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ABSTRACT

The weights of neural networks have emerged as a novel data modality, giving
rise to the field of weight space learning. A central challenge in this area is that
learning meaningful representations of weights typically requires large, carefully
constructed collections of trained models, typically referred to as model zoos. These
model zoos are often trained ad-hoc, requiring large computational resources, con-
straining the learned weight space representations in scale and flexibility. In this
work, we drop this requirement by training a weight space learning backbone on
arbitrary models downloaded from large, unstructured model repositories such
as Hugging Face. Unlike curated model zoos, these repositories contain highly
heterogeneous models: they vary in architecture and dataset, and are largely undoc-
umented. To address the methodological challenges posed by such heterogeneity,
we propose a new weight space backbone designed to handle unstructured model
populations. We demonstrate that weight space representations trained on models
from Hugging Face achieve strong performance, often outperforming backbones
trained on laboratory-generated model zoos. Finally, we show that the diversity of
the model weights in our training set allows our weight space model to generalize
to unseen data modalities. By demonstrating that high-quality weight space rep-
resentations can be learned in the wild, we show that curated model zoos are not
indispensable, thereby overcoming a strong limitation currently faced by the weight
space learning community. Code, pre-trained weights, and model collections can
be found on redacted.

1 INTRODUCTION

Over the past years, weight space learning (WSL) has emerged as a vibrant research field casting
neural-network parameters themselves as a data modality to learn representations from. WSL aims
to learn representations of model weights given a population of models, i.e., a model zoo. Such
learned representations can then be exploited for multiple downstream tasks: discriminative (e.g.,
predicting model properties such as accuracy directly from its weights (Unterthiner et al., 2020;
Eilertsen et al., 2020; Martin et al., 2021; Schürholt et al., 2021; 2024; Navon et al., 2023; Zhou et al.,
2023a)) or generative (generating new, unseen neural network weights for a given architecture and
dataset (Schürholt et al., 2022b; Knyazev et al., 2023; 2024; Schürholt et al., 2024; Kofinas et al.,
2023; Wang et al., 2024; 2025; Soro et al., 2024).

As promising as the exploitation of such learned representations for the above-mentioned downstream
tasks is, previously proposed approaches in WSL (Unterthiner et al., 2020; Eilertsen et al., 2020;
Schürholt et al., 2022b; Knyazev et al., 2023; Kofinas et al., 2023; Schürholt et al., 2024; Soro et al.,
2024; 2025; Wang et al., 2024; 2025) share a common limitation: they require trained neural network
models as input. Some methods are trained on multiple training checkpoints of a single model
(Wang et al., 2024; 2025) while others use model zoos (i.e. populations of neural networks that are
homogeneous in their training dataset and/or neural network architecture) to train the weight-space
backbone (Schürholt et al., 2022a; 2024) or a combination of both (Soro et al., 2024).

The availability of homogeneous laboratory-trained model zoos therefore represents a major bottle-
neck: training them demands significant computational resources, particularly when scaling parameter
count. And while some recent work (Schürholt et al., 2024; Kahana et al., 2024; 2025; Horwitz et al.,
2024; 2025) suggests using publicly available models from repositories such as Hugging Face (HF),
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Figure 1: An overview of the proposed method. We train a weight space representation directly
from the weights of downloaded models from Hugging Face. These models are, to a large extent,
undocumented, trained on various datasets, and composed from different neural network architectures.
Once a representation is learned from such a heterogeneous model collection, it can be exploited for
multiple downstream tasks: either analyzing or generating model weights for multiple architectures
and target datasets. Please note, all this is accomplished using the same single representation trained
entirely from HF models.

the heterogeneity of neural network models on such platforms is beyond what current methods in
WSL are able to train on.

To the best of our knowledge, only Horwitz et al. (2024) and Soro et al. (2024) leverage models taken
from HF for weight space learning. Horwitz et al. (2024) group related models into model trees
which can be leveraged for model retrieval and analysis; Soro et al. (2024) use individual models
from HF in some experiments. In contrast, our work aims to design a method that can process and
learn from arbitrary HF models that are heterogeneous in terms of architecture, training dataset and
scale. Further, this work aims to train a single neural representation for all architecture and dataset
combinations instead of one individual neural representations per architecture/dataset combination.

Indeed, using the weights of arbitrary models from HF as input for WSL is a non-trivial problem.
The learning backbone should (i) handle models trained on different data distributions or tasks, (ii)
be scalable to process larger models, and (iii) be able to process and embed different architectures.
Additionally, a large fraction of these models are insufficiently documented (Horwitz et al., 2025).

In this work, we aim to close this gap and shift WSL from model zoo silos to the open, heterogeneous
ecosystem of HF, home to over a million neural network models of different architectures and trained
from various datasets. Learning weight space representations to capture the heterogeneity of such a
diverse set of neural network models is challenging but potentially possible: Dravid et al. (2023)
showed that different neural networks, composed from different architectures and trained for various
vision tasks, share some common representations. Similar is hypothesized by Huh et al. (2024),
where increased diversity during learning does lead to shared representation spaces.

Building upon an encoder-decoder transformer architecture (Schürholt et al., 2024; Soro et al., 2024;
Wang et al., 2025), we propose the first WSL backbone whose training procedure is designed to be
agnostic to: (i) model architecture, (ii) training dataset, (iii) model scale, and (iv) input modality for
training. In Sec. 4, we demonstrate that the trained single representation can be used to generate
more than 30 different architecture/dataset pairs ranging from ResNets (He et al., 2016b), ConvNeXts
(Liu et al., 2022), EfficientNets (Tan & Le, 2019) to various transformer models (including ViT
(Dosovitskiy et al., 2021), Swin (Liu et al., 2021b), BeiT (Bao et al., 2022), GPT-2 (Radford et al.,
2018). This practically drops the aforementioned requirement to train on homogeneous model zoos
for weight space representation learning. Summarizing, the contributions of this paper are: (i)
training a single weight space representation from arbitrary models downloaded from HF, consisting
of 171 billion individual weights, (ii) a novel backbone capable of learning a single task-agnostic
and architecture-agnostic representation of weight spaces, (iii) generalizability in downstream task
performance across different datasets and architectures.
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2 HUGGING FACE MODEL COLLECTION

Learning representations of neural network models requires model zoos that are curated and trained
in a controlled laboratory environment following a fixed training protocol to collect metadata during
training, observe their learning progress, and fully document training trajectories from their start
conditions until their converged performance. More formally, following Unterthiner et al. (2020),
model zoos are defined as a collection of (converged) neural network models, each being configured
by the tuple {D, λ,A} with D being the dataset of samples, λ, the set of hyper-parameters used for
training, (e.g., loss function, optimizer, learning rate, weight initialization, batch-size, epochs), and
A, a specific neural network architecture.

Downloading neural network models from HF gives us a collection of models where {D, λ,A} is
potentially different for each model in the zoo, and in the worst case where D, λ is unknown due
to a lack of documentation as reported by Horwitz et al. (2024; 2025). Learning a weight space
representation from such heterogeneous or even unknown inputs is more challenging than training
from laboratory-trained model zoos. One has to deal with unknown dataset distributions, unknown
model performance, inconsistent model trajectories, and different architecture families or model trees.

Download Protocol To create the HF model collection used in this work, we exploit HF model
tags, specifically including ‘image-classification’, ‘image-segmentation’, ‘depth-estimation’, and
‘object-detection’. In total, when querying the HF API with these tags we have 22 055 models
available, with 17 011 models for ‘image-classification’, 1 381 models for ‘image-segmentation’,
202 models for ‘depth-estimation’, and 3 461 models for ‘object-detection’. We constrained our
experimental setup to computer vision models to be comparable to previous works. For each model
in this set, we perform sanity checks: first, we verify if each model can be properly instantiated
using the HF auto-classes for model loading, excluding models with missing weights, improperly
saved checkpoints, or those requiring remote code execution for initialization. Once instantiated, we
attempt to tokenize each model using the tokenization scheme discussed in Sec. 3.3. Successfully
tokenized models are kept, and their model IDs are recorded for further processing. This procedure is
done until subset of 2 000 training and 200 validation models is retrieved.

HF Model Collection An overview of the composition of the retrieved HF model collection
can be seen in Fig.1. Specifically, the included models fall under the families of Transformer
(42.0%), ConvNet (21.8%) and hybrid (5%) architectures. Notably, a large percentage of these model
architectures (31.4%) does not provide any information in the name and is classified as unknown. The
composition of the collection is further analyzed into ResNets (He et al., 2016a), ConvNeXT (Liu et al.,
2022), EfficientNet (Tan & Le, 2019), ViT (Dosovitskiy et al., 2021), SwinTransformer (Liu et al.,
2021a), BeiT (Bao et al., 2022), DeiT (Touvron et al., 2021), and other architectures. Interestingly,
half of the model collection appears to be trained on variations of ImageNet (Deng et al., 2009),
whereas for the other half of the collection no information is provided. In the end, our HF model
collection contains in total 171 billion individual parameters to be used for WSL.

3 METHODS

To accomplish training on uncurated models from HF, we require a learning backbone capable of
scaling to arbitrary model sizes and capable of processing heterogeneous neural network architectures.
Currently, no learning backbone would match these requirements (we discuss this in more detail in
App. B). On the one hand, some existing learning backbones are able to scale but fail to process hetero-
geneous model architectures (Schürholt et al., 2024; Wang et al., 2024; 2025). SANE (Schürholt et al.,
2024) requires homogeneous architectures of models in the zoo for the layer-wise loss normalization,
p-diff (Wang et al., 2024), and RPG (Wang et al., 2025) require checkpoints saved during the training
process of a single model. On the other hand, there are methods that can process heterogeneous
architectures but are not able to scale at the same time. For instance, with D2NWG (Soro et al., 2024)
a unified backbone can only be trained on classifier-heads and small models. Therefore, our method
bridges this gap in the literature by training a single weight-space representation on arbitrary models
at scale.
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While differing in their specific implementation, all these works have something in common: they are
based on an encoder-decoder learning backbone which we also build upon. Specifically, we base our
work on the encoder-decoder transformer setup of SANE (Schürholt et al., 2024).

3.1 PRELIMINARY: THE SANE BACKBONE

SANE is an autoencoder where both the encoder and the decoder are symmetric transformers. Given
some input NN weights W = [W1, ...,Wl] where the Wi are the weight matrices for the different
layers, we first tokenize them as a sequence of tokens T = [t1, ..., tn] where ti ∈ Rdt are the
individual tokens (cf. Sec. 3.3 for more details about the tokenization). We then pass them through
the encoder gθ to embed them into a lower dimensional latent representation gθ(T ) = Z, before the
decoder hψ reconstructs the tokens hψ(Z) = T̂ . To train this autoencoder, a combination of two
losses is used. First, a contrastive loss (Chen et al., 2020) is used in the latent representation space,
using augmentations such as permutations, noise and masking. Second, an MSE loss on T and its
reconstruction T̂ . After training, the encoder can be used to embed unknown models into the latent
representation Z for discriminative downstream tasks such as accuracy or hyperparameter prediction.
Alternatively, by sampling new representations Z̃ and passing them through the decoder, one can
generate synthetic tokens T̃ = hψ(Z̃), which can then be detokenized into neural network weights
W̃ . To sample from the latent representations Z̃, SANE uses one or multiple trained neural network
models (tokenized as Ta) as anchors to sample Z̃ in the vicinity of their latent representations
Za = gθ(Ta). We discuss the different components of this learning backbone in more detail in
App. B.2.

To enable such an encoder-decoder learning backbone to learn a weight space representation from di-
verse architectures included in the HF model collection, significant modifications to the backbone are
required. In the following, we outline these changes, including the design choices and implementation
details.

3.2 MASKED LOSS NORMALIZATION (MLN)

Previous WSL work established that different weight distributions between different layers present
a challenge for weight representation learning (Peebles et al., 2022; Schürholt et al., 2022a; 2024;
Wang et al., 2025). As remedies, they propose to either normalize the weights per layer across the
entire dataset as a preprocessing step, or normalize the loss contribution accordingly. Both approaches
present challenges for large, inhomogeneous weight datasets. They are not immediately applicable
for varying architectures since they compute normalizations per layer and thus require matching
architectures. Further, such normalizations may fail for models trained on different computer vision
datasets with different weight distributions. Normalizing the loss per layer inherits these constraints.

To tackle this challenge, we propose to normalize loss contributions per-token at runtime. This has
two benefits: (i) it simplifies the normalization and operates across different model architectures
and weight distributions, (ii) the representation learning model still operates in weight space, which
simplifies evaluating weight generation.

We normalize each original token ti ∈ T and its predicted reconstruction t̂i into τi and τ̂i respec-
tively:

τi =
ti − t̄

σt
, τ̂i =

t̂i − t̄

σt
, (1)

where t̄ and σt are the mean and standard deviation of calculated over the current batch of tokens.
Depending on the tokenization strategy used, tokens may includes zero-padding to harmonize token
size, which can skew the mean and standard deviation estimators. We therefore ensure that both
these estimators only take unmasked elements into account. When then compute the reconstruction
mean-squared error loss between the normalized tokens τi and τ̂i. MLN is conceptually similar
to normalization layers in neural networks. While normalization layers stabilize training by stan-
dardizing activations before they are passed forward, the goal of MLN is to stabilize weight-space
representation learning by re-centering and rescaling tokens before their reconstruction error is
computed. In both cases, normalization removes scale-related biases and ensures that optimization
focuses on the relative structure of the representation rather than raw magnitudes, enabling more
robust learning across heterogeneous architectures.
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3.3 EFFICIENT MODEL WEIGHT PROCESSING

Below we outline our adaptations NN weight tokenization and encoding their structure to be processed
by the WSL backbone, with a focus processing diverse architectures and reducing memory overhead
to enable training of a single weight space representation instead of training multiple representations
for different settings.

Tokenization To effectively train an autoencoder on neural network parameters, there are two main
approaches followed in the literature. The works of Kofinas et al. (2023); Lim et al. (2024); Knyazev
et al. (2024) represent neural networks as graphs and use graph neural networks to process them.
Other approaches flatten the entire neural network into a 1D vector before processing (Schürholt
et al., 2022a; Wang et al., 2024), with (Soro et al., 2025) additionally using a VQ-VAE model to
generate discrete token representations.

Further splitting the flattened weights into tokens of a fixed size has been proposed in SANE
(Schürholt et al., 2024) to address scaling issues with embedding larger architectures. SANE follows
a tokenization approach in which the parameters of the model are divided into chunks that are later
processed by an autoencoder. Given neural network weights W = [W1, . . . ,Wl], where Wi denotes
the weight matrix of the i-th layer, each Wi lies in Rcout×c1×···×cin with c representing the number
of channels. Each Wi is flattened into a 2D matrix Xi ∈ Rcout×cr , where cr = c1 · · · · · cin. The
weights are then sliced row-wise, along the outgoing channel dimension, and each resulting vector is
partitioned into tokens t of length dt. If dt ∤ cr, the final token is zero-padded to length dt. The full
token sequence is obtained as T = [t1, . . . , tn], constructed by stacking all tokens from all weight
matrices in order.

Depending on the number of weights per channel in the individual layers, this often leads to very
sparse tokens that include a significant portion of zero-pads. This is especially pronounced when
tokenizing diverse architectures as the token size cannot be optimized to minimize the amount of
padding required for that single architecture.

As these pads still take up space in memory and need to be processed, they represent an obstacle
in scaling up the learning backbone to larger architectures and more diverse models. To address
this limitation, we explore using a dense tokenization instead, similarly to what Wang et al. (2025)
developed in parallel to our work. In that case, for every Wi ∈ Rcout×c1×...×cin , we flatten it to
Xflat

i ∈ Rcflat with cflat = cout ∗ c1 ∗ ... ∗ cin. We then cut the resulting vector Xflat
i into tokens t of

length dt. If dt ∤ cflat, we zero-pad the last token to length dt, before concatenating all tokens for all
layers in order to obtain T = [t1, ..., tn]. Given that we zero-pad per layer, and not per outgoing
channel anymore, the amount of padding is much lower. In App. D.4.2, we explore the impact of
dense and sparse tokenization on token sparsity, memory footprint and model performance.

Sinusoidal Positional Encoding Because the backbone is based on the transformer architecture,
positional encodings are required to represent the sequential structure of the input data. In our case,
token positions are represented with a three-dimensional vector P = [n, l, k], where n indicates the
position of the token in the full model sequence, l corresponds to the layer index, and k to the token
position within the layer. SANE uses learned positional embeddings which in our case is not feasible
given the diversity and scale of the downloaded HF dataset. Particularly, the number of parameters
required for learned positional embeddings grows with the sequence length of the flattened weights,
leading to a significant memory overhead when scaling to larger architectures included in our training
set. The SANE backbone trained on ResNet-18 models contains ~865M trainable parameters out of
which ~57M are used for the position embedding with a max dimension of P = [55000, 100, 550]. In
our case the resulting embedding matrix would become significantly larger as the HF trainset contains
models with up to 1.3B parameters compared to ~12M params of a ResNet-18 (see App. D.4.2 for
more details). To solve this issue, we replace learned positional embeddings with sinusoidal positional
encodings (Dosovitskiy et al., 2021) which provide a parameter-free approach for encoding position.
This inherently scale-invariant method can efficiently support models of varying sizes, allowing the
backbone to capture relative positions which are of utmost importance in our heterogeneous WSL
context by exploiting the linear relationship between the sinusoidal positional encodings.
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4 EXPERIMENTS

In this Section, we test our training pipeline using models from the HF model collection (Sec. 2) as
training data. First, we assess the methodological adaptations described in Sec. 3. We then evaluate
the proposed method as a whole, hypothesizing that with an increasing amount of training samples
from HF the trained backbone is able to compensate potential noisiness in our HF model collection
when compared to training with laboratory-trained model zoos. To that end, we directly compare
our approach to SANE, but unlike SANE which trains individual weight space representations
for each architecture-dataset pair, we train a single representation across HF models. We design
our experiments to run on a single H100 GPU. Training hyperparameters and time as well as
implementation details for all experiments are detailed in App. C.

We focus on generative downstream tasks and include discriminative results in App. D.2. For the
evaluation of our generative capabilities we test the performance of generated models either without
any updates of trainable parameters or with a few epochs of finetuning. Our interest lies in exploring
whether our backbone is able to learn a lower dimensional representation from HF models. To that
end we use the subsampling method introduced in Schürholt et al. (2024) as detailed in App. B.2.
Please note that for all outlined experiments above, we use a single backbone to generate model
weights instead of individually trained backbones as done in Schürholt et al. (2024); Wang et al.
(2025).

4.1 MASKED LOSS NORMALIZATION (MLN)

In the first experiment, we focus on validating the core methodological changes introduced in this
work, aiming to assess their impact on representation quality, convergence stability, and general
performance. We focus on the Masked Loss Normalization (MLN) and provide further ablations
on the tokenization scheme and positional encodings in App. D.4. We evaluate whether the masked
loss normalization allows the backbone to adequately capture the different weight distributions of
different layers and models which has been shown to be problematic when not normalizing the
weights layer wise before training (Schürholt et al., 2022a; Wang et al., 2025). This is crucial, since
the encoder-decoder approach proposed as backbone operates directly in weight space, where skewed
or squashed distributions - even of just individual layers - can have a catastrophic impact on the
performance of generated models. To validate the proposed loss normalization, we train the backbone
on ResNet-18 models from the model zoo dataset (Schürholt et al., 2022c) and generate models for
three different datasets to compare the proposed masked loss normalization (MLN) to the baseline in
isolation.

Table 1: Accuracy of generated ResNet-18 models.
We compare SANE with layer-wise loss normal-
ization (LWLN) as baseline with the performance
when training with the proposed masked loss nor-
malization (MLN).

Method CIFAR10 CIFAR100 TIN

LWLN 68.6±1.2 20.4±1.3 11.7±0.5
MLN 60.8±0.7 29.00±0.7 24.76±0.2

Loss normalization at runtime allows train-
ing without global weight normalization dur-
ing pre-processing The experiment demon-
strates that training with masked loss normaliza-
tion is a suitable replacement for global weight
normalization at dataset preprocessing time. Fur-
ther, we did not encounter training instabilities,
which might have been introduced for padding-
heavy tokens. These experiments confirm trans-
former based encoder-decoder backbones such
as SANE can be trained with the proposed masked loss normalization allowing training on arbitrary
architectures given the same token size. Compared to the baseline (Tab. 1) our approach outperforms
SANE on CIFAR100 and TinyImageNet, while showing slightly worse performance on CIFAR10.
We include further analysis and discussion in App. D.4.

4.2 IMPACT OF HF MODEL COLLECTION COMPOSITION

To gain insights into how the composition of the HF training set influences downstream performance
and whether such a training set-up is feasible, we systematically vary the diversity and scale of
the models included in the HF model collection. In particular, we compare training on broad
heterogeneous collections against subsets restricted to specific architecture families. In addition to
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Table 2: Accuracy of generated ResNet-18 models when restricting the HF model collection to
specific architecture groups compared to training on HF models in the category computer vision.
Three additional subsets of the model collection including only specific architecture groups are
created for backbone training. Num models refers to the number of models that are tokenized in the
trainset (90% of available models) since we use 10% of the models for the validation set. Num tokens
refers to the approximate number of tokens in the training dataset when using dense tokenization
with tokensize 230.

HF Models Num Models Num Tokens (~) CIFAR10 CIFAR100 TIN

ResNet 360 35M 10.68±0.49 1.09±0.11 0.58±0.05
ConvNext 306 100M 21.66±1.95 14.95±0.81 9.12±0.17

ViT 2000 590M 31.38±3.91 32.24±1.34 20.14±0.88
All 2000 740M 40.71±1.91 26.23±0.35 21.45±0.51

the main HF model collection (Sec. 2) we create three subsets of our HF model collection, each
restricted to a single family of NN architectures: ResNet, ConvNext, and ViT.

The ResNet and ConvNeXt subsets of our HF model collection include 360 and 306 models respec-
tively, as there are fewer models on HF including those specific keywords in the name. Only the
vision transformer subset is filled to 2000 models. Please note that the number of models in the
dataset does not directly translate to the number of tokens, as that is also dependent on the model size.
Therefore we use the number of tokens as a proxy for dataset size.

The results are included in Tab. 2 and show increasingly improved performance when including
more models for training of the backbone even if they are not representative of the target architecture
generated during inference. The performance of generated models when training the backbone
on ResNets from HF is close to random guessing for CIFAR10, CIFAR100 and TinyImageNet.
When training on HF ConvNext models, the performance of the generated methods is above random
guessing across all datasets, but remains low. The backbone trained only on vision transformers
is able to outperform the others even though we generate ResNet-18 models and not ViTs, simply
because it includes much more samples. Training on the full vision dataset leads to a performance
plateau: improving on CIFAR10 and TinyImageNet while showing slightly worse performance on
CIFAR100. We run further ablations on HF model collection size in App. D.4.

4.3 GENERATING WEIGHTS FOR VARYING DATASETS

Figure 2: Accuracy of generated ResNet-
18 models on the respective target image
datasets. No trainable parameters are up-
dated before the performance evaluation.
We compare training on homogeneous
model zoos using SANE with MLN, to
training the backbone on HF models. HF
(S) and HF (L) designate the small and
large versions of the backbone, respec-
tively. With the exception of CIFAR-
10, our approach outperforms model zoo
training for all datasets.

For the next experiment, we include a broader evaluation
across a variety of downstream datasets. In addition to CI-
FAR10 (C10), CIFAR100 (C100) (Krizhevsky & Hinton,
2009), and TinyImageNet (TIN) (Le & Yang, 2015), we
generate model weights for SVHN (Netzer et al., 2011)
and EuroSAT (Helber et al., 2019) while keeping the archi-
tecture fixed to a ResNet-18. We compare to SANE with
MLN trained on CIFAR10 and CIFAR100 model zoos as
baseline. Given the results from the previous experiment,
we hypothesize that this is due to the vision dataset being
too large for our backbone configuration and, therefore,
run an additional experiment where we scale the backbone.
Specifically, we train a small variation (~450M params) as
before and a large variation (~900M params) which is com-
parable to SANE (~865M params). The results (Fig. 2)
show improved performance albeit at the cost of longer
training time. Compared to the baseline, we observe lower
performance on CIFAR10 but higher performance across
all other tested datasets when generated with the large
HF trained backbone. We analyze whether the increased
training time when scaling the backbone is an acceptable
tradeoff by generating a wider variety of architectures in the next experiment.
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4.4 GENERATING WEIGHTS FOR VARYING ARCHITECTURES

Figure 3: Accuracy of generated models on ImageNet-1K after a few epochs of finetuning. We show
the performance of three different architecture types as well as the overall mean±std accuracy over
all generated models comparing to training from scratch.

Having established that it is feasible to use HF models as training data, we are interested in the
scalability of our proposed approach. In particular, we want to find out whether through the increased
heterogeneity of our training dataset we are able to generate models for a wider variety of architectures
compared to the baseline. For this, we reverse the generation procedure: we keep the downstream
dataset fixed to ImageNet-1K and generate different architectures using the Timm library (Wightman,
2019) to instantiate models, which greatly simplifies the finetuning and evaluation pipeline. In
total, we generate weights for 25 different architectures ranging from ResNets (He et al., 2016b),
ConvNeXts (Liu et al., 2022), EfficientNets (Tan & Le, 2019) to various transformer models (including
ViT (Dosovitskiy et al., 2021), Swin (Liu et al., 2021b), BeiT (Bao et al., 2022), GPT-2 (Radford
et al., 2018)) and more. The full list of generated architectures is included in App. C including the
hyperparameters used to finetune the models. In Fig. 3 we show the results for selected architecture
types as well as the mean±std accuracy over all generated models compared to training the model
with the exact same configuration from scratch. Full results for each architecture are included in
App. D.1.

Figure 4: Comparing a generated GPT-
2 model on OpenWebText to training
from scratch. Results show the perfor-
mance on the minival split and indicate
that our backbone can generalize to a dif-
ferent modality showing improved per-
formance over standard weight init.

The results show that our backbone is able to generate a
wide variety of architectures with significant and consis-
tent performance gains over training from scratch. How-
ever, the benefit is only visible when finetuning the mod-
els: the initial performance remains slightly above or at
random guessing. This is inline with previous findings
(Knyazev et al., 2024; Meynent et al., 2025) showing that
generated weights or learned weight updates can introduce
small impurities that have a catastrophic impact on initial
performance when scaling to larger architectures and more
complex datsets. This can generally be fixed with a few
optimization steps using standard SGD-based optimizers.

As baseline we train our backbone on ResNet-18 models
from the CIFAR10 model zoo (Schürholt et al., 2022c).
Here we include all proposed adaptations from Sec. 3 as
otherwise scaling to larger architectures is not feasible.
The results show that SANE remains competitive when
the generated architecture is similar to the training data
(e.g., ResNet or small ConvNeXt models), but struggles
to scale to larger or more distinct architectures. Likewise,
smaller backbones show diminishing or negligible gains over training from scratch as model size
increases. Full results are provided in App. D.3.

4.4.1 GENERATING WEIGHTS FOR OUT OF DISTRIBUTION TASKS

We further test whether our representation that was trained only on vision models is able to generate
weights for the initialization of a GPT-2 language model (~125M parameters) (Radford et al., 2018).
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We finetune the model on OpenWebText (Gokaslan et al., 2019) to assess initial trends. We show the
validation loss, perplexity, accuracy, and F1 score of the generated model compared to training from
scratch. Results (Fig. 4) show that our backbone is able to generate weights that converge faster, even
though we restrict the HF dataset to computer vision models. While we cannot guarantee that the HF
dataset does not include weights of models trained jointly with language embeddings (e.g., through
CLIP (Radford et al., 2021)), this result indicates that the learned representation is able to generalize
to a different modality.

5 RELATED WORK

Recent advancements in representation learning for neural network weights have introduced various
methods for analyzing and generating model weights. Hyper-Representations (Schürholt et al.,
2021; 2022b;a) employ an encoder-decoder framework with contrastive guidance to learn weight
representations for property prediction and model generation. Alternatively, some methods use
diffusion on weights for generation purposes (Peebles et al., 2022; Wang et al., 2024; 2025; Soro
et al., 2024). Graph-based methods (Zhang et al., 2019; Kofinas et al., 2023; Lim et al., 2024), Neural
Functionals (Zhou et al., 2023a;b; 2024), and related approaches like Deep Weight Space (DWS)
(Navon et al., 2023; Zhang et al., 2023) learn equivariant or invariant representations of weights.
In conjunction with backbone architectures, data augmentations have been proposed to improve
generalization of WSL methods (Schürholt et al., 2021; Shamsian et al., 2024). Other approaches
focus on probing intermediate layers of neural network to predict attributes (Horwitz et al., 2024;
Kahana et al., 2024; 2025). Also related are HyperNetworks, which directly use the underlying data
and labels to guide the weights-generation signal (Ha et al., 2016; Knyazev et al., 2021; 2023; Brock
et al., 2017; Navon et al., 2021). Our work focuses on the autoencoder-based approaches due to their
broad applicability across various architectures and downstream tasks.

6 DISCUSSION

In this work, we have shown that training weight space models does not necessarily require laboratory-
generated model zoos, which are expensive to train, take large amounts of storage and are therefore
difficult to share with the larger community. Instead, we show the strong potential in training weight
space models using publicly available model weights from repositories such as Hugging Face. This
opens up multiple avenues for future work. First, our exploration has focused on a limited number
of computer vision models. The training set of model weights from HF could be extended both in
size and diversity by adding more models and covering more data modalities. Second, we have not
applied manual curation beyond basic feasibility checks, meaning that the subset of models we train
on may not fully represent the much larger pool of available weights. This raises the possibility
of selection bias that could impact performance. While our goal is precisely to enable training on
arbitrary, heterogeneous collections of models rather than carefully curated zoos, future work could
further investigate how such biases may arise and to what extent they affect robustness. Finally, by
leveraging models as diverse as those from HF, our work marks a significant step towards applying
weight space models to downstream tasks, for which no model zoo is available.

Conclusion Our work is, to the best of our knowledge, the first to overcome the need of model
zoos, one of the limitations faced by the WSL community. To do so, we have first described how
we collected models from the HF repository. We have then adapted an existing WSL backbone
to work on our dataset, and have validated that our adaptations work and are good performance-
efficiency trade-offs. We have then demonstrated though a variety of experiments that training a
single autoencoder on HF data shows superior or similar levels of performance compared to SANE
autoencoders trained on individual architecture-dataset pairs. Furthermore, we have shown that our
single model displays good generalization performance, being able to generate good initialization
weights for an out-of-distribution GPT-2 model. Through these results, we demonstrate that training
on model weights found in the wild is as good as, but often better, than on laboratory-generated model
zoos, and it is both more general and more efficient. This finding makes the training of weight space
models more accessible, and opens up exciting new opportunities in the development of methods and
applications in WSL.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

We structure the appendix as follows:

App. B provides more details about our reasoning for the backbone choice as well as a brief description
of core methods of SANE that we use as basis for our method and approach.
App. C includes details about the hyperparameters and architecture of the backbones and baselines as
well as the finetuning configuration used in the experiments.
App. D includes additional details and results for the baselines as well as further ablations for the
method.

B WEIGHT SPACE BACKBONES

B.1 CHOICE OF THE WEIGHT SPACE BACKBONE

Table 3: Summary of the capabilities of different weight-space methods. 1By data agnostic, we
express that the weight-space method does not need the data used to train the model weights it trains
on. 2By architecture agnostic, we express that the weight-space method does not need any knowledge
of the model architecture, only the weights. 3We show which methods can be used to generate
synthetic neural network weights.

Learning Backbones Dataset-agnostic1 Architecture-agnostic2 Generative capabilities3

Weight Statistics ✓ ✓ ✗
DWSNet ✓ ✗ ✗
Graph Methods ✓ ✗ ✗
Functionalist Methods ✗ ✓ ~
Diffusion Methods ✓ ✗ ✓
Hyper-Representations ✓ ~ ✓

In this Section, we explore different weight space backbones from the literature and evaluate how fit
they are for our use-case. In particular, they should be capable of handling heterogeneous, often poorly
documented (Horwitz et al., 2025) models from the HF repository Hugging Face, Inc. (2025). This
is critical since we cannot directly filter models based on performance or other attributes unless we
constrain our dataset creation to the smaller subset of labeled models. We summarize the capabilities
of existing weight-space backbones in Tab. 3. There, we show that most of the existing weight-space
backbones come with inherent limitations. Simple weight statistics have been shown to be very cheap
and effective for discriminative downstream tasks such as predicting model performance and hyper-
parameters, they can be used in a way that is architecture agnostic, but they are not adapted for neural
network weights generation. DWSNet (Navon et al., 2021) and graph-based backbones (Kofinas
et al., 2023; Lim et al., 2024; Knyazev et al., 2024) use different approaches to encode the inherent
symmetries and structures of neural networks, making them by definition dependent on the underlying
models’ architecture. Functionalist methods (Herrmann et al., 2024; Meynent et al., 2025) that focus
on the models’ outputs rather than their weights can easily be made architecture agnostic but rely
on relevant data samples for probing and are, therefore, not data agnostic. Existing diffusion-based
methods (Soro et al., 2024; Wang et al., 2024) for neural network weight generation are currently
not completely architecture agnostic. More specifically, both the diffusion model and the learning
backbone are usually trained for a single network architecture at a time, in particular when scaling
to larger architectures. This limitation also prevents these approaches from being fully dataset- and
task-agnostic, since the architecture is usually tied to both the task and the dataset and often requires
additional labeled data for conditioning that is not available for most HF models. Finally, the SANE
backbone (Schürholt et al., 2024), while not entirely architecture agnostic, can be adapted to be with
some targeted changes; it can also perform neural network weights generation. For these reasons, we
base our work on the SANE architecture.

B.2 SANE

In this section we provide additional details about the Sequential Autoencoder for Neural Embeddings
(SANE) (Schürholt et al., 2024) method and approach.
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B.2.1 PRE-PROCESSING AND TOKENIZATION

Before training the model-zoos need to be sliced into tokens to allow scaling the hyper-representation
to larger model-zoos. The required steps are described below.

Layer wise loss normalization Schürholt et al. (2022b) mention that due to the reconstruction
loss being based on a mean squared error, the hyper-representation will learn to reconstruct the
weights to evenly spread the reconstruction error across all weights and layers in the weight vector
(w). However, the distribution of weight magnitudes can differ significantly between layers and also
between different models even if they share the same architecture. This can lead to an issue where
layers with large-magnitude weights and broader distributions are reconstructed accurately, but those
with smaller magnitudes and narrow distributions can be neglected. This imbalance can make these
smaller-weight layers a weak point in the reconstructed models, which can lead to a severe drop in
performance, sometimes as low as random guessing Schürholt et al. (2022b; 2024). They therefore
propose to normalize the weights of the input model-zoo as a first step. The weights are normalized
with the mean (µl) and standard deviation (σl) calculated per layer throughout the whole model
zoo. However, as outlined in Sec. 3 this is not feasible when training on diverse architectures with
varying depth and width without significant engineering overhead and why we propose the masked
loss normalization at runtime instead which greatly simplifies pre-processing and evaluation while
achieving comparable results.

Tokenization The weights are reshaped into 2D matrices and sliced row-wise along the outgoing
channels (which we refer to in the paper as sparse tokenization). These slices are divided into multiple
parts based on a predefined token size (dt). If a slice does not fill an entire token, zero padding
is applied to reach the required token size. Each token is then augmented with a 3-dimensional
positional embedding, as explained in Sec. 3.3.

Windowing From the complete sequence of tokens and their positional embeddings, a random
subset is selected, consisting of n consecutive tokens up to a specified window size (ws). The
model is trained using these windows, enabling it to handle large models by focusing on manageable
segments at a time. During training, one window is sampled per model, ensuring that a batch contains
tokens from different models. This also allows to draw different windows at each training iteration
to further mitigate the risk of over-fitting. By decoupling the computational requirements from the
input model size, SANE can scale to any architecture, regardless of its size. Through the tokenization
process, it is also possible to train on different input architectures simultaneously as long as they are
preprocessed and sliced into the same token and window size. For our experiments we preprocess
the models into windows of tokens of length 4096 out of which a random subset of 512 tokens is
sampled during each training iteration to reduce the risk of overfitting and improving training time.

Augmentations The original SANE implementation uses three different data augmentations in the
context of its contrastive loss: masking, additive white gaussian noise and permutations. For the
latter, the authors leverage the existing symmetries in neural networks that make it possible to swap
the order of neurons without changing the input-output function of the model Ainsworth et al. (2022);
Hecht-Nielsen (1990). When using model weights from HF that are not properly documented, it is
not possible to know which permutations conserve this input-output function without knowledge
about the architecture. For this reason, we do not explicitly deal with the symmetries of the models
in our dataset, and only use the masking and noising augmentations to investigate whether it is still
possible to achieve comparable performance to previous work.

B.2.2 DOWNSTREAM TASKS

SANE is a unified model and approach for discriminative and generative downstream tasks. The
following paragraphs briefly introduce the methods used for both task families.

Discriminative Tasks For discriminative downstream tasks, one can pass a set of tokens T repre-
senting a model’s weights through the SANE encoder gθ to obtain a latent representation gθ(T ) = Z.
The latent representations is then averaged over all tokens to a single vector Z̄ ∈ Rdt , which is
processed with a linear probe or a Multi Layer Perceptron (MLP) to predict model properties. These
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include as accuracy, loss, generalization gap, training epoch, model-zoo, etc. The predictive perfor-
mance of the linear probe/MLP can be measured in terms of explained variance (R2) on the test set
in the case of a regression (e.g., accuracy with continuous values) or in terms of accuracy in the case
of classification (e.g., prediction of the architecture of the embedded model).

Generative Sampling of Models SANE is also able to sample models directly out of the represen-
tation space. The difficulty lies in identifying the distribution P (Z) of the latent representation space
that can be decoded to a functional NN in the target domain. SANE uses a Kernel Density Estimation
(KDE) to model the target distribution P (Z) by tokenizing a few anchors Ta and projecting them to
the latent space using the encoder Za = gθ(Ta). The resulting KDE over the Za is then broadly
sampled to identify regions in the distribution with high probability of the desired target properties.
The sampled representations Z̃ are passed through the decoder hψ to generate synthetic tokens
T̃ = hψ(Z̃), which can then be detokenized into neural network weights W̃ .

Batch Norm Conditioning Larger models often include batch norm layers that in part contain
parameters that are not trained via backpropagation and are only updated during the forward pass.
Since the distribution of these weights differs significantly from trainable parameters, they are
excluded from sampling. Instead, batch norm conditioning is performed, which updates (only non-
trainable) parameters during a few forward passes on the target dataset to align these parameters with
the trainable weights before evaluating the accuracy Schürholt et al. (2024).

Haloing Optionally, SANE allows for the use of haloing, where context weights are added before
and after the window before processing by the encoder. This added context is processed normally but
disregarded after reconstruction by the decoder.

C IMPLEMENTATION DETAILS

Table 4: Implementation Details for Hugging Face Training and Baseline

Hyper-Parameter HF-Small HF-Large SANE (MLN)

tokensize (sparse) 288 - 288
tokensize (dense) 230 230 -
loss norm MLN MLN MLN
pos embed sinusoidal sinusoidal learned
window size 512 512 256
model dim 1536 1536 2048
latent dim 128 128 128
num transformer layers 8 16 8
num transformer heads 8 8 8
learning rate 2e− 5 2e− 5 2e− 5
weight decay 3e− 9 3e− 9 3e− 9
scheduler OnceCycleLR OnceCycleLR OnceCycleLR
num training epochs 100, 300 300 60
batch size 64 64 32
gradient accumulation steps - 2 -
num params (~) 456M 900M 865M
training time ~54h, 144h ~198h ~20h
training dataset HF HF Model-Zoos

In Tab. 4, we provide additional information on the training hyper-parameters and architecture
configuration of the two HF trained backbones (HF-Small and HF-Large) as well as for testing
our masked loss normalization (MLN) on model-zoo data (SANE MLN). We keep the baseline
experimental set-up to validate the MLN as close as possible to the original SANE implementation
in order for the results to be comparable. For training on HF data we introduce additional changes
to the model size, number of training epochs and number of layers to balance the trade-off between
performance and efficiency. We train the small backbone (HF-Small) for 100 epochs for comparing
dense and sparse tokenization as well as for the ablations (App. D.4) to reduce training time. For
comparing to the large backbone (HF-Large) we also train the small backbone for 300 epochs
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(App. D.1) for evaluating across different architectures. The SANE baseline evaluated on ImageNet-
1K is trained according to the HF-Small configuration for 100 epochs as we observed degrading
performance when training for longer on homogeneous model zoos.

C.1 LIST OF GENERATED MODELS

For our experiments across different datasets we use ResNet-18 models from publicly available model
zoo datasets (Schürholt et al., 2022c; Honegger et al., 2023) with the exception of SVHN where we
train 5 models from scratch. Below we list all generated architectures from the Timm (Wightman,
2019) library that we finetune on ImageNet-1K. We organize the models in architecture groups and
specify the sampled architectures within that group. The specific instance of the timm model used is
specified within parentheses.

• ConvNext
– Tiny (convnext_tiny.fb_in1k)
– Small (convnext_small.fb_in1k)
– Base (convnext_base.fb_in1k)

• ResNet
– ResNet-18 (resnet18)
– ResNet-34 (resnet34)
– ResNet-50 (resnet50)
– ResNet-101 (resnet101)
– ResNet-152 (resnet152)

• DenseNet
– DenseNet 121 (densenet121.ra_in1k)

• EfficientNet
– EfficientNet V2 Small (tf_efficientnetv2_s.in1k)
– EfficientNet V2 Medium (tf_efficientnetv2_m.in1k)

• MobileNet
– MobileNet V3 Small 100 (tf_mobilenetv3_small_100.in1k)
– MobileNet V3 Small 075 (tf_mobilenetv3_small_075.in1k)
– MobileNet V2 100 (mobilenetv2_100.ra_in1k)

• Vision Transformer
– Tiny-ViT (5M) (tiny_vit_5m_224.in1k)
– Tiny-ViT (11M) (tiny_vit_11m_224.in1k)
– ViT-T-16-224 (6M) (vit_tiny_patch16_224.augreg_in21k_ft_in1k)
– ViT-S-16-224 (vit_small_patch16_224.augreg_in1k)
– ViT-B-16-224 (vit_base_patch16_224.orig_in21k_ft_in1k)

• DeiT
– DeiT-3-Base-16-224 (deit3_base_patch16_224.fb_in1k)
– DeiT-3-Medium-16-224 (deit3_medium_patch16_224.fb_in1k)

• BeiT
– BeiT V2 Base (beitv2_base_patch16_224.in1k_ft_in1k)

• Swin
– Swin S3 Tiny (swin_s3_tiny_224.ms_in1k)
– Swin S3 Small (swin_s3_small_224.ms_in1k)
– Swin S3 Base (swin_s3_base_224.ms_in1k)
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C.2 FINETUNING PARAMS

We use the same training pipeline for all finetuned models and only vary the batch size for the larger
models (256 instead of 512). For generating weights we use haloing with an added context of 2*64
tokens per window (of size 512) and batch-norm conditioning. For our experiment on ImageNet we
use one anchor sample from Timm (Wightman, 2019) and sample five models per architecture and
finetune the best one. For sampling different datasets we use 5 anchor samples per target dataset and
sample 50 models and keep the top 10. For data augmentations we use a random resized crop and
random horizontal flip and normalize with the ImageNet mean and standard deviation. For validation
we use rescaling with a center crop as well as normalization. We finetune the models for 5 epochs
using the Adam (Kingma, 2014) optimizer with learning rate 1e − 3 with autocast and gradient
scaling. For sampling across different datasets we show the performance of sampled models without
any finetuning of trainable parameters using the same augmentations as in the respective model zoo.
The configuration and finetuning hyperparameters for the GPT-2 model are summarized in Tab. 5.

Table 5: Hyperparameters for GPT-2 finetuning

Hyper-Parameter Value

blocksize 1024
vocab size 50’304
num layers 12
num attention heads 12
embed dim 768
optimizer AdamW
max learning rate 6e− 4
weight decay 1e− 1
scheduler OnceCycleLR (Smith & Topin, 2018)
batch size 64
num training steps per iteration 50
num validation steps per iteration 200
evaluation frequency 10
gradient accumulation steps 8
dataset OpenWebText
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D ADDITIONAL RESULTS & ABLATIONS

In this section we include detailed results for our generative (App. D.1) and discriminative (App. D.2)
downstream tasks. We also include full results for the baselines in App. D.3.

D.1 GENERATIVE RESULTS

Full results per architecture In Tab. 6 we report the mean±std performance of all sampled
models after 1-5 epochs of finetuning. As baselines, we include SANE trained on CIFAR10 with
loss normalization and sinusoidal positional encodings, as well as models trained from scratch.
Further below we show the individual results per sampled architecture after 1-5 epochs of finetuning
comparing to training from scratch. Specifically, we show the performance of the large backbone
in Tab. 7 and the performance of the small backbone in Tab. 8. The results of our baseline per
architecture are included in Tab. 10.

Table 6: Mean±std performance of generated models per backbone in percent after 1-5 epochs of
finetuning. The results are calculated over all sampled models and show that training on HF models
outperforms previous work trained on homogenous model zoos when scaling to larger and more
diverse architectures. While the baseline achieves competitive results for architectures that are close
to the training set (i.e. ResNets or ConvNexts) performance drops for other architectures and often
leads to worse performance than training from scratch. Conversely, our HF trained backbones are
able to consistently outperform training from scratch. The large backbone improves upon the small
backbone in particular for larger sampled architectures.

Backbone Epoch
1 2 3 4 5

Scratch 17.43±9.28 27.97±14.77 33.91±17.66 37.82±19.24 40.43±20.12
SANE 17.36±18.94 24.32±23.01 28.33±24.90 30.85±25.94 30.72±26.96
HF (Small) 39.76±22.38 47.46±20.66 51.47±19.97 53.98±19.59 55.83±19.44
HF (Large) 45.55±20.84 52.88±17.44 56.61±15.41 58.81±14.49 60.48±13.85

Table 7: Performance of individual generated models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the large HF-backbone (Tab. 4) vs. training from scratch. The HF backbone is
able to outperform the small backbone and baselines in particular for larger architectures such as a
Swin transformer or ResNet-152.

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

BEiT Beitv2 Base Patch 16 Sampled 19.38 34.52 43.03 48.66 52.27
Beitv2 Base Patch 16 Scratch 6.87 9.94 9.48 10.98 12.24

ConvNeXt

Convnext Base Sampled 72.35 74.52 75.31 75.72 76.36
Convnext Base Scratch 21.11 39.46 49.94 55.55 59.47

Convnext Small Sampled 70.57 72.91 74.28 74.49 75.04
Convnext Small Scratch 20.34 38.14 47.44 52.92 56.94

Convnext Tiny Sampled 73.38 73.87 74.31 74.68 74.55
Convnext Tiny Scratch 17.97 35.48 44.70 50.48 54.49

DeiT

Deit3 Base Patch 16 Sampled 27.53 39.37 45.49 50.05 53.46
Deit3 Base Patch 16 Scratch 8.56 11.97 14.02 15.23 15.99

Deit3 Medium Patch 16 Sampled 37.09 48.15 53.85 56.78 59.61
Deit3 Medium Patch 16 Scratch 14.50 21.07 27.22 31.34 34.95

Continued on next page
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Table 7: Performance of individual sampled models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the large HF-backbone (continued)

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

DenseNet Densenet121 Sampled 56.75 61.86 64.37 65.34 66.03
Densenet121 Scratch 28.49 41.57 49.32 53.75 55.79

EfficientNet

Efficientnetv2 M Sampled 58.19 65.51 67.82 70.35 71.37
Efficientnetv2 M Scratch 25.88 41.20 47.77 54.04 57.59

Efficientnetv2 S Sampled 64.29 69.12 71.13 72.80 73.39
Efficientnetv2 S Scratch 28.84 42.86 51.55 55.83 59.18

MobileNet

Mobilenetv2 100 Sampled 37.56 47.78 51.95 54.74 56.64
Mobilenetv2 100 Scratch 18.32 30.13 37.92 43.14 46.26

Mobilenetv3 Small 075 Sampled 28.56 37.35 41.91 44.46 46.58
Mobilenetv3 Small 075 Scratch 18.42 28.06 33.59 37.28 40.28

Mobilenetv3 Small 100 Sampled 29.74 38.80 43.55 46.88 48.98
Mobilenetv3 Small 100 Scratch 19.89 29.29 35.75 40.15 43.14

ResNet

Resnet101 Sampled 73.97 75.02 75.11 75.38 76.11
Resnet101 Scratch 25.96 41.45 49.49 53.51 56.00

Resnet152 Sampled 67.67 70.36 71.02 72.25 73.64
Resnet152 Scratch 28.99 44.01 52.48 55.49 58.07

Resnet18 Sampled 57.09 61.51 62.96 63.15 64.96
Resnet18 Scratch 18.30 32.25 38.77 43.78 47.86

Resnet34 Sampled 63.92 66.02 67.88 68.55 69.16
Resnet34 Scratch 23.24 32.18 41.65 47.41 49.10

Resnet50 Sampled 73.33 74.13 74.34 74.24 74.35
Resnet50 Scratch 23.92 40.10 46.63 51.45 54.00

Swin

Swin S3 Base 224 Sampled 12.03 20.33 26.42 29.13 28.24
Swin S3 Base 224 Scratch 0.20 0.10 0.10 0.10 0.10

Swin S3 Small 224 Sampled 9.94 16.71 20.96 21.73 25.43
Swin S3 Small 224 Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Tiny 224 Sampled 22.10 34.38 42.03 47.72 51.95
Swin S3 Tiny 224 Scratch 0.10 0.10 0.10 0.10 0.10

ViT

Tiny Vit 11M 224 Sampled 42.25 54.31 58.48 61.89 63.07
Tiny Vit 11M 224 Scratch 24.42 42.43 49.50 54.88 57.24

Tiny Vit 5M 224 Sampled 37.16 48.95 55.43 58.73 60.87
Tiny Vit 5M 224 Scratch 29.08 43.20 49.88 53.96 56.12

Vit Base Patch 16 Sampled 40.05 52.45 58.20 61.03 63.17
Vit Base Patch 16 Scratch 7.67 13.49 18.14 22.04 26.68

Vit Small Patch 16 Sampled 28.98 39.30 45.24 48.88 51.98
Vit Small Patch 16 Scratch 11.20 18.94 25.03 30.27 34.23

Vit Tiny Patch 16 Sampled 34.72 44.65 50.10 52.60 54.80
Vit Tiny Patch 16 Scratch 13.34 21.61 27.27 31.65 34.93

Mean (Sampled) 45.55 52.88 56.61 58.81 60.48
Mean (Scratch) 17.43 27.97 33.91 37.82 40.43
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Table 8: Performance of individual generated models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the small HF-backbone (Tab. 4) vs. training from scratch. The small HF
backbone achieves similar performance compared to the large variation on smaller models but fails to
scale to larger architectures.

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

BEiT Beitv2 Base Patch 16. Ft Sampled 16.06 29.46 38.07 45.24 50.41
Beitv2 Base Patch 16 Scratch 6.87 9.94 9.48 10.98 12.24

ConvNeXt

Convnext Base Sampled 72.69 74.59 75.00 75.91 76.20
Convnext Base Scratch 21.11 39.46 49.94 55.55 59.47

Convnext Small Sampled 71.16 73.14 74.27 74.99 75.11
Convnext Small Scratch 20.34 38.14 47.44 52.92 56.94

Convnext Tiny Sampled 73.37 74.12 74.34 74.66 74.43
Convnext Tiny Scratch 17.97 35.48 44.70 50.48 54.49

DeiT

Deit3 Base Patch 16 Sampled 22.00 32.45 39.16 44.04 47.75
Deit3 Base Patch 16 Scratch 8.56 11.97 14.02 15.23 15.99

Deit3 Medium Patch 16 Sampled 24.23 35.80 42.01 46.44 50.04
Deit3 Medium Patch 16 Scratch 14.50 21.07 27.22 31.34 34.95

DenseNet Densenet121.Ra In1K Sampled 50.07 56.85 60.08 62.33 63.46
Densenet121.Ra In1K Scratch 28.96 43.28 49.67 54.34 56.30

EfficientNet

Efficientnetv2 M Sampled 57.14 64.68 67.54 69.62 70.56
Efficientnetv2 M Scratch 25.88 41.20 47.77 54.04 57.59

Efficientnetv2 S Sampled 65.77 70.25 71.93 73.02 73.84
Efficientnetv2 S Scratch 28.84 42.86 51.55 55.83 59.18

MobileNet

Mobilenetv2 100.Ra Sampled 39.84 48.55 53.26 55.37 57.61
Mobilenetv2 100 Scratch 18.32 30.13 37.92 43.14 46.26

Mobilenetv3 Small 075 Sampled 26.48 35.52 39.95 43.12 45.41
Mobilenetv3 Small 075 Scratch 18.42 28.06 33.59 37.28 40.28

Mobilenetv3 Small 100 Sampled 29.88 38.23 43.04 46.21 48.09
Mobilenetv3 Small 100 Scratch 19.89 29.29 35.75 40.15 43.14

ResNet

Resnet101 Sampled 21.48 40.03 49.66 54.92 58.37
Resnet101 Scratch 25.96 41.45 49.49 53.51 56.00

Resnet152 Sampled 33.88 47.94 54.90 56.05 59.88
Resnet152 Scratch 28.99 44.01 52.48 55.49 58.07

Resnet18 Sampled 57.50 62.06 63.04 64.32 65.27
Resnet18 Scratch 18.30 32.25 38.77 43.78 47.86

Resnet34 Sampled 63.82 66.80 67.94 68.75 68.38
Resnet34 Scratch 23.24 32.18 41.65 47.41 49.10

Resnet50 Sampled 72.39 72.68 73.74 72.44 74.50
Resnet50 Scratch 23.92 40.10 46.63 51.45 54.00

Swin

Swin S3 Base 224.Ms In1K Sampled 0.46 0.43 0.43 0.43 0.43
Swin S3 Base 224.Ms In1K Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Small 224.Ms In1K Sampled 0.10 0.10 0.10 0.10 0.10
Swin S3 Small 224.Ms In1K Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Tiny 224.Ms In1K Sampled 13.94 27.35 36.15 42.79 47.65
Swin S3 Tiny 224.Ms In1K Scratch 0.10 0.10 0.10 0.10 0.10

Continued on next page
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Table 8: Performance of individual generated models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the small HF-backbone (continued)

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

ViT

Tiny Vit 11M 224 Sampled 43.50 53.78 58.95 62.36 63.44
Tiny Vit 11M 224 Scratch 24.42 42.43 49.50 54.88 57.24

Tiny Vit 5M 224 Sampled 39.28 49.73 55.61 58.67 59.67
Tiny Vit 5M 224 Scratch 29.08 43.20 49.88 53.96 56.12

Vit Base Patch 16 224 Sampled 40.19 52.23 57.65 60.94 63.08
Vit Base Patch 16 Scratch 7.67 13.49 18.14 22.04 26.68

Vit Small Patch 16 Sampled 29.64 40.99 46.10 49.75 52.41
Vit Small Patch 16 Scratch 11.20 18.94 25.03 30.27 34.23

Vit Tiny Patch16 224 Sampled 29.17 38.67 43.81 47.04 49.59
Vit Tiny Patch 16 Scratch 13.34 21.61 27.27 31.65 34.93

Mean (Sampled) 39.76 47.46 51.47 53.98 55.83
Mean (Scratch) 17.43 27.97 33.91 37.82 40.43

D.2 DISCRIMINATIVE RESULTS

Table 9: Discriminative results on the ResNet-18 model-zoos. The results show explained variance
(R2) per target dataset. A linear probe fits the embeddings to the target properties of the respective
trainset and the performance on the testset is reported. For the evaluation the ResNet-18 model
zoos from the model zoo dataset are used (Schürholt et al., 2022c). 100 models are split into
train/test/validation with proportions 70/15/15 using checkpoints from epochs 1, 3, 5, 10, 15, 20, and
25.

Test Accuracy GGap Epoch

Training Data CIFAR10 CIFAR100 TIN CIFAR10 CIFAR100 TIN CIFAR10 CIFAR100 TIN

CIFAR10 91.69 95.60 94.99 75.93 91.94 88.81 99.67 99.34 99.11
CIFAR100 92.70 96.22 95.73 77.56 92.21 88.90 99.65 99.54 99.30

HF 69.44 91.58 90.29 53.75 87.39 85.05 94.78 96.86 90.39

In Tab. 9 we evaluate whether the embeddings of the encoder trained on HF-data are still predictive of
model properties as was shown in previous work (Schürholt et al., 2024). We observe a performance
drop compared to previous work in all cases. Interestingly for CIFAR100 and TinyImageNet the R2

remains competitive and about 5% lower compared to the baseline. This could possibly be attributed
to the fact that the embeddings of the HF trained backbone have a higher variance than the single-
zoo embeddings because to reconstruct models that vary in both architecture and training dataset
accurately, more fine-grained information may be required. Improving the predictive performance in
this setting may require going beyond a simple linear model better model non-linear relations between
the embeddings and target properties. However, for CIFAR10 we observe a more significant drop
in performance that was also seen in the generative results which could be attributed to the fact that
CIFAR10 trained models might be less prevalent on HF compared to CIFAR100 and TinyImageNet
or that the models trained on CIFAR10 exhibit higher differences in terms of accuracy while still
remaining close in weight space compared to the datasets with more classes.

D.3 BASELINES

Our baseline results are divided into multiple parts. First we closely follow the experimental set-up
of SANE (Schürholt et al., 2024) to validate our proposed loss normalization and compare with
the results of the original SANE (see Sec. 4). To assess the performance of sampled models for
our baseline when varying the dataset we train a single backbone per model zoo (CIFAR10 and
CIFAR100) using the configuration detailed in Tab. 4 (SANE (MLN)). The other datasets that we

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

sample models for are unseen during training to validate that our change to the loss normalization
still allows generating models that are out of distribution. For the later experiments (App. D.3.2) we
train the baseline with the same configuration as our Hugging Face backbone (Tab. 4, HF-Small) but
still on a single model zoo (CIFAR10).

D.3.1 DATASETS

Figure 5: Performance of generated ResNet-18 models with varying backbones. Here we include
the performance of both baselines separately whereas in the paper we show the max performance
achieved over both baselines. Furthermore we show the performance of both the small and large HF
backbone. The results indicate that training on HF models is feasible and outperforms the baselines
with the exception of CIFAR10.

In the main paper (Fig. 2), we summarize the best performance achieved by each baseline model
(trained individually on CIFAR10 and CIFAR100) and compare them to our large Hugging Face-
trained backbone (HF-Large), using the configuration detailed in Tab. 4. In contrast, Fig. 5 provides
a more detailed view by showing the performance of both individual baselines and our smaller
Hugging Face backbone (HF-Small). These results reveal that both HF-trained backbones remain
competitive across the board. The large backbone outperforms the individual baselines on four out
of five datasets, with CIFAR10 being the only exception. The model-zoo trained baselines perform
well in-distribution and on datasets of comparable difficulty (i.e., similar number of classes), but their
generalization to different datasets is more limited. In contrast, our HF-trained backbones are able to
sample effectively across diverse datasets. Although HF-Large offers slight performance gains over
HF-Small, it comes at the cost of increased training time. However, larger performance differences
become apparent when sampling across architectures rather than datasets (see App. D.1).

D.3.2 ARCHITECTURES

Table 10: Performance of individual generated models after finetuning for 1-5 epochs on ImageNet-
1K when sampling from the SANE baseline trained on CIFAR10 (Tab. 4) compared to training
from scratch. The baseline is competitive for architectures close to the model-zoo training set (e.g.,
ResNet-18,34,50 and a tiny ConvNext) but fails to scale to larger models as well as architectures
less similar to those included in the training data such as transformers. For those architectures the
performance is often even worse than training from scratch.

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

BEiT Beitv2 Base Patch 16 Sampled 3.42 6.39 7.76 8.98 10.56
Beitv2 Base Patch 16 Scratch 6.87 9.94 9.48 10.98 12.24

Continued on next page
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Table 10: Performance of individual sampled models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the SANE baseline trained on CIFAR10 (continued)

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

ConvNeXt

Convnext Base Sampled 0.10 0.10 0.10 0.10 0.10
Convnext Base Scratch 21.11 39.46 49.94 55.55 59.47
Convnext Small Sampled 0.17 0.10 0.10 0.10 0.10
Convnext Small Scratch 20.34 38.14 47.44 52.92 56.94
Convnext Tiny Sampled 25.30 41.68 50.28 55.03 57.84
Convnext Tiny Scratch 17.97 35.48 44.70 50.48 54.49

DeiT

Deit3 Base Patch 16 Sampled 1.30 2.27 4.68 6.41 9.32
Deit3 Base Patch 16 Scratch 8.56 11.97 14.02 15.23 15.99
Deit3 Medium Patch 16 Sampled 1.28 2.98 4.83 6.95 8.83
Deit3 Medium Patch 16 Scratch 14.50 21.07 27.22 31.34 34.95

DenseNet Densenet121 Sampled 24.77 40.05 47.92 52.23 55.05
Densenet121 Scratch 28.49 41.57 49.32 53.75 55.79

EfficientNet

Efficientnetv2 M Sampled 19.91 33.98 44.94 48.33 0.10
Efficientnetv2 M Scratch 25.88 41.20 47.77 54.04 57.59
Efficientnetv2 S Sampled 27.04 43.10 50.70 55.08 58.60
Efficientnetv2 S Scratch 28.84 42.86 51.55 55.83 59.18

MobileNet

Mobilenetv2 100 Sampled 31.44 43.99 49.61 52.96 55.21
Mobilenetv2 100 Scratch 18.32 30.13 37.92 43.14 46.26

Mobilenetv3 Small 075 Sampled 24.66 35.77 41.29 44.35 47.49
Mobilenetv3 Small 075 Scratch 18.42 28.06 33.59 37.28 40.28

Mobilenetv3 Small 100 Sampled 27.62 38.59 43.70 47.15 49.30
Mobilenetv3 Small 100 Scratch 19.89 29.29 35.75 40.15 43.14

ResNet

Resnet101 Sampled 34.14 50.52 59.29 63.28 63.45
Resnet101 Scratch 25.96 41.45 49.49 53.51 56.00

Resnet152 Sampled 23.95 40.07 46.98 52.36 56.03
Resnet152 Scratch 28.99 44.01 52.48 55.49 58.07
Resnet18 Sampled 58.22 61.38 62.60 62.92 64.34
Resnet18 Scratch 18.30 32.25 38.77 43.78 47.86

Resnet34 Sampled 63.40 65.40 66.17 68.14 68.03
Resnet34 Scratch 23.24 32.18 41.65 47.41 49.10

Resnet50 Sampled 44.82 58.99 63.16 65.43 67.74
Resnet50 Scratch 23.92 40.10 46.63 51.45 54.00

Swin

Swin S3 Base 224 Sampled 0.10 0.10 0.10 0.10 0.10
Swin S3 Base 224 Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Small 224 Sampled 0.10 0.10 0.10 0.10 0.10
Swin S3 Small 224 Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Tiny 224 Sampled 0.10 0.10 0.10 0.10 0.10
Swin S3 Tiny 224 Scratch 0.10 0.10 0.10 0.10 0.10

ViT

Tiny Vit 11M 224 Sampled 0.10 0.10 0.10 0.10 0.10
Tiny Vit 11M 224 Scratch 24.42 42.43 49.50 54.88 57.24
Tiny Vit 5M 224 Sampled 0.79 4.04 11.82 18.16 22.90
Tiny Vit 5M 224 Scratch 29.08 43.20 49.88 53.96 56.12

Continued on next page
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Table 10: Performance of individual sampled models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the SANE baseline trained on CIFAR10 (continued)

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

Vit Base Patch 16 224 Sampled 3.34 5.82 8.17 10.17 11.71
Vit Base Patch 16 Scratch 7.67 13.49 18.14 22.04 26.68
Vit Small Patch 16 Sampled 3.73 8.14 12.31 16.28 20.77
Vit Small Patch 16 Scratch 11.20 18.94 25.03 30.27 34.23
Vit Tiny Patch16 224 Sampled 14.17 24.33 31.57 36.49 40.04
Vit Tiny Patch 16 Scratch 13.34 21.61 27.27 31.65 34.93

Mean Accuracy (Sampled) 17.36 24.32 28.33 30.85 30.72
Mean Accuracy (Scratch) 17.43 27.97 33.91 37.82 40.43

D.4 ABLATIONS

D.4.1 MASKED LOSS NORMALIZATION (MLN)

Figure 6: Comparison of weight distributions of a selection of
ResNet layers between original weights (blue/left) vs recon-
structed weights (right). We compare reconstruction without
normalization (orange), with full token normalization (green)
and with masked loss normalization (red). Without normal-
ization the weights of layers with narrow distributions are
squashed towards the mean. Normalizing per-token fixes that
issue. Ignoring the mask introduces a strong bias, particularly
for batch-norm layers. Reconstructions with MLN match the
original the closest.

To further investigate whether MLN
can be used as a suitable replace-
ment for layer wise loss normalization,
we evaluate the distribution of recon-
structed weights vs original weights
when not normalizing the loss at all,
normalizing the loss per-token (includ-
ing masked values) and normalizing
on signal values only. After training,
we use models from the test split to be
reconstructed by the backbone (which
corresponds to a simple forward pass
through the encoder-decoder). Follow-
ing previous work, we use the match
of weight distribution as a proxy for
how well-reconstructed models mirror
the original models (Schürholt et al.,
2022a). Results are shown in Fig. 6.

Masked loss normalization achieves a
more accurate alignment between the reconstructed distribution and the original weight distribution
across model parameters compared to full-token normalization, see Fig. 6, particularly of batch-
norm layer weights. By focusing on signal values only, the masked normalization more effectively
maintains the original weight distributions, reducing reconstruction error and providing a stable signal
even in high-parameter regimes.

D.4.2 TOKENIZATION

In this section we compare the two different tokenization variants introduced in Sec. 3.3. We evaluate
whether there are any significant differences in terms of pretraining and downstream performance

when training on HF models. To that end, we compare the explained variance R2 = 1−
∑

i∥Ti−T̂i∥2∑
i∥Ti−T̄∥2

of the reconstructed tokens to validate if our backbone converges when training on the HF dataset.
As discussed previously, sparse tokenization can add substantial amounts of padding per token when
tokenizing different architectures. More specifically, after tokenization our HF model dataset includes
approximately 600M tokens for the dense variation and 730M tokens using sparse tokenization (with
tokensize 288). The largest model included in the HF trainset contains ~1.3B weights and is split into
5M individual tokens using sparse and 4.5M tokens using dense tokenization. Since the models have
vastly different sizes, we use the number of tokens in the dataset as measure of size.
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Figure 7: R2-score of recon-
structed tokens on a hold-out
validation set of models to
assess reconstruction quality.
The results indicate that dense
tokenization works and shows
smoother convergence.

Dense tokenization matches performance while being signifi-
cantly more efficient In our HF dataset, sparse tokenization in-
troduces 20% padding per token, whereas dense tokenization adds
only 0.01% padding on average. As a result, when processed by
the weight-space backbone, dense tokens lead to a higher compres-
sion ratio compared to sparse tokens. To ensure a fair comparison,
we adjust the token size of the dense dataset accordingly. The re-
sults in Fig. 7 show that both tokenization strategies yield similar
reconstruction quality during backbone training. In addition, dense
tokenization reduces disk usage by 20% relative to sparse tokeniza-
tion, leading to faster training and offering a better balance between
efficiency and performance. We further evaluate and discuss down-
stream performance of sampled models across five datasets when
varying tokenization in App. D.1.

Figure 8: Performance of sampled models of our HF-Small backbone configuration when using
sparse or dense tokenization.

In Fig. 8 we show the accuracy of sampled models on the target
dataset without any finetuning. To train the backbones we use the configuration as outlined in Tab. 4.
The results show higher performance when using sparse tokenization for the datasets with ten classes
whereas dense tokenization shows slightly higher performance for the datasets with 100 and 200
classes. However, as mentioned in the main paper, dense tokenization is more efficient during training
and we believe that the overhead introduced with sparse tokenization in terms of storage and compute
is not preferable to dense tokenization overall, in particular for our training set-up with diverse
architectures in the training dataset.

D.4.3 POSITIONAL ENCODINGS

For evaluating the performance impact of using sinusoidal positional encodings instead of learned
embeddings we train the weight space backbone in the HF-small configuration (Tab. 4) on model
zoos as we cannot train of the HF dataset with learned embeddings. The results show we achieve
similar performance compared to the baseline setting while only training a single backbone instead
of one per dataset/architecture pair. We do observe however that in this setting we need to train for
more epochs compared to using learned embeddings.

Table 11: Performance of sampled ResNet-18 models. We compare the baseline setting with learned
positional embeddings to our HF configuration trained on model zoos.

Configuration Pos Embed CIFAR10 CIFAR100 TIN

SANE (MLN) Learned 68.6±1.2 20.4±1.3 11.7±0.5
HF (S) Sinusoidal 66.8±0.7 27.93±0.7 16.05±0.2
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Table 12: Performance of sampled ResNet-18 models when training only on a fraction of the data.
The results indicate that after a certain number of training tokens the performance saturates and does
not increase significantly anymore given a constant backbone size. On the other hand, performance
drops to random guessing (with the exception of EuroSAT and SVHN) when training on less than
~45M tokens showing that the number of samples included are more important than trying to restrict
the models in the training data to be more similar in terms of architecture, even if we use the same
architecture during training and sampling. Furthermore, training on HF data requires more samples
than when training on a homogeneous model zoo, as the HF data is more noisy and possibly also
contains models that are not converged or only trained for a few epochs. Nevertheless, when including
enough samples training on HF is competitive and even outperforms training on homogenous model
zoos in most cases.

Data Fraction Num Tokens (~) CIFAR10 CIFAR100 TIN EuroSAT SVHN

1 590M 31.38±3.91 32.24±1.34 20.14±0.88 78.66±0.81 83.96±1.23
0.64 388M 30.02±4.50 33.27±1.49 23.10±1.33 78.01±1.40 82.35±1.03
0.32 189M 21.90±1.59 27.98±1.70 17.78±1.10 79.57±3.10 82.84±0.46
0.16 95M 16.52±0.96 26.28±0.83 16.34±0.74 79.50±1.95 83.18±0.62
0.08 47M 11.39±0.68 5.45±0.56 1.78±0.18 74.23±1.79 78.19±1.34
0.04 24M 10.63±0.27 1.14±0.07 0.50±0.04 52.28±4.42 45.04±2.58
0.02 12M 11.78±0.69 1.15±0.16 0.55±0.06 14.58±2.15 19.54±0.08
0.01 6M 10.50±0.27 1.14±0.13 0.51±0.03 11.12±0.41 19.59±0.00

D.4.4 TRAINING DATASET COMPOSITION

In Tab. 12 we train only on the specified fraction of the dataset using a logarithmic scale from 0.01
to 0.64. For reference we also include the previous result acquired by training on the full vision
transformer HF datset. The results indicate that increasing training sample count is beneficial up
to a certain degree. The backbone trained on 64% of the data performs similarly or even better in
some cases compared to training on the full dataset, which also serves as motivation for training a
larger backbone given there is enough data available. Performance drops significantly when further
restricting the number of samples and remains around random guessing when training on 24M or
fewer tokens with the exception of EuroSAT and SVHN, similar to the performance of the HF ResNet
trained backbone that contains 35M tokens. Therefore it is beneficial to include more samples and
more diverse architectures over restricting the dataset to a single architecture class if there are not
enough samples available.
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