
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING NEURAL REPRESENTATIONS FROM
PUBLICLY AVAILABLE MODEL HUBS

Anonymous authors
Paper under double-blind review

ABSTRACT

The weights of neural networks have emerged as a novel data modality, giving
rise to the field of weight space learning. A central challenge in this area is that
learning meaningful representations of weights typically requires large, carefully
constructed collections of trained models, typically referred to as model zoos. These
model zoos are often trained ad-hoc, requiring large computational resources, con-
straining the learned weight space representations in scale and flexibility. In this
work, we drop this requirement by training a weight space learning backbone on
arbitrary models downloaded from large, unstructured model repositories such
as Hugging Face. Unlike curated model zoos, these repositories contain highly
heterogeneous models: they vary in architecture and dataset, and are largely undoc-
umented. To address the methodological challenges posed by such heterogeneity,
we propose a new weight space backbone designed to handle unstructured model
populations. We demonstrate that weight space representations trained on models
from Hugging Face achieve strong performance, often outperforming backbones
trained on laboratory-generated model zoos. Finally, we show that the diversity of
the model weights in our training set allows our weight space model to generalize
to unseen data modalities. By demonstrating that high-quality weight space rep-
resentations can be learned in the wild, we show that curated model zoos are not
indispensable, thereby overcoming a strong limitation currently faced by the weight
space learning community. Code, pre-trained weights, and model collections can
be found on redacted.

1 INTRODUCTION

Over the past years, weight space learning (WSL) has emerged as a vibrant research field casting
neural-network parameters themselves as a data modality to learn representations from. WSL aims
to learn representations of model weights given a population of models, i.e., a model zoo. Such
learned representations can then be exploited for multiple downstream tasks: discriminative (e.g.,
predicting model properties such as accuracy directly from its weights (Unterthiner et al., 2020;
Eilertsen et al., 2020; Martin et al., 2021; Schürholt et al., 2021; 2024; Navon et al., 2023; Zhou et al.,
2023a)) or generative (generating new, unseen neural network weights for a given architecture and
dataset (Schürholt et al., 2022b; Knyazev et al., 2023; 2024; Schürholt et al., 2024; Kofinas et al.,
2023; Wang et al., 2024; 2025; Soro et al., 2024).

As promising as the exploitation of such learned representations for the above-mentioned downstream
tasks is, previously proposed approaches in WSL (Unterthiner et al., 2020; Eilertsen et al., 2020;
Schürholt et al., 2022b; Knyazev et al., 2023; Kofinas et al., 2023; Schürholt et al., 2024; Soro et al.,
2024; 2025; Wang et al., 2024; 2025) share a common limitation: they require trained neural network
models as input. Some methods are trained on multiple training checkpoints of a single model
(Wang et al., 2024; 2025) while others use model zoos (i.e. populations of neural networks that are
homogeneous in their training dataset and/or neural network architecture) to train the weight-space
backbone (Schürholt et al., 2022a; 2024) or a combination of both (Soro et al., 2024).

The availability of homogeneous laboratory-trained model zoos therefore represents a major bottle-
neck: training them demands significant computational resources, particularly when scaling parameter
count. And while some recent work (Schürholt et al., 2024; Kahana et al., 2024; 2025; Horwitz et al.,
2024; 2025) suggests using publicly available models from repositories such as Hugging Face (HF),

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An overview of the proposed method. We train a weight space representation directly
from the weights of downloaded models from Hugging Face. These models are, to a large extent,
undocumented, trained on various datasets, and composed from different neural network architectures.
Once a representation is learned from such a heterogeneous model collection, it can be exploited for
multiple downstream tasks: either analyzing or generating model weights for multiple architectures
and target datasets. Please note, all this is accomplished using the same single representation trained
entirely from HF models.

the heterogeneity of neural network models on such platforms is beyond what current methods in
WSL are able to train on.

To the best of our knowledge, only Horwitz et al. (2024) and Soro et al. (2024) leverage models taken
from HF for weight space learning. Horwitz et al. (2024) group related models into model trees
which can be leveraged for model retrieval and analysis; Soro et al. (2024) use individual models
from HF in some experiments. In contrast, our work aims to design a method that can process and
learn from arbitrary HF models that are heterogeneous in terms of architecture, training dataset and
scale. Further, this work aims to train a single neural representation for all architecture and dataset
combinations instead of one individual neural representations per architecture/dataset combination.

Indeed, using the weights of arbitrary models from HF as input for WSL is a non-trivial problem.
The learning backbone should (i) handle models trained on different data distributions or tasks, (ii)
be scalable to process larger models, and (iii) be able to process and embed different architectures.
Additionally, a large fraction of these models are insufficiently documented (Horwitz et al., 2025).

In this work, we aim to close this gap and shift WSL from model zoo silos to the open, heterogeneous
ecosystem of HF, home to over a million neural network models of different architectures and trained
from various datasets. Learning weight space representations to capture the heterogeneity of such a
diverse set of neural network models is challenging but potentially possible: Dravid et al. (2023)
showed that different neural networks, composed from different architectures and trained for various
vision tasks, share some common representations. Similar is hypothesized by Huh et al. (2024),
where increased diversity during learning does lead to shared representation spaces.

Building upon an encoder-decoder transformer architecture (Schürholt et al., 2024; Soro et al., 2024;
Wang et al., 2025), we propose the first WSL backbone whose training procedure is designed to be
agnostic to: (i) model architecture, (ii) training dataset, (iii) model scale, and (iv) input modality for
training. In Sec. 4, we demonstrate that the trained single representation can be used to generate
more than 30 different architecture/dataset pairs ranging from ResNets (He et al., 2016b), ConvNeXts
(Liu et al., 2022), EfficientNets (Tan & Le, 2019) to various transformer models (including ViT
(Dosovitskiy et al., 2021), Swin (Liu et al., 2021b), BeiT (Bao et al., 2022), GPT-2 (Radford et al.,
2018). This practically drops the aforementioned requirement to train on homogeneous model zoos
for weight space representation learning. Summarizing, the contributions of this paper are: (i)
training a single weight space representation from arbitrary models downloaded from HF, consisting
of 171 billion individual weights, (ii) a novel backbone capable of learning a single task-agnostic
and architecture-agnostic representation of weight spaces, (iii) generalizability in downstream task
performance across different datasets and architectures.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 HUGGING FACE MODEL COLLECTION

Learning representations of neural network models requires model zoos that are curated and trained
in a controlled laboratory environment following a fixed training protocol to collect metadata during
training, observe their learning progress, and fully document training trajectories from their start
conditions until their converged performance. More formally, following Unterthiner et al. (2020),
model zoos are defined as a collection of (converged) neural network models, each being configured
by the tuple {D, λ,A} with D being the dataset of samples, λ, the set of hyper-parameters used for
training, (e.g., loss function, optimizer, learning rate, weight initialization, batch-size, epochs), and
A, a specific neural network architecture.

Downloading neural network models from HF gives us a collection of models where {D, λ,A} is
potentially different for each model in the zoo, and in the worst case where D, λ is unknown due
to a lack of documentation as reported by Horwitz et al. (2024; 2025). Learning a weight space
representation from such heterogeneous or even unknown inputs is more challenging than training
from laboratory-trained model zoos. One has to deal with unknown dataset distributions, unknown
model performance, inconsistent model trajectories, and different architecture families or model trees.

Download Protocol To create the HF model collection used in this work, we exploit HF model
tags, specifically including ‘image-classification’, ‘image-segmentation’, ‘depth-estimation’, and
‘object-detection’. In total, when querying the HF API with these tags we have 22 055 models
available, with 17 011 models for ‘image-classification’, 1 381 models for ‘image-segmentation’,
202 models for ‘depth-estimation’, and 3 461 models for ‘object-detection’. We constrained our
experimental setup to computer vision models to be comparable to previous works. For each model
in this set, we perform sanity checks: first, we verify if each model can be properly instantiated
using the HF auto-classes for model loading, excluding models with missing weights, improperly
saved checkpoints, or those requiring remote code execution for initialization. Once instantiated, we
attempt to tokenize each model using the tokenization scheme discussed in Sec. 3.3. Successfully
tokenized models are kept, and their model IDs are recorded for further processing. This procedure is
done until subset of 2 000 training and 200 validation models is retrieved.

HF Model Collection An overview of the composition of the retrieved HF model collection
can be seen in Fig.1. Specifically, the included models fall under the families of Transformer
(42.0%), ConvNet (21.8%) and hybrid (5%) architectures. Notably, a large percentage of these model
architectures (31.4%) does not provide any information in the name and is classified as unknown. The
composition of the collection is further analyzed into ResNets (He et al., 2016a), ConvNeXT (Liu et al.,
2022), EfficientNet (Tan & Le, 2019), ViT (Dosovitskiy et al., 2021), SwinTransformer (Liu et al.,
2021a), BeiT (Bao et al., 2022), DeiT (Touvron et al., 2021), and other architectures. Interestingly,
half of the model collection appears to be trained on variations of ImageNet (Deng et al., 2009),
whereas for the other half of the collection no information is provided. In the end, our HF model
collection contains in total 171 billion individual parameters to be used for WSL.

3 METHODS

To accomplish training on uncurated models from HF, we require a learning backbone capable of
scaling to arbitrary model sizes and capable of processing heterogeneous neural network architectures.
Currently, no learning backbone would match these requirements (we discuss this in more detail in
App. B). On the one hand, some existing learning backbones are able to scale but fail to process hetero-
geneous model architectures (Schürholt et al., 2024; Wang et al., 2024; 2025). SANE (Schürholt et al.,
2024) requires homogeneous architectures of models in the zoo for the layer-wise loss normalization,
p-diff (Wang et al., 2024), and RPG (Wang et al., 2025) require checkpoints saved during the training
process of a single model. On the other hand, there are methods that can process heterogeneous
architectures but are not able to scale at the same time. For instance, with D2NWG (Soro et al., 2024)
a unified backbone can only be trained on classifier-heads and small models. Therefore, our method
bridges this gap in the literature by training a single weight-space representation on arbitrary models
at scale.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

While differing in their specific implementation, all these works have something in common: they are
based on an encoder-decoder learning backbone which we also build upon. Specifically, we base our
work on the encoder-decoder transformer setup of SANE (Schürholt et al., 2024).

3.1 PRELIMINARY: THE SANE BACKBONE

SANE is an autoencoder where both the encoder and the decoder are symmetric transformers. Given
some input NN weights W = [W1, ...,Wl] where the Wi are the weight matrices for the different
layers, we first tokenize them as a sequence of tokens T = [t1, ..., tn] where ti ∈ Rdt are the
individual tokens (cf. Sec. 3.3 for more details about the tokenization). We then pass them through
the encoder gθ to embed them into a lower dimensional latent representation gθ(T ) = Z, before the
decoder hψ reconstructs the tokens hψ(Z) = T̂ . To train this autoencoder, a combination of two
losses is used. First, a contrastive loss (Chen et al., 2020) is used in the latent representation space,
using augmentations such as permutations, noise and masking. Second, an MSE loss on T and its
reconstruction T̂ . After training, the encoder can be used to embed unknown models into the latent
representation Z for discriminative downstream tasks such as accuracy or hyperparameter prediction.
Alternatively, by sampling new representations Z̃ and passing them through the decoder, one can
generate synthetic tokens T̃ = hψ(Z̃), which can then be detokenized into neural network weights
W̃ . To sample from the latent representations Z̃, SANE uses one or multiple trained neural network
models (tokenized as Ta) as anchors to sample Z̃ in the vicinity of their latent representations
Za = gθ(Ta). We discuss the different components of this learning backbone in more detail in
App. B.2.

To enable such an encoder-decoder learning backbone to learn a weight space representation from di-
verse architectures included in the HF model collection, significant modifications to the backbone are
required. In the following, we outline these changes, including the design choices and implementation
details.

3.2 MASKED LOSS NORMALIZATION (MLN)

Previous WSL work established that different weight distributions between different layers present
a challenge for weight representation learning (Peebles et al., 2022; Schürholt et al., 2022a; 2024;
Wang et al., 2025). As remedies, they propose to either normalize the weights per layer across the
entire dataset as a preprocessing step, or normalize the loss contribution accordingly. Both approaches
present challenges for large, inhomogeneous weight datasets. They are not immediately applicable
for varying architectures since they compute normalizations per layer and thus require matching
architectures. Further, such normalizations may fail for models trained on different computer vision
datasets with different weight distributions. Normalizing the loss per layer inherits these constraints.

To tackle this challenge, we propose to normalize loss contributions per-token at runtime. This has
two benefits: (i) it simplifies the normalization and operates across different model architectures
and weight distributions, (ii) the representation learning model still operates in weight space, which
simplifies evaluating weight generation.

We normalize each original token ti ∈ T and its predicted reconstruction t̂i into τi and τ̂i respec-
tively:

τi =
ti − t̄

σt
, τ̂i =

t̂i − t̄

σt
, (1)

where t̄ and σt are the mean and standard deviation of calculated over the current batch of tokens.
Depending on the tokenization strategy used, tokens may includes zero-padding to harmonize token
size, which can skew the mean and standard deviation estimators. We therefore ensure that both
these estimators only take unmasked elements into account. When then compute the reconstruction
mean-squared error loss between the normalized tokens τi and τ̂i. MLN is conceptually similar
to normalization layers in neural networks. While normalization layers stabilize training by stan-
dardizing activations before they are passed forward, the goal of MLN is to stabilize weight-space
representation learning by re-centering and rescaling tokens before their reconstruction error is
computed. In both cases, normalization removes scale-related biases and ensures that optimization
focuses on the relative structure of the representation rather than raw magnitudes, enabling more
robust learning across heterogeneous architectures.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 EFFICIENT MODEL WEIGHT PROCESSING

Below we outline our adaptations NN weight tokenization and encoding their structure to be processed
by the WSL backbone, with a focus processing diverse architectures and reducing memory overhead
to enable training of a single weight space representation instead of training multiple representations
for different settings.

Tokenization To effectively train an autoencoder on neural network parameters, there are two main
approaches followed in the literature. The works of Kofinas et al. (2023); Lim et al. (2024); Knyazev
et al. (2024) represent neural networks as graphs and use graph neural networks to process them.
Other approaches flatten the entire neural network into a 1D vector before processing (Schürholt
et al., 2022a; Wang et al., 2024), with (Soro et al., 2025) additionally using a VQ-VAE model to
generate discrete token representations.

Further splitting the flattened weights into tokens of a fixed size has been proposed in SANE
(Schürholt et al., 2024) to address scaling issues with embedding larger architectures. SANE follows
a tokenization approach in which the parameters of the model are divided into chunks that are later
processed by an autoencoder. Given neural network weights W = [W1, . . . ,Wl], where Wi denotes
the weight matrix of the i-th layer, each Wi lies in Rcout×c1×···×cin with c representing the number
of channels. Each Wi is flattened into a 2D matrix Xi ∈ Rcout×cr , where cr = c1 · · · · · cin. The
weights are then sliced row-wise, along the outgoing channel dimension, and each resulting vector is
partitioned into tokens t of length dt. If dt ∤ cr, the final token is zero-padded to length dt. The full
token sequence is obtained as T = [t1, . . . , tn], constructed by stacking all tokens from all weight
matrices in order.

Depending on the number of weights per channel in the individual layers, this often leads to very
sparse tokens that include a significant portion of zero-pads. This is especially pronounced when
tokenizing diverse architectures as the token size cannot be optimized to minimize the amount of
padding required for that single architecture.

As these pads still take up space in memory and need to be processed, they represent an obstacle
in scaling up the learning backbone to larger architectures and more diverse models. To address
this limitation, we explore using a dense tokenization instead, similarly to what Wang et al. (2025)
developed in parallel to our work. In that case, for every Wi ∈ Rcout×c1×...×cin , we flatten it to
Xflat

i ∈ Rcflat with cflat = cout ∗ c1 ∗ ... ∗ cin. We then cut the resulting vector Xflat
i into tokens t of

length dt. If dt ∤ cflat, we zero-pad the last token to length dt, before concatenating all tokens for all
layers in order to obtain T = [t1, ..., tn]. Given that we zero-pad per layer, and not per outgoing
channel anymore, the amount of padding is much lower. In App. D.4.2, we explore the impact of
dense and sparse tokenization on token sparsity, memory footprint and model performance.

Sinusoidal Positional Encoding Because the backbone is based on the transformer architecture,
positional encodings are required to represent the sequential structure of the input data. In our case,
token positions are represented with a three-dimensional vector P = [n, l, k], where n indicates the
position of the token in the full model sequence, l corresponds to the layer index, and k to the token
position within the layer. SANE uses learned positional embeddings which in our case is not feasible
given the diversity and scale of the downloaded HF dataset. Particularly, the number of parameters
required for learned positional embeddings grows with the sequence length of the flattened weights,
leading to a significant memory overhead when scaling to larger architectures included in our training
set. The SANE backbone trained on ResNet-18 models contains ~865M trainable parameters out of
which ~57M are used for the position embedding with a max dimension of P = [55000, 100, 550]. In
our case the resulting embedding matrix would become significantly larger as the HF trainset contains
models with up to 1.3B parameters compared to ~12M params of a ResNet-18 (see App. D.4.2 for
more details). To solve this issue, we replace learned positional embeddings with sinusoidal positional
encodings (Dosovitskiy et al., 2021) which provide a parameter-free approach for encoding position.
This inherently scale-invariant method can efficiently support models of varying sizes, allowing the
backbone to capture relative positions which are of utmost importance in our heterogeneous WSL
context by exploiting the linear relationship between the sinusoidal positional encodings.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

In this Section, we test our training pipeline using models from the HF model collection (Sec. 2) as
training data. First, we assess the methodological adaptations described in Sec. 3. We then evaluate
the proposed method as a whole, hypothesizing that with an increasing amount of training samples
from HF the trained backbone is able to compensate potential noisiness in our HF model collection
when compared to training with laboratory-trained model zoos. To that end, we directly compare
our approach to SANE, but unlike SANE which trains individual weight space representations
for each architecture-dataset pair, we train a single representation across HF models. We design
our experiments to run on a single H100 GPU. Training hyperparameters and time as well as
implementation details for all experiments are detailed in App. C.

We focus on generative downstream tasks and include discriminative results in App. D.2. For the
evaluation of our generative capabilities we test the performance of generated models either without
any updates of trainable parameters or with a few epochs of finetuning. Our interest lies in exploring
whether our backbone is able to learn a lower dimensional representation from HF models. To that
end we use the subsampling method introduced in Schürholt et al. (2024) as detailed in App. B.2.
Please note that for all outlined experiments above, we use a single backbone to generate model
weights instead of individually trained backbones as done in Schürholt et al. (2024); Wang et al.
(2025).

4.1 MASKED LOSS NORMALIZATION (MLN)

In the first experiment, we focus on validating the core methodological changes introduced in this
work, aiming to assess their impact on representation quality, convergence stability, and general
performance. We focus on the Masked Loss Normalization (MLN) and provide further ablations
on the tokenization scheme and positional encodings in App. D.4. We evaluate whether the masked
loss normalization allows the backbone to adequately capture the different weight distributions of
different layers and models which has been shown to be problematic when not normalizing the
weights layer wise before training (Schürholt et al., 2022a; Wang et al., 2025). This is crucial, since
the encoder-decoder approach proposed as backbone operates directly in weight space, where skewed
or squashed distributions - even of just individual layers - can have a catastrophic impact on the
performance of generated models. To validate the proposed loss normalization, we train the backbone
on ResNet-18 models from the model zoo dataset (Schürholt et al., 2022c) and generate models for
three different datasets to compare the proposed masked loss normalization (MLN) to the baseline in
isolation.

Table 1: Accuracy of generated ResNet-18 models.
We compare SANE with layer-wise loss normal-
ization (LWLN) as baseline with the performance
when training with the proposed masked loss nor-
malization (MLN).

Method CIFAR10 CIFAR100 TIN

LWLN 68.6±1.2 20.4±1.3 11.7±0.5
MLN 60.8±0.7 29.00±0.7 24.76±0.2

Loss normalization at runtime allows train-
ing without global weight normalization dur-
ing pre-processing The experiment demon-
strates that training with masked loss normaliza-
tion is a suitable replacement for global weight
normalization at dataset preprocessing time. Fur-
ther, we did not encounter training instabilities,
which might have been introduced for padding-
heavy tokens. These experiments confirm trans-
former based encoder-decoder backbones such
as SANE can be trained with the proposed masked loss normalization allowing training on arbitrary
architectures given the same token size. Compared to the baseline (Tab. 1) our approach outperforms
SANE on CIFAR100 and TinyImageNet, while showing slightly worse performance on CIFAR10.
We include further analysis and discussion in App. D.4.

4.2 IMPACT OF HF MODEL COLLECTION COMPOSITION

To gain insights into how the composition of the HF training set influences downstream performance
and whether such a training set-up is feasible, we systematically vary the diversity and scale of
the models included in the HF model collection. In particular, we compare training on broad
heterogeneous collections against subsets restricted to specific architecture families. In addition to

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Accuracy of generated ResNet-18 models when restricting the HF model collection to
specific architecture groups compared to training on HF models in the category computer vision.
Three additional subsets of the model collection including only specific architecture groups are
created for backbone training. Num models refers to the number of models that are tokenized in the
trainset (90% of available models) since we use 10% of the models for the validation set. Num tokens
refers to the approximate number of tokens in the training dataset when using dense tokenization
with tokensize 230.

HF Models Num Models Num Tokens (~) CIFAR10 CIFAR100 TIN

ResNet 360 35M 10.68±0.49 1.09±0.11 0.58±0.05
ConvNext 306 100M 21.66±1.95 14.95±0.81 9.12±0.17

ViT 2000 590M 31.38±3.91 32.24±1.34 20.14±0.88
All 2000 740M 40.71±1.91 26.23±0.35 21.45±0.51

the main HF model collection (Sec. 2) we create three subsets of our HF model collection, each
restricted to a single family of NN architectures: ResNet, ConvNext, and ViT.

The ResNet and ConvNeXt subsets of our HF model collection include 360 and 306 models respec-
tively, as there are fewer models on HF including those specific keywords in the name. Only the
vision transformer subset is filled to 2000 models. Please note that the number of models in the
dataset does not directly translate to the number of tokens, as that is also dependent on the model size.
Therefore we use the number of tokens as a proxy for dataset size.

The results are included in Tab. 2 and show increasingly improved performance when including
more models for training of the backbone even if they are not representative of the target architecture
generated during inference. The performance of generated models when training the backbone
on ResNets from HF is close to random guessing for CIFAR10, CIFAR100 and TinyImageNet.
When training on HF ConvNext models, the performance of the generated methods is above random
guessing across all datasets, but remains low. The backbone trained only on vision transformers
is able to outperform the others even though we generate ResNet-18 models and not ViTs, simply
because it includes much more samples. Training on the full vision dataset leads to a performance
plateau: improving on CIFAR10 and TinyImageNet while showing slightly worse performance on
CIFAR100. We run further ablations on HF model collection size in App. D.4.

4.3 GENERATING WEIGHTS FOR VARYING DATASETS

Figure 2: Accuracy of generated ResNet-
18 models on the respective target image
datasets. No trainable parameters are up-
dated before the performance evaluation.
We compare training on homogeneous
model zoos using SANE with MLN, to
training the backbone on HF models. HF
(S) and HF (L) designate the small and
large versions of the backbone, respec-
tively. With the exception of CIFAR-
10, our approach outperforms model zoo
training for all datasets.

For the next experiment, we include a broader evaluation
across a variety of downstream datasets. In addition to CI-
FAR10 (C10), CIFAR100 (C100) (Krizhevsky & Hinton,
2009), and TinyImageNet (TIN) (Le & Yang, 2015), we
generate model weights for SVHN (Netzer et al., 2011)
and EuroSAT (Helber et al., 2019) while keeping the archi-
tecture fixed to a ResNet-18. We compare to SANE with
MLN trained on CIFAR10 and CIFAR100 model zoos as
baseline. Given the results from the previous experiment,
we hypothesize that this is due to the vision dataset being
too large for our backbone configuration and, therefore,
run an additional experiment where we scale the backbone.
Specifically, we train a small variation (~450M params) as
before and a large variation (~900M params) which is com-
parable to SANE (~865M params). The results (Fig. 2)
show improved performance albeit at the cost of longer
training time. Compared to the baseline, we observe lower
performance on CIFAR10 but higher performance across
all other tested datasets when generated with the large
HF trained backbone. We analyze whether the increased
training time when scaling the backbone is an acceptable
tradeoff by generating a wider variety of architectures in the next experiment.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.4 GENERATING WEIGHTS FOR VARYING ARCHITECTURES

Figure 3: Accuracy of generated models on ImageNet-1K after a few epochs of finetuning. We show
the performance of three different architecture types as well as the overall mean±std accuracy over
all generated models comparing to training from scratch.

Having established that it is feasible to use HF models as training data, we are interested in the
scalability of our proposed approach. In particular, we want to find out whether through the increased
heterogeneity of our training dataset we are able to generate models for a wider variety of architectures
compared to the baseline. For this, we reverse the generation procedure: we keep the downstream
dataset fixed to ImageNet-1K and generate different architectures using the Timm library (Wightman,
2019) to instantiate models, which greatly simplifies the finetuning and evaluation pipeline. In
total, we generate weights for 25 different architectures ranging from ResNets (He et al., 2016b),
ConvNeXts (Liu et al., 2022), EfficientNets (Tan & Le, 2019) to various transformer models (including
ViT (Dosovitskiy et al., 2021), Swin (Liu et al., 2021b), BeiT (Bao et al., 2022), GPT-2 (Radford
et al., 2018)) and more. The full list of generated architectures is included in App. C including the
hyperparameters used to finetune the models. In Fig. 3 we show the results for selected architecture
types as well as the mean±std accuracy over all generated models compared to training the model
with the exact same configuration from scratch. Full results for each architecture are included in
App. D.1.

Figure 4: Comparing a generated GPT-
2 model on OpenWebText to training
from scratch. Results show the perfor-
mance on the minival split and indicate
that our backbone can generalize to a dif-
ferent modality showing improved per-
formance over standard weight init.

The results show that our backbone is able to generate a
wide variety of architectures with significant and consis-
tent performance gains over training from scratch. How-
ever, the benefit is only visible when finetuning the mod-
els: the initial performance remains slightly above or at
random guessing. This is inline with previous findings
(Knyazev et al., 2024; Meynent et al., 2025) showing that
generated weights or learned weight updates can introduce
small impurities that have a catastrophic impact on initial
performance when scaling to larger architectures and more
complex datsets. This can generally be fixed with a few
optimization steps using standard SGD-based optimizers.

As baseline we train our backbone on ResNet-18 models
from the CIFAR10 model zoo (Schürholt et al., 2022c).
Here we include all proposed adaptations from Sec. 3 as
otherwise scaling to larger architectures is not feasible.
The results show that SANE remains competitive when
the generated architecture is similar to the training data
(e.g., ResNet or small ConvNeXt models), but struggles
to scale to larger or more distinct architectures. Likewise,
smaller backbones show diminishing or negligible gains over training from scratch as model size
increases. Full results are provided in App. D.3.

4.4.1 GENERATING WEIGHTS FOR OUT OF DISTRIBUTION TASKS

We further test whether our representation that was trained only on vision models is able to generate
weights for the initialization of a GPT-2 language model (~125M parameters) (Radford et al., 2018).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We finetune the model on OpenWebText (Gokaslan et al., 2019) to assess initial trends. We show the
validation loss, perplexity, accuracy, and F1 score of the generated model compared to training from
scratch. Results (Fig. 4) show that our backbone is able to generate weights that converge faster, even
though we restrict the HF dataset to computer vision models. While we cannot guarantee that the HF
dataset does not include weights of models trained jointly with language embeddings (e.g., through
CLIP (Radford et al., 2021)), this result indicates that the learned representation is able to generalize
to a different modality.

5 RELATED WORK

Recent advancements in representation learning for neural network weights have introduced various
methods for analyzing and generating model weights. Hyper-Representations (Schürholt et al.,
2021; 2022b;a) employ an encoder-decoder framework with contrastive guidance to learn weight
representations for property prediction and model generation. Alternatively, some methods use
diffusion on weights for generation purposes (Peebles et al., 2022; Wang et al., 2024; 2025; Soro
et al., 2024). Graph-based methods (Zhang et al., 2019; Kofinas et al., 2023; Lim et al., 2024), Neural
Functionals (Zhou et al., 2023a;b; 2024), and related approaches like Deep Weight Space (DWS)
(Navon et al., 2023; Zhang et al., 2023) learn equivariant or invariant representations of weights.
In conjunction with backbone architectures, data augmentations have been proposed to improve
generalization of WSL methods (Schürholt et al., 2021; Shamsian et al., 2024). Other approaches
focus on probing intermediate layers of neural network to predict attributes (Horwitz et al., 2024;
Kahana et al., 2024; 2025). Also related are HyperNetworks, which directly use the underlying data
and labels to guide the weights-generation signal (Ha et al., 2016; Knyazev et al., 2021; 2023; Brock
et al., 2017; Navon et al., 2021). Our work focuses on the autoencoder-based approaches due to their
broad applicability across various architectures and downstream tasks.

6 DISCUSSION

In this work, we have shown that training weight space models does not necessarily require laboratory-
generated model zoos, which are expensive to train, take large amounts of storage and are therefore
difficult to share with the larger community. Instead, we show the strong potential in training weight
space models using publicly available model weights from repositories such as Hugging Face. This
opens up multiple avenues for future work. First, our exploration has focused on a limited number
of computer vision models. The training set of model weights from HF could be extended both in
size and diversity by adding more models and covering more data modalities. Second, we have not
applied manual curation beyond basic feasibility checks, meaning that the subset of models we train
on may not fully represent the much larger pool of available weights. This raises the possibility
of selection bias that could impact performance. While our goal is precisely to enable training on
arbitrary, heterogeneous collections of models rather than carefully curated zoos, future work could
further investigate how such biases may arise and to what extent they affect robustness. Finally, by
leveraging models as diverse as those from HF, our work marks a significant step towards applying
weight space models to downstream tasks, for which no model zoo is available.

Conclusion Our work is, to the best of our knowledge, the first to overcome the need of model
zoos, one of the limitations faced by the WSL community. To do so, we have first described how
we collected models from the HF repository. We have then adapted an existing WSL backbone
to work on our dataset, and have validated that our adaptations work and are good performance-
efficiency trade-offs. We have then demonstrated though a variety of experiments that training a
single autoencoder on HF data shows superior or similar levels of performance compared to SANE
autoencoders trained on individual architecture-dataset pairs. Furthermore, we have shown that our
single model displays good generalization performance, being able to generate good initialization
weights for an out-of-distribution GPT-2 model. Through these results, we demonstrate that training
on model weights found in the wild is as good as, but often better, than on laboratory-generated model
zoos, and it is both more general and more efficient. This finding makes the training of weight space
models more accessible, and opens up exciting new opportunities in the development of methods and
applications in WSL.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git Re-Basin: Merging Models
modulo Permutation Symmetries, September 2022. Issue: arXiv:2209.04836 _eprint: 2209.04836.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
The Tenth International Conference on Learning Representations, 2022.

Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. SMASH: One-Shot Model Architec-
ture Search through HyperNetworks, August 2017. URL http://arxiv.org/abs/1708.
05344. arXiv:1708.05344 [cs].

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for
Contrastive Learning of Visual Representations. arXiv:2002.05709 [cs, stat], June 2020. _eprint:
2002.05709.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. 2021.

Amil Dravid, Yossi Gandelsman, Alexei A. Efros, and Assaf Shocher. Rosetta neurons: Mining
the common units in a model zoo. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 1934–1943, October 2023.

Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas Unger, and Anders Ynnerman. Classifying
the Classifier: Dissecting the Weight Space of Neural Networks. arXiv:2002.05688 [cs], February
2020. _eprint: 2002.05688.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. URL
http://Skylion007. github. io/OpenWebTextCorpus., 2019.

David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks. In arXiv:1609.09106 [Cs], 2016. _eprint:
1609.09106.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016b.
_eprint: 1512.03385.

Robert Hecht-Nielsen. ON THE ALGEBRAIC STRUCTURE OF FEEDFORWARD NETWORK
WEIGHT SPACES. In Rolf Eckmiller (ed.), Advanced Neural Computers, pp. 129–135. North-
Holland, Amsterdam, January 1990. ISBN 978-0-444-88400-8. doi: 10.1016/B978-0-444-88400-8.
50019-4.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and
deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019. ISBN: 1939-1404
Publisher: IEEE.

Vincent Herrmann, Francesco Faccio, and Jürgen Schmidhuber. Learning Useful Representations
of Recurrent Neural Network Weight Matrices, March 2024. Issue: arXiv:2403.11998 _eprint:
2403.11998.

Dominik Honegger, Konstantin Schürholt, Linus Scheibenreif, and Damian Borth. Eurosat Model
Zoo: A Dataset and Benchmark on Populations of Neural Networks and Its Sparsified Model
Twins. In IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium,
pp. 888–891, July 2023. doi: 10.1109/IGARSS52108.2023.10283060. ISSN: 2153-7003.

10

http://arxiv.org/abs/1708.05344
http://arxiv.org/abs/1708.05344


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eliahu Horwitz, Bar Cavia, Jonathan Kahana, and Yedid Hoshen. Representing model weights with
language using tree experts. arXiv preprint arXiv:2410.13569, 2024.

Eliahu Horwitz, Nitzan Kurer, Jonathan Kahana, Liel Amar, and Yedid Hoshen. Charting and
navigating hugging face’s model atlas. arXiv preprint arXiv:2503.10633, 2025.

Hugging Face, Inc. Hugging face model repository, 2025. https://huggingface.co/
models.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The Platonic Representation
Hypothesis, 2024. URL https://arxiv.org/abs/2405.07987. Version Number: 1.

Jonathan Kahana, Eliahu Horwitz, Imri Shuval, and Yedid Hoshen. Deep Linear Probe Generators
for Weight Space Learning, October 2024. URL http://arxiv.org/abs/2410.10811.
arXiv:2410.10811 [cs].

Jonathan Kahana, Or Nathan, Eliahu Horwitz, and Yedid Hoshen. Can this model also recognize
dogs? zero-shot model search from weights. arXiv preprint arXiv:2502.09619, 2025.

Diederik P. Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Boris Knyazev, Michal Drozdzal, Graham W. Taylor, and Adriana Romero-Soriano. Parameter
Prediction for Unseen Deep Architectures. In Conference on Neural Information Processing
Systems (NeurIPS), 2021. _eprint: 2110.13100.

Boris Knyazev, Doha Hwang, and Simon Lacoste-Julien. Can We Scale Transformers to Predict
Parameters of Diverse ImageNet Models? In arXiv.Org, March 2023.

Boris Knyazev, Abhinav Moudgil, Guillaume Lajoie, Eugene Belilovsky, and Simon Lacoste-
Julien. Accelerating training with neuron interaction and nowcasting networks. arXiv preprint
arXiv:2409.04434, 2024.

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves,
Cees G. M. Snoek, and David W. Zhang. Graph Neural Networks for Learning Equivariant
Representations of Neural Networks. In The Twelfth International Conference on Learning
Representations, October 2023.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.
Publisher: Toronto, ON, Canada.

Ya Le and Xuan Yang. Tiny ImageNet Visual Recognition Challenge. pp. 6, 2015.

Derek Lim, Haggai Maron, Marc T Law, Jonathan Lorraine, and James Lucas. Graph metanetworks
for processing diverse neural architectures. In The Twelfth International Conference on Learning
Representations, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 9992–10002, Montreal, QC, Canada,
October 2021b. IEEE. ISBN 978-1-66542-812-5. doi: 10.1109/ICCV48922.2021.00986.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Charles H. Martin, Tongsu (Serena) Peng, and Michael W. Mahoney. Predicting Trends in the
Quality of State-of-the-Art Neural Networks without Access to Training or Testing Data. Nature
Communications, 12(1):4122, July 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-24025-8.

11

https://huggingface.co/models
https://huggingface.co/models
https://arxiv.org/abs/2405.07987
http://arxiv.org/abs/2410.10811


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Léo Meynent, Ivan Melev, Konstantin Schürholt, Goeran Kauermann, and Damian Borth. Structure is
not enough: Leveraging behavior for neural network weight reconstruction. In ICLR Workshop on
Neural Network Weights as a New Data Modality, 2025. URL https://arxiv.org/abs/
2503.17138.

Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. Learning the Pareto Front with Hy-
pernetworks, April 2021. URL http://arxiv.org/abs/2010.04104. arXiv:2010.04104
[cs].

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron.
Equivariant Architectures for Learning in Deep Weight Spaces, May 2023. URL http:
//arxiv.org/abs/2301.12780. arXiv:2301.12780 [cs].

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, pp. 9, 2011.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros, and Jitendra Malik. Learning
to Learn with Generative Models of Neural Network Checkpoints, September 2022. Issue:
arXiv:2209.12892 _eprint: 2209.12892.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Language Under-
standing by Generative Pre-Training. OpenAI, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning Transferable Visual Models From Natural Language Supervision, February 2021. URL
http://arxiv.org/abs/2103.00020. arXiv:2103.00020 [cs].

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-Supervised Representation
Learning on Neural Network Weights for Model Characteristic Prediction. In Conference on
Neural Information Processing Systems (NeurIPS), volume 35, 2021.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-Representations
as Generative Models: Sampling Unseen Neural Network Weights. In Thirty-Sixth Conference on
Neural Information Processing Systems (NeurIPS), September 2022a.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Hyper-Representations: Self-
Supervised Representation Learning on Neural Network Weights for Model Characteristic Predic-
tion, December 2022b. URL http://arxiv.org/abs/2110.15288. arXiv:2110.15288.

Konstantin Schürholt, Diyar Taskiran, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Model
Zoos: A Dataset of Diverse Populations of Neural Network Models. In Thirty-Sixth Conference on
Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, September
2022c.

Konstantin Schürholt, Michael W. Mahoney, and Damian Borth. Towards Scalable and Versa-
tile Weight Space Learning, June 2024. URL http://arxiv.org/abs/2406.09997.
arXiv:2406.09997 [cs].

Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, and Haggai
Maron. Improved Generalization of Weight Space Networks via Augmentations, February 2024.
URL http://arxiv.org/abs/2402.04081. arXiv:2402.04081 [cs].

Leslie N. Smith and Nicholay Topin. Super-Convergence: Very Fast Training of Neural Networks
Using Large Learning Rates, May 2018. Issue: arXiv:1708.07120 _eprint: 1708.07120.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Song Chong, Frank Hutter, and Sung Ju Hwang.
Diffusion-based Neural Network Weights Generation, February 2024. URL http://arxiv.
org/abs/2402.18153. arXiv:2402.18153 [cs].

Bedionita Soro, Bruno Andreis, Song Chong, and Sung Ju Hwang. Instruction-guided autoregressive
neural network parameter generation. ICLR 2025 Workshop on Neural Network Weights as a New
Data Modality, 2025.

12

https://arxiv.org/abs/2503.17138
https://arxiv.org/abs/2503.17138
http://arxiv.org/abs/2010.04104
http://arxiv.org/abs/2301.12780
http://arxiv.org/abs/2301.12780
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2110.15288
http://arxiv.org/abs/2406.09997
http://arxiv.org/abs/2402.04081
http://arxiv.org/abs/2402.18153
http://arxiv.org/abs/2402.18153


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting
Neural Network Accuracy from Weights. arXiv:2002.11448 [cs, stat], February 2020. _eprint:
2002.11448.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You. Neural
Network Parameter Diffusion, May 2024. URL http://arxiv.org/abs/2402.13144.
arXiv:2402.13144.

Kai Wang, Dongwen Tang, Wangbo Zhao, Konstantin Schürholt, Zhangyang Wang, and Yang
You. Recurrent Diffusion for Large-Scale Parameter Generation, February 2025. URL http:
//arxiv.org/abs/2501.11587. arXiv:2501.11587 [cs].

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph HyperNetworks for Neural Architec-
ture Search. In International Conference on Learning Representations (ICLR), 2019. _eprint:
1810.05749.

David W Zhang, Miltiadis Kofinas, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, and Cees GM
Snoek. Neural networks are graphs! graph neural networks for equivariant processing of neural
networks. 2023.

Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J. Zico
Kolter, and Chelsea Finn. Permutation Equivariant Neural Functionals, September 2023a. Issue:
arXiv:2302.14040 _eprint: 2302.14040.

Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J. Zico Kolter,
and Chelsea Finn. Neural Functional Transformers. Advances in Neural Information Processing
Systems, 36:77485–77502, December 2023b.

Allan Zhou, Chelsea Finn, and James Harrison. Universal Neural Functionals, February 2024. Issue:
arXiv:2402.05232 _eprint: 2402.05232.

13

http://arxiv.org/abs/2402.13144
http://arxiv.org/abs/2501.11587
http://arxiv.org/abs/2501.11587
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

We structure the appendix as follows:

App. B provides more details about our reasoning for the backbone choice as well as a brief description
of core methods of SANE that we use as basis for our method and approach.
App. C includes details about the hyperparameters and architecture of the backbones and baselines as
well as the finetuning configuration used in the experiments.
App. D includes additional details and results for the baselines as well as further ablations for the
method.

B WEIGHT SPACE BACKBONES

B.1 CHOICE OF THE WEIGHT SPACE BACKBONE

Table 3: Summary of the capabilities of different weight-space methods. 1By data agnostic, we
express that the weight-space method does not need the data used to train the model weights it trains
on. 2By architecture agnostic, we express that the weight-space method does not need any knowledge
of the model architecture, only the weights. 3We show which methods can be used to generate
synthetic neural network weights.

Learning Backbones Dataset-agnostic1 Architecture-agnostic2 Generative capabilities3

Weight Statistics ✓ ✓ ✗
DWSNet ✓ ✗ ✗
Graph Methods ✓ ✗ ✗
Functionalist Methods ✗ ✓ ~
Diffusion Methods ✓ ✗ ✓
Hyper-Representations ✓ ~ ✓

In this Section, we explore different weight space backbones from the literature and evaluate how fit
they are for our use-case. In particular, they should be capable of handling heterogeneous, often poorly
documented (Horwitz et al., 2025) models from the HF repository Hugging Face, Inc. (2025). This
is critical since we cannot directly filter models based on performance or other attributes unless we
constrain our dataset creation to the smaller subset of labeled models. We summarize the capabilities
of existing weight-space backbones in Tab. 3. There, we show that most of the existing weight-space
backbones come with inherent limitations. Simple weight statistics have been shown to be very cheap
and effective for discriminative downstream tasks such as predicting model performance and hyper-
parameters, they can be used in a way that is architecture agnostic, but they are not adapted for neural
network weights generation. DWSNet (Navon et al., 2021) and graph-based backbones (Kofinas
et al., 2023; Lim et al., 2024; Knyazev et al., 2024) use different approaches to encode the inherent
symmetries and structures of neural networks, making them by definition dependent on the underlying
models’ architecture. Functionalist methods (Herrmann et al., 2024; Meynent et al., 2025) that focus
on the models’ outputs rather than their weights can easily be made architecture agnostic but rely
on relevant data samples for probing and are, therefore, not data agnostic. Existing diffusion-based
methods (Soro et al., 2024; Wang et al., 2024) for neural network weight generation are currently
not completely architecture agnostic. More specifically, both the diffusion model and the learning
backbone are usually trained for a single network architecture at a time, in particular when scaling
to larger architectures. This limitation also prevents these approaches from being fully dataset- and
task-agnostic, since the architecture is usually tied to both the task and the dataset and often requires
additional labeled data for conditioning that is not available for most HF models. Finally, the SANE
backbone (Schürholt et al., 2024), while not entirely architecture agnostic, can be adapted to be with
some targeted changes; it can also perform neural network weights generation. For these reasons, we
base our work on the SANE architecture.

B.2 SANE

In this section we provide additional details about the Sequential Autoencoder for Neural Embeddings
(SANE) (Schürholt et al., 2024) method and approach.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2.1 PRE-PROCESSING AND TOKENIZATION

Before training the model-zoos need to be sliced into tokens to allow scaling the hyper-representation
to larger model-zoos. The required steps are described below.

Layer wise loss normalization Schürholt et al. (2022b) mention that due to the reconstruction
loss being based on a mean squared error, the hyper-representation will learn to reconstruct the
weights to evenly spread the reconstruction error across all weights and layers in the weight vector
(w). However, the distribution of weight magnitudes can differ significantly between layers and also
between different models even if they share the same architecture. This can lead to an issue where
layers with large-magnitude weights and broader distributions are reconstructed accurately, but those
with smaller magnitudes and narrow distributions can be neglected. This imbalance can make these
smaller-weight layers a weak point in the reconstructed models, which can lead to a severe drop in
performance, sometimes as low as random guessing Schürholt et al. (2022b; 2024). They therefore
propose to normalize the weights of the input model-zoo as a first step. The weights are normalized
with the mean (µl) and standard deviation (σl) calculated per layer throughout the whole model
zoo. However, as outlined in Sec. 3 this is not feasible when training on diverse architectures with
varying depth and width without significant engineering overhead and why we propose the masked
loss normalization at runtime instead which greatly simplifies pre-processing and evaluation while
achieving comparable results.

Tokenization The weights are reshaped into 2D matrices and sliced row-wise along the outgoing
channels (which we refer to in the paper as sparse tokenization). These slices are divided into multiple
parts based on a predefined token size (dt). If a slice does not fill an entire token, zero padding
is applied to reach the required token size. Each token is then augmented with a 3-dimensional
positional embedding, as explained in Sec. 3.3.

Windowing From the complete sequence of tokens and their positional embeddings, a random
subset is selected, consisting of n consecutive tokens up to a specified window size (ws). The
model is trained using these windows, enabling it to handle large models by focusing on manageable
segments at a time. During training, one window is sampled per model, ensuring that a batch contains
tokens from different models. This also allows to draw different windows at each training iteration
to further mitigate the risk of over-fitting. By decoupling the computational requirements from the
input model size, SANE can scale to any architecture, regardless of its size. Through the tokenization
process, it is also possible to train on different input architectures simultaneously as long as they are
preprocessed and sliced into the same token and window size. For our experiments we preprocess
the models into windows of tokens of length 4096 out of which a random subset of 512 tokens is
sampled during each training iteration to reduce the risk of overfitting and improving training time.

Augmentations The original SANE implementation uses three different data augmentations in the
context of its contrastive loss: masking, additive white gaussian noise and permutations. For the
latter, the authors leverage the existing symmetries in neural networks that make it possible to swap
the order of neurons without changing the input-output function of the model Ainsworth et al. (2022);
Hecht-Nielsen (1990). When using model weights from HF that are not properly documented, it is
not possible to know which permutations conserve this input-output function without knowledge
about the architecture. For this reason, we do not explicitly deal with the symmetries of the models
in our dataset, and only use the masking and noising augmentations to investigate whether it is still
possible to achieve comparable performance to previous work.

B.2.2 DOWNSTREAM TASKS

SANE is a unified model and approach for discriminative and generative downstream tasks. The
following paragraphs briefly introduce the methods used for both task families.

Discriminative Tasks For discriminative downstream tasks, one can pass a set of tokens T repre-
senting a model’s weights through the SANE encoder gθ to obtain a latent representation gθ(T ) = Z.
The latent representations is then averaged over all tokens to a single vector Z̄ ∈ Rdt , which is
processed with a linear probe or a Multi Layer Perceptron (MLP) to predict model properties. These

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

include as accuracy, loss, generalization gap, training epoch, model-zoo, etc. The predictive perfor-
mance of the linear probe/MLP can be measured in terms of explained variance (R2) on the test set
in the case of a regression (e.g., accuracy with continuous values) or in terms of accuracy in the case
of classification (e.g., prediction of the architecture of the embedded model).

Generative Sampling of Models SANE is also able to sample models directly out of the represen-
tation space. The difficulty lies in identifying the distribution P (Z) of the latent representation space
that can be decoded to a functional NN in the target domain. SANE uses a Kernel Density Estimation
(KDE) to model the target distribution P (Z) by tokenizing a few anchors Ta and projecting them to
the latent space using the encoder Za = gθ(Ta). The resulting KDE over the Za is then broadly
sampled to identify regions in the distribution with high probability of the desired target properties.
The sampled representations Z̃ are passed through the decoder hψ to generate synthetic tokens
T̃ = hψ(Z̃), which can then be detokenized into neural network weights W̃ .

Batch Norm Conditioning Larger models often include batch norm layers that in part contain
parameters that are not trained via backpropagation and are only updated during the forward pass.
Since the distribution of these weights differs significantly from trainable parameters, they are
excluded from sampling. Instead, batch norm conditioning is performed, which updates (only non-
trainable) parameters during a few forward passes on the target dataset to align these parameters with
the trainable weights before evaluating the accuracy Schürholt et al. (2024).

Haloing Optionally, SANE allows for the use of haloing, where context weights are added before
and after the window before processing by the encoder. This added context is processed normally but
disregarded after reconstruction by the decoder.

C IMPLEMENTATION DETAILS

Table 4: Implementation Details for Hugging Face Training and Baseline

Hyper-Parameter HF-Small HF-Large SANE (MLN)

tokensize (sparse) 288 - 288
tokensize (dense) 230 230 -
loss norm MLN MLN MLN
pos embed sinusoidal sinusoidal learned
window size 512 512 256
model dim 1536 1536 2048
latent dim 128 128 128
num transformer layers 8 16 8
num transformer heads 8 8 8
learning rate 2e− 5 2e− 5 2e− 5
weight decay 3e− 9 3e− 9 3e− 9
scheduler OnceCycleLR OnceCycleLR OnceCycleLR
num training epochs 100, 300 300 60
batch size 64 64 32
gradient accumulation steps - 2 -
num params (~) 456M 900M 865M
training time ~54h, 144h ~198h ~20h
training dataset HF HF Model-Zoos

In Tab. 4, we provide additional information on the training hyper-parameters and architecture
configuration of the two HF trained backbones (HF-Small and HF-Large) as well as for testing
our masked loss normalization (MLN) on model-zoo data (SANE MLN). We keep the baseline
experimental set-up to validate the MLN as close as possible to the original SANE implementation
in order for the results to be comparable. For training on HF data we introduce additional changes
to the model size, number of training epochs and number of layers to balance the trade-off between
performance and efficiency. We train the small backbone (HF-Small) for 100 epochs for comparing
dense and sparse tokenization as well as for the ablations (App. D.4) to reduce training time. For
comparing to the large backbone (HF-Large) we also train the small backbone for 300 epochs

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(App. D.1) for evaluating across different architectures. The SANE baseline evaluated on ImageNet-
1K is trained according to the HF-Small configuration for 100 epochs as we observed degrading
performance when training for longer on homogeneous model zoos.

C.1 LIST OF GENERATED MODELS

For our experiments across different datasets we use ResNet-18 models from publicly available model
zoo datasets (Schürholt et al., 2022c; Honegger et al., 2023) with the exception of SVHN where we
train 5 models from scratch. Below we list all generated architectures from the Timm (Wightman,
2019) library that we finetune on ImageNet-1K. We organize the models in architecture groups and
specify the sampled architectures within that group. The specific instance of the timm model used is
specified within parentheses.

• ConvNext
– Tiny (convnext_tiny.fb_in1k)
– Small (convnext_small.fb_in1k)
– Base (convnext_base.fb_in1k)

• ResNet
– ResNet-18 (resnet18)
– ResNet-34 (resnet34)
– ResNet-50 (resnet50)
– ResNet-101 (resnet101)
– ResNet-152 (resnet152)

• DenseNet
– DenseNet 121 (densenet121.ra_in1k)

• EfficientNet
– EfficientNet V2 Small (tf_efficientnetv2_s.in1k)
– EfficientNet V2 Medium (tf_efficientnetv2_m.in1k)

• MobileNet
– MobileNet V3 Small 100 (tf_mobilenetv3_small_100.in1k)
– MobileNet V3 Small 075 (tf_mobilenetv3_small_075.in1k)
– MobileNet V2 100 (mobilenetv2_100.ra_in1k)

• Vision Transformer
– Tiny-ViT (5M) (tiny_vit_5m_224.in1k)
– Tiny-ViT (11M) (tiny_vit_11m_224.in1k)
– ViT-T-16-224 (6M) (vit_tiny_patch16_224.augreg_in21k_ft_in1k)
– ViT-S-16-224 (vit_small_patch16_224.augreg_in1k)
– ViT-B-16-224 (vit_base_patch16_224.orig_in21k_ft_in1k)

• DeiT
– DeiT-3-Base-16-224 (deit3_base_patch16_224.fb_in1k)
– DeiT-3-Medium-16-224 (deit3_medium_patch16_224.fb_in1k)

• BeiT
– BeiT V2 Base (beitv2_base_patch16_224.in1k_ft_in1k)

• Swin
– Swin S3 Tiny (swin_s3_tiny_224.ms_in1k)
– Swin S3 Small (swin_s3_small_224.ms_in1k)
– Swin S3 Base (swin_s3_base_224.ms_in1k)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.2 FINETUNING PARAMS

We use the same training pipeline for all finetuned models and only vary the batch size for the larger
models (256 instead of 512). For generating weights we use haloing with an added context of 2*64
tokens per window (of size 512) and batch-norm conditioning. For our experiment on ImageNet we
use one anchor sample from Timm (Wightman, 2019) and sample five models per architecture and
finetune the best one. For sampling different datasets we use 5 anchor samples per target dataset and
sample 50 models and keep the top 10. For data augmentations we use a random resized crop and
random horizontal flip and normalize with the ImageNet mean and standard deviation. For validation
we use rescaling with a center crop as well as normalization. We finetune the models for 5 epochs
using the Adam (Kingma, 2014) optimizer with learning rate 1e − 3 with autocast and gradient
scaling. For sampling across different datasets we show the performance of sampled models without
any finetuning of trainable parameters using the same augmentations as in the respective model zoo.
The configuration and finetuning hyperparameters for the GPT-2 model are summarized in Tab. 5.

Table 5: Hyperparameters for GPT-2 finetuning

Hyper-Parameter Value

blocksize 1024
vocab size 50’304
num layers 12
num attention heads 12
embed dim 768
optimizer AdamW
max learning rate 6e− 4
weight decay 1e− 1
scheduler OnceCycleLR (Smith & Topin, 2018)
batch size 64
num training steps per iteration 50
num validation steps per iteration 200
evaluation frequency 10
gradient accumulation steps 8
dataset OpenWebText

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS & ABLATIONS

In this section we include detailed results for our generative (App. D.1) and discriminative (App. D.2)
downstream tasks. We also include full results for the baselines in App. D.3.

D.1 GENERATIVE RESULTS

Full results per architecture In Tab. 6 we report the mean±std performance of all sampled
models after 1-5 epochs of finetuning. As baselines, we include SANE trained on CIFAR10 with
loss normalization and sinusoidal positional encodings, as well as models trained from scratch.
Further below we show the individual results per sampled architecture after 1-5 epochs of finetuning
comparing to training from scratch. Specifically, we show the performance of the large backbone
in Tab. 7 and the performance of the small backbone in Tab. 8. The results of our baseline per
architecture are included in Tab. 10.

Table 6: Mean±std performance of generated models per backbone in percent after 1-5 epochs of
finetuning. The results are calculated over all sampled models and show that training on HF models
outperforms previous work trained on homogenous model zoos when scaling to larger and more
diverse architectures. While the baseline achieves competitive results for architectures that are close
to the training set (i.e. ResNets or ConvNexts) performance drops for other architectures and often
leads to worse performance than training from scratch. Conversely, our HF trained backbones are
able to consistently outperform training from scratch. The large backbone improves upon the small
backbone in particular for larger sampled architectures.

Backbone Epoch
1 2 3 4 5

Scratch 17.43±9.28 27.97±14.77 33.91±17.66 37.82±19.24 40.43±20.12
SANE 17.36±18.94 24.32±23.01 28.33±24.90 30.85±25.94 30.72±26.96
HF (Small) 39.76±22.38 47.46±20.66 51.47±19.97 53.98±19.59 55.83±19.44
HF (Large) 45.55±20.84 52.88±17.44 56.61±15.41 58.81±14.49 60.48±13.85

Table 7: Performance of individual generated models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the large HF-backbone (Tab. 4) vs. training from scratch. The HF backbone is
able to outperform the small backbone and baselines in particular for larger architectures such as a
Swin transformer or ResNet-152.

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

BEiT Beitv2 Base Patch 16 Sampled 19.38 34.52 43.03 48.66 52.27
Beitv2 Base Patch 16 Scratch 6.87 9.94 9.48 10.98 12.24

ConvNeXt

Convnext Base Sampled 72.35 74.52 75.31 75.72 76.36
Convnext Base Scratch 21.11 39.46 49.94 55.55 59.47

Convnext Small Sampled 70.57 72.91 74.28 74.49 75.04
Convnext Small Scratch 20.34 38.14 47.44 52.92 56.94

Convnext Tiny Sampled 73.38 73.87 74.31 74.68 74.55
Convnext Tiny Scratch 17.97 35.48 44.70 50.48 54.49

DeiT

Deit3 Base Patch 16 Sampled 27.53 39.37 45.49 50.05 53.46
Deit3 Base Patch 16 Scratch 8.56 11.97 14.02 15.23 15.99

Deit3 Medium Patch 16 Sampled 37.09 48.15 53.85 56.78 59.61
Deit3 Medium Patch 16 Scratch 14.50 21.07 27.22 31.34 34.95

Continued on next page

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Performance of individual sampled models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the large HF-backbone (continued)

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

DenseNet Densenet121 Sampled 56.75 61.86 64.37 65.34 66.03
Densenet121 Scratch 28.49 41.57 49.32 53.75 55.79

EfficientNet

Efficientnetv2 M Sampled 58.19 65.51 67.82 70.35 71.37
Efficientnetv2 M Scratch 25.88 41.20 47.77 54.04 57.59

Efficientnetv2 S Sampled 64.29 69.12 71.13 72.80 73.39
Efficientnetv2 S Scratch 28.84 42.86 51.55 55.83 59.18

MobileNet

Mobilenetv2 100 Sampled 37.56 47.78 51.95 54.74 56.64
Mobilenetv2 100 Scratch 18.32 30.13 37.92 43.14 46.26

Mobilenetv3 Small 075 Sampled 28.56 37.35 41.91 44.46 46.58
Mobilenetv3 Small 075 Scratch 18.42 28.06 33.59 37.28 40.28

Mobilenetv3 Small 100 Sampled 29.74 38.80 43.55 46.88 48.98
Mobilenetv3 Small 100 Scratch 19.89 29.29 35.75 40.15 43.14

ResNet

Resnet101 Sampled 73.97 75.02 75.11 75.38 76.11
Resnet101 Scratch 25.96 41.45 49.49 53.51 56.00

Resnet152 Sampled 67.67 70.36 71.02 72.25 73.64
Resnet152 Scratch 28.99 44.01 52.48 55.49 58.07

Resnet18 Sampled 57.09 61.51 62.96 63.15 64.96
Resnet18 Scratch 18.30 32.25 38.77 43.78 47.86

Resnet34 Sampled 63.92 66.02 67.88 68.55 69.16
Resnet34 Scratch 23.24 32.18 41.65 47.41 49.10

Resnet50 Sampled 73.33 74.13 74.34 74.24 74.35
Resnet50 Scratch 23.92 40.10 46.63 51.45 54.00

Swin

Swin S3 Base 224 Sampled 12.03 20.33 26.42 29.13 28.24
Swin S3 Base 224 Scratch 0.20 0.10 0.10 0.10 0.10

Swin S3 Small 224 Sampled 9.94 16.71 20.96 21.73 25.43
Swin S3 Small 224 Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Tiny 224 Sampled 22.10 34.38 42.03 47.72 51.95
Swin S3 Tiny 224 Scratch 0.10 0.10 0.10 0.10 0.10

ViT

Tiny Vit 11M 224 Sampled 42.25 54.31 58.48 61.89 63.07
Tiny Vit 11M 224 Scratch 24.42 42.43 49.50 54.88 57.24

Tiny Vit 5M 224 Sampled 37.16 48.95 55.43 58.73 60.87
Tiny Vit 5M 224 Scratch 29.08 43.20 49.88 53.96 56.12

Vit Base Patch 16 Sampled 40.05 52.45 58.20 61.03 63.17
Vit Base Patch 16 Scratch 7.67 13.49 18.14 22.04 26.68

Vit Small Patch 16 Sampled 28.98 39.30 45.24 48.88 51.98
Vit Small Patch 16 Scratch 11.20 18.94 25.03 30.27 34.23

Vit Tiny Patch 16 Sampled 34.72 44.65 50.10 52.60 54.80
Vit Tiny Patch 16 Scratch 13.34 21.61 27.27 31.65 34.93

Mean (Sampled) 45.55 52.88 56.61 58.81 60.48
Mean (Scratch) 17.43 27.97 33.91 37.82 40.43

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Performance of individual generated models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the small HF-backbone (Tab. 4) vs. training from scratch. The small HF
backbone achieves similar performance compared to the large variation on smaller models but fails to
scale to larger architectures.

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

BEiT Beitv2 Base Patch 16. Ft Sampled 16.06 29.46 38.07 45.24 50.41
Beitv2 Base Patch 16 Scratch 6.87 9.94 9.48 10.98 12.24

ConvNeXt

Convnext Base Sampled 72.69 74.59 75.00 75.91 76.20
Convnext Base Scratch 21.11 39.46 49.94 55.55 59.47

Convnext Small Sampled 71.16 73.14 74.27 74.99 75.11
Convnext Small Scratch 20.34 38.14 47.44 52.92 56.94

Convnext Tiny Sampled 73.37 74.12 74.34 74.66 74.43
Convnext Tiny Scratch 17.97 35.48 44.70 50.48 54.49

DeiT

Deit3 Base Patch 16 Sampled 22.00 32.45 39.16 44.04 47.75
Deit3 Base Patch 16 Scratch 8.56 11.97 14.02 15.23 15.99

Deit3 Medium Patch 16 Sampled 24.23 35.80 42.01 46.44 50.04
Deit3 Medium Patch 16 Scratch 14.50 21.07 27.22 31.34 34.95

DenseNet Densenet121.Ra In1K Sampled 50.07 56.85 60.08 62.33 63.46
Densenet121.Ra In1K Scratch 28.96 43.28 49.67 54.34 56.30

EfficientNet

Efficientnetv2 M Sampled 57.14 64.68 67.54 69.62 70.56
Efficientnetv2 M Scratch 25.88 41.20 47.77 54.04 57.59

Efficientnetv2 S Sampled 65.77 70.25 71.93 73.02 73.84
Efficientnetv2 S Scratch 28.84 42.86 51.55 55.83 59.18

MobileNet

Mobilenetv2 100.Ra Sampled 39.84 48.55 53.26 55.37 57.61
Mobilenetv2 100 Scratch 18.32 30.13 37.92 43.14 46.26

Mobilenetv3 Small 075 Sampled 26.48 35.52 39.95 43.12 45.41
Mobilenetv3 Small 075 Scratch 18.42 28.06 33.59 37.28 40.28

Mobilenetv3 Small 100 Sampled 29.88 38.23 43.04 46.21 48.09
Mobilenetv3 Small 100 Scratch 19.89 29.29 35.75 40.15 43.14

ResNet

Resnet101 Sampled 21.48 40.03 49.66 54.92 58.37
Resnet101 Scratch 25.96 41.45 49.49 53.51 56.00

Resnet152 Sampled 33.88 47.94 54.90 56.05 59.88
Resnet152 Scratch 28.99 44.01 52.48 55.49 58.07

Resnet18 Sampled 57.50 62.06 63.04 64.32 65.27
Resnet18 Scratch 18.30 32.25 38.77 43.78 47.86

Resnet34 Sampled 63.82 66.80 67.94 68.75 68.38
Resnet34 Scratch 23.24 32.18 41.65 47.41 49.10

Resnet50 Sampled 72.39 72.68 73.74 72.44 74.50
Resnet50 Scratch 23.92 40.10 46.63 51.45 54.00

Swin

Swin S3 Base 224.Ms In1K Sampled 0.46 0.43 0.43 0.43 0.43
Swin S3 Base 224.Ms In1K Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Small 224.Ms In1K Sampled 0.10 0.10 0.10 0.10 0.10
Swin S3 Small 224.Ms In1K Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Tiny 224.Ms In1K Sampled 13.94 27.35 36.15 42.79 47.65
Swin S3 Tiny 224.Ms In1K Scratch 0.10 0.10 0.10 0.10 0.10

Continued on next page

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Performance of individual generated models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the small HF-backbone (continued)

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

ViT

Tiny Vit 11M 224 Sampled 43.50 53.78 58.95 62.36 63.44
Tiny Vit 11M 224 Scratch 24.42 42.43 49.50 54.88 57.24

Tiny Vit 5M 224 Sampled 39.28 49.73 55.61 58.67 59.67
Tiny Vit 5M 224 Scratch 29.08 43.20 49.88 53.96 56.12

Vit Base Patch 16 224 Sampled 40.19 52.23 57.65 60.94 63.08
Vit Base Patch 16 Scratch 7.67 13.49 18.14 22.04 26.68

Vit Small Patch 16 Sampled 29.64 40.99 46.10 49.75 52.41
Vit Small Patch 16 Scratch 11.20 18.94 25.03 30.27 34.23

Vit Tiny Patch16 224 Sampled 29.17 38.67 43.81 47.04 49.59
Vit Tiny Patch 16 Scratch 13.34 21.61 27.27 31.65 34.93

Mean (Sampled) 39.76 47.46 51.47 53.98 55.83
Mean (Scratch) 17.43 27.97 33.91 37.82 40.43

D.2 DISCRIMINATIVE RESULTS

Table 9: Discriminative results on the ResNet-18 model-zoos. The results show explained variance
(R2) per target dataset. A linear probe fits the embeddings to the target properties of the respective
trainset and the performance on the testset is reported. For the evaluation the ResNet-18 model
zoos from the model zoo dataset are used (Schürholt et al., 2022c). 100 models are split into
train/test/validation with proportions 70/15/15 using checkpoints from epochs 1, 3, 5, 10, 15, 20, and
25.

Test Accuracy GGap Epoch

Training Data CIFAR10 CIFAR100 TIN CIFAR10 CIFAR100 TIN CIFAR10 CIFAR100 TIN

CIFAR10 91.69 95.60 94.99 75.93 91.94 88.81 99.67 99.34 99.11
CIFAR100 92.70 96.22 95.73 77.56 92.21 88.90 99.65 99.54 99.30

HF 69.44 91.58 90.29 53.75 87.39 85.05 94.78 96.86 90.39

In Tab. 9 we evaluate whether the embeddings of the encoder trained on HF-data are still predictive of
model properties as was shown in previous work (Schürholt et al., 2024). We observe a performance
drop compared to previous work in all cases. Interestingly for CIFAR100 and TinyImageNet the R2

remains competitive and about 5% lower compared to the baseline. This could possibly be attributed
to the fact that the embeddings of the HF trained backbone have a higher variance than the single-
zoo embeddings because to reconstruct models that vary in both architecture and training dataset
accurately, more fine-grained information may be required. Improving the predictive performance in
this setting may require going beyond a simple linear model better model non-linear relations between
the embeddings and target properties. However, for CIFAR10 we observe a more significant drop
in performance that was also seen in the generative results which could be attributed to the fact that
CIFAR10 trained models might be less prevalent on HF compared to CIFAR100 and TinyImageNet
or that the models trained on CIFAR10 exhibit higher differences in terms of accuracy while still
remaining close in weight space compared to the datasets with more classes.

D.3 BASELINES

Our baseline results are divided into multiple parts. First we closely follow the experimental set-up
of SANE (Schürholt et al., 2024) to validate our proposed loss normalization and compare with
the results of the original SANE (see Sec. 4). To assess the performance of sampled models for
our baseline when varying the dataset we train a single backbone per model zoo (CIFAR10 and
CIFAR100) using the configuration detailed in Tab. 4 (SANE (MLN)). The other datasets that we

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

sample models for are unseen during training to validate that our change to the loss normalization
still allows generating models that are out of distribution. For the later experiments (App. D.3.2) we
train the baseline with the same configuration as our Hugging Face backbone (Tab. 4, HF-Small) but
still on a single model zoo (CIFAR10).

D.3.1 DATASETS

Figure 5: Performance of generated ResNet-18 models with varying backbones. Here we include
the performance of both baselines separately whereas in the paper we show the max performance
achieved over both baselines. Furthermore we show the performance of both the small and large HF
backbone. The results indicate that training on HF models is feasible and outperforms the baselines
with the exception of CIFAR10.

In the main paper (Fig. 2), we summarize the best performance achieved by each baseline model
(trained individually on CIFAR10 and CIFAR100) and compare them to our large Hugging Face-
trained backbone (HF-Large), using the configuration detailed in Tab. 4. In contrast, Fig. 5 provides
a more detailed view by showing the performance of both individual baselines and our smaller
Hugging Face backbone (HF-Small). These results reveal that both HF-trained backbones remain
competitive across the board. The large backbone outperforms the individual baselines on four out
of five datasets, with CIFAR10 being the only exception. The model-zoo trained baselines perform
well in-distribution and on datasets of comparable difficulty (i.e., similar number of classes), but their
generalization to different datasets is more limited. In contrast, our HF-trained backbones are able to
sample effectively across diverse datasets. Although HF-Large offers slight performance gains over
HF-Small, it comes at the cost of increased training time. However, larger performance differences
become apparent when sampling across architectures rather than datasets (see App. D.1).

D.3.2 ARCHITECTURES

Table 10: Performance of individual generated models after finetuning for 1-5 epochs on ImageNet-
1K when sampling from the SANE baseline trained on CIFAR10 (Tab. 4) compared to training
from scratch. The baseline is competitive for architectures close to the model-zoo training set (e.g.,
ResNet-18,34,50 and a tiny ConvNext) but fails to scale to larger models as well as architectures
less similar to those included in the training data such as transformers. For those architectures the
performance is often even worse than training from scratch.

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

BEiT Beitv2 Base Patch 16 Sampled 3.42 6.39 7.76 8.98 10.56
Beitv2 Base Patch 16 Scratch 6.87 9.94 9.48 10.98 12.24

Continued on next page

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 10: Performance of individual sampled models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the SANE baseline trained on CIFAR10 (continued)

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

ConvNeXt

Convnext Base Sampled 0.10 0.10 0.10 0.10 0.10
Convnext Base Scratch 21.11 39.46 49.94 55.55 59.47
Convnext Small Sampled 0.17 0.10 0.10 0.10 0.10
Convnext Small Scratch 20.34 38.14 47.44 52.92 56.94
Convnext Tiny Sampled 25.30 41.68 50.28 55.03 57.84
Convnext Tiny Scratch 17.97 35.48 44.70 50.48 54.49

DeiT

Deit3 Base Patch 16 Sampled 1.30 2.27 4.68 6.41 9.32
Deit3 Base Patch 16 Scratch 8.56 11.97 14.02 15.23 15.99
Deit3 Medium Patch 16 Sampled 1.28 2.98 4.83 6.95 8.83
Deit3 Medium Patch 16 Scratch 14.50 21.07 27.22 31.34 34.95

DenseNet Densenet121 Sampled 24.77 40.05 47.92 52.23 55.05
Densenet121 Scratch 28.49 41.57 49.32 53.75 55.79

EfficientNet

Efficientnetv2 M Sampled 19.91 33.98 44.94 48.33 0.10
Efficientnetv2 M Scratch 25.88 41.20 47.77 54.04 57.59
Efficientnetv2 S Sampled 27.04 43.10 50.70 55.08 58.60
Efficientnetv2 S Scratch 28.84 42.86 51.55 55.83 59.18

MobileNet

Mobilenetv2 100 Sampled 31.44 43.99 49.61 52.96 55.21
Mobilenetv2 100 Scratch 18.32 30.13 37.92 43.14 46.26

Mobilenetv3 Small 075 Sampled 24.66 35.77 41.29 44.35 47.49
Mobilenetv3 Small 075 Scratch 18.42 28.06 33.59 37.28 40.28

Mobilenetv3 Small 100 Sampled 27.62 38.59 43.70 47.15 49.30
Mobilenetv3 Small 100 Scratch 19.89 29.29 35.75 40.15 43.14

ResNet

Resnet101 Sampled 34.14 50.52 59.29 63.28 63.45
Resnet101 Scratch 25.96 41.45 49.49 53.51 56.00

Resnet152 Sampled 23.95 40.07 46.98 52.36 56.03
Resnet152 Scratch 28.99 44.01 52.48 55.49 58.07
Resnet18 Sampled 58.22 61.38 62.60 62.92 64.34
Resnet18 Scratch 18.30 32.25 38.77 43.78 47.86

Resnet34 Sampled 63.40 65.40 66.17 68.14 68.03
Resnet34 Scratch 23.24 32.18 41.65 47.41 49.10

Resnet50 Sampled 44.82 58.99 63.16 65.43 67.74
Resnet50 Scratch 23.92 40.10 46.63 51.45 54.00

Swin

Swin S3 Base 224 Sampled 0.10 0.10 0.10 0.10 0.10
Swin S3 Base 224 Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Small 224 Sampled 0.10 0.10 0.10 0.10 0.10
Swin S3 Small 224 Scratch 0.10 0.10 0.10 0.10 0.10

Swin S3 Tiny 224 Sampled 0.10 0.10 0.10 0.10 0.10
Swin S3 Tiny 224 Scratch 0.10 0.10 0.10 0.10 0.10

ViT

Tiny Vit 11M 224 Sampled 0.10 0.10 0.10 0.10 0.10
Tiny Vit 11M 224 Scratch 24.42 42.43 49.50 54.88 57.24
Tiny Vit 5M 224 Sampled 0.79 4.04 11.82 18.16 22.90
Tiny Vit 5M 224 Scratch 29.08 43.20 49.88 53.96 56.12

Continued on next page

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Performance of individual sampled models after finetuning for 1-5 epochs on ImageNet-1K
when sampling from the SANE baseline trained on CIFAR10 (continued)

Architecture Group Architecture Name Init Epoch

1 2 3 4 5

Vit Base Patch 16 224 Sampled 3.34 5.82 8.17 10.17 11.71
Vit Base Patch 16 Scratch 7.67 13.49 18.14 22.04 26.68
Vit Small Patch 16 Sampled 3.73 8.14 12.31 16.28 20.77
Vit Small Patch 16 Scratch 11.20 18.94 25.03 30.27 34.23
Vit Tiny Patch16 224 Sampled 14.17 24.33 31.57 36.49 40.04
Vit Tiny Patch 16 Scratch 13.34 21.61 27.27 31.65 34.93

Mean Accuracy (Sampled) 17.36 24.32 28.33 30.85 30.72
Mean Accuracy (Scratch) 17.43 27.97 33.91 37.82 40.43

D.4 ABLATIONS

D.4.1 MASKED LOSS NORMALIZATION (MLN)

Figure 6: Comparison of weight distributions of a selection of
ResNet layers between original weights (blue/left) vs recon-
structed weights (right). We compare reconstruction without
normalization (orange), with full token normalization (green)
and with masked loss normalization (red). Without normal-
ization the weights of layers with narrow distributions are
squashed towards the mean. Normalizing per-token fixes that
issue. Ignoring the mask introduces a strong bias, particularly
for batch-norm layers. Reconstructions with MLN match the
original the closest.

To further investigate whether MLN
can be used as a suitable replace-
ment for layer wise loss normalization,
we evaluate the distribution of recon-
structed weights vs original weights
when not normalizing the loss at all,
normalizing the loss per-token (includ-
ing masked values) and normalizing
on signal values only. After training,
we use models from the test split to be
reconstructed by the backbone (which
corresponds to a simple forward pass
through the encoder-decoder). Follow-
ing previous work, we use the match
of weight distribution as a proxy for
how well-reconstructed models mirror
the original models (Schürholt et al.,
2022a). Results are shown in Fig. 6.

Masked loss normalization achieves a
more accurate alignment between the reconstructed distribution and the original weight distribution
across model parameters compared to full-token normalization, see Fig. 6, particularly of batch-
norm layer weights. By focusing on signal values only, the masked normalization more effectively
maintains the original weight distributions, reducing reconstruction error and providing a stable signal
even in high-parameter regimes.

D.4.2 TOKENIZATION

In this section we compare the two different tokenization variants introduced in Sec. 3.3. We evaluate
whether there are any significant differences in terms of pretraining and downstream performance

when training on HF models. To that end, we compare the explained variance R2 = 1−
∑

i∥Ti−T̂i∥2∑
i∥Ti−T̄∥2

of the reconstructed tokens to validate if our backbone converges when training on the HF dataset.
As discussed previously, sparse tokenization can add substantial amounts of padding per token when
tokenizing different architectures. More specifically, after tokenization our HF model dataset includes
approximately 600M tokens for the dense variation and 730M tokens using sparse tokenization (with
tokensize 288). The largest model included in the HF trainset contains ~1.3B weights and is split into
5M individual tokens using sparse and 4.5M tokens using dense tokenization. Since the models have
vastly different sizes, we use the number of tokens in the dataset as measure of size.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 7: R2-score of recon-
structed tokens on a hold-out
validation set of models to
assess reconstruction quality.
The results indicate that dense
tokenization works and shows
smoother convergence.

Dense tokenization matches performance while being signifi-
cantly more efficient In our HF dataset, sparse tokenization in-
troduces 20% padding per token, whereas dense tokenization adds
only 0.01% padding on average. As a result, when processed by
the weight-space backbone, dense tokens lead to a higher compres-
sion ratio compared to sparse tokens. To ensure a fair comparison,
we adjust the token size of the dense dataset accordingly. The re-
sults in Fig. 7 show that both tokenization strategies yield similar
reconstruction quality during backbone training. In addition, dense
tokenization reduces disk usage by 20% relative to sparse tokeniza-
tion, leading to faster training and offering a better balance between
efficiency and performance. We further evaluate and discuss down-
stream performance of sampled models across five datasets when
varying tokenization in App. D.1.

Figure 8: Performance of sampled models of our HF-Small backbone configuration when using
sparse or dense tokenization.

In Fig. 8 we show the accuracy of sampled models on the target
dataset without any finetuning. To train the backbones we use the configuration as outlined in Tab. 4.
The results show higher performance when using sparse tokenization for the datasets with ten classes
whereas dense tokenization shows slightly higher performance for the datasets with 100 and 200
classes. However, as mentioned in the main paper, dense tokenization is more efficient during training
and we believe that the overhead introduced with sparse tokenization in terms of storage and compute
is not preferable to dense tokenization overall, in particular for our training set-up with diverse
architectures in the training dataset.

D.4.3 POSITIONAL ENCODINGS

For evaluating the performance impact of using sinusoidal positional encodings instead of learned
embeddings we train the weight space backbone in the HF-small configuration (Tab. 4) on model
zoos as we cannot train of the HF dataset with learned embeddings. The results show we achieve
similar performance compared to the baseline setting while only training a single backbone instead
of one per dataset/architecture pair. We do observe however that in this setting we need to train for
more epochs compared to using learned embeddings.

Table 11: Performance of sampled ResNet-18 models. We compare the baseline setting with learned
positional embeddings to our HF configuration trained on model zoos.

Configuration Pos Embed CIFAR10 CIFAR100 TIN

SANE (MLN) Learned 68.6±1.2 20.4±1.3 11.7±0.5
HF (S) Sinusoidal 66.8±0.7 27.93±0.7 16.05±0.2

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 12: Performance of sampled ResNet-18 models when training only on a fraction of the data.
The results indicate that after a certain number of training tokens the performance saturates and does
not increase significantly anymore given a constant backbone size. On the other hand, performance
drops to random guessing (with the exception of EuroSAT and SVHN) when training on less than
~45M tokens showing that the number of samples included are more important than trying to restrict
the models in the training data to be more similar in terms of architecture, even if we use the same
architecture during training and sampling. Furthermore, training on HF data requires more samples
than when training on a homogeneous model zoo, as the HF data is more noisy and possibly also
contains models that are not converged or only trained for a few epochs. Nevertheless, when including
enough samples training on HF is competitive and even outperforms training on homogenous model
zoos in most cases.

Data Fraction Num Tokens (~) CIFAR10 CIFAR100 TIN EuroSAT SVHN

1 590M 31.38±3.91 32.24±1.34 20.14±0.88 78.66±0.81 83.96±1.23
0.64 388M 30.02±4.50 33.27±1.49 23.10±1.33 78.01±1.40 82.35±1.03
0.32 189M 21.90±1.59 27.98±1.70 17.78±1.10 79.57±3.10 82.84±0.46
0.16 95M 16.52±0.96 26.28±0.83 16.34±0.74 79.50±1.95 83.18±0.62
0.08 47M 11.39±0.68 5.45±0.56 1.78±0.18 74.23±1.79 78.19±1.34
0.04 24M 10.63±0.27 1.14±0.07 0.50±0.04 52.28±4.42 45.04±2.58
0.02 12M 11.78±0.69 1.15±0.16 0.55±0.06 14.58±2.15 19.54±0.08
0.01 6M 10.50±0.27 1.14±0.13 0.51±0.03 11.12±0.41 19.59±0.00

D.4.4 TRAINING DATASET COMPOSITION

In Tab. 12 we train only on the specified fraction of the dataset using a logarithmic scale from 0.01
to 0.64. For reference we also include the previous result acquired by training on the full vision
transformer HF datset. The results indicate that increasing training sample count is beneficial up
to a certain degree. The backbone trained on 64% of the data performs similarly or even better in
some cases compared to training on the full dataset, which also serves as motivation for training a
larger backbone given there is enough data available. Performance drops significantly when further
restricting the number of samples and remains around random guessing when training on 24M or
fewer tokens with the exception of EuroSAT and SVHN, similar to the performance of the HF ResNet
trained backbone that contains 35M tokens. Therefore it is beneficial to include more samples and
more diverse architectures over restricting the dataset to a single architecture class if there are not
enough samples available.

27


	Introduction
	Hugging Face Model Collection
	Methods
	Preliminary: the SANE backbone
	Masked Loss Normalization (MLN)
	Efficient Model Weight Processing

	Experiments
	Masked Loss Normalization (MLN)
	Impact of HF Model Collection Composition
	Generating Weights for Varying Datasets
	Generating Weights for varying Architectures
	Generating Weights for out of distribution tasks


	Related Work
	Discussion
	Technical Appendices and Supplementary Material
	Weight Space Backbones
	Choice of the Weight Space Backbone
	SANE
	Pre-Processing and Tokenization
	Downstream Tasks


	Implementation details
	List of generated models
	Finetuning params

	Additional Results & Ablations
	Generative Results
	Discriminative Results
	Baselines
	Datasets
	Architectures

	Ablations
	Masked Loss Normalization (MLN)
	Tokenization
	Positional Encodings
	Training Dataset Composition



