
Published as a conference paper at ICLR 2024

SPACE AND TIME CONTINUOUS PHYSICS SIMULATION
FROM PARTIAL OBSERVATIONS

Steeven Janny
LIRIS, INSA Lyon, France
steeven.janny@insa-lyon.fr

Madiha Nadri
LAGEPP, Univ. Lyon 1, France
madiha.nadri-wolf@univ-lyon1.fr

Julie Digne
LIRIS, CNRS, France
julie.digne@cnrs.fr

Christian Wolf
Naver Labs Europe, France
christian.wolf@naverlabs.com

ABSTRACT

Modern techniques for physical simulations rely on numerical schemes and mesh-
refinement methods to address trade-offs between precision and complexity, but
these handcrafted solutions are tedious and require high computational power.
Data-driven methods based on large-scale machine learning promise high adap-
tivity by integrating long-range dependencies more directly and efficiently. In this
work, we focus on fluid dynamics and address the shortcomings of a large part of
the literature, which are based on fixed support for computations and predictions
in the form of regular or irregular grids. We propose a novel setup to perform pre-
dictions in a continuous spatial and temporal domain while being trained on sparse
observations. We formulate the task as a double observation problem and propose
a solution with two interlinked dynamical systems defined on, respectively, the
sparse positions and the continuous domain, which allows to forecast and interpo-
late a solution from the initial condition. Our practical implementation involves
recurrent GNNs and a spatio-temporal attention observer capable of interpolating
the solution at arbitrary locations. Our model not only generalizes to new initial
conditions (as standard auto-regressive models do) but also performs evaluation
at arbitrary space and time locations. We evaluate on three standard datasets in
fluid dynamics and compare to strong baselines, which are outperformed both in
classical settings and in the extended new task requiring continuous predictions.

1 INTRODUCTION

The Lavoisier conservation principle states that changes in physical quantities in closed regions
must be attributed to either input, output, or source terms. By applying this rule at an infinitesimal
scale, we retrieve partial differential equations (PDEs) governing the evolution of a large majority of
physics scenarios. Consequently, the development of efficient solvers is crucial in various domains
involving physical phenomena. While conventional methods (e.g. finite difference or finite volume
methods) showed early success in many situations, numerical schemes suffer from high computa-
tional complexity, in particular for growing requirements on fidelity and precision. Therefore, there
is a need for faster and more versatile simulation tools that are reliable and efficient, and data-driven
methods offer a promising opportunity.

Large-scale machine learning offers a natural solution to this problem. In this paper, we address
data-driven solvers for physics, but with additional requirements on the behavior of the simulator:

R1. Data-driven – the underlying physics equation is assumed to be completely unknown. This
includes the PDE, but also the boundary conditions. The dynamics must be discovered from a finite
dataset of trajectories, i.e. a collection of observed behaviors from the physical system,

R2. Generalization – the method must be capable of handling new initial conditions that do not
explicitly belong to the training set, without re-training or fine-tuning,

1

Published as a conference paper at ICLR 2024

R3. Time and space continuous – the domain of the predicted solution must be continuous in
space and time1 so that it can be queried at any arbitrary location within the domain of definition.

These requirements are common in the field but rarely addressed altogether. R1 allows for handling
complex phenomena where the exact equation might be unknown, and R2 supports the growing need
for faster simulators, which consequently must handle new ICs. Space and time continuity (R3) are
also useful properties for standard simulations since the solution can be made as fine as needed in
certain complex areas.

This task requires learning from sparsely distributed observations only, and without any prior knowl-
edge on the PDE form. In these settings, a standard approach consists of approximating the behav-
ior of a discrete solver, enabling forecasting in an auto-regressive fashion Pfaff et al. (2020); Janny
et al. (2023); Sanchez-Gonzalez et al. (2020), losing therefore spatial and temporal continuity. In-
deed, auto-regressive models assume strong regularities in the data, such as a static spatial lattice
and uniform time steps. For these reasons, generalization to new spatial locations or intermediate
time steps is not straightforward. These methods satisfy R1 and R2, but not R3. In another trend,
Physics-Informed Neural Networks (PINNs) learn a solution on a continuous domain. They leverage
the PDE operator to optimize the weights of a neural network representing the solution, and cannot
generalize to new ICs, thus violating R1 and R2.

In this paper, we address R1, R2 and R3 altogether in a new setup involving two joint dynamical
systems. R1 and R2 are satisfied using an auto-regressive discrete-time dynamics learned from the
sparse observations and producing a trajectory in latent space. Then, R3 is achieved with a state
observer derived from a second dynamical system in continuous time. This state observer relies on
transformer-based cross-attention to enable evaluation at arbitrary spatio-temporal locations. In a
nutshell: (a) We propose a new setup to address continuous space and time simulations of physical
systems from sparse observation, leveraging insights from control theory. (b) We provide strong
theoretical results indicating that our setup is well-suited to address this task compared to existing
baselines, which are confirmed experimentally on challenging benchmarks. (c) We provide exper-
imental evidence that our state observer is more powerful than handcrafted interpolations for the
targeted task. (d) With experiments on three challenging standard datasets (Navier Yin et al. (2022);
Stokes (2009), Shallow Water Yin et al. (2022); Galewsky et al. (2004), Eagle Janny et al. (2023),
and against state-of-the-art methods (MeshGraphNet (MGN) Pfaff et al. (2020), DINO Yin et al.
(2022), MAgNet (Boussif et al., 2022)), we show that our results generalize to a wider class of
problems, with excellent performances.

2 RELATED WORKS

Autoregressive models – have been extensively used to replicate the behavior of iterative solvers in
discrete time, especially in cases where the PDE is unknown or generalization to new initial condi-
tions is needed. These models come in various internal architectures, including convolution-based
models for systems observed on a dense uniform grid (Stachenfeld et al., 2021; Guen & Thome,
2020; Bézenac et al., 2019) and graph neural networks (Battaglia et al., 2016) that can adapt to ar-
bitrary spatial discretizations (Sanchez-Gonzalez et al., 2020; Janny et al., 2022a; Li et al., 2018).
Such models have demonstrated a remarkable capacity to produce highly accurate predictions and
generalize over long prediction horizons, making them particularly suitable for addressing complex
problems such as fluid simulation (Pfaff et al., 2020; Han et al., 2021; Janny et al., 2023). However,
auto-regressive models are inherently limited to a fixed and constant spatio-temporal discretization
grid, hindering their capability to evaluate the solution anywhere and at any time. Neural ordinary
differential equations (Neural ODE Chen et al. (2018); Dupont et al. (2019)) offer a countermea-
sure to the fixed timestep constraint by learning continuous ODEs on discrete data using an explicit
solver, such as Euler or Runge-Kutta methods. In theory, this enables the solution to be evaluated at
any temporal location but in practice still relies on the discretization of the time variable. Moreover,
extending this approach to PDEs is not straightforward. Contrarily to these approaches, we leverage
the auto-regressive capacity and accuracy while allowing arbitrary evaluation of the solution at any
point in both time and space.

1In what follows, while being a misnomer, space and time continuity of the solution designate the continuity
of the spatial and temporal domain of definition of the solution, and not the continuity of the solution itself.

2

Published as a conference paper at ICLR 2024

Continuous solutions for PDEs – date back to the early days of deep learning (Dissanayake &
Phan-Thien, 1994; Lagaris et al., 1998; Psichogios & Ungar, 1992) and have recently experienced
a resurgence of interest Raissi et al. (2019; 2017). Physics-informed neural networks represent the
solution directly as a neural network and train the model to minimize a residual loss derived from
the PDE. They are mesh-free, which alleviates the need for complex adaptive mesh refinement tech-
niques (mandatory in finite volume methods), and have been successfully applied to a broad range of
physical problems (Lu et al., 2021; Misyris et al., 2020; Zoboli et al., 2022; Kissas et al., 2020; Yang
et al., 2019; Cai et al., 2021), with a growing community proposing architecture designs specifically
tailored for PDEs (Sitzmann et al., 2020; Fathony et al., 2021) as well as new training methods
(Zeng et al., 2023; Finzi et al., 2023; de Avila Belbute-Peres & Kolter, 2023). Yet, these models
are also known to be difficult to train efficiently (Krishnapriyan et al., 2021; Wang et al., 2022).
Recently, neural operators have attempted to learn a mapping between function space, leveraging
kernels in Fourier space (Li et al., 2020b) (FNO) or graphs (Li et al., 2020a) (GNO) to learn the
correspondence from the initial condition to the solution at a fixed horizon. While some operator
learning frameworks can theoretically generalize to unseen initial conditions and arbitrary locations,
we must consider the practical limitations of existing baselines. For instance, FNO requires a static
cartesian grid and cannot be directly evaluated outside the training grid. Similarly, GNO can handle
arbitrary meshes in theory, but still has limitations in evaluating points outside the training grid and
Li et al. (2021) variant can only be queried at fixed time increments. DeepONet (Lu et al., 2019) can
handle free sampling in time and space but is also constrained to a static observation grid.

Continuous and generalizable solvers – represent a significant challenge. Few models satisfy all
these conditions. MP-PDE (Brandstetter et al., 2022) can handle free-form grids but cannot general-
ize to different resolutions between train and test, and performs auto-regressive temporal forecasting.
Closer to our work, MAgNet (Boussif et al., 2022) proposes to interpolate the observation graph in
latent space to new query points before forecasting the solution using graph neural networks. How-
ever, they assume prior knowledge of the evaluation mesh and the new query points, use nearest
neighbor interpolation instead of trained attention and struggle to generalize to finer grids during
test time. In Hua et al. (2022), the auto-regressive MeshGraphNet (Pfaff et al., 2020) is combined
with Orthogonal Spline Collocation to allow for arbitrary spatial queries. Finally, DINo (Yin et al.,
2022) proposes a mesh-free, space-time continuous model to address PDE solving. The model uses
context adaptation techniques to dynamically adapt the output of an implicit neural representation
forward in time. DINo assumes the existence of a latent ODE modeling the temporal evolution of
the context vector and learns it as a Neural ODE. In contrast, our method differs from DINo as our
model is based on physics forecasting in an auto-regressive manner. We achieve space and time
continuity through a learned dynamical attention transformer capable of handling arbitrary locations
and points in time. Our design choices allow for generalization on new spatial and temporal loca-
tions, ie. not limited to discrete time steps, and new initial conditions while being trainable from
sparse observations 2.

3 CONTINUOUS SOLUTIONS FROM SPARSE OBSERVATIONS

Consider a dynamical system following a Partial Differential Equation (PDE) defined for all (x, t) ∈
Ω× J0, T K, with T a positive constant:

ṡ(x, t) = f (s,x, t) ∀(x, t) ∈ Ω× J0, T K,
s(x, 0) = s0(x) ∀x ∈ Ω, s(x, t) = s̄(x, t) ∀(x, t) ∈ ∂Ω× J0, T K (1)

where the state lies in an invariant set s ∈ S, f : S 7→ S is an unknown operator, s0 : Ω 7→ Rn

is the initial condition (IC) and s̄ : ∂Ω × J0, T K 7→ Rn the boundary condition. In what follows,
we consider trajectories with shared boundary conditions, hence we omit s̄ from the notation for
readability. In practice, the operator f is unknown, and we assume access to a set D of K discrete
trajectories from different ICs, sk0 , sampled at sparse and scattered locations in time and space.
Formally, we introduce two finite sets X ⊂ Ω of fixed positions and fixed regularly sampled times
T at sampling rate ∆∗. Let S(s0,x, t) be the solution of this PDE from IC s0, the dataset D is given
as: D :=

{
S(sk0 ,X , T)

∣∣∣ k ∈ J1,KK
}

. Our task is formulated as:

Given D, a new initial condition s0 ∈ S, and a query (x, t) ∈ Ω× J0, T K, find the solution of
equation 1 at the queried location and from the given IC, that is S(s0,x, t).

2Code will be made public. Project page: https://continuous-pde.github.io/

3

https://continuous-pde.github.io/

Published as a conference paper at ICLR 2024

…

Figure 1: Model overview – We achieve space and time continuous simulations of physics systems
by formulating the task as a double observation problem. System 1 is a discrete dynamical model
used to compute a sequence of latent anchor states zd auto-regressively, and System 2 is used to
design a state estimator ψq retrieving the dense physical state at arbitrary locations (x, t).

Note that this task involves generalization to new ICs, as well as estimation to unseen spatial loca-
tions within Ω and unseen time instants within J0, T K. We do not explicitly require extrapolation to
instants t > T , although it comes as a side benefit of our approach up to some extent.

3.1 THE DOUBLE OBSERVATION PROBLEM

The task implies extracting regularities from weakly informative physical variables that are sparsely
measured in space and time, since X and T contain very few elements. Consequently, the possi-
bility to forecast their trajectories from off-the-shelf auto-regressive methods is very unlikely (as
confirmed experimentally). To tackle this challenge, we propose an approach accounting for the fact
that the phenomenon is not directly observable from the sparse trajectories, but can be deduced from
a richer latent state-space in which the dynamics is markovian. We introduce two linked dynami-
cal models lifting sparse observations to dense trajectories guided by observability considerations,
namely

System 1:
{

zd[n+1] = f1
(
zd[n]

)
sd[n] = h1

(
zd[n]

) , System 2:
{

ṡ(x, t) = f2
(
s,x, t

)
z(x, t) = h2

(
s,x, t

) ∀(x, t)∈Ω×J0, T K

(2)
where for all n ∈ N, we note sd[n] = s(X , n∆) the sparse observation at some instant n∆ (the
sampling rate ∆ is not necessarily equal to the sampling rate ∆∗ used for data acquisition, which we
will exploit during training to improve generalization. This will be detailed later).

System 1 – is a discrete-time dynamical system where the available measurements sd[n] are con-
sidered as partial observations of a latent state variable zd[n]. We aim to derive an output predictor
from System 1 to forecast trajectories of sparse observations auto-regressively from the sparse IC.
As mentioned earlier, sparse observations are unlikely to be sufficient to perform predictions, hence
we introduce a richer latent state variable zd in which the dynamics is truly markovian, and obser-
vations sd[n] are seen as measurements of the state zd using the function h1.

System 2 – is a continuous-time dynamical system describing the evolution of the to-be-predicted
dense trajectory S(s0,x, t). It introduces continuous observations z(x, t) such that z(X , n∆) =
zd[n]. The insight is that the state representation zd[n] obtained from System 1 is designed to contain
sufficient information to predict sd[n], but not necessarily to predict the dense state. Formally, zd
represents solely the observable part of the state, in the sense of control theory.

At inference time, we forecast at query location (x, t) with a 2-step algorithm: (Step-1) System
1 is used as an output predictor from the sparse IC sd[0], and computes a sequence z[0], z[1], ...,
which we refer to as “anchor states”. This sequence allows the dynamics to be Markovian, provides
sufficient information for the second state estimation step and holds information to predict the sparse
observations, allowing supervision during training. (Step-2) We derive a state observer from System
2 leveraging the anchor states over the whole time domain to estimate the dense solution at an
arbitrary location in space and time (see figure 1). Importantly, for a given IC, the anchor states are
computed only once and reused within System 2 to estimate the solution at different points.

4

Published as a conference paper at ICLR 2024

3.2 THEORETICAL ANALYSIS

In this section, we introduce theoretical results supporting the use of Systems 1 and 2. In particular,
we show that using System 1 to forecast the sparse observations in latent space zd rather than directly
operating in the physical space leads to smaller upper bounds on the prediction error. Then, we show
the existence of a state estimator from System 2 and compute an upper bound on the estimation error
depending on the length of the sequence of anchor states.

Step 1 – consists of computing the sequence of anchor states guided by an output prediction task of
the sparse observations. As classically done, we introduce an encoder (formally, a state observer)
e
(
sd[0]

)
=zd[0] coupled to System 1 to project the sparse IC into a latent space zd. Following

System 1, we compute the anchor states zd auto-regressively (with f1) in the latent space. The
sparse observations are extracted from zd using h1. In comparison, existing baselines (Pfaff et al.,
2020; Sanchez-Gonzalez et al., 2020; Stachenfeld et al., 2021) maintain the state in the physical
space and discard the intermediate latent representation between iterations. Formally, let us consider
approximations f̂1, ĥ1, ê (in practice realized as deep networks trained from data D) of f1, h1 and e
and compare the prediction algorithm for the classic auto-regressive (AR) approach and ours

Classic AR: ŝar
d [n] := (ĥ1 ◦ f̂1 ◦ ê)n

(
sd[0]

)
Ours: ŝd[n] := ĥ1 ◦ f̂1n ◦ ê

(
sd[0]

)
(3)

Classical AR approaches re-project the latent state into the physical space at each step and repeat
“encode-process-decode”. Our method encodes the sparse IC, advances the system in the latent
space, and decodes toward the physical space at the end. A similar approach has also been explored
in Wu et al. (2022); Kochkov et al. (2020), albeit in different contexts, without theoretical analysis.

Proposition 1 Consider a dynamical system of the form of System 1 and assume the existence of a
state observer e along with approximations f̂1, ĥ1, ê with Lipschitz constants Lf , Lh and Le respec-
tively such that LhLfLe ̸= 1. If there exist δf , δh, δe ∈ R+ such that ∀(z, s) ∈ Rnz × Rns

|f1(z)− f̂1(z)| ⩽ δf , |h1(z)− ĥ1(z)| ⩽ δh, |e(s)− ê(s)| ⩽ δe (4)

for the Euclidean norm | · |, then for all integer n > 0, with ŝd[n] and ŝar
d [n] as in equation 3,

|sd[n]− ŝd[n]| ⩽ δh + Lh

(
δf
Ln
f − 1

Lf − 1
+ Ln

f δe

)
(5)

|sd[n]− ŝar
d [n]| ⩽ δ

Ln − 1

L− 1
(6)

with δ = δh + Lhδf + LhLfδe and L = LhLfLe.

Proof : See appendix B.

This result shows that falling back to the physical space at each time step degrades the upper bound of
the prediction error. Indeed, if L < 1, the upper bound converges trivially to zero when n increases,
and hence can be ignored. Otherwise, the upper bound for the classic AR scheme appears to be more
sensitive to approximation errors δh, δf and δe compared to our approach (for a formal comparison,
see appendix C). Intuitively it means that information is lost in the observation space, which thus
needs to be re-estimated at each iteration when using the classic AR scheme. By maintaining a
state variable in the latent space, we allow this information to flow readily between each step of the
simulator (see blue frame in figure 1).

Step 2 – The state estimator builds upon System 2 and relies on the set of anchor states from the
previous step to estimate the dense physical state at arbitrary locations in space and time. Formally,
we look for a function ψq leveraging the sequence of anchor states zd[0], · · · zd[q] (simulated from
the sparse IC sd[0]) to retrieve the dense solution3. In what follows, we show that (1) such a function
ψq exists and (2) we compute an upper bound on the estimation error depending on the length of the
sequence. To do so, consider the functional which outputs the anchor states from any IC s0 ∈ S

Op(s0)=
[
h2

(
s0(X)

)
h2

(
S(s0,X ,∆)

)
· · · h2

(
S(s0,X , p∆)

)]
=
[
zd[0] · · · zd[p]

]
(7)

In practice, the ground truths zd[n] are not perfectly known, as they are obtained from a data-driven
output predictor (step 1) using the sparse IC. Inspired from Janny et al. (2022b), we state:

3Since the simulation is conducted up to T , and considering the time step ∆, in practice q ⩽ ⌊ T
∆
⌋

5

Published as a conference paper at ICLR 2024

Proposition 2 Consider a dynamical system defined by System 2 and equation 7. Assume that

A1. f2 is Lipschitz with constant Ls,
A2. there exists p > 0 and a strictly increasing function α such that ∀sa, sb ∈ S2 and ∀q ⩾ p∣∣Oq(sa)−Oq(sb)

∣∣ ⩾ α(q)|sa − sb|S (8)

where
∣∣ · ∣∣S is an appropriate norm for S.

Then, ∀q ⩾ p, there exists ψq such that, for (x, t) ∈ Ω×J0, T K and δn such that ẑd[n] = zd[n]+δn,
for all n ⩽ q,

ψq

(
zd[0], · · · , zd[q],x, t

)
= S(s0,x, t) (9)∣∣∣S(s0,x, t)− ψq

(
ẑd[0], · · · , zd[q],x, t

)∣∣∣
S
⩽ 2α(q)−1

∣∣δ0|q∣∣eLst. (10)

where δ0|q=
[
δ0 · · · δq

]
.

Proof: See appendix D. Assumption A2. states that the longer we observe two trajectories from
different ICs, the easier it will be to distinguish them, ruling out systems collapsing to the same
state. Such systems are uncommon since forecasting their trajectory becomes trivial after some time.
This assumption is related to finite-horizon observability in control theory, a property of dynamical
systems guaranteeing that the (markovian) state can be retrieved given a finite number p of past
observations. Equation 8 is associated with injectivity of Oq , hence the existence of a left inverse
mapping the sequence of anchor states to the IC s0.

Proposition 2 highlights a trade-off on the performance of ψq . On one hand, longer sequences of
anchor states are harder to predict, leading to a larger |δ0|q|, which impacts the state estimator ψq

negatively. On the other hand, longer sequences hold more information that can still be leveraged
by ψq to improve its estimation, represented by α(q)−1 in equation 10. In contrast to competing
baselines or conventional interpolation algorithms, our approach takes this trade-off into account,
by explicitly leveraging the sequence to estimate the dense solution, as will be discussed below.

Discussion and related work – the competing baselines can be analyzed using our setup, yet in a
weaker configuration. For instance, one can see Step 2 as an interpolation process, and replace it
with a conventional interpolation algorithm, which typically relies on spatial neighbors only. Our
method not only exploits spatial neighborhoods but also leverages temporal data, improving the
performance, as shown in proposition 2 and empirically corroborated in Section 4.

MAgNet (Boussif et al., 2022) uses a reversed interpolate-forecast scheme compared to ours. The IC
sd[0] is interpolated right from the start to estimate s0 (corresponding to our Step 2, with q=1), and
then simulated with an auto-regressive model in the physical space (with the classic AR scheme).
Propositions 1 and 2 show that the upper bounds on the estimation and prediction error are higher
than ours. Moreover, if the number of query points exceeds the number of known points (|Ω|≫|X |),
the input of the auto-regressive solver is filled with noisy interpolations, which impacts performance.

DINo (Yin et al., 2022) is a very different approach leveraging a spatial implicit neural representation
modulated by a context vector, whose dynamics is modeled via a learned ODE. This approach is
radically different than ours and arguably involves stronger hypotheses, such as the existence of
a learnable ODE modeling the dynamics of a suitable weight modulation vector. In contrast, our
method relies on arguably more sound assumptions, i.e. the existence of an observable discrete
dynamics explaining the sparse observation, and the finite-time observability of System 2.

3.3 IMPLEMENTATION

The implementation follows the algorithm described in the previous section: (Step-1) rolls out pre-
dictions of anchor states from the IC, (Step-2) estimates the state at the query position from these
anchor states. The encoder ê from Step 1 is a multi-layer perceptron (MLP) which takes as in-
put the sparse IC sd[0] and the positions X and outputs a latent state variable zd[0] structured
as a graph, with edges computed with a Delaunay triangulation. Hence, each anchor is a graph
zd[n] = {zd[n]i}, but we will omit index i over graph nodes in what follows if not required for
understanding.

We model f̂1 as a multi-layer Graph Neural Network (GNN) (Battaglia et al., 2016). The anchor
states zd[n] are defined at fixed time steps n∆, which might not match ∆∗ used in the data T . We

6

Published as a conference paper at ICLR 2024

found it beneficial to choose ∆=k×∆∗ with k>1∈N such that the model can be queried during
training on time points t ∈ T that do not match exactly with every time-steps in zd[0], zd[1], ...,
but rather on a subset of them, hence encouraging generalization to unseen time. The observation
function ĥ1 is an MLP applied on the vector at node level in the graph zd.

The state estimator ψq is decomposed into a Transformer model (Vaswani et al., 2017) coupled to a
recurrent neural network to provide an estimate at query spatio-temporal query position (x, t). First,
through cross-attention we translate the set of anchor states zd[n] (one embedding per graph node i
and per instant n) into a set of estimates of the continuous variable z(x, t) conditioned at the instant
n∆, which we denote zn∆(x, t) (one embedding per instant n). Following advances in geometric
mappings in computer vision (Saha et al., 2022), we use multi-head cross-attention to query from
coordinates (x, t) to Keys corresponding to the nodes i in each graph anchor state zd[n], ∀n:

zn∆(x, t) = fmha
(
Q=ζω(x, t),K=V={zd[n]i}+ ζω(X , n∆)

)
, // attention over nodes i (11)

where Q,K, V are, respectively, Query, Key and Value inputs to the cross-attention layer fmha
(Vaswani et al., 2017) and ζω a Fourier positional encoding with a learned frequency parameter
ω. Finally, we leverage a state observer to estimate the dense solution at the query point from the
sequence of conditioned anchor variables, over time. This is achieved with a Gated Recurrent Unit
(GRU) Cho et al. (2014) maintaining a hidden state u[n],

u[n] = rgru
(
u[n−1], zn∆(x, t)

)
, Ŝ(s0,x, t) = D (u[q]) , (12)

which shares similarities with conventional state-observer designs in control theory (Bernard et al.,
2022). Finally, an MLP D maps the final GRU hidden state to the desired output, that is, the value
of the solution at the desired spatio-temporal coordinate (x, t). See appendix E for details.

3.4 TRAINING

Generalization to new input locations during training is promoted by creating artificial generalization
situations using sub-sampling techniques of the sparse sets X and T .

Artificial generalization – The anchor states zd[n] are computed at time rate ∆ larger than the
available rate ∆∗. This creates situations during training where the state estimator ψq does not
have access to a latent state perfectly matching with the queried time. We propose a similar trick
to promote spatial generalization. At each iteration, we sub-sample the (already sparse) IC sd[0]
randomly to obtain s̃d[0] defined on a subset of X . We then compute the anchor states z̃d using
System 1. On the other hand, the query points are selected in the larger set X . Consequently,
System 2 is exposed to positions that do not always match with the ones in zd[n]. Note that the
complete domain of definition Ω× J0, T K remains unseen during training.

Training objective – To reduce training time, we randomly sample M query points (xm, τm) in
X × T at each iteration, with a probability proportional to the previous error of the model at this
point since its last selection (see appendix E) and we minimize the loss

L =

K∑
k=1

Lcontinuous︷ ︸︸ ︷
M∑

m=1

∣∣∣S(sk0 ,xm, τm)− ψq

(
z̃d[0|q],x, τm

)∣∣∣2 +
Ldynamics︷ ︸︸ ︷

⌊T/∆⌋∑
n=0

∣∣∣s̃d[n]− ĥ1
(
z̃d[n]

)∣∣∣2, (13)

with z̃d[n] = f̂1
n ◦ ê

(
s̃d[0]

)
. Lcontinuous supervises the model end-to-end, and Ldynamics trains the

latent anchor states zd to predict the sparse observations from the IC.

4 EXPERIMENTAL RESULTS

Experimental setup – X×T results from sub-sampling Ω×J0, T K with different rates to control
the difficulty of the task. We evaluate on three highly challenging datasets (details in appendix F):
Navier (Yin et al., 2022; Stokes, 2009) simulates the vorticity of a viscous, incompressible flow
driven by a sinusoidal force acting on a square domain with periodic boundary conditions. Shallow
Water (Yin et al., 2022; Galewsky et al., 2004) studies the velocity of shallow waters evolving on
the tangent surface of a 3D sphere. Eagle (Janny et al., 2023) is a challenging dataset of turbulent
airflow generated by a moving drone in a 2D environment with many different scene geometries.

We evaluate our model against three baselines representing the state-of-the-art in continuous simu-
lations. Interpolated MeshGraphNet (MGN) (Pfaff et al., 2020) is a standard multi-layered GNN

7

Published as a conference paper at ICLR 2024

Navier Shallow Water Eagle
High Mid Low High Mid Low High Low

In-X 1.557 1.130 1.878 0.1750 0.1814 0.2733 287.3 302.7DINo
(Yin et al., 2022) Ext-X 1.600 1.253 5.493 4.638 13.40 21.55 381.7 489.6

In-X 1.913 0.9969 0.6012 0.3663 0.2835 0.7309 64.44 83.58Interp. MGN
(Pfaff et al., 2020) Ext-X 2.694 4.784 14.80 1.744 4.221 8.187 173.4 241.5

In-X n/a n/a n/aTime Oracle (n.c) Ext-X 0.851 4.204 15.63 1.617 4.327 8.522 147.0 221.2
In-X 18.17 6.047 8.679 0.3196 0.3358 0.4292 99.79 124.5MAgNet

(Boussif et al., 2022) Ext-X 35.73 26.24 57.21 10.21 23.20 30.55 194.3 260.7
In-X 0.1989 0.2136 0.2446 0.2940 0.3139 0.2700 70.02 78.83Ours Ext-X 0.2029 0.2463 0.5601 0.4493 1.051 2.800 90.88 117.2

Table 1: Space Continuity – we evaluate the spatial interpolation power of our method vs. the
baselines and standard interpolation techniques. We vary the number of available measurement
points in the data for training from High (25% of simulation grid), Middle (10%), and Low (5%)
amount of points and show that our model outperforms the baselines. Evaluation is conducted over
20 frames in the future (10 for Eagle) and we report the MSE to the ground truth solution (×10−3).

used auto-regressively and extended to spatiotemporal continuity using physics-agnostic interpola-
tion. MAgNet (Boussif et al., 2022) interpolates the IC at the query position in latent space before
using MGN. The original implementation assumes knowledge of the target graph during training,
including new queries. When used for superresolution, the authors kept the ratio between the amount
of new query points and available points constant. Hence, while MAgNet is queried at unseen loca-
tions, it also benefits from more information. In our setup, the model is exposed to a fixed number of
points but does not receive more samples during evaluation. This makes our problem more challeng-
ing than the one addressed in Boussif et al. (2022). DINo (Yin et al., 2022) models the solution as
an Implicit Neural Representation (INR) s(x, αt) where the spatial coordinates x are fed to a MFN
(Fathony et al., 2021) and αt is a context vector modulating the weights of the INR. The dynamics
of α is modeled with a Neural-ODE, where the dynamics is an MLP. We share common objectives
with DINo and take inspiration from their evaluation tasks yet in a more challenging setup. Details
of the baselines are in appendix F. We highlight a caveat on MAgNet: the model can handle a lim-
ited amount of new queries, roughly equal to the number of observed points. Our task requires the
solution at up to 20 times more queries than available points. In this situation, the graph in MaGNet
is dominated by noisy states from interpolation, and the auto-regressive forecaster performs poorly.
During evaluation, we found it beneficial to split the queries into chunks of 10 nodes and to apply
the model several times. This strongly improves the performance at the cost of an increased runtime.

Space Continuity – Table 1 compares the spatial interpolation power of our method versus several
baselines. The MSE values computed on the training domain (In-X=X) and outside (Ext-X=Ω\X)
show that our method offers the best performance, especially for the Ext-domain task, which is our
aim. To ablate dynamics and evaluate the impact of trained interpolations, we also report the pre-
dictions of a Time Oracle which uses sparse ground truth values at all time steps and interpolates
(bicubic) spatially. This allows us to assess whether the method is doing better than a simple ax-
iomatic interpolation. While MGN offers competitive in-domain predictions, the cubic interpolation
fails to extrapolate reliably on unseen points. This can be seen in the In/Ext gap for Interpolated
MGN which is very close to the Time Oracle error. MaGNet, which builds on a similar framework,
is hindered by the larger amount of unobserved data in the input mesh. At test time, the same num-
ber of initial condition points are provided but the method interpolates substantially more points.
DINo achieves a very low In/Ext gap, yet fails on highly (5%) down-sampled tasks. One of the
key difference with DINo is that the dynamics relies on an internal ODE for the temporal evolution
of a modulation vector. In contrast, our model uses an explicit auto-regressive backbone, and time
forecasting is handled in an arguably more meaningful space, which we conjecture to be the reason
why we achieve better results (see fig. 5 in the appendix).

Time Continuity – is a step forward in difficulty, as the model needs to interpolate not only to
unseen spatial locations (datasets are undersampled at 25%) but also on intermediate timesteps (Ext-
T , Table 2). All models perform well on Shallow Water, which is relatively easy. Both DINo and
MAgNet leverage a discrete integration scheme (Euler for MAgNet and RK4 for DINo) allowing
querying the model between timesteps seen at training. These schemes struggle to capture the data
dependencies effectively and therefore the methods fail on Navier (see also Figure 6 for qualitative

8

Published as a conference paper at ICLR 2024

G
ro

u
n

d
T

ru
th

O
u

rs
D

IN
o

M
es

h
G

ra
p

h
N

et
M

A
g

N
et

ŝ−
s

22

t0 + 2 t0 + 4 t0 + 6 t0 + 8 t0 + 10t0

Figure 2: Results on Eagle – Per point error of the flow prediction on an Eagle example in the Low
spatial down-sampling scenario. Our model exhibits lower errors as also shown in Tables 1 and 2.

Navier Shallow Water Eagle
1/1 1/2 1/4 1/1 1/2 1/4 1/1 1/2 1/4

In-T 1.590 36.31 46.02 3.551 6.005 6.249 444.5 447.1 448.6DINo
(Yin et al., 2022) Ext-T n/a 39.42 54.72 n/a 6.015 6.265 n/a 479.4 470.7

In-T 2.506 4.834 12.77 1.408 1.289 1.333 203.4 210.4 263.3Interp. MGN
(Pfaff et al., 2020) Ext-T n/a 5.922 36.43 n/a 1.287 1.355 n/a 209.8 263.8

In-T n/a n/a n/aSpatial Oracle (n.c) Ext-T n/a 1.296 28.58 n/a 0.003 0.119 n/a 29.46 54.53
In-T 31.51 135.0 243.9 7.804 6.433 1.884 227.9 220.3 225.8MAgNet

(Boussif et al., 2022) Ext-T n/a 142.8 255.5 n/a 6.291 1.947 n/a 229.8 230.6
In-T 0.2019 0.1964 0.4062 0.4115 0.4278 0.4549 108.0 106.1 278.6Ours Ext-T n/a 0.2138 11.36 n/a 0.4326 0.4802 n/a 119.9 306.9

Table 2: Time Continuity – we evaluate the time interpolation power of our method vs. the base-
lines. Models are trained and evaluated with 25% of Ω, and with different temporal resolutions (full,
half, and quarter of the original). The Spatial Oracle (not comparable!) uses the exact solution at
every point in space, and performs temporal interpolation. Evaluation is conducted over 20 frames
in the future (10 for Eagle) and we report MSE compared to the ground truth solution (×10−3).

results). Eagle is particularly challenging, the main source of error being the spatial interpolation,
as can be seen in Figure 2 – our method yields lower errors in flow estimation.

Many more experiments – are available in appendix G. We study the impact of key design
choices, artificial generalization, and dynamical loss. We show qualitative results on time
interpolation, time extrapolation on the Navier dataset. We explore generalization to dif-
ferent grids. We provide more empirical evidence of the soundness of Step 2 in an ablation
study (including comparison with attentive neural process Kim et al. (2018), an attention-
based structure somehow close to ours), and observe attention maps on several examples.
We show that our state estimator goes beyond local interpolation, as conventional inter-
polation algorithms would do. Finally, we also measure the computational burden of the
discussed methods and show that our approach is more efficient.

5 CONCLUSION

We exploit a double dynamical system formulation for simulating physical phenomena at arbitrary
locations in time and space. Our approach comes with theoretical guarantees on existence and ac-
curacy without knowledge of the underlying PDE. Furthermore, our method generalizes to unseen
initial conditions and reaches excellent performances outperforming existing methods. Potential
applications of our model goes beyond fluid dynamics and can be applied to various PDE-based
problem. Yet, our approach relies on several hypotheses such as regular time sampling and observ-
ability. Finally, for known and well-studied phenomena, it would be interesting to add physics priors
in the system, a nontrivial extension that we leave for future work.

9

Published as a conference paper at ICLR 2024

Reproducibility – the detailed model architecture is described in the appendix. For the sake of
reproducibility, in the case of acceptance, we will provide the source code for training and evaluating
our model, as well as trained model weights. For training, we will provide instructions for setting
up the codebase, including installing external dependencies, pre-trained models, and pre-selected
hyperparameter configuration. For the evaluation, the code will include evaluation metrics directly
comparable to the paper’s results.

Ethics statement – While our simulation tool is unlikely to yield unethical results, we are mindful
of potential negative applications of improving fluid dynamics simulations, particularly in military
contexts. Additionally, we strive to minimizing the carbon footprint associated with our training
processes.

6 ACKNOWLEDGEMENTS

We recognize support through French grants “Delicio” (ANR-19-CE23-0006) of call CE23 “Intelli-
gence Artificielle” and “Remember” (ANR-20-CHIA0018), of call “Chaires IA hors centres”. This
work was performed using HPC resources from GENCI- IDRIS (Grant 2023-AD010614014).

REFERENCES

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Neural Information Processing Systems, 2016.

Pauline Bernard, Vincent Andrieu, and Daniele Astolfi. Observer design for continuous-time dy-
namical systems. Annual Reviews in Control, 2022.

Emmanuel De Bézenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical processes:
Incorporating prior scientific knowledge. Journal of Statistical Mechanics: Theory and Experi-
ment, 2019.

Oussama Boussif, Yoshua Bengio, Loubna Benabbou, and Dan Assouline. Magnet: Mesh agnostic
neural pde solver. In Neural Information Processing Systems, 2022.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers.
In International Conference on Learning Representations, 2022.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Neural Information Processing Systems, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint, 2014.

Filipe de Avila Belbute-Peres and J Zico Kolter. Simple initialization and parametrization of sinu-
soidal networks via their kernel bandwidth. In International Conference on Learning Represen-
tations, 2023.

MWMG Dissanayake and Nhan Phan-Thien. Neural-network-based approximations for solving
partial differential equations. Communications in Numerical Methods in Engineering, 1994.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Neural Information
Processing Systems, 2019.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks.
In International Conference on Learning Representations, 2021.

Marc Anton Finzi, Andres Potapczynski, Matthew Choptuik, and Andrew Gordon Wilson. A sta-
ble and scalable method for solving initial value pdes with neural networks. In International
Conference on Learning Representations, 2023.

10

Published as a conference paper at ICLR 2024

Joseph Galewsky, Richard K. Scott, and Lorenzo M. Polvani. An initial-value problem for testing
numerical models of the global shallow-water equations. Tellus A: Dynamic Meteorology and
Oceanography, 2004.

Vincent Le Guen and Nicolas Thome. Disentangling physical dynamics from unknown factors for
unsupervised video prediction. In Conference on Computer Vision and Pattern Recognition, 2020.

Xu Han, Han Gao, Tobias Pfaff, Jian-Xun Wang, and Liping Liu. Predicting physics in mesh-
reduced space with temporal attention. In International Conference on Learning Representations,
2021.

Chuanbo Hua, Federico Berto, Michael Poli, Stefano Massaroli, and Jinkyoo Park. Efficient con-
tinuous spatio-temporal simulation with graph spline networks. In Internation Conference on
Machine Learning (AI for Science Workshop), 2022.

Steeven Janny, Fabien Baradel, Natalia Neverova, Madiha Nadri, Greg Mori, and Christian Wolf.
Filtered-cophy: Unsupervised learning of counterfactual physics in pixel space. In International
Conference on Learning Representation, 2022a.

Steeven Janny, Quentin Possamaı̈, Laurent Bako, Christian Wolf, and Madiha Nadri. Learning
reduced nonlinear state-space models: an output-error based canonical approach. In Conference
on Decision and Control, 2022b.

Steeven Janny, Aurélien Beneteau, Nicolas Thome, Madiha Nadri, Julie Digne, and Christian Wolf.
Eagle: Large-scale learning of turbulent fluid dynamics with mesh transformers. In International
Conference on Learning Representation, 2023.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on Learning
Representations, 2018.

Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R. Witschey, John A. Detre, and Paris
Perdikaris. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure
from non-invasive 4d flow mri data using physics-informed neural networks. Computer Methods
in Applied Mechanics and Engineering, 2020.

Dmitrii Kochkov, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning latent field dynamics of
pdes. In Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), 2020.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Neural Information Pro-
cessing Systems, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. Transactions on Neural Networks, 1998.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning par-
ticle dynamics for manipulating rigid bodies, deformable objects, and fluids. In International
Conference on Learning Representations, 2018.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. In Neural Information Processing Systems, 2020a.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equa-
tions. In International Conference on Learning Representations, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Markov neural operators for learning chaotic systems.
arXiv preprint, 2021.

11

Published as a conference paper at ICLR 2024

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint, 2019.

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-informed neural networks with hard constraints for inverse design. Journal on Scientific
Computing, 2021.

George S Misyris, Andreas Venzke, and Spyros Chatzivasileiadis. Physics-informed neural networks
for power systems. In Power & Energy Society General Meeting, 2020.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2020.

Dimitris C Psichogios and Lyle H Ungar. A hybrid neural network-first principles approach to
process modeling. AIChE Journal, 1992.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part
i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint, 2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint, 2017.

Avishkar Saha, Oscar Mendez, Chris Russell, and Richard Bowden. Translating images into maps.
In International Conference on Robotics and Automation, 2022.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Confer-
ence on Machine Learning, 2020.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Neural Information Processing
Systems, 2020.

Kim Stachenfeld, Drummond Buschman Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
simulators for turbulence. In International Conference on Learning Representations, 2021.

George Gabriel Stokes. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums.
Cambridge University Press, 2009.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Neural Information Processing
Systems, 2017.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 2022.

Tailin Wu, Takashi Maruyama, and Jure Leskovec. Learning to accelerate partial differential equa-
tions via latent global evolution. Advances in Neural Information Processing Systems, 2022.

X. I. A. Yang, S. Zafar, J.-X. Wang, and H. Xiao. Predictive large-eddy-simulation wall modeling
via physics-informed neural networks. Physical Review Fluids, 2019.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, et al. Continuous
pde dynamics forecasting with implicit neural representations. In International Conference on
Learning Representations, 2022.

Qi Zeng, Yash Kothari, Spencer H. Bryngelson, and Florian Schäfer. Competitive physics informed
networks. In International Conference on Learning Representations, 2023.

Samuele Zoboli, Steeven Janny, and Mattia Giaccagli. Deep learning-based output tracking via
regulation and contraction theory. In International Federation of Automatic Control, 2022.

12

Published as a conference paper at ICLR 2024

A WEBSITE AND INTERACTIVE ONLINE VISUALIZATION

An anonymous website has been created where results can be visualized with an online interactive
tool, which allows one to choose time steps interactively with the mouse, and in the case of the
Shallow Water dataset, also the orientation of the spherical data:

https://continuous-pde.github.io/

B PROOF OF PROPOSITION 1

The proof proceeds by successive majorations and triangular inequalities. For sake of clarity, and
only in this proof we omit the d subscript and write s[n] and z[n] for sd[n] and zd[n], respectively.

We start with ŝ[n] := ĥ1 ◦ f̂1n ◦ ê
(
s[0]

)
. Thus for any integer n > 0 we have

|s[n]− ŝ[n]| = |h1
(
z[n]

)
− ĥ1

(
ẑ[n]

)
|. (14)

Using Lipschitz property and 4, then

|s[n]− ŝ[n]| ⩽ |h1
(
z[n]

)
− ĥ1

(
z[n]

)
|+ |ĥ1

(
z[n]

)
− ĥ1

(
ẑ[n]

)
| (15)

⩽ δh + Lh|z[n]− ẑ[n]|.

Noticing that one can rewrite ẑ[n] as ẑ[n] = f̂1
n ◦ ê

(
s[0]

)
. Since z[n] = f1

n
(
z[0]

)
and using a

similar decomposition as for 15), one gets:

∣∣z[n]− ẑ[n]
∣∣ ⩽ δf

n−1∑
k=0

Lk
f + Ln

f

∣∣z[0]− ẑ[0]
∣∣. (16)

Hence, from equation 15, and using z[0] = e
(
s[0]

)
and ẑ[0] = ê

(
s[0]

)
, we have∣∣s[n]− ŝ[n]

∣∣ ⩽ δh + Lh

(
δf
Ln
f − 1

Lf − 1
+ Ln

f δe

)
. (17)

We now move on to the classic auto-regressive case, i.e. ŝar[n] =
(
ĥ1 ◦ f̂1 ◦ ê

)n(
s[0]

)
.∣∣s[n]− ŝar[n]

∣∣ ⩽ ∣∣∣h1(z[n])− ĥ1
(
z[n]

)∣∣∣+ ∣∣∣ĥ1(z[n])− ĥ1
(
ẑar[n]

)∣∣∣ (18)

⩽ δh + Lh

∣∣z[n]− ẑar[n]
∣∣

⩽ δh + Lh

(
δf + Lf

∣∣∣e(s[n− 1]
)
− ê

(
ŝar[n− 1]

)∣∣∣)
⩽ δh + Lh

(
δf + Lf

(
δe + Le

∣∣s[n− 1]− ŝar[n− 1]
∣∣))

⩽ δ

n−2∑
i=0

Li + Ln−1
∣∣s[1]− ŝar[1]

∣∣,
with δ = δh + Lhδf + LhLfδe and L = LhLfLe. Moreover,

|s[1]− ŝar[1]| = |ĥ1(z[1])− f̂1(ẑ
ar[1])| (19)

⩽ δh + Lh|z[1]− ẑar[1]| (20)
⩽ δh + Lh(δf + Lf |z[0]− ẑar[0]|) (21)
⩽ δ (22)

Putting it all together, we get equation 6:

|s[n]− ŝar[n]| ⩽ δ
Ln − 1

L− 1
(23)

Finally, equation 17 and equation 23 conclude the proof.

13

https://continuous-pde.github.io/

Published as a conference paper at ICLR 2024

C COMPARISON OF UPPER BOUNDS IN PROPOSITION 1

We start by formulating equation 5 and equation 6 under a comparable form

|sd[n]− ŝd[n]| ⩽ δ + LhLfδf
Ln−1
f − 1

Lf − 1
+ LhLfδe(L

n−1
f − 1) = δ +K1 (24)

|sd[n]− ŝar
d [n]| ⩽ δ + δ

Ln − L

L− 1
= δ +K2 (25)

Now we consider two cases depending on the Lipschitz constants of the problem, namely Lh, Lf ,
and Le. First, consider the case where the Lipschitz constants are very large (i.e. Lh, Lf , Le ≫ 1).
In that case, the upper bounds can be approached by

K1 ≈ LhδfL
n−1
f + LhL

n
f δe (26)

K2 ≈ δh(LhLfLe)
n−1 + LhδfL

n−1
f Ln−1

h Ln−1
e + LhL

n
f δeL

n−1
h Ln−1

e (27)

Hence, K2 ≫ K1 (we highlighted the difference between both terms in the previous equation. Now
consider the case where the Lipschitz constants are very small (i.e. Lh, Lf , Le ≪ 1). Recall that
this case corresponds to a trivial prediction task since any trajectory of System 1 will converge to a
unique state. Again, the upper bounds can be approached by

K1 ≈ 0 (28)
K2 ≈ Lδ (29)

In this trivial case, the upper bound on the prediction error using our method is a combination of the
approximation errors from each function. On the other hand, using the classic AR scheme implies
a larger error, since the model accumulates approximations at each time step not only from the
dynamics but also from the observation function and the encoder.

D PROOF OF PROPOSITION 2

The proof follows the lines of Janny et al. (2022b). The existence of ψq is granted by the observ-
ability assumption. Indeed assumption A2. states that for all q > p, Oq is injective in S. Hence, it
exists a inverse mapping O∗

q : Oq : S 7→ S such that ∀s′ ∈ S
O∗

q

(
Oq(s

′)
)
= s′ (30)

Let zd[0|q]=
[
zd[0] · · · zd[q]

]
. Hence, one can build ψq using the dynamics of the system for all

x ∈ Ω:
∀s0 ∈ S, S(s0,x, t) = S

(
O∗

q

(
zd[0|q]

)
,x, t

)
:= ψq

(
zd[0|q],x, t

)
(31)

Now, because of the noise, the disturbed observation ẑd[0|q] = zd[0|q] + δ0|q may not belong
to Oq(S), where the inverse mapping O∗

q is well defined. We solve this by finding the closest
“possible” observation.

ŝ0 = arg min
s′∈S

∣∣ẑd[0|q]−Oq(s
′)
∣∣ (32)

ŝ(x, t) = S(ŝ0,x, t) := ψq

(
ẑd[0|q],x, t

)
. (33)

Hence, we have for all s′ ∈ S∣∣∣ẑd[0|q]−Oq

(
ŝ0
)∣∣∣ ⩽ ∣∣∣ẑd[0|q]−Oq

(
s′
)∣∣∣. (34)

In particular, for s′ = s0 and since Oq(s0) = zd[0|q],∣∣∣ẑd[0|q]−Oq

(
ŝ0
)∣∣∣ ⩽ ∣∣∣ẑd[0|q]−Oq

(
s0
)∣∣∣ (35)

⩽
∣∣δ0|q∣∣.

In the other hand, from assumption A2. equation 8:

α(p)|ŝ0 − s0|S ⩽ |Oq(ŝ0)−Oq(s0)| (36)
⩽ |Oq(ŝ0)− ẑd[0|q]|+ |ẑd[0|q]−Oq(s0)|
⩽ 2

∣∣δ0|q∣∣
14

Published as a conference paper at ICLR 2024

e

Figure 3: Model overview – The model leverages a dynamical system (System 1) to perform auto-
regressive predictions of the dynamics in a mesh-structured latent space from sparse initial condi-
tions. It is combined with a data-driven state estimator derived from another continuous-time dy-
namical system (System 2), implemented with multi-head cross-attention. The attention mechanism
queries the intermediate anchor states from the auto-regressive predictor and uses Fourier positional
encoding to encode the query points (x, τ). An additional GRU refines the dynamics after interpo-
lation.

Moreover, since f2 is Lipschitz

∂

∂t
|S(s0,x, t)− S(ŝ0,x, t)|S = |f2

(
S(s0,x, t)

)
− f2

(
S(ŝ0,x, t)

)
|S (37)

⩽ Ls|S(s0,x, t)− S(ŝ0,x, t)|S .
and using the Grönwall inequality

|S(s0,x, t)− S(ŝ0,x, t)|S ⩽ eLst|s0 − ŝ0|S . (38)

Finally, combining equation 36 and equation 38

|S(s0,x, t)− S(ŝ0,x, t)|S ⩽ 2α(q)−1
∣∣δ0|q∣∣eLst.

which concludes the proof.

E MODEL DESCRIPTION

In this section, we describe the architecture of our implementation in more detail. The model is
illustrated in figure 3.

Step 1 – The output predictor derived from System 1 is implemented as a multi-layer graph neural
network inspired from Pfaff et al. (2020); Sanchez-Gonzalez et al. (2020) but without following
the standard “encode-process-decode” setup. Let X̃ = {x0, ...,xK} be the set of sub-sampled
positions extracted from the known locations X (cf. Artificial generalization from section 3.4). The
input of the module is the initial condition at the sampled points and the corresponding positions(
xi, s̃d[0](xi)

)
i

and is encoded into a graph-structured latent space zd[0] = (zd[0]i, e[0]ij)i,j where
zd[0]i is a latent node embedding for position xi and e[0]ij is an edge embedding for edge pairs
(i, j) extracted from a Delaunay triangulation. The encoder ê maps the sparse IC to node and edge
embeddings using two MLPs, fedge and fnode:

zd[0]i = fnode
(
s̃d[0](xi),xi

)
, e[0]ij = fedge

(
xi − xj , |xi − xj |

)
, (39)

15

Published as a conference paper at ICLR 2024

fnodes and fedges are two ReLU-activated MLPs, each consisting of 2 layers with 128 neurons. The
initial node and edge features zd[0]i and e[0]ij are represented as 128-dimensional vectors.

The dynamics f̂1 is modeled as a multi-layered graph neural network inspired from Pfaff et al.
(2020); Sanchez-Gonzalez et al. (2020), we therefore add a layer superscript ℓ to the notation:

zd[n+ 1] = f̂1
(
zd[n]

)
=

(
zL
i , e

L
ij

)
i,j

such that

eℓ+1
ij = eℓij +

εij︷ ︸︸ ︷
gℓedge

(
zℓ
i , z

ℓ
j , e

ℓ
ij

)
,

zℓ+1
i = zℓ

i + gℓnode

(
zℓ
i ,
∑

j εij

)
,

e0ij = e[n]ij ,
z0
i = zd[n]i,

(40)

The GNNs employ two MLPs gℓnode and gℓedges with same dimensions as fedges and fnodes. We compute
the sequence of anchor states zd[0], · · · zd[q] in the latent space by applying f̂1 auto-regressively.

The observation function ĥ1 extracts the sparse observations s̃d[n] from the latent state zd[n] and
consists of a two-layered MLP with 128 neurons, with Swish activation functions (Ramachandran
et al., 2017) applied on the node features, i.e. s̃d[n](xi) ≈ ĥ1

(
z[n]i

)
.

Step 2 – The spatial and temporal domains Ω × J0, T K are normalized, since it tends to improve
generalization on unseen locations. The state estimator ψq takes as input the sequence of latent
graph representation zd[0], · · · , zd[q] and a spatiotemporal query sampled in Ω× J0, T K. This query
is embedded in a Fourier space using the function ζω which depends on a frequency parameter
ω ∈ Rdim Ω+1 (initialized uniformly in [0, 1]). By concatenating harmonics of this frequency up to
some rank, we obtain a resulting embedding of 128 dimensions (if ζω(x, t) exceeds the number of
dimensions, cropping is performed to match the target shape).

ζω(x, t) = [..., cos(kω1|nx
x), sin(kω1|nx

x), cos(kωnx+1t), sin(kωnx+1t), ...], k ∈ {0, · · ·K}.
(41)

The continuous variables zn∆(x, t) conditioned by the anchor states are computed with a multi-head
attention Vaswani et al. (2017)

zn∆(x, t) = fmha
(
Q=ζω(x, t),K=V={zd[n]i}+ ζω(X , n∆)

)
, (42)

where fmha is defined as
q1 = A(Q,K, V),
q2 = Q+ q1,
q3 = B(q2),
out = q3 + q2.

(43)

Here, A(·, ·, ·) refers to the multi-head attention mechanism described in (Vaswani et al., 2017)
with four attention heads, and B(·) represents a single-layer multi-layer perceptron activated by the
rectified linear unit (ReLU) function. We do not use layer normalization.

The Gated Recurrent Unit Cho et al. (2014) aggregates the sequence of conditioned variables (of
length q) as follows:

u[n] = rgru
(
u[n−1], zn∆(x, t)

)
, (44)

Ŝ(s0,x, t) = D (u[q]) , (45)

where u[n] is the hidden memory of a GRU, initialized at zero. rGRU denotes the update equations
of a GRU – we omit gating functions from the notation – and D is a decoder MLP that maps the
final GRU hidden state to the desired output, that is, the value of the solution at the desired spatio-
temporal coordinate (x, t), We used a two-layered gated recurrent unit with a hidden vector of size
128, and a two-layered MLP with 128 neurons activated by the Swish function for D.

Training loop – To create artificial generalization scenarios during training, we employ spatial sub-
sampling. Specifically, during each gradient iteration, we randomly and uniformly mask 25% of X
and feed the remaining 75% to the output predictor (System 1). To reduce training time further and
improve generalization on unseen locations, we use bootstrapping by randomly sampling a smaller
set of points for querying the model (i.e. as inputs to ψq). To do so, we maintain a probability weight
vectorW of dimension |X×T |, initialized to one. At each gradient descent step, we randomly select

16

Published as a conference paper at ICLR 2024

N=1, 024 points from X × T weighted by W . We update the weight matrix by setting the values
at the sampled locations to zero and then adding the loss function value to the entire vector. This
procedure serves two purposes: (a) it keeps track of poorly performing points (with higher loss) and
(b) it increases the sampling probability for points that have been infrequently selected in previous
steps.

The choice of ∆ in the dynamics loss equation 13 allows us to reduce the complexity of the model.
In Table 1, we present results obtained with ∆ = 3∆∗ indicating that the output predictor (System
1) predicts the latent state representation three time steps later. Consequently, the number of auto-
regressive steps during training decreases from T/∆∗ (e.g., for MeshGraphNet and MAgNet) to
T/∆. In Table 2, we used ∆ = 2∆∗. For a more comprehensive discussion on the effect of ∆ on
performances, please refer to Appendix G.

Training parameters – To be consistent, we trained our model with the same training setup over
all different experiments (i.e. same loss function, and same hyper-parameters). However, for the
baseline experiments, we did adapt hyper-parameters and used the ones provided by the original
authors when possible (see further below). We used the AdamW optimizer with an initial learning
rate of 10−3. Models were trained for 4,500 epochs, with a scheduled learning rate decay multiplied
by 0.5 after 2,500; 3,000; 3,500; and 4,000 epochs. Applying gradient clipping to a value of 1
effectively prevented catastrophic spiking during training. The batch size was set to 16.

F BASELINES AND DATASETS DETAILS

F.1 BASELINES

The baselines are trained with the AdamW optimizer with a learning rate set at 10−3 for 10,000
epochs on each dataset. We keep the best-performing parameters on the validation set for evaluation
on the test set.

DINo – we used the official implementation and kept the hyper-parameters suggested by the authors
for Navier and Shallow Water. For Eagle, we used the same hyper-parameters as for Shallow Water.
The training procedure was left unchanged.

MeshGraphNet – we used our own implementation of the model in PyTorch, with 8 layers of
GNNs for Navier and Shallow Water, and up to 15 for Eagle. Other hyper-parameters were kept
unchanged. We warmed up the model with single-step auto-regressive training with noise injection
(Gaussian noise with a standard deviation of 10−4), as suggested in the original paper, and then
fine-tuned the parameters by training on the complete available horizon. Both steps try to minimize
the mean squared error between the prediction and the ground truth. Edges are computed using De-
launay triangulation. During evaluation, we perform cubic interpolation between time steps (linear
interpolation gives better results on Eagle) first, then 2D cubic interpolation on space to retrieve the
complete mesh.

MAgNet – We used our own implementation of the MAgNet[GNN] variant of the model, and fol-
lowed the same training procedure as for MeshGrapNet. The parent mesh and the query points
are extracted from the input data using the same spatial sub-sampling technique as in ours, and the
edges are also computed with Delaunay triangulation. During evaluation, we split the query points
into chunks of 10 nodes, and compute their representation with all the available measurement points.
This reduces the number of interpolated vertices in the input mesh and improves performances at the
cost of higher computation time (see figure 4). However, to be fair, this increase in computational
complexity introduced by ourselves was not taken into account when we discussed computational
complexity in appendix G.

F.2 DATASET DETAILS

Navier & Shallow Water – Both datasets are derived from the ones used in (Yin et al., 2022). We
adopted the same experimental setup but generated distinct training, validation, and testing sets. For
details on the GT simulation pipeline, please see Yin et al. (2022). The Navier dataset comprises
256 training simulations of 40 frames each, with additional two times 64 simulations allocated for
validation and testing. Simulations are conducted on a uniform grid of 64 by 64 pixels (i.e. Ω),

17

Published as a conference paper at ICLR 2024

available IC

during training

artificially generated

sparse IC

A
r
tific

ia
l S

u
b

s
a
m

p
lin

g

t=0 t=0

interpolated IC

at all available points

Estimated

points

GT points

Physical Space Physical Space

Physical Space

Dense simulation

available IC

(including query points)

sparse IC

(query points removed)

t=0

Physical Space Physical Space

Training:

Evaluation:

Interpolation in

latent space

Simulation from

reconstituted

initial condition

Latent Space Latent Space

t=0

interpolated IC

at all available points

Figure 4: MaGNet – suffers from drastic shifts in distribution between training and evaluation. The
model is trained on points from X , which corresponds to a small portion of the domain. We used
our subsampling trick to artificially generate queries. During evaluation, we require the prediction
at every available point in the complete simulation, hence, MaGNet must interpolate the initial
condition to a large number of query points, filling the input of the auto-regressive model with noisy
estimates of the IC.

measuring the vorticity of a fluid subject to periodic forcing. During training, simulations were
cropped to T = 20 frames. The Shallow Water dataset consists of 64 training simulations, along
with 16 simulations in both validation and testing. Sequences of length T = 20 were generated. The
non-euclidean sampling grid for this dataset is of dimensions 128× 64.

Eagle – Eagle is a large-scale fluid dynamics dataset simulating the airflow generated by a drone
within a 2D room. We extract sequences of length T = 10 from examples within the dataset, limiting
the number of points to 3,000 (vertices were duplicated when the number of nodes fell below this
threshold).

The spatially down-sampled versions of these datasets (employed in Table 1 and 2) were obtained
through masking. We generate a random binary mask, shared across the training, validation, and
test sets, to remove a specified number of points based on the desired scenario. Consequently, the
observed locations remain consistent across training, validation, and test sets, except Eagle, where
the mesh varies between simulations. For Navier and Shallow Water, the High setup retains 25%
of the original grid, the Middle setup retains 10%, and the Low setup retains 5%. In the case of
Eagle, the High setup preserves 50% of the original mesh, while the Low setup retains only 25%.
Temporal down-sampling was also applied by regularly removing a fixed number of frames from the
sequences, corresponding to no down-sampling (1/1 setup), half down-sampling (1/2), and quarter
down-sampling (1/4). During evaluation, the models are tasked with predicting the solution to every
location and time instant present in the original simulation.

G MORE RESULTS

Time continuity – is illustrated in Figure 6 on the Navier dataset. Our model and the baselines
are trained in a very challenging setup, where only part of the information is available. During
training, not only does the spatial mesh only contains 25% of the complete simulation grid, but also
the time-step is increased to four time its initial value. In this situation, the model needs to represent
low-resolution data while being trained on sparse data.

Generalization to unseen future timesteps – Beyond time continuity, our model offers some gen-
eralization to future timesteps. Table 3 shows extrapolation results for high/mid/low subsampling of
the spatial data on the Navier dataset which outperforms the predictions of competing baselines.

Generalization to unseen grid – In our spatial and temporal interpolation experiments (tables 1
and 2 of the main paper), we assumed that the observed mesh remains identical during training and
testing. Nevertheless, the ability to adapt to diverse meshes is an important aspect of the task. To
evaluate this capability, we trained our model in the spatial extrapolation setup on the Navier dataset.

18

Published as a conference paper at ICLR 2024

Figure 5: Qualitative results on Shallow-Water – Simulation obtained with our model and the
baseline in the challenging 5% setup on the Shallow Water dataset (without temporal sub-sampling).
Each model is initialized with a small set of sparse observations and needs to extrapolate the solution
at many unseen positions. Our model outperforms the baselines, which struggle to compute the
solution outside the training domain.

t = 0 t = Δ =4δt t = 2Δ t = 3Δ

G
ro

u
n

d
 T

ru
th

O
u

rs
D

IN
o

In
te

rp
. M

G
N

M
A

g
N

et

Figure 6: Time continuity on the Navier dataset – during training, models are only exposed to a
sparse observation of the trajectories, represented spatially by the dots in the upper left figure and
temporally by the semi-transparent frames. Our model maintains the temporal consistency of the
solution and outperforms the baselines.

We compute the error when exposed to different meshes, potentially with a different sampling rate,
and report the results in table 4. Our model demonstrates good generalization skills when confronted
with new and unseen grids. We observe that the error on new grids is close to the error reported in
table 1 in the Ext-X case, we show additionally that the model can generalize even if the observed
grid is different. Notably, the model performs well when trained with a medium sampling rate.
Despite some performance degradation when the evaluation setup is significantly different compared

19

Published as a conference paper at ICLR 2024

Navier
High Mid Low

In-X 2.266 2.017 3.154DINo Ext-X 2.317 2.136 6.740
In-X 6.853 3.136 1.378Interp. MGN Ext-X 7.632 6.890 15.55
In-X 171.5 31.07 10.02MAgNet Ext-X 227.0 57.60 89.20
In-X 0.3732 0.3563 0.3366Ours Ext-X 0.3766 0.3892 0.6520

Table 3: Time Extrapolation – We assessed the performances of our model vs. the baselines in
a time-extrapolation scenario by forecasting the solution on a horizon two times longer than the
training one (i.e. 40 frames). Our model remains more performant.

Training
Navier Shallow

High Mid Low High Mid Low
In-X 0.2492 0.7929 4.5165 0.5224 1.5431 4.3447High Ext-X 0.2477 0.7782 4.4038 0.5256 1.5822 4.4963
In-X 0.4370 0.3230 0.9759 0.8528 1.2908 3.6766Mid Ext-X 0.4410 0.3401 0.9496 0.8617 1.2589 3.6043
In-X 2.2000 0.4039 0.6732 2.4395 1.5634 3.4793

Evaluation

Low Ext-X 2.2037 0.4216 0.7892 2.3914 1.5313 3.2334

Table 4: Generalization to unseen grid – We investigate generalization to previously unseen grids
by training our model on the Navier dataset in the space extrapolation setup. We report the error
(MSE (×10−3)) inside and outside the spatial domain X measured with different sampling rates
unseen during training. The diagonal shows results on grids with identical sampling rates wrt.
training, but sampled differently. Our model shows great generalization properties.

to training, our model effectively maintains its interpolation quality between out-of-domain error
(Ext-X) and in-domain error, testifying to the robustness of our dynamic interpolation module.

Ablations – we study the impact of key design choices in Figure 7a. First, we show the effect of
the subsampling strategy to favor learning of spatial generalization, c.f. Section 3.4, where we sub-
sample the input to the auto-regressive backbone by keeping 75% of the mesh. We ablate this feature
by training the model on 100%, 50%, and 25% of the input points. When the model is trained on
100% of the mesh, it fails to generalize to unseen locations, as the model is always queried on points
lying in the input mesh. However, reducing the number of input points significantly further from the
operating point decreases the performance of the backbone, as it does not dispose of enough points to
learn meaningful information for prediction. We also replace the final GRU with simpler aggregation
techniques, such as a mean and a maximum pooling, which drastically degrades the results. Finally,
we ablate the dynamics part of the training loss (Eq. 13). As expected, this deteriorates the results
significantly.

More ablation on the interpolator – We conducted an ablation study to show that limiting attention
is detrimental. To do so, we designed four variants of our interpolation module:

• Single attention (w/o GRU) – performs the attention between the query and the embed-
dings in a single shot, rather than time-step per time-step. This variant neglects the insights
from control theory presented in section 3.1 (Step 2). The single softmax function limits
the attention to a handful of points, whereas our method encourages the model to attend to
at least one point per time step and reason on a larger timescale, considering past and future
predictions, which is beneficial for interpolation tasks, as supported by proposition 2.

• Spatial (w/ GRU) & Temporal (w/o GRU) neighborhood – limit the attention to the
nearest temporal or spatial points, which significantly degrades the metrics. To handle
setups with sparse and subsampled trajectories, the interpolation module greatly benefits
from not only distant points but also from the temporal flow of the simulation.

20

Published as a conference paper at ICLR 2024

Ours
Single

attention
Temporal
attention

Spatial
neigh.

Temporal
neigh.

ANP
Kim et al. (2018)

In-X / In-T 0.2113 0.3863 0.2912 0.5623 0.4130 1.734
Ext-X / In-T 0.2251 0.4168 0.3180 0.6328 0.6681 1.835
In-X / Ext-T 0.2235 0.4094 0.3095 0.6030 1.9624 1.820
Ext-X / Ext-T 0.2371 0.4388 0.3350 0.6741 2.1818 1.920

Table 5: Ablation on interpolation – We performed four ablations on the interpolation module
(MSE (×10−3)). Single attention combines all zd[n] into a single key vector, employing attention
only once (w/o GRU). Temporal attention replaces the GRU with a 2-head attention, Spatial neigh.
restricts attention to the five spatially nearest points from the query, and Temporal neigh. computes
attention only with the nearest time zd[n] to the queried time τ (w/o GRU). These results indicate
that considering long-range spatial and temporal interactions is beneficial for the interpolation task.

100% 50% 25% Mean Max w/o grounding. Ours
10−4

10−3

M
ea

n
S

q
u

ar
ed

E
rr

or

Spatial Sub. Agregation

Ablation Study

In-T , In-X
In-T , Ext-X

Ext-T , In-X
Ext-T , Ext-X

(a)

0 1000 2000 3000 4000 5000
of query locations

10− 1

100

R
u

n
ti

m
e

(s
)

Ours

DINo

MGN

MAgNet

25 50 75 100 125 150
of query time steps

10− 1

100

R
u

n
ti

m
e

(s
)

(b)

Figure 7: Ablations and runtime – (a) Ablations on Navier (Yin et al., 2022; Stokes, 2009) with
10% of data and half temporal resolution, from left to right: exploring subsampling strategies, re-
placing GRU par mean/max pooling, removing physics grounding. (b) Runtime analysis as a func-
tion of query locations and time steps, respectively. The graph shows the average runtime (over 100
runs), and shadows indicate lower and upper bounds over the runs.

• Temporal attention (w/o GRU) replaces the GRU in our model with a 2-head attention
layer. This variant of our model does not improve the performance compared to a GRU.
We argue that GRU is more suited for accumulating observations in time, as its structure
matches classic observer designs in control theory.

• Attentive Neural Process Kim et al. (2018) is a interpolation module close to ours re-
sembling the Single attention ablation, with an additional global latent c to account for
uncertainties. The model involves a prior function q(c, s) trained to minimize the Kullback-
Leibler divergence between q

(
z, s

(
X , T

))
(computed using the physical state at observed

points) and q
(
c, s

(
Ω \ X , J0, T K

))
(computed using the physical state at query points).

Results are shown in table 5. All ablations exhibit worse performance than ours. Note that the ANP
ablation involves performing the interpolation in the physical space to compute the Kullback-Leibler
divergence during training. Thus, the interpolation module cannot use the latent space from the auto-
regressive module, which may explain the drop in performance. Adaptating ANP to directly leverage
the latent states is probably possible, but not straightforward and requires several key changes in the
architecture.

Efficiency – the design choices we made led to a computationally efficient model, compared to prior
work. For all three baselines, the required number of computed time steps for the auto-regressive
rollout depends on (1) the number of predicted time steps, and (2) the time values themselves, as
for later values of t, more iterations need to be computed. In contrast, our method forecasts using
attention from a set of “anchor states”, which is controlled through the hyper-parameter ∆. The
length of the auto-regressive rollout is therefore constant and does not depend on the number of
predicted time steps. Furthermore, while DINo scales very well to predict additional locations,
it requires a costly optimization step to compute α0. MGN does benefit from the efficient cubic
interpolation algorithm, which is a side effect of the fact that it has been adapted to this task, but not

21

Published as a conference paper at ICLR 2024

t0 t0 + ∆ t0 + 2∆ t0 + 3∆ t0 + 4∆ t0 + 5∆ t0 + 6∆

0.002

0.004
∣∣∣∂ŝ(x,τ)∂zd[n]

∣∣∣2

(a) Frontier tracking: when queried on a streamline between areas of opposite vorticity, the interpolation
module attends not only to the spatial neighborhood but also to the temporal flow near the frontier.

t0 t0 + ∆ t0 + 2∆ t0 + 3∆ t0 + 4∆ t0 + 5∆ t0 + 6∆

0.002

0.004

0.006 ∣∣∣∂ŝ(x,τ)∂zd[n]

∣∣∣2

(b) Blob tracking: in homogeneous areas, the model tracks the origin of the perturbation, and focuses on
its displacement. Our dynamic interpolation exploits the evolution of the state rather than merely averaging
neighboring nodes.

t0 t0 + ∆ t0 + 2∆ t0 + 3∆ t0 + 4∆ t0 + 5∆ t0 + 6∆

0.001

0.002

0.003 ∣∣∣∂ŝ(x,τ)∂zd[n]

∣∣∣2

(c) Periodic boundaries: our model effectively leverages the periodic condition of the Navier dataset, espe-
cially when queried on points originating from perturbations on the other side of the simulation. Again, the
interpolation depends on which points explain the output, rather than the neighborhood.

Figure 8: Norm of output derivative – wrt. each zd[n](xi) (Navier, high spatial subsampling
setup). We display top-100 nodes (•) with the highest norm, i.e. the most important nodes for
interpolation at query point (■). Using gradients rather than attention allows us to visualize the
action of the GRU. We observe context-adaptive behaviors, leveraging temporal flow information
over local neighbors, challenging to implement in handcrafted algorithms.

designed for it. We experimentally confirm these claims in Figure 7, where we provide the evolution
of runtime as a function of query locations, and of query time steps, respectively. In both cases, our
model compares very favorably to competing methods.

Attention maps – To further support our claims, we analyzed the behavior of the interpolation
module in more depth and showed the top-100 most important nodes from the embedding points
zd[n](xi) used to interpolate at different queries. The figure is shown in Figure 8. We observed
very complex behaviors that dynamically adapt to the global situation around the queried points.
Our interpolation module appears to give more importance to the flow rather than merely averaging
the neighboring nodes, thus relying on “why” the queried point is in a specific state. Such behavior
would be extremely difficult to implement in a handcrafted algorithm.

Parameter Sensitivity Analysis – We investigate the influence of two principal hyper-parameters,
namely the step size ∆ and the number of residual GNN layers L, on the performances of our model.
We present the results of our experiments in figure 9 on the Navier dataset, which has been spatially
down-sampled at 10% during training and has a temporal resolution reduced by two.

The choice of the step size between iterations of the auto-regressive backbone directly affects both
training and inference time. For a trajectory of T frames, the number of anchor states zd[n] is
determined by ⌊T/∆⌋. Increasing the step size ∆ of the learned dynamics leads to a higher num-
ber of embeddings over which the models need to reason. A parallel can be drawn between this
phenomenon and the influence of the discretization size on the accuracy of numerical methods for
solving PDEs. Furthermore, the selection of ∆ also impacts the generalization capabilities of the
model in Ext-T . When ∆ > ∆∗, the model is queried during training on intermediate instants not
directly associated with any of the anchor states zd[n]. This is visible in Figure 9 where, for instance,
with ∆ = ∆∗, the In-X /In-T error is the lowest, but other metrics increases compared to ∆ = 2∆∗.

The number of layers L in the auto-regressive backbone significantly influences the overall perfor-
mance of the model, both within the domain and on the exteriors. Increasing the number of layers
generally leads to improved performance. However, it appears that beyond L = 8, the error starts to

22

Published as a conference paper at ICLR 2024

1 2 3 4
∆

10−4

2× 10−4

4× 10−4

3× 10−4

M
ea

n
S

q
u

ar
ed

E
rr

or

Influence of ∆

In-T , In-X
In-T , Ext-X

Ext-T , In-X
Ext-T , Ext-X

2 4 6 8 10
of layers

10−4

2× 10−4

3× 10−4

4× 10−4

M
ea

n
S

q
u

ar
ed

E
rr

or

Influence of backbone depth

In-T , In-X
In-T , Ext-X

Ext-T , In-X
Ext-T , Ext-X

(a)

0 0.001 0.01 0.1 1 10 100

λ in L = Lcontinuous + λLdynamics (equation 13)

10−4

2× 10−4

4× 10−4

3× 10−4

6× 10−4

M
ea

n
S

q
u

ar
ed

E
rr

or

Weighting of Ldynamics

In-T , In-X
In-T , Ext-X

Ext-T , In-X
Ext-T , Ext-X

(b)

Figure 9: Impact of hyper-parameters on model performance – We evaluate the impact of three
critical hyper-parameters on our architecture, namely, (a) the step size ∆, the depth L of the auto-
regressive backbone and (b) the weighting of the dynamics cost in equation 13. To assess the perfor-
mance, we employ the 10% Navier dataset with 1/2 frames and compute metrics for both in-domain
and out-domain. The results reveal that increasing the depth of the GNN layers enhances the model’s
performance, while lower values of ∆ lead to better metrics. However, we observed a degradation in
the ability of the model to generalize to unseen time instants for the special case ∆=∆∗. Moreover,
we found that equally weighting of both terms Lcontinuous and Ldynamics leads to best results.

increase, indicating a saturation point in terms of performance gain. The relationship between the
number of layers and model performance is visually depicted in Figure 9. Throughout this paper, we
maintain this hyper-parameter constant for the sake of simplicity, as our primary focus is the spatial
and temporal generalization of the solution.

Failure cases – we expose failure cases on the Eagle dataset (in the Low spatial down-sampling
scenario) in figure 10. In some particularly challenging instances of this turbulent dataset, we noticed
drops in accuracy located in fast-evolving regions of the simulation, and in particular near the flow
source. We hypothesize that the origin of the failure is related to the comparatively smaller processor
unit used in our auto-regressive backbone compared to the baseline introduced in Janny et al. (2023),
hence producing less accurate anchor states when the horizon increases.

23

Published as a conference paper at ICLR 2024

Figure 10: Failure cases on Eagle– We observed failure cases on highly challenging instances of
the EAGLE dataset as the prediction horizon is increasing. We show the per point error in three
different instances and observed that the error increases with the time horizon, especially close to
turbulent areas, such as below the UAV.

24

	Introduction
	Related Works
	Continuous Solutions from Sparse Observations
	The double observation problem
	Theoretical analysis
	Implementation
	Training

	Experimental Results
	Conclusion
	Acknowledgements
	Website and interactive online visualization
	Proof of proposition 1
	Comparison of upper bounds in Proposition 1
	Proof of proposition 2
	Model description
	Baselines and datasets details
	Baselines
	Dataset details

	More results

