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Abstract

In this study, we present a novel training methodology for001
unsupervised domain adaptation (UDA) in the context of002
pose estimation. Existing UDA methods for pose estima-003
tion often struggle to generalize effectively across similar004
poses in the target data, even when such poses are well-005
represented in the source data. We attribute this challenge006
to the lack of uniform support for different poses and a sys-007
tematic training strategy for handling poses of varying com-008
plexity in the source domain. To address this challenge, we009
propose ACTUPose, an active curriculum training strategy010
that utilizes the diversity of poses in the source data. Within011
this framework we incorporate a method for quantifying012
pose complexity that dynamically orders the training data013
as the training progresses. We further introduce a new loss014
function aimed at improving skeletal structure prediction.015
Additionally, we incorporate a cross-domain feature loss to016
better utilize unlabeled real data. With this approach we017
demonstrate state-of-the-art performance across standard018
benchmark datasets for UDA in Pose Estimation.019

1. Introduction020

Pose estimation is an important problem in computer vi-021
sion with applications ranging from autonomous driving022
[35, 36], motion capture [8], and robotics [38]. However,023
despite remarkable progress, these tasks remain challeng-024
ing, primarily due to the inherent variability in poses across025
different domains, environments, and data sources. The026
robustness and accuracy of pose estimation models heav-027
ily rely on the availability of large and diverse annotated028
datasets for training. To this end, the synthesis of labeled029
training data using modern computer graphics[24, 30] is030
becoming increasingly relevant, allowing the creation of031
vast datasets under controlled conditions. These synthetic032
datasets reduce the need for laborious manual keypoint an-033
notations. However, pose estimation models trained on ren-034
dered synthetic data suffer from a domain gap problem,035

LSP Ground 
Truth

SOTA 
Prediction Similar Samples in SURREAL

Figure 1. LSP [15] ground truth, prediction by state-of-the-art
(SOTA): UDAPE [17] and similar poses in SURREAL [30]. De-
spite SURREAL’s diverse scenarios, UDAPE faces challenges in
effective generalization. Could this be linked to the uneven repre-
sentation of poses in the source domain?

arising from the differences in appearance, viewpoint and 036
lighting conditions. This can significantly affect the perfor- 037
mance of model to new, unseen domains. A specific gap 038
more relevant to pose estimation is the ‘pose distribution 039
gap’, a gap between available poses in the source and target 040
domains. Pose distribution gap under unsupervised domain 041
adaptation (UDA) has been scarcely studied in the litera- 042
ture, which is being addressed in this paper. With a careful 043
analysis of the state-of-the-art UDA models for pose estima- 044
tion, e.g., UDAPE [17], we noticed a significant limitation 045
that they struggle to generalize across poses in the target do- 046
main although similar poses were present in the source do- 047
main. As shown in Figure 1, there are similar poses present 048
in source domain SURREAL [30], albeit with difference in 049
3D orientation. However, the UDAPE model fails to pre- 050
dict these poses accurately. We hypothesize, that this failure 051
to generalize originates from the lack of uniform support 052
across poses of varying complexity in the source domain. 053
We support this hypothesis through a careful analysis of the 054
source domain poses as shown in Figure 3. Here, we sort 055
and categorize the source domain poses based on a com- 056
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plexity measure and observe that as we move towards the057
more difficult categories, the variability of poses increases058
indicating lower support. These observations motivated us059
to investigate methods to (a) categorize the source pose dis-060
tribution, (b) strategically use this categorization for train-061
ing and, (c) improve the generalization of pose estimation062
methods trained on synthetic data towards the target domain063
for the first time.064

Existing efforts to categorize the pose distribution [12],065
[5] fail to accurately represent the skeletal geometry as they066
account for each joint independently but do not model the067
plausibility of the overall pose. In contrast to the above068
methods, we introduce a method, to score the source do-069
main poses using an auxiliary deep learning model and cat-070
egorize the poses based on this score. We train the auxil-071
iary scoring model as a variational auto-encoder whose in-072
put and output supervision is the same 2D skeleton. The073
inability of the model to generalize towards some poses dur-074
ing testing helps estimate the complexity of the pose in the075
source distribution. This helps us to score and categorize076
the source pose distribution into closely related groups.077

The above mentioned categorization presents the chal-078
lenge of selecting samples effectively for training. To over-079
come this challenge, we propose a novel active curricu-080
lum learning strategy. The curriculum enables the model to081
choose the samples dynamically based on the model train-082
ing status. Finally, we primarily want to improve the perfor-083
mance of the model on the target domain data. We therefore084
use an existing unsupervised domain adaptation technique085
[17] and introduce additional guidance to the model in the086
form of new loss functions to generalize better to the target087
domain. The first loss function that we introduce, aids in088
preserving the geometry of the pose. The second loss func-089
tion that we introduce, aims to minimize the feature gap090
between similar poses in the source and target domains.091

We conduct extensive experiments on UDA benchmarks092
and summarize our key contributions as follows:093

• Pose Analysis: We use a VAE-based scoring094
mechanism[9] to assess pose complexity, enabling095
efficient sorting and categorization.096

• Active Curriculum Learning: We propose a novel ac-097
tive curriculum learning strategy to strategically use the098
categorized poses for training, ensuring uniform utiliza-099
tion of poses of varying complexity.100

• Enhanced UDA Losses: We extend [17] with two101
new losses—one maintaining pose geometry and an-102
other aligning source-target features—to improve domain103
adaptation.104

• Performace Gain: Our method improves accuracy by105
2.3% on LSP[15], 4.5% on the Human3.6M[13] dataset,106
and 1.1% on H3D[39] dataset.107

Together we refer to the above contributions as our method108
ACTUPose.109

2. Related Work 110

Curriculum Learning is a training paradigm that struc- 111
tures sample presentation based on difficulty. Introduced 112
by [2], it enhances convergence and generalization by se- 113
quencing training samples effectively. A related approach, 114
Self-Paced Learning [19], prioritizes easy examples first, 115
gradually incorporating harder ones. Unlike these meth- 116
ods, our strategy integrates both external difficulty scores 117
and model performance for dynamic training adjustments. 118
Curriculum learning has been applied across various tasks, 119
including semi-supervised image classification [10], lan- 120
guage modeling [11], weakly-supervised object detection 121
[32, 37], localization [21, 29], person re-identification [31], 122
semantic segmentation [1, 6], and image generation [27], 123
but remains underexplored in human pose estimation. No- 124
table efforts include a multi-stage curriculum strategy [25] 125
that progressively trains on easier poses before introducing 126
complex ones, improving 3D pose estimation in challeng- 127
ing cases. Another approach [7] defines difficulty using 128
dataset statistics and multi-model evaluations. Building on 129
these, our work introduces a more adaptive curriculum that 130
not only categorizes poses but dynamically selects train- 131
ing samples based on real-time model feedback, improving 132
generalization to complex and unseen poses. While cur- 133
riculum learning has been explored in source-free domain 134
adaptation [4, 16], its application in source-to-target UDA 135
remains largely untapped. 136

Self-Training with pseudo labels Self-training with 137
pseudo-labels involves iteratively training a model on la- 138
beled data, generating pseudo-labels for unlabeled data, and 139
fine-tuning on the combined set to improve performance 140
in semi-supervised or unsupervised learning. Some works 141
which prove the efficacy of self training using psuedo la- 142
bels includes [3, 22, 23]. In the context of UDA, there are 143
a few works utilizing self-training for classification, seg- 144
mentation, and detection tasks. For example, [41, 42] uti- 145
lized self-training for classification and segmentation adap- 146
tation. [18] utilized weak self-training for single-shot de- 147
tector adaptation. [26] used pseudo-labeled data but the la- 148
bels are from extra video data annotation, which belongs 149
to weakly-supervised domain adaptation. For pose estima- 150
tion, UDAPE[17] uses self training to enforce consistency 151
between student and teacher model, using target domain 152
pseudo labels. On the contrary, we propose a cross domain 153
loss using both source and target domain psuedo labels. Ad- 154
ditionally, we improve the consistency loss used in UDAPE 155
[17] by adding skeleton structure information derived from 156
target psuedo labels. There are some existing efforts to cat- 157
egorize the human pose distribution, using joint distances or 158
similar heuristics and k-means clustering [12]. These nei- 159
ther work for very large dataset such as SURREAL[30], nor 160
do they provide a rank or order to the created clusters. To 161
address this, we use Pose-VAE[9] to categorize and rank 162
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Figure 2. Pose VAE is utilized to categorize the source data into k
bins in the order of increasing complexity.

samples into n bins.163

3. ACTUPose164

UDA is characterised by a labeled source dataset S =165
{(xi

s, y
i
s)}Ni=1, where xs is the source image, ys is the166

corresponding keypoint annotation and N is the number167
of source images and an unlabeled target dataset T =168
{(xi

t)}Mi=1, where xt is the target image and M is the num-169
ber of target images. We train a keypoint regression model170
for pose estimation using the source dataset in a supervised171
manner, and utilize the target domain data in an unsuper-172
vised manner to transfer the learned knowledge to the target173
domain. Figure 4, visualizes our proposed approach called174
ACTUPose. The proposed approach follows an active cur-175
riculum strategy to train the keypoint regression model.176
This involves first sorting the data based on a difficulty score177
and subsequently, training the model with a curricular strat-178
egy which actively guides and samples relevant data from179
the source domain (Section 3.1). We then use an unsuper-180
vised domain adaptation method to train on the unlabeled181
target data (Section 3.2). Both these components and the182
training procedure is described in detail in the following183
subsections.184

3.1. Curriculum Training185

In this section, we describe the proposed active curriculum186
strategy for guiding source domain training of the model.187
We first introduce a scoring and sorting mechanism and sub-188
sequently discuss the curriculum strategy.189

3.1.1. Pose VAE190

We train a variational auto-encoder (VAE) to estimate the191
complexity of a pose in the source dataset, to rank the data.192
The input and output supervision for the VAE is the same193
set of 2D keypoints. These keypoints are flattened out and194
passed as input to the VAE. The VAE follows an encoder-195
decoder architecture, the outputs of the encoder, forming196
the latent space, are the mean and log variance. The de-197
coder input is sampled from a normal distribution parame-198
terized by the these two values. The parameters of the latent199
distribution are constrainted using the Kulback-Leibler di-200
vergence loss. The loss function used to train the VAE is201
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Figure 3. The box plot represents the pose variation observed
within each bin. An increase in mean and variance is observed,
upon moving towards more complex bins. Higher variance indi-
cates more diversity of poses within the bin and higher mean indi-
cates less support for poses.

mentioned below in equation 1. 202

LV AE =
2K∑
i=0

∥yis− ŷis∥2+λKL[N (µs, σs),N (0, I)] (1) 203

Here, yis denotes the ith keypoint location for a pose 204
sampled from the source domain, K is the number of key- 205
points in a pose, ŷis is the prediction of VAE decoder for 206
the ith keypoint, KL denotes the Kulback-Leibler diver- 207
gence loss, N is a normal distribution with µs and σs as 208
mean and standard deviation of the VAE’s latent space. The 209
trained VAE enables us to compute the reconstruction error 210
as a mean-squared-error as defined in equation 2 for a given 211
pose ys and VAE output ŷs, 212

score =

2K∑
i=0

∥yis − ŷis∥2 (2) 213

If the reconstruction error is high, the model is unable 214
to reconstruct a pose. This provides a useful mechanism 215
to score poses in the source domain. Using this score, we 216
categorize the source poses into a fixed number of bins. To 217
achieve this, we sort all poses from the least to the largest 218
reconstruction error and then uniformly divide them into Nb 219
bins, each containing same number of poses. We hypothe- 220
size that the reconstruction error is a measure of pose com- 221
plexity and limited support for such poses in the dataset. 222
This hypothesis is supported in Figure 3. Here, we compute 223
the variability of poses within a bin using the mean angular 224
difference. The measure is defined in equation 6 of Section 225
3.4, where we define to identify suitable pairs to apply a 226
cross-domain loss, here we apply it to illustrate bin charac- 227
teristics. 228

3.1.2. Active Curriculum 229

As discussed in the previous subsection, the data is catego- 230
rized into bins based on the pose complexity. In order to 231
use this data to train a pose estimation model, we progres- 232
sively train from the low complexity to the high complexity 233
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Figure 4. ACTUPose: The source data is chosen using the Active Curriculum Sampling for each epoch. The student model is trained using
this sampled data in a supervised manner. The target dataset is utilised to train the student model using target domain loss applied between
student and teacher predictions along with cross domain feature loss applied between the features of similar source and target poses. Note
that Lmse and Lconsistency are same as used in baseline model, UDAPE[17].

poses. The amount of data sampled from each bin depends234
on the current training epoch. Their relative contribution to-235
wards training the model, shifts towards the more complex236
bins as the training progresses. The sampling follows a soft237
training schedule based on a Gaussian distribution centered238
around a chosen bin. This is in contrast to a conventional239
curriculum schedule that chooses samples from a single bin240
for an entire training epoch. This distribution schedule is241
visualized in Figure 5 The probability pj of sampling from242
a bin j is defined in the equation below.243

pj = exp
−(sj − µg)

2

2(σsj)2
, j ∈ {0 . . . Nb} (3)244

Here, Nb is the total number of bins, µg is the mean score245
for bin g, around which the Gaussian has its peak for the246
epoch e. g refers to the bin with the highest contribution in247
epoch e, g = min(λNbe/epochs,Nb). We refer to λ as a248
pacing parameter that controls the rate at which the Gaus-249
sian curve’s peak moves towards the harder bins. epochs250
refers to the total number of epochs the model is trained for.251
The score sj in equation 3 is the mean reconstruction error252
for a bin j. Total number of points sampled from a bin is253
therefore pj(N/Nb).254

To make this sampling schedule sensitive to the current255
ability of the pose estimation model to predict a pose, we256
incorporate the model’s confidence into the score computa-257
tion. The motivation is to re-rank the source domain images258
in accordance to how difficult it is for the model to predict259
the pose in the image. The updated score for a sample is260
computed using the equation below.261

score =
K∑K

i=0 max(Ĥi
s)
score, (4)262

where, Ĥi
s is the predicted heatmap 1 for the ith keypoint.263

1we follow the standard pose estimation model training of predicted a
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Figure 5. Active sample selection across epochs and bins: Visu-
alizing data distribution evolution. Blue, red, and green represent
the data samples distribution at different epochs. The area under
the curves represent the data sampled for these epochs.

The score is essentially weighted by the average model pre- 264
diction confidence, from the previous epoch of training. In- 265
tuitively, the higher the confidence, the lower the score, and 266
hence the better the model’s understanding of the source 267
data point. On the contrary, a lower confidence indicates 268
that the model finds it difficult to estimate the pose for a 269
source data point. At the end of each epoch, the source data 270
is sorted based on the updated scores and reassigned to bins, 271
following the schedule in Equation 3. This reranking pro- 272
cess is illustrated in Figure 6. 273

3.2. Unsupervised Domain Adaptation 274

The previous subsection introduced our active curriculum 275
training strategy for training the model with the source 276
domain data. However, we also use the unlabeled tar- 277
get dataset T , within an unsupervised domain adaptation 278
(UDA) setting. For domain adaptation, we use an existing 279
state-of-the-art approach UDAPE [17]. UDAPE follows a 280
student-teacher learning paradigm for pose estimation. It 281
additionally uses a consistency loss on pseudo-labels and 282
bridges the appearance level gap using a bi-directional style 283

KxHxW heatmaps as in [33]
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Figure 6. Active Curriculum Sampling organizes the source
dataset into bins using active sampling for model training. Model
predictions guide low confidence samples to higher bins, provid-
ing increased exposure. Updated scores and dataset reordering oc-
cur for the next epoch.

transfer method. We introduce two more losses to make the284
model aware of skeletal structure and to bring the features285
between the two domains closer. These losses are explained286
in the subsequent subsections. We refer to the total loss used287
by UDAPE [17] as LUDAPE . This is a combination of the288
supervised loss and the consistency loss.289

3.3. EvalPose Loss290

The mean squared error loss has been conventionally used291
to train models for pose estimation [33]. However, this loss292
only considers the locations of the individual keypoints but293
fails to explicitly capture the relationship between the key-294
points within a pose. We therefore, explicitly define key-295
point pairs and a vector joining each pair to define the re-296
lationship between them. We compute the cosine similarity297
between the predicted keypoint vectors and the labeled key-298
point vectors for the source domain, or, the pseudo-labeled299
keypoint vectors, by the teacher model, for the target do-300
main. For a (pseudo-)labeled keypoint vector defined as vk

d301
and a predicted keypoint vector defined as v̂k

d, the loss is302
computed as follows.303

Levalpose = −
∑
k∈L

vk
d .v̂

k
d

∥vk
d∥∥v̂k

d∥
, d ∈ {s, t} (5)304

Here L refers to set of keypoint pairs which define the vec-305
tor connections and d refers to the source s or target t do-306
main. Note that this loss is computed only within the same307
domain and not across domains. In Figure 8, we demon-308
strate that EvalPose is more sensitive to skeletal coherence309
despite minor changes in PCK, highlighting its effective-310
ness in ACTUPose.311

3.4. Cross-Domain Loss312

We additionally introduce a cross-domain feature loss to313
bring features of the source and target domain closer. For314
a batch of source and target domain samples we predict the315
pose from the student and the teacher models respectively.316
We find similar pairs of poses using a mean angular dif-317
ference between poses. The angles are formed by custom318

Mean Angular Difference for
 Mapping Similar Skeletons

Source Domain

Target Domain

Minimizing Feature Gap 
Between Domains

Cross Domain Feature Loss

Figure 7. Mean angular difference is utilized to mine similar pairs
in the source and target domain. The cross domain feature loss is
applied on these pairs to improve the model’s domain adaptation
capabilities.

defined keypoint triplets within a pose. We prune out key- 319
points with low prediction confidence in the target domain 320
data and their corresponding triplets before finding similar 321
poses to avoid erroneous matches. Once the similar pairs 322
are identified across the batches the student model is trained 323
using the loss function defined below. 324

Lcross-domain = −
∑

(z1,z2)∈Z

fz1s .fz2t
∥fz1s ∥∥fz2t ∥

(6) 325

where, Z is the set of similar pairs across source and tar- 326
get and ft, fs represent the features for the target and source 327
datapoint from the teacher and the student model respec- 328
tively. The set Z is populated as follows. We define the set 329
of angles Θs formed by the source domain predicted poses 330
Θs = {θ1s . . . θSs } and similarly Θt = {θ1t . . . θTt } for the 331
target domain. Here, θs/t represents a vector of all the an- 332
gles between custom defined triplets for a single predicted 333
pose in the source or target domains, S and T represent the 334
number of images in the source and target batches. The 335
mean angular difference between every pair of source and 336
target batch poses is defined as follows. 337

∆Θ(m,n) =
∥θms − θnt ∥

K
∀m ∈ S, ∀n ∈ T (7) 338

∆Θ is an SxT matrix. Only those pose pairs with a value 339
lesser than a threshold value Γ (∆Θ < Γ) are considered 340
similar pairs within the set Z. Hence, the total loss to train 341
the student model is, 342

L = w1LUDAPE + w2Levalpose + w3Lcrossdomain (8) 343

The teacher model gets updated through an exponential 344
moving average setup following Mean Teacher [28]. 345

4. Experiments and Results 346

In this section, we present the experimental evaluation of 347
our proposed method, ACTUPose, across two key tasks: (1) 348
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human body pose estimation and (2) hand pose estimation.349
These evaluations are conducted using benchmark datasets350
relevant to each domain. We assess the performance of351
ACTUPose by comparing it against state-of-the-art (SOTA)352
baselines, highlighting its improvements. Additionally, we353
employ the EvalPose score, a heuristic metric that quanti-354
fies the structural accuracy of the predicted pose in relation355
to the ground truth. To further support our numerical find-356
ings, we provide qualitative results, presented in Figure 8.357

Datasets. The SURREAL [30] dataset is a synthetically-358
generated dataset rendered from sequences of human mo-359
tion capture data. The dataset has 6 million labeled360
frames of human body poses covering a wide variety of ac-361
tions. Leeds Sports Pose [15] (LSP) is a real-world out-362
door human pose dataset capturing individuals in a wide363
range of poses, including challenging scenarios with occlu-364
sions. Comprising 2000 images, it provides annotations for365
key human body joint locations, primarily gathered during366
sports activities. Human3.6M [13] (H3.6M) is a real-world367
video dataset for human body pose estimation that includes368
data of diverse indoor activities. It has a total of 3.6 mil-369
lion frames. We follow the training and evaluation splits370
defined in [20]. The dataset has 5 subjects (S1, S5, S6, S7,371
S8) for training and the remaining 2 subjects (S9, S11) for372
testing. This split is typically adopted to train and evaluate373
models for human pose estimation. Rendered Hand Pose374
Dataset [40] (RHD), is a synthetic dataset for the task of375
hand pose estimation. It encompasses a wide range of hand376
poses captured under varying lighting conditions and com-377
prises 41.2k training images, 2.7k test images, and annota-378
tions for 21 hand keypoints. Hand-3D-Studio dataset [39]379
(H3D), abbreviated as H3D, is a real-world dataset captur-380
ing multi-view indoor hand poses. It has a collection of 22k381
frames. Following a similar partitioning approach as used382
in the RegDA [14] framework, a subset of 3.2k frames is383
designated as the test set.384

Evaluation Metrics. In this paper, we utilize PCK for385
quantitative analysis and EvalPose as a heuristic score to as-386
sess structural coherence and perceptual correctness. PCK387
Score: The Percentage of Correct Keypoints (PCK) mea-388
sures the precision of body joint localization. A predicted389
joint is considered correct if its distance from the ground-390
truth location is within a specified threshold. We report391
results using PCK@0.05, which quantifies the proportion392
of correct predictions within 5% of the image size—higher393
values indicate greater accuracy. In addition to PCK, we use394
EvalPose, a visual perception score designed to evaluate the395
structural plausibility and perceptual realism of predicted396
poses. Unlike PCK, which focuses on numerical correct-397
ness, EvalPose captures the geometric consistency of poses,398
bridging the gap between keypoint accuracy and human per-399

Table 1. PCK@0.05 score on task SURREAL → LSP. Sld: shoul-
der, Elb: Elbow. We observe that our method ACTUPose outper-
forms the UDAPE model significantly across all joints.

Method PCK

Sld Elb Wrist Hip Knee Ankle All

Source Only 51.5 65.0 62.9 68.0 68.7 67.4 63.9
Oracle 95.3 91.8 86.9 95.6 94.1 93.6 92.9

RegDA [14] 62.7 76.7 71.1 81.0 80.3 75.3 74.6
PoseDA [34] 82.3 78.4 73.2 74.8 79.7 78.7 77.9
UDAPE [17] 69.2 84.9 83.3 85.5 84.7 84.3 82.0
UDAPE + VAE-HM [9] 68.5 86.2 84.7 84.8 85.8 85.6 82.6
ACTUPose (Ours) 71.6 87.7 86.5 88.8 87.5 87.1 84.9

Table 2. Avg PCK@0.05 on benchmark tasks, SURREAL → Leed
Sports Pose (LSP), SURREAL → Human3.6M (H3.6M) and Ren-
dered Hand Pose (RHD) → Hand-3D-Studio (H3D).

Method
SURREAL → LSP SURREAL → H3.6M RHD → H3D

AvgPCK AvgPCK AvgPCK

Source Only 63.9 67.3 61.8
Oracle 92.9 92.9 95.8

RegDA [14] 74.6 75.6 72.5
PoseDA [34] 77.9 79.6 N/A
UDAPE [17] 82.0 79.0 79.6
UDAPE + VAE-HM [9] 82.6 78.3 79.8
ACTUPose (Ours) 84.9 82.8 80.9

ception. It follows the same formulation detailed in Sec- 400
tion 3.3 and measures the structural similarity of predicted 401
poses. As illustrated in figure 8, PCK alone may not fully 402
capture variations in pose realism. EvalPose enhances in- 403
terpretability by providing insights into the model’s ability 404
to generate natural and coherent poses, making it a valuable 405
complementary measure. 406

Experimental Setup Our framework builds upon 407
UDAPE [17]. In the training phase of our experiment, 408
the VAE-based (3.1.1) pose categorization orders samples 409
into Nb = 25 bins arranged in increasing order of pose 410
complexity. Employing the curriculum training strategy, 411
we select samples across bins for each epoch, actively 412
being shuffled on basis of model performance. This 413
sampling and shuffling operation occurs before each epoch. 414
The pacing parameter λ, governs the rate of progression 415
through bins; a higher λ results in fewer epochs with a 416
bin as the peak, while a decrease allows more time to 417
sample from a bin per epoch. For the Validation phase, 418
we categorize the target dataset into 25 bins of equal sizes 419
using the category-based sampling approach outlined in 420
Section 3.1.1. This categorization is useful to highlight our 421
insights into the domain adaptation model’s generalization 422
capabilities across increasing pose complexities as there 423
is a clear trend in model performance on increasingly 424
complex bins. 425
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Figure 8. Qualitative comparison of ACTUPose, UDAPE[17], and UDAPE+VAE-HM[9] on LSP[15], Human3.6M[13], and Hand 3D
Studio[39] datasets. ACTUPose consistently performs better, especially on challenging poses. While PCK measures keypoint localization,
EvalPose is more sensitive to skeletal coherence. Significant EvalPose differences in samples like (c) and (f), despite minor PCK changes,
highlight its effectiveness. This validates EvalPose as the loss function in ACTUPose, ensuring consistent improvements.

Quantitative Results. We evaluate our approach using426
well-established UDA benchmark experiments: (1) SUR-427
REAL → LSP, (2) SURREAL → H3.6M, and (3) RHD428
→ H3D. The results of these experiments are summarized429
in Table 1 and Table 2. We compare our method against430
several baselines: (a) Source-only training: The model431
is trained only on the labeled source domain (b) Oracle:432
The model is trained directly on the target domain’s train-433
ing set. (c) RegDA [14]: A baseline UDA approach us-434
ing adversarial domain adaptation. (d) PoseDA [34]: A435
baseline UDA approach leveraging hierarchical keypoints436
feature alignment to improve cross-domain pose estima-437
tion.(e) UDAPE [17]: A baseline UDA approach that fol-438
lows a student-teacher learning paradigm. (f) UDAPE +439
VAE-HM [9]: Using a VAE-based categorization, we di-440
vide poses into 25 bins and select the most complex 8 bins441
for training the model. (Section 3.1.1). (g) ACTUPose:442
Our proposed approach, which incorporates an active cur-443
riculum training strategy. Table 1 presents the per-joint444
PCK scores and the overall average PCK for the SURREAL445
→ LSP experiment. Our proposed method, ACTUPose,446
achieves superior performance compared to state-of-the-art447
UDA approaches, RegDA [14] and UDAPE [17], demon-448
strating consistent improvements across all joints as well as449
in overall accuracy. These results highlight the effectiveness450
of our training strategy in efficiently utilizing source domain451
samples to enhance adaptation to the target domain. Addi-452
tionally, we observe that UDAPE + VAE-HM outperforms453
the UDAPE baseline while using only 33% of the source454
dataset, with its advantage being most pronounced in chal-455
lenging scenarios, particularly within the hard bins (Fig-456
ure 9). However, ACTUPose consistently achieves superior457
performance across all bins except the last three, ultimately458
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Bins By Increasing Complexity
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

UDAPE UDAPE + VAE-HM ACTUPose

Figure 9. Comparison of UDAPE, UDAPE+VAE-HM, and AC-
TUPose on the SURREAL → LSP task, with bins arranged by
increasing pose complexity. UDAPE+VAE-HM demonstrates su-
perior performance in later bins due to its training on diverse
and challenging poses. ACTUPose consistently outperforms both
UDAPE and UDAPE+VAE-HM across nearly all bins, highlight-
ing its effectiveness in domain adaptation.

surpassing both methods overall. Table 2 reports the PCK 459
scores for all benchmark experiments, further demonstrat- 460
ing the effectiveness of ACTUPose. Our approach consis- 461
tently surpasses state-of-the-art models across all datasets, 462
achieving a 2.3% improvement in SURREAL → LSP, 4.5% 463
in SURREAL → H3.6M, and 1.1% in RHD → H3D. These 464
results underscore the robustness of ACTUPose in enhanc- 465
ing domain adaptation performance across diverse datasets. 466

Figure 9 illustrates the performance of different meth- 467
ods across 25 clustered bins of the validation set. Each bin 468
contains three bar plots: the first represents UDAPE[17], 469
the second corresponds to the UDAPE + VAE-HM [9] for 470
domain adaptation, and the third represents the proposed 471
method, ACTUPose. To maintain visual interpretability, 472
other methods are omitted. The y-axis denotes the average 473
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(a) (b)

(c)

Figure 10. Ablation Study showing the effect of different training
parameters on Avg PCK@0.05. (a) Effect of number of bins (b)
Effect of the pacing factor and (c) Impact of sigma value on data
distribution. Best optimal performance is obtained at NB = 25,
λ = 2.0 and σ = 0.25).

keypoint score, calculated as the mean accuracy per pose474
within each bin. As bin complexity increases, the advantage475
of UDAPE + VAE-HM becomes more evident, benefiting476
from training on diverse and high-variation poses captured477
in the later bins. However, ACTUPose follows a progres-478
sive adaptation strategy, transitioning from simple to com-479
plex bins, leading to overall performance gains across all480
bins and consistently surpassing state-of-the-art models.481

Qualitative Results. Figure 8 presents a qualitative com-482
parison of ACTUPose against UDAPE and UDAPE + VAE-483
HM across three benchmark UDA tasks: human pose esti-484
mation on LSP and Human3.6M datasets, and hand pose485
estimation on the H3D dataset. PCK is used to assess key-486
point localization accuracy, while EvalPose evaluates the487
structural plausibility of predicted poses. ACTUPose con-488
sistently outperforms baseline methods, achieving higher489
PCK scores across all samples. Moreover, EvalPose cap-490
tures structural refinements even in cases where PCK shows491
minimal variation, as seen in samples (c) and (e), highlight-492
ing ACTUPose’s ability to produce anatomically coherent493
poses. This further validates the use of EvalPose as a loss494
function within ACTUPose, ensuring consistent improve-495
ments across all samples.496

Ablation Study. We conduct an ablation study to exam-497
ine the effect of three key parameters in Active Curriculum498
Learning: the number of bins, the pacing factor (λ), and499
the imapct of (σ) value on data distribution. Number of500
Bins: The number of bins determines how the dataset is501

divided into bins using the reconstruction error from Pose- 502
VAE 3.1.1. Too few bins mix different complexity lev- 503
els, while too many bins create small groups with very 504
limited data. The Avg PCK@0.05 for the SURREAL → 505
LSP dataset with respect to change in the number of bins is 506
shown in figure 4(a), From figure, We observe that the best 507
performance is achieved at 25 bins. Pacing Factor: The 508
pacing factor λ determines the rate at which the Gaussian 509
curve’s peak moves towards the harder bins. A very high λ 510
value can end up spending very less time or epochs on less 511
complex data leading to not learning the basic poses, while 512
a very low λ value slows the training by overspending time 513
on early epochs and increases the risk of overfitting. The 514
Avg PCK@0.05 for the SURREAL → LSP dataset at dif- 515
ferent λ value is shown in figure 4(b). From figure, We 516
observe that the optimal performance is achieved at λ = 2. 517
Impact of Sigma: The parameter σ controls how much data 518
from each bin contributes compared to the peak bin at any 519
given epoch. A larger σ results in a broad curve, sampling 520
data from distant bins, which disrupts the curriculum and 521
includes most of the dataset in every epoch. A very small 522
σ creates a narrow curve, sampling only from nearby bins. 523
Figure 4(c) shows Avg PCK@0.05 for the SURREAL → 524
LSP dataset across σ values. We find that σ = 0.25 pro- 525
vides a well-structured curriculum and optimal model per- 526
formance. 527

Additionally, we conducted an extensive ablation study 528
on the weights of different loss functions used in the pro- 529
posed method, ACTUPose. Keeping w1 = 1.0 (UDAPE 530
loss) fixed, we varied w2 (EvalPose loss) and w3 (Cross- 531
domain loss) within the range of 0 to 1. Our experiments 532
show that incorporating both losses improves performance, 533
with the best results achieved when w2 = 0.1 and w3 = 534
0.01, yielding the highest Avg PCK of 84.9 on the SUR- 535
REAL → LSP, 82.8 on the SURREAL → Human3.6M and 536
80.9 on the RHD → H3D. 537

5. Conclusion 538

In conclusion, our work introduces ACTUPose, a novel 539
unsupervised domain adaptation framework for pose 540
estimation that enhances generalization across diverse 541
target domains. By leveraging an active curriculum training 542
strategy, ACTUPose progressively adapts to increasing 543
pose complexity, ensuring a more structured learning 544
process. The introduction of a structural consistency loss 545
refines skeletal predictions, while a cross-domain feature 546
alignment mechanism optimally leverages unlabeled 547
real data. Extensive evaluations on multiple bench- 548
mark datasets demonstrate that ACTUPose consistently 549
outperforms existing methods, achieving state-of-the- 550
art accuracy and robustness in the pose estimation task. 551

552
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