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Abstract

In this study, we present a novel training methodology for
unsupervised domain adaptation (UDA) in the context of
pose estimation. Existing UDA methods for pose estima-
tion often struggle to generalize effectively across similar
poses in the target data, even when such poses are well-
represented in the source data. We attribute this challenge
to the lack of uniform support for different poses and a sys-
tematic training strategy for handling poses of varying com-
plexity in the source domain. To address this challenge, we
propose ACTUPose, an active curriculum training strategy
that utilizes the diversity of poses in the source data. Within
this framework we incorporate a method for quantifying
pose complexity that dynamically orders the training data
as the training progresses. We further introduce a new loss
function aimed at improving skeletal structure prediction.
Additionally, we incorporate a cross-domain feature loss to
better utilize unlabeled real data. With this approach we
demonstrate state-of-the-art performance across standard
benchmark datasets for UDA in Pose Estimation.

1. Introduction

Pose estimation is an important problem in computer vi-
sion with applications ranging from autonomous driving
[35, 36], motion capture [8], and robotics [38]. However,
despite remarkable progress, these tasks remain challeng-
ing, primarily due to the inherent variability in poses across
different domains, environments, and data sources. The
robustness and accuracy of pose estimation models heav-
ily rely on the availability of large and diverse annotated
datasets for training. To this end, the synthesis of labeled
training data using modern computer graphics[24, 30] is
becoming increasingly relevant, allowing the creation of
vast datasets under controlled conditions. These synthetic
datasets reduce the need for laborious manual keypoint an-
notations. However, pose estimation models trained on ren-
dered synthetic data suffer from a domain gap problem,
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Figure 1. LSP [15] ground truth, prediction by state-of-the-art
(SOTA): UDAPE [17] and similar poses in SURREAL [30]. De-
spite SURREAL’s diverse scenarios, UDAPE faces challenges in
effective generalization. Could this be linked to the uneven repre-
sentation of poses in the source domain?

arising from the differences in appearance, viewpoint and
lighting conditions. This can significantly affect the perfor-
mance of model to new, unseen domains. A specific gap
more relevant to pose estimation is the ‘pose distribution
gap’, a gap between available poses in the source and target
domains. Pose distribution gap under unsupervised domain
adaptation (UDA) has been scarcely studied in the litera-
ture, which is being addressed in this paper. With a careful
analysis of the state-of-the-art UDA models for pose estima-
tion, e.g., UDAPE [17], we noticed a significant limitation
that they struggle to generalize across poses in the target do-
main although similar poses were present in the source do-
main. As shown in Figure 1, there are similar poses present
in source domain SURREAL [30], albeit with difference in
3D orientation. However, the UDAPE model fails to pre-
dict these poses accurately. We hypothesize, that this failure
to generalize originates from the lack of uniform support
across poses of varying complexity in the source domain.
We support this hypothesis through a careful analysis of the
source domain poses as shown in Figure 3. Here, we sort
and categorize the source domain poses based on a com-
plexity measure and observe that as we move towards the



more difficult categories, the variability of poses increases
indicating lower support. These observations motivated us
to investigate methods to (a) categorize the source pose dis-
tribution, (b) strategically use this categorization for train-
ing and, (c) improve the generalization of pose estimation
methods trained on synthetic data towards the target domain
for the first time.

Existing efforts to categorize the pose distribution [12],
[5] fail to accurately represent the skeletal geometry as they
account for each joint independently but do not model the
plausibility of the overall pose. In contrast to the above
methods, we introduce a method, to score the source do-
main poses using an auxiliary deep learning model and cat-
egorize the poses based on this score. We train the auxil-
iary scoring model as a variational auto-encoder whose in-
put and output supervision is the same 2D skeleton. The
inability of the model to generalize towards some poses dur-
ing testing helps estimate the complexity of the pose in the
source distribution. This helps us to score and categorize
the source pose distribution into closely related groups.

The above mentioned categorization presents the chal-
lenge of selecting samples effectively for training. To over-
come this challenge, we propose a novel active curricu-
lum learning strategy. The curriculum enables the model to
choose the samples dynamically based on the model train-
ing status. Finally, we primarily want to improve the perfor-
mance of the model on the target domain data. We therefore
use an existing unsupervised domain adaptation technique
[17] and introduce additional guidance to the model in the
form of new loss functions to generalize better to the target
domain. The first loss function that we introduce, aids in
preserving the geometry of the pose. The second loss func-
tion that we introduce, aims to minimize the feature gap
between similar poses in the source and target domains.

We conduct extensive experiments on UDA benchmarks
and summarize our key contributions as follows:

• Pose Analysis: We use a VAE-based scoring
mechanism[9] to assess pose complexity, enabling
efficient sorting and categorization.

• Active Curriculum Learning: We propose a novel ac-
tive curriculum learning strategy to strategically use the
categorized poses for training, ensuring uniform utiliza-
tion of poses of varying complexity.

• Enhanced UDA Losses: We extend [17] with two
new losses—one maintaining pose geometry and an-
other aligning source-target features—to improve domain
adaptation.

• Performace Gain: Our method improves accuracy by
2.3% on LSP[15], 4.5% on the Human3.6M[13] dataset,
and 1.1% on H3D[39] dataset.

Together we refer to the above contributions as our method
ACTUPose.

2. Related Work
Curriculum Learning is a training paradigm that struc-
tures sample presentation based on difficulty. Introduced
by [2], it enhances convergence and generalization by se-
quencing training samples effectively. A related approach,
Self-Paced Learning [19], prioritizes easy examples first,
gradually incorporating harder ones. Unlike these meth-
ods, our strategy integrates both external difficulty scores
and model performance for dynamic training adjustments.
Curriculum learning has been applied across various tasks,
including semi-supervised image classification [10], lan-
guage modeling [11], weakly-supervised object detection
[32, 37], localization [21, 29], person re-identification [31],
semantic segmentation [1, 6], and image generation [27],
but remains underexplored in human pose estimation. No-
table efforts include a multi-stage curriculum strategy [25]
that progressively trains on easier poses before introducing
complex ones, improving 3D pose estimation in challeng-
ing cases. Another approach [7] defines difficulty using
dataset statistics and multi-model evaluations. Building on
these, our work introduces a more adaptive curriculum that
not only categorizes poses but dynamically selects train-
ing samples based on real-time model feedback, improving
generalization to complex and unseen poses. While cur-
riculum learning has been explored in source-free domain
adaptation [4, 16], its application in source-to-target UDA
remains largely untapped.

Self-Training with pseudo labels Self-training with
pseudo-labels involves iteratively training a model on la-
beled data, generating pseudo-labels for unlabeled data, and
fine-tuning on the combined set to improve performance
in semi-supervised or unsupervised learning. Some works
which prove the efficacy of self training using pseudo la-
bels includes [3, 22, 23]. In the context of UDA, there are
a few works utilizing self-training for classification, seg-
mentation, and detection tasks. For example, [41, 42] uti-
lized self-training for classification and segmentation adap-
tation. [18] utilized weak self-training for single-shot de-
tector adaptation. [26] used pseudo-labeled data but the la-
bels are from extra video data annotation, which belongs
to weakly-supervised domain adaptation. For pose estima-
tion, UDAPE[17] uses self training to enforce consistency
between student and teacher model, using target domain
pseudo labels. On the contrary, we propose a cross domain
loss using both source and target domain pseudo labels. Ad-
ditionally, we improve the consistency loss used in UDAPE
[17] by adding skeleton structure information derived from
target pseudo labels. There are some existing efforts to cat-
egorize the human pose distribution, using joint distances or
similar heuristics and k-means clustering [12]. These nei-
ther work for very large dataset such as SURREAL[30], nor
do they provide a rank or order to the created clusters. To
address this, we use Pose-VAE[9] to categorize and rank
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Figure 2. Pose VAE is utilized to categorize the source data into k
bins in the order of increasing complexity.

samples into n bins.

3. ACTUPose

UDA is characterised by a labeled source dataset S =
{(xi

s, y
i
s)}Ni=1, where xs is the source image, ys is the

corresponding keypoint annotation and N is the number
of source images and an unlabeled target dataset T =
{(xi

t)}Mi=1, where xt is the target image and M is the num-
ber of target images. We train a keypoint regression model
for pose estimation using the source dataset in a supervised
manner, and utilize the target domain data in an unsuper-
vised manner to transfer the learned knowledge to the target
domain. Figure 4, visualizes our proposed approach called
ACTUPose. The proposed approach follows an active cur-
riculum strategy to train the keypoint regression model.
This involves first sorting the data based on a difficulty score
and subsequently, training the model with a curricular strat-
egy which actively guides and samples relevant data from
the source domain (Section 3.1). We then use an unsuper-
vised domain adaptation method to train on the unlabeled
target data (Section 3.2). Both these components and the
training procedure is described in detail in the following
subsections.

3.1. Curriculum Training
In this section, we describe the proposed active curriculum
strategy for guiding source domain training of the model.
We first introduce a scoring and sorting mechanism and sub-
sequently discuss the curriculum strategy.

3.1.1. Pose VAE
We train a variational auto-encoder (VAE) to estimate the
complexity of a pose in the source dataset, to rank the
data. The input and output supervision for the VAE is the
same set of 2D keypoints. These keypoints are flattened out
and passed as input to the VAE. The VAE follows an en-
coder–decoder architecture, as illustrated in Figure 2. The
encoder produces the latent space parameters: a mean and
log-variance vector. The decoder then samples from a nor-
mal distribution parameterized by these two values. The
latent distribution is regularized using the Kullback–Leibler
divergence loss. The loss function used to train the VAE is
mentioned below in Equation 1.
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Figure 3. The box plot shows the mean angular difference be-
tween poses within each bin, representing pose variation. As the
bins progress towards more complex poses, both the mean and
variance increase. A higher mean indicates greater deviation from
supported poses, while a higher variance reflects increased diver-
sity of poses within the bin.

LVAE =

2K∑
i=0

∥yis−ŷis∥2+λKL [N (µs, σs) ∥N (0, I)] . (1)

Here, yis denotes the ith keypoint location for a pose sam-
pled from the source domain, K is the number of keypoints
in a pose, ŷis is the prediction of the VAE decoder for the ith

keypoint, KL denotes the Kulback-Leibler divergence loss,
N is a normal distribution with µs and σs as mean and stan-
dard deviation of the VAE’s latent space. The trained VAE
enables us to compute the reconstruction error as a mean-
squared error as defined in Equation 2, for a given pose ys
and VAE output ŷs:

score =

2K∑
i=0

∥yis − ŷis∥2. (2)

If the reconstruction error is high, the model is unable
to reconstruct a pose. This provides a useful mechanism
to score poses in the source domain. Using this score, we
categorize the source poses into a fixed number of bins. To
achieve this, we sort all poses from the least to the largest
reconstruction error and then uniformly divide them into Nb

bins, each containing same number of poses. We hypothe-
size that the reconstruction error is a measure of pose com-
plexity and limited support for such poses in the dataset.
This hypothesis is supported in Figure 3. Here, we compute
the variability of poses within a bin using the mean angular
difference. The measure is defined in equation 6 of Section
3.4, where we define to identify suitable pairs to apply a
cross-domain loss, here we apply it to illustrate bin charac-
teristics.

3.1.2. Active Curriculum
As discussed in the previous subsection, the data is catego-
rized into bins based on the pose complexity. In order to
use this data to train a pose estimation model, we progres-
sively train from the low complexity to the high complexity
poses. The amount of data sampled from each bin depends
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Figure 4. ACTUPose: The source data is chosen using the Active Curriculum Sampling for each epoch. The student model is trained using
this sampled data in a supervised manner. The target dataset is utilised to train the student model using target domain loss applied between
student and teacher predictions along with cross domain feature loss applied between the features of similar source and target poses. Note
that Lmse and Lconsistency are same as used in baseline model, UDAPE[17].

on the current training epoch. Their relative contribution to-
wards training the model, shifts towards the more complex
bins as the training progresses. The sampling follows a soft
training schedule based on a Gaussian distribution centered
around a chosen bin. This is in contrast to a conventional
curriculum schedule that chooses samples from a single bin
for an entire training epoch. This distribution schedule is
visualized in Figure 5. The probability pj of sampling from
a bin j is defined in the Equation 3,

pj = exp

(
−(sj − µg)

2

2(σsj)2

)
, j ∈ {0 . . . Nb}. (3)

Here, Nb is the total number of bins, µg is the mean score
for bin g, around which the Gaussian has its peak for the
epoch e. g refers to the bin with the highest contribution in
epoch e, g = min(λNbe/epochs,Nb). We refer to λ as a
pacing parameter that controls the rate at which the Gaus-
sian curve’s peak moves towards the harder bins. epochs
refers to the total number of epochs the model is trained for.
The score sj in equation 3 is the mean reconstruction error
for a bin j. Total number of points sampled from a bin is
therefore pj(N/Nb).

To make this sampling schedule sensitive to the current
ability of the pose estimation model to predict a pose, we
incorporate the model’s confidence into the score computa-
tion. The motivation is to re-rank the source domain images
in accordance to how difficult it is for the model to predict
the pose in the image. The updated score for a sample is
computed using the Equation 4:

score =
K∑K

i=0 max(Ĥi
s)

· score. (4)

where, Ĥi
s is the predicted heatmap 1 for the ith keypoint.

1we follow the standard pose estimation model training of predicted
K ×H ×W heatmaps as in [33]
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Figure 5. Active sample selection across epochs and bins: Visu-
alizing data distribution evolution. Blue, red, and green represent
the data samples distribution at different epochs. The area under
the curves represent the data sampled for these epochs.

The score is essentially weighted by the average model pre-
diction confidence, from the previous epoch of training. In-
tuitively, the higher the confidence, the lower the score, and
hence the better the model’s understanding of the source
data point. On the contrary, a lower confidence indicates
that the model finds it difficult to estimate the pose for a
source data point. At the end of each epoch, the source data
is sorted based on the updated scores and reassigned to bins,
following the schedule in Equation 3. This reranking pro-
cess is illustrated in Figure 6.

3.2. Unsupervised Domain Adaptation
The previous subsection introduced our active curriculum
training strategy for training the model with the source
domain data. However, we also use the unlabeled tar-
get dataset T , within an unsupervised domain adaptation
(UDA) setting. For domain adaptation, we use an existing
state-of-the-art approach UDAPE [17]. UDAPE follows a
student-teacher learning paradigm for pose estimation. It
additionally uses a consistency loss on pseudo-labels and
bridges the appearance level gap using a bi-directional style
transfer method. We introduce two more losses to make the
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Figure 6. Active Curriculum Sampling organizes the source
dataset into bins using active sampling for model training. Model
predictions guide low confidence samples to higher bins, provid-
ing increased exposure. Updated scores and dataset reordering oc-
cur for the next epoch.

model aware of skeletal structure and to bring the features
between the two domains closer. These losses are explained
in the subsequent subsections. We refer to the total loss used
by UDAPE [17] as LUDAPE . This is a combination of the
supervised loss and the consistency loss.

3.3. EvalPose Loss
The mean squared error loss has been conventionally used
to train models for pose estimation [33]. However, this loss
only considers the locations of the individual keypoints but
fails to explicitly capture the relationship between the key-
points within a pose. We therefore, explicitly define key-
point pairs and a vector joining each pair to define the re-
lationship between them. We compute the cosine similarity
between the predicted keypoint vectors and the labeled key-
point vectors for the source domain, or, the pseudo-labeled
keypoint vectors, by the teacher model, for the target do-
main. For a (pseudo-)labeled keypoint vector defined as vk

d

and a predicted keypoint vector defined as v̂k
d, the loss is

computed as follows:

Levalpose = −
∑
k∈L

vk
d · v̂k

d

∥vk
d∥∥v̂k

d∥
, d ∈ {s, t}. (5)

Here L refers to set of keypoint pairs which define the vec-
tor connections and d refers to the source s or target t do-
main. Note that this loss is computed only within the same
domain and not across domains. In Figure 8, we demon-
strate that EvalPose is more sensitive to skeletal coherence
despite minor changes in PCK, highlighting its effective-
ness in ACTUPose.

3.4. Cross-Domain Loss
We additionally introduce a cross-domain feature loss to
bring features of the source and target domain closer. For
a batch of source and target domain samples we predict the
pose from the student and the teacher models respectively.
We find similar pairs of poses using a mean angular dif-
ference between poses. The angles are formed by custom

Mean Angular Difference for
 Mapping Similar Skeletons

Source Domain

Target Domain

Minimizing Feature Gap 
Between Domains

Cross Domain Feature Loss

Figure 7. Mean angular difference is utilized to mine similar pairs
in the source and target domain. The cross domain feature loss is
applied on these pairs to improve the model’s domain adaptation
capabilities.

defined keypoint triplets within a pose. We prune out key-
points with low prediction confidence in the target domain
data and their corresponding triplets before finding similar
poses to avoid erroneous matches. Once the similar pairs
are identified across the batches the student model is trained
using the loss function defined below:

Lcross-domain = −
∑

(z1,z2)∈Z

fz1s .fz2t
∥fz1s ∥∥fz2t ∥

, (6)

where, Z is the set of similar pairs across source and tar-
get and ft, fs represent the features for the target and source
datapoint from the teacher and the student model respec-
tively. The set Z is populated as follows. We define the set
of angles Θs formed by the source domain predicted poses
Θs = {θ1s . . . θSs } and similarly Θt = {θ1t . . . θTt } for the
target domain. Here, θs/t represents a vector of all the an-
gles between custom defined triplets for a single predicted
pose in the source or target domains, S and T represent the
number of images in the source and target batches. The
mean angular difference between every pair of source and
target batch poses is defined as follows:

∆Θ(m,n) =
∥θms − θnt ∥

K
∀m ∈ S, ∀n ∈ T. (7)

∆Θ is an SxT matrix. Only those pose pairs with a value
lesser than a threshold value Γ (∆Θ < Γ) are considered
similar pairs within the set Z. Hence, the total loss to train
the student model is,

L = w1LUDAPE + w2Levalpose + w3Lcross-domain. (8)

The teacher model gets updated through an exponential
moving average setup following Mean Teacher [28].

4. Experiments and Results
In this section, we present the experimental evaluation of
our proposed method, ACTUPose, across two key tasks: (1)



human body pose estimation and (2) hand pose estimation.
These evaluations are conducted using benchmark datasets
relevant to each domain. We assess the performance of
ACTUPose by comparing it against state-of-the-art (SOTA)
baselines, highlighting its improvements. Additionally, we
employ the EvalPose score, a heuristic metric that quanti-
fies the structural accuracy of the predicted pose in relation
to the ground truth. To further support our numerical find-
ings, we provide qualitative results, presented in Figure 8.

Datasets. The SURREAL [30] dataset is a synthetically-
generated dataset rendered from sequences of human mo-
tion capture data. The dataset has 6 million labeled
frames of human body poses covering a wide variety of ac-
tions. Leeds Sports Pose [15] (LSP) is a real-world out-
door human pose dataset capturing individuals in a wide
range of poses, including challenging scenarios with occlu-
sions. Comprising 2000 images, it provides annotations for
key human body joint locations, primarily gathered during
sports activities. Human3.6M [13] (H3.6M) is a real-world
video dataset for human body pose estimation that includes
data of diverse indoor activities. It has a total of 3.6 mil-
lion frames. We follow the training and evaluation splits
defined in [20]. The dataset has 5 subjects (S1, S5, S6, S7,
S8) for training and the remaining 2 subjects (S9, S11) for
testing. This split is typically adopted to train and evaluate
models for human pose estimation. Rendered Hand Pose
Dataset [40] (RHD), is a synthetic dataset for the task of
hand pose estimation. It encompasses a wide range of hand
poses captured under varying lighting conditions and com-
prises 41.2k training images, 2.7k test images, and annota-
tions for 21 hand keypoints. Hand-3D-Studio dataset [39]
(H3D), abbreviated as H3D, is a real-world dataset captur-
ing multi-view indoor hand poses. It has a collection of 22k
frames. Following a similar partitioning approach as used
in the RegDA [14] framework, a subset of 3.2k frames is
designated as the test set.

Evaluation Metrics. In this paper, we utilize PCK for
quantitative analysis and EvalPose as a heuristic score to as-
sess structural coherence and perceptual correctness. PCK
Score: The Percentage of Correct Keypoints (PCK) mea-
sures the precision of body joint localization. A predicted
joint is considered correct if its distance from the ground-
truth location is within a specified threshold. We report
results using PCK@0.05, which quantifies the proportion
of correct predictions within 5% of the image size—higher
values indicate greater accuracy. In addition to PCK, we use
EvalPose, a visual perception score designed to evaluate the
structural plausibility and perceptual realism of predicted
poses. Unlike PCK, which focuses on numerical correct-
ness, EvalPose captures the geometric consistency of poses,
bridging the gap between keypoint accuracy and human per-

Table 1. PCK@0.05 score on task SURREAL → LSP. Sld: shoul-
der, Elb: Elbow. We observe that our method ACTUPose outper-
forms the UDAPE model significantly across all joints.

Method PCK

Sld Elb Wrist Hip Knee Ankle All

Source Only 51.5 65.0 62.9 68.0 68.7 67.4 63.9
Oracle 95.3 91.8 86.9 95.6 94.1 93.6 92.9

RegDA [14] 62.7 76.7 71.1 81.0 80.3 75.3 74.6
PoseDA [34] 82.3 78.4 73.2 74.8 79.7 78.7 77.9
UDAPE [17] 69.2 84.9 83.3 85.5 84.7 84.3 82.0
UDAPE + VAE-HM [9] 68.5 86.2 84.7 84.8 85.8 85.6 82.6
ACTUPose (Ours) 71.6 87.7 86.5 88.8 87.5 87.1 84.9

Table 2. Avg PCK@0.05 on benchmark tasks, SURREAL → Leed
Sports Pose (LSP), SURREAL → Human3.6M (H3.6M) and Ren-
dered Hand Pose (RHD) → Hand-3D-Studio (H3D).

Method
SURREAL → LSP SURREAL → H3.6M RHD → H3D

AvgPCK AvgPCK AvgPCK

Source Only 63.9 67.3 61.8
Oracle 92.9 92.9 95.8

RegDA [14] 74.6 75.6 72.5
PoseDA [34] 77.9 79.6 N/A
UDAPE [17] 82.0 79.0 79.6
UDAPE + VAE-HM [9] 82.6 78.3 79.8
ACTUPose (Ours) 84.9 82.8 80.9

ception. It follows the same formulation detailed in Sec-
tion 3.3 and measures the structural similarity of predicted
poses. As illustrated in figure 8, PCK alone may not fully
capture variations in pose realism. EvalPose enhances in-
terpretability by providing insights into the model’s ability
to generate natural and coherent poses, making it a valuable
complementary measure.

Experimental Setup Our framework builds upon
UDAPE [17]. In the training phase of our experiment,
the VAE-based (3.1.1) pose categorization orders samples
into Nb = 25 bins arranged in increasing order of pose
complexity. Employing the curriculum training strategy,
we select samples across bins for each epoch, actively
being shuffled on basis of model performance. This
sampling and shuffling operation occurs before each epoch.
The pacing parameter λ, governs the rate of progression
through bins; a higher λ results in fewer epochs with a
bin as the peak, while a decrease allows more time to
sample from a bin per epoch. For the Validation phase,
we categorize the target dataset into 25 bins of equal sizes
using the category-based sampling approach outlined in
Section 3.1.1. This categorization is useful to highlight our
insights into the domain adaptation model’s generalization
capabilities across increasing pose complexities as there
is a clear trend in model performance on increasingly
complex bins.
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Figure 8. Qualitative comparison of ACTUPose, UDAPE[17], and UDAPE+VAE-HM[9] on LSP[15], Human3.6M[13], and Hand 3D
Studio[39] datasets. ACTUPose consistently performs better, especially on challenging poses. While PCK measures keypoint localization,
EvalPose is more sensitive to skeletal coherence. Significant EvalPose differences in samples like (c) and (f), despite minor PCK changes,
highlight its effectiveness. This validates EvalPose as the loss function in ACTUPose, ensuring consistent improvements.

Quantitative Results. We evaluate our approach using
well-established UDA benchmark experiments: (1) SUR-
REAL → LSP, (2) SURREAL → H3.6M, and (3) RHD
→ H3D. The results of these experiments are summarized
in Table 1 and Table 2. We compare our method against
several baselines: (a) Source-only training: The model
is trained only on the labeled source domain (b) Oracle:
The model is trained directly on the target domain’s train-
ing set. (c) RegDA [14]: A baseline UDA approach us-
ing adversarial domain adaptation. (d) PoseDA [34]: A
baseline UDA approach leveraging hierarchical keypoints
feature alignment to improve cross-domain pose estima-
tion.(e) UDAPE [17]: A baseline UDA approach that fol-
lows a student-teacher learning paradigm. (f) UDAPE +
VAE-HM [9]: Using a VAE-based categorization, we di-
vide poses into 25 bins and select the most complex 8 bins
for training the model. (Section 3.1.1). (g) ACTUPose:
Our proposed approach, which incorporates an active cur-
riculum training strategy. Table 1 presents the per-joint
PCK scores and the overall average PCK for the SURREAL
→ LSP experiment. Our proposed method, ACTUPose,
achieves superior performance compared to state-of-the-art
UDA approaches, RegDA [14] and UDAPE [17], demon-
strating consistent improvements across all joints as well as
in overall accuracy. These results highlight the effectiveness
of our training strategy in efficiently utilizing source domain
samples to enhance adaptation to the target domain. Addi-
tionally, we observe that UDAPE + VAE-HM outperforms
the UDAPE baseline while using only 33% of the source
dataset, with its advantage being most pronounced in chal-
lenging scenarios, particularly within the hard bins (Fig-
ure 9). However, ACTUPose consistently achieves superior
performance across all bins except the last three, ultimately
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Figure 9. Comparison of UDAPE, UDAPE+VAE-HM, and AC-
TUPose on the SURREAL → LSP task, with bins arranged by
increasing pose complexity. UDAPE+VAE-HM demonstrates su-
perior performance in later bins due to its training on diverse
and challenging poses. ACTUPose consistently outperforms both
UDAPE and UDAPE+VAE-HM across nearly all bins, highlight-
ing its effectiveness in domain adaptation.

surpassing both methods overall. Table 2 reports the PCK
scores for all benchmark experiments, further demonstrat-
ing the effectiveness of ACTUPose. Our approach consis-
tently surpasses state-of-the-art models across all datasets,
achieving a 2.3% improvement in SURREAL → LSP, 4.5%
in SURREAL → H3.6M, and 1.1% in RHD → H3D. These
results underscore the robustness of ACTUPose in enhanc-
ing domain adaptation performance across diverse datasets.

Figure 9 illustrates the performance of different meth-
ods across 25 clustered bins of the validation set. Each bin
contains three bar plots: the first represents UDAPE[17],
the second corresponds to the UDAPE + VAE-HM [9] for
domain adaptation, and the third represents the proposed
method, ACTUPose. To maintain visual interpretability,
other methods are omitted. The y-axis denotes the average
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Figure 10. Ablation Study showing the effect of different training
parameters on Avg PCK@0.05. (a) Effect of number of bins (b)
Effect of the pacing factor and (c) Impact of sigma value on data
distribution. Best optimal performance is obtained at Nb = 25,
λ = 2.0 and σ = 0.25

keypoint score, calculated as the mean accuracy per pose
within each bin. As bin complexity increases, the advantage
of UDAPE + VAE-HM becomes more evident, benefiting
from training on diverse and high-variation poses captured
in the later bins. However, ACTUPose follows a progres-
sive adaptation strategy, transitioning from simple to com-
plex bins, leading to overall performance gains across all
bins and consistently surpassing state-of-the-art models.

Qualitative Results. Figure 8 presents a qualitative com-
parison of ACTUPose against UDAPE and UDAPE + VAE-
HM across three benchmark UDA tasks: human pose esti-
mation on LSP and Human3.6M datasets, and hand pose
estimation on the H3D dataset. PCK is used to assess key-
point localization accuracy, while EvalPose evaluates the
structural plausibility of predicted poses. ACTUPose con-
sistently outperforms baseline methods, achieving higher
PCK scores across all samples. Moreover, EvalPose cap-
tures structural refinements even in cases where PCK shows
minimal variation, as seen in samples (c) and (e), highlight-
ing ACTUPose’s ability to produce anatomically coherent
poses. This further validates the use of EvalPose as a loss
function within ACTUPose, ensuring consistent improve-
ments across all samples.

Ablation Study. We conduct an ablation study to exam-
ine the effect of three key parameters in Active Curriculum
Learning: the number of bins, the pacing factor (λ), and
the imapct of (σ) value on data distribution. Number of

Bins: The number of bins determines how the dataset is
divided into bins using the reconstruction error from Pose-
VAE 3.1.1. Too few bins mix different complexity lev-
els, while too many bins create small groups with very
limited data. The Avg PCK@0.05 for the SURREAL →
LSP dataset with respect to change in the number of bins is
shown in figure 10(a), From figure, We observe that the best
performance is achieved at 25 bins. Pacing Factor: The
pacing factor λ determines the rate at which the Gaussian
curve’s peak moves towards the harder bins. A very high λ
value can end up spending very less time or epochs on less
complex data leading to not learning the basic poses, while
a very low λ value slows the training by overspending time
on early epochs and increases the risk of overfitting. The
Avg PCK@0.05 for the SURREAL → LSP dataset at dif-
ferent λ value is shown in figure 10(b). From figure, We
observe that the optimal performance is achieved at λ = 2.
Impact of Sigma: The parameter σ controls how much data
from each bin contributes compared to the peak bin at any
given epoch. A larger σ results in a broad curve, sampling
data from distant bins, which disrupts the curriculum and
includes most of the dataset in every epoch. A very small
σ creates a narrow curve, sampling only from nearby bins.
Figure 10(c) shows Avg PCK@0.05 for the SURREAL →
LSP dataset across σ values. We find that σ = 0.25 pro-
vides a well-structured curriculum and optimal model per-
formance.

Additionally, we conducted an extensive ablation study
on the weights of different loss functions used in the pro-
posed method, ACTUPose. Keeping w1 = 1.0 (UDAPE
loss) fixed, we varied w2 (EvalPose loss) and w3 (Cross-
domain loss) within the range of 0 to 1. Our experiments
show that incorporating both losses improves performance,
with the best results achieved when w2 = 0.1 and w3 =
0.01, yielding the highest Avg PCK of 84.9 on the SUR-
REAL → LSP, 82.8 on the SURREAL → Human3.6M and
80.9 on the RHD → H3D.

5. Conclusion

In conclusion, our work introduces ACTUPose, a novel
unsupervised domain adaptation framework for pose
estimation that enhances generalization across diverse
target domains. By leveraging an active curriculum training
strategy, ACTUPose progressively adapts to increasing
pose complexity, ensuring a more structured learning
process. The introduction of a structural consistency loss
refines skeletal predictions, while a cross-domain feature
alignment mechanism optimally leverages unlabeled
real data. Extensive evaluations on multiple bench-
mark datasets demonstrate that ACTUPose consistently
outperforms existing methods, achieving state-of-the-
art accuracy and robustness in the pose estimation task.
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[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-
son Weston. Curriculum learning. In Proceedings of the 26th
annual international conference on machine learning, pages
41–48, 2009. 2

[3] Olivier Chapelle, Bernhard Scholkopf, and Alexander
Zien. Semi-supervised learning (chapelle, o. et al., eds.;
2006)[book reviews]. IEEE Transactions on Neural Net-
works, 20(3):542–542, 2009. 2

[4] Dongjie Chen, Kartik Patwari, Zhengfeng Lai, Sen-
Ching Samson Cheung, and Chen-Nee Chuah. Empowering
source-free domain adaptation with mllm-driven curriculum
learning. ArXiv, abs/2405.18376, 2024. 2

[5] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang
Zhang, Gang Yu, and Jian Sun. Cascaded pyramid network
for multi-person pose estimation. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7103–7112, 2018. 2

[6] Jaehyun Choi, Junwon Ko, Dong-Jae Lee, and Junmo Kim.
Ah-ocda: Amplitude-based curriculum learning and hopfield
segmentation model for open compound domain adaptation.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), 2025. 2

[7] Yan Dai, Beitao Chen, Lianli Gao, Jingkuan Song, and
Heng Tao Shen. Dmh-cl: Dynamic model hardness based
curriculum learning for complex pose estimation. IEEE
Transactions on Multimedia, pages 1–14, 2023. 2

[8] Yann Desmarais, Denis Mottet, Pierre Slangen, and Philippe
Montesinos. A review of 3d human pose estimation algo-
rithms for markerless motion capture. Computer Vision and
Image Understanding, 212:103–275, 2021. 1

[9] Isha Dua, Arjun Sharma, Shuaib Ahmed, and Rahul Tallam-
raju. Towards effective synthetic data sampling for domain
adaptive pose estimation. In NeurIPS 2023 Workshop on
Synthetic Data Generation with Generative AI, 2023. 2, 6, 7

[10] Chen Gong, Dacheng Tao, Stephen J Maybank, Wei Liu,
Guoliang Kang, and Jie Yang. Multi-modal curriculum
learning for semi-supervised image classification. IEEE
Transactions on Image Processing, 25(7):3249–3260, 2016.
2

[11] Alex Graves, Marc G Bellemare, Jacob Menick, Remi
Munos, and Koray Kavukcuoglu. Automated curriculum
learning for neural networks. pages 1311–1320, 2017. 2

[12] Jihye Hwang, John Yang, and Nojun Kwak. Exploring rare
pose in human pose estimation. IEEE Access, 8:194964–
194977, 2020. 2

[13] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 36:1325–1339, 2014. 2, 6, 7

[14] Junguang Jiang, Yifei Ji, Ximei Wang, Yufeng Liu, Jianmin
Wang, and Mingsheng Long. Regressive domain adapta-

tion for unsupervised keypoint detection. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6776–6785, 2021. 6, 7

[15] Sam Johnson and Mark Everingham. Clustered pose and
nonlinear appearance models for human pose estimation. In
British Machine Vision Conference, 2010. 1, 2, 6, 7

[16] Nazmul Karim, Niluthpol Chowdhury Mithun, Abhinav Ra-
jvanshi, Han-Pang Chiu, Supun Samarasekera, and Nazanin
Rahnavard. C-sfda: A curriculum learning aided self-
training framework for efficient source free domain adapta-
tion. 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023. 2

[17] Donghyun Kim, Kaihong Wang, Kate Saenko, Margrit
Betke, and Stan Sclaroff. A unified framework for domain
adaptive pose estimation. ArXiv, abs/2204.00172, 2022. 1,
2, 4, 5, 6, 7

[18] Seunghyeon Kim, Jaehoon Choi, Taekyung Kim, and Chang-
ick Kim. Self-training and adversarial background regular-
ization for unsupervised domain adaptive one-stage object
detection. pages 6092–6101, 2019. 2

[19] M Kumar, Benjamin Packer, and Daphne Koller. Self-paced
learning for latent variable models. Advances in neural in-
formation processing systems, 23, 2010. 2

[20] Sijin Li and Antoni B. Chan. 3d human pose estimation from
monocular images with deep convolutional neural network.
In Asian Conference on Computer Vision, 2014. 6

[21] Siyang Li, Xiangxin Zhu, Qin Huang, Hao Xu, and C-C Jay
Kuo. Multiple instance curriculum learning for weakly su-
pervised object detection. arXiv preprint arXiv:1711.09191,
2017. 2

[22] David McClosky, Eugene Charniak, and Mark Johnson. Ef-
fective self-training for parsing. pages 152–159, 2006. 2

[23] Dong-Hyun Lee Pseudo-Label. The simple and efficient
semi-supervised learning method for deep neural networks.
pages 1–6, 2013. 2

[24] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In Computer Vision – ECCV 2016, pages 102–118.
Springer, 2016. 1

[25] Grégory Rogez and Cordelia Schmid. Mocap-guided data
augmentation for 3d pose estimation in the wild. Advances
in neural information processing systems, 29, 2016. 2

[26] Aruni RoyChowdhury, Prithvijit Chakrabarty, Ashish Singh,
SouYoung Jin, Huaizu Jiang, Liangliang Cao, and Erik
Learned-Miller. Automatic adaptation of object detectors to
new domains using self-training. pages 780–790, 2019. 2

[27] Petru Soviany, Claudiu Ardei, Radu Tudor Ionescu, and Mar-
ius Leordeanu. Image difficulty curriculum for generative
adversarial networks (cugan). pages 3463–3472, 2020. 2

[28] Antti Tarvainen and Harri Valpola. Weight-averaged consis-
tency targets improve semi-supervised deep learning results.
ArXiv, abs/1703.01780, 2017. 5

[29] Radu Tudor Ionescu, Bogdan Alexe, Marius Leordeanu,
Marius Popescu, Dim P Papadopoulos, and Vittorio Ferrari.
How hard can it be? estimating the difficulty of visual search
in an image. pages 2157–2166, 2016. 2



[30] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4627–4635, 2017. 1, 2, 6

[31] Cheng Wang, Qian Zhang, Chang Huang, Wenyu Liu, and
Xinggang Wang. Mancs: A multi-task attentional network
with curriculum sampling for person re-identification. pages
365–381, 2018. 2

[32] Jiasi Wang, Xinggang Wang, and Wenyu Liu. Weakly-and
semi-supervised faster r-cnn with curriculum learning. pages
2416–2421, 2018. 2

[33] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for
human pose estimation and tracking. ArXiv, abs/1804.06208,
2018. 4, 5

[34] Jie Xu, Yunan Liu, Jian Yang, and Shanshan Zhang. Hierar-
chical keypoints feature alignment for domain adaptive pose
estimation. Neurocomputing, 2024. 6, 7

[35] Jun-Sang Yoo, Jung, and Seung-Won. Survey on in-vehicle
datasets for human pose estimation. In 2022 International
Conference on Electronics, Information, and Communica-
tion (ICEIC), pages 1–2, 2022. 1

[36] Andrei Zanfir, Mihai Zanfir, Alex Gorban, Jingwei Ji,
Yin Zhou, Dragomir Anguelov, and Cristian Sminchisescu.
Hum3dil: Semi-supervised multi-modal 3d humanpose esti-
mation for autonomous driving. In Proceedings of The 6th
Conference on Robot Learning, PMLR, pages 1114–1124,
2022. 1

[37] Dingwen Zhang, Junwei Han, Long Zhao, and Deyu Meng.
Leveraging prior-knowledge for weakly supervised object
detection under a collaborative self-paced curriculum learn-
ing framework. International Journal of Computer Vision,
127:363–380, 2019. 2

[38] Feng Zhang, Xiatian Zhu, and Chen Wang. Comprehensive
survey on single-person pose estimation in social robotics.
Int J of Soc Robotics, 14:1995–2008, 2022. 1

[39] Zheng Fa Zhao, Tianyao Wang, Siyu Xia, and Yangang
Wang. Hand-3d-studio: A new multi-view system for 3d
hand reconstruction. ICASSP 2020 - 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 2478–2482, 2020. 2, 6, 7

[40] Christiane Zimmermann and Thomas Brox. Learning to es-
timate 3d hand pose from single rgb images. 2017 IEEE
International Conference on Computer Vision (ICCV), pages
4913–4921, 2017. 6

[41] Yang Zou, Zhiding Yu, BVK Kumar, and Jinsong Wang. Un-
supervised domain adaptation for semantic segmentation via
class-balanced self-training. pages 289–305, 2018. 2

[42] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jin-
song Wang. Confidence regularized self-training. pages
5982–5991, 2019. 2


	Introduction
	Related Work
	ACTUPose
	Curriculum Training
	Pose VAE
	Active Curriculum

	Unsupervised Domain Adaptation
	EvalPose Loss
	Cross-Domain Loss

	Experiments and Results
	Conclusion

