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Abstract
We study the sample complexity of reinforcement
learning (RL) in Mean-Field Games (MFGs) with
model-based function approximation that requires
strategic exploration to find a Nash Equilibrium
policy. We introduce the Partial Model-Based
Eluder Dimension (P-MBED), a more effective
notion to characterize the model class complexity.
Notably, P-MBED measures the complexity of
the single-agent model class converted from the
given mean-field model class, and potentially,
can be exponentially lower than the MBED
proposed by Huang et al. (2023). We contribute
a model elimination algorithm featuring a
novel exploration strategy and establish sample
complexity results polynomial w.r.t. P-MBED.
Crucially, our results reveal that, under the basic
realizability and Lipschitz continuity assump-
tions, learning Nash Equilibrium in MFGs is
no more statistically challenging than solving a
logarithmic number of single-agent RL problems.
We further extend our results to Multi-Type
MFGs, generalizing from conventional MFGs
and involving multiple types of agents. This ex-
tension implies statistical tractability of a broader
class of Markov Games through the efficacy of
mean-field approximation. Finally, inspired by
our theoretical algorithm, we present a heuristic
approach with improved computational efficiency
and empirically demonstrate its effectiveness.

1. Introduction
Multi-Agent Reinforcement Learning (MARL) has excelled
in modeling cooperative and competitive interactions among
agents in unknown environments. However, the well-known
“curse of multi-agency” poses a challenge in equilibrium
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solving for MARL systems with large populations. Yet,
for MARL systems with symmetric agents, such as hu-
man crowds or road traffic, one can leverage such special
structure by employing mean-field approximation, leading
to the RL for Mean-Field Games (MFGs) setting (Huang
et al., 2006; Lasry & Lions, 2007). Notably, MFGs offer
a promising framework where the complexity of learning
Nash Equilibrium (NE) needs not depend on the number
of agents (Laurière et al., 2022). It has found successful
applications in various domains, including financial mar-
kets (Cardaliaguet & Lehalle, 2018), economics (Gomes &
Pimentel) and energy management (Djehiche et al., 2016).

Similar to single-agent RL (Jiang et al., 2017; Jin et al.,
2018), for MFGs, one of the most important questions is to
understand how many samples are required to explore the
unknown environment and solve the equilibrium, a.k.a. the
sample complexity. Given the complex dynamics of mean-
field systems and high cost of generating samples from
large population, designing strategic exploration methods
for sample-efficient learning becomes imperative.

Existing works on learning MFGs primarily focus on model-
free approaches such as Q-learning (Anahtarci et al., 2023;
Guo et al., 2019), policy gradient (Subramanian & Mahajan,
2019; Yardim et al., 2022), fictitious play (Perrin et al., 2020;
Xie et al., 2021), etc. Several recent works further extend
these model-free approaches with value function approxi-
mation to handle large state-action space (Mao et al., 2022;
Zhang et al., 2023). However, their sample complexity re-
sults ubiquitously rely on strong structural assumptions such
as contractivity (Guo et al., 2019) or monotonicity (Perolat
et al., 2021). Their methods, moreover, are usually special-
ized and lack generalizability, leaving an open challenge
of efficiently exploring mean-field systems without those
structural assumptions.

To address this gap, Huang et al. (2023) establish general
sample complexity results for model-based RL in MFGs1.
They introduce a complexity measure known as Model-
Based Eluder Dimension (MBED) to characterize the com-

1Model-based RL has also been explored in Mean-Field Con-
trol (MFC) setting, where all the agents are cooperative (Huang
et al., 2023; Pasztor et al., 2021).
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plexity of the model function class. Their algorithm, under
basic realizability and Lipschitz continuity assumptions,
achieves a sample complexity upper bound polynomial w.r.t.
MBED. However, as we will show in Prop. 3.4, even for
the tabular setting, MBED can be exponential in the number
of states in the worst case. This observation, coupled with
the tractability of tabular MFGs under additional structural
assumptions (Guo et al., 2019; Perolat et al., 2021), prompts
a fundamental question:

Is learning MFGs statistically harder than single-agent
RL in general?

In this paper, we provide a definitive answer to this question.
Our main contributions are summarized as follows:

• In Sec. 3, we introduce a novel complexity measure
for any given mean-field model classM, called Partial
Model-Based Eluder Dimension (P-MBED). P-MBED
represents the complexity of the single-agent model class
derived fromM after (adversarially) fixing the state den-
sity for the transition functions in M. We show that
P-MBED can be significantly lower than MBED (Huang
et al., 2023). For example, in the tabular setting, P-MBED
is always bounded by the number of states and actions,
yielding an exponential improvement over MBED.

• In Sec. 4, we propose a model elimination algorithm ca-
pable of exploring the mean-field system and returning an
approximate NE policy with sample complexity polyno-
mial w.r.t. P-MBED. From the algorithmic perspective,
our results indicate that under the basic realizability and
Lipschitz assumptions, learning MFGs is no more sta-
tistically challenging than solving log |M| single-agent
RL problems. As a direct implication, the sample com-
plexity of tabular MFGs only polynomially depends on
the number of states, actions, horizon and log |M|. This
is the first result indicating that learning tabular MFGs
is provably sample-efficient in general, even without the
contractivity or monotonicity assumptions.

• In Sec 6, we design a heuristic algorithm with improved
computational efficiency building upon our insights in
theory. We evaluate it in a synthetic linear MFGs setting
and validate its effectiveness.

As a substantial extension, we further examine the sample
complexity of more general MFGs with heterogeneous pop-
ulation, specifically Multi-Type MFGs (MT-MFGs) (Ghosh
& Aggarwal, 2020; Perolat et al., 2021; Subramanian et al.,
2020). MT-MFGs comprise multiple types of agents with
distinct transition models, reward functions or even state-
action spaces. MT-MFGs have stronger capacity in model-
ing the diversity of agents, while being more tractable than

general Markov Games2. However, the fundamental sample
complexity in the setting remains largely unexplored. Our
additional contribution includes:

• In Sec. 5, we show that finding the NE in an MT-MFG
is equivalent to finding the NE in a lifted MFG with con-
straints on policies. Building on this insight, we establish
the first sample complexity upper bound for learning MT-
MFGs. Our results identify statistical tractability of a
broad class of MARL systems, potentially offering new
insights to the sample complexity analysis for solving NE
in general Markov Games.

1.1. Related Work

Within the abundant literature on single-agent RL and
MFGs, below we focus primarily on sample complexity re-
sults for solving these problems in unknown environments.
We defer additional related works to Appx. B.

Single-Agent RL When the number of states and actions
is extremely large, sample complexity bounds derived for
tabular RL (Auer et al., 2008; Azar et al., 2017; Jin et al.,
2018) become vacuous. Instead, function approximation is
usually considered, where a model or value function class
containing the true model or optimal value functions is
available, and the sample complexity is governed by the
complexity of the function classes (Agarwal et al., 2020;
Du et al., 2021; Foster et al., 2021; Jiang et al., 2017; Jin
et al., 2020; 2021a; Sun et al., 2019). Compared with single-
agent RL, the main challenge in MFGs is the additional
dependence on density in transition and reward functions,
especially that the density space is continuous. Although our
P-MBED is inspired by the eluder dimension in the single-
agent setting (Levy et al., 2022; Osband & Van Roy, 2014;
Russo & Van Roy, 2013), it is a novel complexity notion in
characterizing the sample efficiency of RL in MFGs.

Mean-Field Games Most existing results for learning
MFGs primarily focus on tabular setting and model-free ap-
proaches (Cui & Koeppl, 2021; Elie et al., 2020; Guo et al.,
2019; Xie et al., 2021), where strong structural assumptions,
such as contractivity (Guo et al., 2019), monotonicity and
density independent transition (Perrin et al., 2020), or non-
vanishing regularization (Yardim et al., 2022) are usually
required. In contrast, we focus on addressing the fundamen-
tal exploration challenge for general MFGs. Mishra et al.
(2020) study non-stationary MFG without strong structural

2The general Markov Games (MGs) framework considers in-
dividually distinct agents. However, this generality comes with
challenges. Existing results in MGs are restricted in learning
(Coarse) Correlated Equilibria (Bai et al., 2020; Daskalakis et al.,
2023; Jin et al., 2021b) and the sample complexity in function
approximation setting may still depend on the number of agents
(Cui et al., 2023; Wang et al., 2023). MT-MFGs can be regarded
an intermediary between standard MFGs and general MGs.

2



Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

assumptions, but their algorithm is inefficient and no sam-
ple complexity results were provided. Beyond the tabular
setting, Huang et al. (2023) is the most related to us. How-
ever, as implied by our results in this paper, their sample
complexity bound are suboptimal.

Multi-Type Mean-Field Games Subramanian et al.
(2020) study more general multi-type cases, but they con-
sider the transition model depending on action density in-
stead of state density. Besides, the multi-type setting has
been investigated in special cases, such as LQR (Moon &
Başar, 2018; uz Zaman et al., 2023), and leader-follower
structures (Vasal & Berry, 2022). Ghosh & Aggarwal (2020)
is the most related to us. However, they consider the dis-
counted stationary setting and assume the state density is
fixed, while ours is more challenging since we need to keep
tracking the evolution of state density. Perolat et al. (2021)
also consider the multi-type setting, but they require the
monotonicity assumption. Moreover, they only provide
asymptotic rates without sample complexity guarantees.

2. Background
Notations Throughout the paper, we will use standard big-
oh notations O(·),Ω(·),Θ(·), and notations such as Õ(·) to
(partially) suppress logarithmic factors. In Appx. A, we list
all the frequently used notations in this paper.

2.1. Mean-Field Games

Mean-Field Markov Decision Process We consider the
finite-horizon non-stationary Mean-Field MDP (MF-MDP)
M := (µ1,S,A, H,PM , r), where µ1 is the known ini-
tial state distribution; S = (S1 = ... = SH) and
A = (A1 = ... = AH) are the state and action spaces,
which are discrete but can be arbitrarily large; PM :=
{PM,h}h∈[H] with PM,h : Sh ×Ah ×∆(Sh)→ ∆(Sh+1)
is the transition function and r := {rh}h∈[H] with rh :

Sh × Ah × ∆(Sh) → [0, 1
H ] is the deterministic reward

function, where ∆(X ) denotes the probability measure over
X . We use Π := {π := {πh}h∈[H]|πh : Sh → ∆(Ah)}
to denote the policy class including all non-stationary
Markovian policies, and we only focus on policies in
Π. Given π ∈ Π and initial density µπM,1 := µ1, the
state density µπM := {µπM,h}h∈[H] evolves according to
µπM,h+1 = ΓπM,h(µ

π
M,h), h ∈ [H] where ΓπM,h(µh)(·) :=∑

sh,ah
µh(sh)π(ah|sh)PM,h(·|sh, ah, µh).

Given any π, π̃ ∈ Π, we use Eπ̃,M(π)[·] to de-
note the expectation over trajectories generated by ex-
ecuting policy π̃ while fixing the transitions and re-
wards to PM,h(·|·, ·, µπM,h), rh(·, ·, µπM,h). These tra-
jectories can be interpreted as the observations of
a deviated agent taking π̃ while all the others take
π. Besides, we define V π̃M,h(·;µπM ) := Eπ̃,M(π)[

∑H
h′=h rh′(sh′ , ah′ , µπM,h′)|sh = ·] to be the value function

at step h if the agent deploys policy π̃ in modelM condition-
ing on π, and define JM (π̃;π) := Es1∼µ1 [V

π̃
M,1(s1;µ

π
M )]

to be the total return of policy π̃ conditioning on π. The
Nash Equilibrium (NE) πNE

M of model M is defined to
be the policy s.t. no agent tends to deviate, i.e., ∀π̃ ∈
Π, JM (π̃;πNE

M ) ≤ JM (πNE
M ;πNE

M ). We denote ENE
M (π) :=

maxπ̃∆M (π̃, π) to be the NE-Gap, where ∆M (π̃, π) :=
JM (π̃;π)− JM (π;π).

Model-Based Setting In our model-based setting, the
learner can get access to a transition function classM ⊂
{{PM,h}h∈[H]|∀h,PM,h : Sh×Ah×∆(Sh)→ ∆(Sh+1)}
to approximate the true model M∗. We assume the reward
function r is known. In Appx. C, we provide informal dis-
cussion about how to extend our results to the setting when r
is unknown. Our main objective is to find an ε-approximate
NE π̂NE

M∗ , satisfying ENE
M∗(π̂NE

M∗) ≤ ε. Same as Huang et al.
(2023), we only make two basic assumptions about the func-
tion classM: realizability and Lipschitz continuity.

Assumption A (Realizability). M∗ ∈M.

Assumption B (Lipschitz Continuity). For any M ∈ M,
and arbitrary policies π, π̃ ∈ Π, ∀h, sh, ah, we have:

∥PM,h(·|sh, ah, µπM,h)− PM,h(·|sh, ah, µπ̃M,h)∥1
≤ LT ∥µπM,h − µπ̃M,h∥1,

|rh(sh, ah, µπM,h)− rh(sh, ah, µπ̃M,h)∥1
≤ Lr∥µπM,h − µπ̃M,h∥1.

Note that our Assump. B only requires Lipschitz continuity
on feasible densities. In contrast, contractivity assumes Lr
andLT are sufficiently small (Guo et al., 2019; Yardim et al.,
2022), and prior works considering monotonicity (Perolat
et al., 2021; Zhang et al., 2023) usually assume the transition
is independent w.r.t. density, i.e., LT = 0.

We consider the same trajectory sampling model as Huang
et al. (2023), which is much weaker than the generative
model assumptions requiring trajectories conditioning on
arbitrary state densities in most MFGs literatures (Anahtarci
et al., 2023; Guo et al., 2019; Perrin et al., 2020).

Definition 2.1. The sampling model can be queried with
arbitrary π̃, π ∈ Π, and return a trajectory by execut-
ing π̃ while transition and reward functions are fixed to
PM∗,h(·|·, ·, µπM∗,h) and rh(·, ·, µπM∗,h) for all h.

MFGs and N -Player Symmetric Anonymous Games
MFGs can be regarded as the limit of Symmetric Anony-
mous Games (SAGs) when the number of agents N ap-
proaches infinity (Guo et al., 2019; Yardim et al., 2022).
As explained in (Huang et al., 2023), the sampling model
(Def. 2.1) is reasonable for N -player SAGs with central
controllers, which can manipulate all the agents’ policies.
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Given a SAG, it is known that the NE of its MFG approxima-
tion is a O(N−1/2)-approximate NE for the SAG (Yardim
et al., 2024), if all the agents execute that same NE policy.
In this way, one may interpret our setting as centralized
training with decentralized execution.

2.2. Multi-Type Mean-Field Games

Multi-Type Mean-Field MDP A finite horizon non-
stationary Multi-Type (or Multi-Group) MF-MDP M with
W types of agents can be described by a collection of
tuples M := {(µw1 ,Sw,Aw, H,PwM , rw)w∈[W ]}, where
we use w in superscription to distinguish the initial state
distribution, state-action spaces, the transition and reward
functions in different groups. Besides, for any w, the
transition and reward functions depend on densities in all
types. More concretely, we have PwM := {PwM ,h}h∈[H] with
PwM ,h : Swh × Awh × ∆(S1h) × ... × ∆(SWh ) → ∆(Swh+1)

and rw := {rwh }h∈[H] with rwh : Swh ×Awh ×∆(S1h)× ...×
∆(SWh )→ [0, 1

H ]. For each type of agents, we consider the
Markovian policies Πw := {πw := {πwh }h∈[H]|∀h, πwh :
Swh → ∆(Awh )}, and use Π := {π := {πw}w∈[W ]|∀w ∈
[W ], πw ∈ Πw} to denote the collection of policies for
all types. For the function approximation setting, we
assume W function classes M1, ...,MW are available,
where ∀w ∈ [W ], Mw ⊂ {{Pwh }h∈[H]|∀h ∈ [H], Pwh :
Swh × Awh × ∆(S1h) × ... × ∆(SWh ) → ∆(Swh )} is used
to approximate the transition function for the w-th group.
The MT-MFG function class M is then defined by M←
{M :=M1 × ...×MW |∀w ∈ [W ], Mw ∈Mw}, which
we use to approximate the true model M∗.

For the lack of space, we defer the definitions of value
functions, Nash Equilibrium, and other related details to
Appx. G.1. For the assumptions in MT-MFG setting, we
defer to Appx. G.3.

3. Partial Model-Based Eluder Dimension
In the function approximation setting, the exploration chal-
lenge is related to the complexity of the function classes. In
this section, we introduce new notions to characterize the
complexity of model function class for MFGs and its exten-
sion to Multi-Type MFGs setting. The proofs and additional
discussions can be found in Appx. D.

Inspired by the Eluder dimension of single-agent value func-
tion classes (Jin et al., 2021a; Russo & Van Roy, 2013)
and mean-field model function classes (Huang et al., 2023),
similarly, we use the length of independent sequences to
characterize the complexity of function classes. In Def. 3.1,
we first introduce the definition of standard ε-independence
in previous Eluder dimension literature, to highlight the
difference from our partial ε-independence. Although we
only consider the l1-distance here, similar discussion can be

generalized to other distances, e.g., the Hellinger distance.

Definition 3.1 (ε-Independence; (Huang et al., 2023)).
GivenM and a data sequence {(sih, aih, µih)}ni=1 ⊂ Sh ×
Ah × ∆(Sh), we say (sh, ah, µh) is ε-independent of
{(sih, aih, µih)}ni=1 w.r.t.M if there exists M,M̃ ∈M such
that

∑n
i=1 ∥PM,h(·|sih, aih, µih) − P

M̃,h
(·|sih, aih, µih)∥21 ≤

ε2 but ∥PM,h(·|sh, ah, µh) − P
M̃,h

(·|sh, ah, µh)∥1 > ε.
We call {(sih, aih, µih)}ni=1 an ε-independent sequence w.r.t.
M (at step h) if for any i ∈ [n], (sih, a

i
h, µ

i
h) is ε-

independent w.r.t. {(sth, ath, µth)}
i−1
t=1.

Definition 3.2 (Partial ε-Independence). GivenM, a map-
ping νh :M→ ∆(Sh), and a data sequence {(sih, aih)}ni=1

⊂ Sh × Ah, we say (sh, ah) is partially ε-independent of
{(sih, aih)}ni=1 ⊂ Sh × Ah w.r.t. M and νh, if there ex-
ists M, M̃ ∈ M, s.t.

∑n
i=1 ∥PM,h(·|sih, aih, νh(M)) −

P
M̃,h

(·|sih, aih, νh(M̃))∥21 ≤ ε2 but ∥PM,h(·|sh, ah,
νh(M)) − P

M̃,h
(·|sh, ah, νh(M̃))∥1 > ε. We call

{(sih, aih)}ni=1 a partially ε-independent sequence w.r.t.M
and νh (at step h) if for any i ∈ [n], (sih, a

i
h) is partially

ε-independent on {(sth, ath)}
i−1
t=1.

Intuitively, a partially ε-independent sequence ofM is an
independent sequence w.r.t. the function class converted
fromM by using some mapping νh to “partially” fix the
input (the density part) for each function in M. We use
dimE|νh(M, ε) to denote the length of the longest partially
ε-independent sequence w.r.t.M and νh (at step h). Now,
we are ready to define the Partial-MBED.

Definition 3.3 (Partial MBED). Given a model classM,
and a policy π, we define the mapping νπh : ∀M ∈ M,
νπh (M) := µπM,h. The P-MBED of M is defined by:
dimPE(M, ε) := maxh∈[H] maxπ dimE|νπh (M, ε).

By definition, P-MBED can be interpreted as the complexity
of the single-agent model class converted from the Mean-
Field model classM by partially (adversarially) fixing the
density of the functions’ input. In fact, different choices of
ν in Def. 3.2 may lead to different notions of complexity.
In our main text, we stick to the choice in Def. 3.3, but in
Appx. D.1, we discuss an alternative choice of ν, its induced
P-MBED and associated properties.

Next, we take the tabular setting as an example, and show
that P-MBED of any function class for tabular MFGs can be
controlled by |S||A|, while MBED (Huang et al., 2023) can
be exponential in |S| in the worst case. This is reasonable
given the single-agent nature of P-MBED.

Proposition 3.4. (Tabular Setting) For any M and ε >
0, dimPE(M, ε) ≤ |S||A|, while there exists a concrete
example ofM such that dimE(M, ε) = Ω(exp(|S|)).

Below we provide the linear mean-field model classes
with decomposable transition functions as another exam-

4



Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

ple. When the transition is independent w.r.t. density µ (i.e.
G(µ) is constant), the linear MFGs reduce to the single-
agent linear MDP (Jin et al., 2020). As we can see, the
P-MBED of the model class of linear MFGs is only related
to the dimension of the state-action feature, which matches
the complexity of their single-agent correspondence.

Proposition 3.5 (Linear MFGs; Informal version of
Prop. D.4). Consider the model class: MΨ :=
{Pψ|Pψ(·|s, a, µ) := ϕ(s, a)⊤G(µ)ψ(s′);ψ ∈ Ψ}, with
known feature ϕ(·, ·) ∈ Rd̃, G(·) ∈ Rd̃×d, and a next-state
feature class Ψ satisfying some normalization conditions.
Then dimPE(M, ε) = Õ(d̃).

Similarly, for model classes in Multi-Type MFGs setting,
we can define the Multi-Type P-MBED generalized from
dimPE in MFGs, which we denote as dimMTPE. We defer
its formal definition to Appx. D.3. Likewise, dimMTPE

can be regarded as the complexity measure for a col-
lection of W single-agent model classes converted from
M. In the tabular case (resp. Prop. D.11), we have
dimMTPE(M, ε′) = Õ(

∑
w∈[W ] |Sw||Aw|), and in lin-

ear MT-MFG setting with decomposable transitions (resp.
Prop. D.12), dimMTPE(M, ε′) = Õ(

∑
w∈[W ] d

w) where
{dw}w∈[W ] are the dimensions of the state-action features.

4. Sample Efficiency of Learning in MFGs
In this section, we show that the sample complexity of learn-
ing NE in MFGs is indeed governed by our new complexity
notion P-MBED. We highlight our main algorithm and sam-
ple complexity results in Sec. 4.1, and then explain details
in the algorithm design and technical novelty in Sec. 4.2.
The missing details and proofs for results in this section are
deferred to Appx. F.

4.1. Main Algorithm and Highlight of Main Results

Before proceeding to the algorithms, we first introduce sev-
eral useful notions. Given a reference policy π, we denote
d(M,M̃ |π) := maxπ̃ dπ̃(M, M̃ |π) ∨ dπ̃(M̃,M, |π) as
the conditional model distance between M and M̃ , where
dπ̃(M,M̃ |π) := Eπ̃,M(π)[

∑H
h=1 ∥PM,h(·|·, ·, µπM,h) −

P
M̃,h

(·|·, ·, µπ
M̃,h

)∥1]. Given a model classM′, any M ∈
M′, and any policy π, we define the ε0-neighborhood of M
inM′ to be: Bε0π (M ;M′) := {M ′ ∈ M′|d(M,M ′|π) ≤
ε0}. The “Central Model” (abbr. CM) in M′ w.r.t. pol-
icy π is defined to be the model with the most number of
neighbors: Mε0

Ctr(π;M′) := argmaxM∈M′ |Bε0π (M ;M′)|.
Besides, when ε0 andM′ is clear from the context, we will
useMπ

Ctr as a short note ofMε0
Ctr(π;M′). Lastly, ∀π, π′ ∈ Π,

we define d∞,1(π, π
′) := maxh,sh ∥π(·|sh)− π′(·|sh)∥1.

We provide our main algorithm in Alg. 1. The basic idea
is to find a sequence of “reference policies” (πk or πNE,k

Br ,

k = 1, 2, ...) and run the model elimination steps (Alg. 2
as ModelElim) to gradually remove models in M that
distinct from M∗ conditioning on these reference policies,
until find an approximate NE. Next, we highlight our main
results and its implications.
Theorem 4.1. [Informal version of Thm. F.7] Under As-
sump. A and B, with appropriate hyperparameter choices,
w.p. 1− δ, Alg. 1 terminates at some k ≤ log2 |M|+1 and
returns an ε-NE of M∗ after consuming at most

Õ

(
H7

ε2
(1 + LrH)2 dimPE(M, ε′) log3

|M|
δ

)
trajectories, where ε′ = O( ε

H3(1+LrH)(1+LT )H
).

Model-Based RL for MFGs is not Statistically Harder
than Single-Agent RL As we will explain more in the next
section, ModelElim only needs to be a single-agent model
elimination subroutine, and it is the only step consuming
samples. Therefore, Thm. 4.1 suggests that the sample
complexity of learning MFGs can be characterized by a
O(log |M|) number of single-agent model elimination sub-
problems, whose learning complexity is controlled by P-
MBED. As a result, the total sample complexity only scales
with P-MBED and the log-covering number ofM.

Based on the discussion in Sec. 3, we can expect for many
model classes with low P-MBED (e.g. tabular setting
Prop. 3.4, linear setting Prop. 3.5), learning MFGs is prov-
able sample-efficient. In particular, for tabular MFGs where
dimPE(M, ε′) ≤ |S||A|, our result yields a sample com-
plexity with polynomial dependence on |S|, |A|, H , which
implies that tabular MFGs are provably efficient in gen-
eral if considering the model-based function approximation,
even without assuming contractivity or monotonicity that
are often required in existing works (Guo et al., 2019; Perrin
et al., 2020; Yardim et al., 2022). Compared with recent
results in function approximation setting for MFGs (Huang
et al., 2023) or MFC (Pasztor et al., 2021) with similar Lips-
chitz assumptions, our result does not suffer the exponential
term (1 + LT )

H (see Remark F.4 for more explanation).

Additional Remarks on log |M| Although low log-
covering number of function class is regarded as a stan-
dard assumption in many MARL works (Cui et al., 2023;
Wang et al., 2023), we would like to take the tabular
MFGs as an example and provide remarks about the mag-
nitude of log |M|. Under Assump. B, with appropriate
discretization, the ε-cover for all possible transition func-
tions could be Ω(exp(SAHNε(∆(S)))), whereNε(∆(S))
denotes the covering number of density space ∆(S) and
we omit LT , Lr. As a result, in the worst case, log |M| =
Ω(Nε(∆(S))), which could be exponential in SA. Nonethe-
less, there are many examples, such that, even in the worst
case, log |M| is acceptable. For instance, if the model class
is parameterized by some θ ∈ Θ (e.g. Neural Networks)
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Algorithm 1: MEBP: Model Elimination via Bridge Policy

1 Input: Model ClassM; Parameters ε0, ε̃, ε̄, δ.
2 Initialize:M1 ←M, δ0 ← δ

log2 |M|+1

3 for k = 1, 2, ... do
4 πk ← argminπ |Bε0π (Mπ

Ctr;Mk)|;
5 if |Bε0

πk
(Mπk

Ctr ;Mk)| ≤ |Mk|
2 then Mk+1 ← ModelElim(πk,Mk, ε̃, δ0) ;

6 else
7 πNE,k

Br ← BridgePolicy(Mk, ε̄); Mk+1 ← ModelElim(πNE,k
Br ,Mk, ε̃, δ0);

8 Randomly pick M̃k fromMk+1; ENE
M̃k

(πNE,k
Br )← maxπ∆M̃k(π, π

NE,k
Br )

9 if ENE
M̃k

(πNE,k
Br ) ≤ 3ε

4 then return πNE,k
Br ;

10 end
11 if |Mk| = 1 then Return the NE of the model ;
12 end

and take the concatenation of [s, a, µ] ∈ Rdim(S)+dim(A)+S

as inputs, where we use dim(·) to denote the dimension
of a given set. Then log |M| = Õ(dim(Θ)), which could
just scale with Õ(Poly(dim(S),dim(A), S)}). As another
example, when the transition function only depends on
some sufficient statistics of density instead of the exact den-
sity, (e.g. P(·|s, a, µ) = P(·|s, a,Es̃∼µ[s̃])), we may have
log |M| = Õ(Poly(S,A,H)) in the worst case. Note that,
for the single-agent RL, the largest log-covering number of
models is also bounded by Õ(Poly(S,A,H)) (folklore).

Exponential Separation between MFGs and MFC Dif-
ferent from MFGs, in Mean-Field Control (MFC) setting,
agents cooperate to find an optimal policy to maximize the
total return. Previous work (Huang et al., 2023) suggests
that both MFC and MFGs can be solved via a unified MLE
framework with similar sample complexity upper bounds.
One natural question is: whether learning MFC can also be
as sample-efficient as single-agent RL?

We provide a negative answer to this question. In Thm. F.9,
we show that even in tabular setting, there exists a hard
instance such that learning MFC requires Ω(exp(|S|)) sam-
ples. This suggests an exponential separation between learn-
ing MFC and MFGs from information-theoretical perspec-
tive. Intuitively, for MFC, in the worst case, the agent should
explore the entire S×A×∆(S) space to identify the policy
that achieves the maximal return. In contrast, as we will
explain in Lem. 4.3, in MFGs setting, the learner does not
have to explore the entire state-action-density space; instead,
finding a “locally-aligned equilibrium policy” is enough.

4.2. Algorithm Design and Proof Sketch

4.2.1. MODELELIM : THE MODEL ELIMINATION STEP

ModelElim can be arbitrary single-agent model elimina-
tion procedures. Here we provide an example in Alg. 2.

The basic idea of Alg. 2 is to eliminate models not aligned
with M∗ conditioning on the given reference policy π. In
each iteration, we first find a tuple (π̃t,M t,M ′t) resulting
in the maximal discrepancy ∆t

max. As long as ∆t
max > ε̃,

we collect samples and remove models with low likelihood.
With high probability, on the one hand, M∗ will never be
ruled out under Assump. A; on the other hand, the growth of∑
t∆

t
max is controlled by P-MBED. As a result, the algo-

rithm will terminate eventually and return a model class only
including those M with small d(M,M∗|π). We summarize
the result in the theorem below.

Theorem 4.2. [Informal version of Thm. F.3] Given any
reference policy π, ε̃, δ ∈ (0, 1), if M∗ ∈ M̄, by choosing
T = Õ(H

4 dimPE(M,ε′)
ε̃2 ) with ε′ = O( ε̃

H2(1+LT )H
), w.p.

1− δ, Alg. 2 terminates at some T0 ≤ T , and return M̄T0

s.t. (i) M∗ ∈ M̄T0 (ii) ∀M ∈ M̄T0 , d(M∗,M |π) ≤ ε̃.

We claim Alg. 2 is a single-agent model elimination subrou-
tine, because from Line 8-11, we can see that Alg. 2 only
eliminates those M ∈ Mk s.t. PM,h(·|·, ·, µπM,h) distinct
from PM∗,h(·|·, ·, µπM∗,h) under some adversarial policy π̃t

or π itself. Here the density part of PM,h is fixed by µπM , so
during the elimination, all the transitions reduce to single-
agent functions only depending on states and actions.

Beyond P-MBED Notably, although we focus on P-MBED
in this paper, one may consider other complexity measures
generalized from single-agent RL setting (Foster et al., 2021;
Sun et al., 2019) and our analysis can be extended corre-
spondingly. That’s because as long as ModelElim satisfies
the (i) and (ii) in Thm. 4.2, it can be arbitrary and does not
affect the function of other components in Alg. 1.

4.2.2. FAST ELIMINATION WITH BRIDGE POLICY

We seek to construct reference policies that allow to elim-
inate models as efficient as possible, more specifically, to

6
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Algorithm 2: Model Elimination given a Policy

1 Input: Reference Policy π; M̄; ε̃, δ
2 Initialize: M̄1 ← M̄; Z0 ← {}; Set T by Thm. F.3;
3 for t = 1, 2, ..., T do
4 π̃t ← argmaxπ̃maxM,M ′∈M̄t Eπ̃,M(π)[

∑H
h=1 ∥PM,h(·|·, ·, µπM,h)− PM ′,h(·|·, ·, µπM ′,h)∥1].

5 ∆t
max ← the maximal value achieved above.

6 if ∆t
max ≤ ε̃ then return M̄t ;

7 else
8 for h = 1, 2..., H do
9 Query Sampling Oracle (Def. 2.1) with (π, π); collect the data at step h: zth := {(sth, ath, s′th+1)}.

10 Query Sampling Oracle (Def. 2.1) with (π̃t, π); collect the data at step h: z̃th := {(sth, ath, s′th+1)}.
11 Zt ← Zt−1 ∪ zth ∪ z̃th.
12 end
13 ∀M ∈ M̄t, lπMLE(M ;Zt) :=

∑
i∈[t],h∈[H] logPM,h(s

′i
h+1|sih, aih, µπM,h) + logPM,h(s̃

′i
h+1|s̃ih, ãih, µπM,h).

14 M̄t+1 ← {M ∈ M̄t| lπMLE(M ;Zt) ≥ max
M̃
lπMLE(M̃ ;Zt)− log HT |M|

δ }.
15 end
16 end
17 return M̄T .

halve the model candidates every iteration until finding the
NE. We first consider the simple case, where the models are
“scattered” and easy to be distinguished: there exists a policy
πk, such that, no more than |Mk|/2 models are around its
CM (resp. If-branch, Line 5 in Alg. 1). In this case, after
running ModelElim with πk,Mk+1 only contains those
models locating at the neighborhood ofM∗ conditioning πk,
which implies |Mk+1| ≤ |Bε0

πk
(Mπk

Ctr ;Mk)| ≤ |Mk|/2.

The challenging scenario is that, for any policy, the corre-
sponding CM is surrounded by over a half of models (resp.
Else-branch, Line 6 in Alg. 1). In that case, unstrategically
selecting reference policies leads to inefficient model elimi-
nation. We present a subtle choice of reference policy, called
Bridge Policy, which can be constructed by Alg. 3. Before
diving into the details of our constructions, we first explain
the key insights behind it. Our first insight is summarized in
the lemma below.

Lemma 4.3. [Implication of Local Alignment] Given any
M,M̃ with transition PM and P

M̃
, denote π̂NE

M to be an ε1-
approximate NE of M , suppose d(M,M̃ |π̂NE

M ) ≤ ε2, then
π̂NE
M is also an O(ε1 + ε2)-approximate NE of M̃ .

Lem. 4.3 states that, if two modelsM and M̃ align with each
other conditioning on the NE of one of them, then they ap-
proximately share that NE. Therefore, in the Else-branch,
after calling ModelElim with πNE,k

Br as the reference pol-
icy, if the NE-Gap ENE

M̃k
(πNE,k

Br ) is small for some randomly

selected M̃k ∈ Mk+1 (resp. Line 9), we can claim πNE,k
Br

is an approximate NE of M∗ by Lem. 4.3.

However, the remaining challenge is that, if ENE
M̃k

(πNE,k
Br )

is large, we cannot conclude anything about it. Hence,
πNE,k

Br should be chosen in a strategic way, so that in this
case, we can guarantee the elimination is efficient, i.e.
|Mk+1| ≤ |Mk|/2. Our second key insight to overcome
this challenge is summarized in Thm. 4.4, which indicates
that the existence of a “Bridge Policy” that coincides with
the NE of its corresponding CM.

Theorem 4.4. [Bridge Policy] If the Else-branch in Line 6
in Alg. 1 is activated, running Alg. 3 returns a bridge policy

πNE,k
Br , such that, πNE,k

Br is an approximate NE of MπNE,k
Br

Ctr .

Before we explain how to prove Thm. 4.4, we first check
the implication of this result. Based on Thm. 4.4, if
ENE
M̃k

(πNE,k
Br ) > 3ε

4 in Line 9, by Lem. 4.3, we know

d(M
πNE,k

Br
Ctr ,M∗|πNE,k

Br ) cannot be small. Therefore, with ap-
propriate hyperparameter choices, we can assert that all

models in the neighborhood Bε0
πNE,k

Br
(M

πNE,k
Br

Ctr ,Mk) should

have been eliminated, implying |Mk+1| ≤ |Mk|/2.

Combining the discussions above, we know our Alg. 1 guar-
antees to either return an approximate NE, or at least halve
the model sets. We summarize to the following theorem,
which paves the way to our main theorem Thm. 4.1.

Theorem 4.5. In Alg. 1, by choosing ε0 = ε
8(1+LrH)(H+4) ,

ε̃ = ε0
6 , and choosing ε̄ according to Thm. F.5, w.p. 1− δ,

(1) if the If-Branch in Line 5 is activated: we have
|Mk+1| ≤ |Mk|/2; (2) otherwise, in the Else-Branch
in Line 6: either we return the πNE,k

Br which is an ε-
approximate NE for M∗; or the algorithm continues with
|Mk+1| ≤ |Mk|/2.

7
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Algorithm 3: Bridge Policy Construction

1 Input: MF-MDP model classM; ε0, ε̄;
2 ConvertM to a PAM class M̈ via Eq. (1).
3 Construct ε̄-cover of the policy space Π w.r.t. d∞,1, denoted as Πε̄ (see Def. F.1).
4 for π̃ ∈ Πε̄ do Find the Central Model M̈ε0

Ctr(π̃;M̈)← argmaxM̈∈M̈ |Bε0π (M̈ ;M̈)| ;
5 Construct the new PAM M̈Br s.t. for any sh, ah, π,

P̈Br,h(·|sh, ah, π) :=
∑
π̃∈Πε̄

[2ε̄−d∞,1(π,π̃)]
+P̈

M̈
ε0
Ctr (π̃;M̈),h

(·|sh,ah,π̃)∑
π̃∈Πε̄

[2ε̄−d∞,1(π,π̃)]+
,

r̈Br,h(sh, ah, π) :=

∑
π̃∈Πε̄

[2ε̄−d∞,1(π,π̃)]
+r̈

M̈
ε0
Ctr (π̃;M̈),h

(sh,ah,π̃)∑
π̃∈Πε̄

[2ε̄−d∞,1(π,π̃)]+
, where [x]+ := max{0, x}

6 Compute the NE of M̈Br: πNE
Br ← argminπmaxπ̃ J̈M̈Br

(π̃;π)− J̈M̈Br
(π;π).

7 return πNE
Br .

Proof Sketch of Thm. 4.4 An informal way to interpret
the existence of such bridge policy in Thm. 4.4 is to consider
a mapping T from an arbitrary π ∈ Π to the NE of its CM
Mπ

Ctr. Then, Thm. 4.4 states that T has an approximate
fixed point πNE

Br ≈ T (πNE
Br ). However, given that it’s hard

to evaluate the continuity of T and moreover, T can be
a one-to-many mapping if multiple NEs exist, we prove
the existence of such πNE

Br by the non-trivial construction in
Alg. 3. We leave the connection between our proofs and the
fixed-point theorems as an open problem.

Before explaining our construction in Alg. 3, we first in-
troduce a new notion called “Policy-Aware Model” (abbr.
PAM) denoted by M̈ . The main motivation for introducing
PAM is that we want to focus on the policy space, because
the feasible densities {µπM∗,h}π∈Π may not cover the en-
tire density space ∆(Sh), and it is not easy to characterize.
We defer to Appx. E.1 for the formal definition of PAM
and also new notations in Alg. 3 (e.g. M̈ε0

Ctr(·, ·) denotes
Central Model, J̈ denotes the total return), and only sum-
marize the main idea here to save space. Briefly speak-
ing, a PAM M̈ := {S,A, µ1, H, P̈, r̈} is an MDP whose
transition P̈ : S × A × Π → ∆(S) and reward functions
r̈ : S × A × Π → [0, 1

H ] depend on state, action and a
“reference policy”. PAM can be regarded as a higher-level
abstraction of MF-MDP (i.e. MF-MDP ⊂ PAM), where
we replace the dependence on µπM in MF-MDP by π. We
can convert a MF-MDP M to a PAM M̈ sharing the same
S,A, µ1, H by assigning the following for any h ∈ [H]
with µπM,1 = µ1, ∀π ∈ Π:

P̈M̈,h(·|·, ·, π) :=PM,h(·|·, ·, µπM,h) (1)

r̈M̈,h(·, ·, π) :=rh(·, ·, µ
π
M,h), µ

π
M,h+1 ← ΓπM,h(µ

π
M,h).

In Alg. 3, we first convert each MF-MDP to its PAM version.
Then, we find an ε̄-cover of the policy space w.r.t. d∞,1,
denoted by Πε̃, and construct the “Bridge PAM” M̈Br by
interpolating among CMs w.r.t. π̃ ∈ Πε̄. Here the weights
[2ε̄ − d∞,1(π, π̃)]

+ is chosen carefully for the following

considerations:

• (I) since Πε̄ is an ε̄-cover, for any π ∈ Π, the denominator∑
π̃∈Πε̄

[2ε̄−d∞,1(π, π̃)]
+ is always larger than ε̄, which

implies both P̈Br,h and r̈Br,h are well-defined and continu-
ous in π. The continuity is important since it implies that
M̈Br has at least one NE (Def. E.1), denoted as πNE

Br ;

• (II) [2ε̄ − d∞,1(π, π̃)]
+ decays to zero if π largely dis-

agrees with π̃, so P̈Br(·|·, ·, π) is only determined by CMs
of those π̃ close to π.

Next, we discuss what we can conclude from the above two
points. Based on the triggering condition in Line 6 in Alg. 1,
for any π, π̃, the neighbors of Mπ

Ctr and M π̃
Ctr share at least

one common model Mshare. By using Mshare as a bridge, we
have ∥P̈M̈π

Ctr
(·|·, ·, π) − P̈M̈ π̃

Ctr
(·|·, ·, π̃)∥1 = O(d∞,1(π, π̃)).

Combining with (II), we know ∀π, ∥P̈Br(·|·, ·, π) −
P̈M̈π

Ctr
(·|·, ·, π)∥1 = O(ε̄), which implies P̈Br(·|·, ·, πNE

Br ) ≈
P
M̈
πNE

Br
Ctr

(·|·, ·, πNE
Br ) if ε̄ is small enough. By the definition of

NE in PAM, the conversion rules in Eq. (1) and Lem. 4.3,
we can conclude that πNE

Br is an approximate NE of MπNE
Br

Ctr ,
and finish the proof of Thm. 4.4.

5. Learning in Multi-Type MFGs
In this section, we extend our results to the more general
Multi-Type MFGs setting3, allowing to address heteroge-
neous agents.

Reduction to Lifted MFGs with Constrained Policy Our
key observation is that, a MT-MFG M to can be lift to a new
MF-MDP MMFG := {SMFG,AMFG, µ1, H,PMFG, rMFG} by
augmenting the original states and actions with the type in-
dex. The new state and action spaces are given by: SMFG :=⋃
w∈[W ]{Sw × {w}} and AMFG :=

⋃
w∈[W ]{Aw × {w}}.

3The existence of NE in MT-MFGs can be found in Thm. E.12.
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We defer the detailed description for the conversion process
and the definition of initial state distribution, transition and
reward functions in MMFG to Appx. G.2.

For policies in MMFG, we only consider Π† := {π|∀w ∈
[W ], π(aw ◦ w|sw ◦ w) = πw(aw|sw), πw ∈ Πw}, in-
cluding all policies which only take actions with the same
type as the states. Similar to the NE defined in full pol-
icy space Π, we can define the “constrained NE” when
agents are constrained to only take policies in the subset Π†.
More concretely, we call π̂NE

Cstr ∈ Π† the ε-approximate Con-
strained Nash Equilibrium if ∀π ∈ Π†, JMMFG(π, π̂

NE
Cstr) ≤

JMMFG(π̂
NE
Cstr, π̂

NE
Cstr) + ε. The following property reveals the

connection between constrained NE in MMFG and the NE
in the original multi-type model M .

Proposition 5.1. Given a MT-MFG M and its lifted MFG
MMFG, we have: (1) an ε-constrained NE π̂NE

Cstr ∈ Π† for
MMFG is a (Wε)-NE in M ; (2) an ε-NE π̂NE in M is an
ε-constrained NE for MMFG.

The above result not only implies the existence of con-
strained NE in MMFG given the existence of NE in M by
letting ε → 0, but also suggests one can solve NE of MT-
MFG by solving the constrained NE in its lifted MFG. The
second point is very important since the constrained NE can
be solved via almost the same procedures in Sec. 4, as long
as we constrain the policy space to Π†. We defer algorithm
details to Appx. G.5, and summarize our main result in the
following theorem.

Theorem 5.2. [Informal version of Thm. G.8] Under As-
sump. C and D, there exists an algorithm (Alg. 4), s.t. w.p.
1− δ, it returns an ε-NE of M∗ after consuming at most

Õ(
W 2H7

ε2
(1 +LrH)2 dimMTPE(M, ε′))

trajectories, where ε′ = O( ε
WH3(1+LrH)(1+LT )H

).

In Appx. H, we investigate a practical multi-agent system
called N -player Multi-Type Symmetric Anonymous Games
(MT-SAGs) generalized from SAGs. We establish approxi-
mation error between MT-MFGs and MT-SAGs. Our results
reveal a larger class of Multi-Agent systems where NE can
be solved in a sample-efficient way.

6. A Heuristic Algorithm with Improved
Computational Efficiency

Although Alg. 1 is sample-efficient, it requires exponential
computation. In this section, we aim to design a heuristic
algorithm4 sharing the main insights as Alg. 1 while more
computationally tractable. For the lack of space, we defer
the concrete algoirthm (Alg. 7), the experiment setting and

4The code is available at https://github.com/
jiaweihhuang/Heuristic_MEBP.

evaluation results (Fig. 2) to Appx. J. In this section, we just
highlight the algorithm design.

Highlights of Algorithm Design We assume a NE Ora-
cle is available, such that given a known MFG model, the
Oracle can return its NE. We argue that such oracle can be
easily implemented if the model is smooth enough or the
monotonicity condition is satisfied (Guo et al., 2019; Pero-
lat et al., 2021). Besides, in our experiments, we observe
that repeatedly mixing the policy with its best response can
converge to a good solution. Given such oracle, Alg. 7 only
involves |M| calls of NE oracle, and Poly(|M|, |S|, |A|, H)
arithmetic operations in computing model difference or like-
lihood, which avoids exponential computation in Alg. 1.

For the algorithm design, Alg. 7 follows the same if-else
structure as Alg. 2, but we improve the computational effi-
ciency in two aspects. Firstly, we avoid procedures optimiz-
ing over the entire policy class, including Line 4 in Alg. 1
and Line 4 in Alg. 2. Instead, we only search over the NE
policies of model candidates, which can be computed by
calling the NE Oracle |M| times at the beginning. As long
as the models inM are diverse enough, we can expect their
NEs to be reasonable representatives for Π in distinguishing
models. Secondly, we replace the πNE,k

Br in Alg. 1 with the
NE of the model Mk ← argmaxM∈Mk |Bε0

πNE
M

(M,Mk)|,
and do not have to solve the NE of the complicated bridge
model in Alg. 3. We claim that this modification still aligns
with Alg. 3 in principle. Note that the main intuition behind
Alg. 3 is that, when Line 6 in Alg. 1 is activated, the ref-
erence policy used for elimination should be a policy πref,
such that, πref collapses with the NE of the model with the
maximal number of neighbors conditioning on πref.

7. Conclusion
In this paper, we reveal that learning MFGs can be as sample-
efficient as single-agent RL under mild assumptions, and
the sample complexity of RL in MFGs can be characterized
by a novel complexity measure called Partial Model-Based
Eluder Dimension (P-MBED). Besides, we extend our al-
gorithms to the more general Multi-Type MFGs setting.
Lastly, we contribute an empirical algorithm with improved
computational efficiency.

As for the future, one interesting direction is to study the
sample complexity when only value function approxima-
tions are available. Besides, while our focus is the sample
efficiency in this paper, it would be valuable to identify
general conditions, under which computationally efficient
algorithms exist. Lastly, our results underscore the power
of mean-field approximation, and it would be worthwhile
to investigate other generalizations of the MFGs setting, in
order to deepen our understanding on the sample efficiency
of learning NE in other MARL systems.
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learning for non-stationary discrete-time linear–quadratic
mean-field games in multiple populations. Dynamic
Games and Applications, 13(1):118–164, 2023.

Vasal, D. and Berry, R. Master equation for discrete-time
stackelberg mean field games with a single leader. In
2022 IEEE 61st Conference on Decision and Control
(CDC), pp. 5529–5535. IEEE, 2022.

11



Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Wang, Y., Liu, Q., Bai, Y., and Jin, C. Breaking the curse
of multiagency: Provably efficient decentralized multi-
agent rl with function approximation. arXiv preprint
arXiv:2302.06606, 2023.

Xie, Q., Yang, Z., Wang, Z., and Minca, A. Learning while
playing in mean-field games: Convergence and optimality.
In International Conference on Machine Learning, pp.
11436–11447. PMLR, 2021.

Xie, T., Foster, D. J., Bai, Y., Jiang, N., and Kakade, S. M.
The role of coverage in online reinforcement learning.
arXiv preprint arXiv:2210.04157, 2022.

Yardim, B., Cayci, S., Geist, M., and He, N. Policy mirror
ascent for efficient and independent learning in mean field
games. arXiv preprint arXiv:2212.14449, 2022.

Yardim, B., Goldman, A., and He, N. When is mean-field
reinforcement learning tractable and relevant? arXiv
preprint arXiv:2402.05757, 2024.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brunskill, E.
Learning near optimal policies with low inherent bellman
error. In International Conference on Machine Learning,
pp. 10978–10989. PMLR, 2020.

Zhang, F., Tan, V. Y., Wang, Z., and Yang, Z. Learning
regularized monotone graphon mean-field games. arXiv
preprint arXiv:2310.08089, 2023.

Zhang, K., Yang, Z., and Basar, T. Policy optimization
provably converges to nash equilibria in zero-sum lin-
ear quadratic games. Advances in Neural Information
Processing Systems, 32, 2019.
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A. Frequently Used Notations

Notation Explanation
M Mean-Field MDP
M Model class for (single-type) Mean-Field MDP
π Non-stationary policy for (single-type) Mean-Field MDP

QM , VM , JM Value functions for (single-type) MF-MDP
dimPE(M, ε) Type-I Partial-MBED, Def. 3.3
dimII

PE(M, ε) Type-II Partial-MBED, Def. D.1
d(·, ·|π) Conditional distance given a reference policy π
Bε0π (M,M) ε0-neighborhood of M inM conditioning on π
Mε0

Ctr(π,M) The “Central Model”
d∞,1(π, π

′) Policy distance
M Multi-Type Mean-Field MDP
M Model class for multi-type Mean-Field MDP
π Non-stationary policy for multi-type Mean-Field MDP

QM , VM , JM Value functions for multi-type MF-MDP
dimMTPE(M, ε) Type-I Multi-Type Partial-MBED, Def. D.10
dimII

MTPE(M, ε) Type-II Multi-Type Partial-MBED, Def. D.10
M̈/M̈ Policy-aware model (single-type/multi-type)
M̈/M̈ Model class for the policy-aware model (single-type/multi-type)

Q̈M̈ , V̈M̈ , J̈M̈/Q̈M̈ , V̈M̈ , J̈M̈ Value functions for the policy-aware model (single-type/multi-type)
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B. Additional Related Works
Single-Agent/Multi-Agent RL with General Function Approximation For the single-agent RL with function approxi-
mation setting, besides the literature we mentioned in the main text, there are multiple other insightful works (Ayoub et al.,
2020; Chen et al., 2022a; Huang et al., 2022; Modi et al., 2021; Uehara et al., 2021; Xie et al., 2022; Zanette et al., 2020;
Zhong et al., 2022).

As for the multi-agent setting, sample complexity of Markov Games has been extensively studied in both tabular (Bai et al.,
2020; Chen et al., 2022b; Jin et al., 2021b; Zhang et al., 2019; 2021) and function approximation setting (Cui et al., 2023;
Foster et al., 2023; Huang et al., 2021; Ni et al., 2022; Wang et al., 2023). These papers study a general MARL setting
with individually distinct agents, which is quite different from our MFG or MT-MFG. Besides, many of them study the
decentralized training setting, which requires much less communication cost than our centralized setting. However, because
of the difficulty in learning NE in general Markov Games setting, most of them focus on the convergence to weaker notions
of equilibrium instead, e.g. the Correlated Equilibrium or the Coarse Correlated Equilibria, and those results in function
approximation setting (Cui et al., 2023; Wang et al., 2023) may still depend on the number of agents, although in polynomial.
In contrast, although we specify in mean-field approximation setting, we can have more ambitious goals on solving Nash
Equilibrium, and our sample complexity bounds are totally independent w.r.t. the number of agents. Moreover, we also
reveal some cases when learning (MT-)MFG can be as sample-efficient as single-agent RL by investigating the Partial
Model-Based Eluder Dimension.

C. Extension to the Setting when the Reward Function is Unknown
We remark that our current results extend to the unknown reward setting. Below we elucidate the key modifications needed
for this extension.

Firstly, for the problem setup, we instead assume a model classM available, where each element M := (rM ,PM ) ∈M
corresponds to a (reward, transition) tuple. The definition of the P-MBED can be amended by incorporating both reward and
transition differences in Def. 3.3.

Secondly, for the algorithm design:

• For Algorithm 1, we redefine the model distance the definition dπ̃(M, M̃ |π) (introduced at the beginning of Sec. 4.1)
to include the expectation of distances in both reward and transition functions:

dπ̃(M, M̃ |π) := Eπ̃,M(π)[

H∑
h=1

∥rM,h(·|·, ·, µπM,h)−rM̃,h
(·|·, ·, µπ

M̃,h
)∥1+∥PM,h(·|·, ·, µπM,h)−PM̃,h

(·|·, ·, µπ
M̃,h

)∥1].

The definition of ε0-neighborhood and “Central Model” will adjust correspondingly.

• For Algorithm 2: we should augment the reward difference into the right-hand side of Line 4, integrate reward into the
dataset in Lines 9 and 11, and include the likelihood of reward functions in Line 13.

• For Algorithm 3, the construction of bridge policy will follow the new definition of model distance dπ̃(M, M̃ |π).

Finally, for the analysis, based on the modified algorithms, under realizability assumption, we can extend Lemma D.7 and
prove that the accumulative estimation errors of reward and transition are controlled by P-MBED. The current analysis can
be seamlessly generalized to establish sample complexity upper bounds depending on the P-MBED of reward and transition
function classes.
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D. Missing Details about Partial Model-Based Eluder Dimension
D.1. Alternative Notions of Partial MBED in MFGs

In this section, we introduce a choice of ν different from the one in Def. 3.2, which also leads to a valid P-MBED. In the
following, we introduce another choice of ν, which results in a different P-MBED. We will call it ”Type II” P-MBED to
distinguish the one in Def. 3.3.
Definition D.1 (Type II Partial MBED). Given a model classM, define the mapping νπM∗,h :M → ∆(Sh) such that
∀M ∈M, νπM∗,h(M) := µπM∗,h, then the type II P-MBED ofM is defined by:

dimII
PE(M, ε) := max

π
max
h∈[H]

dimE|νπ
M∗,h

(M, ε).

We want to highlight here that each of the two types P-MBED has advantages over the other. As we will see in the Thm. F.7,
if we use dimII

PE to derive the sample complexity upper bound, we have to suffer the exponential term of (1 + LT )
H . On

the other hand, in the following proposition, we can see dimII
PE is directly comparable with MBED (Huang et al., 2023)

(α = 1 case), while we can not have the similar guarantee for dimPE.
Proposition D.2 (Low MBED ⊂ Low Type II P-MBED). dimII

PE(M, ε) ≤ dimE(M, ε).

D.2. Proofs Related to P-MBED in MFGs Setting

Proposition 3.4. (Tabular Setting) For anyM and ε > 0, dimPE(M, ε) ≤ |S||A|, while there exists a concrete example of
M such that dimE(M, ε) = Ω(exp(|S|)).

Proof. When the density is fixed, any MF-MDP reduces to a single-agent MDP. For any single-agent MDP, there are at
most |S||A| different (sh, ah) pairs, for any h. Therefore, the P-MBED can be upper bounded by |S||A|.

In contrast, for MBED in (Huang et al., 2023), we consider the model class constructed in Thm. F.9. Consider the sequence
{(s1h, a1h, µi)}i∈[n] with µi ∈ U

ζ=⌊LT5ε ⌋ for all i ∈ [n], but µi ̸= µj if i ̸= j. For any i ∈ [n− 1], there exists two models
Pµi and Pµi+1 , such that,

i−1∑
t=1

∥Pµi(·|s1h, a1h, µt)− Pµi+1(·|s1h, a1h, µt)∥21 = 0

but

∥Pµi(·|s1h, a1h, µi)− Pµi+1(·|s1h, a1h, µi)∥1 = 4ε.

Note that |U
ζ=⌊LT5ε ⌋| = O((LTSε )

S−1), by choosing ε ≤ LT
2S , we have dimE(Mh, ε) = Ω(exp(S)). □

Similarly, we can show the type II P-MBED in tabular setting can also be upper bounded by |S||A|, because there are at
most |S||A| different state-action tuples.
Proposition D.3 (Type II P-MBED in the Tabular Setting). dimII

PE(M, ε) ≤ |S||A|.

Next, we study the linear setting. Given a mapping f : S → Rd, we use Rank([f(x)]x∈X ) to denote the rank of matrix
concatenated by [f(x)]x∈X ∈ R|X |×d.
Proposition D.4 (Linear Setting; Formal version of Prop. 3.5). Consider the Low-Rank MF-MDP with known feature
ϕ : S × A ×∆(S) → Rd satisfying ∥ϕ∥ ≤ Cϕ, and unknown next state feature ψ : S → Rd. Given a next state feature
function class Ψ satisfying ∀ψ ∈ Ψ, ∀s′ ∈ S, ∀g : S → {−1, 1}, ∥

∑
s′ ψ(s

′)g(s′)∥2 ≤ CΨ, consider the following model
class:

MΨ := {Pψ|Pψ(·|s, a, µ) := ϕ(s, a, µ)⊤ψ(s′);∀s, a, µ, Pψ(·|s, a, µ) ∈ ∆(S);ψ ∈ Ψ},

we have dimII
PE(MΨ, ε) = Õ(maxπ,hRank([ϕh(sh, ah, µ

π
M∗,h)]sh∈S,ah∈A)).

Moreover, if ϕ(s, a, µ) has decomposition: ϕ(s, a, µ)⊤ = ϕ(s, a)⊤G(µ) with ϕ(·, ·) ∈ Rd̃ and G(·) ∈ Rd̃×d, we have
dimPE(MΨ, ε) = Õ(d̃) and dimII

PE(MΨ, ε) = Õ(min{d̃, d}).
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Remark D.5. As we can see, the P-MBED is related to the “activated dimension” of features after partially fixing the
density, which can be much lower than its MBED ≈ d. Moreover, when the feature is decomposable, the dimension of
state-action feature will also serve as an upper bound.

Proof. Proof for Type-II P-MBED (Def. D.1) In the following, we first consider a fixed policy π and h. To simplify the
notation, we denote Φ := [ϕ(sh, ah, µ

π
M∗,h)]s∈S,a∈A ∈ Rd×|S||A| to be the matrix concatenated by vectors ϕ(·, ·, µπM∗,h),

and denote dactive := Rank(Φ) to be its rank. We use U := [u1, u2, ..., udactive ] ∈ Rd×dactive to denote a normalized orthogonal
basis in Span(Φ) = Span(U) satisfying ∥ui∥2 = 1 for all i ∈ [dactive] and u⊤i uj = 0 for any i ̸= j. Easy to verify that for
any sh, ah, the following equation

Uϕactive(sh, ah, µ
π
M∗,h) = ϕ(sh, ah, µ

π
M∗,h).

has a solution satisfying:

∥ϕactive(sh, ah, µ
π
M∗,h)∥2 = ∥U⊤Uϕactive(sh, ah, µ

π
M∗,h)∥2 = ∥U⊤ϕ(sh, ah, µ

π
M∗,h)∥2 ≤ ∥ϕ(sh, ah, µπM∗,h)∥2 ≤ Cϕ.

Given a fixed policy π, h ∈ [H], suppose (s1h, a
1
h), ..., (s

n
h, a

n
h) is a partially ε-independent sequence w.r.t.MΨ and νπM∗,h

defined in D.1. Then for each i ∈ [n], there should exists ψi, ψ̃i ∈ Ψ, such that:

ε2 ≥
i−1∑
t=1

∥Pψi(·|sth, ath, µπM∗,h),Pψ̃i(·|s
t
h, a

t
h, µ

π
M∗,h)∥21.

and

ε2 ≤∥Pψi(·|sih, aih, µπM∗,h)− Pψ̃i(·|s
i
h, a

i
h, µ

π
M∗,h)∥21

=
(
ϕactive(s

i
h, a

i
h, µ

π
M∗,h)

⊤U⊤
∑
s′∈S

(ψi(s′)− ψ̃i(s′))gψi,ψ̃i(s
i
h, a

i
h, µ

π
M∗,h, s

′)
)2

≤∥ϕactive(s
i
h, a

i
h, µ

π
M∗,h)∥2(Λih)−1∥U⊤

∑
s′∈S

(ψi(s′)− ψ̃i(s′))gψi,ψ̃i(s
i
h, a

i
h, µ

π
M∗,h, s

′)∥2Λih .

where we define:

Λih :=λI +

i−1∑
t=1

ϕactive(s
i
h, a

i
h, µ

π
M∗,h)ϕactive(s

i
h, a

i
h, µ

π
M∗,h)

⊤ ∈ Rdactive×dactive ;

gψi,ψ̃i(sh, ah, µ, s
′) :=

{
1, if ϕactive(s

i
h, a

i
h, µ

π
M∗,h)

⊤U⊤(ψi(s′)− ψ̃i(s′)) ≥ 0;

−1, otherwise.

For simplicity, we use vψ,ψ̃(sh, ah, µ) := U⊤ ∑
s′(ψ(s

′)− ψ̃(s′))gψ,ψ̃(sh, ah, µ, s
′) as a shortnote. Therefore, for each i,

∥vψi,ψ̃i(s
i
h, a

i
h, µ

π
M∗,h)∥2Λih

=λ∥vψi,ψ̃i(s
i
h, a

i
h, µ

π
M∗,h)∥2 +

i−1∑
t=1

(
ϕactive(s

t
h, a

t
h, µ

π
M∗,h)

⊤vψi,ψ̃i(s
i
h, a

i
h, µ

π
M∗,h)

)2

=λ∥vψi,ψ̃i(s
i
h, a

i
h, µ

π
M∗,h)∥2 +

i−1∑
t=1

(
ϕactive(s

t
h, a

t
h, µ

π
M∗,h)

⊤U⊤
∑
s′

(ψi(s)− ψ̃i(s′))gψi,ψ̃i(s
i
h, a

i
h, µ

π
M∗,h, s

′)
)2

≤4λC2
Ψ +

i−1∑
t=1

∥Pψi(·|sth, ath, µπM∗,h)− Pψ̃i(·|s
t
h, a

t
h, µ

π
M∗,h)∥21

≤4λC2
Ψ + ε2.

By choosing λ = ε2/4C2
Ψ, we have:

∥ϕactive(s
i
h, a

i
h, µ

π
M∗,h)∥2(Λih)−1 ≥

ε2

4λC2
Ψ + ε2

=
1

2
.
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On the one hand,

detΛn+1
h =det(Λnh + ϕactive(s

n
h, a

n
h, µ

π
M∗,h)ϕactive(s

n
h, a

n
h, µ

π
M∗,h)

⊤) = (1 + ∥ϕactive(s
n
h, a

n
h, µ

π
M∗,h)∥2(Λnh)−1) · detΛnh

≥3

2
detΛnh ≥ (

3

2
)n detΛ1

h = λdactive
h (

3

2
)n.

Therefore,

λdactive
h (

3

2
)n ≤ detΛn+1

h ≤ (
Tr(Λnh)
dactive

)dactive ≤ (λ+
nC2

ϕ

dactive
)dactive .

which implies n = O(dactive log(1 +
dactiveCϕCΨ

ε )).

Finally, if we take the maximum over all policy π, we have

dimII
PE(MΨ, ε) = Õ(max

π,h
Rank([ϕh(sh, ah, µ

π
M∗,h)]sh∈S,ah∈A)).

When ϕ(sh, ah, µ) can be decomposed to ϕ(sh, ah)⊤G(µ) for some ϕ(sh, ah) ∈ Rd̃, easy to verify that for any π, the
corresponding dactive ≤ d̃. By combining with Prop. D.2, we can conclude dimII

PE(M, ε) = Õ(min{d, d̃}).

Proofs for P-MBED (Def. 3.3) As for the first type of P-MBED, we only study the decomposable feature setting. Given a
fixed policy π, h ∈ [H], suppose (s1h, a

1
h), ..., (s

n
h, a

n
h) is a partially ε-independent sequence w.r.t. MΨ and the mapping νπh

defined in Def. 3.3, then for each i ∈ [n], there should exists ψi, ψ̃i ∈ Ψ, such that:

ε2 ≥
i−1∑
t=1

∥Pψi(·|sth, ath, µπψi,h),Pψ̃i(·|s
t
h, a

t
h, µ

π
ψ̃i,h

)∥21.

and

ε2 ≤∥Pψi(·|sih, aih, µπψi,h)− Pψ̃i(·|s
i
h, a

i
h, µ

π
ψ̃i,h

)∥21

=
(
ϕ(sih, a

i
h)

⊤
∑
s′∈S

(G(µπψi,h)ψ
i(s′)−G(µπ

ψ̃i,h
)ψ̃i(s′))g̃ψi,ψ̃i(s

i
h, a

i
h, s

′)
)2

≤∥ϕ(sih, aih)∥2(Λih)−1∥
∑
s′∈S

(G(µπψi,h)ψ
i(s′)−G(µπ

ψ̃i,h
)ψ̃i(s′))g̃ψi,ψ̃i(s

i
h, a

i
h, s

′)∥2Λih .

where we define:

Λih :=λI +

i−1∑
t=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤ ∈ Rd̃×d̃;

gψi,ψ̃i(sh, ah, s
′) :=

{
1, if ϕ(sih, a

i
h)

⊤(G(µπψi,h)ψ
i(s′)−G(µπ

ψ̃i,h
)ψ̃i(s′)) ≥ 0;

−1, otherwise.

The rest analysis is similiar to the non-decomposable setting above. As a result, we can show:

n = O(d̃ log(1 +
d̃CϕCΨ

ε
)).

This holds for any π, which finishes the proof. □
Remark D.6. Following similar analyses as Prop. D.4 and Prop. B.6 and Prop. B.7 in (Huang et al., 2023), we can compute
the P-MBED for kernel MF-MDP and generalized linear function classes. All we need to do is to replace deff or d in
(Huang et al., 2023) with the corresponding dimensions conditioning on the adversarial densities.

Lemma D.7. Under Def. 3.3 and Def. D.1, consider a fixed π and an arbitrary h ∈ [H], Suppose we have a sequence
{PMk,h}Kk=1 ∈ F and {(skh, akh)}Kk=1 ⊂ S ×A,
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• if for all k ∈ [K],
∑k−1
i=1 ∥PMk,h(·|sih, aih, µπMk,h) − PM∗,h(·|sih, aih, µπM∗,h)∥21 ≤ β, then for any ε > 0, we have∑K

k=1 ∥PMk,h(·|skh, akh, µπMk,h)− PM∗,h(·|skh, akh, µπM∗,h)∥1 = O(
√
βK dimPE(M, ε) +Kε),

• if for all k ∈ [K],
∑k−1
i=1 ∥PMk,h(·|sih, aih, µπM∗,h) − PM∗,h(·|sih, aih, µπM∗,h)∥21 ≤ β, then for any ε > 0, we have∑K

k=1 ∥PMk,h(·|skh, akh, µπM∗,h)− PM∗,h(·|skh, akh, µπM∗,h)∥1 = O(
√
βK dimII

PE(M, ε) +Kε).

Proof. Let’s consider a single-agent model-classP ⊂ {P |P : S×A → ∆(S)}. We first introduce the notion of independent
state-action sequences given a single-agent model class.

Definition D.8 (ε-Independent state action pairs). Given single-agent model P and a data sequence {(sih, aih)}ni=1 ⊂
Sh×Ah, we say (sh, ah) is ε-independent of {(sih, aih)}ni=1 w.r.t. P if there exists P, P̃ ∈M such that

∑n
i=1 ∥Ph(·|sih, aih)−

P̃h(·|sih, aih)∥21 ≤ ε2 but ∥PM,h(·|sh, ah)− P̃h(·|sh, ah)∥1 > ε. We call {(sih, aih)}ni=1 an ε-independent sequence w.r.t. P
(at step h) if for any i ∈ [n], (sih, a

i
h, µ

i
h) is ε-independent w.r.t. {(sth, ath, µth)}

i−1
t=1.

We use dimE(P, ε) to denote the maximal length of ε-independent sequence {(si, ai)}i∈[n] for single-agent model class P .
Since single-agent RL is a special case of MF-MDP where the transition is independent w.r.t. density. As implied by Lem.
4.4 in (Huang et al., 2023) when α = 1, suppose there is a sequence {Pk}k∈[K] ⊂ P and a sequence of states and actions
{(skh, akh)}k∈K , such that:

k−1∑
i=1

∥Pk(·|sih, aih)− P∗(·|sih, aih)∥21 ≤ β

where P∗ ∈ P is some fixed function, then for any ε > 0,

K∑
k=1

∥Pk(·|skh, akh)− P∗(·|skh, akh)∥1 ≤ O(
√
βK dimE(P, ε) +Kε).

By choosing P := {PM,h|PM,h(·|·, ·)← PM,h(·|·, ·, µπM,h),M ∈M} with P∗ := PM∗,h(·|·, ·, µπM∗,h) and combining the
definition in Def. 3.3, we can finish the proof of the first statement.

By choosing P := {PM,h|PM,h(·|·, ·) ← PM,h(·|·, ·, µπM∗,h),M ∈ M} with P∗ := PM∗,h(·|·, ·, µπM∗,h) and combining
the definition in Def. D.1, we can finish the proof of the second statement. □

D.3. Partial MBED for Model Classes in Multi-Type MFGs Setting

Definition D.9 (Partial ε-Independence for Multi-Type Mean-Field Model Classes). Given a multi-type model class M, con-
sider a w ∈ [W ] and a mapping νwh : M→ ∆(S1h)× ...×∆(SWh ), and a sequence of data {(sw,ih , aw,ih )}ni=1 ⊂ Swh ×Awh ,
we say (swh , a

w
h ) is partially ε-independent on {(sw,ih , aw,ih )}ni=1 w.r.t. M and νwh at step h, if there exists M ,M̃ ∈

M, s.t.
∑n
i=1 ∥PwM ,h(·|s

w,i
h , aw,ih , νwh (M)) − Pw

M̃ ,h
(·|sw,ih , aw,ih , νwh (M̃))∥21 ≤ ε2 but ∥PwM ,h(·|swh , awh , νwh (M)) −

Pw
M̃ ,h

(·|swh , awh , νwh (M̃))∥1 > ε.

Besides, we call {(sw,ih , aw,ih )}ni=1 is a partially ε-independent sequence w.r.t. M and νwh if for any i ∈ [n], (sw,ih , aw,ih ) is
partially ε-independent on {(sw,th , aw,th )}i−1

t=1. In the following, we use dimE|νwh (M, ε) to denote the length of the longest
partially ε-independent sequence w.r.t. M and νwh for type w (at step h).

Definition D.10. Given a model class M and an arbitrary w, we define the mapping νw,πh : M→ ∆(S1)× ...∆(SW ) s.t.
νw,πh (M) = µπ

M ,h, and the mapping νw,πM∗,h : M→ ∆(S1)× ...∆(SW ) s.t. νw,πM∗,h(M) = µπ
M∗,h. Then, the Multi-Type

P-MBEDs are defined by:

• Type I MT-P-MBED: dimMTPE(M, ε) :=
∑
w∈[W ] maxh∈[H] maxπ∈Π dimE|νw,πh

(M, ε);

• Type II MT-P-MBED: dimII
MTPE(M, ε) :=

∑
w∈[W ] maxh∈[H] maxπ∈Π dimE|νw,π

M∗,h
(M, ε).
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Proposition D.11 (Tabular Multi-Type MF-MDP).

max{dimMTPE(M, ε),dimII
MTPE(M, ε)} ≤

∑
w∈[W ]

|Sw||Aw|.

Proof. By definition, for each w, for any fixed h and π, the longest partially independent state-action sequence would have
length |Sw||Aw|. □
Proposition D.12 (Linear Multi-Type MF-MDP). Consider the Low-Rank Multi-Type MF-MDP with known feature
ϕw : Sw × Aw ×∆(S1) × ...∆(SW ) → Rdw satisfying ∥ϕw∥ ≤ Cϕ for any w ∈ [W ], and unknown next state feature
ψw : Sw → Rd. Given a next state feature function class Ψ1, ...,ΨW satisfying ∀ψw ∈ Ψw, ∀s′w ∈ Sw, ∀g : S → {−1, 1},
∥
∑
s′w ψ(s

′w)g(s′w)∥2 ≤ CΨ, define the model class:

MΨw := {Pψw |∀sw, aw,µ, Pwψ (·|sw, aw,µ) := ϕw(sw, aw,µ)⊤ψw(s′w); Pwψ (·|sw, aw,µ) ∈ ∆(Sw);ψw ∈ Ψw},

then, we have:

∀w ∈ [W ], dimII
MTPE(MΨw , ε) = O(

∑
w∈[W ]

max
π∈Π,h∈[H]

dwactive,π,h log(1 +
dwactive,π,hCϕCΨ

ε
))

where dwactive,π,h := Rank([ϕwh (s
w
h , a

w
h ,µ

π
M∗,h)]swh∈Sw,awh∈Aw).

Moreover, if ϕw(sw, aw,µ) is decomposable, i.e. for any w ∈ [W ], ϕw(sw, aw,µ)⊤ = ϕw(sw, aw)⊤Gw(µ) with
ϕw(·, ·) ∈ Rd̃w and Gw(·) ∈ Rd̃w×dw , we have dimMTPE(MΨw , ε) = Õ(

∑
w∈[W ] d̃

w) and dimII
MTPE(MΨw , ε) =

Õ(
∑
w∈[W ] min{d̃w, dw}).

Proof. The proof is a direct generalization of Prop. D.4 by applying the same techniques in the proof of Prop. D.4 for each
type w ∈ [W ], so we omit it here. □

D.4. Partial MBED in Constrained Policy Spaces

Next, we define the Constrained Partial MBED extended from Def. 3.3, where the main difference is that we constrain the
set of adversarial policies.

Definition D.13 (Constrained Partial MBED in MFRL). Given a (single-type) Mean-Field model classM, and M∗ denotes
the true model, we consider the same νπh and νπM∗,h function defined in Def. 3.3 and Def. D.1, respectively. Then, the
constrained P-MBEDs are defined by:

• Type I P-MBED: dimI
CPE|Π†(M, ε) := maxh∈[H] maxπ∈Π† dimE|νπh (M, ε);

• Type II P-MBED: dimII
CPE|Π†(M, ε) := maxh∈[H] maxπ∈Π† dimE|νπ

M∗,h
(M, ε).

Comparing with P-MBED, the main difference is that in constrained P-MBED the adversarial policies are only chosen
from the constrained policy set. Recall the definition of Π† in Sec. 5. Given a M and a model classMMFG converted from
M according to Appx. G.2, we have the following relationship between the P-MBED ofMMFG constrained on Π† and
P-MBED of M.

Proposition D.14. Given a model class M and its corresponding lifted MFG classMMFG:

dimCPE|Π†(MMFG, ε) ≤ dimMTPE(M, ε), (2)

dimII
CPE|Π†(MMFG, ε) ≤ dimII

MTPE(M, ε). (3)

Proof. Let’s consider a fixed policy π ∈ Π†. Note that, π corresponds to a π := {πw}w∈[W ] with πw : Sw → ∆(Aw) and
πw(awh |swh ) = π(awh ◦ w|swh ◦ w). Given any ε > 0, and h ∈ [H], suppose we have a partial ε-independent sequence w.r.t.
the mapping νπh (or νπM∗,h), denoted as {(swi,ih ◦ wi, awi,ih ◦ wi)}i∈[n]. We divide this sequence according to its group wi,
which we denote as {{sw,iwh ◦w, aw,iwh ◦w}iw∈[nw]}w∈[W ] with

∑
w nw = n. By construction ofMMFG, for any w ∈ [W ],
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{sw,iwh , aw,iwh }iw∈[nw] is a partial ε-independent sequence w.r.t. function classMw and the mapping νw,πh (or νw,πM∗,h),
which is upper bounded by the Multi-Type P-MBED of model classMw.

We finish the proof of Eq. (2) by maximizing over π ∈ Π†. □

As directly implied by Prop. D.14, Prop. D.11 and Prop. D.12, we can upper bound the constrained P-MBED in some special
cases.
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E. Details about Single-Type/Multi-Type Policy Aware Models
E.1. (Single-Type) Policy-Aware Model

Concretely, Policy-Aware Model (PAM) is specified by a tuple M̈ := {S,A, H, µ1, P̈M̈ , r̈M̈}, where S,A, H, µ1 are the
state space, action space, horizon length, initial state distribution which are the same as the normal MF-MDP setting;
P̈M̈ := {P̈M̈,1, ..., P̈M̈,H} is the transition function with P̈M̈,h : Sh ×Ah ×Π→ ∆(Sh+1), and r̈M̈ := {r̈M̈,1, ..., r̈M̈,H}
is the reward function5 satisfying r̈M̈,h : Sh ×Ah × Π→ [0, 1/H], where recall Π denotes the collection of all Markov
policies. Given any reference policy π, we define the value function Q̈π̃

M̈,h
: Sh ×Ah ×Π→ R and V̈ π̃

M̈,h
: Sh ×Π→ R

regarding π̃ in the following way:

Q̈π̃
M̈,h

(·, ·, π) :=E
[ H∑
h′=h

r̈M̈,h′(sh′ , ah′ , π)
∣∣∣sh = ·, ah = ·, ∀h′ ≥ h, sh′+1 ∼ P̈M̈,h′(·|sh′ , ah′ , π), ah′+1 ∼ π̃(·|sh′+1)

]
,

V̈ π̃
M̈,h

(·, π) :=E
[ H∑
h′=h

r̈M̈,h′(sh′ , ah′ , π)
∣∣∣sh = ·, ah ∼ π̃, ∀h′ ≥ h, sh′+1 ∼ P̈M̈,h′(·|sh′ , ah′ , π), ah′+1 ∼ π̃(·|sh′+1)

]
.

Similarly, we will denote Eπ̃,M̈(π)[·] to be the expectation taken over trajectories sampled by executing π̃ in the model M̈ ,
such that the transition and reward functions are fixed by π. Again, we will call π as the “reference policy”.

By definition, once the reference policy π is determined, the transition/reward functions reduced to single-agent transi-
tion/reward functions, and the value functions are defined in the same way as single-agent RL setting. Besides, we define
the total return of π̃ conditioning on the reference policy π as:

J̈M̈ (π̃;π) := Es1∼µ1
[V̈ π̃
M̈,h

(s1, π)],

and define ∆M̈ (π̃, π) := J̈M̈ (π̃, π)− J̈M̈ (π, π). Similar to MF-MDP, we define the NE in M̈ . Intuitively, the NE in M̈ is
the policy πNE

M̈
that agents do not tend to deviate when πNE

M̈
is chosen to be the reference policy.

Definition E.1 (Nash Equilibrium in M̈ ). Given a model M̈ , we call πNE
M̈

is a Nash Equilibrium (NE) of M̈ , if

∀π̃ ∈ Π, J̈M̈ (π̃;πNE
M̈

) ≤ J̈M̈ (πNE
M̈

;πNE
M̈

).

Besides, we call π̂NE
M̈

is an ε-approximate NE of M̈ , if

∀π̃ ∈ Π, J̈M̈ (π̃;πNE
M̈

) ≤ J̈M̈ (πNE
M̈

;πNE
M̈

) + ε.

Similar to the conditional distance d(M,M̃ |π) defined in Sec. 4, we can define the conditional distance for PAM.

d(M̈,
¨̃
M |π) := max

π̃
max{Eπ̃,M̈(π)[

H∑
h=1

∥P̈M̈,h(·|·, ·, π)− P̈ ¨̃
M,h

(·|·, ·, π)∥1],

E
π̃,

¨̃
M(π)

[

H∑
h=1

∥P̈M̈,h(·|·, ·, π)− P̈ ¨̃
M,h

(·|·, ·, π)∥1]}

Given a PAM model class M̈ and a model M̈ ∈ M̈, for any reference policy π, we define the ε0-neighborhood of M̈ in M̈
to be

Bε0π (M̈ ;M̈) := {M̈ ′ ∈ M̈|d(M̈, M̈ ′|π) ≤ ε0}.

Besides, we define the Central Model M̈ε0
Ctr(π;M̈) in M̈ regarding π to be the model with the largest neighborhood set:

M̈ε0
Ctr(π;M̈)← arg max

M̈∈M̈
|Bε0π (M̈ ;M̈)|.

5Here we specify the model in the subscription, because for those PAM converted from MF-MDPs, even if they share the reward
function in mean-field systems, the reward functions in PAM version can be different because of the difference in transition functions.
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E.1.1. EXISTENCE OF NASH EQUILIBRIUM IN M̈

Next, we investigate the existence of NE in M̈ . Recall the definition

d∞,1(π, π
′) := max

h∈[H],sh∈Sh
∥πh(·|sh)− π′

h(·|sh)∥1. (4)

Theorem E.2. [Existence of Nash Equilibrium in PAM] Given a PAM M̈ with discrete state and action spaces, such that,
for any h ∈ [H], sh+1 ∈ Sh+1, sh ∈ Sh, ah ∈ Ah, both P̈M̈,h(sh+1|sh, ah, π) and r̈M̈,h(sh, ah, π) are continuous at π
w.r.t. distance d∞,1, then M̈ has at least one NE satisfying Def. E.1.

Proof. In Prop. E.2, we establish the existence of NE in Multi-Type PAM, and the proof for this theorem is a special case
when W = 1. □

As a direct result of Thm. E.2 and Lem. E.4, we have the following corollary.

Corollary E.3. Given a MF-MDP model M satisfying Assump. B, the PAM model M̈ converted from M according to the
rules in Eq. (1) has at least one NE.

E.1.2. USEFUL LEMMA RELATED TO THE PAM CONVERTED FROM MF-MDP

Lemma E.4. [Lipschitz Continuity of PAM] Given an MF-MDPM satisfying the Lipschitz continuity condition in Assump. B,
consider the PAM M̈ converted from M according to Eq. (1), we have M̈ is also Lipschitz continuous that, ∀h ∈ [H] and
any sh ∈ S, ah ∈ A,

∥P̈M̈,h(·|sh, ah, π)− P̈M̈,h(·|sh, ah, π
′)∥1 ≤ d∞,1(π, π

′)LT

h∑
h′=1

(1 + LT )
h−h′

|r̈M̈,h(sh, ah, π)− r̈M̈,h(sh, ah, π
′)| ≤ d∞,1(π, π

′)Lr

h∑
h′=1

(1 + LT )
h−h′

.

Proof. This lemma is a special case of Lem. E.13 when W = 1. □

E.2. Multi-Type Policy-Aware Model

In this section, we introduce Multi-Type Policy-Aware Model (MT-PAM) extended from PAM. To distinguish with MT-MFG,
we use M̈ as notation.

MT-PAM is specified by M̈ := {(µw1 ,Sw,Aw, H, P̈wM̈ , r̈w
M̈

)w∈[W ]}6, where Sw,Aw, H, µw1 are defined the same as the
Multi-Type MF-MDP setting; P̈w

M̈
:= {P̈w

M̈ ,h
}h∈[H] is the transition function with P̈w

M̈ ,h
: Swh ×Awh ×Π→ ∆(Sh+1) and

r̈M̈ ,h : Swh ×Awh ×Π→ [0, 1
H ], where recall Π denotes the set of all Markov policies π := {πw}w∈[W ] with πw ∈ Πw.

Given a reference policy π := {πw}w∈[W ] ∈ Π, for any π̃ := {π̃w}w∈[W ] ∈ Π, we define the value function for type w
Q̈
w,(·)
M̈ ,h

: Swh ×Awh ×Π→ R and V̈ w,(·)
M̈ ,h

: Swh ×Π→ R in the following way:

Q̈w,π̃
M̈ ,h

(·, ·;π) := E
[ H∑
h′=h

r̈w
M̈ ,h′(s

w
h′ , awh′ ,π)

∣∣∣swh = ·, awh = ·, ∀h̃ ≥ h, sw
h̃+1
∼ P̈w

M̈ ,h̃
(·|sw

h̃
, aw
h̃
,π), aw

h̃+1
∼ π̃w

h̃+1

]
.

V w,π̃
M̈ ,h

(·;π) := E
[ H∑
h′=h

r̈w
M̈ ,h′(s

w
h′ , awh′ ,π)

∣∣∣swh = ·, awh ∼ π̃wh , ∀h̃ ≥ h, swh̃+1
∼ P̈w

M̈ ,h̃
(·|sw

h̃
, aw
h̃
,π), aw

h̃+1
∼ π̃w

h̃+1

]
.

Similarly, we will denote Eπ̃,M̈(π)[·] to be the expectation taken over trajectories sampled by executing π̃ in the model M̈ ,
such that the transition and reward functions are fixed by π. Again, we will call π as the “reference policy”.

6Here we specify the model in the subscription of the reward function, which will avoid confusion when we consider the PAMs
converted from (Multi-Type) MF-MDPs
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We denote J̈w
M̈

(π̃;π) := Esw1 ∼µw1 [V
w,π̃
M ,1(s

w
1 ;π)] to be the expected return of agents in type w in model M̈ by executing π̃

given π as the reference policy.

Definition E.5 (Nash Equilibrium in Multi-Type PAM). The Nash Equilibrium policy in Multi-Type PAM is defined to be
the policy πNE := {πw,NE}w∈[W ] satisfying:

∀w ∈ [W ], ∀π̃ ∈ Π, J̈w
M̈

(π̃;πNE) ≤ J̈w
M̈

(πNE;πNE). (5)

Note that J̈w
M̈

(π̃;π) actually only depends on π and π̃w.

E.2.1. EXISTENCE OF NASH EQUILIBRIUM IN MT-PAM

We first investigate a stronger notion of NE, which we call the “strict NE”.

Definition E.6 (Strict NE). Given a MT-PAM M̈ with transitions and rewards {(P̈w
M̈
, r̈w

M̈
)}w∈[W ], the policy πNE is a

strict NE of M̈ if and only if the following holds:

∀w ∈ [W ], πwh (·|swh ) ∈ argmax
u∈∆(Aw)

Q̈w,π
M̈ ,h

(swh , ·,π)⊤u. (6)

Note that this is a stronger notion than the NE defined in Def. E.5, i.e. a strict NE is always a NE. In the following, we will
focus on the existence of strict NE.

Lemma E.7 (Strict NE as Fixed Point). Given a MT-PAM M̈ with transitions and rewards {(P̈w
M̈
, r̈w

M̈
)}w∈[W ], the policy

πSNE is a strict NE of M̈ if and only if the following holds:

ΓSNE
M̈

(πSNE) = πSNE,

where

ΓSNE
M̈

(π) := {π̃ := {π̃wh }w∈[W ],h∈[H]|∀w, swh , π̃wh (·|swh ) := argmax
u∈∆(Aw)

Q̈w,π
M̈ ,h

(swh , ·,π)⊤u− ∥πwh (·|swh )− u∥22}.

Proof. First of all, suppose π is the NE of M̈ according to Def. E.5, by the policy improvement theorem in single-agent
RL, we have:

∀w ∈ [W ], πwh (·|swh ) ∈ argmax
u∈∆(Aw)

Q̈w,π
M̈ ,h

(swh , ·,π)⊤u,

which also implies

∀w ∈ [W ], πwh (·|swh ) ∈ arg max
u∈∆(Aw)

Q̈w,π
M̈ ,h

(swh , ·,π)⊤u− ∥πwh (·|swh )− u∥22.

Therefore, if π is the strict NE of M̈ , we have ΓSNE
M̈

(π) = π.

On the other hand, if ΓSNE
M̈

(π) = π, it implies:

∀w ∈ [W ], πwh (·|swh ) ∈ arg max
u∈∆(Aw)

Q̈w,π
M̈ ,h

(swh , ·,π)⊤u− ∥πwh (·|swh )− u∥22.

By the first order optimality condition of the RHS, we should have:

∀w ∈ [W ], πwh (·|swh ) ∈ argmax
u∈∆(Aw)

Q̈w,π
M̈ ,h

(swh , ·,π)⊤u,

Therefore, π is the strict NE of M̈ . □
Definition E.8 (Distance measure between policies). Given two policies π := {πwh }h∈[H],w∈[W ] and π̃ :=
{π̃wh }h∈[H],w∈[W ], we define:

d∞,1(π, π̃) := max
w∈[W ],h∈[H],swh∈Swh

∥πwh (·|swh )− π̃wh (·|swh )∥1.
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Condition E.9. Given a model function M̈ := {(P̈w
M̈ ,h

, r̈w
M̈ ,h

)}h∈[H], for any fixedw ∈ [W ], h ∈ [H], swh+1 ∈ Swh+1, s
w
h ∈

Swh , awh ∈ Awh and any π, P̈w
M̈ ,h

(swh+1|swh , awh ,π) and r̈w
M̈ ,h

(swh , a
w
h ,π) are continuous at π w.r.t. distance d∞,1.

Lemma E.10 (Continuity of Q̈). Under Cond. E.9, for any w ∈ [W ], any swh , a
w
h and π, Q̈w,π

M̈ ,h
(swh , a

w
h ,π) is continuous at

π w.r.t. the distance d∞,1 in Def. E.8.

Proof. The proof is obvious by noting that Q̈w,π
M̈ ,h

(swh , a
w
h ,π) is a function resulting from finite multiplication and addition

among P̈w
M̈ ,h

(·|·, ·,π), r̈w
M̈ ,h

(·, ·,π) and π. □

In the following proposition, we will establish the existence of NE based on the existence of strict NE.
Proposition E.11. Under Cond. E.9, the MT-PAM has at least one NE policy πNE satisfying Def. E.5.

Proof. We first show the mapping ΓSNE
M̈

: Π→ Π is continuous under Cond. E.9. Based on a similar discussion as Lem.
E.6 in (Huang et al., 2023),

u→ argmax
u′∈∆(Aw)

q⊤u′ − ∥u− u′∥22,

is continuous for any fixed q ∈ R|Aw|, and

q → argmax
u′∈∆(Aw)

q⊤u′ − ∥u− u′∥22

is also continuous for any fixed u ∈ ∆(Aw).

By Lem. E.10, and the rule of composition of continuous functions, ΓSNE
M̈

is a continuous mapping. Therefore, ΓSNE
M̈

maps
from the closed and convex polytope Π to a subset of itself. By Brouwers fixed point theorem it has a fixed point. By
Lem. E.7, such fixed point is a strict NE of M̈ .

Comparing with Def. E.5 and Def. E.6, we know NE is a super-set of strict NE, which implies the existence of NE in the
MT-PAM. □

E.2.2. EXISTENCE OF NASH EQUILIBRIUM IN MT-MFG AS COROLLARY

Conversion from Multi-Type MF-MDP to MT-PAM Given a Multi-Type MF-MDP M , we can convert it to a MT-PAM
sharing the same {µw1 ,Sw,Aw, H}w∈[W ] with M , while the transition and reward functions of M̈ are defined by:

∀w ∈ [W ],∀h ∈ [H], P̈w
M̈ ,h

(·|·, ·,π) := PwM ,h(·|·, ·,µπ
M ,h), r̈M̈ ,h(·, ·,π) := rh(·, ·,µπ

M ,h), (7)

where µπ
M ,h is the density of agents in all types induced by policy π in model M starting from µπ

M ,1 = µ1.
Proposition E.12. [Existence of NE in MT-MFG] Under Assump. D, the Multi-Type MF-MDP has at least one NE policy
πNE satisfying Eq. (11).

Proof. By Lem. E.13, we know the MT-PAM converted from such Multi-Type MF-MDP satisfying Cond. E.9, and by
Prop. E.11, the MT-PAM has at least one NE. Easy to check that such NE is also a NE for the Multi-Type MF-MDP
satisfying Eq. (11). □

E.2.3. PROOFS RELATED TO THE MT-PAM CONVERTED FROM MULTI-TYPE MF-MDP

Lemma E.13. [Lipschitz Continuity of MT-PAM] Given a Multi-Type MF-MDP M satisfying the Lipschitz continuity
condition in Assump. D, consider the MT-PAM M̈ converted from M according to Eq. (7), we have M̈ is also Lipschitz
continuous that, ∀w ∈ [W ], h ∈ [H] and any swh ∈ Sw, awh ∈ Aw,

∥P̈w
M̈ ,h

(·|swh , awh ,π)− P̈w
M̈ ,h

(·|swh , awh ,π′)∥1 ≤ d∞,1(π,π
′)WLT

h∑
h′=1

(1 +LT )
h−h′

|r̈w
M̈ ,h

(swh , a
w
h ,π)− r̈wM̈ ,h

(swh , a
w
h ,π

′)| ≤ d∞,1(π,π
′)WLr

h∑
h′=1

(1 +LT )
h−h′

.
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Proof. Based on Lem. I.3, as a special case, when M = M ′, we have:

∥µπ
M ,h − µπ′

M ,h∥1 ≤(1 +LT )∥µπ
M ,h−1 − µπ′

M ,h−1∥1 +W · d∞,1(π,π
′)

=d∞,1(π,π
′)W

h∑
h′=1

(1 +LT )
h−h′

.

Therefore, for any w ∈ [W ],

∥P̈w
M̈ ,h

(·|swh , awh ,π)− P̈w
M̈ ,h

(·|swh , awh ,π′)∥1 =∥PwM ,h(·|swh , awh ,µπ
M ,h)− PwM ,h(·|swh , awh ,µπ′

M ,h)∥1

≤LT ∥µπ
M ,h − µπ′

M ,h∥1 ≤ d∞,1(π, π
′)WLT

h∑
h′=1

(1 +LT )
h−h′

.

and

|r̈w
M̈ ,h

(swh , a
w
h ,π)− r̈wM̈ ,h

(swh , a
w
h ,π

′)| =|rwh (swh , awh , µ
w,π
M ,h)− r

w
h (s

w
h , a

w
h , µ

w,π′

M ,h)|

≤Lr∥µπ
M ,h − µπ′

M ,h∥1 ≤ d∞,1(π,π
′)WLr

h∑
h′=1

(1 +LT )
h−h′

.

□
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F. Missing Details and Proofs for Results in Sec. 4
F.1. Proofs for Lemma and Theorems used for Insights

Lemma 4.3. [Implication of Local Alignment] Given any M,M̃ with transition PM and P
M̃

, denote π̂NE
M to be an

ε1-approximate NE of M , suppose d(M, M̃ |π̂NE
M ) ≤ ε2, then π̂NE

M is also an O(ε1 + ε2)-approximate NE of M̃ .

Proof. For any policy π̃, we have:

J
M̃
(π̃, π̂NE

M )− J
M̃
(π̂NE
M , π̂NE

M )

≤J
M̃
(π̃, π̂NE

M )− JM (π̃, π̂NE
M )−

(
J
M̃
(π̂NE
M , π̂NE

M )− JM (π̂NE
M , π̂NE

M )
)
+ JM (π̃, π̂NE

M )− JM (π̂NE
M , π̂NE

M )

≤ε1 + J
M̃
(π̃, π̂NE

M )− JM (π̃, π̂NE
M )−

(
J
M̃
(π̂NE
M , π̂NE

M )− JM (π̂NE
M , π̂NE

M )
)

(π̂NE
M is an ε1-NE of M )

≤ε1 + 2d(M,M̃ |π̂NE
M )

≤ε1 + 2ε2.

□
Theorem 4.4. [Bridge Policy] If the Else-branch in Line 6 in Alg. 1 is activated, running Alg. 3 returns a bridge policy

πNE,k
Br , such that, πNE,k

Br is an approximate NE of MπNE,k
Br

Ctr .

Proof. Thm. 4.4 is just a helper theorem to make it easy for the reader to understand our proofs. It will not be used
in the proof of our main results Thm. F.7, so here we only show an informal proof.

Combining with Lem. E.4 and Thm. E.2, we show the bridge model M̈Br has at least one NE πNE
Br . In Thm. F.5, we provide

upper bound for the distance between the central model of πNE
Br with M̈Br, which implies πNE

Br is an approximate NE of its
central model. □

F.2. Definition of ε-cover of Policy Space

Proposition F.1 (ε-cover of Π). Consider the set

Πε := {π := {π1, ..., πH}|∀h ∈ [H], sh ∈ Sh, πh(·|sh) ∈ Nε},

where

Nε := {(
N1

N
, ...,

NA
N

)|N = ⌈2A
ε
⌉;N1, ..., NA ∈ N;

A∑
i=1

Ni = N}.

Then, Πε is an ε-cover of the policy space Π w.r.t. d∞,1 distance.

Proof. For any u ∈ ∆(A), there exists a v ∈ Nε, such that, ∥u− v∥1 ≤ 1
N · (A− 1) + A−1

N ≤ ε, which implies Nε is an
ε-cover of simplex ∆(A). By definition of Πε, we finish the proof. □

F.3. Proofs for Algorithm 2

Theorem F.2 (Adapted from Thm. 4.2 in (Huang et al., 2023)). For any δ ∈ (0, 1), during the running of Alg. 2, suppose
M∗ ∈ M̄, then w.p. 1− δ, ∀t ∈ [T ], we have M∗ ∈ M̄t. Besides, denote H as the hellinger distance, for each M ∈ M̄t

with transition PM and any h ∈ [H]:

t−1∑
i=1

Eπ̃i,M∗(π)[H2(PM,h(·|sih, aih, µπM,h), PM∗,h(·|sih, aih, µπM∗,h))] ≤ 2 log(
2|M|TH

δ
)

(t− 1) · Eπ,M∗(π)[H2(PM,h(·|sih, aih, µπM,h), PM∗,h(·|sih, aih, µπM∗,h))] ≤ 2 log(
2|M|TH

δ
).
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Theorem F.3. Given any reference policy π, ε̃, δ ∈ (0, 1), M∗ ∈ M̄, if T = Õ(H
4

ε̃2 (dimPE(M, ε′) ∧ (1 + LT )
2H(1 +

LTH)2 dimII
PE(M, ε′)) log2 2|M|TH

δ ) with ε′ = O( ε̃
H2(1+LT )H

), w.p. 1− δ, Alg. 2 terminates at some T0 ≤ T , and return
M̄T0 s.t. (i) M∗ ∈ M̄T0 (ii) ∀M ∈ M̄T0 , d(M∗,M |π) ≤ ε̃.

Proof. Suppose Alg. 2 proceeds to iteration T0 ≤ T , and does not terminate at Line 6. On the good events in Thm. F.2, we
have M∗ ∈ M̄t for all t ≤ T0.

In our first step, we discuss how to provide upper bounds for accumulative model difference depending on two types of
P-MBED.

Step 1-(a): Upper Bound Model Difference with Type II P-MBED For any t ≤ T0, given the fact that ∥P −Q∥1 ≤√
2H(P,Q), for any fixed h ∈ [H], we have:

t−1∑
i=1

Eπ̃i,M∗(π)[∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπM∗,h)∥21]

≤2
t−1∑
i=1

Eπ̃i,M∗(π)[∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπMt,h)∥21] + 2

t−1∑
i=1

L2
T ∥µπM∗,h − µπMt,h∥21

≤8(1 + L2
TH

2) log
2|M|TH

δ
. (8)

where in the last step is because, as a result of Lem. I.5, Cauchy’s inequality, and E2[X] ≤ E[X2], we have:

t−1∑
i=1

∥µπM∗,h − µπMt,h∥21 ≤(t− 1) ·H · Eπ,M∗ [

h∑
h′=1

∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπMt,h)∥21]

≤4H2 log
2|M|TH

δ
.

By Lem. I.1, w.p. 1− δ/2TH , for any t ∈ [T0] and any h ∈ [H], we have:

t−1∑
i=1

∥PM∗,h(·|s̃ih, ãih, µπM∗,h)− PMt,h(·|s̃ih, ãih, µπM∗,h)∥21

≤96(1 + L2
TH

2) log
2|M|TH

δ
+ C · log 2TH

δ
≤ c1(1 + L2

TH
2) log

2|M|TH
δ

.

for some constant C and c1. By Lem. D.7, we further have:

T0∑
t=1

∥PM∗,h(·|s̃th, ãth, µπM∗,h)− PMt,h(·|s̃th, ãth, µπM∗,h)∥1 ≤ c2((1 + LTH)

√
dimII

PE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′).

for some constant c2. By Lem. I.1 again, w.p. 1− δ/2TH , for any T0 ∈ [T ] and any h ∈ [H],

T0∑
t=1

Eπ̃t,M∗(π)[∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπM∗,h)∥1]

≤3c2((1 + LTH)

√
dimII

PE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′) + C · log 2TH

δ

≤c3 · ((1 + LTH)

√
dimII

PE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′).

for some constant c3. Similarly, we can guarantee by analyzing data collected by (π, π):

T0∑
t=1

Eπ,M∗(π)[∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπM∗,h)∥1]
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≤c3 · ((1 + LTH)

√
dimII

PE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′).

Therefore, by Lem. I.5 again,

T0∑
t=1

Eπ̃t,M∗(π)[

H∑
h=1

∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπMt,h)∥1]

≤
T0∑
t=1

Eπ̃t,M∗(π)[

H∑
h=1

∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπM∗,h)∥1] +
T0∑
t=1

H∑
h=1

LT ∥µπM∗,h − µπMt,h∥1

≤c3 ·H(1 + LT )
H((1 + LTH)

√
dimII

PE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′).

where the last step we use:

T0∑
t=1

H∑
h=1

∥µπM∗,h − µπMt,h∥1 ≤
H∑
h=1

h∑
h′=1

(1 + LT )
h−h′

T0∑
t=1

Eπ,M∗(π)[∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπM∗,h)∥1]

≤c4 ·H ·
(1 + LT )

h − 1

LT
((1 + LTH)

√
dimII

PE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′).

Similarly, for model M ′t, we also have:

T0∑
t=1

H∑
h=1

Eπ̃t,M∗(π)[∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπMt,h)∥1]

≤c4 ·H(1 + LT )
H((1 + LTH)

√
dimII

PE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′).

Step 1-(b): Upper Bound Model Difference with Type I P-MBED By Thm. F.2 and Lem. I.1, w.p. 1− δ/2TH , for any
T0 ∈ [T ] and any h ∈ [H], we have:

t−1∑
i=1

∥PM∗,h(·|s̃ih, ãih, µπM∗,h)− PMt,h(·|s̃ih, ãih, µπMt,h)∥21 ≤ c5 log
2|M|TH

δ
+ C · log 2TH

δ
≤ c6 log

2|M|TH
δ

.

As a result of Lem. D.7, we have:

T0∑
t=1

H∑
h=1

∥PM∗,h(·|s̃th, ãth, µπM∗,h)− PMt,h(·|s̃th, ãth, µπMt,h)∥1 ≤ c7 ·H(

√
dimPE(M, ε′)T0 log

2|M|TH
δ

+ T0ε
′).

By Lem. I.1, we have:

T0∑
t=1

H∑
h=1

Eπ̃t,M∗(π)[∥PM∗,h(·|s̃th, ãth, µπM∗,h)−PMt,h(·|s̃th, ãth, µπMt,h)∥1]

≤c8 ·H(
√

dimPE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′).

Similarly, for model M ′t, we also have:

T0∑
t=1

H∑
h=1

Eπ̃t,M∗(π)[∥PM∗,h(·|s̃th, ãth, µπM∗,h)−PM ′t,h(·|s̃th, ãth, µπMt,h)∥1]

≤c8 ·H(
√

dimPE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′).
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Step 2: Lower Bound on Model Difference On the other hand, since the algorithm does not terminate at step T0, we
have:

T0ε̃ <

T0∑
t=1

Eπ̃t,Mt(π)[

H∑
h=1

∥PMt,h(·|·, ·, µπMt,h)− PM ′t,h(·|·, ·, µπM ′t,h)∥1]

≤
T0∑
i=1

Eπ̃t,M∗(π)[

H∑
h=1

∥PM∗,h(·|sh, ah, µπM∗,h)− PM ′t,h(·|sh, ah, µπM ′t,h)∥1]

+ (H + 1) · Eπ̃t,M∗(π)[

H∑
h=1

∥PM∗,h(·|sh, ah, µπM∗,h)− PMt,h(·|sh, ah, µπMt,h)∥1]. (9)

where in the last step we apply Lem. I.8. On the one hand, for Type II P-MBED, we have:

T0ε̃ ≤ c4 ·H(H + 2)(1 + LT )
H((1 + LTH)

√
dimII

PE(M, ε′)T0 log
2|M|TH

δ
+ T0ε

′),

by choosing ε′ ≤ ε̃(2c4H(H + 2)(1 + LT )
H)−1, it implies, for some constant c8,

T0 ≤ c8 ·
H4(1 + LT )

2H(1 + LTH)2 dimII
PE(M, ε′)

ε̃2
log2

2|M|TH
δ

.

On the other hand, for Type I P-MBED, we have:

T0ε̃ ≤ c7 ·H(H + 2)(
√
dimPE(M, ε′)T0 log

2|M|TH
δ

+ T0ε
′),

by choosing ε′ ≥ ε̃ · (c7H(H + 2))−1, we have:

T0 ≤ c9 ·
H4 dimPE(M, ε′)

ε̃2
log2

2|M|TH
δ

.

As a summary, by choosing

T = O(
H4

ε̃2
min{dimPE(M, ε′), (1 + LT )

2H(1 + LTH)2 dimPE(M, ε′)} log2 2|M|TH
δ

)

with ε′ = O(ε̃H−2(1 + LT )
−H), we can guarantee the algorithm will terminates for some T0 ≤ T and return us a model

class M̄T0 satisfying maxM,M ′∈M̄T0 d(M,M ′|π) ≤ ε̃, which implies

d(M∗,M |π) ≤ ε̃, ∀M ∈ M̄T0 .

□
Remark F.4 (Why (1 + LT )

H Disappears if Considering Type-I P-MBED?). From the proof above, especially the proof in
Step 1-(a) and Step 1-(b), we can see that during the model elimination, what matters is the model distance conditioning
on the density induced by the corresponding models, i.e. ∥PM,h(·|·, ·, µπM,h) − PM∗,h(·|·, ·, µπM∗,h)∥1. Therefore, if we
consider the Type-I P-MBED, we do not need additional conversion between ∥PM,h(·|·, ·, µπM,h)− PM∗,h(·|·, ·, µπM∗,h)∥1
and ∥PM,h(·|·, ·, µπM∗,h)−PM ′,h(·|·, ·, µπM∗,h)∥1, which is the origin of the exponential term (1+LT )

H in the upper bound
regarding Type-II P-MBED.

F.4. Proofs for Algorithm 3

Recall the notations for central models in Appx. E.1.
Theorem F.5. Suppose we feed Alg. 3 with a model class M̈, the bridge model M̈Br it computes is a valid model, and by
choosing ε̄ = ε0/min{2HLr (1+LT )

H−1
LT

, 2H(H + 1)((1 + LT )
H − 1)}, for any reference policy π and its associated

central model M̈ε0
Ctr(π;M̈), we have:

max
π̃

Eπ̃,M̈ε0
Ctr (π;M̈)(π)[

H∑
h=1

∥P̈M̈ε0
Ctr (π;M̈),h(·|sh, ah, π)− P̈Br,h(·|sh, ah, π)∥1] ≤(H + 3)ε0,
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max
π̃

Eπ̃,M̈ε0
Ctr (π;M̈)(π)[

H∑
h=1

|r̈M̈ε0
Ctr (π;M̈),h(sh, ah, π)− r̈Br,h(sh, ah, π)|] ≤LrH(H + 4)ε0.

Proof. In the proof, for notation simplicity, given the refernce policy π, we use M̈π
Ctr as a short note of M̈ε0

Ctr(π;M̈), i.e. the
central model regarding π.

Validity of Construction First of all, note that Πε̄ is an ε̄-cover of the policy space. Therefore, for any π, there must exist
at least one π̃ ∈ Πε̄ satisfying d∞,1(π, π̃) ≤ ε̄ which ensures

∑
π̃∈Πε̄

[2ε̄− d∞,1(π, π̃)]
+ > 0. So the transition and reward

functions in the bridge model is well-defined, and also continuous in π w.r.t. distance d∞,1.

Upper Bound on Transition Difference By definition,

∥P̈M̈π
Ctr,h

(·|sh, ah, π)− P̈Br,h(·|sh, ah, π)∥1 =∥P̈M̈π
Ctr,h

(·|sh, ah, π)−
∑
π̃∈Πε̄

[2ε̄− d∞,1(π, π̃)]
+P̈M̈ π̃

Ctr,h
(·|sh, ah, π̃)∑

π̃∈Πε̄
[2ε̄− d∞,1(π, π̃)]+

∥1

≤
∑
π̃∈Πε̄

[2ε̄− d∞,1(π, π̃)]
+∥P̈M̈π

Ctr,h
(·|sh, ah, π)− P̈M̈ π̃

Ctr,h
(·|sh, ah, π̃)∥1∑

π̃∈Πε̄
[2ε̄− d∞,1(π, π̃)]+

We only need to care about those π̃ ∈ Πε̄ with [2ε̄− d∞,1(π, π̃)]
+ > 0, i.e. d∞,1(π, π̃) < 2ε̄. Given the condition when

Alg. 1 call Alg. 3, we have Bε0π (M̈π
Ctr;M̈) > |M̈|

2 for any π. Therefore, for any π and π̃ with d∞,1(π, π̃) ≤ 2ε̄, there exists
a model M̈share such that M̈share ∈ Bε0π (M̈π

Ctr;M̈) ∩ Bε0π̃ (M̈ π̃
Ctr;M̈), which implies for any π′

Eπ′,M̈π
Ctr(π)

[

H∑
h=1

∥P̈M̈π
Ctr,h

(·|sh, ah, π)− P̈M̈ π̃
Ctr,h

(·|sh, ah, π̃)∥1]

≤Eπ′,M̈π
Ctr(π)

[

H∑
h=1

∥P̈M̈π
Ctr,h

(·|sh, ah, π)− P̈M̈share,h
(·|sh, ah, π)∥+

H∑
h=1

∥P̈M̈share,h
(·|sh, ah, π)− P̈M̈share,h

(·|sh, ah, π̃)∥1

+

H∑
h=1

∥P̈M̈share,h
(·|sh, ah, π̃)− P̈M̈ π̃

Ctr,h
(·|sh, ah, π̃)∥1]

≤ε0 + 2H((1 + LT )
H − 1)ε̄+ Eπ′,M̈π

Ctr(π)
[

H∑
h=1

∥P̈M̈share,h
(·|sh, ah, π̃)− P̈M̈ π̃

Ctr,h
(·|sh, ah, π̃)∥1]. (Lem. E.4)

where by applying Lem. I.7, we have:

Eπ′,M̈π
Ctr(π)

[

H∑
h=1

∥P̈M̈share,h
(·|sh, ah, π̃)− P̈M̈ π̃

Ctr,h
(·|sh, ah, π̃)∥1]

≤Eπ′,M̈share(π)
[

H∑
h=1

∥P̈M̈share,h
(·|sh, ah, π̃)− P̈M̈ π̃

Ctr,h
(·|sh, ah, π̃)∥1]

+H · Eπ′,M̈π
Ctr(π)

[

H∑
h=1

∥P̈M̈π
Ctr,h

(·|sh, ah, π)− P̈M̈share,h
(·|sh, ah, π)∥1]

≤Eπ′,M̈share(π)
[

H∑
h=1

∥P̈M̈share,h
(·|sh, ah, π̃)− P̈M̈ π̃

Ctr,h
(·|sh, ah, π̃)∥1] +Hε0 (M̈share ∈ Bε0π (M̈π

Ctr;M̈))

≤Eπ′,M̈share(π̃)
[

H∑
h=1

∥P̈M̈share,h
(·|sh, ah, π̃)− P̈M̈ π̃

Ctr,h
(·|sh, ah, π̃)∥1]

+H · Eπ′,M̈share(π̃)
[

H∑
h=1

∥P̈M̈share,h
(·|sh, ah, π)− P̈M̈share,h

(·|sh, ah, π̃)∥1] +Hε0
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≤(H + 1)ε0 + 2H2((1 + LT )
H − 1)ε̄. (M̈share ∈ Bε0π̃ (M̈ π̃

Ctr;M̈); Lem. E.4)

which implies,

Eπ′,M̈π
Ctr(π)

[

H∑
h=1

∥P̈M̈π
Ctr,h

(·|sh, ah, π)− P̈M̈ π̃
Ctr,h

(·|sh, ah, π̃)∥1]

≤ε0 + 2H((1 + LT )
H − 1)ε̄+ (H + 1)ε0 + 2H2((1 + LT )

H − 1)ε̄

≤(H + 2)ε0 + 2H(H + 1)((1 + LT )
H − 1)ε̄

≤(H + 3)ε0. (2H(H + 1)((1 + LT )
H − 1)ε̄ ≤ ε0)

Therefore,

∀π, π′, Eπ′,M̈π
Ctr(π)

[

H∑
h=1

∥P̈M̈π
Ctr,h

(·|sh, ah, π)− P̈Br,h(·|sh, ah, π)∥1] ≤
∑
π̃∈Πε̄

[2ε̄− d∞,1(π, π̃)]
+(H + 3)ε0∑

π̃∈Πε̄
[2ε̄− d∞,1(π, π̃)]+

≤(H + 3)ε0.

Upper Bound on Reward Difference By definition, for each h, sh, ah, we have:

|r̈M̈ε0
Ctr (π;M̈),h(sh, ah, π)− r̈Br,h(sh, ah, π)|

=|r̈M̈ε0
Ctr (π;M̈),h(sh, ah, π)−

∑
π̃∈Πε̄

[2ε̄− d∞,1(π, π̃)]
+r̈M̈ε0

Ctr (π̃;M̈),h(sh, ah, π̃)∑
π̃∈Πε̄

[2ε̄− d∞,1(π, π̃)]+
|

=

∑
π̃∈Πε̄

[2ε̄− d∞,1(π, π̃)]
+|r̈M̈ε0

Ctr (π;M̈),h(sh, ah, π)− r̈M̈ε0
Ctr (π̃;M̈),h(sh, ah, π̃)|∑

π̃∈Πε̄
[2ε̄− d∞,1(π, π̃)]+

.

Similarly, for those π̃ ∈ Πε̄ with [2ε̄− d∞,1(π, π̃)]
+ > 0, we have:

|r̈M̈π
Ctr,h

(sh, ah, π)− r̈M̈ π̃
Ctr,h

(sh, ah, π̃)|

=|rh(sh, ah, µπMπ
Ctr,h

)− rh(sh, ah, µπ̃M π̃
Ctr,h

)|

≤Lr∥µπMπ
Ctr,h
− µπ̃M π̃

Ctr,h
∥1

≤LrHd∞,1(π, π
′) + LrEπ,Mπ

Ctr(π)
[

h∑
h′=1

∥PMπ
Ctr,h

′(·|sh′−1, ah′−1, µ
π
Mπ

Ctr,h
′−1)− PM π̃

Ctr,h
′(·|sh′−1, ah′−1, µ

π̃
M π̃

Ctr,h
′−1)∥1]

≤2LrHε̄+ LrEπ,M̈π
Ctr(π)

[

H∑
h=1

∥P̈M̈π
Ctr,h

(·|sh, ah, π)− P̈M̈ π̃
Ctr,h

(·|sh, ah, π̃)∥1]

≤Lr(H + 4)ε0.

Therefore,

∀π, π′, Eπ′,M̈π
Ctr(π)

[

H∑
h=1

|r̈M̈π
Ctr,h

(sh, ah, π)− r̈M̈ π̃
Ctr,h

(sh, ah, π̃)|] ≤
∑
π̃∈Πε̄

[2ε̄− d∞,1(π, π̃)]
+H(H + 4)ε0∑

π̃∈Πε̄
[2ε̄− d∞,1(π, π̃)]+

≤LrH(H + 4)ε0.

□

Next we prove an important Lemma based on results in theorem above, which indicates that the bridge policy constructed in
Alg. 3 is close to the NE of its central model.
Lemma F.6. Suppose the Else-branch in Line 6 if activated in Alg. 2, for policy πNE,k

Br and its corresponding central model
Mk

Ctr := argmaxM∈Mk |Bε0
πNE,k

Br
(M ;Mk)|, we have:

ENE
Mk

Ctr
(πNE,k

Br ) := max
π

∆Mk
Ctr
(π, πNE,k

Br ) ≤ 2(1 + Lr)(H + 4)ε0.
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Proof. For any policy π, we have

∆Mk
Ctr
(π, πNE,k

Br )

≤∆M̈k
Ctr
(π, πNE,k

Br )−∆M̈Br
(π, πNE,k

Br ) (∆M̈Br
(π, πNE,k

Br ) ≤ 0)

≤|J̈M̈k
Ctr
(π, πNE,k

Br )− J̈M̈Br
(π, πNE,k

Br )|+ |J̈M̈k
Ctr
(πNE,k

Br , πNE,k
Br )− J̈M̈Br

(πNE,k
Br , πNE,k

Br )|

≤EπNE,k
Br ,M̈k

Ctr(π
NE,k
Br )[

H∑
h=1

|r̈M̈k
Ctr,h

(sh, ah, π
NE,k
Br )− r̈M̈Br,h

(sh, ah, π
NE,k
Br )|

+ ∥P̈M̈k
Ctr,h

(·|sh, ah, πNE,k
Br ), P̈M̈Br,h

(·|sh, ah, πNE,k
Br )∥1]

+ Eπ,M̈k
Ctr(π

NE,k
Br )[

H∑
h=1

|r̈M̈k
Ctr,h

(sh, ah, π
NE,k
Br )− r̈M̈Br,h

(sh, ah, π
NE,k
Br )|

+ ∥P̈M̈k
Ctr,h

(·|sh, ah, πNE,k
Br ), P̈M̈Br,h

(·|sh, ah, πNE,k
Br )∥1]

≤2max
π

Eπ,M̈k
Ctr(π

NE,k
Br )[

H∑
h=1

|r̈M̈k
Ctr,h

(sh, ah, π
NE,k
Br )− r̈M̈Br,h

(sh, ah, π
NE,k
Br )|]

+ 2max
π

Eπ,M̈k
Ctr(π

NE,k
Br )[

H∑
h=1

∥P̈M̈k
Ctr,h

(·|sh, ah, πNE,k
Br ), P̈M̈Br,h

(·|sh, ah, πNE,k
Br )∥1]

≤2(1 + LrH)(H + 4)ε0. (Thm. F.5)

which finishes the proof. □

F.5. Proofs for Algorithm 1

Theorem 4.5. In Alg. 1, by choosing ε0 = ε
8(1+LrH)(H+4) , ε̃ = ε0

6 , and choosing ε̄ according to Thm. F.5, w.p. 1− δ, (1)
if the If-Branch in Line 5 is activated: we have |Mk+1| ≤ |Mk|/2; (2) otherwise, in the Else-Branch in Line 6:
either we return the πNE,k

Br which is an ε-approximate NE for M∗; or the algorithm continues with |Mk+1| ≤ |Mk|/2.

Proof. We separately discuss the if and else branches in the algorithm.

Proof for If-Branch in Line 5 On the events in Thm. F.3, for any M̃ ̸∈ Bε0
πk
(M∗;Mk), we have d(M∗, M̃ |πk) ≥

ε0 > ε̃, which implies M̃ ̸∈ Mk+1. Combining the condition of If-Branch, we have:

|Mk+1| ≤ |Bε0
πk
(M∗;Mk)| ≤ |M

k|
2

.

Proof for Else-Branch in Line 6 First of all, on the events in Thm. F.3, we have d(M∗, M̃k|πNE,k
Br ) ≤ ε̃. By applying

Lem. I.2, it implies:

|∆M∗(π, πNE,k
Br )−∆

M̃k(π, π
NE,k
Br )|

≤Eπ,M∗(πNE,k
Br )[

H∑
h=1

∥PM∗,h(·|sh, ah, µ
πNE,k

Br
M∗,h)− P

M̃k,h
(·|sh, ah, µ

πNE,k
Br

M̃k,h
)∥1]

+ (2LrH + 1)EπNE,k
Br ,M∗(πNE,k

Br )[

H∑
h=1

∥PM∗,h(·|sh, ah, µ
πNE,k

Br
M∗,h)− P

M̃k,h
(·|sh, ah, µ

πNE,k
Br

M̃k,h
)∥1]

≤2(LrH + 1)ε̃.

Also note that:

∆M∗(π, πNE,k
Br ) =∆M∗(π, πNE,k

Br )−∆
M̃k(π, π

NE,k
Br ) + ∆

M̃k(π, π
NE,k
Br ).

In the following, we separately discuss two cases.
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Case 1: ENE
M̃k

(πNE,k
Br ) ≤ 3ε

4 and Line 9 is activated Given that ε̃ ≤ ε
16(1+LrH) :

∆M∗(π, πNE,k
Br ) ≤|∆M∗(π, πNE,k

Br )−∆
M̃k(π, π

NE,k
Br )|+ ENE

M̃k
(πNE,k

Br ) (ENE
M̃k

(πNE,k
Br ) = maxπ∆M̃k(π, π

NE,k
Br ))

≤2(LrH + 1)ε̃+
3ε

4
≤ ε.

which implies πNE,k
Br is an ε-NE of M∗.

Case 2: ENE
M̃k

(πNE,k
Br ) > 3ε

4 and Line 9 is not activated As a result, for any policy π,

∆M∗(π, πNE,k
Br ) ≥ −|∆M∗(π, πNE,k

Br )−∆
M̃k(π, π

NE,k
Br )|+∆

M̃k(π, π
NE,k
Br ) ≥ ∆

M̃k(π, π
NE,k
Br )− 2(LrH + 1)ε̃.

Therefore, by our choice of ε̃,

max
π

∆M∗(π, πNE,k
Br ) ≥ ENE

M̃k
(πNE,k

Br )− 2(LrH + 1)ε̃ ≥ 5ε

8
.

On the other hand, by Lem. F.6, for any π, we have:

∆M∗(π, πNE,k
Br )− 2(1 + LrH)(H + 4)ε0

≤|∆M∗(π, πNE,k
Br )| − |∆Mk

Ctr
(π, πNE,k

Br )| (Here we apply Lem. F.6)

≤|∆M∗(π, πNE,k
Br )−∆Mk

Ctr
(π, πNE,k

Br )|

≤Eπ,M∗(πNE,k
Br )[

H∑
h=1

∥PM∗,h(·|sh, ah, µ
πNE,k

Br
M∗,h)− PMk

Ctr,h
(·|sh, ah, µ

πNE,k
Br
Mk

Ctr,h
)∥1]

+ (2LrH + 1)EπNE,k
Br ,M∗(πNE,k

Br )[

H∑
h=1

∥PM∗,h(·|sh, ah, µ
πNE,k

Br
M∗,h)− PMk

Ctr,h
(·|sh, ah, µ

πNE,k
Br
Mk

Ctr,h
)∥1]

≤(2LrH + 2)d(M∗,Mk
Ctr|π

NE,k
Br ).

According to the choice of ε0, we have 2(1 + LrH)(H + 4)ε0 ≤ ε
4 , therefore,

d(M∗,Mk
Ctr|π

NE,k
Br ) ≥ 1

2LrH + 2

(
max
π

∆M∗(π, πNE,k
Br )− 2(1 + LrH)(H + 4)ε0

)
≥ 3ε

16(LrH + 1)
.

Next we try to show that models in Bε0
πNE,k

Br
(Mk

Ctr,Mk) will be eliminated. For any M ∈ Bε0
πNE,k

Br
(Mk

Ctr,Mk), because of

ε̃ < ε
48(LrH+1) we have:

d(M,M∗|πNE,k
Br ) ≥ d(Mk

Ctr,M
∗|πNE,k

Br )− d(M,Mk
Ctr|π

NE,k
Br ) ≥ 3ε

16(LrH + 1)
− ε0 ≥

ε

16(LrH + 1)
> ε̃.

On the event in Thm. F.3 (which holds with probability 1− δ), M ̸∈ Mk+1, which implies,

|Mk+1| ≤ |Mk| − |Bε0
πNE,k

Br
(Mk

Ctr,Mk)| ≤ |Mk|/2.

□

Theorem F.7. [Sample Complexity of Learning MFGs] Under Assump. A and B, by running Alg. 1 with Alg. 2 as
ModelElim and Alg. 3 as BridgePolicy, and hyper-parameter choices according to Thm. F.3, 4.5, and F.5, w.p.
1 − δ, Alg. 1 will terminate at some k ≤ log2 |M| + 1 and return us an ε-NE of M∗, and the number of trajectories
consumed is at most O(H

7

ε2 (1 + Lr)
2(dimPE(M, ε′) ∧ H3(1 + LTH)2(1 + LT )

2H dimII
PE(M, ε′)) log3 |M|

δ ) where
ε′ = O(ε/H3(1 + Lr)(1 + LT )

H), and in Õ we omit logarithmic terms of ε,H, log |M|,dimPE, 1 + LT and 1 + Lr.
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Proof. As a result of Thm. 4.5, w.p. 1− δ
log2 |M|+1 · (log2 |M|+ 1) = 1− δ, there exists a step k ≤ log2 |M|+ 1 such

that Alg. 1 will terminate the return us an ε-approximate NE of M∗. The total number of trajectories required is:

(log2 |M|+ 1) · 2HT

=(log2 |M|+ 1) · Õ(
H5

ε̃2
(dimPE(M, ε′) ∧ (1 + LT )

2H(1 + LTH)2 dimII
PE(M, ε′)) log2

2|M|TH
δ

)

=Õ(
H7

ε2
(1 + LrH)2

(
dimPE(M, ε′) ∧H3(1 + LTH)2(1 + LT )

2H dimII
PE(M, ε′)

)
log3 |M|).

where we use the fact that by Thm. F.3, we choose ε̃ = ε0
6 = O( ε

(1+LrH)H ), and ε′ = O(ε̃/H2(1+LT )
H) = O(ε/H3(1+

LrH)(1 + LT )
H). □

F.6. Sample Complexity Separation between Mean-Filed Control and Mean-Field Games

In this section, we establish the separation between of RL in MFC and MFGs from information theoretical perspective.

A Basic Recap of the MFC Setting In MFC, similar to single-agent RL, we are interested in finding a policy π̂∗
Opt to

approximately minimize the optimality gap EOpt(π) := maxπ̃ JM∗(π̃;µπ̃M∗)− JM∗(π;µπM∗), i.e.,

EOpt(π̂
∗
Opt) ≤ ε. (10)

Exponential Lower Bound in Tabular RL for Mean-Field Control Our results are based on a different query model
from Def. 2.1 defined below.

Definition F.8 (Strong Query Model). The Strong Query Model (SQM) can take a policy π and return a sequence of
transition function {Pπh(·|·, ·)}Hh=1, such that Pπh(·|sh, ah) := PM∗,h(·|sh, ah, µπM∗,h) for any h ∈ [H], sh ∈ Sh, ah ∈ Ah.

The SQM is strictly stronger than the sample query model in Def. 2.1, because given the conditional model {Pπh(·|·, ·)}Hh=1,
one can sample arbitrary trajectories by arbitrary policies from it, and therefore, recover the data collection process in
Def. 2.1. In the following, we investigate the number of SQM queries required to identify ε-optimal policy in MFC setting.
We show that, under Assump. A and B, even in the tabular setting, MFC requires queries exponential to the number of states
and actions.

Figure 1. Construction of Lower Bound

Theorem F.9. [Exponential Lower Bound for MFC] Given arbitrary LT > 0 and d ≥ 2, consider tabular MF-MDPs
satisfying Assump. B with Lipschitz coefficient LT , |S| = |A| = d and H = 3. For any algorithm Alg, and any ε ≤ LT

d+1 ,
there exists an MDP M∗ and a model classM satisfying M∗ ∈M, and |M| = Ω((LTdε )

d−1), s.t., if Alg only queries GM
or DCP for at most K times with K ≤ |M|/2− 1, the probability that Alg produces an ε-optimal policy is less than 1/2.

Proof. Our proof is divided into three parts: construction of hard MF-MDP instance, construction of model classM, and
the proof of lower bound.
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Part 1: Construction of Hard Examples We construct a three layer MDP as shown in Fig. 1. The initial state distribution
is fixed to be µ1(s1) = 1, and we have S states and A actions available at each layer with S = A = d. The transition at
initial state is deterministic, i.e., P(si2|s1, ai1, µ1) = 1. At the second layer, given LT ≤ 1, there exists an optimal state
density µ∗

2, such that, ∀i ∈ [S], j ∈ [A] and ∀µ2 ∈ ∆(S):

P(s13|si2, a
j
2, µ2) =

1

2
+ 2ε ·

[
1− LT

4ε
∥µ2 − µ∗

2∥1
]+
, P(s23|si2, a

j
2, µ2) =

1

2
− 2ε ·

[
1− LT

4ε
∥µ2 − µ∗

2∥1
]+
.

where [x]+ = max{x, 0}. As for the reward function, we have zero reward at each state action in the previous two layers,
and for the third layer, we have only have non-zero reward at r3(s13, ·, ·) = 1 and r3(si3, ·, ·) = 0 for all i ̸= 1.

As we can see, for arbitrary policy π, we have µπ2 (s
i
2) = π(ai1|s1). Besides, the optimal policy should be taking action

to make sure µ2 = µ∗
2, which can be achieved by setting π∗(ai1|s1) = µ∗

2(s
i
2), and then take arbitrary policy at the

second layer. Even if the agent just wants to achieve ε-near-optimal policy, it at least has to determine the position of set
{µ : ∥µ− µ∗

2∥1 ≤ 4ε
LT
}. The key difficulty here is to explore and gather information which can be used to infer µ∗

2.

We further reduce the difficulty of the exploration by providing for the learner with the transition at initial state and the third
layer (or equivalently, the available representation function for the first and third layers is unique) and all the information of
reward function. All the learner need to do is to identify the correct feature for the second layer and use it to obtain the
optimal policy (at the initial state) to maximize the return.

Next, we verify the above model belongs to the low-rank Mean-Field MDP. For h = 1, it’s easy to see P(si2|s1, a
j
1, µ1) =

ϕ1(s1, a
j
1, µ1)

⊤ψ1(s
i
2), where ϕ1(s1, a

j
1, µ1) = ej and ψ1(s

i
2) = ei, and e(·) is the one-hot vector with the (·)-th element

equal 1. For the second layer, given a density µ ∈ ∆(S), we use ϕµ,LT to denote the following feature function class that,
∀i ∈ [S], j ∈ [A], µ′ ∈ ∆(S),

ϕµ,LT (s
i
2, a

j
2, µ

′) := (
1

2
+ 2ε ·

[
1− LT

4ε
∥µ′ − µ∥1

]+
,
1

2
− 2ε ·

[
1− LT

4ε
∥µ′ − µ∥1

]+
, 0, .., 0)⊤ ∈ Rd.

and the next state feature function is ψ(si3) = e⊤i , ∀i ∈ [d]. It’s easy to verify that the transition can be decomposed to
ϕµ∗

2 ,LT
(·, ·, µ2)

⊤ψ(si3), and the above feature satisfies the normalization property:

∥
∑
i∈[d]

ψ(si3)g(s
i
3)∥ ≤

√
2d, ∀g : S → {−1, 1}.

Besides, we verify that for any choice of µ, the induced transition function is LT -Lipschitz:

∥Pµ,LT (·|si2, a
j
2, µ

′)− Pµ,LT (·|si2, a
j
2, µ

′′)∥1
=

∑
l∈[S]

|ϕµ,LT (si2, a
j
2, µ

′)⊤ψ(sl3)− ϕµ,LT (si2, a
j
2, µ

′′)ψ(sl3)|

=2 · 2ε|
[
1− LT

4ε
∥µ− µ′′∥1

]+
−
[
1− LT

4ε
∥µ− µ′∥1

]+
|

≤LT |∥µ− µ′∥1 − ∥µ− µ′′∥1| ≤ LT ∥µ′ − µ′′∥1

Part 2: Construction of Model Class Given an integer ζ, we denote Nζ := {µ|µ(si2) = N(si2)/ζ, N(si2) ∈
N,

∑
i∈[S]N(si2) = ζ}. In another word, Nζ includes all state density with resolution 1/ζ. Now, consider N⌊LT5ε ⌋.

For each µ, µ′ ∈ N⌊LT5ε ⌋, we should have:

∥µ− µ′∥1 ≥ 2/⌊LT
5ε
⌋ ≥ 10ε

LT
>

8ε

LT
.

Therefore, if we consider the set B(µ, 4ε
LT

) := {µ′ ∈ ∆(S)|∥µ− µ′∥1 ≤ 4ε
LT
}, we can expect B(µ, 4ε

LT
) ∩ B(µ′, 4ε

LT
) = ∅

for any µ, µ′ ∈ N⌊LT5ε ⌋. Given arbitrary N ≤ |N⌊LT5ε ⌋| =
(⌊LT5ε ⌋+d−1)!

(⌊LT5ε ⌋)!(d−1)!
= Ω((LTdε )

d−1), we can find N − 1 different

elments {µ1
2, ..., µ

N
2 } ⊂ N⌊LT5ε ⌋ and construct (here we only specify the representation at the second layer, since we assume

the other layers are known)

M[N ] := {Mn := (ϕµn2 ,LT , ψ)|n ∈ [N ]}.

35



Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

For analysis, we introduce another model M̄ which shares the transition and reward function as Mns but for the transition
of second layer, it has:

P(s13|si2, a
j
2, µ2) = P(s23|si2, a

j
2, µ2) =

1

2
, ∀i ∈ [S], j ∈ [A], µ2 ∈ ∆(S).

We define:

ϕ̄(·, ·, ·) = (
1

2
, ...,

1

2
) ∈ Rd.

and define:

M :=M[N ] ∪ {(ϕ̄, ψ)}.

Note that M̄ = (ϕ̄, ψ) ∈M.

Part 3: Establishing Lower Bound Now, we consider the following learning setting: the environment randomly select
one model M fromM and provide the entire representation feature classM (which is also the entire model class) to the
learner; then, the learner can repeatedly use gathered information to compute a policy πk and query it with SQM for each
iteration, and output a final policy after K steps. We want to show that, for arbitrary algorithm, there exists at least one
model inM which cost number of queries linear w.r.t. N before identifying the optimal policy.

In the following, we use Ek,Mn to denote the event that in the first k trajectories, there is at least one policy (or equivalently,
density µπ2 ) used to query SQM resulting in ∥µπ2−µn∥1 ≤ 4ε

LT
. The key observation is that, given arbitrary algorithm Alg, for

arbitrary fixed n ∈ [N ], if Alg never deploy a policy π (or equivalently, query an density µπ2 ) satisfying ∥µπ2 − µn∥1 ≤ 4ε
LT

,
the algorithm can not distinguish between Mn and M̄ , and should behave similar in both Mn and M̄ . Therefore,

PrMn,Alg(E∁k,Mn) = PrM̄,Alg(E∁k,Mn), ∀k ∈ [K].

which also implies:

PrMn,Alg(Ek,Mn) = PrM̄,Alg(Ek,Mn), ∀k ∈ [K].

We use Alg(K) to denote the policy output by the algorithm in the final. Besides, we use Π(µ, b0) := {π|∥µπ2 − µ∥1 ≤ b0}
to denote the set of policies, which can lead to a density µπ2 close to µ. Then, we have:∑

n∈[N ]

PrMn,Alg(Alg(K) ∈ Π(µn,
4ε

LT
))− PrM̄,Alg(Alg(K) ∈ Π(µn,

4ε

LT
))

=
∑
n∈[N ]

PrMn,Alg({Alg(K) ∈ Π(µn,
4ε

LT
)} ∩ {EK,Mn})− PrM̄,Alg({Alg(K) ∈ Π(µn,

4ε

LT
)} ∩ {EK,Mn})

+
∑
n∈[N ]

PrMn,Alg({Alg(K) ∈ Π(µn,
4ε

LT
)} ∩ {E∁K,Mn})− PrM̄,Alg({Alg(K) ∈ Π(µn,

4ε

LT
)} ∩ {E∁K,Mn})

=
∑
n∈[N ]

PrMn,Alg({Alg(K) ∈ Π(µn,
4ε

LT
)} ∩ {EK,Mn})− PrM̄,Alg({Alg(K) ∈ Π(µn,

4ε

LT
)} ∩ {EK,Mn})

≤
∑
n∈[N ]

PrMn,Alg(Ek,Mn)
(

PrMn,Alg(Alg(K) ∈ Π(µn,
4ε

LT
)|EK,Mn)− PrM̄,Alg(Alg(K) ∈ Π(µn,

4ε

LT
)|EK,Mn)

)
≤

∑
n∈[N ]

PrMn,Alg(Ek,Mn) =
∑
n∈[N ]

PrM̄,Alg(Ek,Mn) ≤ K.

where the last step is because,

∑
n∈[N ]

PrM̄,Alg(Ek,Mn) ≤
∑
n∈[N ]

K∑
k=1

PrM̄,Alg(∥µπ
k

2 − µn∥1 ≤
4ε

LT
) =

K∑
k=1

∑
n∈[N ]

PrM̄,Alg(∥µπ
k

2 − µn∥1 ≤
4ε

LT
) ≤

K∑
k=1

1 = K.

(B(µi, 4ε
LT

) ∩ B(µj , 4ε
LT

) = ∅ for all i ̸= j)
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Therefore, the average success probability would be:

Pr(M = M̄) +
∑
n∈[N ]

Pr({M =Mn} ∩ {Alg(K) ∈ Π(µn,
4ε

LT
)}) (Each policy is optimal in M̄ .)

=
1

|M|
+

1

|M|
∑
n∈[N ]

PrMn,Alg(Alg(K) ∈ Π(µn,
4ε

LT
)) ≤ K + 1

|M|
.

As a result, even if K = |M|
2 − 1 = O(N), there exists n ∈ [N ], such that, the failure rate

PrMn,Alg(Alg(K) ̸∈ B(π∗
Mn ,

4ε

LT
)) ≥ 1

2
.

□
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G. Proofs for Multi-Type MFGs
G.1. More Details about the Setting

In Multi-Type MF-MDP, we will denote µwh ∈ ∆(Sw) to be a state density at step h in type w, and define µw := {µwh }h∈[H]

to be the collection over all h. For the policies, we define Πw := {πw := {πwh }|∀h ∈ [H], πwh : Swh → ∆(Awh )}, and
Π := {π := {πw}w∈[W ]|∀w ∈ [W ], πw ∈ Πw}. In this paper, we only consider policies in Π, i.e. the set of non-stationary
Markovian policies.

In order to distinguish with (single-type) MF-MDP setting, for notations regarding the collection of densities or policies over
all groups, we use the bold font, i.e. µh := {µwh }w∈[W ] and µ := {µh}h∈[W ], π := {πw}w∈[W ] and πh := {πwh }w∈[W ].
When a policy π and a model M is speicified, we use µπ

M := {µw,πM }w∈[W ] = {µπ
M ,h}h∈[H] to denote the collection of

densities of W groups induced by the policy π in model M , where µw,πM := {µw,πM ,h}h∈[H] and µπ
M ,h := {µw,πM ,h}w∈[W ].

When a policy π ∈ Π is specified, the evolution of the densities in all groups can be described by:

∀h ∈ [H], ∀w ∈ [W ], µw,πM ,h+1 = Γw,π
w

M ,h (µ
w,π
M ,h),

with Γw,π
w

M ,h (µ
w
h )(·) :=

∑
swh ,a

w
h

µwh (s
w
h )π

w
h (a

w
h |swh )PwM ,h(·|swh , awh ,µπ

M ,h)

Similarly to MF-MDP setting, given two policies π̃,π ∈ Π, we can define the value functions for each group following π̃
while conditioning on π:

Qw,π̃M ,h(·, ·;µ
π
M ) :=Eπ̃,M(π)[

H∑
h′=h

rwh′(swh′ , awh′ ,µπ
M ,h′)|swh = ·, awh = ·],

V w,π̃M ,h(·;µ
π
M ) :=Eπ̃,M(π)[

H∑
h′=h

rwh′(swh′ , awh′ ,µπ
M ,h′)|swh = ·],

JwM (π̃;π) :=Esw1 ∼µw1 [V
w,π̃
M ,1(s

w
1 )].

where we use Eπ̃,M(π) to denote the expectation over trajectories generated by executing policy π̃ in M conditioning
on π, i.e. the transitions PwM ,h(·|·, ·,µπ

M ,h) and rewards rwh (·, ·,µπ
M ,h) are fixed by π. Besides, we denote JwM (π̃;π) :=

Esw1 ∼µw1 [V
w,π
M ,1(s

w
1 ;µ

π
M )] to be the expected return of type w in model M by executing π̃ conditioning on π. The Nash

Equilibrium policy in Multi-Type MFG is defined to be the policy πNE := {πw,NE}w∈[W ] satisfying:

∀w ∈ [W ], ∀π̃ ∈ Π, JwM (π̃;πNE) ≤ JwM (πNE;πNE). (11)

We define ∆w
M (π̃,πw) := JwM (π̃;π)− JwM (π;π), and define Ew,NE

M (π) := maxπ̃ ∆w
M (π̃,π). Our goal in this setting is

to find an ε-approximate NE policy π̂NE := {π̂w,NE}w∈[W ] such that:

∀w ∈ [W ], Ew,NE
M∗ (π̂) ≤ ε. (12)

G.2. Conversion from MT-MFG to MFG with Constrained Policy Space

Intuitively, the construction is made by integrating the state and action spaces, which will result in a MFG with transition
and reward functions following some block diagnoal structure.

Given a MT-MFG M := {(µw1 , H,Sw,Aw,PwM , rw)w∈[W ]}, we denote the converted MF-MDP by MMFG :=
{µ1, H,SMFG,AMFG,PMFG, rMFG}, where we have the extended state space SMFG :=

⋃
w∈[W ](Sw × {w}) and action

space AMFG :=
⋃
w∈[W ](Aw × {w}). As we can see, the new state/action space is the collection of all states/actions

agumented by the group index w ∈ [W ]. In this way, states and actions in different groups can be distinguished by the group
index w. Next, we construct a new initial distribution µ1 := [

µ1
1

W ,
µ2
1

W , ...,
µW1
W ] by concatenating all the initial distributions

with normalization. For the policy, we define

Π† := {π|∀w ∈ [W ], π(aw ◦ w|sw ◦ w) = πw(aw ◦ w|sw ◦ w), for some πw ∈ Πw}, (13)

with Πw := {πw : Sw → ∆(Aw)}. In another word, Π† includes and only includes policies taking actions sharing the
same group index with states, and we only consider the policies π ∈ Π†.
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G.2.1. DEFINITION OF TRANSITION/REWARD FUNCTIONS IN THE LIFTED MF-MDP

Next, given a density µh := [
µ1
h

W , ...,
µWh
W ] ∈ ∆(SMFG) with µwh ∈ ∆(Sw), the transition and reward functions in the

converted MFG is defined by (note that by definition of Π†, we only need to consider the case when the state and action
share the group index):

PMFG,h(s
w̃
h+1 ◦ w̃|swh ◦ w, awh ◦ w, µh) =

{
PwM ,h(s

w
h+1|swh , awh , µwh ), if w̃ = w

0, otherwise.

rMFG,h(s
w
h ◦ w, awh ◦ w, µh) =rwh (swh , awh , µwh ).

For the sake of rigor, we include the definition for the transition/reward functions on those swh ◦ w and aw̃h ◦ w̃ with w ̸= w̃.
We define PMFG,h(·|swh ◦ w, aw̃h ◦ w̃, µh) to be a uniform distribution over SMFG, and rMFG,h(s

w
h ◦ w, aw̃h ◦ w̃, µh) = 0, for

any µh ∈ ∆(SMFG).

After specifying a policy π ∈ Π†, denote π := {πw}w∈[W ] to be the MT-MFG policy that π corresponds to, we can verify
that the state density µπMMFG,h

∈ ∆(SMFG) evolves according to:

∀h ∈ [H] : µπMMFG,h ← [
µ1,π
M ,h

W
, ...,

µW,πM ,h

W
]. (14)

where recall µw,πM ,h denotes the density of type w induced by π in model M . To see this, by induction,

µπMMFG,h(s
w ◦ w) =

∑
sh−1∈SMFG,ah−1∈AMFG

µπMMFG,h(sh−1)π(ah−1|sh−1)PMFG,h(s
w
h ◦ w|sh−1, ah−1, µ

π
MMFG,h−1)

=
∑

swh−1∈Sw,awh−1∈Aw
µw,πMMFG,h−1(s

w
h−1 ◦ w) · π(awh−1 ◦ w|swh−1 ◦ w)PwM ,h(s

w
h |swh−1, a

w
h−1, µ

w,π
MMFG,h−1),

=
∑

swh−1∈Sw,awh−1∈Aw
µw,πM ,h−1(s

w
h−1)/W · πw(awh−1|swh−1)PwM ,h(s

w
h |swh−1, a

w
h−1, µ

w,π
MMFG,h−1),

=µw,πM ,h(s
w)/W.

Intuitively, in the converted MFG, following a policy π ∈ Π†, if an agent starts from the initial state with index w, it
will follow a trajectory as if it is generated in the original MT-MFG. In the following, we will call MMFG (or M ) the
corresponding MFG (or MT-MFG) of M (or MMFG).

G.3. Assumptions and Additional Definitions

Recall the definition of {Mw}w∈[W ] and M discussed in Sec. 2, In the following, we useMMFG to denote the model class
including MFG models converted from models in M according to the method discussed in Appx. G.2, and denote M∗

MFG to
be the one converted from M∗.

We have the following assumptions, which can be regarded as a generalization of Assump. A, B and Def. 2.1.

Assumption C (Realizability). The true model M∗ ∈M.

Assumption D (Lipschitz Continuity for MT-MFG). For any M ∈M, and for two arbitrary policies π, π̃

∀w ∈ [W ], ∀h, sw, aw, ∥PwM ,h(·|swh , awh ,µπ
M ,h)− PwM ,h(·|swh , awh ,µπ̃

M ,h)∥1 ≤
LT
W
∥µπ

M ,h − µπ̃
M ,h∥1,

|rwh (swh , awh ,µπ
M ,h)− rwh (swh , awh ,µπ̃

M ,h)| ≤
LT
W
∥µπ

M ,h − µπ̃
M ,h∥1.

Here we introduce a normalization factor W given that ∥µπ
M ,h − µπ̃

M ,h∥1 =
∑
w∈[W ] ∥µ

w,π
M ,h − µ

w,π̃
M ,h∥1.

Definition G.1 (Trajectory Sampling Model in MT-MFG). The learner can query the sampling model with an arbitrary
policy π := {π1, ..., πW }, a group index w and another policy π̃ := {π̃1, ..., π̃W }, and receive a trajectory by executing
π̃w while the transition and reward functions are fixed by π, i.e. PwM∗,h(·|·, ·,µπ

M∗,h) and rwh (·, ·,µπ
M∗,h).
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Similar to the sampling model in Def. 2.1, the model above can be implemented by utilizing the observation of an individually
deviating agent with type w following policy π̃w while the other agents follows π in a large Multi-Type MARL system.

Moreover, for learning in the lifted MFGs, note that a sampling model in M∗
MFG as described in Def. 2.1 can be implemented

by Def. G.1. To see this, given two policies π, π̃ ∈ Π†, which correspond to π := {π1, ..., πW } and π̃ := {π̃1, ..., π̃W },
respectively, the trajectory can be generated by first uniformly sample w ∈ [W ], and then sample a trajectory with Def. G.1
with π converted from π, type w and policy π̃w.

Proposition G.2. Given a MT-MFG model class M satisfying Assump. D, consider its converted MF-MDP model class
MMFG, for any M ∈MMFG, and any π, π̃ ∈ Π†, we have,

∀h ∈ [H], ∥PM,h(·|sh, ah, µπM,h)− PM,h(·|sh, ah, µπ̃M,h)∥1 ≤ LT · ∥µπM,h − µπ̃M,h∥1. (15)

|rh(sh, ah, µπM,h)− rh(sh, ah, µπ̃M,h)| ≤ Lr · ∥µπM,h − µπ̃M,h∥1 (16)

Proof. According to the definition in Appx. G.2.1, for those sh, ah with different group index, their transition or reward
differences will be 0. Therefore, we only need to consider the case when sh, ah share the group index.

As we explained in Eq. (14), given π, π̃ ∈ Π†, which corresponds to π, π̃ ∈ Π, respectively, we have:

∥µπM,h − µπ̃M,h∥1 =
1

W

∑
w∈[W ]

∥µw,πM ,h, µ
w,π̃
M ,h∥1,

where M is the corresponding MT-MFG model of M . Combining with Assump. D, we finish the proof. □

G.4. Constrained Nash Equilibrium

Proposition 5.1. Given a MT-MFG M and its lifted MFG MMFG, we have: (1) an ε-constrained NE π̂NE
Cstr ∈ Π† for MMFG

is a (Wε)-NE in M ; (2) an ε-NE π̂NE in M is an ε-constrained NE for MMFG.

Proof. Given any π ∈ Π†, we denote its corresponding policy in MT-MFG by π := {π1, ..., πW } with πw : Sw → ∆(Aw)
and π(awh ◦w|swh ◦w) = πw(awh |swh ). Conversely, given any π := {π1, ..., πW }, we can convert it to a policy in Π†, which
we denote by π. For π̂NE

Cstr, we denote its correspondence in MT-MFG by π̂NE := {π̂NE,1, ...π̂NE,W }.

Note that, given any π, π̃ ∈ Π† and their correspondence π := {π1, ...πW } and π̃ := {π̃1, ...π̃W }, we have:

JMMFG(π̃;π) = Eπ̃;MMFG(π)[

H∑
h=1

rMMFG,h(sh, ah, µ
π
MMFG,h)] =

1

W

W∑
w=1

Eπ̃w;M(π)[

H∑
h=1

rwh (s
w
h , a

w
h ,µ

π
M ,h)].

where recall rw is the reward in type w in MT-MFG and µπ
M ,h := {µw,πM ,h}w∈[W ] is the collection of densities for all groups.

Consider the case when π = π̂NE and π̃w̃ ← π̂NE,w̃ for all w̃ except w̃ = w, we have:

ε ≥JMMFG(π̃; π̂
NE
Cstr)− JMMFG(π̂

NE
Cstr; π̂

NE
Cstr)

=
1

W

(
Eπ̃w;M(π̂NE)[

H∑
h=1

rwh (s
w
h , a

w
h ,µ

π̂NE

M ,h)]− Eπ̂NE,w;M(π̂NE)[

H∑
h=1

rwh (s
w
h , a

w
h ,µ

π̂NE

M ,h)]
)

=
1

W

(
JwM (π̃, π̂NE)− JwM (π̃, π̂NE)

)
.

By repeating such discussion for any w ∈ [W ] and any πw, we complete the proof for argument (1).

On the other hand, given an ε-approximate NE π̂NE in M and its corresponding π̂NE
Cstr in MMFG, for any π ∈ Π† we have:

JMMFG(π; π̂
NE
Cstr)− JMMFG(π̂

NE
Cstr; π̂

NE
Cstr)

=
1

W

∑
w∈[W ]

(
Eπw;M(π̂NE)[

H∑
h=1

rwh (s
w
h , a

w
h ,µ

π̂NE

M ,h)]− Eπ̂NE,w;M(π̂NE)[

H∑
h=1

rwh (s
w
h , a

w
h ,µ

π̂NE

M ,h)]
)
.
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To upper bound the RHS, for each w ∈ [W ], we consider an arbitrary policy π̃ with with π̃w̃ = π̂NE,w̃ for all w̃ except
π̃w = πw, we should have:

Eπw;M(π̂NE)[

H∑
h=1

rwh (s
w
h , a

w
h ,µ

π̂NE

M ,h)]− Eπ̂NE,w;M(π̂NE)[

H∑
h=1

rwh (s
w
h , a

w
h ,µ

π̂NE

M ,h)] = JwM (π̃, π̂NE)− JwM (π̃, π̂NE) ≤ ε,

By repeating for all w ∈ [W ], we complete the proof for argument (2). □

Existence of Constrained NE Policy Before we introduce algorithms finding constrained NE(s) in MFG, we first
investigate their existence, which is actually directly implied by Prop. 5.1.

Corollary G.3. Given M satisfying Lipschitz continuity conditions in Assump. D, the MFG MMFG converted from M has
at least one constrained NE satisfying ∀π ∈ Π†, JMMFG(π, π̂

NE
Cstr) ≤ JMMFG(π̂

NE
Cstr, π̂

NE
Cstr) + ε with ε = 0.

Proof. From Prop. E.12, any MT-MFG M satisfying Assump. D has at least one NE. As implied by Prop. 5.1 when ε→ 0,
any MFG MMFG converted from an MT-MFG M with NE(s) should have at least one constrained NE. Therefore, under
Assump. D, we can guarantee any model in the converted function classMMFG has at least one constrained NE. □

G.5. Algorithm Details

We first generalize some notations in Sec. 4. We define the (constrained) conditional distance between models:

d†(M,M̃ |π) := max
π̃∈Π†

max{Eπ̃,M(π)[

H∑
h=1

∥PM,h(·|·, ·, µπM,h)− P
M̃,h

(·|·, ·, µπ
M̃,h

)∥1],

E
π̃,M̃(π)

[

H∑
h=1

∥PM,h(·|·, ·, µπM,h)− P
M̃,h

(·|·, ·, µπ
M̃,h

)∥1]}.

Besides, given a MF-MDP classM, a model M ∈M, and any policy π, we define the ε0-neighborhood of M inM w.r.t.
distance d†(·, ·|π) to be: B†,ε0π (M ;M) := {M ′ ∈M|d†(M,M ′|π) ≤ ε0}. The “Central Model” ofM w.r.t. policy π and
distance d† is defined to be the model with the largest neighborhood set M†,ε0

Ctr (π;M)← argmaxM∈M |B†,ε0π (M ;M)|.
When ε0 andM is clear from context, we will use M†,π

Ctr as a short note.

Besides, we define E†,NE
M (π) := maxπ̃∈Π† ∆M (π̃, π) = maxπ̃∈Π† JM (π̃, π)− JM (π, π) to be the constrained NE gap.

Algorithm 4: Multi-Type MFG Learning with Constrained Policy Space

1 Input: Model Class M; Policy Class Π†; Accuracy level ε0, ε̃, ε̄; Confidence level δ
2 Convert M toMMFG as described in Appx. G.2;M1

MFG ←MMFG, δ0 ← δ
log2 |MMFG|+1 .

3 for k = 1, 2, ... do
4 πk ← argminπ∈Π† |B†,ε0π (M†,π

Ctr ;Mk
MFG)|;

5 if |B†,ε0
πk

(M†,πk
Ctr ;Mk

MFG)| ≤
|Mk

MFG|
2 then Mk+1

MFG ← ModelElimCstr(πk,Mk
MFG, ε̃, δ0). ;

6 else
7 π†,NE,k

Br ← BridgePolicyCstr(Mk
MFG, ε̄);

8 Mk+1
MFG ← ModelElimCstr(π†,NE,k

Br ,Mk
MFG, ε̃, δ0);

9 Randomly pick M̃k fromMk+1
MFG;

10 E†,NE
M̃k

(π†,NE,k
Br )← maxπ∈Π† J

M̃k(π, π
†,NE,k
Br )− J

M̃k(π
†,NE,k
Br , π†,NE,k

Br );

11 if E†,NE
M̃k

(π†,NE,k
Br ) ≤ 3ε

4 then return π†,NE,k
Br ;

12 end
13 if |MMFG| = 1 then Return the NE of the model inMMFG. ;
14 end
15 Return the constrained NE policy of the model inMk

MFG.

41



Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Algorithm 5: ModelElimCstr

1 Input: Reference Policy π; Policy Class Π†; Model Class M̄; Accuracy level ε̃; Confidence δ
2 M̄1 ←M; ε̄; Choosing T according to Thm. G.4
3 for t = 1, 2, ..., T do
4 π̃t,M t,M ′t ← argmaxπ̃∈Π† maxM,M ′∈M̄t Eπ̃,M(π)[

∑H
h=1 ∥PwM,h(·|·, ·, µπM,h)− PwM ′,h(·|·, ·, µπM ′,h)∥1].

5 Denote the value taken at the above as ∆t
max.

6 if ∆t
max ≤ ε̃ then return M̄t ;

7 else
8 Zt ← {}
9 for h = 1, 2..., H do

10 for w ∈ [W ] do
11 // Trajectory sampling in M∗

MFG can be implemented by Def. G.1.
12 Sample a trajectory with (π, π), and collect the data at step h: {(sw,th , aw,th , s′w,th+1)}.
13 Sample a trajectory with (π̃t, π), and collect the data at step h: {(s̃w,th , ãw,th , s̃′w,th+1)}.
14 Zt ← Zt ∪ {(sw,th , aw,th , s′w,th+1)}{(s̃

w,t
h , ãw,th , s̃′w,th+1)}.

15 end
16 end
17 ∀M ∈ M̄t, define

lπMLE(M ;Zt) :=
K∑
k=1

W∑
w=1

H∑
h=1

logPwM,h(s
′w,t
h+1|s

w,t
h , aw,th , µπM,h) + logPwM,h(s̃

′w,t
h+1|s̃

w,t
h , ãw,th , µπM,h).

M̄t+1 ← {M ∈ M̄t| lπMLE(M ;Zt) ≥ max
M̃
lπMLE(M̃ ;Zt)− log WHT |M|

δ }.
18 end
19 end

Algorithm 6: BridgePolicyCstr

1 Input: MF-MDP model classM; Policy Space Π†; Accuracy Level ε̄, ε0
2 Convert Policy-Aware MDP Model Class M̈ fromM by Eq. (1).
3 Construct ε̄-cover of the policy space Π† w.r.t. d∞,1 distance, denoted as Π†

ε̄.
4 for π̃ ∈ Π†

ε̄ do Find the central model M̈†,ε0
Ctr (π̃;M̈)← argmaxM̈∈M̈ |B†,ε0π (M̈ ;M̈)| ;

5 Construct the new PAM M̈Br with transition and reward functions ∀w ∈ [W ], h ∈ [H]:

P̈wBr,h(·|sh, ah, π) :=

∑
π̃∈Π†

ε̄
[2ε̄− d∞,1(π, π̃)]

+P̈w
M̈ π̃,h

(·|sh, ah, π̃)∑
π̃∈Π†

ε̄
[2ε̄− d∞,1(π, π̃)]+

r̈wBr,h(sh, ah, π) :=

∑
π̃∈Π†

ε̄
[2ε̄− d∞,1(π, π̃)]

+r̈w
M̈ π̃,h

(sh, ah, π̃)∑
π̃∈Π†

ε̄
[2ε̄− d∞,1(π, π̃)]+

.

6 Find the NE of bridge model: π†,NE
Br ← argminπ∈Π† maxπ̃∈Π† J̈M̈Br

(π̃;π)− J̈M̈Br
(π;π).

7 return π†,NE
Br .
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G.6. Proofs for Algorithm 4

Theorem G.4. Under Assump. C and D, in Alg. 5, given any ε̃, reference policy π, δ ∈ (0, 1), and M∗ ∈ M̄, by choosing
T = Õ(H

4

ε̃2 (dimCPE|Π†(M, ε′) ∧ (1 +LT )
2H(1 +LTH)2 dimII

CPE|Π†(M, ε′))) with ε′ = O( ε̃
H2(1+LT )H

), , w.p. 1− δ,
the algorithm terminates at some T0 ≤ T , and return M̄T0 satisfying (i) M∗ ∈ M̄T0 (ii) ∀M ∈ M̄T0 , d†(M∗,M |π) ≤ ε̃.

Proof. The proof is the same as Thm. F.3, except that we consider the constrained policy space, and need to replace P-MBED
with constrained P-MBED. □

Theorem G.5. Suppose we feed Alg. 6 with a model class M̈ and policy space Π†, then for the bridge model M̈Br it
computes, by choosing ε̄ = ε0/min{2HLr (1+LT )

H−1
LT

, 2H(H + 1)((1 + LT )
H − 1)}, for any reference policy π ∈ Π†

and its associated central model M̈†,ε0
Ctr (π;M̈), we have:

max
π̃∈Π†

E
π̃,M̈

†,ε0
Ctr (π;M̈)(π)

[

H∑
h=1

∥P̈
M̈

†,ε0
Ctr (π;M̈),h

(·|sh, ah, π)− P̈Br,h(·|sh, ah, π)∥1] ≤(H + 3)ε0,

max
π̃Π†

E
π̃,M̈

†,ε0
Ctr (π;M̈)(π)

[
H∑
h=1

|r
M̈

†,ε0
Ctr (π;M̈),h

(sh, ah, π)− r̈Br,h(sh, ah, π)|] ≤LrH(H + 4)ε0.

Proof. The proof is the same as Thm. F.5 except that we constrain the policies in Π†. □

Lemma G.6. Suppose the Else-branch in Line 6 if activated in Alg. 2, for policy π†,NE,k
Br and its corresponding central

model M†,k
Ctr := argmaxM∈Mk |B†,ε0

π†,NE,k
Br

(M ;Mk)|, we have:

E†,NE
M†,k

Ctr
(π†,NE,k

Br ) := max
π∈Π†

∆M†,k
Ctr

(π, π†,NE,k
Br ) ≤ 2(1 + Lr)(H + 4)ε0.

Proof. The proof is the almost the same as Lem. F.6, except that we consider the constrained policy space.

For any policy π ∈ Π†, we have

∆M†,k
Ctr

(π, π†,NE,k
Br )

≤∆M̈†,k
Ctr

(π, π†,NE,k
Br )−∆M̈Br

(π, π†,NE,k
Br ) (∆M̈Br

(π, π†,NE,k
Br ) ≤ 0)

≤|J̈M̈†,k
Ctr

(π, π†,NE,k
Br )− J̈M̈Br

(π, π†,NE,k
Br )|+ |J̈M̈†,k

Ctr
(π†,NE,k

Br , π†,NE,k
Br )− J̈M̈Br

(π†,NE,k
Br , π†,NE,k

Br )|

≤Eπ†,NE,k
Br ,M̈†,k

Ctr (π†,NE,k
Br )[

H∑
h=1

|r̈M̈†,k
Ctr ,h

(sh, ah, π
†,NE,k
Br )− r̈M̈Br,h

(sh, ah, π
†,NE,k
Br )|

+ ∥P̈M̈†,k
Ctr ,h

(·|sh, ah, π†,NE,k
Br ), P̈M̈Br,h

(·|sh, ah, π†,NE,k
Br )∥1]

+ Eπ,M̈†,k
Ctr (π†,NE,k

Br )[

H∑
h=1

|r̈M̈†,k
Ctr ,h

(sh, ah, π
†,NE,k
Br )− r̈M̈Br,h

(sh, ah, π
†,NE,k
Br )|

+ ∥P̈M̈†,k
Ctr ,h

(·|sh, ah, π†,NE,k
Br ), P̈M̈Br,h

(·|sh, ah, π†,NE,k
Br )∥1]

≤2 max
π∈Π†

Eπ,M̈†,k
Ctr (π†,NE,k

Br )[

H∑
h=1

|r̈M̈†,k
Ctr ,h

(sh, ah, π
†,NE,k
Br )− r̈M̈Br,h

(sh, ah, π
†,NE,k
Br )|]

+ 2 max
π∈Π†

Eπ,M̈†,k
Ctr (π†,NE,k

Br )[

H∑
h=1

∥P̈M̈†,k
Ctr ,h

(·|sh, ah, π†,NE,k
Br ), P̈M̈Br,h

(·|sh, ah, π†,NE,k
Br )∥1]

≤2(1 + LrH)(H + 4)ε0. (Thm. G.5)

which finishes the proof. □
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Theorem G.7. In Alg. 4, by choosing ε0 = ε
8(H+4)(1+LrH) , ε̃ = ε0

6 and choosing ε̄ according to Thm. G.5, on the good
events in Thm. G.4, (1) if the If-Branch in Line 5 is activated: we have |Mk+1| ≤ |Mk|/2; (2) otherwise, in the
Else-Branch in Line 6: either we return the π†,NE,k

Br which is an ε-approximate NE for M∗; or the algorithm continues
with |Mk+1| ≤ |Mk|/2.

Proof. We separately discuss the if and else branches in the algorithm.

Proof for If-Branch in Line 5 On the events in Thm. G.4, for any M̃ ̸∈ B†,ε0
πk

(M∗;Mk), we have d†(M∗, M̃) ≥
ε0 > ε̃, which implies M̃ ̸∈ Mk+1. Combining the condition of If-Branch, we have:

|Mk+1| ≤ |B†,ε0
πk

(M∗;Mk)| ≤ |M
k|

2
.

Proof for Else-Branch in Line 6 First of all, on the events in Thm. G.4, we have d†(M∗, M̃k|π†,NE,k
Br ) ≤ ε̃. By

applying Lem. I.2, it implies:

|∆M∗(π, π†,NE,k
Br )−∆

M̃k(π, π
†,NE,k
Br )|

≤Eπ,M∗(π†,NE,k
Br )[

H∑
h=1

∥PM∗,h(·|sh, ah, µ
π†,NE,k

Br
M∗,h )− P

M̃k,h
(·|sh, ah, µ

π†,NE,k
Br

M̃k,h
)∥1]

+ (2LrH + 1)Eπ†,NE,k
Br ,M∗(π†,NE,k

Br )[

H∑
h=1

∥PM∗,h(·|sh, ah, µ
π†,NE,k

Br
M∗,h )− P

M̃k,h
(·|sh, ah, µ

π†,NE,k
Br

M̃k,h
)∥1]

≤2(LrH + 1)ε̃. (17)

Also note that:

∆M∗(π, π†,NE,k
Br ) =∆M∗(π, π†,NE,k

Br )−∆
M̃k(π, π

†,NE,k
Br ) + ∆

M̃k(π, π
†,NE,k
Br ).

In the following, we separately discuss two cases.

Case 1: E†,NE
M̃k

(π†,NE,k
Br ) ≤ 3ε

4 and Line 9 is activated Given that ε̃ ≤ ε
16(1+LrH) :

∀π ∈ Π†, ∆M∗(π, π†,NE,k
Br ) ≤|∆M∗(π, π†,NE,k

Br )−∆
M̃k(π, π

†,NE,k
Br )|+ E†,NE

M̃k
(π†,NE,k

Br )

(E†,NE
M̃k

(π†,NE,k
Br ) = maxπ∈Π† ∆

M̃k(π, π
†,NE,k
Br ))

≤2(LrH + 1)ε̃+
3ε

4
≤ ε.

which implies π†,NE,k
Br is an ε-NE of M∗.

Case 2: E†,NE
M̃k

(π†,NE,k
Br ) > 3ε

4 and Line 9 is not activated As a result, for any policy π ∈ Π†, by Eq. (17), we have:

∆M∗(π, π†,NE,k
Br ) ≥ −|∆M∗(π, π†,NE,k

Br )−∆
M̃k(π, π

†,NE,k
Br )|+∆

M̃k(π, π
†,NE,k
Br ) ≥ ∆

M̃k(π, π
†,NE,k
Br )− 2(LrH + 1)ε̃.

Therefore, by our choice of ε̃,

max
π∈Π†

∆M∗(π, π†,NE,k
Br ) ≥ E†,NE

M̃k
(π†,NE,k

Br )− 2(LrH + 1)ε̃ ≥ 5ε

8
.

On the other hand, by Lem. F.6, for any π ∈ Π†, we have:

∆M∗(π, π†,NE,k
Br )− 2(1 + LrH)(H + 4)ε0

≤|∆M∗(π, π†,NE,k
Br )| − |∆M†,k

Ctr
(π, π†,NE,k

Br )| (Here we apply Lem. G.6)
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≤|∆M∗(π, π†,NE,k
Br )−∆M†,k

Ctr
(π, π†,NE,k

Br )|

≤Eπ,M∗(π†,NE,k
Br )[

H∑
h=1

∥PM∗,h(·|sh, ah, µ
π†,NE,k

Br
M∗,h )− PM†,k

Ctr ,h
(·|sh, ah, µ

π†,NE,k
Br

M̃,h
)∥1]

+ (2LrH + 1)Eπ†,NE,k
Br ,M∗(π†,NE,k

Br )[

H∑
h=1

∥PM∗,h(·|sh, ah, µ
π†,NE,k

Br
M∗,h )− PM†,k

Ctr ,h
(·|sh, ah, µ

π†,NE,k
Br

M†,k
Ctr ,h

)∥1]

≤(2LrH + 2)d†(M∗,M†,k
Ctr |π

†,NE,k
Br ).

According to the choice of ε0, we have 2(1 + LrH)(H + 4)ε0 ≤ ε
4 , therefore,

d†(M∗,M†,k
Ctr |π

†,NE,k
Br ) ≥ 1

2(LrH + 1)

(
max
π∈Π†

|∆M∗(π, π†,NE,k
Br )| − 2(1 + LrH)(H + 4)ε0

)
≥ 3ε

16(LrH + 1)
.

Next we try to show that models in Bε0
π†,NE,k

Br
(M†,k

Ctr ,Mk) will be eliminated. For any M ∈ Bε0
π†,NE,k

Br
(M†,k

Ctr ,Mk), we have:

d†(M,M∗|π†,NE,k
Br ) ≥ d†(M†,k

Ctr ,M
∗|π†,NE,k

Br )− d†(M,M†,k
Ctr |π

†,NE,k
Br ) ≥ 3ε

16(LrH + 1)
− ε > ε̃.

On the good events in Thm. G.4, we have M ̸∈ Mk+1, which implies

|Mk+1| ≤ |Mk| − |Bε0
π†,NE,k

Br
(M†,k

Ctr ,M
k)| ≤ |Mk|/2.

□

Theorem G.8. [Sample Complexity in MT-MFG] Under Assump. C and D, by running Alg. 4 with Alg. 5 as
ModelElimCstr and Alg. 6 as BridgePolicyCstr, and hyper-parameter choices according to Thm. G.4, G.5,
and G.7, w.p. 1 − δ, Alg. 4 will terminate at some k ≤ log2 |M| + 1 and return an ε-NE of M∗.
The number of trajectories consumed is Õ(W

2H7

ε2 (1 + LrH)2
∑
w∈[W ](dimMTPE(Mw, ε′) ∧ H3(1 + LT )

2H(1 +

LTH)2 dimII
MTPE(Mw, ε′)) log2 |M|

δ ), where ε′ = O(ε/WH3(1 + LrH)(1 + LT )
H), dimMTPE(Mw, ε′) and

dimII
MTPE(Mw, ε′) are the Multi-Type P-MBED defined in Def. D.10, and we omit the logarithmic terms of

H, ε, log |M|,dimMTPE, 1 +LT and 1 +Lr.

Proof. As a result of Thm. G.7, w.p. 1− δ
log2 |MMFG|+1 ·(log2 |MMFG|+1) = 1−δ, there exists a step k ≤ log2 |MMFG|+1 =

log2 |M|+1 such that Alg. 4 will terminate the return us an ε
W -approximate NE of M∗

MFG. The total number of trajectories
required is:

(log2 |M|+ 1) · T · 2H = Õ(
H5

ε̃2

(
dimCPE|Π†(MMFG, ε

′) ∧H3(1 +LT )
2H(1 +LTH)2 dimII

CPE|Π†(MMFG, ε
′)
)
)

Note that in Thm. G.4, we choose ε̃ = ε0
6 = O( ε

WH(1+LrH) ), and ε′ = O(ε̃/H2(1+LT )
H) = O(ε/WH3(1+LrH)(1+

LT )
H). Combining with the above discussion and Prop. D.14 and Prop. 5.1, we finish the proof. □
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H. Approximation Ability of Multi-Type MFGs
H.1. Multi-Type Symmetric Anonymous Games

Notations Given a multi-agent system where agents are divided into W groups, where for each type w the agents share
the state-action spaces Sw,Aw and initial distribution µw1 , we use Nw to denote the number of agents in group w ∈ [W ],
and sw,nh , aw,nh and πw,n to denote the state, action, and policy for the n-th agent in type w, respectively. Besides, we define
sh := {sw,nh }w∈[W ],n∈[Nw],ah := {aw,nh }w∈[W ],n∈[Nw] to be the collection of states and actions of all agents in the system
at step h, and denote psh := {p1sh , ..., p

W
sh
} to be the empirical distribution of the agents’ states with:

pwsh ∈ R|Sw| : pwsh(·) =
1

Nw

Nw∑
n=1

δ(sw,nh = ·),

To distinguish the policy in MFG setting, we use ν̃ := {πw,n}w∈[W ],n∈[Nw] to denote the collection of policies. We will
denote ν(ah|sh) :=

∏
w∈[W ]

∏
n∈[Nw] π

w,n(aw,nh |s
w,n
h ). Besides, we use ν−(w,n) ◦ π̃w,n to denote the policy replacing

πw,n to π̃w,n while keeping the others fixed.

Definition H.1 (Multi-Type Symmetric Anonymous Game). The Multi-Type Symmetric Anonymous Game (MT-SAG)
M̄ := {(µw1 ,Sw,Aw, H,Pw, rw)}w∈[H] is a Multi-Agent system consists of W groups. Given a policy π, the system
evolves as:

sw,n1 ∼ µw1 ; ∀h,w, n : aw,nh ∼ πw,nh (·|sw,nh ), rw,nh ← rwh (s
w,n
h , aw,nh , psh), s

w,n
h+1 ∼ Pwh (·|swh , awh , psh). (18)

Given a policy ν, we define the value functions V : S → [0, 1] and Q : S ×A → [0, 1] of the (w, n)-th agent conditioning
on the system state sh to be:

V w,n,ν
M̄ ,h

(sw,nh ; sh) := EM̄ ,ν [

H∑
h′=h

rwh′(s
w,n
h′ , aw,nh′ , psh′ )|sh]; (19)

where the expectation is taken over the evolution process in Eq. (18). Besides, we define the total value starting from the
initial states Jw,n

M̄
(ν) := Eµ1 [V

w,n,ν
1 (sw,n1 ; s1)].

A policy ν is called to be the NE policy in MT-SAG if any agent can not improve its value by deviating from its current
policy while the others’ are fixed,

∀w, n, max
π̃w,n

Jw,n
M̄

(ν−(w,n) ◦ π̃w,n) ≤ Jw,n
M̄

(ν).

and a policy ν′ is called to be an ε-approximate NE in MT-SAG if

∀w, n, max
π̃w,n

Jw,n
M̄

(ν−(w,n) ◦ π̃w,n) ≤ Jw,n
M̄

(ν) + ε.

Assumption E (Lipschitz Continuity in MT-SAG). We assume the transition and reward functions of MT-SAG are Lipschitz
continuous w.r.t. the density, s.t. ∀w ∈ [W ], h ∈ [H], ∀µ̂h, µ̂′

h ∈ ∆(S1)× ...∆(SW )

∥Pwh (·|swh , awh , µ̂h)− Pwh (·|swh , awh , µ̂′
h)∥1 ≤

LT
W
∥µ̂h − µ̂′

h∥1

|rwh (swh , awh , µ̂h)− rwh (swh , awh , µ̂′
h)∥1 ≤

Lr
W
∥µ̂h − µ̂′

h∥1.

H.2. Approximating MT-SAGs via MT-MFGs

Definition H.2 (Multi-Type Mean-Field Game Approximation of MT-SAG). Given an MT-SAG M̄ , its Multi-Type Mean-
Field (MT-MFG) Approximation is a model Multi-Type MF-MDP model M := {(µw1 ,Sw,Aw, H,PwM , rwM )}w∈[W ],
sharing the group, initial distribution, state-action spaces and transition Pw and reward function rw as MT-SAG (i.e.
PwM (·|·, ·, ·) = Pw

M̄
(·|·, ·, ·), rwM (·, ·, ·) = rw

M̄
(·, ·, ·)), by have different transition rules.
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Next, we describe “the different transition rules” in MT-MFG. For simplicity of notation, in the following, we omit M or
M̄ in the sub-scription of transition and reward functions. Given a reference policy π := {π1, ..., πW } consisting of W
policies shared by each group, the density µπ

h := {µ1,π
h , ..., µW,πh } at step h is defined by:

µw,π1 = µw1 , ∀h ≥ 1, µw,πh+1 ← Γw,πh (µπ
h ), with Γw,πh (µh)(·) :=

∑
swh ,a

w
h

µwh (s
w
h )π

w
h (a

w
h |swh )Pwh (·|swh , awh ,µh).

where Γw,πh is a mapping from ∆(S1)× ...∆(SW ) to ∆(Sw). The evolution process of the (w, n) agent in type w following
a deviation policy π̃w conditioning on reference policy π is specified by:

sw,n1 ∼ µw1 ; ∀h : aw,nh ∼ π̃wh (·|s
w,n
h ), rw,nh ← rwh (s

w,n
h , aw,nh ,µπ

h ), s
w,n
h+1 ∼ Pwh (·|swh , awh ,µπ

h ). (20)

Comparing with Eq. (18), the evolution of agents’ states is depend on the density when ∀w ∈ [W ], Nw → +∞, instead of
the empirical one in practice.

Recall that given a reference policy π and a deviation policy π̃w, the value functions V : S → [0, 1] of the (w, n)-th agent
conditioning on the density µπ

M ,h is defined to be:

V w,n,π
−w◦π̃w

M ,h (sw,nh ;µπ
M ,h) :=Eπ̃w,M(π)[

H∑
h′=h

rwh′(s
w,n
h′ , aw,nh′ ,µπ

M ,h′)];

where the expectation is taken over the process in Eq. (20). Then, we define the total value of π−w ◦ π̃w given the reference
policy π to be:

Jw,nM (π−w ◦ π̃w;π) := Esw1 ∼µw1 [V
w,n,π̃w

1 (sw1 ,µ1)].

A π is called NE policy if:

∀w, n,∀π̃w, Jw,nM (π−w ◦ π̃w;π) ≤ Jw,nM (π;π).

Proposition H.3 (Approximation Error of MT-MFG). Given a Multi-Type Symmetric Anonymous Game (MT-SAG) M̄ , as
defined in Def. H.1, and its Multi-Type MFG approximation (MT-MFG) M , as defined in Def. H.2, suppose π := {πw}w∈[W ]

is the NE policy of MT-MFG, then for any ε0 > 0, the lifted policy ν := {πw,n}w∈[W ],n∈[Nw] with πw,n = πw, ∀n ∈ [Nw]
is an ε0-approximate NE of MT-SAG if

∀w ∈ [W ], Nw ≥ O((Lr +LT )
2W 2H3

( (1 +LT )
H − 1

LT

)2
∑
w∈[W ] S

w

ε20
log

2(1 +Lr +LT )HWSmax

ε0
).

where Smax := maxw S
w.

Proof. Given π := {π1, ..., πW }, we denote ν := {πw,n}w∈[W ],n∈[Nw] to be the lifted policy such that νw,n ← πw for all
w and n ∈ [Nw]. Given a deviation policy π̃w for some w (π̃w may equal πw), we define ν̃ := {πw,n}w∈[W ],n∈[Nw] to be
a policy in MT-SAG, such that π̃w̃,n ← πw̃ for all agent except the (w, 1)-th agent (i.e. the first agent in type w), we set
π̃(w,1) ← π̃w.

Concentration Events We first provide a high-probability bound for the distance between state density µπ
h in MT-MFG

and the empirical distribution pν̃sh in MT-SAG w.r.t. the lifted policy ν̃.

We use Γw,πM ,h(·) to denote the operator Γw,πh (·) in Eq. (20) specified in model M . We extend its definition to h = 0 by

∀µ0,Γ
w,ν̃
0 (µ0)← µw1 , and define Γπ

M ,h(·) := {Γ
1,π
M ,h(·), ...,Γ

W,π
M ,h(·)}. Then, conditioning on pν̃sh−1

, we have:

∥EM̄ ,ν̃ [p
ν̃
sh
|pν̃sh−1

]− Γπ
M ,h−1(p

ν̃
sh−1

)∥1
=∥EM̄ ,ν̃ [p

w,ν̃
sh
|pν̃sh−1

]− Γw,πM ,h−1(p
ν̃
sh−1

)∥1

=
Nw − 1

Nw
∥EM̄ ,ν̃ [

1

Nw

Nw−1∑
n=2

δsw,nh =(·)|pν̃sh−1
]− Γw,πM ,h−1(p

ν̃
sh−1

)∥1
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+
1

Nw
∥EM̄ ,ν̃ [δsw,1h =(·)|p

ν̃
sh−1

]− Γw,πM ,h−1(p
ν̃
sh−1

)∥1

=
1

Nw
∥EM̄ ,ν̃ [δsw,1h =(·)|p

ν̃
sh−1

]− Γw,πM ,h−1(p
ν̃
sh−1

)∥1

≤ 2

Nw
. (21)

where δsw,nh =(·) ∈ R
∑
w |Sw| denotes a vector with 1 at the (w, n)-th value and 0 at the others. In the equalities, we use the

fact that M̄ and M share the transition function.

Besides, conditioning on pν̃sh−1
, for any w̃ ∈ [W ] we can treat {sw̃,nh }n∈[Nw̃] as i.i.d. samples according to distribution

E[pw̃,ν̃sh
|pν̃sh−1

]. By applying Lem. I.6 for a fixed pν̃sh−1
, ∀w ∈ [W ], h ∈ [H], for any ε ∈ (0, 1) and δ ∈ (0, 1), as long as

N w̃ ≥ min{ 8W
2Sw̃
ε2 , 8W

2

ε2 log 2W
δ } holds for any w̃ ∈ [W ], we have:

Pr(∥pν̃sh − Γπ
M ,h−1(p

ν̃
sh−1

)∥1 ≥ ε)

≤Pr(∥pν̃sh − Γπ
M ,h−1(p

ν̃
sh−1

)∥+ ∥E[pν̃sh |p
ν̃
sh−1

]− Γπ
M ,h−1(p

ν̃
sh−1

)∥1 ≥ ε)

≤Pr(∥pν̃sh − E[pν̃sh |p
ν̃
sh−1

]∥1 ≥
ε

2
) (Eq. (21))

≤
∑
w̃∈[W ]

Pr(∥pw̃,ν̃sh
− E[pw̃,ν̃sh

|pν̃sh−1
]∥1 ≥ ε/2W )

≤δ. (22)

Note that the number of possible values of pν̃sh−1
can be upper bounded by

∏
w∈[W ](N

w)S
w

. We define event E := {∀h ∈
[H], w ∈ [W ], ∥pν̃sh − Γπ

M ,h−1(p
ν̃
sh−1

)∥1 < ε}. By applying a union bound over h,w and all possible pν̃sh−1
, we have:

Pr(E) ≥ 1− δ, as long as ∀w ∈ [W ], Nw ≥ O(
W 2

∑
w∈[W ] S

w

ε2
log

2HWSmax

δε
), (23)

Density Error Decomposition The following discussion are based on the event E . Recall we use µπ
h := {µ1,π

h , ..., µW,πh }
to denote the density induced by π in MT-MFG. Then we have:

∥pν̃sh − µπ
h ∥1

=∥pν̃sh − Γπ
M ,h−1(p

ν̃
sh−1

)∥1 + ∥Γπ
M ,h−1(p

ν̃
sh−1

)− µπ
h ∥1

≤ε+
∑
w̃∈[W ]

∑
sw̃h

|
∑

sw̃h−1,a
w̃
h−1

pw̃,ν̃sh−1
(sw̃h−1)π

w̃
h−1(a

w̃
h−1|sw̃h−1)Pw̃h−1(s

w̃
h |sw̃h−1, a

w̃
h−1, p

ν̃
sh−1

)

−
∑

sw̃h−1,a
w̃
h−1

µw̃,πh−1(s
w̃
h−1)π

w̃
h−1(a

w̃
h−1|sw̃h−1)Pw̃h−1(s

w̃
h |sw̃h−1, a

w̃
h−1,µ

π
h−1)|

≤ε+
∑
w̃∈[W ]

∑
sw̃h

∑
sw̃h−1,a

w̃
h−1

|pw̃,ν̃sh−1
(sw̃h−1)− µ

w̃,π
h−1(s

w̃
h−1)|πw̃h−1(a

w̃
h−1|sw̃h−1)Pw̃h−1(s

w̃
h |sw̃h−1, a

w̃
h−1, p

ν̃
sh−1

)

+
∑
w̃∈[W ]

∑
sw̃h−1,a

w̃
h−1

µw̃,πh−1(s
w̃
h−1)π

w̃
h−1(a

w̃
h−1|sw̃h−1)

∑
sw̃h

|Pw̃h−1(s
w̃
h |sw̃h−1, a

w̃
h−1, p

ν̃
sh−1

)− Pw̃h−1(s
w̃
h |sw̃h−1, a

w̃
h−1,µ

π
h−1)|

≤ε+ (1 +LT )∥pν̃sh−1
− µπ

h−1∥1

≤ (1 +LT )
h − 1

LT
ε.

Upper Bound of Approximation Error Recall the definition of value functions in Def. H.1 and Def. H.2. We focus on the
(w, 1)-agent which takes a potentially deviated policy π̃w while the others do not, and we are interested in provide an upper
bound for the value difference J (w,1)

M̄
(ν̃)− J (w,1)

M (π−w ◦ π̃w;π), which will be useful to characterize the sub-optimality of
lifted policy ν.
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We start from step h = H , following the choice of Nw in Eq. (23),

EM̄ ,ν̃ [V
(w,1),ν̃

M̄ ,H
(s

(w,1)
H ; sH)− V (w,1),π−w◦π̃w

M ,H (s
(w,1)
H ;µπ

H)]

=EM̄ ,ν̃ [r
w
H(s

(w,1)
H , a

(w,1)
H ; pν̃sH )− r

w
H(s

(w,1)
H , a

(w,1)
H ;µπ

H)]

≤LrEM̄ ,ν̃ [∥pν̃sH − µπ
H∥1] ≤ Lr(2δ +

(1 +LT )
H − 1

LT
ε) =: εH .

For h < H , we have:

EM̄ ,ν̃ [V
(w,1),ν̃

M̄ ,h
(s

(w,1)
h ; sh)− V (w,1),π−w◦π̃w

M ,h (s
(w,1)
h ;µπ

h )]

=EM̄ ,ν̃ [r
w
h (s

(w,1)
h , a

(w,1)
h ; pν̃sh)− r

w
h (s

(w,1)
h , a

(w,1)
h ;µπ

h ) +
∑
sh+1

PM̄ (sh+1|sh,ah)V (w,1),ν̃

M̄ ,h+1
(s

(w,1)
h+1 ; sh+1)

−
∑
s
(w,1)
h+1

Pwh (s
(w,1)
h+1 |s

(w,1)
h , a

(w,1)
h ,µπ

h )V
(w,1),π−w◦π̃w
M ,h+1 (s

(w,1)
h+1 ;µπ

h+1)]

≤EM̄ ,ν̃ [Lr∥pν̃sh − µπ
h ∥1 +

∑
sh+1

PM̄ (sh+1|sh,ah)
(
V

(w,1),ν̃

M̄ ,h+1
(s

(w,1)
h+1 ; sh+1)− V (w,1),π−w◦π̃w

M ,h+1 (s
(w,1)
h+1 ;µπ

h+1)
)

+
∑
sh+1

PM̄ (sh+1|sh,ah)V (w,1),π−w◦π̃w
M ,h+1 (s

(w,1)
h+1 ;µπ

h+1)

−
∑
s
(w,1)
h+1

Pwh (s
(w,1)
h+1 |s

(w,1)
h , a

(w,1)
h ,µπ

h )V
(w,1),π−w◦π̃w
M ,h+1 (s

(w,1)
h+1 ;µπ

h+1)]

≤εh+1 + EM̄ ,ν̃ [Lr∥pν̃sh − µπ
h ∥1 +

∑
sh+1

PM̄ (sh+1|sh,ah)V (w,1),π−w◦π̃w
M ,h+1 (s

(w,1)
h+1 ;µπ

h+1)

−
∑
s
(w,1)
h+1

Pwh (s
(w,1)
h+1 |s

(w,1)
h , a

(w,1)
h ,µπ

h )V
(w,1),π−w◦π̃w
M ,h+1 (s

(w,1)
h+1 ;µπ

h+1)] (By induction from h+ 1)

=εh+1 + EM̄ ,ν̃ [Lr∥pν̃sh − µπ
h ∥1+

+
∑
s
(w,1)
h+1

(
Pwh (s

(w,1)
h+1 |s

(w,1)
h , s

(w,1)
h , pν̃sh)− Pwh (s

(w,1)
h+1 |s

(w,1)
h , a

(w,1)
h ,µπ

h )
)
V

(w,1),π−w◦π̃w
M ,h+1 (s

(w,1)
h+1 ;µπ

h+1)]

≤εh+1 + (Lr +LT )EM̄ ,ν̃ [∥pν̃sh − µπ
h ∥1] ≤ εh+1 + (Lr +LT )(2δ +

(1 +LT )
h − 1

LT
ε) =: εh.

where we use PM̄ (sh+1|sh,ah) :=
∏
w∈[W ]

∏
n∈[N ] Pwh (s

(w,1)
h+1 |s

(w,1)
h , a

(w,1)
h , psh) to denote the dynamics in MF-SAG.

Therefore, for h = 1, note that M̄ and M have the same initial distribution, and we have:

J
(w,1)

M̄
(ν̃)− J (w,1)

M (π−w ◦ π̃w;π) ≤ 2δ(Lr +LT )H + 2(Lr +LT )H
(1 +LT )

H − 1

LT
ε.

Given an ε̃ NE policy in M , denoted by π, consider the lifted policy ν and a deviation policy ν̃ agrees with ν except that it
takes some π̃w for agent with index (w, 1). By choosing δ = ε0

8(Lr+LT )H
and ε = ε0/

(
4(Lr + LT )H

(1+LT )
H−1

LT

)
, we

have:

max
π̃w

J
(w,1)

M̄
(ν̃)− J (w,1)

M̄
(ν) ≤max

π̃w
J
(w,1)

M̄
(ν̃)− J (w,1)

M̄
(ν)−

(
max
π̃w

J
(w,1)
M (π−w ◦ π̃w;π)− J (w,1)

M (π;π)
)
+ ε̃

≤2max
π̃w
|J (w,1)

M̄
(ν̃)− J (w,1)

M (π−w ◦ π̃w;π)|+ ε̃ ≤ ε0 + ε̃.

To satisfy the requirements in δ and ε0, we need:

∀w ∈ [W ], Nw ≥ O((Lr +LT )
2W 2H3

( (1 +LT )
H − 1

LT

)2
∑
w∈[W ] S

w

ε20
log

2(Lr +LT )(1 +LT )HWSmax

ε0
).

□
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I. Basic Lemma
I.1. Lemma from (Huang et al., 2023)

Lemma I.1 (Lem. D.4 in (Huang et al., 2023)). Let X1, X2, ... be a sequence of random variable taking value in [0, C] for
some C ≥ 1. Define Fk = σ(X1, .., Xk−1) and Yk = E[Xk|Fk] for k ≥ 1. For any δ > 0, we have:

Pr(∃n
n∑
k=1

Xk ≤ 3

n∑
k=1

Yk + C log
1

δ
) ≤ δ, Pr(∃n

n∑
k=1

Yk ≤ 3

n∑
k=1

Xk + C log
1

δ
) ≤ δ.

Lemma I.2 (Lem. 4.6 in (Huang et al., 2023)). Under Assump. B, given two arbitrary model M and M̃ , and two policies π
and π̃, we have:

|∆M (π̃, π)−∆
M̃
(π̃, π)| ≤Eπ̃,M(π)[

H∑
h=1

∥PM,h(·|sh, ah, µπM,h)− P
M̃,h

(·|sh, ah, µπM̃,h
)∥1]

+(2LrH + 1)Eπ,M(π)[

H∑
h=1

∥PM,h(·|sh, ah, µπM,h)− P
M̃,h

(·|sh, ah, µπM̃,h
)∥1]. (24)

I.2. Other Lemma

Lemma I.3 (Density Difference Lemma). Given arbitrary Multi-Type Mean-Field MDPs M and M ′, and two arbitrary
policies π and π′, for any h ∈ [H], we have:

∥µπ
M ,h − µπ′

M ′,h∥1 ≤∥µπ
M ,h−1 − µπ′

M ,h−1∥1 +W · d∞,1(π,π
′)

+
∑
w∈[W ]

Eπ,M(π)[∥PwM ,h(·|swh−1, a
w
h−1,µ

π
M ,h−1)− PwM ′,h(·|swh−1, a

w
h−1,µ

π′

M ′,h−1)∥1].

Proof. For any w ∈ [W ], we have:

∥µw,πM ,h − µ
w,π′

M ′,h∥1

=|
∑
swh

( ∑
swh−1,a

w
h−1

µw,πM ,h(s
w
h−1)π

w
h−1(a

w
h−1|swh−1)PwM ,h(s

w
h |swh−1, a

w
h−1,µ

π
M ,h−1)

−
∑

swh−1,a
w
h−1

µw,π
′

M ′,h(s
w
h )π

′w
h−1(a

w
h−1|swh−1)PwM ′,h(s

w
h |swh−1, a

w
h−1,µ

π′

M ′,h−1)
)
|

≤|
( ∑
swh−1

µw,πM ,h(s
w
h−1)− µ

w,π′

M ′,h(s
w
h−1)

) ∑
awh−1

π′w
h−1(a

w
h−1|swh−1)

∑
sh

PwM ′,h(s
w
h |swh−1, a

w
h−1,µ

π
M ′,h−1)|

+ |
∑
swh−1

µw,πM ,h(s
w
h−1)

∑
awh−1

(
πwh−1(a

w
h−1|swh−1)− π′w

h−1(a
w
h−1|swh−1)

)∑
swh

PwM ′,h(s
w
h |swh−1, a

w
h−1,µ

π
M ′,h−1)|

+
∑

swh−1,a
w
h−1

µw,πM ,h(s
w
h )π

w
h−1(a

w
h−1|swh−1)

∑
swh

|PwM ,h(s
w
h |swh−1, a

w
h−1,µ

π
M ,h−1)− PwM ′,h(s

w
h |swh−1, a

w
h−1,µ

π′

M ′,h−1)|

(Assump. B)

≤∥µw,πM ,h−1 − µ
w,π′

M ′,h−1∥1 + d∞,1(π,π
′) + Eπ,M(π)[∥PwM ,h(·|swh−1, a

w
h−1,µ

π
M ,h−1)− PwM ′,h(·|swh−1, a

w
h−1,µ

π′

M ′,h−1)∥1]

By repeating the above discussion for every w ∈ [W ], we have:

∥µπ
M ,h − µπ′

M ′,h∥1
≤∥µπ

M ,h−1 − µπ′

M ,h−1∥1 +W · d∞,1(π,π
′)

+
∑
w∈[W ]

Eπ,M(π)[∥PwM ,h(·|swh−1, a
w
h−1,µ

π
M ,h−1)− PwM ′,h(·|swh−1, a

w
h−1,µ

π′

M ′,h−1)∥1].

□
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Lemma I.4. Given two model M and M ′ and a policy π, for any h ∈ [H], w ∈ [W ], we have:

∥µπ
M ,h+1 − µπ

M ′,h+1∥1 ≤
∑
w∈[W ]

Eπ,M(π)[

h∑
h′=1

∥PwM ,h′(·|·, ·,µπ
M ,h′)− PwM ′,h′(·|·, ·,µπ

M ′,h′)∥1]. (25)

Besides, under Assump. B, we have:

∥µπ
M ,h+1 − µπ

M ′,h+1∥1 ≤
∑
w∈[W ]

Eπ,M(π)[

h∑
h′=1

(1 +LT )
h−h′
∥PwM ,h′(·|·, ·,µπ

M ,h′)− PwM ′,h′(·|·, ·,µπ
M ,h′)∥1]. (26)

Proof. By applying Lem. I.3 to the case when π = π′, and combining with Assump. D, we finish the proof. □

Lemma I.5. Given two model M and M ′, and two arbitrary policies π and π′, for any h ∈ [H], we have:

∥µπM,h − µπ
′

M ′,h∥1
≤∥µπM,h−1 − µπ

′

M,h−1∥1 + d∞,1(π, π
′) + Eπ,M(π)[∥PM,h(·|sh−1, ah−1, µ

π
M,h−1)− PM ′,h(·|sh−1, ah−1, µ

π′

M ′,h−1)∥1].

Moreover, as a special case when π = π′, we have:

∥µπM,h+1 − µπM ′,h+1∥1 ≤Eπ,M(π)[

h∑
h′=1

∥PM,h′(·|sh′ , ah′ , µπM,h′)− PM ′,h′(·|sh′ , ah′ , µπM ′,h′)∥1]. (27)

Besides, under Assump. B, we have:

∥µπM,h+1 − µπM ′,h+1∥1 ≤ Eπ,M(π)[

h∑
h′=1

(1 + LT )
h−h′
∥PM,h′(·|sh′ , ah′ , µπM,h′)− PM ′,h′(·|sh′ , ah′ , µπM,h′)∥1]. (28)

Proof. The proof is simply completed by setting W = 1 in Lem. I.4. □

Lemma I.6 (Concentration w.r.t. l1-distance). Given a discrete domain X and a distribution p on X , suppose we draw
N i.i.d. samples {xn}n∈[N ] from p and provide an estimation p̂ ∈ ∆(X ) with p̂(x) = 1

N

∑N
n=1 δ(x

n = x), then for any
δ ∈ (0, 1) and ε > 0, as long as N ≥ max{ 2|X |

ε2 , 2
ε2 log

2
δ }, we have:

P(∥p− p̂∥1 ≥ ε) ≤ δ.

Proof. We first provide an upper bound for E[∥p− p̂∥1]:

E[∥p− p̂∥1] =
∑
x∈X

E[|p(x)− p̂(x)|] ≤
∑
x∈X

√
E[|p(x)− p̂(x)|2] =

√
1

N

∑
x∈X

√
p(x)(1− p(x)) ≤ 1

2

√
|X |
N
.

where we use the fact that p̂(x) is a Bernoulli random variable with mean p(x) and variance 1
N p(x)(1− p(x)).

Next, and note that deviation of any xn will only result in 2/N deviation of ∥p− p̂∥1. By McDiarmid’s inequality, for any ε,
we have:

P(∥p− p̂∥1 ≥
ε

2
+

1

2

√
2|X |
N

) ≤ P(|∥p− p̂∥1 − E[∥p− p̂∥1]| ≥
ε

2
) ≤ 2 exp(−N

2
ε2),

By assigning appropriate values for N , we finish the proof. □
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Lemma I.7. [Model Difference Lemma] For any policies π̃, π and π′, and any bounded functions f1, f2, ..., fH ∈ {f |f :
S ×A → [0, 1]},

(i) Given any two MF-MDPs M and M ′, we have:∣∣∣Eπ̃,M(π)[

H∑
h=1

fh(sh, ah)]− Eπ̃,M ′(π′)[

H∑
h=1

fh(sh, ah)]
∣∣∣ ≤H · Eπ̃,M(π)[

H∑
h=1

∥PM (·|sh, ah, µπM,h)− PM ′(·|sh, ah, µπ
′

M ′,h)∥1].

(ii) Given any two PAMs M̈ and M̈ ′, we have:∣∣∣Eπ̃,M̈(π)[

H∑
h=1

fh(sh, ah)]− Eπ̃,M̈ ′(π′)[

H∑
h=1

fh(sh, ah)]
∣∣∣ ≤H · Eπ̃,M̈(π)[

H∑
h=1

∥P̈M̈ (·|sh, ah, π)− P̈M̈ ′(·|sh, ah, π′)∥1].

Proof. We first proof (ii). We use µπ
M̈(π′),h

to denote the density induced by π in model M̈ given π′ as the reference policy.

∥µπ̃
M̈(π),h

− µπ̃
M̈ ′(π′),h

∥1

=|
∑
sh

( ∑
sh−1,ah−1

µπ̃
M̈(π),h−1

(sh−1)π̃(ah−1|sh−1)P̈M̈ (sh|sh−1, ah−1, π)

−
∑

sh−1,ah−1

µπ̃
M̈ ′(π′),h−1

(sh−1)π̃(ah−1|sh−1)P̈M̈ ′(sh|sh−1, ah−1, π
′)
)
|

≤|
∑
sh

∑
sh−1,ah−1

µπ̃
M̈(π),h−1

π̃(ah−1|sh−1)(P̈M̈ (sh|sh−1, ah−1, π)− P̈M̈ ′(sh|sh−1, ah−1, π
′))|

+ |
∑
sh

∑
sh−1,ah−1

(µπ̃
M̈(π),h−1

(sh−1)− µπ̃M̈ ′(π′),h−1
(sh−1))π̃(ah−1|sh−1)P̈M̈ ′(sh|sh−1, ah−1, π

′)|

≤Eπ̃,M̈(π)[∥P̈M̈ (·|sh−1, ah−1, π)− P̈M̈ ′(·|sh−1, ah−1, π
′)∥1] + ∥µπ̃M̈(π),h−1

− µπ̃
M̈ ′(π′),h−1

∥1

≤Eπ̃,M̈(π)[

h−1∑
h′=1

∥P̈M̈ (·|sh′ , ah′ , π)− P̈M̈ ′(·|sh′ , ah′ , π′)∥1].

Therefore,∣∣∣Eπ̃,M̈(π)[

H∑
h=1

fh(sh, ah)]− Eπ̃,M̈ ′(π′)[

H∑
h=1

fh(sh, ah)]
∣∣∣ ≤ H∑

h=1

∥µπ̃
M̈(π),h

− µπ̃
M̈ ′(π′),h

∥1

≤H · Eπ̃,M̈(π)[

H∑
h=1

∥P̈M̈ (·|sh, ah, π)− P̈M̈ ′(·|sh, ah, π′)∥1].

The proof for (i) can be directly obtained by replacing P̈M̈,h(·|·, ·, π) and P̈M̈ ′,h(·|·, ·, π′) with PM,h(·|·, ·, µπM,h) and
PM ′,h(·|·, ·, µπM ′,h).

□

Lemma I.8. Given three arbitrary models M,M̃, M̄ , and two arbitrary policies π, π̃, we have:

E
π̃,M̃(π)

[

H∑
h=1

∥P
M̃,h

(·|sh, ah, µπM̃,h
)− PM̄,h(·|sh, ah, µπM̄,h)∥1]

≤Eπ̃,M(π)[

H∑
h=1

∥PM,h(·|sh, ah, µπM,h)− PM̄,h(·|sh, ah, µπM̄,h)∥1]

+ (H + 1) · Eπ̃,M(π)[

H∑
h=1

∥PM,h(·|sh, ah, µπM,h)− P
M̃,h

(·|sh, ah, µπM̃,h
)∥1]. (29)
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Proof. By applying Lem. I.7 with fh(sh, ah) = ∥PM̃,h
(·|sh, ah, µπM̃,h

)− PM̄,h(·|sh, ah, µπM̄,h
)∥1, we have:

E
π̃,M̃(π)

[

H∑
h=1

∥P
M̃,h

(·|sh, ah, µπM̃,h
)− PM̄,h(·|sh, ah, µπM̄,h)∥1]

≤Eπ̃,M(π)[

H∑
h=1

∥P
M̃,h

(·|sh, ah, µπM̃,h
)− PM̄,h(·|sh, ah, µπM̄,h)∥1]

+H · Eπ̃,M(π)[

H∑
h=1

∥PM,h(·|sh, ah, µπM,h)− P
M̃,h

(·|sh, ah, µπM̃,h
)∥1]

≤Eπ̃,M(π)[

H∑
h=1

∥PM,h(·|sh, ah, µπM,h)− PM̄,h(·|sh, ah, µπM̄,h)∥1]

+ (H + 1)Eπ̃,M(π)[

H∑
h=1

∥PM,h(·|sh, ah, µπM,h)− P
M̃,h

(·|sh, ah, µπM̃,h
)∥1]. (30)

□
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J. Details of Experiments
J.1. Algorithm Design

In the following, we provide the missing algorithm details for Sec. 6.

Algorithm 7: A Heuristic Oracle-Efficient NE Finding

1 Input: Model ClassM; Accuracy level ε0, ε̃, ε̄; Confidence level δ; Batch size T
2 M1 ←M; δ0 ← δ

log2 |M|+1

3 ∀M ∈M1, compute (one of) its NE policy πNE
M ← NE Compute(M).

4 for k = 1, 2, ..., do
5 if ∃Mk ∈Mk, s.t. max

M̃∈Mk |Bε0πNE
Mk

(M̃,Mk)| ≤ |Mk|
2 then

6 Mk+1 ← ModelElim Exp(πNE
Mk ,Mk, ε̃, δ0, T ).

7 end
8 else
9 Mk ← argmaxM∈Mk |Bε0

πNE
M

(M,Mk)|,
10 πNE

Br ← πNE
Mk ,

11 Mk+1 ← ModelElim Exp(πNE
Br ,Mk, ε̃, δ0, T ).

12 if Mk ∈Mk+1 then return πNE
Mk ;

13 end
14 end

Here ModelElim Exp is the same algorithm as Alg. 2 except that we replac Line 4 with:

π̃t ← arg max
π̃∈ΠNE

max
M,M ′∈M̄t

Eπ̃,M(π)[

H∑
h=1

∥PM,h(·|·, ·, µπM,h)

− PM ′,h(·|·, ·, µπM ′,h)∥1],

In another word, we only consider policies from ΠNE := {πNE
M }M∈M̄, including the NE policies of models in M̄.

J.2. Experiment Setup

Environments We consider the linear style MFG, such that

P(sh+1|sh, ah, µh) =
|ϕ(sh, ah)⊤G(µh)ψ(sh+1)|∑
sh+1
|ϕ(sh, ah)⊤G(µh)ψ(sh+1)|

,

where ϕ ∈ Rdϕ and G(·) ∈ Rdϕ×dψ are known but ψ ∈ Rdψ are unknown. Note that our environment is different from
linear model in Prop. D.12, where features are self-normalized. We choose H = 3, S = 100, A = 50 and dϕ = dψ = 5,
where the number of states and actions is much larger than the feature dimension. We consider a model set with |M| = 200.

To construct the environment, for each h, we first generate a random matrix Φh ∈ RSA×dϕ using as feature ϕ(sh, ah), and
generate another random matrix Uh ∈ RS×dϕdψ , and define the function Gh(µh) by

∀µh ∈ ∆(Sh), Gh(µh) := (µ⊤
h Uh).reshape(dϕ, dψ) ∈ Rdϕ,dψ .

After that, we generate 200 random matrices {Ψih}i∈[200] with Ψih ∈ Rdψ×S as the next feature function. Then, the
model class is specified byM := {(Φh, Uh,Ψih)}. In order to make the model elimination process more challenging,
{Ψih}i=2,...,200 is generated by randomly perturbing from Ψ1

h, i.e.:

Ψih = (1− β)Ψ̃ih + βΨ1
h,

where Ψ̃ih is a random matrix independent w.r.t. Ψ1
h and β ∼ Uniform(0, 0.1). In this way, the difference between models

inM will be small and harder to distinguish.

54



Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Training Procedure We construct 5 model classes M1, ...,M5 with different Φ, U to increase the randomness in
experiments. For each model classMi, we repeat 5 trials, where in each trial, we first randomly select one model fromMi

as the true model, and run Alg. 7 for model elimination.

We set ε=1e-3, i.e. we want to find a 1e-3-approximate NE. Besides, we set batch size T = 50, δ = 0.001. For the
NE Oracle in Alg. 7, we implement it by repeatedly update

πi+1 ← (1− α)πi + αBestReponse(πi;M). (31)

where α = 0.02, and BestReponse(πi;M) return the policy maximizing the NE gap of πi in M . We stop the update process
as long as ENE

M (πi) ≤ 5e-4.

Experiments Results We provide our experiment results in Fig. 2. On the LHS, we report the number of uneliminated
models verses the number of trajectories consumed, and as we can see, our algorithm can eliminate unqualified models very
quickly. The total consumed trajectories is much less than the number of states actions SA = 100 ∗ 50 = 5000.

On the RHS7, we report the normalized worst case NE Gap w.r.t. the remaining models. At each iteration t, we compute the
NE gap for every uneliminated model’s NE policy, and pick out the largest one denoted as Gapt. The normalized gap is
defined to be Gapt

Gap0
, where the normalization term Gap0 is the maximal NE gap at the beginning of the algorithm, i.e. the

worst NE gap without starting the algorithm. As we can see, our algorithm can gradually eliminate inaccurate models and
return the (approximate) NE.
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Figure 2. Experiment results in linear style MFG. We report the number of remaining models and the normalized maximal NE Gap by the
NE policies of remaining models during the model elimination process. Error bars correspond to 95% confidence intervals.

7In the RHS sub-plot of Fig. 2, we set the normalized NE Gap to 0 as long as it is lower than 1e-3
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