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Abstract

We study the sample complexity of reinforcement
learning (RL) in Mean-Field Games (MFGs) with
model-based function approximation that requires
strategic exploration to find a Nash Equilibrium
policy. We introduce the Partial Model-Based
Eluder Dimension (P-MBED), a more effective
notion to characterize the model class complexity.
Notably, P-MBED measures the complexity of
the single-agent model class converted from the
given mean-field model class, and potentially,
can be exponentially lower than the MBED
proposed by Huang et al. (2023). We contribute
a model elimination algorithm featuring a
novel exploration strategy and establish sample
complexity results polynomial w.r.t. P-MBED.
Crucially, our results reveal that, under the basic
realizability and Lipschitz continuity assump-
tions, learning Nash Equilibrium in MFGs is
no more statistically challenging than solving a
logarithmic number of single-agent RL problems.
We further extend our results to Multi-Type
MEFGs, generalizing from conventional MFGs
and involving multiple types of agents. This ex-
tension implies statistical tractability of a broader
class of Markov Games through the efficacy of
mean-field approximation. Finally, inspired by
our theoretical algorithm, we present a heuristic
approach with improved computational efficiency
and empirically demonstrate its effectiveness.

1. Introduction

Multi-Agent Reinforcement Learning (MARL) has excelled
in modeling cooperative and competitive interactions among
agents in unknown environments. However, the well-known
“curse of multi-agency” poses a challenge in equilibrium
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solving for MARL systems with large populations. Yet,
for MARL systems with symmetric agents, such as hu-
man crowds or road traffic, one can leverage such special
structure by employing mean-field approximation, leading
to the RL for Mean-Field Games (MFGs) setting (Huang
et al., 2006; Lasry & Lions, 2007). Notably, MFGs offer
a promising framework where the complexity of learning
Nash Equilibrium (NE) needs not depend on the number
of agents (Lauriere et al., 2022). It has found successful
applications in various domains, including financial mar-
kets (Cardaliaguet & Lehalle, 2018), economics (Gomes &
Pimentel) and energy management (Djehiche et al., 2016).

Similar to single-agent RL (Jiang et al., 2017; Jin et al.,
2018), for MFGs, one of the most important questions is to
understand how many samples are required to explore the
unknown environment and solve the equilibrium, a.k.a. the
sample complexity. Given the complex dynamics of mean-
field systems and high cost of generating samples from
large population, designing strategic exploration methods
for sample-efficient learning becomes imperative.

Existing works on learning MFGs primarily focus on model-
free approaches such as Q-learning (Anahtarci et al., 2023;
Guo et al., 2019), policy gradient (Subramanian & Mahajan,
2019; Yardim et al., 2022), fictitious play (Perrin et al., 2020;
Xie et al., 2021), etc. Several recent works further extend
these model-free approaches with value function approxi-
mation to handle large state-action space (Mao et al., 2022;
Zhang et al., 2023). However, their sample complexity re-
sults ubiquitously rely on strong structural assumptions such
as contractivity (Guo et al., 2019) or monotonicity (Perolat
et al., 2021). Their methods, moreover, are usually special-
ized and lack generalizability, leaving an open challenge
of efficiently exploring mean-field systems without those
structural assumptions.

To address this gap, Huang et al. (2023) establish general
sample complexity results for model-based RL in MFGs'.
They introduce a complexity measure known as Model-
Based Eluder Dimension (MBED) to characterize the com-

"Model-based RL has also been explored in Mean-Field Con-
trol (MFC) setting, where all the agents are cooperative (Huang
et al., 2023; Pasztor et al., 2021).
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plexity of the model function class. Their algorithm, under
basic realizability and Lipschitz continuity assumptions,
achieves a sample complexity upper bound polynomial w.r.t.
MBED. However, as we will show in Prop. 3.4, even for
the tabular setting, MBED can be exponential in the number
of states in the worst case. This observation, coupled with
the tractability of tabular MFGs under additional structural
assumptions (Guo et al., 2019; Perolat et al., 2021), prompts
a fundamental question:

Is learning MFGs statistically harder than single-agent
RL in general?

In this paper, we provide a definitive answer to this question.
Our main contributions are summarized as follows:

* In Sec. 3, we introduce a novel complexity measure
for any given mean-field model class M, called Partial
Model-Based Eluder Dimension (P-MBED). P-MBED
represents the complexity of the single-agent model class
derived from M after (adversarially) fixing the state den-
sity for the transition functions in M. We show that
P-MBED can be significantly lower than MBED (Huang
et al., 2023). For example, in the tabular setting, P-MBED
is always bounded by the number of states and actions,
yielding an exponential improvement over MBED.

* In Sec. 4, we propose a model elimination algorithm ca-
pable of exploring the mean-field system and returning an
approximate NE policy with sample complexity polyno-
mial w.r.t. P-MBED. From the algorithmic perspective,
our results indicate that under the basic realizability and
Lipschitz assumptions, learning MFGs is no more sta-
tistically challenging than solving log | M| single-agent
RL problems. As a direct implication, the sample com-
plexity of tabular MFGs only polynomially depends on
the number of states, actions, horizon and log | M|. This
is the first result indicating that learning tabular MFGs
is provably sample-efficient in general, even without the
contractivity or monotonicity assumptions.

* In Sec 6, we design a heuristic algorithm with improved
computational efficiency building upon our insights in
theory. We evaluate it in a synthetic linear MFGs setting
and validate its effectiveness.

As a substantial extension, we further examine the sample
complexity of more general MFGs with heterogeneous pop-
ulation, specifically Multi-Type MFGs (MT-MFGs) (Ghosh
& Aggarwal, 2020; Perolat et al., 2021; Subramanian et al.,
2020). MT-MFGs comprise multiple types of agents with
distinct transition models, reward functions or even state-
action spaces. MT-MFGs have stronger capacity in model-
ing the diversity of agents, while being more tractable than

general Markov Games”. However, the fundamental sample
complexity in the setting remains largely unexplored. Our
additional contribution includes:

* In Sec. 5, we show that finding the NE in an MT-MFG
is equivalent to finding the NE in a lifted MFG with con-
straints on policies. Building on this insight, we establish
the first sample complexity upper bound for learning MT-
MFGs. Our results identify statistical tractability of a
broad class of MARL systems, potentially offering new
insights to the sample complexity analysis for solving NE
in general Markov Games.

1.1. Related Work

Within the abundant literature on single-agent RL and
MFGs, below we focus primarily on sample complexity re-
sults for solving these problems in unknown environments.
We defer additional related works to Appx. B.

Single-Agent R When the number of states and actions
is extremely large, sample complexity bounds derived for
tabular RL (Auer et al., 2008; Azar et al., 2017; Jin et al.,
2018) become vacuous. Instead, function approximation is
usually considered, where a model or value function class
containing the true model or optimal value functions is
available, and the sample complexity is governed by the
complexity of the function classes (Agarwal et al., 2020;
Du et al., 2021; Foster et al., 2021; Jiang et al., 2017; Jin
et al., 2020; 2021a; Sun et al., 2019). Compared with single-
agent RL, the main challenge in MFGs is the additional
dependence on density in transition and reward functions,
especially that the density space is continuous. Although our
P-MBED is inspired by the eluder dimension in the single-
agent setting (Levy et al., 2022; Osband & Van Roy, 2014;
Russo & Van Roy, 2013), it is a novel complexity notion in
characterizing the sample efficiency of RL in MFGs.

Mean-Field Games Most existing results for learning
MFGs primarily focus on tabular setting and model-free ap-
proaches (Cui & Koeppl, 2021; Elie et al., 2020; Guo et al.,
2019; Xie et al., 2021), where strong structural assumptions,
such as contractivity (Guo et al., 2019), monotonicity and
density independent transition (Perrin et al., 2020), or non-
vanishing regularization (Yardim et al., 2022) are usually
required. In contrast, we focus on addressing the fundamen-
tal exploration challenge for general MFGs. Mishra et al.
(2020) study non-stationary MFG without strong structural

’The general Markov Games (MGs) framework considers in-
dividually distinct agents. However, this generality comes with
challenges. Existing results in MGs are restricted in learning
(Coarse) Correlated Equilibria (Bai et al., 2020; Daskalakis et al.,
2023; Jin et al., 2021b) and the sample complexity in function
approximation setting may still depend on the number of agents
(Cui et al., 2023; Wang et al., 2023). MT-MFGs can be regarded
an intermediary between standard MFGs and general MGs.
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assumptions, but their algorithm is inefficient and no sam-
ple complexity results were provided. Beyond the tabular
setting, Huang et al. (2023) is the most related to us. How-
ever, as implied by our results in this paper, their sample
complexity bound are suboptimal.

Multi-Type Mean-Field Games Subramanian et al.
(2020) study more general multi-type cases, but they con-
sider the transition model depending on action density in-
stead of state density. Besides, the multi-type setting has
been investigated in special cases, such as LQR (Moon &
Bagar, 2018; uz Zaman et al., 2023), and leader-follower
structures (Vasal & Berry, 2022). Ghosh & Aggarwal (2020)
is the most related to us. However, they consider the dis-
counted stationary setting and assume the state density is
fixed, while ours is more challenging since we need to keep
tracking the evolution of state density. Perolat et al. (2021)
also consider the multi-type setting, but they require the
monotonicity assumption. Moreover, they only provide
asymptotic rates without sample complexity guarantees.

2. Background

Notations Throughout the paper, we will use standard big-
oh notations O(-), 2(+), ©(-), and notations such as O(-) to
(partially) suppress logarithmic factors. In Appx. A, we list
all the frequently used notations in this paper.

2.1. Mean-Field Games

Mean-Field Markov Decision Process We consider the
finite-horizon non-stationary Mean-Field MDP (MF-MDP)
M = (u1,S, A, H,Py, 1), where p; is the known ini-
tial state distribution; S = (§; = = Sy) and
A = (A; = ... = Ap) are the state and action spaces,
which are discrete but can be arbitrarily large; Py, :=
{IPM,h}hE[H] with PM,h, 1 S X Ap, % A(Sh) — A(S}H_l)
is the transition function and 7 := {7y }peim) With 7y, :
Sy x Ay x A(S) — [0, ] is the deterministic reward
function, where A(X) denotes the probability measure over
X. Weuse Il := {77‘ = {Wh}he[H]lﬂ'h : Sh — A(.Ah)}
to denote the policy class including all non-stationary
Markovian policies, and we only focus on policies in
II. Given 7 € II and initial density p%,; = w1, the
state density p3, = {3, }hem) evolves according to
Warner = Lirn(Bhpn), b € [H] where I'Y (un)(-) =
> an.an P (Sn)m(an|sp)Parn(-|shy ans pin).

Given any m,7 € [II, we use Ezp(m[] to de-
note the expectation over trajectories generated by ex-
ecuting policy 7 while fixing the transitions and re-
wards to Parp ([ 1375)s Th(s - 15 p).  These tra-
jectories can be interpreted as the observations of
a deviated agent taking 7 while all the others take
m.  Besides, we define Vf/[’h(gu%) Ez ar(m |

Zi{:h The (Shes ans s (Wig ) |Sn = -] to be the value function
at step h if the agent deploys policy 7 in model M condition-
ing on 7, and define Jy (7; ) 1= Eg, oy, [Vﬁ’l(sl; wiol
to be the total return of policy 7 conditioning on 7. The
Nash Equilibrium (NE) 73F of model M is defined to
be the policy s.t. no agent tends to deviate, i.e., V7 €
I, Jy (7 mNE) < Jpr(7)E; 7hF). We denote EXF () =
maxz Ay (7, m) to be the NE-Gap, where Ay (7, 7) 1=
J]w(%;ﬂ') — J]\/[(ﬂ';ﬂ’).

Model-Based Setting In our model-based setting, the
learner can get access to a transition function class M C
UPrntneim VR Parn o Shx A x A(Sh) — A(Sht1)}
to approximate the true model M *. We assume the reward
function r is known. In Appx. C, we provide informal dis-
cussion about how to extend our results to the setting when r
is unknown. Our main objective is to find an e-approximate
NE 7hE., satisfying ENE (7)E.) < e. Same as Huang et al.
(2023), we only make two basic assumptions about the func-
tion class M: realizability and Lipschitz continuity.

Assumption A (Realizability). M* € M.
Assumption B (Lipschitz Continuity). For any M € M,
and arbitrary policies 7, 7w € II, Vh, sp,, ap, we have:
ParnCI$hs an, 130 1) — Parn (18 ans iy n) |1
< Lrllphsp — ,U?I{/I,h”lv
|’“h(3h»ah»/ﬁw,h) — 71 (Sn, an, /‘?I{/I,h)Hl

< Le|lphsn — M?VI,h

1.

Note that our Assump. B only requires Lipschitz continuity
on feasible densities. In contrast, contractivity assumes L,
and Ly are sufficiently small (Guo et al., 2019; Yardim et al.,
2022), and prior works considering monotonicity (Perolat
etal., 2021; Zhang et al., 2023) usually assume the transition
is independent w.r.t. density, i.e., Ly = 0.

We consider the same trajectory sampling model as Huang
et al. (2023), which is much weaker than the generative
model assumptions requiring trajectories conditioning on
arbitrary state densities in most MFGs literatures (Anahtarci
et al., 2023; Guo et al., 2019; Perrin et al., 2020).

Definition 2.1. The sampling model can be queried with
arbitrary 7,7 € II, and return a trajectory by execut-
ing 7 while transition and reward functions are fixed to
Par< n (-l g ) and 74 (-, -, - p,) for all

MFGs and N-Player Symmetric Anonymous Games
MEFGs can be regarded as the limit of Symmetric Anony-
mous Games (SAGs) when the number of agents N ap-
proaches infinity (Guo et al., 2019; Yardim et al., 2022).
As explained in (Huang et al., 2023), the sampling model
(Def. 2.1) is reasonable for N-player SAGs with central
controllers, which can manipulate all the agents’ policies.
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Given a SAG, it is known that the NE of its MFG approxima-
tion is a O(N~'/2)-approximate NE for the SAG (Yardim
et al., 2024), if all the agents execute that same NE policy.
In this way, one may interpret our setting as centralized
training with decentralized execution.

2.2. Multi-Type Mean-Field Games

Multi-Type Mean-Field MDP A finite horizon non-
stationary Multi-Type (or Multi-Group) MF-MDP M with
W types of agents can be described by a collection of
tuples M := {(uy’,S", A, H,PR;, 7" )wemw)}> Where
we use w in superscription to distinguish the initial state
distribution, state-action spaces, the transition and reward
functions in different groups. Besides, for any w, the
transition and reward functions depend on densities in all
types. More concretely, we have Py, := {P}; , }re(m) with
Pirn o S x A X A(S}) x o x AS)Y) — A(Sy )
and r := {r}’ } ey with 7}« S x AP X A(Sp) x ... x
A(S)V) — [0, %]. For each type of agents, we consider the
Markovian policies I1" := {7* := {7} } e[ |[Vh, 7} :
Sy — A(AY)} and use IT = {7 := {7"} e |V €
[W], 7% € II"} to denote the collection of policies for
all types. For the function approximation setting, we
assume W function classes M!, ..., MW are available,
where Yw € [W], MY C {{P} }neim|Vh € [H], P} :
SPox AY x A(S}) x .. x A(S)Y) — A(SP)} is used
to approximate the transition function for the w-th group.
The MT-MFG function class M is then defined by M +
{M = M"x ... x MW |Vw € [W], M¥ € M™}, which
we use to approximate the true model M *.

For the lack of space, we defer the definitions of value
functions, Nash Equilibrium, and other related details to
Appx. G.1. For the assumptions in MT-MFG setting, we
defer to Appx. G.3.

3. Partial Model-Based Eluder Dimension

In the function approximation setting, the exploration chal-
lenge is related to the complexity of the function classes. In
this section, we introduce new notions to characterize the
complexity of model function class for MFGs and its exten-
sion to Multi-Type MFGs setting. The proofs and additional
discussions can be found in Appx. D.

Inspired by the Eluder dimension of single-agent value func-
tion classes (Jin et al., 2021a; Russo & Van Roy, 2013)
and mean-field model function classes (Huang et al., 2023),
similarly, we use the length of independent sequences to
characterize the complexity of function classes. In Def. 3.1,
we first introduce the definition of standard e-independence
in previous Eluder dimension literature, to highlight the
difference from our partial e-independence. Although we
only consider the [;-distance here, similar discussion can be

generalized to other distances, e.g., the Hellinger distance.

Definition 3.1 (e-Independence; (Huang et al., 2023)).
Given M and a data sequence {(s!,a}, ut)}"; C Sp x
Ap x A(Sy), we say (sp,ap, pr) is e-independent of
{(st,ai, pi )}, wrt. M if there exists M, M € M such
that 30, [IParn (s, af,, 1) — Pz, Clshs ab, )l <
e? but ||Pagp(-[sn, an, pn) — Pyz . Clsn, an, )1 > e
We call {(s!,al, ut )} ; an e-independent sequence w.r.t.
M (at step h) if for any i € [n], (s},a},pu}) is e-

independent w.r.t. {(s},al, ut)}iz 1.

Definition 3.2 (Partial e-Independence). Given M, a map-
ping vy, : M — A(S)), and a data sequence {(s}, a})}"
C Sp X Ap, we say (s, ay) is partially e-independent of
{(st,ai)} C Sp x A, wrt. M and vy, if there ex-
ists M,M € M, s.t. 30 [Pagn(lsh, ah, va(M)) —
Pz a(lsh ah,va(M))F < €2

vh(M)) = Pz, Clsn,an,vn (M) > e We call
{(st,ai)}"_, apartially e-independent sequence w.r.t. M
and vy, (at step h) if for any i € [n], (s},a}) is partially

e-independent on { (s}, a})}iZ].

but [|Pasn(-sn, an,

Intuitively, a partially e-independent sequence of M is an
independent sequence w.r.t. the function class converted
from M by using some mapping v, to “partially” fix the
input (the density part) for each function in M. We use
dimgy,, (M, €) to denote the length of the longest partially
e-independent sequence w.r.t. M and vy, (at step h). Now,
we are ready to define the Partial-MBED.

Definition 3.3 (Partial MBED). Given a model class M,
and a policy 7, we define the mapping vj: VM € M,
vi(M) = pf;,. The P-MBED of M is defined by:
dimpg(M, €) := maxy¢ g max, dimg,~ (M, ).

By definition, P-MBED can be interpreted as the complexity
of the single-agent model class converted from the Mean-
Field model class M by partially (adversarially) fixing the
density of the functions’ input. In fact, different choices of
v in Def. 3.2 may lead to different notions of complexity.
In our main text, we stick to the choice in Def. 3.3, but in
Appx. D.1, we discuss an alternative choice of v, its induced
P-MBED and associated properties.

Next, we take the tabular setting as an example, and show
that P-MBED of any function class for tabular MFGs can be
controlled by |S||.A|, while MBED (Huang et al., 2023) can
be exponential in |S| in the worst case. This is reasonable
given the single-agent nature of P-MBED.

Proposition 3.4. (Tabular Setting) For any M and ¢ >
0, dimpg(M,e) < |S||A|, while there exists a concrete
example of M such that dimg (M, ) = Q(exp(|S])).

Below we provide the linear mean-field model classes
with decomposable transition functions as another exam-
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ple. When the transition is independent w.r.t. density p (i.e.
G(p) is constant), the linear MFGs reduce to the single-
agent linear MDP (Jin et al., 2020). As we can see, the
P-MBED of the model class of linear MFGs is only related
to the dimension of the state-action feature, which matches
the complexity of their single-agent correspondence.

Proposition 3.5 (Linear MFGs; Informal version of
Prop. D.4). Consider the model class: Mg =
{PuIPu (s a,p) = 6(s,0)T Gu)(s) € Wh with
known feature ¢(-,-) € R, G(-) € R™4, and a next-state
feature class V satisfying some normalization conditions.
Then dimpg (M, €) = O(d).

Similarly, for model classes in Multi-Type MFGs setting,
we can define the Multi-Type P-MBED generalized from
dimpg in MFGs, which we denote as dimy;rpg. We defer
its formal definition to Appx. D.3. Likewise, dimyiTpg
can be regarded as the complexity measure for a col-
lection of W single-agent model classes converted from
M. In the tabular case (resp. Prop. D.11), we have
dimMTpE(M,EI) = O(Ewe[W] |Sw||AwD’ and in lin-
ear MT-MFG setting with decomposable transitions (resp.
Prop. D.12), dimyrpe(M, ') = O3, i) d') where
{d" }yepw) are the dimensions of the state-action features.

4. Sample Efficiency of Learning in MFGs

In this section, we show that the sample complexity of learn-
ing NE in MFGs is indeed governed by our new complexity
notion P-MBED. We highlight our main algorithm and sam-
ple complexity results in Sec. 4.1, and then explain details
in the algorithm design and technical novelty in Sec. 4.2.
The missing details and proofs for results in this section are
deferred to Appx. F.

4.1. Main Algorithm and Highlight of Main Results

Before proceeding to the algorithms, we first introduce sev-
eral useful notions. Given a reference policy 7, we denote
d(M, M|rx) := maxz d*(M,M|r) Vv d*(M, M, |r) as
the conditional model distance between M and M , where
A" (M, M|r) = Bz ni(m)[Xpey [Parn (-l iy ) —
P37 5 (L2 )ll]. Given a model class M, any M €
M, and any pc;licy 7, we define the y-neighborhood of M
in M’ to be: B (M; M) := {M' € M'|d(M, M'|r) <
€o}. The “Central Model” (abbr. CM) in M’ w.r.t. pol-
icy 7 is defined to be the model with the most number of
neighbors: M) (m; M) := argmaxare p |BE (M; M')].
Besides, when g and M’ is clear from the context, we will
use M, as ashort note of ML (m; M”). Lastly, Vrr, 7’ € 11,
we define doo 1 (7, ') 1= maxy, o, [|7(:|sn) — 7' (-|sn)||1-

We provide our main algorithm in Alg. 1. The basic idea

. w - NE, k
is to find a sequence of “reference policies” (7 or g, ",

k = 1,2,...) and run the model elimination steps (Alg. 2
as ModelElim) to gradually remove models in M that
distinct from M * conditioning on these reference policies,
until find an approximate NE. Next, we highlight our main
results and its implications.

Theorem 4.1. [Informal version of Thm. F.7] Under As-
sump. A and B, with appropriate hyperparameter choices,
wp. 1 — 46, Alg. I terminates at some k < logy |M|+ 1 and
returns an e-NE of M'™* after consuming at most

3 M|

~ ([ H7
0] (52(1 + LTH)Z dlmPE(M, &J) IOg 6)

trajectories, where €' = O(H3(1+L HTLT ).

Model-Based RL for MFGs is not Statistically Harder
than Single-Agent RL As we will explain more in the next
section, Mode 1E1 im only needs to be a single-agent model
elimination subroutine, and it is the only step consuming
samples. Therefore, Thm. 4.1 suggests that the sample
complexity of learning MFGs can be characterized by a
O(log | M|) number of single-agent model elimination sub-
problems, whose learning complexity is controlled by P-
MBED. As a result, the total sample complexity only scales
with P-MBED and the log-covering number of M.

Based on the discussion in Sec. 3, we can expect for many
model classes with low P-MBED (e.g. tabular setting
Prop. 3.4, linear setting Prop. 3.5), learning MFGs is prov-
able sample-efficient. In particular, for tabular MFGs where
dimpg (M, e’) < |S||A|, our result yields a sample com-
plexity with polynomial dependence on |S|, |.A|, H, which
implies that tabular MFGs are provably efficient in gen-
eral if considering the model-based function approximation,
even without assuming contractivity or monotonicity that
are often required in existing works (Guo et al., 2019; Perrin
et al., 2020; Yardim et al., 2022). Compared with recent
results in function approximation setting for MFGs (Huang
et al., 2023) or MFC (Pasztor et al., 2021) with similar Lips-
chitz assumptions, our result does not suffer the exponential
term (1 + L7 )" (see Remark F.4 for more explanation).

Additional Remarks on log| M| Although low log-
covering number of function class is regarded as a stan-
dard assumption in many MARL works (Cui et al., 2023;
Wang et al., 2023), we would like to take the tabular
MFGs as an example and provide remarks about the mag-
nitude of log |M]|. Under Assump. B, with appropriate
discretization, the e-cover for all possible transition func-
tions could be Q(exp(SAHN:(A(S)))), where N2 (A(S))
denotes the covering number of density space A(S) and
we omit Ly, L,. As aresult, in the worst case, log |M| =
Q(N:(A(S))), which could be exponential in S A. Nonethe-
less, there are many examples, such that, even in the worst
case, log | M| is acceptable. For instance, if the model class
is parameterized by some 6 € O (e.g. Neural Networks)
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Algorithm 1: MEBP: Model Elimination via Bridge Policy

1 Input: Model Class M; Parameters ¢, €, €, 0.
2 Initialize: M! < M, §y +
3fork=1,2,...do

4 7F « argmin, |B (ME,; M¥)

6
log, |M|+1

s

6 else

7 T BridgePolicy(M*,&);

8 Randomly pick M* from MF+1; 5% (mpk
se oNE (_NE.k 3 NE,k .

9 if £, (mp, ") < < then return 7" ;

10 end

1 | if |MP*| = 1 then Return the NE of the model ;
12 end

5 if BZ5. (ME,’Z,M’“)| < % then M**! < ModelElim(7*, M¥ g 6) ;

MM ModelElim(nhe*, M, E 6);

NE, k&

)+ max; Agp (7, 7 )

and take the concatenation of [s, a, y] € R (S)+dim(A)+S
as inputs, where we use dim(-) to denote the dimension
of a given set. Then log | M| = O(dim(®)), which could
just scale with O(Poly(dim(S), dim(A), §)}). As another
example, when the transition function only depends on
some sufficient statistics of density instead of the exact den-
sity, (e.g. P(+|s,a, ) = P(-|s,a, Ez-,[5])), we may have
log | M| = O(Poly(S, A, H)) in the worst case. Note that,
for the single-agent RL, the largest log-covering number of

models is also bounded by O(Poly(S, A, H)) (folklore).

Exponential Separation between MFGs and MFC Dit-
ferent from MFGs, in Mean-Field Control (MFC) setting,
agents cooperate to find an optimal policy to maximize the
total return. Previous work (Huang et al., 2023) suggests
that both MFC and MFGs can be solved via a unified MLE
framework with similar sample complexity upper bounds.
One natural question is: whether learning MFC can also be
as sample-efficient as single-agent RL?

We provide a negative answer to this question. In Thm. F.9,
we show that even in tabular setting, there exists a hard
instance such that learning MFC requires Q(exp(|S])) sam-
ples. This suggests an exponential separation between learn-
ing MFC and MFGs from information-theoretical perspec-
tive. Intuitively, for MFC, in the worst case, the agent should
explore the entire S x A x A(S) space to identify the policy
that achieves the maximal return. In contrast, as we will
explain in Lem. 4.3, in MFGs setting, the learner does not
have to explore the entire state-action-density space; instead,
finding a “locally-aligned equilibrium policy” is enough.

4.2. Algorithm Design and Proof Sketch

4.2.1. MopELELIM: THE MODEL ELIMINATION STEP

ModelElim can be arbitrary single-agent model elimina-
tion procedures. Here we provide an example in Alg. 2.

The basic idea of Alg. 2 is to eliminate models not aligned
with M™ conditioning on the given reference policy 7. In
each iteration, we first find a tuple (7%, M, M'") resulting
in the maximal discrepancy AL, . Aslong as Al .. > &,
we collect samples and remove models with low likelihood.
With high probability, on the one hand, M* will never be
ruled out under Assump. A; on the other hand, the growth of
>, Al is controlled by P-MBED. As a result, the algo-
rithm will terminate eventually and return a model class only
including those M with small d(M, M*|7). We summarize
the result in the theorem below.

Theorem 4.2. [Informal version of Thm. F.3] Given any

reference policy 7, €,0 € (0,1), if M* € M, by choosing
~ 4 dim & . g

T = O(Hdzﬁlma)) with &' = O(HQ(l—EiLT)H)’ pr

1 — 9, Alg. 2 terminates at some Ty <T', and return MTo

s.t. (i) M* € M0 (ii) VM € MTo, d(M*, M|r) <.

We claim Alg. 2 is a single-agent model elimination subrou-
tine, because from Line 8-11, we can see that Alg. 2 only
eliminates those M € MF s.t. Pprp(--, -, i) distinct
from Pp« 5, (+|, -, 7+ ,,) under some adversarial policy 7
or  itself. Here the density part of Pz 5, is fixed by u7,, so
during the elimination, all the transitions reduce to single-
agent functions only depending on states and actions.

Beyond P-MBED Notably, although we focus on P-MBED
in this paper, one may consider other complexity measures
generalized from single-agent RL setting (Foster et al., 2021;
Sun et al., 2019) and our analysis can be extended corre-
spondingly. That’s because as long as Mode 1E1 im satisfies
the (i) and (ii) in Thm. 4.2, it can be arbitrary and does not
affect the function of other components in Alg. 1.

4.2.2. FAST ELIMINATION WITH BRIDGE POLICY

We seek to construct reference policies that allow to elim-
inate models as efficient as possible, more specifically, to
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Algorithm 2: Model Elimination given a Policy

1 Input: Reference Policy m; M; £,8
2 Initialize: M! < M; 29 < {}; Set T by Thm. E.3;

3fort=1,2,...,Tdo

4 Tt argmaxz MaXyy nrre mt E%JW(W)[ Zthl H]PM,h('|'7 ) /J'Xf,h) - IPM',h('|'7 K /‘%’,h)”l]‘

5 At .« the maximal value achieved above.

6 | ifAl,. <Zthen return M’ ;

7 else

8 forh=1,2..., H do

9 Query Sampling Oracle (Def. 2.1) with (, 7); collect the data at step h: z}, := {(s},, aj,, s} 1) }.
10 Query Sampling Oracle (Def. 2.1) with (7", 7); collect the data at step h: 2, := {(s},,a},, s}, {)}.
11 Zt Ztut vzt

12 end

13 VM € MY 15 g(M; 2Y) = Zze[t] he[H] log Py, h(5h+1‘5h7ahh“hf n) +log Par, }L(Sh+1|$h’ ahv#M n)-
14 MAFL (M € M| Iy 5(M; 2) > maxg; fy (M 2%) — log ZHMY,
15 end
16 end

17 return M7T.

halve the model candidates every iteration until finding the
NE. We first consider the simple case, where the models are
“scattered” and easy to be distinguished: there exists a policy
7%, such that, no more than | M¥|/2 models are around its
CM (resp. If-branch, Line 5 in Alg. 1). In this case, after
running Mode 1E1im with 7%, M**1 only contains those
models locating at the neighborhood of A/* conditioning 7*,
which implies M| < |B29 (MZe; MF)| < [MF]/2.

The challenging scenario is that, for any policy, the corre-
sponding CM is surrounded by over a half of models (resp.
Else-branch, Line 6 in Alg. 1). In that case, unstrategically
selecting reference policies leads to inefficient model elimi-
nation. We present a subtle choice of reference policy, called
Bridge Policy, which can be constructed by Alg. 3. Before
diving into the details of our constructions, we first explain
the key insights behind it. Our first insight is summarized in
the lemma below.

Lemma 4.3. [Implication of Local Alignment] Given any
M, M with transition Py; and P—, denote 7\F to be an €1~
approximate NE of M, suppose d(M, M |7?’X{E) < &9, then
7\E is also an O(e1 + €3)-approximate NE ofM

Lem. 4.3 states that, if two models M and M align with each
other conditioning on the NE of one of them, then they ap-
proximately share that NE. Therefore, in the E1se-branch,

after calling Mode1E1lim with WII;IE * as the reference pol-

NE,k

icy, if the NE-Gap ng (7, ") is small for some randomly

selected M* € MF+1 (resp. Line 9), we can claim TN

is an approximate NE of M * by Lem. 4.3.

However, the remaining challenge is that, if £ * (mpe kY

is large, we cannot conclude anything about it. Hence,
wgrE ** should be chosen in a strategic way, so that in this
case, we can guarantee the elimination is efficient, i.e.
|MF+L < | MPF|/2. Our second key insight to overcome
this challenge is summarized in Thm. 4.4, which indicates
that the existence of a “Bridge Policy” that coincides with

the NE of its corresponding CM.

Theorem 4.4. [Bridge Policy] If the E1se-branch in Line 6

in Alg. 1 is activated, running Alg. 3 returns a bridge poltcy

NE,k NEK .

g, > Such that, mg.”" is an approximate NE of Mgl‘:

Before we explain how to prove Thm. 4.4, we first check
the implication of this result. Based on Thm. 4.4, if
X ( me*) > 2 in Line 9, by Lem. 4.3, we know

NE, k
d(MgE  M* v ¥ cannot be small. Therefore, with ap-
propriate hyperparameter choices, we can assert that all

NE, k
models in the neighborhood BgNE ,c(Mg[‘ﬁ‘ , M*) should
have been eliminated, implying |Mk+1| < |MF|/2.

Combining the discussions above, we know our Alg. 1 guar-
antees to either return an approximate NE, or at least halve
the model sets. We summarize to the following theorem,
which paves the way to our main theorem Thm. 4.1.

Theorem 4.5. In Alg. 1, by choosing g = m,
€ = %, and choosing € according to Thm. F.5, w.p. 1 — 6,
(1) if the If-Branch in Line 5 is activated: we have
|MEFL| < | MF|/2; (2) otherwise, in the E1se-Branch
in Line 6: either we return the ng’k which is an e-

approximate NE for M*; or the algorithm continues with

MEH] < JMF|/2.
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Algorithm 3: Bridge Policy Construction

1 Input: ME-MDP model class M; eg, &;
Convert M to a PAM class M via Eq. (1).

2
3
4
5

Construct the new PAM MBr s.t. for any sy, ap,

Construct &-cover of the policy space IT w.r.t. do 1, denoted as Il (see Def. F.1).
for 7 € I1- do Find the Central Model M0 (7; M) < arg max yy vy |B5° (M; M)]

Dsen, [25_*5100,1(7%%)]4']@1@89 (7811 (18R,00,T)

Pae i (-[sh, an, T) = S e Be—de 1 (moA)] T

Zweng [26—doo,1(m, 77)] ’1\150(7r A, h(*}uah )

)

, where [2]1 := max{0,x}

TBr,h(5h7ah77r) = S ren, [26—de, 1(71' ™)+

6 Compute the NE of Mg,: 7hF < arg min, max; JMBI- (m;m) — JMBI(W; ).
7 return mhr.
Proof Sketch of Thm. 4.4 An informal way to interpret considerations:

the existence of such bridge policy in Thm. 4.4 is to consider
a mapping 7 from an arbitrary 7w € II to the NE of its CM
M¢,. Then, Thm 4.4 states that 7 has an approximate
fixed point miF ~ T (7RF). However, given that it’s hard
to evaluate the continuity of 7 and moreover, 7 can be
a one-to-many mapping if multiple NEs exist, we prove
the existence of such 7hE by the non-trivial construction in
Alg. 3. We leave the connectlon between our proofs and the
fixed-point theorems as an open problem.

Before explaining our construction in Alg. 3, we first in-
troduce a new notion called “Policy-Aware Model” (abbr.
PAM) denoted by M. The main motivation for introducing
PAM is that we want to focus on the policy space, because
the feasible densities {4 j, } rer may not cover the en-
tire density space A(Sy,), and it is not easy to characterize.
We defer to Appx. E.1 for the formal definition of PAM
and also new notations in Alg. 3 (e.g. MZl(-,-) denotes
Central Model, J denotes the total return), and only sum-
marize the main idea here to save space. Briefly speak-
ing, a PAM M := {S, A, 1, H,P,#} is an MDP whose
transmon P:SxAxI— A(S ) and reward functions

: & x A x II — [0, %] depend on state, action and a
“reference policy”. PAM can be regarded as a higher-level
abstraction of MF-MDP (i.e. MF-MDP C PAM), where
we replace the dependence on p73, in MF-MDP by 7. We
can convert a ME-MDP M to a PAM M sharing the same
S, A, 1, H by assigning the following for any h € [H]|
with pf, = p, Vo € 11

Iﬁ)M,h('|'a 7)) =P n (L wsn) (H

FM,h(" S7) =T s hrn)y Harner < Uarn(Mhrn)-

In Alg. 3, we first convert each MF-MDP to its PAM version.
Then, we find an &-cover of the policy space w.rt. do 1,
denoted by Ilz, and construct the “Bridge PAM” Mg, by
interpolating among CMs w.r.t. ™ € II;. Here the weights
[28 — doo,1(m, )] T is chosen carefully for the following

* (I) since I1; is an £-cover, for any 7 € II, the denominator
> wen. [26 — deo 1 (m, T)]F is always larger than &, which
implies both I.Ei’BrT » and 7'g; j, are well-defined and continu-
ous in 7. The continuity is important since it implies that
M, has at least one NE (Def. E.1), denoted as wj~;

* (D [2€ — doo 1 (m, 7)]T decays to zero if 7 largely dis-
agrees with 7, s0 Pg; (|-, -, ) is only determined by CMs
of those 7 close to 7.

Next, we discuss what we can conclude from the above two
points. Based on the triggering condition in Line 6 in Alg. 1,
for any 7, 7, the neighbors of M{,, and M, share at least
one common model Mqhare By using Mnare as a bridge, we
have [|B i (-, ) = Bz (1)1 = O(doo1 (m, 7).
Combining with (II), we know Vr, ..|\fF]’Br(-|-, ) —
]P)Mgr(‘|‘v‘v 7)|l1 = O(&), which implies Pg,(-|-, -, 7hF) =~
P “E;E( |-, -, mhE) if £ is small enough. By the definition of

NECirn PAM, the conversion rules in Eq. (1) and Lem. 4.3,

we can conclude that 7XF is an approximate NE of Mz,
and finish the proof of Thm. 4.4.

S. Learning in Multi-Type MFGs

In this section, we extend our results to the more general
Multi-Type MFGs setting®, allowing to address heteroge-
neous agents.

Reduction to Lifted MFGs with Constrained Policy Our
key observation is that, a MT-MFG M to can be lift to a new
ME-MDP Myirg := {Swmra, Awmra, 11, H, Pyrg, mmrc } by
augmenting the original states and actions with the type in-
dex. The new state and action spaces are given by: Syrg 1=

Uwem 18" x {w}} and Avieg := Uy e {A™ x {w}}.

3The existence of NE in MT-MFGs can be found in Thm. E.12.
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We defer the detailed description for the conversion process
and the definition of initial state distribution, transition and
reward functions in Myrg to Appx. G.2.

For policies in My, we only consider ITT := {7|Vw €
[W],7m(a® o w|s¥ o w) = 7¥(a™|s™), ¥ € II"}, in-
cluding all policies which only take actions with the same
type as the states. Similar to the NE defined in full pol-
icy space II, we can define the “constrained NE” when
agents are constrained to only take policies in the subset II .
More concretely, we call To: € TIT the e-approximate Con-
strained Nash Equilibrium if V7 € TIT, Jyp,q (7, TRE) <
It (TRE  7TNE ) + €. The following property reveals the
connection between constrained NE in Myrg and the NE

in the original multi-type model M.

Proposition 5.1. Given a MT-MFG M and its lifted MFG
Mpyrg, we have: (1) an e-constrained NE %gf;r e IIf for
Myrg is a (We)-NE in M; (2) an e-NE 7 in M is an
e-constrained NE for Myrc.

The above result not only implies the existence of con-
strained NE in My given the existence of NE in M by
letting ¢ — 0, but also suggests one can solve NE of MT-
MFG by solving the constrained NE in its lifted MFG. The
second point is very important since the constrained NE can
be solved via almost the same procedures in Sec. 4, as long
as we constrain the policy space to IIT. We defer algorithm
details to Appx. G.5, and summarize our main result in the
following theorem.

Theorem 5.2. [Informal version of Thm. G.8] Under As-
sump. C and D, there exists an algorithm (Alg. 4), s.t. w.p.
1 — 6, it returns an e-NE of M after consuming at most

- W2H7
O( g

(1+ L,H)> dimyrpg(M, ')

trajectories, where ¢’ = O( WL AT LT ).

In Appx. H, we investigate a practical multi-agent system
called NV-player Multi-Type Symmetric Anonymous Games
(MT-SAGs) generalized from SAGs. We establish approxi-
mation error between MT-MFGs and MT-SAGs. Our results
reveal a larger class of Multi-Agent systems where NE can
be solved in a sample-efficient way.

6. A Heuristic Algorithm with Improved
Computational Efficiency

Although Alg. 1 is sample-efficient, it requires exponential
computation. In this section, we aim to design a heuristic
algorithm® sharing the main insights as Alg. 1 while more
computationally tractable. For the lack of space, we defer
the concrete algoirthm (Alg. 7), the experiment setting and

“The code is available at https://github.com/
jiaweihhuang/Heuristic_MEBP.

evaluation results (Fig. 2) to Appx. J. In this section, we just
highlight the algorithm design.

Highlights of Algorithm Design We assume a NE Ora-
cle is available, such that given a known MFG model, the
Oracle can return its NE. We argue that such oracle can be
easily implemented if the model is smooth enough or the
monotonicity condition is satisfied (Guo et al., 2019; Pero-
lat et al., 2021). Besides, in our experiments, we observe
that repeatedly mixing the policy with its best response can
converge to a good solution. Given such oracle, Alg. 7 only
involves | M| calls of NE oracle, and Poly(| M|, |S|, |A|, H)
arithmetic operations in computing model difference or like-
lihood, which avoids exponential computation in Alg. 1.

For the algorithm design, Alg. 7 follows the same if-else
structure as Alg. 2, but we improve the computational effi-
ciency in two aspects. Firstly, we avoid procedures optimiz-
ing over the entire policy class, including Line 4 in Alg. 1
and Line 4 in Alg. 2. Instead, we only search over the NE
policies of model candidates, which can be computed by
calling the NE Oracle | M| times at the beginning. As long
as the models in M are diverse enough, we can expect their
NE:s to be reasonable representatives for II in distinguishing
models. Secondly, we replace the WII;IrE *in Alg. 1 with the
NE of the model M* < argmax v |B% (M, MF)],
and do not have to solve the NE of the complijgated bridge
model in Alg. 3. We claim that this modification still aligns
with Alg. 3 in principle. Note that the main intuition behind
Alg. 3 is that, when Line 6 in Alg. 1 is activated, the ref-
erence policy used for elimination should be a policy 7,
such that, 7. collapses with the NE of the model with the
maximal number of neighbors conditioning on 7.

7. Conclusion

In this paper, we reveal that learning MFGs can be as sample-
efficient as single-agent RL under mild assumptions, and
the sample complexity of RL in MFGs can be characterized
by a novel complexity measure called Partial Model-Based
Eluder Dimension (P-MBED). Besides, we extend our al-
gorithms to the more general Multi-Type MFGs setting.
Lastly, we contribute an empirical algorithm with improved
computational efficiency.

As for the future, one interesting direction is to study the
sample complexity when only value function approxima-
tions are available. Besides, while our focus is the sample
efficiency in this paper, it would be valuable to identify
general conditions, under which computationally efficient
algorithms exist. Lastly, our results underscore the power
of mean-field approximation, and it would be worthwhile
to investigate other generalizations of the MFGs setting, in
order to deepen our understanding on the sample efficiency
of learning NE in other MARL systems.
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Outline of the Appendix

* Appx. A: Frequently used notations.

* Appx. B: Additional related works.

* Appx. C: Informal Discussions about how to extend our results to unknown reward function setting.

* Appx. D: Missing details and proofs related to P-MBED.

* Appx. E: Missing details related to Single/Multi-Type Policy Aware Models (PAM).

* Appx. F: Proofs for lemma and theorems related to learning MFGs in Sec. 4.

* Appx. G: Proofs for lemma and theorems related to learning MultiType MFGs in Sec. 5.

e Appx. H: Introduction to Multi-Type Symmetric Anonymous Games (MT-SAGs) and approximation error between

MT-MFGs and MT-SAGs.

* Appx. I: Some basic lemma useful in our proofs.

* Appx. J: Experiment details and results.

A. Frequently Used Notations

Notation Explanation
M Mean-Field MDP
M Model class for (single-type) Mean-Field MDP
™ Non-stationary policy for (single-type) Mean-Field MDP
Qs Vi, I Value functions for (single-type) MF-MDP
dimpg (M, ) Type-I Partial-MBED, Def. 3.3
dimpg (M, €) Type-II Partial-MBED, Def. D.1
d(-,-|m) Conditional distance given a reference policy 7
Beo (M, M) eo-neighborhood of M in M conditioning on 7
M (m, M) The “Central Model”
doo 1 (m,7") Policy distance
M Multi-Type Mean-Field MDP
M Model class for multi-type Mean-Field MDP
™ Non-stationary policy for multi-type Mean-Field MDP
Qn, Vv, Im Value functions for multi-type MF-MDP
dimyrpg(M,e) Type-I Multi-Type Partial- MBED, Def. D.10
dimyyppg (M, €) Type-II Multi-Type Partial-MBED, Def. D.10
M / M Policy-aware model (single-type/multi-type)
M / M Model class for the policy-aware model (single-type/multi-type)
Q N VM, J i/ Q AT VM, J a7 | Value functions for the policy-aware model (single-type/multi-type)
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B. Additional Related Works

Single-Agent/Multi-Agent RL with General Function Approximation For the single-agent RL with function approxi-
mation setting, besides the literature we mentioned in the main text, there are multiple other insightful works (Ayoub et al.,
2020; Chen et al., 2022a; Huang et al., 2022; Modi et al., 2021; Uehara et al., 2021; Xie et al., 2022; Zanette et al., 2020;
Zhong et al., 2022).

As for the multi-agent setting, sample complexity of Markov Games has been extensively studied in both tabular (Bai et al.,
2020; Chen et al., 2022b; Jin et al., 2021b; Zhang et al., 2019; 2021) and function approximation setting (Cui et al., 2023;
Foster et al., 2023; Huang et al., 2021; Ni et al., 2022; Wang et al., 2023). These papers study a general MARL setting
with individually distinct agents, which is quite different from our MFG or MT-MFG. Besides, many of them study the
decentralized training setting, which requires much less communication cost than our centralized setting. However, because
of the difficulty in learning NE in general Markov Games setting, most of them focus on the convergence to weaker notions
of equilibrium instead, e.g. the Correlated Equilibrium or the Coarse Correlated Equilibria, and those results in function
approximation setting (Cui et al., 2023; Wang et al., 2023) may still depend on the number of agents, although in polynomial.
In contrast, although we specify in mean-field approximation setting, we can have more ambitious goals on solving Nash
Equilibrium, and our sample complexity bounds are totally independent w.r.t. the number of agents. Moreover, we also
reveal some cases when learning (MT-)MFG can be as sample-efficient as single-agent RL by investigating the Partial
Model-Based Eluder Dimension.

C. Extension to the Setting when the Reward Function is Unknown

We remark that our current results extend to the unknown reward setting. Below we elucidate the key modifications needed
for this extension.

Firstly, for the problem setup, we instead assume a model class M available, where each element M := (rp;,Pys) € M
corresponds to a (reward, transition) tuple. The definition of the P-MBED can be amended by incorporating both reward and
transition differences in Def. 3.3.

Secondly, for the algorithm design:

» For Algorithm 1, we redefine the model distance the definition d™ (M, M |r) (introduced at the beginning of Sec. 4.1)
to include the expectation of distances in both reward and transition functions:

H

d" (M, M|m) = Bz na(m [ lraen Gl 080m) =757 Cls s 057 )l H Iz Loy 080) =Bz Gl 57,0 1)
h=1

The definition of €p-neighborhood and “Central Model” will adjust correspondingly.

 For Algorithm 2: we should augment the reward difference into the right-hand side of Line 4, integrate reward into the
dataset in Lines 9 and 11, and include the likelihood of reward functions in Line 13.

» For Algorithm 3, the construction of bridge policy will follow the new definition of model distance d™ (M, M |7).
Finally, for the analysis, based on the modified algorithms, under realizability assumption, we can extend Lemma D.7 and
prove that the accumulative estimation errors of reward and transition are controlled by P-MBED. The current analysis can

be seamlessly generalized to establish sample complexity upper bounds depending on the P-MBED of reward and transition
function classes.
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D. Missing Details about Partial Model-Based Eluder Dimension
D.1. Alternative Notions of Partial MBED in MFGs

In this section, we introduce a choice of v different from the one in Def. 3.2, which also leads to a valid P-MBED. In the
following, we introduce another choice of v, which results in a different P-MBED. We will call it "Type I1I” P-MBED to
distinguish the one in Def. 3.3.

Definition D.1 (Type II Partial MBED). Given a model class M, define the mapping vf;. , : M — A(S},) such that
VM € M, viy. (M) := uf;. p,, then the type Il P-MBED of M is defined by:

(M, e).

dimpg (M, ) := max max dimg|,
PE( ) = T helH) V3

We want to highlight here that each of the two types P-MBED has advantages over the other. As we will see in the Thm. E.7,
if we use ding to derive the sample complexity upper bound, we have to suffer the exponential term of (1 + Lz). On
the other hand, in the following proposition, we can see ding is directly comparable with MBED (Huang et al., 2023)
(v = 1 case), while we can not have the similar guarantee for dimpg.

Proposition D.2 (Low MBED C Low Type IT P-MBED). dimpy (M, ¢) < dimg(M, ¢).

D.2. Proofs Related to P-MBED in MFGs Setting

Proposition 3.4. (Tabular Setting) For any M and £ > 0, dimpg (M, €) < |S||.A|, while there exists a concrete example of
M such that dimg (M, ) = Q(exp(|S))).

Proof. When the density is fixed, any MF-MDP reduces to a single-agent MDP. For any single-agent MDP, there are at
most |S||.A| different (sp,, ap,) pairs, for any h. Therefore, the P-MBED can be upper bounded by |S||.A|.

In contrast, for MBED in (Huang et al., 2023), we consider the model class constructed in Thm. F.9. Consider the sequence

{(s},ap, ") }icpn) with p' € U._ vy forallie [n], but u® # p/ if i # j. For any i € [n — 1], there exists two models
— L 5e

P'ui and PHHI , such that,

Z 1By (lsho aho 1) = By (b ab, i3 = 0

but
i (-[shs @ 1°) = Ppiva (|5, ap, 1)l = 4e.

Lz we have dimg(M,, €) = Q(exp(S)). L]

Note that U \ LLTJ| = ((fg—e) 1), by choosing ¢ <
Similarly, we can show the type II P-MBED in tabular setting can also be upper bounded by |S||.A4], because there are at
most |S||.A| different state-action tuples.

Proposition D.3 (Type II P-MBED in the Tabular Setting). dimpbg (M, ) < |S]|Al.

Next, we study the linear setting. Given a mapping f : S — R%, we use Rank([f(z)]scx) to denote the rank of matrix
concatenated by [f ()] ,cx € RIFIX4,
Proposition D.4 (Linear Setting; Formal version of Prop. 3.5). Consider the Low-Rank MF-MDP with known feature

¢S x Ax A(S) — R satisfying ||¢|| < Cy, and unknown next state feature 1 : S — R%. Given a next state feature
s")g(s")||2 < Cy, consider the following model

s’/

class:
My = {Py|Py(-|s,a, ) = @(s,a, 1) " (s"); Vs, a, 1, Py (s, a, 1) € A(S); 9 € W},
we have ding(M\p, €)= 6(maxﬂ,h Rank([¢n(sn, an, uis- p)lsnes,anea))-

Moreover, if ¢(s, a, ju) has decomposition: ¢(s,a )T = o(s,a)TG(p) with ¢(-,-) € R? and G() € RI*4 \pe have
dimpg(My, ) = O(d) and dimEg (Mg, £) = O(min{d, d}).
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Remark D.5. As we can see, the P-MBED is related to the “activated dimension” of features after partially fixing the
density, which can be much lower than its MBED =~ d. Moreover, when the feature is decomposable, the dimension of
state-action feature will also serve as an upper bound.

Proof. Proof for Type-11 P-MBED (Def. D.1) In the following, we first consider a fixed policy 7 and h. To simplify the
notation, we denote ® := [¢(sn, an, - 1,)]scs.aca € RISI41 to be the matrix concatenated by vectors (-, -, (5 1),
and denote dyeve := Rank(®) to be its rank. We use U := [u1, U, ..., Ud,,,,] € R¥*%eie to denote a normalized orthogonal
basis in Span(®) = Span(U) satisfying ||u;||2 = 1 for all i € [dyerive] and u; u; = 0 for any i # j. Easy to verify that for
any sp, ap,, the following equation

U¢aclive(sh7 Qh, M7]1\—4*,h) = ¢(Shﬂ Qh, :U’TFM*,h)'

has a solution satisfying:

||¢)active(5h7ahv,ujw*’h)HQ = HUTU(ZSactive(ShaahaM?\r/[*,h)HQ = ||UT¢(3h7aha/-L;\r/I*,h)H2 < ||¢(3h7a'h7ﬂ'7]1\-4*7h)”2 < Cy.

Given a fixed policy 7, h € [H], suppose (s}, ap), ..., (s7', a}?) is a partially e-independent sequence w.r.t. My and VL h

defined in D.1. Then for each i € [n], there should exists 1%, 1)¢ € W, such that:

1—1
& > 3" Py (lsh, ab e 1) B Clsh aly e )3
t=1

and
62 SHPdﬂ (.|S,’il’ a;z’ :u7]\r/f*,h) - P$1(|S;L7 a’im M}T\/I*,h)”%

S . ~. S 2
= (Gacive (s @l 15 ) TUT S0 W) = TNy g (51 g 7))
s'eS

< bacteiy @l 13- Py 1 0T S W) = )0 g1 (5l 1 e )

s'eS
where we define:
i—1
i._)\[+ Baci (z i T )¢ . (i i )T € R %active X daciive .
h = active \Shy Ahy WAL+ b )Pactive (Shy Apy Kpr+ h )
t=1

17 if (bactive(s;p a;p u‘lll\-/l*,h)TUT(wi(Sl) - {El(s/)) Z 0;

/
i i\ShyQh,y Uy S ) = .
Jyi b (sh: an, 1, &) {1, otherwise.

For simplicity, we use Uw’lz(sh, an, ) =0T Y, (4(s') — J(s’))gwﬂ;(sh, ap, 1, s') as a shortnote. Therefore, for each i,

||v¢i,gi(3;la aj,, Hare.n)| 3\2
o =1 o 2
:/\vaiﬂ;i (S;L’ aﬁzv U7I{/[*,h)H2 + Z (qsactive(sz? a;u N7J\r/[*,h)TU¢i7$i (S;u a;m U%*,h))
t=1
o s , - o 2
:)‘vaﬁi (Sﬁw a‘;w :UT]{/[*,h)H2 + Z ((bactive(s);w a%, N%*,h)TUT Z(zﬁl(s) - wl(sl))gwiﬁi (sﬁw a;m M%*,}N 8/))
t=1 s’
i—1
S4/\C\% + Z ||P1ZJ‘ (|Sz};a CLZ, /j].\r/[*,h) - P$1(|827 a’im /”'?\/[*,h)”%
t=1
<4NCE + &2

By choosing A\ = £2/4C%, we have:

g? 1

S 9
||¢active(5;wa;u,u&*,h)n(A;'L)*l 2 W = 9°
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On the one hand,

det AZ-H :det(AZ + ¢active(52’ (lZ, /L‘;\r/[*,h)qﬁactive(sz,GZ,UTJ\r/I*7h)T) = (1 + ||¢active(3270127/1@71(/[*7}1)”%1\2)—1) - det AZ
3 T 3 T 1 dacli\'e 3 T
§d AL (2)LdetAh:)\h (§)L

Therefore,

3 T nC?
Aiacuvc(i)n < det AZJrl < ( (g, )dactive < ()\ + [ )daclive.

active active

which implies n = O(dycqive log(1 + M ).

Finally, if we take the maximum over all policy m, we have

ding(M\P: €)= 6(“;%} Rank([¢n (sh, an, - ,h)]shes,aheA))~

When ¢(sy,, ap, 1) can be decomposed to ¢(sp, an)’ G (1) for some ¢(sp,an) € R, easy to verify that for any 7, the
corresponding dycive < d. By combining with Prop. D.2, we can conclude dimbg (M, &) = O(min{d, d}).

Proofs for P-MBED (Def. 3.3) As for the first type of P-MBED, we only study the decomposable feature setting. Given a
fixed policy m, h € [H], suppose (s}, a}), ..., (s¥, a}) is a partially e-independent sequence w.r.t. My and the mapping 7
defined in Def. 3.3, then for each i € [n], there should exists )%, 1)¢ € ¥, such that:
i—1
& > S NBys (s al i) B Clshoaho %, IR
t=1

and
e SHPWHS;L’ a};aﬂzi,h) - qui('|s;‘m a’fiﬂﬂgi’h)”?

S ) ~. S 2
=(0shoai) T D (G V() = G, ) ()G 5 (ks k)
s'eS

<||¢ Shaa’h H(A || Z th l) ( )wz( ))ng wz(shva}w )‘ 3

Ay
s'eS

where we define:
b= Y b(sh, ap)d(sh,ap) T € RO

g¢aﬁﬁ(5h7@h75/)1=:{]7 if¢%52,QZ)T(C?OLch)ﬁﬂ(sU — Gluz, J'(s) = 0;

—1, otherwise.

The rest analysis is similiar to the non-decomposable setting above. As a result, we can show:

~ dC,C
= O(dlog(1 + iW»

This holds for any 7, which finishes the proof. U]

Remark D.6. Following similar analyses as Prop. D.4 and Prop. B.6 and Prop. B.7 in (Huang et al., 2023), we can compute
the P-MBED for kernel MF-MDP and generalized linear function classes. All we need to do is to replace desy or d in
(Huang et al., 2023) with the corresponding dimensions conditioning on the adversarial densities.

Lemma D.7. Under Def. 3.3 and Def. D.1, consider a fixed w and an arbitrary h € [H), Suppose we have a sequence
{Parentiey € Fand {(sf;,a5)} i, € S x A,
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e ifforall k € [K], Zi:ll Pars (1855 @l 3 1) — Pare (-5 ahy, 13- )3 < B, then for any € > 0, we have
K T T
Dkt HPM’C,h('|3};§aa’;§7N1\4k,h) - PM*,h('|527alf€nﬂM* )N = \/ﬂKdlmPE(M €) + Ke),

e ifforall k € K], Zf;ll IPark n (185, @hys g 1) = Pare n (85, as i p)IIF < B, then for any e > 0, we have
K s ™
Py H]P)M’“,h('|s§7a’i€u:uM*,h) - PM*,h('|31f€u“;CLMM*,}L)HI = (\/ﬁKdun (M, e) + Ke).

Proof. Let’s consider a single-agent model-class P C {P|P : S x. A — A(S)}. We first introduce the notion of independent
state-action sequences given a single-agent model class.

Definition D.8 (s-Independent state action pairs). Given single-agent model P and a data sequence {(s},al)}", C
Shx Ay, we say (sh, ay) is e-independent of{(s,'l, ai) ., wrt. P if there exists P, P € M suchthat > ;" [Py (+|st, al)—

Pu(: st ai |13 < e?but |Pasn(lsn, an) — Ph(:|sn,an)|l1 > . We call {(s},, a},)}i—, an e-independent sequence w.r.t. P
(at step h) if for any i € [n], (s}, a}, ui) is e-independent w.r.t. {(s,al, )} iZ].

We use dimg (P, ¢) to denote the maximal length of e-independent sequence {(s’, a’)};¢[,,) for single-agent model class P.
Since single-agent RL is a special case of MF-MDP where the transition is independent w.r.t. density. As implied by Lem.
4.4 in (Huang et al., 2023) when a = 1, suppose there is a sequence {P*} re[x] C P and a sequence of states and actions

{(s¥,a¥)}rex, such that:
k—1
P L
> IPF( s}, ah) = P*(lsh, ap)l} < B
i=1
where P* € P is some fixed function, then for any € > 0,

Z IB*(-|s5, ai) = P*(lsk;, ap) [l < O(VBEK dimg (P, €) + Ke).

By choosing P := {Pasn[Par,n (| ) < ParnCles s i), M € M} with P* := Py (-], -, - ,) and combining the
definition in Def. 3.3, we can finish the proof of the first statement.

By choosing P := {ParnlParn(-[- ) < Parn(ls s pipe ) M € M} with P* := Page (-, -, uf- 5,) and combining
the definition in Def. D.1, we can finish the proof of the second statement. ]

D.3. Partial MBED for Model Classes in Multi-Type MFGs Setting

Definition D.9 (Partial e-Independence for Multi-Type Mean-Field Model Classes). Given a multi-type model class M, con-
sider aw € [W] and a mapping v}° : M — A(S}) x ... x A(S)V), and a sequence of data {(s; ", a; ")} C S x AY,
we say (s}’,al’) is partially e- independent on {(sp” Z, a”")}r_, wrt. M and v at step h, if there exists M, M €

M, st S B Clsy apt v (M) = Py (s ol i (M))E < e but [Py, (lsi aff, v (M) —

Pu (s, ap, v (M) > .

Besides, we call {(s\",a}”")}7_, isa partlally e-independent sequence w.r.t. M and v if for any i € [n], (s}, a}""") is
partially e-independent on {(s\""* B a}f “Y}iZ1. In the following, we use dimgy,w (M, €) to denote the length of the longest
partially e-independent sequence w.r.t. M and v}” for type w (at step h).

Definition D.10. Given a model class M and an arbitrary w, we define the mapping v;/"" : M — A(S') x ..A(SW) s.t.
v " (M) = p3y > and the mapping vy;~ - M — A(S) x . A(SY) s.t. vy;T , (M) = iy . Then, the Multi-Type
P-MBEDs are defined by:

* Type I MT-P-MBED: dimyTpr(M,€) := ZwG[W] maxp,e (] MaXrer dimg), v (M,e);
* Type II MT-P-MBED: dim}ppp (M, ) := > we(w] MaXpe(p) MaXpery dimg,wr (M, e).
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Proposition D.11 (Tabular Multi-Type MF-MDP).

max{dimyrpe(M, £), dimyrpg (M, e)} < Y [SI[A"].
we[W]

Proof. By definition, for each w, for any fixed h and 7, the longest partially independent state-action sequence would have
length |S*||.AY].

Proposition D.12 (Linear Multi-Type MF-MDP). Consider the Low-Rank Multi-Type MF-MDP with known feature
PV 1 SV x AY x A(SY) x .A(SW) = R satisfying ||¢*|| < Cy for any w € (W], and unknown next state feature
P* : S — RY. Given a next state feature function class V', ..., UW satisfying ¥y € UV, Vs’ € SV, Vg : S — {—1,1},
1> e ¥(s"™)g(s") |2 < Cu, define the model class:

M\IJ“’ = {Pwu;

Vs, a", p, PY(-|s, a", p) == ¢V (s, a%, ) T (s"); Py (-[s",a", p) € A(SY); " € U7},
then, we have:

. d;i ive ﬂAhC‘ﬁC‘I’
Vw e [W]’ dlm{\}ITPE(M‘I’“’ ) E) = O( ;4/] -,.-glr‘[n,%)é[H] leUCtivenr,h 10g(1 + L LU L

)

€

where dtilli'tive,ﬂ'ﬁ = Rank([¢1}f(81}f’ a;f’ I’I‘WM*,h)]S}fES"”,a‘;EAw)'

Moreover, if ¢*(s",a", ) is decomposable, i.e. for any w € [W], P (sV a0, )T = ¥ (s¥,a®) TGV () with
V() € RY and G¥(-) € R¥" >4 we have dimyrpg(Myw,e) = O wew) d*) and dimyyppp(Myw, €) =
O e min{d”, d*}).

Proof. The proof is a direct generalization of Prop. D.4 by applying the same techniques in the proof of Prop. D.4 for each
type w € [W], so we omit it here.

D.4. Partial MBED in Constrained Policy Spaces

Next, we define the Constrained Partial MBED extended from Def. 3.3, where the main difference is that we constrain the
set of adversarial policies.

Definition D.13 (Constrained Partial MBED in MFRL). Given a (single-type) Mean-Field model class M, and M* denotes
the true model, we consider the same v, and vj,. , function defined in Def. 3.3 and Def. D.1, respectively. Then, the
constrained P-MBEDs are defined by:

* Type I P-MBED: dimICPE|m (M, g) 1= maxje (g max et dimp),r (M, €);

¢ Type I P-MBED: dimICIPE|m (M, &) := maxpe(y) max ent dimg),y | (M, e).

Comparing with P-MBED, the main difference is that in constrained P-MBED the adversarial policies are only chosen
from the constrained policy set. Recall the definition of IIt in Sec. 5. Given a M and a model class Mg converted from
M according to Appx. G.2, we have the following relationship between the P-MBED of Mg constrained on IIt and
P-MBED of M.

Proposition D.14. Given a model class M and its corresponding lifted MFG class Mygg:

dimgepg|nt (Mure, €) < dimyrpr (M, €), 2

dimgPE\HT (Mur, ) < dimyprpg (M, €). &)

Proof. Let’s consider a fixed policy 7 € II. Note that, 7 corresponds to a 7 := {7}, with 7 : S* — A(A") and
7 (ay|sy) = m(a} o w|s} ow). Given any € > 0, and h € [H], suppose we have a partial e-independent sequence w.r.t.
the mapping ]} (or vf;. ,), denoted as {(s},""" o w;, a;”"" o w;) }ic(n)- We divide this sequence according to its group w;,

W, Ty

which we denote as {{s}""" o w, a}’"™" o W}, clny] fweiw] With > 1y, = n. By construction of Mg, for any w € [W],
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W,y Wyl : . : . . w, ™ w, T
5, ap " }i, €lny] 18 @ partial e-independent sequence w.r.t. function class M* and the mapping v}, "™ (or Vng+ p)s

which is upper bounded by the Multi-Type P-MBED of model class M™.
We finish the proof of Eq. (2) by maximizing over = € TIT. []

As directly implied by Prop. D.14, Prop. D.11 and Prop. D.12, we can upper bound the constrained P-MBED in some special
cases.
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E. Details about Single-Type/Multi-Type Policy Aware Models
E.1. (Single-Type) Policy-Aware Model

Concretely, Policy-Aware Model (PAM) is specified by a tuple M = {8, A, H, i, "M, 7y }» where S, A, H, 1i; are the
state space, action space, horizon length, initial state distribution which are the same as the normal MF-MDP setting;
i = {]P’M 1o ]P’M 7} is the transition function with IP’M i ShoxX Ap X IT = A(Shy1), and # 5y == {# 3y 15 Fyy gt

is the reward function® satisfying 7 Nh : Sp X Ap x IT — [0, 1/ H], where recall IT denotes the collection of all Markov
policies. Given any reference policy 7, we define the value function QL B Sy X Ap x II — R and V]@ B SpxII =R
regarding 7 in the following way:

H
;\T"Lh('a 'aﬂ-) :E|: Z ’i;M’h/(Sh’aah’yﬂ)’Sh = Qp =, \V/h/ > h7 Sh/41 ™~ HDM’h/('|S}L'7ah’aW)aah’-‘rl ~ %('|Sh’+1):|7
h'=h
~ H ..
V]@7}1('7ﬂ) :E[ Z FM’h,(Sh/,ah/,ﬂ')’Sh =, Gp ~ %7 Vhl > ha Sh/41 ™~ ]P)M,h/("sh/vah/vﬂ-)vah/+1 ~ %("Sh/+1)} .
h'=h

Similarly, we will denote £ N () ['] to be the expectation taken over trajectories sampled by executing 7 in the model M,
such that the transition and reward functions are fixed by m. Again, we will call 7 as the “reference policy”.

By definition, once the reference policy 7 is determined, the transition/reward functions reduced to single-agent transi-
tion/reward functions, and the value functions are defined in the same way as single-agent RL setting. Besides, we define
the total return of 7 conditioning on the reference policy 7 as:

']M (7~T’ 7T) = ]EslNul [V]\?[)h(sla 77)]7

and define A ; i (7, 7) = J (7o) — Ty (0, 70). Similar to MF-MDP, we define the NE in M. Intuitively, the NE in M is

the policy 7r that agents do not tend to dev1ate when 7N A1 E is chosen to be the reference policy.

Definition E.1 (Nash Equilibrium in M ). Given a model M , we call 71'1]\35 is a Nash Equilibrium (NE) of M ,if

vr eI, jM(%;Hf;) < Jy(w T

Besides, we call 7XF is an e-approximate NE of M, if

Vi ell, Jy (@) < Jy (e E) +e.

Similar to the conditional distance d(M, M |7r) defined in Sec. 4, we can define the conditional distance for PAM.
d(M, M|r) := m??'x maX{E%,M(w) [Z ||PM,h('|'7 LT) = Pﬁ,h(.|.’ S )]s
h=1

Z By o) = B L ml))

Given a PAM model class M and a model M € M, for any reference policy 7, we define the p-neighborhood of M in M
to be
B (M; M) := {M' € M|d(M,M'|r) < o}

Besides, we define the Central Model Mé{’r(w, M) in M regarding 7 to be the model with the largest neighborhood set:

ME(m; M) +— arg max |BE(M; M)].
MeM

SHere we specify the model in the subscription, because for those PAM converted from ME-MDPs, even if they share the reward
function in mean-field systems, the reward functions in PAM version can be different because of the difference in transition functions.
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E.1.1. EXISTENCE OF NASH EQUILIBRIUM IN M

Next, we investigate the existence of NE in M. Recall the definition

! = — 4
dooa(m )= | max_ [ Clsn) = w4 Clsn) @

Theorem E.2. [Existence of Nash Equilibrium in PAM] Given a PAM M with discrete state and action spaces, such that,
forany h € [H],sp41 € Shy1,5h € Sh,an € Ap, both Py, (Sht1|sn, an, ) and ¥y , (Sn, an, 7) are continuous at ™

w.r.t. distance d 1, then M has at least one NE satisfying Def. E. 1.

Proof. In Prop. E.2, we establish the existence of NE in Multi-Type PAM, and the proof for this theorem is a special case
when W = 1.

As a direct result of Thm. E.2 and Lem. E.4, we have the following corollary.

Corollary E.3. Given a MF-MDP model M satisfying Assump. B, the PAM model M converted from M according to the
rules in Eq. (1) has at least one NE.

E.1.2. USEFUL LEMMA RELATED TO THE PAM CONVERTED FROM MF-MDP

Lemma E4. [Lipschitz Continuity of PAM] Given an MF-MDP M satisfying the Lipschitz continuity condition in Assump. B,
consider the PAM M converted from M according to Eq. (1), we have M is also Lipschitz continuous that, Vh € [H| and
any s, € S,ap € A,

h

1Pz 1, L5y an, ) = Byp Gl an, 7)1 < dooa (7 ) L D (14 Ly)" "
h'=1

h
|7'“'A-Lh(sh,ah,7r) — 7';1\;[7h(sh,ah,7r’)| < doo,l(ﬂ'ﬂTl)Lr Z 1+ LT)h_h .
h'=1

Proof. This lemma is a special case of Lem. E.13 when W = 1. ]

E.2. Multi-Type Policy-Aware Model
In this section, we introduce Multi-Type Policy-Aware Model (MT-PAM) extended from PAM. To distinguish with MT-MFG,

we use M as notation.

MT-PAM is specified by M := ={(uy, 8", A%, H, I'Eb}‘\’z, fﬁ)we[w]}ﬁ, where ¥, A", H, i} are defined the same as the
Multi-Type MF-MDP setting; IE”;\’;I = {Pv o h} nhe[H)] is the transition function with ]P’}’\’/I P SE < AR < IL— A(Sp41) and
Farn o Spox Ay x IL— [0, +1, where recall IT denotes the set of all Markov policies 7 := {7 },,[w] with 7% € II".

Given a reference policy 7 := {#x¥ }we[W] € IL for any 7 := {7" },,e[w] € IT, we define the value function for type w
Q 1S x AY x IT — Rand V : &) x II = R in the following way:

H
Nw, T . R W w o __ w o __ ™ w W w W w ~w
Qy; h(~,~,7‘r) .fIE[ g F3r ne (Shrs @hyy ™) |85 =+, ap =+, Vh > h, i1 NPM.E("STL’QE’ﬂ-)’ ay ~7T}~L+1].
, =M ,
H
W, - W W w w o w ~w ™ w W W w w ~w
VM h( ) = E[ Z TMyh,(Sh/,ah/,ﬂ')‘Sh =, ay ~7, Yh>h, i NPM,'E(' sﬁ,aﬁ,ﬂ')7 ap ™~ 7r7l+1}.
h'=h

Similarly, we will denote IE% NI(m) ['] to be the expectation taken over trajectories sampled by executing 7 in the model M,
such that the transition and reward functions are fixed by . Again, we will call 7 as the “reference policy”.

SHere we specify the model in the subscription of the reward function, which will avoid confusion when we consider the PAMs
converted from (Multi-Type) ME-MDPs
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We denote J;\”/I(?r, ) = Egw v [Vﬁ[’ﬁ(s}“; 7)] to be the expected return of agents in type w in model M by executing 7
given 7r as the reference policy.

Definition E.5 (Nash Equilibrium in Multi-Type PAM). The Nash Equilibrium policy in Multi-Type PAM is defined to be
the policy 7wNE := {7 NE}, oy satisfying:

Yw € [W], ¥ € I, j;@[(?r;ﬂ'NE) < jl’&[(ﬂNE;ﬂNE). %)

Note that J;\”/I(%, ) actually only depends on 7r and 7%

E.2.1. EXISTENCE OF NASH EQUILIBRIUM IN MT-PAM

We first investigate a stronger notion of NE, which we call the “strict NE”.
Definition E.6 (Strict NE). Given a MT-PAM M with transitions and rewards {(IP’;’\’/I, i) Ywew]» the policy 7N is a
strict NE of M if and only if the following holds:

-

Vw € [W}, ( |Sh) € argma'XQM h(shv ’ ) u. (6)
u€A(AY)

Note that this is a stronger notion than the NE defined in Def. E.5, i.e. a strict NE is always a NE. In the following, we will
focus on the existence of strict NE.

Lemma E.7 (Strict NE as Fixed Point). Given a MT-PAM M with transitions and rewards {(]P“X/I, %) Ywewy, the policy
7NE is a strict NE of M if and only if the following holds:

I\%E (wSVE) = 7oSVE,

where

D (1) o= {7 = {7 Yuwetw nem Vw, sy, T (lsy) = arg max Q' (1 m) T — [l () — ull3}-
ue w

Proof. First of all, suppose 7 is the NE of M according to Def. E.5, by the policy improvement theorem in single-agent
RL, we have:

Yw e W], = (-|sy) € argmax QM h(sh, o) T,
ueEA(AW)
which also implies
Vw € [W], mif (-|si}) € arg max Q" (s, ) Tu — ||miy (-]sh) — ull3.
uEA(AW) )
Therefore, if 7r is the strict NE of M, we have FEE(TF) = .
On the other hand, if F%I;E(ﬂ') = 1, it implies:
Yw € [W], mj/(-|s})) € arg EHAl?}w)QuA}fh(Sﬁmﬂ)Tu — [l C[sh) — ull3-
By the first order optimality condition of the RHS, we should have:
Vw € [WL ( |Sh) € argmax QM h(sha aﬂ')Tua
uEA(AW)
Therefore, 7 is the strict NE of M. L]
Definition E.8 (Distance measure between policies). Given two policies 7 := {7}’ }ne(a),wew) and T =
{%;f}he[H],we[W]’ we define:
oo, 1 (0, 7) = max [l Clsi) =7k Clsi)l1-

we[W],he[H],s}’ €S
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Condition E.9. Given a model function M := {(PwM,h’f;\U/.r,h)}he[H]’ forany fixedw € (W], h € [H], s}, | € S}y, 8] €

Sy, ap € AY and any T, P%h(sqﬁﬂ |s}, aj’, ) and f;”;lﬁ(sﬁ, ay ,7r) are continuous at 7t w.r.t. distance do 1.
Lemma E.10 (Continuity of Q). Under Cond. E.9, for any w € (W], any sy, a} and T, Qw o (sh ,ay ) is continuous at
7 w.rt. the distance d 1 in Def. E.S.

w, T
M ,h

amongIP’M B Gl ), 78 (e, ) and o []

Proof. The proof is obvious by noting that Q (s¥,a}’, ) is a function resulting from finite multiplication and addition

In the following proposition, we will establish the existence of NE based on the existence of strict NE.
Proposition E.11. Under Cond. E.9, the MT-PAM has at least one NE policy w™E satisfying Def. E.S5.

Proof. We first show the mapping F?&}E : IT — II is continuous under Cond. E.9. Based on a similar discussion as Lem.
E.6 in (Huang et al., 2023),

u— argmax q v — ||u—u'[|3,
w EA(AW)

is continuous for any fixed ¢ € R4”!, and

q— argmax ¢ u' — |lu — /|2
u EA(AW)

is also continuous for any fixed u € A(AY).
By Lem. E.10, and the rule of composition of continuous functions, F?gIE is a continuous mapping. Therefore, F?&}E maps

from the closed and convex polytope II to a subset of itself. By Brouwers fixed point theorem it has a fixed point. By
Lem. E.7, such fixed point is a strict NE of M.

Comparing with Def. E.5 and Def. E.6, we know NE is a super-set of strict NE, which implies the existence of NE in the
MT-PAM.

E.2.2. EXISTENCE OF NASH EQUILIBRIUM IN MT-MFG AS COROLLARY

Conversion from Multi-Type MF-MDP to MT-PAM  Given a Multi-Type MF-MDP M, we can convert it to a MT-PAM
sharing the same {u{’, 8", A", H},,cjw) with M, while the transition and reward functions of M are defined by:

Vw € [W]vVh € [H}v ].Pﬂ]l\}mh("'v'vﬂ) = Plll\]/I,h('|'v'vu71(/I,h)a izl\?[,h('v’vﬂ-) = Th('v'v/»"}(/[,h)a 0]
where p7, ), is the density of agents in all types induced by policy 7 in model M starting from py, | = p1.

Proposition E.12. [Existence of NE in MT-MFG] Under Assump. D, the Multi-Type MF-MDP has at least one NE policy
7V satisfying Eq. (11).

Proof. By Lem. E.13, we know the MT-PAM converted from such Multi-Type MF-MDP satisfying Cond. E.9, and by
Prop. E.11, the MT-PAM has at least one NE. Easy to check that such NE is also a NE for the Multi-Type MF-MDP
satisfying Eq. (11). ]

E.2.3. PROOFS RELATED TO THE MT-PAM CONVERTED FROM MULTI-TYPE MF-MDP

Lemma E.13. [Lipschitz Continuity of MT-PAM] Given a Multi-Type MF-MDP M satisfying the Lipschitz continuity
condition in Assump. D, consider the MT-PAM M converted from M according to Eq. (7), we have M is also Lipschitz
continuous that, Yw € (W], h € [H] and any s}’ € S¥,a}} € A",

h
1B Gl af ) =B, (st afl 7)1 < oo (. w)WEp 3 (14 L)

h'=1

h
(sp,ap . 7m')| < doo (m, 7)WL, > (1+ Ly)" .
h'=1

|7’;11€7[7h(5;fa a;tlvﬂ-) - 7.q.Ju\)Zr)h
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Proof. Based on Lem. 1.3, as a special case, when M = M’, we have:

l#den = Rl SO+ Lo)[pRnr = BRep-alls + W dooa (m, 7)
h

=doo1 (m, 7 )W > (1+ Ly)" "
h'=1

Therefore, for any w € [W],

PRy 5, Clsis as ) =P, Clsis ai', 7))l =IPRg s Clsh's ai's whan) — Phen(Clshs ai's wien)lh
h

<Lr|pfen — wignlt < dooi(m, 7)WL Y (1+ Ly)" ™"
h'/=1

and
’
|TwM7h(51ifa a%a Tl') - T]w\/'[’h(siifa a%a 77/)| :|Tg(5;11,)7 aqifv p’ijl\)/[‘trh) - 7,}1:1(5'2)7 af}fa Nijl\)/zrh”

h

<L.|ppsn — N}‘\-/ll,h,Hl < doo1 (7, 7 )WL, Z (1+ LT)hih/-
h'=1
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F. Missing Details and Proofs for Results in Sec. 4
F.1. Proofs for Lemma and Theorems used for Insights

Lemma 4.3. [Implication of Local Alignment] Given any M M with transition Py and Py, denote %ZX/IE to be an
e1-approximate NE of M, suppose d(M, M|ﬁ%}5) < &9, then ThE is also an O (e + e2)-approximate NE of M.

Proof. For any policy 7, we have:

T, RNF) — Ty (RYE, 7NE)

<J57 (7, ANF) — Tt (7 7NE) - (J~<%%%f) I (@ T)) + T (7, RF) — Jur (RN RNF)
<ey + I (7 ANE) — Ju (7, ANE) — (J~(ﬂ}ﬂ;) JM(%XE%I}\’/IE)) (F\E is an £;-NE of M)

<ey + 2d(M, M|7NE)
<ej + 2es.

]

Theorem 4.4. [Bridge Policy] If the E1se-branch i in Line 6 in Alg. 1 is activated, running Alg. 3 returns a bridge policy

NE,k NE,k

E,k
g, such that, mg."" is an approximate NE of Mgfr’

Proof. Thm. 4.4 is just a helper theorem to make it easy for the reader to understand our proofs. It will not be used
in the proof of our main results Thm. F.7, so here we only show an informal proof.

Combining with Lem. E.4 and Thm. E.2, we show the brldge model MBr has at least one NE 73t. In Thm. F.5, we provide
upper bound for the distance between the central model of 75 with Mg,, which implies 7rNE is an approximate NE of its

central model. ]

F.2. Definition of c-cover of Policy Space

Proposition F.1 (¢-cover of I1). Consider the set
I := {7 :={m, ...,y }|Vh € [H], sp, € Sn, 7r(-|sn) € N},

where

A
N Ny 24 _
N, = (3 IN = [71,N1,...,NA €N;Y N, =N}

i=1

Then, 11, is an e-cover of the policy space Il w.rt. d 1 distance.

Proof. For any u € A(A), there exists a v € Nz, such that, [|u — v; < & - (A — 1) + 222 < e, which implies A is an
e-cover of simplex A(.A). By definition of TI., we finish the proof. ]

F.3. Proofs for Algorithm 2

Theorem F.2 (Adapted from Thm. 4.2 in (Huang et al., 2023)). Forany ¢ € (0,1), during the running of Alg. 2, suppose
€ M, then wp. 1 — 6, Vt € [T], we have M* € M. Besides, denote H as the hellinger distance, for each M € M?
with transition Py and any h € [H|:

2| M|TH

ZE%i,lw*(ﬂ')[Hz(PM7h('|5§ma;zv:uﬂM,h)v PM*ﬁ('b;u“?wﬂ}TW*,h))] < 210g( )

2| M|TH

(t - 1) ! E‘IT,M*(TF) [HQ(PNLh("S;L?a;mM7I‘\-/I,h)7 ]P)M*,h('|83m a;m ,L”T]\r/[*,h))] < 210g( 5 )
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Theorem F.3. Given any reference policy , €,6 € (0,1), M* € M, if T = 6(%4(dimpE(M,€’) A+ Ly)*H (1 +
Ly H)?dimpg (M, ")) log? W) withe' = O(WNLT)H) wp. 1 — 6, Alg. 2 terminates at some Ty < T, and return
MTo st (i) M* € M0 (i) VM € MTo, d(M*, M|x) <E.

Proof. Suppose Alg. 2 proceeds to iteration T < 7', and does not terminate at Line 6. On the good events in Thm. F.2, we
have M* € M! forall t < Ty.

In our first step, we discuss how to provide upper bounds for accumulative model difference depending on two types of
P-MBED.

Step 1-(a): Upper Bound Model Difference with Type Il P-MBED For any ¢ < T, given the fact that ||P — Ql|; <
V2H(P, Q), for any fixed h € [H], we have:

t—1
ZE%i,M*(n)[HPM*,h('|Sh,am/ffw,h) = Paren(C|Sns an, i ) |17]
i=1
t—1 t—1
SQZE%",M*(w)[||PM*,h('|5ha ahvﬂ?ﬂ*,h) = Paren([sn, ah,MTz\r/n,h)”ﬂ + 2ZL2T||H7M*,}7, - NﬂMt,h||?
i=1 i=1
2 TH
<8(1+ L% H?)log % ®)
where in the last step is because, as a result of Lem. 1.5, Cauchy’s inequality, and E?[X] < E[X?], we have:
t—1 h
Z |1hge = 1hpepllT <(tE—1)- H - ]EmM*[Z IPare n(-shy ans 1= n) = Pare w(-sn, any e 5)|I7]
i=1 h'=1
2 TH
<4H?log &
)
By Lem. I.1, w.p. 1 — /2T H, for any ¢ € [Tp] and any h € [H], we have:
t—1
> P n (15, @ i 1) = Pase ([5G i )17
i=1
2JM|TH 2TH 2JM|TH
<96(1 + L3-H?*)log % +Clog —— < c1(1+ L3 H?)log %
for some constant C' and ¢;. By Lem. D.7, we further have:
o 2M|TH
D AP w135 @ 13 ) = Bage w135 @ i3 ) < ca(1+ LTH)\/ding(Ma &)Tolog ——— + Toe').
t=1

for some constant co. By Lem. 1.1 again, w.p. 1 — § /2T H, for any Tj) € [T] and any h € [H],

To
> B are (o IPare n(Isns ans e 1) = PagenClsns ans g p)lh]
t=1
2IM|TH 2TH
<3ca((1 + LTH)\/ding(M, e")Tp log % + Toe') + C - log 3
. 2IM|TH
<es - (14 LyH)y/dimbg (M, /)Ty log % + Toe").
for some constant cg. Similarly, we can guarantee by analyzing data collected by (, 7):
To
ZEW,M*(W)[HPAI*,h('|Sh7 ans o ) = Pare w(-[Sh, ans g )]
t=1
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<es - (14 Ly H)y/dimpg (M, )Ty log |M6|TH + Toe').

Therefore, by Lem. 1.5 again,

ZEwt M+ W)ZHPM* ([sns an, thre 1) = Paren(I8n, any e ) 1]

To H
< ZEW M () Z Pare n(-lsn an 1i3g- 1) = ParenClsny ans e )]+ Y Y Lol i, — g nlh
t=1 h=1

<es- H(1+ Lp)H((1 + Ly H)y/dimpg (M, )Ty lo

M|TH
| ($| + T()E/).

where the last step we use:

To H
SN ludeen

t=1 h=1

H h To
Z Z A+ L) B age (m) P+ Clsno any e ) = Page n(-lsny ans e )]
h=1h'=1 t=1

1+ Lp)h—1 2 TH
<cy - H - %((HLTH)\/dIm = (M, Ty log% + Toe').
T

Similarly, for model M’?, we also have:

T, H
ZZ wt M () IPars n Clshy ans e ) — Poare n (s, ans e )1

<cy- HQ + L) ((1 + Ly H)y/dimpg (M, £)Tp log |M6‘TH + Toe').

Step 1-(b): Upper Bound Model Difference with Type I P-MBED By Thm. F2 and Lem. I.1, w.p. 1 — § /2T H, for any
Ty € [T] and any h € [H], we have:

2IM|TH 2M|TH
— _

2TH
+C~logT§CGIOg 5

ZHH”M* C13h: @hs e ) = Pare w18 @ e ) I < e5log

As aresult of Lem. D.7, we have:

~t 7 . 2IM|TH
Z Z IPaz+,n (-3h.a a'hv:U'M* ) — ]P)I\4t,h('|§;u ai}Eu:uM‘,h)Hl <ecr- H(\/dlmPE(M’ﬁ')To log % + Toe').

t=1 h=1

By Lem. I.1, we have:

0
S Eaeoar(m) IPar+ w G185 @ e ) =Pz n G35 @l g n) 1]
t=1 h=1

9| M|TH

dimpg (M, ") T} log + Toe').

Similarly, for model M'?, we also have:
0]
SO Bt (m)UPare (135 @ 3 ) ~Posre G155 @ e 1) 1]

t=1 h=1
<cg - H(v/dimpg (M, ')T log |M‘ + Tog').
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Step 2: Lower Bound on Model Difference On the other hand, since the algorithm does not terminate at step 7y, we
have:

H

To
Toe < Z Ezeare ()| D IParenCls s tihgen) = Paren Gl g )]
t=1 h=1

<ZEﬂt M () Z IPar+n(-[8hs any Wags n) — Parre n([Shy ans pgre ) [11]

+(H+1) - Ezt are () z IPar= n(-[Shs any whge ) = Paren([shs an, e p)ll]- €]

where in the last step we apply Lem. I.8. On the one hand, for Type II P-MBED, we have:

Tof < ey H(H +2)(1 + Lp)¥ (1 4+ Ly H)4\/dimbg (M, ') T log % + Toe'),

by choosing &’ < &(2c4H(H + 2)(1 + Lr))~1, it implies, for some constant cg,

H4(1 4 L) (1 + Ly H)? dimbg (M, ) log? 2| M|TH

To < cg -
0 =78 22 5

On the other hand, for Type I P-MBED, we have:
~ 2 TH
Tog < c¢7 - H(H + 2)(+/dimpg (M, ") T} log WT| + Toe'),

by choosing &’ > & (c;H(H + 2))~1, we have:

H* dimpg (M, &) log? 2M|TH

To < cg -
0 =" 2 5

As a summary, by choosing

1
T= O(% min{dimpe(M, '), (14 L)*" (1 + Ly H)? dimpg(M,e’)} log? M)

with ¢’ = O(EH 2(1 4 L)), we can guarantee the algorithm will terminates for some Ty < 7' and return us a model
class MT0 satisfying max ; s gy d(M, M'|7) < €, which implies

d(M*,M|r) <&, VM e M.
[

Remark F.4 (Why (1 + L7 )* Disappears if Considering Type-I P-MBED?). From the proof above, especially the proof in
Step 1-(a) and Step 1-(b), we can see that during the model elimination, what matters is the model distance conditioning
on the density induced by the corresponding models, i.e. |Parp (|-, piyp ) — Pare n (|5 o 13 )l Therefore, if we
consider the Type-1 P-MBED, we do not need additional conversion between ||Pay p(-[-, -, 1157 1) — Par< n (|5 -5 15+ 1)1
and ||[Parn (- -5 e ) = Parr (-l 5 e )ll1, which is the origin of the exponential term (14 Lr)™ in the upper bound
regarding Type-11 P-MBED.

F4. Proofs for Algorithm 3

Recall the notations for central models in Appx. E.1.

Theorem FE.5. Suppose we feed Alg. 3 with a model class M, the bridge model Mg, it computes is a valid model, and by
choosing € = g¢/ min{ZHLT%, 2H(H +1)((1 + L7)® — 1)}, for any reference policy @ and its associated
central model M¢;.(m; M), we have:

max Bz oo ) (r ZHP 3120 (o), (180 an ) = B (lsn, ans m) 1] <(H + 3)eo,
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maXIE~ NIEO (ms ) () Z |7“1v§? (73 X0,k w(Sh, an, ) — g (shyan, m)|] <LyH(H + 4)eg
h=1

Proof. In the proof, for notation simplicity, given the refernce policy 7, we use Mgr as a short note of Mé{’r(w, M), i.e. the
central model regarding 7.

Validity of Construction First of all, note that I1z is an &-cover of the policy space. Therefore, for any 7, there must exist
at least one 7 € Il satisfying doo 1 (7, ) < & which ensures Y~ ; [26 — doo,1(m, )] " > 0. So the transition and reward
functions in the bridge model is well-defined, and also continuous in 7 w.r.t. dlstance doo,1.

Upper Bound on Transition Difference By definition,

w26 = doo 1 (m, D) TPy 1, (-l an, )

Z%eng[Qg - doo,l(ﬂ %)]4_ I
<Z%ens—[2€_ — doo 1 (m, D[Py g, Clsn, an, ) = Brgz , (lsn, an, Tl
B 2wen,. |28 = doon (m, )]

We only need to care about those 7 € II; with [28 — doo 1 (7, T)]T > 0, i.e. doo,1(m, T) < 2&. Given the condition when

H].p]wawh("shaahvw) - I.E.Dl3l‘,h('|sh7a’hvﬂ-)Hl :”].P)Maﬁh("shvahaﬂ—) -

Alg. 1 call Alg. 3, we have B0 (Mg, ; M) > M;—‘ for any . Therefore, for any 7 and 7 with do 1 (7, T) < 2¢, there exists
a model Mye such that Mye € Bzo (Mgu; /\/l) nBe° (Mgr; M), which implies for any 7’

AT, ﬂZHPMW (lsnsan,m) = Byzz ,Clsn, an, 7))

nCl8hy an, 7)1

share ;

i3 B 7) =Bl 1+ 3Byl nor) - B
+ZH Mipare s h |3h7ah7 ) PM&,h('|5haaha%)||1]

<eo+2H((1+ L) )s+1E/MCU(W)Z|| e (1805 @ T) = Bz Clsn, an, 7)) (Lem. E.4)

where by applying Lem. 1.7, we have:

! ME( Z i3 Minare h (|snyan, m) — ( |Shy an, 7)1]
H 3 ..
S]E7"/7]\Zshcnre(7") [Z HPMshareyh(.‘sh, ahn; %) o PMCﬁnh(.|sh’ @hs %)”ﬂ
h=1

! MG (1) Z ”PM7r ‘Shva}w ) I.P.)M,hm,h('bh’aha7T)||1]

H

<E, i[O Pt (1550 @ns 7) = Bz 1, (lsn, an, )1 + Heo (Mynare € B2 (M, M)
h=1

7!, Mipare (7) ZH Mare, ‘Sh’ah’ ) PMC (|sh’ah’ )H ]

+ H 7T Mshare Z || Mshare |Sh" ah" ) PMshareyh(.|$h’ ah’ %) Hl} + HaO
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<(H 4 1)eg + 2H?*((1 + L) — 1)z (Mipare € B (ME,; M); Lem. E.4)

which implies,

! NI () Z”PM"’ (:|sn,an, ) — I'ES’Mgﬁh('\Smahﬁ)Hl]

<eo + 2H((1 + L) — 1)+ (H + 1)eo + 2H*(1 + L) —1)&
<(H +2)eg +2H(H +1)((1 + Lp)" — 1)z
<(H + 3)eo. (2H(H +1)((1 + L7)" — 1) < &)

Therefore,

Y ren, (26 — doo,1 (7, 7)] T (H + 3)eo
Z%eng[%j — doo 1 (m, )] T

S(H+3)€0

v, ', B xiz (n) ZHPMw (-Isn, an, 7) = Boen(-[sn, an, )|11] <

Upper Bound on Reward Difference By definition, for each h, s, aj, we have:

75120 (s K1) 1 (Shs @hy T) = P n(Shy an, )

7ells 28 = doo,1(, 77)}+7"M§[?(7r M),h(shaaha%)

=17310 (i 6t) 1 (81 @ ) = S B —da (AT

Yren, 26 = doo 1 (M, T) ¥ 20 (), (S5 @y ) — TMg‘g(;f;M),h(Sm an, )|

Cur

Z~el‘[ [28 — doo 1 (m, )] T

Similarly, for those 7 € IIz with [28 — doo 1 (7, 7)]T > 0, we have:

P sz 0 (Shs @y ) = Fypz  (Shy an, T

:|Th(5lla ap, 'u,&a”h) - Th(shv Qp, :u’?[‘\-/[(f‘;r,h”

<Lr|ltiag, n = Pz nlh
h ~
SLyHdooa (m,7') + LB vz, (o[ Y 1Pasg e Clsne—vs an—1, whgg w—1) = Pagz, o Clsw—1, aw—1, 1z 50yl
h/=1

H
SOLLHE + LB gz o[ 1Bz Clsns ansm) = Byge o, Clso an, Pl1)

gLr(H + 4)50
Therefore,
H _ ~
_ S |28 — ool(ﬂ )] TH(H + 4)gg
/ . S . melle
V’IT, () Eﬂ'/a [ar('“') [; |rMC’L,h,(Sh7 Qhs ﬂ—) 71MC"H,h(sh7 Qp, 7T)|] S Z [26 o (71' ﬂ')]"'
<L,.H(H + 4)eo.

L]

Next we prove an important Lemma based on results in theorem above, which indicates that the bridge policy constructed in
Alg. 3 is close to the NE of its central model.

Lemma F.6. Suppose the E1se-branch in Line 6 if activated in Alg. 2, for policy ﬂgf * and its corresponding central model
Mgtr = argImaxre pk ‘Bi(zjvg.k (M; Mk) )
Br

5 o (g NE, k) i=max Ay (m, ngk) <2014 L,)(H +4)e

Cn
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Proof. For any policy m, we have
NE,k
AM(’S (7, g, ")

NE,k NE,k NE, k
AMg (m, g, ") — AMB (m, 75, ) (AMB,(W»WBr ) <0)

IA

7 NE, k NE,k 7 NEk NEky _ § NEk _NE,k
S|JMC (m, e ™) = Iy o (70 T )\+|JM§ (e ™ e ) = gy, (Ter e
H
<E. NER Npk (ehBR) Z ‘TJV[’V Sh’ahaﬂgrE’k) _fMB,,h(ShaahaWBrEkN
h=

by
+H]P’Mk nClsms an, mae ™) By, Clsn, an, e ™) 1]

NEky = NE, k
+E_ AT (r3ER |er (sh,an, g, ") — rMB“h(sh,ah,ﬂ'Br )|
h 1

) NE
1P g Clsns ans moe ), P, Clsn an, mge ) |1]
H

. NEky = NE, k
<2maxBE, v o [ Fyze p(snan ™) = P, (snoan, w5 )|
h=1

+2mngﬁ,Mg,<ﬂgs,k>[hZ||PM(;,,h<~|sh,amBr ) By Clsns an, )]
=1

<2(1+4 L.H)(H + 4)eo. (Thm. E5)

which finishes the proof. ]

F.5. Proofs for Algorithm 1

Theorem 4.5. In Alg. 1, by choosing €y = m, € = %2, and choosing & according to Thm. F.5, w.p. 1 — 9, (1)
if the Tf-Branch in Line 5 is activated: we have |M*TY| < |MP¥|/2; (2) otherwise, in the E1se-Branch in Line 6:

either we return the ng ¥ which is an e-approximate NE for M*; or the algorithm continues with | M*1| < |MF|/2.

Proof. We separately discuss the if and else branches in the algorithm.

Proof for If-Branch in Line 5 On the events in Thm. F.3, for any M ¢ B2, (M*; M¥), we have d(M*, M\wk) >
€0 > €, which implies M ¢ M*+1 Combining the condition of T f-Branch, we have:
|MF]

MR < B2 (05 M) <

Proof for E1se-Branch in Line 6 First of all, on the events in Thm. F.3, we have d(M*, M* |7rNE < By applying
Lem. L.2, it implies:
[ A (7, 75 ") = A (m, 7))

H NEk

NE, k
<E, ppe (ai ZHPW (lsnsans 1yt ) = Bige, Clsno an nfs, )]

H

NE R ANER
+ (2L H + DE ey o) [ IPar o Clsns an, iy 1) = Pz, Clsns ans w3, )l
h=1
<(L,H + 1)z,

Also note that:
NE, k NE,k NE,k
AVYS (7T 7TBr ) =An- (ﬂ— " ) Aﬁk (W Ty ) + A (7T Ty )

In the following, we separately discuss two cases.
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Case 1: EXF (p, k) < 3¢ and Line 9 is activated  Given that £ < T Em X
Anre (m, ™) <|Aw= (77 = A ()| + ER(mpr ™) (™) = masce Az (m, m )
<2(L.H +1)g+ %6 <e.
which implies WEIE ¥ is an e-NE of M*.
Case 2: E'NE (wgf‘ k) > 3¢ -+ and Line 9 is not activated As a result, for any policy ,
Apre (g ) 2 | Aare (5" = A (™) + A (g ) 2 A (7 7") = 2(L,H + 1),

Therefore, by our choice of €,

5
max Ay (m, oy ) > ENE, (mpy ) — 2L H + 1) 2 .

On the other hand, by Lem. F.6, for any 7, we have:

Apge (™) — 2(1 + Lo H)(H + 4)eo
<|A g (r, TR — | A (m (7, ThE Ry | (Here we apply Lem. F.6)
<[ Apr (my e ") = A (w7 )]

H NE, k& NE, k&
>~ wM*(wNEk Z”PM* |Sh7ah7/~‘L]L{* ) ]P)Mg“vh("sl“ah’”?\-/l;zir,h)”l]

H 71,_NE,]C 7_‘_NE,k
+ (2L H + DE xek o overy [hz: P aren(-lsns ans g 1) = Paggy wClsns an mygie )]
=1
<(2L,H + 2)d(M", M, |m; ™).

According to the choice of £y, we have 2(1 + L, H)(H + 4)eo < §, therefore,

d(M*, M|y *) >

e
= m(m;‘?XAM*(TF ngk) 2(1 +LTH)(H+4)€O) >

T 16(L,H +1)
Next we try to show that models in B ek (ME,, M*) will be eliminated. For any M € BENE w(ME_, MF), because of
Br

g < we have:

48(LTH+1)

3 N
d(M, M*|7NEFY > d(ME,, M* |xNE*) — d(M, ME|m5EF) > ° < >z

ey >
“16(LH+1) °= 16(L.H +1)
On the event in Thm. F.3 (which holds with probability 1 — ), M ¢ M*+1 which implies,

MO < M| = B (M, MP)| < [ME/2.
[

Theorem F.7. [Sample Complexity of Learning MFGs] Under Assump. A and B, by running Alg. 1 with Alg. 2 as
ModelElim and Alg. 3 as BridgePolicy, and hyper-parameter choices according to Thm. F.3, 4.5, and F.5, w.p.
1 -6, Alg. 1 will terminate at some k < log, |[M| + 1 and return us an e-NE of M*, and the number of trajectories

consumed is at most O (%2> (1 + L,)?(dimpg(M, ') A H3(1 + LrH)?(1 + L) dimpg (M, €')) log® ‘M|) where
e = O0(e/H3(1 + L,)(1 + Ly)H), and in O we omit logarithmic terms of €, H,log | M|, dimpg, 1 + Ly and 1 + L,.
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Proof. As aresult of Thm. 4.5, w.p. 1 — m - (logy M| 4+ 1) = 1 — 4, there exists a step k < log, | M| + 1 such
that Alg. 1 will terminate the return us an e-approximate NE of M *. The total number of trajectories required is:

(logy (M| +1)-2HT

~ H° , ) 2IM|TH
=(logy M| +1) - 0(§(dlmpE(M, eYANQ+ L) (1 + LpH)? dimbg (M, €)) log? %)
~ H7
:0(6—2(1 + LTH)Q(dimpE(M, eYANH3(1+ LrH)?(1 4 Lp)* dimpg (M, s/)) log® | M]).

7(1%?1{)1{)’ ande’ = O(E/H?>(1+ L7)") = O(e/H3(1 +

L.H)(1 + Lr)™). []

where we use the fact that by Thm. F.3, we choose € = ¢ = O(

F.6. Sample Complexity Separation between Mean-Filed Control and Mean-Field Games

In this section, we establish the separation between of RL in MFC and MFGs from information theoretical perspective.

A Basic Recap of the MFC Setting In MFC, similar to single-agent RL, we are interested in finding a policy %;gpt to
approximately minimize the optimality gap Eop () 1= maxz Jar- (75 s ) — Jar- (7 pip), e,

Eopt(Fop) < €. (10)

Exponential Lower Bound in Tabular RL for Mean-Field Control Our results are based on a different query model
from Def. 2.1 defined below.

Definition F.8 (Strong Query Model). The Strong Query Model (SQM) can take a policy 7 and return a sequence of
transition function {P} (-|-,-)}f_,, such that P} (-|sn, an) := Par+ n(:|sn, an, p3;- ;) forany h € [H], sy, € Sp, an € Ap.
The SQM is strictly stronger than the sample query model in Def. 2.1, because given the conditional model {IP} (-|-, -) {f:l,
one can sample arbitrary trajectories by arbitrary policies from it, and therefore, recover the data collection process in
Def. 2.1. In the following, we investigate the number of SQM queries required to identify e-optimal policy in MFC setting.
We show that, under Assump. A and B, even in the tabular setting, MFC requires queries exponential to the number of states
and actions.

Q
RN

Figure 1. Construction of Lower Bound

Theorem F.9. [Exponential Lower Bound for MFC] Given arbitrary Ly > 0 and d > 2, consider tabular MF-MDPs
satisfying Assump. B with Lipschitz coefficient Lt, |S| = |A| = d and H = 3. For any algorithm Alg, and any ¢ < ;‘—fl,
there exists an MDP M* and a model class M satisfying M* € M, and |M| = Q((Z—g)d_l), s.t., if Alg only queries GM

or DCP for at most K times with K < |M|/2 — 1, the probability that Alg produces an e-optimal policy is less than 1/2.

Proof. Our proof is divided into three parts: construction of hard MF-MDP instance, construction of model class M, and
the proof of lower bound.
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Part 1: Construction of Hard Examples We construct a three layer MDP as shown in Fig. 1. The initial state distribution
is fixed to be p1(s1) = 1, and we have S states and A actions available at each layer with S = A = d. The transition at
initial state is deterministic, i.e., P(s§|sl, a’i, w1) = 1. At the second layer, given L < 1, there exists an optimal state
density 3, such that, Vi € [S],j € [A] and Vs € A(S):

. . 1 LT * + ; ] 1 LT * +
B(s} s, ah o) = 5 +2- L= ollue —pslh] o B(s3lshadoa) = 5 =22+ [1 = Tollue — sl -
where [z]T = max{z, 0}. As for the reward function, we have zero reward at each state action in the previous two layers,
and for the third layer, we have only have non-zero reward at 73(si, -,-) = 1 and r3(s%,-,-) = 0 for all i # 1.

As we can see, for arbitrary policy 7, we have u3(s5) = 7(a}|s1). Besides, the optimal policy should be taking action
to make sure up = pu5, which can be achieved by setting 7*(a}|s;) = p3(sh), and then take arbitrary policy at the
second layer. Even if the agent just wants to achieve e-near-optimal policy, it at least has to determine the position of set
{p |l —pdl < 4—;} The key difficulty here is to explore and gather information which can be used to infer p3.

We further reduce the difficulty of the exploration by providing for the learner with the transition at initial state and the third
layer (or equivalently, the available representation function for the first and third layers is unique) and all the information of
reward function. All the learner need to do is to identify the correct feature for the second layer and use it to obtain the
optimal policy (at the initial state) to maximize the return.

Next, we verify the above model belongs to the low-rank Mean-Field MDP. For i = 1, it’s easy to see P(s}|s1, a{, pi) =
b1(s1,al, 1) Teb1(s5), where ¢ (s1,al, py) = e; and ¢ (s}) = e;, and e(.) is the one-hot vector with the (-)-th element
equal 1. For the second layer, given a density 1 € A(S), we use ¢,, 1.,. to denote the following feature function class that,
Vi [S), € [, 1 € AW,

; ; 1 LT + 1 LT + T d
Gt (shy g ) = (5 + 22 [L= ZZIW = plh | 5 =22 [1= T2 =l | .0,.,0)T € R

and the next state feature function is ¢ (s;) = e/, Vi € [d]. It’s easy to verify that the transition can be decomposed to

Gz, (- p2) Tp(sh), and the above feature satisfies the normalization property:
I d(s5)g(s5)ll < V2d, Vg:S—{~1,1}.
i€[d]
Besides, we verify that for any choice of , the induced transition function is Lp-Lipschitz:
HPM,LT ("857 U,é, ,U/) - ]P)M,LT (|5127 Cl'%, ,UH)HI

= |Gy r (s ab, 1) TO(55) — Gy, (55, ab, 1" )ib(s5)]

1€[S]
Ly + Lr +
—92.9 [1—— ! ] —[1—— !
el 2 = 1k 2 =l
<Lrl|llp =l = [l = "] < Ll = [l

Part 2: Construction of Model Class Given an integer ¢, we denote Ny := {u|u(sy) = N(s)/¢, N(sy) €
N, YV (s5) = ¢}. In another word, N includes all state density with resolution 1/¢. Now, consider N, | Lz |-

5e

For each p, 1t/ € NLL—TJ’ we should have:
5e

L 10e 8¢

— =2/ =] > = > —.
=l 2 2/ |52 = 7= >
Therefore, if we consider the set B(y, é—;) = {p' € AS)|||p - Wl < f—;} we can expect B(f, 4—;) NB, f—i) =0

: : _ UzE]4d-1t Ly yd—1 :

for any p, ' € NL%J. Given arbitrary N < |NL@%J| = m = Q((7F)“ "), we can find N — 1 different
elments {pd, ..., ud' } C NV, | Lz | and construct (here we only specify the representation at the second layer, since we assume
the other layers are known) -

M[N] = {M” = (¢MS,LT7’¢}>|” € [N]}
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For analysis, we introduce another model M which shares the transition and reward function as M s but for the transition
of second layer, it has:
i i 1 ; :
P(s3|sh, ab, pi2) = P(s3|ss, ab, pi2) = 3 Vi € [S],7 € [4], u2 € A(S).
We define:
1 1
Q) =(%, .., =) € RY
Br) = (5005)
and define:
M= MU {(6,0)}
Note that M = (¢,v) € M.

Part 3: Establishing Lower Bound Now, we consider the following learning setting: the environment randomly select
one model M from M and provide the entire representation feature class M (which is also the entire model class) to the
learner; then, the learner can repeatedly use gathered information to compute a policy 7* and query it with SQM for each
iteration, and output a final policy after K steps. We want to show that, for arbitrary algorithm, there exists at least one
model in M which cost number of queries linear w.r.t. N before identifying the optimal policy.

In the following, we use & s~ to denote the event that in the first k trajectories, there is at least one policy (or equivalently,
density %) used to query SQM resulting in || g — p™ |1 < f—i. The key observation is that, given arbitrary algorithm Alg, for

arbitrary fixed n € [N], if Alg never deploy a policy 7 (or equivalently, query an density p3) satisfying ||pu5 — u™||1 < é—;,
the algorithm can not distinguish between M" and M, and should behave similar in both M™ and M. Therefore,

PTM",Alg(EJE,Mn) = PerI,Alg(“:IE,M”)v Vk € [K].
which also implies:
Prosm alg(Ex,nin) = Prog aig(Ex,nin),  Vk € [K].

We use Alg(K) to denote the policy output by the algorithm in the final. Besides, we use IT(u, bo) := {7|||u] — pll1 < bo}
to denote the set of policies, which can lead to a density p3 close to p. Then, we have:

n 4 n 4e
Z Pragn g (Alg(K) € TI(p™, f)) — Pryr aig(Alg(K) € H(p 77))
T T
n€[N]
n 4e n 4e
= > Pram ap({Alg(K) € Iz ’E)} N A{Ek mn}) — Pryp g, ({Alg(K) € TH(1 75)} N{Ex,mn})
n€[N]
4e 4e
+ > P a({Alg(K) € (", )} 0 {5 arn}) = Prag aip ({Alg(K) € (", )} 0 (R arn )
n€[N]
n 4de n 4e
= Z Prn alg({Alg(K) € TI(p ’fT)} N{Ek mn}) — Pryp a ({Alg(K) € TI(p ’TT)} N{Erx mn})
n€[N]
n 4e n 4e
<> PrM“,Alg(&c,Mn)(PrMn,Alg(Alg(K) € I(p", 7)€k mm) — Pryg i (Alg(K) € I(p ,*)|5K,M"))
n€[N] Lr Lt
< Z Prosn atg(Ek,arn) = Z Pryz ate(Eknm) < K.
n€e[N] n€[N]

where the last step is because,

K
Z Pry; Alg (Ek,nm) Z ZPrMAlg HMz - < f Z Z Prz alg( Hﬂz - < SZ
k=

ne[N] n€[N] k=1 k=1ne[N]
(Bl 42 1 B, 42) = O o all i £ )

36



Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Therefore, the average success probability would be:

_ 4 _
Pr(M = M) + Z Pr({M = M"} n{Alg(K) € II(u", L—g)}) (Each policy is optimal in M)
n€[N] T
1 1 4e K+1
=+ — Prarm alg(Alg(K) € TI(p", —)) < .
M) ] 2 P ) = M

As aresult, even if K = % — 1 = O(N), there exists n € [N], such that, the failure rate

4e

. 1
PrM'rL7Alg(Alg(K) g B('/TMn, TT)) Z 5
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G. Proofs for Multi-Type MFGs
G.1. More Details about the Setting

In Multi-Type MF-MDP, we will denote 1} € A(S™) to be a state density at step h in type w, and define * := {11}’ }he[m
to be the collection over all h. For the policies, we define IV := {7% := {7}’ }|Vh € [H], 7}’ : S} — A(A})}, and
IT:= {7 := {7" }wemw)|Vw € [W], 7% € IT"}. In this paper, we only consider policies in IT, i.e. the set of non-stationary
Markovian policies.

In order to distinguish with (single-type) MF-MDP setting, for notations regarding the collection of densities or policies over
all groups, we use the bold font, i.e. pup := {p}) }wepw) and p:= {pn frheiwy, T := {7 bwepw) and 7, = {7} }uepw-
When a policy 7 and a model M is speicified, we use 7, := {un;" fweiw] = {#71.1 the(m) to denote the collection of
densities of W groups induced by the policy 7 in model M, where uy;" = {un;"y, tneim) and pfy , := {1n sy bweiwl-
When a policy v € I is specified, the evolution of the densities in all groups can be described by:

Vh e [H], Yw € (W], pyi = Tarn (Baim)s

with Dy, (i) () o= D il (i )i ail |y )P 1 Clsiy s afl s m )

w o w
sh,ah

Similarly to MF-MDP setting, given two policies 7, w € II, we can define the value functions for each group following 7
while conditioning on 7:

H
W (i) =B [ D 7o (sl afl iR )lsh = - afl =,
h'=h
_ H
Vg Ciiin) =B nam [ Y i (i aiir, nia ) lsil =,
h'=h
Tig (75 ) =Ewryw [Vag T ()]

where we use Ez () to denote the expectation over trajectories generated by executing policy 7 in M conditioning
on m, i.e. the transitions Py , (|, -, 77 ;) and rewards 73(-, -, phy 5, ) are fixed by 7. Besides, we denote Jy (7; ) :=
Egw [VA“/’IT (s¥; uhp)] to be the expected return of type w in model M by executing 7 conditioning on 7r. The Nash
Equilibrium policy in Multi-Type MFG is defined to be the policy 7NF := {7*"NE} 1y satisfying:

Vw e W], Vr € TI,  Jigp(7; whF) < Ty (wNE; oNE). (11)

We define AY, (7, %) := Ji (7; ) — J (5 ), and define £ () := maxz A, (7, 7). Our goal in this setting is
to find an e-approximate NE policy 7#NF := {7*“NE}, (1) such that:

Yw e [W], EviF(m) <e. (12)

G.2. Conversion from MT-MFG to MFG with Constrained Policy Space

Intuitively, the construction is made by integrating the state and action spaces, which will result in a MFG with transition
and reward functions following some block diagnoal structure.

Given a MT-MFG M := {(uy, H,S8", AY, P}, 7" )wew]}> we denote the converted MF-MDP by Myrc =
{p1, H, Smra, Amra, Pmrc, MFG }, Where we have the extended state space Surg := Uwe[w} (8" x {w}) and action
space Avrg = UMG[W] (A" x {w}). As we can see, the new state/action space is the collection of all states/actions
agumented by the group index w € [W]. In this way, states and actions in different groups can be distinguished by the group
piopi o opy

index w. Next, we construct a new initial distribution p; := [W’ T T

with normalization. For the policy, we define

] by concatenating all the initial distributions

It = {mve € W), m(a” o w|s” o w) = 7(a” o w|s” o w), for some 7 € II"}, (13)

with IT := {7% : §¥ — A(A")}. In another word, IT" includes and only includes policies taking actions sharing the
same group index with states, and we only consider the policies 7 € IIT.
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G.2.1. DEFINITION OF TRANSITION/REWARD FUNCTIONS IN THE LIFTED MF-MDP

Next, given a density pp = [’;é s Mvév | € A(Swrg) with )’ € A(S"™), the transition and reward functions in the
converted MFG is defined by (note that by definition of IIf, we only need to consider the case when the state and action

share the group index):

p S ow M ,h\°h+1 SpyQp s By, )5 =
MFG,h( 1}f+] U)|87jlu ow,a}f ow,,uh) = v ]
0, ()tllelWlSC.

MEG,h (8], 0w, ap o w, up) =Ty (s), ap s py)).

For the sake of rigor, we include the definition for the transition/reward functions on those s o w and a}’ o w with w # .
We define Pmrg,n (+|s) © w, a}’ o w, pp,) to be a uniform distribution over Surg, and mvec 1 (S} o w,a)’ o w, up) = 0, for
any up € A(Swrg)-

After specifying a policy 7 € II', denote 7 := {7 }wew to be the MT-MFG policy that 7 corresponds to, we can verify
that the state density p3, ., € A(Swmrg) evolves according to:

Ml,‘rr MW,Tr
M,h M,h
Vh € [H]: pipeen < [ W W ] (14)
where recall M]’\J/‘ﬁh denotes the density of type w induced by 7 in model M. To see this, by induction,
Ihiygee,h (87 0 W) = > Pty h (Sn—1)T(@n—1|h—1)Pmrc,n (s} © w]Sh—1, Ah—1, Hisy,n—1)
Sh—1ESMFG,ah—1€AMFG
_ w,T w 1 1 ) )| LW w,T
= Z luMMFc,,h—l(Shfl ow) - m(ap_y owlsy_q 0 w)]P)?\/I,h(S;lz |Sﬁf1vazu—17/h\mm,h71)a
sW_ €S, AV CAW
w,T w,m
= Z HM,h—1(5;f—1)/W ) ﬂ'w(a%—l‘5%—1)PWM,}L(5%}|5%—17aqff—lvﬂMMth_1)a
5}5,163“’@}1},16A“’
w,TT
i (57) /W

Intuitively, in the converted MFG, following a policy = € II', if an agent starts from the initial state with index w, it
will follow a trajectory as if it is generated in the original MT-MFG. In the following, we will call Mypg (or M) the
corresponding MFG (or MT-MFG) of M (or Myrg)-

G.3. Assumptions and Additional Definitions

Recall the definition of {M" },,c[w) and M discussed in Sec. 2, In the following, we use Mg to denote the model class
including MFG models converted from models in M according to the method discussed in Appx. G.2, and denote My to
be the one converted from M *.

We have the following assumptions, which can be regarded as a generalization of Assump. A, B and Def. 2.1.
Assumption C (Realizability). The true model M* € M.
Assumption D (Lipschitz Continuity for MT-MFG). For any M € M, and for two arbitrary policies 7, 7

~ Lr ~
Vw € [W]a th Sw7aw7 ||]P1]D\4,h("81}fv a}fa /L}T\/I,h) - ]P)wM,h('|S7}f7a%7 )u’TrM,h)Hl < WHI’LWMJL - u?\d,h”lv

- Ly -
|7”ﬁ(8}f7 a;& I""Z‘\-/I,h) - 7’%(8%, alﬁ}» HTJ{/I,h” < W”HTJ{/I,h - M?\-/I.,h”l'
Here we introduce a normalization factor W given that [|u3, , — Barnllt = Y wew len s — pingll

Definition G.1 (Trajectory Sampling Model in MT-MFG). The learner can query the sampling model with an arbitrary
policy 7 := {m!,...,#"'}, a group index w and another policy 7 := {7}, ..., 7"V}, and receive a trajectory by executing
7 while the transition and reward functions are fixed by m, i.e. Pxp. ;, (-, i ) and 737 (-, -, ipe )
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Similar to the sampling model in Def. 2.1, the model above can be implemented by utilizing the observation of an individually
deviating agent with type w following policy 7% while the other agents follows 7 in a large Multi-Type MARL system.

Moreover, for learning in the lifted MFGs, note that a sampling model in My as described in Def. 2.1 can be implemented
by Def. G.1. To see this, given two policies 7, 7 € II, which correspond to 7 := {r!, ..., 7"} and 7 := {7!, ..., 7V},
respectively, the trajectory can be generated by first uniformly sample w € [I¥], and then sample a trajectory with Def. G.1
with 7r converted from 7, type w and policy 7.

Proposition G.2. Given a MT-MFG model class M satisfying Assump. D, consider its converted MF-MDP model class
Muyr, for any M € My, and any 7,7 € IIt, we have,
Vh € [H],  Parn(-lsn an, uhrn) = ParnClsns an, whsp)llt < Ir - luden — il (15)
71 (n, amﬂ%,h) —h(Sh, ahvﬂﬁ&h” <L, H/J'?W,h - Mﬁ/l,h”l (16)
Proof. According to the definition in Appx. G.2.1, for those s, aj, with different group index, their transition or reward
differences will be 0. Therefore, we only need to consider the case when sy, ay, share the group index.

As we explained in Eq. (14), given 7, 7 € IIf, which corresponds to 7, 7© € TI, respectively, we have:

T I 1
|Khsn — il = W Z ||ﬂM ha#M h”h
we[W]

where M is the corresponding MT-MFG model of M. Combining with Assump. D, we finish the proof. ]

G .4. Constrained Nash Equilibrium

Proposition 5.1. Given a MT-MFG M and its lifted MFG Mg, we have: (1) an e-constrained NE 7 7TCW eIt for Myrc
is a (We)-NE in M; (2) an e-NE 7E in M is an e-constrained NE for Myrc.

Proof. Given any 7 € IIf, we denote its corresponding policy in MT-MFG by 7 := {r!, ..., 7"} with 7% : S¥ — A(AY)
and 7(al o w|s¥ ow) = 7 (a|s). Conversely, given any 7 := {r!,..., 7"}, we can convert it to a policy in IIT, which
we denote by 7. For ok, we denote its correspondence in MT-MFG by FNE L {mNEL | FNEWY

Note that, given any 7, 7 € II' and their correspondence 7 := {7*, .7} and 7 := {7!, .7}, we have:

H
JMMFG (%’ 7T) = E%iMMFG(ﬂ') [Z TMMFG;h(Sh) Qp, :uT]\r/[Mm,h W Z Ezw, ;M () Z rh Sh ’ ah ; l"’M h)}
h=1 h=1
where recall r*” is the reward in type w in MT-MFG and p}, j, := { H%}ﬂh}we[vv] is the collection of densities for all groups.

Consider the case when 7 = 7NF and 77 + 7VE¥ for all w except W = w, we have:
~ ANE ~NE . ~NE
€ EJAIMFG (7T', 7TCstr) - JMMFG (WCQtrv 7TCstr)
H
/\NE

1 ) o NE
= (Brwnaiae) [ ri (51 s iR )] — Enssvosnaaey (Y 7 (51 a1 )
h=1 h=1

1 ~ - w =
= (TR (7N — T (7, 7)),
By repeating such discussion for any w € [W] and any 7%, we complete the proof for argument (1).

On the other hand, given an s-approximate NE 7tNF in M and its corresponding %ggr in Myg, for any 7 € IIT we have:

. o~NE ~NE . =~NE
']MMFG (71', 7TCstr) - JJWMFG (ﬂ-Cmv 7TCstr)
1 H H
_ E w(w w T 7NE
_W Z (Eﬂ.w;M(*NE)[ Th (sh’ah>”’M,h)] —E%NE,w;M(ﬁNE) Z sh,ah,uM h)]
we[W] h=1 h=1
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To upper bound the RHS, for each w € [W], we consider an arbitrary policy 7 with with 7 = 7NE® for all w except

™ = 7, we should have:
H H
wiow w , RwE wiow w R w W (= A
Eww;M(?rNE)[Z i (ks an s magn)] — EﬁNEw;M(%NE)[Z i (shsapy s e )] = Jap (7, 7F) — Ty (7w, @) <e,
h=1 h=1
By repeating for all w € [W], we complete the proof for argument (2). ]

Existence of Constrained NE Policy Before we introduce algorithms finding constrained NE(s) in MFG, we first
investigate their existence, which is actually directly implied by Prop. 5.1.
Corollary G.3. Given M satisfying Lipschitz continuity conditions in Assump. D, the MFG Myrg converted from M has

at least one constrained NE satisfying Vi € T, Jnge (7, TNE ) < Intye (FRE ,TNE ) + € with e = 0.

Proof. From Prop. E.12, any MT-MFG M satisfying Assump. D has at least one NE. As implied by Prop. 5.1 when e — 0,
any MFG Myrg converted from an MT-MFG M with NE(s) should have at least one constrained NE. Therefore, under
Assump. D, we can guarantee any model in the converted function class Mg has at least one constrained NE. O]

G.5. Algorithm Details
We first generalize some notations in Sec. 4. We define the (constrained) conditional distance between models:

H
d (M M|7T) = 711_%%% maX{Eﬂ' M () Z ||PMJ1("'3 'nuj\rd,h) - PM}}L("U .’M%,h)”ﬂ’

WMWZHPM Clves i) = Pz Gl iy DI}
h=1

Besides, given a MF-MDP class M, a model M € M, and any policy 7, we define the £o-neighborhood of M in M w.r.t.
distance d' (-, -|7) to be: BLo(M; M) := {M’' € M|d"(M, M’|r) < e¢}. The “Central Model” of M w.r.t. policy 7 and
distance d' is defined to be the model with the largest neighborhood set Mgf“ (m; M) < arg maxse pq |Bho (M; M)].
When ¢y and M is clear from context, we will use Mglr" as a short note.

Besides, we define 5;/’[NE(7T) = maxzemt Ay (T, m) = maxzemnt Jyp (7, m) — Jpr(m, m) to be the constrained NE gap.

Algorithm 4: Multi-Type MFG Learning with Constrained Policy Space

Input: Model Class M; Policy Class I1t; Accuracy level g, €, &; Confidence level §

Convert M to Myrg as described in Appx. G.2; M%AFG — Mumrg, 0o < m.
2 5

[ ST

3fork=1,2,...do
4 7wk arg minﬂem |Bfeo (Mg;,MMFG)
5 if|l§jr’,f°(Mg,;T sMbpe)| < lMM“' then MEfL < ModelElimCstr(m*, Mg, 00). ;
6 else
T,NE,k id 11 ME 6, )

7 TR, + BridgePolicyCstr(M&ys;,&);
8 MEFL eModelEllmCstr(wngEk Mk, €5 60);
9 Randomly pick M* from ML

NE,_{NE,k NE, k NEk _1NEky.
10 ELNE (NP = maxren g (m, wh ) = T (wfNEE B,
1 if LV (rEVERY < 3¢ then return NN

J\/Ik r
12 end
13 if | M| = 1 then Return the NE of the model in Mygg. ;
14 end

15 Return the constrained NE policy of the model in My
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Algorithm 5: ModelElimCstr

1 Input: Reference Policy 7; Policy Class I1t; Model Class M:; Accuracy level ; Confidence §

2 M« M; g Choosing 1" according to Thm. G.4

3fort=1,2,...,T do

7, MY, M" < arg maxzeqi max s nrre s B, v () [Zthl ||P§»U1,h('|'» '»NTI\F/I,h,) - P}@Qh('l'? '7M7]va’,h)H1]'
Denote the value taken at the above as Al

4
5 max*
6 | ifA?, < Zthen return M?;

7

8

9

else

Zt+{}

forh=1,2.... H do
10 for w € [IW] do
11 / Trajectory sampling in My can be implemented by Def. G.1.
12 Sample a trajectory with (, 7), and collect the data at step h: {(s}", )", s/h“:i)}
13 Sample a trajectory with (7, 7), and collect the data at step h: {(3}"", @}, ?hlifi)}
y e 20U {0 s MG a5
15 end
16 end
17 YM € M, define

K W H
~w,t ~w,t
Rue(M; 2°) Z Z ZIOgPMh 5h+1\5h ,ay” 7MM n) +log Py h(sh+1\5h 2@y B )-
k=1w=1h=1

_ S Y WHT|M
MFL (M € M| Iy p(M; 21) > maxy; [y 5 (M; 21) — log WHTIMIY,
18 end

19 end

Algorithm 6: BridgePolicyCstr

1 Input: MF-MDP model class M; Policy Space IIf; Accuracy Level &, ¢

2 Convert Policy-Aware MDP Model Class M from M by Eq. (1).

3 Construct &-cover of the policy space ITf w.r.t. dw 1 distance, denoted as H;

4 for @ € I1} do Find the central model M (7; M) < arg max i i |[Bh0 (M; M)] ;
5 Construct the new PAM Mg, with transition and reward functions Vw € [W], h € [H]:

Z%engpg - dOO 1(7T W)]+Pwa h( |5h7 aha%)

BY . (|sn, an, ) ==
B, (-[Shs an, ) Z%EH;[ E—doon(m, )T

3 =\ pw ~

R (s ) ::Z%eng[% — doo,1 (7, 7)) TM’i,h(Sh’ahvﬂ—)
h Z%eng[% — doo,1 (m,7)] T

¢ Find the NE of bridge model: 7rBr P argmin, e maxzep JM (m;m) — jMBr (m;m).

,NE
7 return 7y, .
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G.6. Proofs for Algorithm 4

Theorem G 4. Under Assump. C and D, in Alg. 5, given any &, reference policy m, § € (0,1), and M* € M, by choosing
T= O( (dlmCPE|HT (M)A (L+ Ly)*" (1 + LrH)? dimgPE\HT(M7€/>)) with &' = O(m)’ »wp. 1=,
the algorithm terminates at some Ty < T, and return M™° satisfying (i) M* € Mo (ii)YM € Mo, dt (M*, M|x) <&

Proof. The proof is the same as Thm. F.3, except that we consider the constrained policy space, and need to replace P-MBED
with constrained P-MBED.

Theorem G.5. Suppose we feed Alg. 6 with a model class M and policy space T, then for the bridge model Mg, it
H
computes, by choosing € = e/ 1rnin{2HLr%7 2H(H + 1)((1 + L) — 1)}, for any reference policy = € 11

and its associated central model Mg;fo (m; M), we have:

H
bt B 10250 (s X) () [hz_l ||PNY;,;EU(7F;M),h(.|Sh7 an, ™) = Por p(-|8n, an, 7)|11] <(H + 3)eo,
H
I}rlgi{ E. Mgnso (71',./\/1)(71') [}; |T]\'/'[CTIL€0 (ﬂ.;./\}[)’h(sha ap, 77) - ’FBr,h(Sha ap, 7T)|] SLTH(H + 4)50
Proof. The proof is the same as Thm. F.5 except that we constrain the policies in IIT. ]

Lemma G.6. Suppose the E1se-branch in Line 6 if activated in Alg. 2, for policy ﬂB;NE’k and its corresponding central

model Mg;r = arg max ;e \qk \B ] % (M; MF)|,

PNE (FNERY L ,NE, k
ELR ) = e B ) <200+ LB+

Proof. The proof is the almost the same as Lem. F.6, except that we consider the constrained policy space.
For any policy 7 € IIf, we have
NE,k
AMJr k (ﬂ- 7.r]-it’vr )
NE,k NE,k NE,k
<AMT k(ﬂ- 7T'J-it’yr ) AMBY(WJTJ;r ) (AMB (7T' 7Tl];r ) < O)

NE, k ¥ NE,k ¥ NE, k NE,k ¥ NE,k NE, k
<|Tggaor G, BN = T (e, ) 4 g (rEE, mENER) — Fp (rlNER, mENEE)|

H
<E B N (g NE k)[z |7'“'Mg“k h(sh, ap, Wl];rNE k) — fMB”h(Sh, ap, W]];rNE k)|

m NE k\ 13 NE,k
+ HPM&" ( |Sh7ahaﬂ—]];r ) ]P)I\}[B”h('|sh7ahv7rlgr )Hﬂ

+E Mg"k TNEk Z|’I"]W]‘k 8h7ah,7rngEk)—7'”']\;[B (Sh,ah,ﬂngEkH
7 ,NE,k\ 13 NE,k
+ |\PMf;k,h('|5haah’7ﬁTar ) Pp wClsns an, mNF)|[1]
+,NE, k . +,NE, k
SZ;I&E%_I}%E Mé—"k JrrNEk Z|’I"Mg“k7 5h7ah77rBr ) TMB,,h(Sh7ah77TBr )H
+2maxE_ goe e ZH]P’MM Clst an, T8 ) Py Clsns an, m™)14]
rellt Ctr Br I
<2(1+ L, H)(H + 4)eo. (Thm. G.5)
which finishes the proof. L]
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Theorem G.7. In Alg. 4, by choosing €y = m, € = % and choosing & according to Thm. G.5, on the good

events in Thm. G.4, (1) if the Tf-Branch in Line 5 is activated: we have |M*+1| < |MF¥|/2; (2) otherwise, in the

Else-Branchin Line 6: either we return the WE;NE’k

with |MFHL < | MF| /2.

which is an e-approximate NE for M*; or the algorithm continues

Proof. We separately discuss the if and else branches in the algorithm.

Proof for If-Branch in Line 5 On the events in Thm. G.4, for any M ¢ Bjr’,fo (M*; M¥), we have df (M*, M) >
€0 > &, which implies M ¢ MP*+1. Combining the condition of I f-Branch, we have:

M < gl (o ) < L

Proof for E1se-Branch in Line 6 First of all, on the events in Thm. G.4, we have df(M*, MF*|r T NEs k) < €. By
applying Lem. 1.2, it implies:

| A (m, wérNE’“> A g (m, N

Mk ("T gy

wDNE R TNl:k
_Eﬂ M* (ﬂ.T NE, k Z ||]P>M* |Sh7a'h7/j'M* ) - Pﬂk7h('|5haaha Mk h )” }

H ol NEk TNEk
+ (2L H + DE, e ey [ [Pase wClsny ans iy ) = Prp p Clsns ans i, )l
h=1
<2(L,H + 1)&. (17
Also note that:
Ange (m, TNEFY = A (m, mENEFY — Ay (m, mENEFY 4 A (, wh VR,

In the following, we separately discuss two cases.

Case 1: 8%§E(7T]T3;NE’I€) < 3¢ and Line 9 is activated ~ Given that £ < T CES Aok

Vr eI, A (m, wlNF) <|Ape (m, 7R — Agp (m, w4+ ELTE(RLNER)
,NE ,NE,k NE, k
(ELF (e )

Ty ) = maXqemt A g (T, Tg)
<2(L,H + 1)+ ij <e.
which implies 75,""* is an &-NE of M*.
Case 2: EJ%IZE(#]T;;NE”“) > 32 and Line 9 is not activated ~ As a result, for any policy = € IIT, by Eq. (17), we have:
Ange (1, ThNF) > — | Apge (0, TENF) — A (0, 7ENEP) 4 Ay (m, TENER) > A (, eNPR) — 2(LH 4 1)E.

Therefore, by our choice of &,

5e
+,NE,k +NE, 1 NE,k
Hé?_["% App+(m, ;) 2 gﬁk (mgr ") —2(LrH +1)E > re
On the other hand, by Lem. F.6, for any 7 € IIt, we have:
Apge (m, i NEFY — 2(1 4+ L H)(H + 4)eg
<|Apg (m, mENER)| — |A i (T, mhNER)) (Here we apply Lem. G.6)
Ctr
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NE,k NE,k
<|An- (m,mf ) — M““(”’”lgr )l
H TNEk ’[NEk
B g (alety D IPar mClsns ano i ) = Bagioe pClsnan, i3, )]
h=1
1 1.NE, k tNFk
QL H A+ DB oo g ey (3 [Base aClsmans i35 ) = Bygge Clomsan i )Ih]
h=1

<(2L.H + 2)dt (M*, MEF|mlNEF).
According to the choice of €, we have 2(1 + L, H)(H + 4)eo < £, therefore,

1 3e
df (M*, MEF|rfNERy > —— — Ay T.NE K 1+ L.H)(H+4 >
(O MG ™) 2 5y (o e e )| = 200+ L) +020) 2 175

Next we try to show that models in BiE:NE”“ (Mg{rk, MP) will be eliminated. For any M € Biﬁ*“"“ (Mét’f, MPF), we have:

1 _tNE,k K x| T,NEk k| _+NE,k 3e ~
di (M, M |xfMF) = df (MEF, M [N — df (M, MG | )Zm—5>5~

On the good events in Thm. G.4, we have M & M*+1 which implies

MIF < MY = (B2 e (M MP)| < [ MY /2

]

Theorem G.8. [Sample Complexity in MT-MFG] Under Assump. C and D, by running Alg. 4 with Alg. 5 as
ModelElimCstr and Alg. 6 as BridgePolicyCstr, and hyper-parameter choices according to Thm. G.4, G.5,
and G.7, wp. 1 — 4, Alg. 4 will terminate at some k < logy,|M| + 1 and return an e-NE of M*.

WL (1 + Lo H)? Y ey (dimyrpe (M®,€') A HP(1 + Ly)* (1 +
Ly H)?dimyyppg (MY, €')) log? |M|), where ¢ = O(e/WH3(1 + L.H)(1 + L)), dimyrpe(M®,e’) and
dim}yrpp(M®,€') are the Multi-Type P-MBED defined in Def. D.10, and we omit the logarithmic terms of
H 13 IOg |M|,dimMTpE, 1 —|— LT and 1 + LT.

The number of trajectories consumed is O(

Proof. Asaresult of Thm. G.7, w.p. 1— m(logg | Murg|+1) = 1-9, there exists a step k < log, |[Mmrg|+1 =

logy [ M| + 1 such that Alg. 4 will terminate the return us an 5 -approximate NE of Myjp;. The total number of trajectories
required is:

U\

(logy |M|+1)-T-2H = O(

(dimCPEU'IT (Mwikg, ") A H?*(1 4+ Lp)*™ (1 + Ly H)? dimgpmm (M, 5/)))

Note that in Thm. G.4, we choose &€ = ¢ = O(gpgrrTr77y)- and €’ = O(E/H*(1+ L)) = O(e/WH3(1+ L.H)(1+

L7)™). Combining with the above discussion and Prop. D.14 and Prop. 5.1, we finish the proof. ]
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H. Approximation Ability of Multi-Type MFGs
H.1. Multi-Type Symmetric Anonymous Games

Notations Given a multi-agent system where agents are divided into W groups, where for each type w the agents share
the state-action spaces %, A" and initial distribution p}’, we use N to denote the number of agents in group w € [W],

w,n

and s,"", a;"" and 7™ to denote the state, action, and policy for the n-th agent in type w, respectively. Besides, we define
sn = {8 buew)nenw) @n = {a), " bwew]ne[nw) to be the collection of states and actions of all agents in the system
at step h, and denote ps, := {p}, ..., phr } to be the empirical distribution of the agents’ states with:

Nw
w 1
S| . _ s
Py € RIS pe () = < ST =),
n=1

To distinguish the policy in MFG setting, we use v := {7""" },c[w],ne[nw] to denote the collection of policies. We will
denote v(an|sn) := [ [, e [nepne) 7" (@, ""[s), ™). Besides, we use v~ (W) o W to denote the policy replacing
7" to T ™ while keeping the others fixed.

Definition H.1 (Multi-Type Symmetric Anonymous Game). The Multi-Type Symmetric Anonymous Game (MT-SAG)
M = {(py, 8", AV, H,P* r") }ye[m) is a Multi-Agent system consists of W groups. Given a policy 7, the system
evolves as:

w,n w. . w,n w,n w,n w,n W/ wn _wmn w,n w w w
sy~ Yhow,noay) " ~m (s ), my " e (s an " psy )y sy ~ B Clsh an s psy, )- (18)

Given a policy v, we define the value functions V' : § — [0,1] and Q : S x A — [0, 1] of the (w, n)-th agent conditioning
on the system state sy, to be:

H

Vi sy sn) o= Eng [ it (sp" s ap™ ps,. ) snl; (19)
h'=h

where the expectation is taken over the evolution process in Eq. (18). Besides, we define the total value starting from the
initial states .J " (1) := E,,, [V, (7" 81)].

A policy v is called to be the NE policy in MT-SAG if any agent can not improve its value by deviating from its current
policy while the others’ are fixed,

Vw,n, max Jy" (v~ o 7MY < JUM(w).

and a policy v’ is called to be an e-approximate NE in MT-SAG if

Vw,n, max J;&I’"(u_(w’") o) < J"(v) +e.

Fw,n

Assumption E (Lipschitz Continuity in MT-SAG). We assume the transition and reward functions of MT-SAG are Lipschitz
continuous w.r.t. the density, s.t. Vw € [W],h € [H|, Vi, @), € A(SY) x ..ASWY)
w wow w wow LT ~ ~/
1Py (-Iss ar s n) — PR ([sis ap, ) [lr < W”Hh = Bl

- - L, _ -
i (sis agy s n) — 737 (spyy ap, ) < erluh — |1

H.2. Approximating MT-SAGs via MT-MFGs

Definition H.2 (Multi-Type Mean-Field Game Approximation of MT-SAG). Given an MT-SAG M, its Multi-Type Mean-
Field (MT-MFG) Approximation is a model Multi-Type MF-MDP model M := {(u{’,S", A", H,PY;,7%;) bwew]s
sharing the group, initial distribution, state-action spaces and transition P* and reward function " as MT-SAG (i.e.
PRl ) =P Gl ), mig (-5 -) = 735 (- -5 ), by have different transition rules.
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Next, we describe “the different transition rules” in MT-MFG. For simplicity of notation, in the following, we omit M or
M in the sub-scription of transition and reward functions. Given a reference policy 7 := {r!,..., 7"} consisting of W

policies shared by each group, the density puj := {/,L,ll’", ey ,u,VZV’”} at step h is defined by:

P = VR g e T ), Wit T ) () s= Y g (s af s B Clsi o an).

LW oW
517, ,ah

where I'}"™ is a mapping from A(S') x ...A(SY) to A(S™). The evolution process of the (w, n) agent in type w following
a deviation policy 7" conditioning on reference policy 7 is specified by:

S R s RS, e (s ), s ~ PRIl ). 0)
Comparing with Eq. (18), the evolution of agents’ states is depend on the density when Vw € [W], N* — 400, instead of
the empirical one in practice.

Recall that given a reference policy 7 and a deviation policy 7, the value functions V' : & — [0, 1] of the (w, n)-th agent
conditioning on the density p7, j, is defined to be:

H
—w j=w

Vﬁ[’f;[ﬂ o (Szj’nﬁﬁ’]{/f,h) :E%W,M(w)[z T;LU/(S;LU/H,@Z)/"’M’fo[,h/)];
h=h

where the expectation is taken over the process in Eq. (20). Then, we define the total value of =% o 7" given the reference
policy 7r to be:

TEM Y 0 T m) = B [ (52, )]
A 7 is called NE policy if:
Vw,n VT, Jy(mm o m i m) < Jyuy ().

Proposition H.3 (Approximation Error of MT-MFG). Given a Multi-Type Symmetric Anonymous Game (MT-SAG) M, as
defined in Def. H.1, and its Multi-Type MFG approximation (MT-MFG) M, as defined in Def. H.2, suppose  := {7 } ,,c[w)
is the NE policy of MT-MFG, then for any £ > 0, the lifted policy v := {m""" } ,ciw ne[nw) With T = 7, Vn € [N"]
is an ey-approximate NE of MT-SAG if

(1+ L) — 1)2 2wew) 5 log 2L+ Lr + L) HW S

Vwe W], N> O0((L,+ LT)2W2H3( -
T

).

3 €0

where Spax = max,, SY.

Proof. Givenm := {r!, ..., m"V'}, we denote v := {m"""},c(w],ne[nw] to be the lifted policy such that """ <— 7 for all
wand n € [N"]. Given a deviation policy 7" for some w (7* may equal 7*), we define v := {7"" },,c (W] ne[nw] to be
a policy in MT-SAG, such that 77" < 7% for all agent except the (w, 1)-th agent (i.e. the first agent in type w), we set
~(w,1) ~w
T — 7.

Concentration Events We first provide a high-probability bound for the distance between state density pj; in MT-MFG
and the empirical distribution py, in MT-SAG w.r.t. the lifted policy v.

We use I'y;", (+) to denote the operator I';””(-) in Eq. (20) specified in model M. We extend its definition to h = 0 by
Vo, T (o)  p, and define IR n() = (D371 () s Tg™s ()} Then, conditioning on p%. ., we have:

1B sz 5(P5, 1P5, ] = TRen—1(P5, )l
=[Exz 55, 105, ] = Tarn-1 (@5, )l
NvY_1
NvY —1 1 = =
el | PV S S Rt AN B o MY A
n=2
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1 v w, v
+W||E1\71,17[551;v1:(.)|psh,1] FMﬂh 105, )l

1 U ), TC
:Nw HEM,E[(SS;‘L’J:(-) ‘psh, ] Fqli\/[ h— l(psh )Hl
2
SN 2D

where 53;5’":(.) € RZw 15”1 denotes a vector with 1 at the (w, n)-th value and 0 at the others. In the equalities, we use the
fact that M and M share the transition function.

Besides, conditioning on p§ _, for any w € [W] we can treat {sf’"}ne[ n@) as i.i.d. samples according to distribution
E[p2¥|p¥ _ ]. By applying Lem. L6 for a fixed p¥ _ ,Vw € [W],h € [H], forany € € (0,1) and § € (0, 1), as long as

N® > min{ SW;QSm ) 8?2/2 log 2} holds for any w € [W], we have:

Pr(|p%, = TR na (05, )l >¢)
<Pr(|Ip%, = TRrn—1®5, )l + [EDS, [P, ] = Thena (05, )l =€)
€
<Pr(lps, — EpS, 105, )Ih > 3) (Eq. 21))
< Pr(|lpg;” — Elps”[p5, | ]lh > e/2W)
we[W]
<. (22)

Note that the number of possible values of p¥ _ can be upper bounded by [T, e (V w)S™, We define event & := {Vh €
[H],w e [W], ||Ip%, — F’]{/Iﬁ_l(p‘zh_l)ﬂl < e}. By applying a union bound over %, w and all possible p5 _ , we have:

W23 e S tog 2V S

Pr(£) >1—4, aslongasVw € [W], NV > O( = 5

) (23)

Density Error Decomposition The following discussion are based on the event £. Recall we use pufr := { u};”, e ,u,vlv”'}
to denote the density induced by 7 in MT-MFG. Then we have:

Ip5, — milh
= :h - }T\J,}L—l lSI;L 1 }TVI }L—l ISI;L - ;Lr 1
Ips, —T ®5, )l + [T s, ) —pql

<€+ Z Z| Z pe” (i) mi g (ap_y|si_ PRy (st si_ 1, a1, 0%, )

o &
we[W] s s e,

- Z uh;l(sﬁ—l)ﬁ}?—l(a;ﬁ—l|5;;,)—1)P%—1(5;11,)|5z)—17aqif—lv:u’;zr—l)|
Si_1ah_y
<e+ Z Z Z |psh 1(Sh ) - uﬁf’_’i(Sﬁfl)lﬂﬂl(azﬁlISZ”A)P%’A(S?LUIS%Da}’ifppih_l)

TEW] sf 5P af_,

+ Z Z Mh 1 Sh 1)7Th 1(“20—1‘520—1)2‘PZ)—I(S%BZ}—DaZ)—lvp:h,l) — Py (s Ish—1> aR—1, Hh—1)]
we[W] Sh 1 a‘h 1 Shfu
<e+ (1+Lo)|ps, , — w1l
h _
LAt Lr) -1

Ly

Upper Bound of Approximation Error Recall the definition of value functions in Def. H.1 and Def. H.2. We focus on the
(w, 1)-agent which takes a potentially deviated policy 7% while the others do not, and we are interested in provide an upper

bound for the value difference J I(\;Ij’l) (v)— Jf&"’l) (m=" o m¥; ), which will be useful to characterize the sub-optimality of
lifted policy v.
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We start from step h = H, following the choice of N* in Eq. (23),

w,1),0 w,1 w,1),7m~ " w,1
EnrolVag o™ (5 ssm) = Varg ™ 7 (s )
1 w,1 1 w,1
—Enr sl (s al D ipZ,) — rig (sl )]
> - 14+ Ly -1
<L ollp?, — whlh] < B+ CHEDT 2 o
For h < H, we have:
,1), ,1 1), 7 Yo ,1
EnralVar " (i i8n) = Varn ™ 70 (s )]
w,l w,l w,l w,l w,l
:EM,E[T}L (ng ) ( )7psh) —Th (851 ) ( )7 /J’h + Z ]PM 3h+1|sh7 ail)vlsd hJ)rl (Sngl)a Sh—i—l)
Sh+1
w,1 w,l),m Yo w,1
- Z Py ( Sh+1 h b agl )#Z)Vz&,h)ﬂ <351+1)7Nh+1)]
o
U T w,1 w,1 w,1),m Yo w,1
<Epr ol Lol%, — iE Il + Y Pra(snaalsn an) (Vg ooy (it snen) = Vgl ™ (it i) )
Sh+1
w1) 7w YoF , (w1
+ Z PM<3h+1|3h7ah)VJE4,hJ)rl (32+1)7“h+1)
Sh+1
w w,1 w,1 w,l), w,l
- Z Py 5h+1)|3( ), | )vp'h)VIEJ,h,-)t,-l (Sﬁlﬂ)»ﬂhﬂ)]
shy)
U ™ w,1),7 " Yor® w,1
<ent1 +En5Lelps, —prll + Z Prz(Sh+1]8h, ah)VJELhJ)rl (85744*1)’ Phi1)
Sh+1
- Z Py sh+1)|s(w 1), a(w ), uh)VIE}IUth ( ﬁfj_ll),uhﬂ)] (By induction from h + 1)
(w1
Sh41

=€p+1 + EM,D[Lergh —pp i+

w w,1 w,1 w,1 w/ (w1 w,1 w,1 w,1 Yorr™ w,1
30 (sl s nE ) — B st Ll ) ) VAR (s s )

(w 1)
h+1

(14 Lp)"—1

<ens1+ (Lr + L1)Byg 5[0, — pfll1] < engr + (Lr + L7)(26 + I,

€) =: €p.

where we use Py (sn+1/8n, @n) == [L,c iy [lnein Pi (sgill” (w, 1), (1) 1, ) to denote the dynamics in MF-SAG.

Therefore, for h = 1, note that M and M have the same initial dlstnbutlon, and we have:
(1+Lp)" -1
—c
Lr
Given an & NE policy in M, denoted by 7r, consider the lifted policy ~ and a deviation policy v agrees with v except that it

TSy and £ = go/<4(Lr + LT)H%) we

TN (@) — S (w07 w) < 28(Ly + Ly)H + 2(L, + Lr)H

takes some 7% for agent with index (w, 1). By choosing § =
have:

max J\D (@) — I (1) <max S @) - J@D (v) — (maxJ (w—wo%w;w)—Jﬁ’”(mw))+g

Fw Fw w

<2max |[JWD (@) — I (7m0 7w+ E < gg + &

Fw

To satisfy the requirements in § and €(, we need:

(1+ Lp)" — 1>22w€[W S
Lt

v log 2(L, + L7)(1 + Ly)HW Spax

Vwe W], N> O0((L,+ LT)2W2H3( 5 -
0 0

).
O
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I. Basic Lemma
I.1. Lemma from (Huang et al., 2023)

Lemma I.1 (Lem. D.4 in (Huang et al., 2023)). Let X1, X5, ... be a sequence of random variable taking value in [0, C] for
some C > 1. Define Fi, = 0(X1,.., Xj—1) and Y}, = E[Xy|Fi] for k > 1. For any 6 > 0, we have:

n n
1
<6, Pr(3n) Yi <3) Xi+Clog ) <.

n n 1
Pr(3n ) Xp <3) Yj+ Clog < 5) <

5)
k=1 k=1 k=1 k=1

Lemma 1.2 (Lem. 4.6 in (Huang et al., 2023)). Under Assump. B, given two arbitrary model M and M, and two policies ™

and T, we have:

H
|Ans (7, 7) = Ay (7, )| <Ez va(my [ IParnClsns ans 1) = Pp p Clsns ans 13y )]
h=1
H
+(2L H + D a1y (Y IPan(lshs ans 31,0) = Pz, (lsn, an, g - 24)
h=1

1.2. Other Lemma

Lemma L.3 (Density Difference Lemma). Given arbitrary Multi-Type Mean-Field MDPs M and M’, and two arbitrary
policies w and w', for any h € [H]|, we have:

<ledrn-1 = BRep-alls + W doo (7, 7)

+ Z Ew,M(w)[||PUAj/I,h('|S1ﬁ)717aqﬁjfplfz{/l,hq)_Plf(/n,h(wsﬂpa;ﬂpN’z{/p}hfl)”l]-
we[W]

’
HNK/I,h - IJ'}\r/I’,h

Proof. For any w € [W], we have:

i, = sl

:|Z( Z fng o (Sh—)mh—1(an—1 sk 1) Phr (8K 1Sh—15 @i -1, Bhg h—1)
e

w w
Sh—1%p—1

’ 7
D DR N C L R s PR G RN () |
Sp 150y

§|( Mizl\)/’[%(s;f—ﬂ NM/ (Sh-1 ) ZW (ah_1lsK—1) ZPM’ R (Sh 18K 15 an 1, magr p—1)|

w

Sh—1 ap_q Sh
U i) 3 (R (i) = o lsin) ) DO PRe (s s, 0k B )]
9;,” 1 (1,1}:’ 1 9}:
’
+ Z NIX/’[T;Z(S;LU)W%)—1(@7}5—1|S%—1) Z |P1}l\)/l,h(5;ﬂ3%—lv ap-1; ”K/I,h—l) - Pl]’f/[/,h(sﬂrsﬁu—b a1, P’ﬂ-M’,h—l)|
Sh_1:05_1 sy

(Assump. B)
SHNK/}T}LA #M' h— 1||1 +doo 1(7" ™ ) +Ex M(ﬂ')[”PM n(ISh_1,an— 1aHM he1) — P}U\/I/,h('|5;f—17a7if—17/L}\TJ’,h—l)Hl]
By repeating the above discussion for every w € [W], we have:
||/J’7J{/I,h - NKzrthl
Slehsn1 = #rrpally + W dooy (7, 7')

+ Y Ernaim PR aClsiors @i 50 0-1) = Phn Clshors by, i e -
we[W]
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Lemma L4. Given two model M and M' and a policy «, for any h € [H|,w € [W], we have:
||#1I{/I,h+1 1597 h+1||1 Z Er ,M () Z ”PM w( 7'?/"’71{/1,h’) - Plf\}/n,h'('|'v '7”711\-4',11’)“1]- (25)
we[W] h'=1
Besides, under Assump. B, we have:
h
I#Re e = Mg [l < Z B[ D (L L) PR e (Lo ) = B (s ) - 26)
W] h'=1

Proof. By applying Lem. 1.3 to the case when 7w = 7/, and combining with Assump. D, we finish the proof. O]
Lemma L5. Given two model M and M’, and two arbitrary policies w and 7', for any h € [H]|, we have:

H/fzkh - M}h',h”l

SHHMh—l - ,L/I{/[,h—l”l + d0071(7ra 77/) + Ew,M(w)[||PM,h('|5h—1, ah—h#hh—l) - IEDM’,h('|5h—1, ah—lyﬂ}{/f’,h—l)”ﬂ'

Moreover; as a special case when ™ = ', we have:

h

s s = B na |t <Brarmy Y IParne (lsnrs anss 1 ) = Pare e Clsnes anes i1 o) ] (27
h/=1

Besides, under Assump. B, we have:

=

I3, n41 — B gl < Ex v Z (L + L) ([Par Clsns ans g ) = Pagrne Clsws ans, i ) ll]- - (28)

Proof. The proof is simply completed by setting W = 1 in Lem. L.4. L]

Lemma 1.6 (Concentration w.r.t. [1-distance). Given a discrete domain X and a distribution p on X, suppose we draw
N iid. samples {x"},c(n) from p andprovide an estimation p € A(X) with p(z) = % Zgzl 0(z™ = x), then for any

§ € (0,1) and e > 0, as long as N > max{2¥ — ’52 % log 2}, we have:

P(|lp —plls > €) < 6.

Proof. We first provide an upper bound for E|||p — p||1]:

Bllp —711] = Y- Elloe) ~ (@) < Y- B — 0P = 2 3 VAT =5 < /o

TeX reX reX

where we use the fact that p(z) is a Bernoulli random variable with mean p(z) and variance +p(z)(1 — p(x)).

Next, and note that deviation of any 2™ will only result in 2/N deviation of ||p — p||1. By McDiarmid’s inequality, for any &,
we have:

2|X| . 5 N,
= - - > ) < 2exp(——
P(llp — Pl = + 5\ ) S Bllip =Pl = Efllp = plh]l = 5) < 2exp(—5-¢%),
By assigning appropriate values for N, we finish the proof. ]
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Lemma L7. [Model Difference Lemma] For any policies 7, w and 7', and any bounded functions f1, fo, ..., fu € {f|f :
SxA—[0,1]},

(i) Given any two MF-MDPs M and M’, we have:

H H H
Ex a1 () [Z Jn(sn,an)] — E%,M/(w)[z In(sn, ah)]‘ <H -Ez r(r) [Z IPaz (:Isky ans s ) — Parr (lsny ans i p) |-
— — h=1

(ii) Given any two PAMs M and M', we have:

H H H
Bz xiim [ Su(shsan)] = Ba i en [ frlsnran)] ‘ <H - Ea girm D B (lsny ans m) = B, (lsns an, 7)l1).
h=1 h=1 h=1

Proof. We first proof (ii). We use 7, ( to denote the density induced by 7 in model M given 7’ as the reference policy.

w'),h
||/’471\r'/'[(7r) _M?\t/'p(ﬂ/ hHl
-1>( > uM(ﬂ)h (sn1) T (an—1|sn—1) By (snlsn—1, an—1,7)
Sh Sh—1,0h—

- Z MM,(ﬂz)h 1(5h )7 (an—1|sn— I)PM/(5h|5h717ah71777/))|

Sh—1;,ah—1

<ID S D B ma T an—lsn—1) By (snlsn—, an—1,m) = Py (snlsn—1, an-1, )|

Sh Sh—1,Qh—1
+|Z Z /JM(W hoq(8h—1) — MM,(ﬂ)h L(sn—1)) T (an—1|sn—1)P i (snlsn—1, an—1,7)|

Sh Sh—1;,ah—

<]E% M 7r)[||IED (- |5h—17ah—1a77) - PM'('|Sh—1vah—la7T/)H1] + ||/“‘7z(71(7r),h—1 - Mﬁ/(ﬂ/m_l”l
h—1

<Ex 1ol D 1By Clsnrs anry ) — By Clsw, an, 7)1].
h'=1

Therefore,

H H H
Ez xirem Z (sh,an)] = Bz i any [ (s, ah)]’ S o
h=1 h=1 h=1

H
<H Ez v Z||PM<~|sh,am>—IPM/<~|sh,ah,7r’>H11.

The proof for (i) can be directly obtained by replacing I.[bM,h("" ) and Py, (|- ') with Pag g (- 5 ) and
PM',h('|'7'7/’L7J1\—4’,h)'

[
Lemma L.8. Given three arbitrary models M, M, M, and two arbitrary policies T, 7, we have:
H
Er 570w (D 1P57 5, Clsns ans 157 ) = Bz (lsns ans 1y ) 11]
h=1
H
<Ez m () [Z IPar,n(:|shs ans e n) = Pz n(lsn, an, i p)l1]
h=1
H
+ (H +1) Bz i [ IParn(lsns ans 13rn) = Prz, Clsns ans 13z ). (29)
h=1
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Proof. By applying Lem. 1.7 with fy(sn, an) = P37 ,, (-[sn, an, ;ﬂ]{zh) — Py n(-|8h, an, ;L’J(Z,h)Hl, we have:

H
Es 17D 1B Clsns an. 127 ) = BgClswean, 1 )]
h=1

H
SE%,M(ﬂ') [Z ||Pﬁ,h('|sha Qh, /“LT’FZ\Z;L) - ]PJL_[,h("Sh’ Qh, NTz\rz,h)”l]
h=1
H
+ H Bz pi(m) D IPan(lsn, an, 13r.5) — Pz, (lsn, an, Gyaali
h=1
H
Bt () [ (Parn L ans i3.0) = Pz Clsns ans 15y ) [1]
h=1

H
+ (H + DBz ar(m) D IPan Clsns ans 13r0) = Pz Clsns an, iz ) 1]

h=1
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J. Details of Experiments
J.1. Algorithm Design

In the following, we provide the missing algorithm details for Sec. 6.

Algorithm 7: A Heuristic Oracle-Efficient NE Finding

1 Input: Model Class M; Accuracy level €, £, £; Confidence level 0; Batch size T’
1 . s

2 M < M, 60 < W

3 VM € M?*, compute (one of) its NE policy mhF <— NE_Compute(M).

4 fork=1,2,...,do

s |3V € ME srmaxy g B (M, M) < I then
6 ‘ MFHL ModelElim,Exp(wﬁfk,Mk,E, 00, T).

7 end

8 else

9 MP¥ «+ argmax ¢y \Bfr(zﬁ.;(M,Mk)L

10 TRE < TP

1 MEFL « ModelElim Exp(mRhE, M* &, 6, T).

2 it M* € M**! then return m\E, ;

13 end
14 end

Here ModelElim Exp is the same algorithm as Alg. 2 except that we replac Line 4 with:
H

T arg B Ez r(x) [};1 IPaz,n (-l -5 #a )

—Par (L5 i )],

In another word, we only consider policies from IINE := {#NE}, - including the NE policies of models in M.

J.2. Experiment Setup

Environments We consider the linear style MFG, such that

o(sn,an) TG (un)(shin)]
P(5h+1|3h7ah7ﬂh) - Zsthl |¢(8h>ah)TG(Mh)¢(3h+1)|,

where ¢ € R?% and G(-) € R%*9v are known but t» € R% are unknown. Note that our environment is different from
linear model in Prop. D.12, where features are self-normalized. We choose H = 3,5 = 100,A =50 and dy = dy, = 5,
where the number of states and actions is much larger than the feature dimension. We consider a model set with | M| = 200.

To construct the environment, for each h, we first generate a random matrix ®;, € RSAxdy using as feature ¢(sp,, ap,), and
generate another random matrix Uj, € RS*94v and define the function G}, (u,) by

Yun € A(SK),  Gnr(un) := (1, Up).reshape(dg, dyy) € Rédw.

After that, we generate 200 random matrices {‘I’Z}L}ie[zoo] with ‘I’Z € R%*3 as the next feature function. Then, the
model class is specified by M := {(®p, Uy, ¥%)}. In order to make the model elimination process more challenging,
{\I!}'L},-:27.__7200 is generated by randomly perturbing from Ul je.:

’}il = (1 - B)N;L —|—ﬂ\II}1”

where \Tlﬁb is a random matrix independent w.r.t. ¥} and 3 ~ Uniform(0, 0.1). In this way, the difference between models
in M will be small and harder to distinguish.
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Training Procedure We construct 5 model classes M!, ..., M? with different ®, U to increase the randomness in
experiments. For each model class M®, we repeat 5 trials, where in each trial, we first randomly select one model from M®
as the true model, and run Alg. 7 for model elimination.

We set e=le-3, i.e. we want to find a le-3-approximate NE. Besides, we set batch size T = 50, 6 = 0.001. For the
NE_Oracle in Alg. 7, we implement it by repeatedly update

mit+1 < (1 — a)m; + aBestReponse(m;; M). (31)

where o = 0.02, and BestReponse(7;; M) return the policy maximizing the NE gap of 7r; in M. We stop the update process
as long as EYE(m;) < Se-4.

Experiments Results We provide our experiment results in Fig. 2. On the LHS, we report the number of uneliminated
models verses the number of trajectories consumed, and as we can see, our algorithm can eliminate unqualified models very
quickly. The total consumed trajectories is much less than the number of states actions SA = 100 * 50 = 5000.

On the RHS’, we report the normalized worst case NE Gap w.r.t. the remaining models. At each iteration ¢, we compute the

NE gap for every uneliminated model’s NE policy, and pick out the largest one denoted as Gap,. The normalized gap is

defined to be gzst , where the normalization term Gap,, is the maximal NE gap at the beginning of the algorithm, i.e. the
0

worst NE gap without starting the algorithm. As we can see, our algorithm can gradually eliminate inaccurate models and

return the (approximate) NE.
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Figure 2. Experiment results in linear style MFG. We report the number of remaining models and the normalized maximal NE Gap by the
NE policies of remaining models during the model elimination process. Error bars correspond to 95% confidence intervals.

"In the RHS sub-plot of Fig. 2, we set the normalized NE Gap to 0 as long as it is lower than le-3

55



