. 5(b) lower than the accuracy of FedAvg. The reason
is that our work does not bring in much errors to the global
models and, thus, our work can protect the data privacy of
local models and guarantee the test accuracy of the global
model at the same time. Moreover, it can be observed that,
with the increasing level of Non-IID, the difference between
the test accuracy of our algorithm and the accuracy of the
FedAvg has not gradually increased. It indicates that our work
is robust to the increasing level of Non-IID and, thus, is more

applicable to the practical scenario where worker devices’ data
sets are highly Non-IID. Last, we can see that both in the three
data sets, our work can obtain the desirable performance and,
therefore, our work is general.

2) Impact of the Number of Worker Devices: It can be seen
from Figs. 6–8 that the increase of the number of worker
devices does not affect the difference between the test accu-
racy of our work and the FedAvg, but only affect the speed
of convergence. The test accuracy of our algorithm is at most
70.2% in Fig. 3(c) and 91.6% in Fig. 5(b), 1% and 0.4% lower
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(a) (b) (c) (d)

Fig. 9. Test accuracies of our work and FedAvg varying with the number of significant digits on the data set, CIFAR-10. (a) Number of significant digits 5.
(b) Number of significant digits 6. (c) Number of significant digits 7. (d) Number of significant digits 8.

(a) (b) (c) (d)

Fig. 10. Test accuracies of our work and FedAvg varying with the number of significant digits on the data set, MNIST. (a) Number of significant digits 5.
(b) Number of significant digits 6. (c) Number of significant digits 7. (d) Number of significant digits 8.

(a) (b) (c) (d)

Fig. 11. Test accuracies of our work and FedAvg varying with the number of significant digits on the data set, Fashion-MNIST. (a) Number of significant
digits 5. (b) Number of significant digits 6. (c) Number of significant digits 7. (d) Number of significant digits 8.

than the accuracy of FedAvg, respectively. This is because
even if each parameter will generate errors when retaining the
number of significant digits and encrypting, and, moreover,
the more worker devices, the more errors. But when the FL
server aggregates and updates the local model parameters, it
will divide the sum of all local model parameters by the num-
ber of worker devices, so that the errors will also be averaged.
Therefore, the average test accuracy will not change greatly
regardless of the number of worker devices. Furthermore, both
in the three data sets, our work can obtain the similar test
accuracy with FedAvg with the increasing number of worker
devices. Thus, our work is desirable, as it also protect the data
privacy.

3) Impact of the Number of Significant Digits: Figs. 9–11
show the impact of the number of significant digits on test
accuracy in the three data sets. As we can see, when the num-
ber of significant digits increases, the difference between the
test accuracy of our work and that of FedAvg first decreases
and then gradually increases. Specifically, in the data sets
CIFAR-10, MNIST, and Fashion-MNIST, when the number of
significant digits are 7 and 6, respectively, our work achieve
the almost same test accuracy with FedAvg. In Fig. 9, in the

TABLE VII
TIME COST AND COMMUNICATION COST (100 ITERATIONS)

data set CIFAR-10, the test accuracies of our work and FedAvg
are 74.5% and 73.7%, respectively, with the number of signif-
icant digit is 7. Similarly, in Fig. 10, in the data set MNIST,
the test accuracy of our work is 99.10% and that of FedAvg is
99.13% with the number of significant digit is 7. In Fig. 11,
in the data set Fashion-MNIST, the test accuracy of our work
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TABLE VIII
AE OF DUMMY DATA AND GROUND-TRUTH DATA IN DIFFERENT METHODS

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Dummy pictures of DLG attacking FedAvg, DP and our work on MNIST. (a) FedAvg. (b) DP with ε = 0.001. (c) DP with ε = 0.005. (d) DP
with ε = 0.01. (e) Two worker devices in our work. (f) Three worker devices in our work. (g) Four worker devices in our work. (h) Five worker devices in
our work.

is 91.79% and that of FedAvg is 91.96% with the number of
significant digit is 6.

Therefore, the optimal number of significant digits for the
data set, CIFAR-10, MNIST, and Fashion-MNIST are 7, 7,
and 6. The reasons are that the more digits reserved for round-
ing during the linear transformation, and the fewer low-order
digits to be discarded, the higher the test accuracy of the
global model. However, when the number of significant digits
reaches a specific value, e.g., eight significant digits in data set
Fashion-MNIST, due to the errors brought in by the FL server
decrypting the ciphertext, the test accuracy of the global model
decreases a lot.

4) Time Cost and Communication Cost: We record the time
cost of 100 iterations on a RTX3090 GPU, and results are
shown in Table VII. We use CKKS as comparative work and
use FedAvg as baseline. In CKKS, poly_modulus_degree is
set to 8192, coeff_mod_bit_sizes is set to [60, 40, 40] and
scale_bits is set to 40. The total time includes the time cost
of the algorithm, the local training and parameter aggrega-
tion by server. The algorithm time consists of encryption time
and decryption time. The communication cost refers to the
size of local model parameters or the size of encrypted local
model parameters. Extra time cost means that the total time
exceeds the baseline, FedAvg. We can observe that the three
algorithms can achieve approximate accuracy on the three data
sets, but there is a big gap in algorithm time and communi-
cation cost. On the three data sets, compared to the baseline
FedAvg, communication cost in our work is doubled, and that
is enlarged by about 15 times in CKKS. The algorithm time
of CKKS is one to two times that of our work. The extra time
cost in our work is 1.87% on CIFAR-10, 3% on Fashion-
MNIST, and 3% on MNIST, while the extra time cost in
CKKS is 10.9% on CIFAR-10, 18.7% on Fashion-MNIST, and

19.7% on MNIST. Generally speaking, compared to CKKS,
our work only needs a little communication cost and algo-
rithm time cost while obtaining similar privacy protection and
model accuracy. In summary, our work is more desirable for
the privacy-preserving FL scenarios.

5) Privacy Protection: We use DLG to verify the confiden-
tiality of the proposed algorithm. We use DP as comparative
work and use FedAvg as baseline. First, we conduct an infer-
ence attack on the gradient parameters uploaded by a specific
worker device in FedAvg, and get the dummy picture and AE.
Then, we use DP and our encryption algorithm, respectively.
For DP, we use DLG to attack the gradient parameters with
Gaussian noise. For our work, the adversary can only know
the sum of parameters. After averaging the sum of parame-
ters, we use DLG to carry out the inference attack to obtain
dummy pictures and AE. We set the number of iterations to
300 and stop iterating when the loss is less than 0.000001. The
dummy pictures are shown in Fig. 12. AE and test accuracy
are summarized in Table VIII.

It can be seen from Table VIII that the AE of our algorithm
is much higher than that of FedAvg, which is similar to DP. It
means that there is a large gap between the dummy picture and
the original picture. It can be seen from Fig. 12 that FedAvg
is inferred within dozens of iterations when being attacked.
While our algorithm converges after 300 iterations, and the
adversary cannot recover the original picture. Moreover, there
are more worker devices taking part in training, and the recov-
ered picture is more blurred. Thus, our algorithm well protects
the worker device’s data privacy. When there is a high pri-
vacy level, for example, ε = 0.01, DP has the same privacy
protection ability, but it incurs a drop in test accuracy.

Summary of Experimental Results: The extensive results
above validate that our work can protect the data privacy of
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local model parameters while obtaining almost the same test
accuracy with FedAvg in different settings.

VII. CONCLUSION

In this work, we proposed a novel FL framework which can
protect the data privacy of worker devices against the inference
attacks with the minimal accuracy cost and low computation
and communication costs and does not rely on the secure pair-
wise communication channels. The main idea is to hide worker
devices’ exact local model parameters and send the encrypted
local model parameters to the FL server. The extensive exper-
imental results on three real-world data sets validated that
the proposed FL framework can protect the data privacy of
worker devices, and incurs a small constant of computation
and communication cost and a drop in test accuracy of no
more than 1%.
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