

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PARAFLOW: PARALLEL SAMPLING FOR FLOW MATCHING MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper approaches the fundamental challenge of accelerating the inherently autoregressive nature of sampling in Flow Matching (FM) models like Stable Diffusion 3 and Flux through a numerical systems perspective. Specifically, we introduce a unified framework that recasts the autoregressive sampling process as solving a system of triangular nonlinear equations (TNEs), thereby facilitating a paradigm shift toward non-autoregressive sampling featuring parallel vector field computation across multiple timesteps. Within this generic framework, we establish that: (1) the TNE system admits a unique solution corresponding precisely to the autoregressive sampling trajectory; (2) solving the TNE system guarantees convergence to this exact trajectory in far fewer sequential iterations. Building on these insights, we present *ParaFlow*, a training-free, step-parallel sampler for accelerating autoregressive FM samplers. Extensive experiments validate that ParaFlow achieves up to a **4 \times** reduction in sequential sampling steps and significant wall-clock speedup of up to **4.3 \times** , with negligible impact on FID and CLIP scores. The source code will be released publicly.

1 INTRODUCTION

Flow Matching (FM) has emerged as a leading framework for high-fidelity generative modeling, powering recent state-of-the-art systems such as Stable Diffusion 3 (Esser et al., 2024) and Flux (Black Forest Labs, 2024). FM models learn a time-dependent vector field that transports a simple prior distribution to the data distribution via an ordinary differential equation (ODE). Thus, sampling reduces to numerically integrating this ODE, an inherently autoregressive procedure that requires tens of sequential evaluations of a large neural network, constituting a major bottleneck for real-time and interactive use.

Two main strategies have been explored to mitigate this cost. The first develops more efficient numerical solvers: high-order methods such as DPM-Solver (Lu et al., 2022a;b) and task-specific solvers (Shaul et al., 2023; Frankel et al., 2025) reduce the number of function evaluations (NFEs), enabling generation in fewer steps, but remain fully sequential. The second pursues model distillation (Salimans & Ho, 2022), compressing multi-step teachers into student models capable of few-shot or even one-shot generation. Approaches such as Latent Consistency Models (LCMs) (Luo et al., 2023), based on Consistency Models (Song et al., 2023), achieve strong results but require expensive retraining and degrade fidelity. Both methods reduce the step count but do not remove sequential dependencies.

In contrast to these approaches, our work departs from the sequential paradigm. We propose **ParaFlow**, a framework that accelerates sampling not by reducing steps but by executing them in parallel. Our key idea is to recast the entire sampling trajectory—ordinarily produced by an ODE solver—as a system of Triangular Nonlinear Equations (TNEs). This reformulation decouples dependencies across timesteps, enabling simultaneous evaluation of the vector field at multiple steps.

We show that the proposed TNE system admits a unique solution mathematically identical to the trajectory of the original autoregressive sampler, ensuring no loss in sample quality. To solve this system efficiently, we adopt a fixed-point iteration scheme that converges rapidly to the exact solution. A sliding-window implementation further makes the approach computationally feasible for long sampling chains.

Our main contributions are:

- We are the first to formulate the sampling process of Flow Matching models as a system of TNEs, enabling step-level parallelism.
- We propose an efficient, parallel fixed-point solver, ParaFlow, with theoretical guarantees of convergence to the exact autoregressive trajectory.
- Through extensive experiments on state-of-the-art flow-matching based models like Stable Diffusion 3 and Flux, we demonstrate wall-clock speedups of **1.4-4.3**× and a reduction in sequential operations by up to 4×, with negligible impact on generation quality.

ParaFlow is a training-free, plug-and-play accelerator that is compatible with existing pre-trained FM models, opening a new direction for efficient model inference.

2 RELATED WORK

Accelerating generative model sampling is a long-standing research problem. For diffusion and flow-based models, which rely on iterative refinement, this is particularly critical.

Numerical ODE Solvers for Flow Matching. Flow Matching (FM) (Lipman et al., 2022; Liu et al., 2022; Chen & Lipman, 2024) frames the sampling process as the integration of a learned time-dependent vector field. Early work (Song & Ermon, 2020; Song et al., 2021) in score-based SDEs and their corresponding probability-flow ODEs enabled deterministic sampling and efficient likelihood evaluation. FM further refines this by training continuous normalizing flows (Chen et al., 2018) through conditional vector field regression along optimized probability paths, such as those (e.g. Lipman et al., 2022; Tong et al., 2023; Lipman et al., 2024; Schusterbauer et al., 2025; Wang et al., 2025) derived from diffusion or optimal transport, improving stability and speed with standard ODE solvers.

The choice of numerical integrator is crucial. First-order methods, such as Euler and DDIM (Song et al., 2020), are computationally inexpensive but require a large number of steps to achieve high-quality results. To mitigate this problem, second-order solvers, such as Heun’s method, are frequently employed (Karras et al., 2022). For the most demanding tasks, higher-order solvers tailored specifically for diffusion models, such as the DPM-Solver family (Lu et al., 2022a;b; Zheng et al., 2023) and Bespoke Solvers (Shaul et al., 2023; 2024), offer improved sample quality with lower NFEs. Furthermore, methods like S4S (Frankel et al., 2025), AYS (Sabour et al., 2024) and DMN (Xue et al., 2024) have demonstrated potential for reducing discretization and global error. However, these methods still require strictly sequential execution, limiting opportunities for parallelization.

Parallel Sampling. ParaDiGMS (Shih et al., 2024) accelerates sampling by leveraging parallelized Picard iterations to simultaneously predict and iteratively refine future denoising steps. ParaTAA (Tang et al., 2024) reformulates the autoregressive diffusion sampling process as TNEs and uses fixed-point methods to solve multiple steps in parallel. ParaSolver (Lu et al., 2025) further models the sampling process as a system of banded nonlinear equations, and shows how to exploit structural properties and hierarchical initialization to preserve sample quality while greatly reducing inference time. Our proposed method, ParaFlow, builds on the parallel solving framework pioneered by those works, but is the first to (i) systematically formulate parallel sampling in the context of Flow Matching (FM) models; (ii) provide accompanying theoretical guarantees specific to FM-based parallel solving; and (iii) empirically validate that TNE-based parallel sampling works for state-of-the-art FM models without degradation in sample fidelity.

3 PRELIMINARY: FLOW MATCHING MODELS

Flow Matching models aim to learn a continuous-time process that transports a simple prior distribution p_0 (e.g., $\mathcal{N}(0, I)$) into a complex target data distribution p_1 . This transformation is described by a time-dependent vector field $v_t : \mathbb{R}^d \times [0, 1] \rightarrow \mathbb{R}^d$, parameterized by a neural network with parameters θ . For a sample trajectory $x_t, t \in [0, 1]$, the dynamics are governed by the ODE:

$$\frac{dx_t}{dt} = v_t(x_t, \theta), \quad x_0 \sim p_0. \quad (1)$$

108 The vector field v_t is learned by optimizing its underlying neural network parameters, such that the
 109 distribution of the terminal state x_1 approximates the target distribution p_1 when $x_0 \sim p_0$.

110 **Sampling Process.** To generate new samples, one first draws an initial point $x_0 \sim p_0$ and then
 111 integrates the ODE in Eq. (1) from $t = 0$ to $t = 1$. In practice, this integration is carried out
 112 numerically. A common approach is the first-order Euler method: given a discretization $0 = t_0 <$
 113 $t_1 < \dots < t_N = 1$, the update rule is
 114

$$115 \quad x_{t_{i+1}} = x_{t_i} + (t_{i+1} - t_i) \cdot v(x_{t_i}, t_i, \theta), \quad i = 0, \dots, N - 1. \quad (2)$$

116 This discretization produces a sequence of intermediate states x_{t_i} . Since each update depends on the
 117 result of the previous step, the sampling procedure is inherently sequential, requiring N successive
 118 evaluations of the neural network.

120 4 PROPOSED METHOD: PARAFLOW

121 4.1 MOTIVATION

122 The autoregressive update in Eq. (2) constitutes the main bottleneck: each step depends on the
 123 previous one, precluding parallel computation and limiting sampling efficiency. We formalize this
 124 dependency as follows.

125 **Definition 1** (Autoregressive Sampling Procedure). *Initiating with a sample $x_{t_0} \sim p_0$, the sampling
 126 process for an FM model using a numerical ODE solver is an autoregressive procedure of the form:*

$$127 \quad x_{t_i} = x_{t_0} + \sum_{j=0}^{i-1} h_j \cdot v_j(x_{t_j}, t_j, \theta), \quad i \in \{1, \dots, N\}, \quad (3)$$

128 where $h_j = t_{j+1} - t_j$ is the step size and v_j is the vector field evaluated at time t_j .

129 This formulation highlights the stepwise dependency. Viewing the entire trajectory
 130 $\{x_{t_0}, x_{t_1}, \dots, x_{t_N}\}$ as unknown variables, this autoregressive process can be cast as a system of
 131 $N+1$ equations. Solving this system yields the full trajectory simultaneously, eliminating sequen-
 132 tial dependencies and enabling parallel computation.

133 4.2 RECASTING AUTOREGRESSIVE SAMPLING AS TRIANGULAR NONLINEAR EQUATION 134 SOLVING

135 We can view the sequence of updates in Definition 1 as a system of TNEs. Let $\{\hat{x}_{t_0}, \dots, \hat{x}_{t_N}\}$ be
 136 the unknown variables corresponding to the true sampling trajectory $\{x_{t_0}, \dots, x_{t_N}\}$.

137 **Definition 2** (TNEs for Flow Matching Sampling). *We define the system of TNEs for the autoregres-
 138 sive sampling procedure as:*

$$139 \quad \mathcal{F}(\hat{x}_{t_0}, \dots, \hat{x}_{t_N}) = \begin{cases} \hat{x}_{t_0} - x_{t_0} = 0, \\ \hat{x}_{t_i} - F_{i-1}(\hat{x}_{t_0}, \dots, \hat{x}_{t_{i-1}}) = 0, \end{cases} \quad i \in \{1, \dots, N\}, \quad (4)$$

140 where x_{t_0} is the initial sample from the prior and F_{i-1} is defined based on the ODE solver:

$$141 \quad F_{i-1}(\hat{x}_{t_0}, \dots, \hat{x}_{t_{i-1}}) = \hat{x}_{t_0} + \sum_{j=0}^{i-1} h_j \cdot v(\hat{x}_{t_j}, t_j, \theta). \quad (5)$$

142 This reformulation decouples the stepwise dependencies: given tentative states $\{\hat{x}_{t_j}\}$, the vector field
 143 $v(\hat{x}_{t_j}, t_j, \theta)$ can be evaluated for all timesteps $j \in \{0, \dots, N-1\}$ in parallel. A crucial question
 144 then arises: does solving this system recover the same trajectory as the original sequential process?

145 **Proposition 1** (Trajectory Equivalence [see App. B for proof]). *The TNE system in Eq. (4) possesses
 146 a unique root that is identical to the sampling trajectory $\{x_{t_i}\}_{i=0}^N$ generated by the autoregressive
 147 procedure in Eq. (3).*

148 This proposition ensures that by solving the TNEs, we can produce a sample indistinguishable in
 149 quality from that obtained via the standard autoregressive process.

162

Algorithm 1: ParaFlow: Parallel Sampling within a Sliding Window

163

Input : Initial noise x_{t_0} , total steps N , timesteps $\{t_i\}_{i=0}^N$, tolerance δ , window size p .

164

Output : Final sample $\hat{x}_{t_N}^{(K)}$.

165

1 Initialize $\{\hat{x}_{t_i}^{(0)} = x_{t_0}, i = 0, \dots, p - 1\}$.

166

2 $i \leftarrow 0, k \leftarrow 0$;

167

3 **while** $i < N$ **do**

168

4 Compute vector field $v_j^{(k)} = v(\hat{x}_{t_{i+j}}^{(k)}, t_{i+j}, \theta)$ in parallel for $j \in \{0, \dots, p - 1\}$.

169

5 Update temporary states $F_j \leftarrow \hat{x}_{t_i}^{(k)} + \sum_{l=0}^j (t_{i+l+1} - t_{i+l}) v_l^{(k)}$ in parallel for $j \in \{0, \dots, p - 1\}$.

170

6 Update the state $\hat{x}_{t_{i+j+1}}^{(k+1)} \leftarrow F_j$ in parallel for $j \in \{0, \dots, p - 1\}$.

171

7 $stride \leftarrow$ number of converged states based on $\frac{1}{D} \|\hat{x}_{t_{i+j+1}}^{(k+1)} - \hat{x}_{t_{i+j+1}}^{(k)}\|^2 \leq \delta^2$ for $j \in \{0, \dots, p - 1\}$.

172

8 Initialize new states outside current window: $\hat{x}_{t_{i+p+j}}^{(k+1)} \leftarrow \hat{x}_{t_{i+p}}^{(k+1)}$ for $j \in \{1, \dots, stride\}$.

173

9 $i \leftarrow i + stride, k \leftarrow k + 1, p \leftarrow \min(p, N - i)$.

174

10 **Return:** $\hat{x}_{t_N}^{(K)}$

175

176

177

178

4.3 SOLVING THE TNE SYSTEM WITH FIXED-POINT ITERATION

179

180 We can solve the system in Eq. (4) using various root-finding methods. Standard fixed-point iteration
181 (FPI) is a natural choice. Given an initial guess for the entire trajectory $\{\hat{x}_{t_i}^{(0)}\}_{i=0}^N$, the update rule is:
182

183

184
$$\hat{x}_{t_i}^{(k+1)} = F_{i-1}(\hat{x}_{t_0}^{(k)}, \dots, \hat{x}_{t_{i-1}}^{(k)}), \quad i \in \{1, \dots, N\}, \quad (6)$$

185

186

187 with $\hat{x}_{t_0}^{(k+1)} = x_{t_0}$ for all k . Crucially, this update is step-level parallelizable: for any iteration k , the
188 vector field evaluations $v(\hat{x}_{t_j}^{(k)}, t_j, \theta)$ across all $j \in \{0, \dots, N - 1\}$ can be computed simultaneously.

189

190 **Proposition 2** (Convergence Guarantee [see App. C for proof]). *Starting from any initial guess*
191 $\{\hat{x}_{t_i}^{(0)}\}_{i=0}^N$, *the fixed-point iteration in Eq. (6) converges exactly to the autoregressive sampling tra-*
192 *jectory $\{x_{t_i}\}_{i=0}^N$. This convergence is achieved in at most N iterations.*

193

194 The proof follows from the structure of the update mapping, which admits the autoregressive trajec-
195 tory as its unique fixed point. In practice, the number of parallel iterations K required for conver-
196 gence is typically much smaller than N , resulting in substantial acceleration.

197

4.4 EFFICIENT IMPLEMENTATION WITH A SLIDING WINDOW

198

199 Solving for the entire trajectory of N steps in parallel can be computationally demanding. To make
200 this practical, we implement the FPI within a sliding window of size $p \ll N$. We perform parallel
201 iterations only on p subequations at a time. The window slides forward once the states within it have
202 converged.

203

204 **Initialization.** We initialize all states within the first window to the starting noise vector: $\hat{x}_{t_i}^{(0)} = x_{t_0}$
205 for $i = 0, \dots, p - 1$. When the window slides, new states entering the window are initialized with
206 the last converged state from the previous window.

207

208 **Stopping Criterion.** We define convergence within the window using a tolerance threshold
209 δ . An iterate $\hat{x}_{t_i}^{(k)}$ is considered converged if the change from the previous iteration is small:
210 $\frac{1}{D} \|\hat{x}_{t_i}^{(k)} - \hat{x}_{t_i}^{(k-1)}\|^2 \leq \delta^2$, where D is the number of pixels. The window slides forward by a stride,
211 which is the number of contiguously converged states from the beginning of the window.

212

5 EXPERIMENT

213

214 **Experimental setup.** All experiments were carried out on 8 Ascend 910B GPUs. We eval-
215 uated generation quality using the Fréchet Inception Distance (FID) (Heusel et al., 2017) and
216 CLIP score (Hessel et al., 2021), calculated over 10,000 random prompts from the FluxPrompt-
217 ing dataset (VincentGOURBIN, 2024). We report the average wall-clock time to generate a single

Steps	Method	Stable Diffusion 3					
		Iters↓	NFE↓	CLIP↑	FID↓	Time (s)↓	Speedup↑
100	Euler	100.00	100.00	32.38	50.75	18.22	1.0×
	Euler + ParaFlow	26.47	211.78	32.37	51.62	5.55	3.3×
75	Euler	75.00	75.00	32.37	51.14	13.57	1.0×
	Euler + ParaFlow	22.96	183.66	32.37	51.91	4.95	2.7×
50	Euler	50.00	50.00	32.37	51.57	9.37	1.0×
	Euler + ParaFlow	19.94	159.49	32.36	51.95	4.43	2.1×
25	Euler	25.00	25.00	32.31	53.34	5.17	1.0×
	Euler + ParaFlow	16.02	128.12	32.32	54.00	3.73	1.4×

Table 1: Quantitative comparisons of different methods on Stable Diffusion 3 over 10,000 random samples at 1024×1024 . The visual comparisons are shown in the Appendix. The best results in each step are highlighted in **bold**. “↑” (resp. “↓”) means the larger (resp. smaller), the better. Note that Euler + ParaFlow is evaluated with tolerance 0.005.

image. Our baseline is the standard sequential Euler solver. We compare it with our proposed Euler + ParaFlow method across different total sampling steps ($N \in \{100, 75, 50, 25\}$). For ParaFlow, we use a default parallel window size of $p = 8$.

We define the total steps (N) as the number of discrete steps in the sampling schedule. For a standard sequential method such as the Euler solver, the number of iterations (Iters) and the total number of function evaluations (NFE) are identical to N . For our parallel method, ParaFlow, Iters signifies the reduced number of sequential blocks executed, while the total computational workload, NFE, reflects the parallel execution and is calculated as $\text{Iters} \times p$, where p is the parallel window size.

5.1 RESULTS ON STABLE DIFFUSION 3

We first evaluate ParaFlow on Stable Diffusion 3, generating 1024×1024 images from 10,000 random prompts.

Performance across different step counts. Table 1 compares the results of the vanilla Euler solver and Euler + ParaFlow under different numbers of sampling steps. Our method demonstrates a significant reduction in latency by parallelizing the computation. For example, in the 100-step setting, ParaFlow reduces the number of sequential iterations from 100 to just 26.47, translating into a $3.3\times$ reduction in wall clock time (from 18.22 to 5.55 s), while incurring only a marginal increase in FID (50.75 to 51.62) and maintaining an identical CLIP score. The corresponding qualitative results are shown in Figure 1, further confirming the visual fidelity of our method.

This highlights the core trade-off of ParaFlow: we exchange a higher total computational cost (NFE from 100.00 to 211.78) for a substantial decrease in generation latency. This advantage holds even at fewer sampling steps, where ParaFlow delivers a $1.4\times$ speedup in the 25-step setting, underscoring its robustness.

Effect of tolerance. To further investigate the trade-off between speed and fidelity, we vary ParaFlow’s tolerance parameter at 25 total steps (Table 2). Increasing the tolerance (e.g., 0.01) reduces the average number of iterations to 12.16, resulting in a $1.7\times$ acceleration, at the cost of a modest increase in FID (55.59). Conversely, employing a stricter tolerance (e.g., 0.005) yields a FID of 54.00, closely aligning with the baseline Euler method (53.34), while still achieving a $1.4\times$ speedup. This tunable parameter enables practitioners to adapt ParaFlow to task-specific requirements, providing a controllable trade-off between sample quality and inference efficiency. Representative visual comparisons are provided in Figure 2, which clearly illustrate the perceptual impact of different tolerance settings.

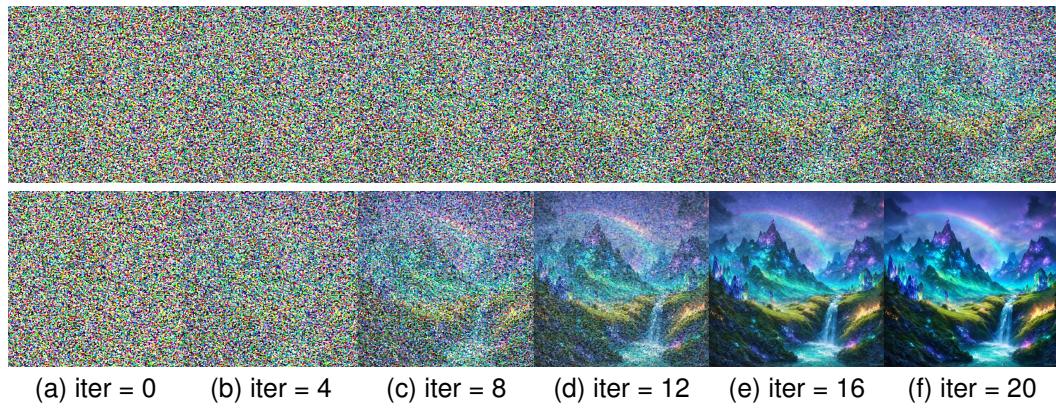


Figure 1: All images are generated by the **stable-diffusion-3-medium** model with 50 sampling steps, using the prompt “*Create a dreamlike landscape featuring rolling hills, shimmering waterfalls, and towering mountains made entirely of crystal and gemstones that refract light into rainbows.*” at resolution 1024×1024 . The **top row** corresponds to the **Euler** method, while the **bottom row** corresponds to our proposed **Euler + ParaFlow** method (tolerance = 0.005).

Method	Tolerance	Stable Diffusion 3					
		Iters \downarrow	NFE \downarrow	CLIP \uparrow	FID \downarrow	Time (s) \downarrow	Speedup \uparrow
Euler	0	25.00	25.00	32.31	53.34	5.17	1.0 \times
Euler + ParaFlow	0.01	12.16	97.32	32.31	55.59	3.08	1.7\times
	0.007	13.96	111.72	32.31	54.63	3.38	1.5 \times
	0.005	16.02	128.12	32.32	54.00	3.73	1.4 \times

Table 2: Quantitative comparisons on Stable Diffusion 3 with 25 sampling steps over 10,000 random samples at 1024×1024 . The best results are highlighted in **bold**. “ \uparrow ” (resp. “ \downarrow ”) means the larger (resp. smaller), the better.



Figure 2: The above images show results from the **stable-diffusion-3-medium** model at resolution 1024×1024 with 25 sampling steps. The prompt used is “*Abandoned church in night*”. The leftmost image corresponds to the **Euler** method, while the other three images correspond to our proposed **Euler + ParaFlow** method with parallel window size = 8 under different tolerance values (0.005, 0.007, 0.01).

5.2 RESULTS ON FLUX

We further validate ParaFlow on the Flux model, examining its performance across various sampling steps, resolutions, and window sizes.

Steps	Method	Flux Model					
		Iters \downarrow	NFE \downarrow	CLIP \uparrow	FID \downarrow	Time (s) \downarrow	Speedup \uparrow
100	Euler	100.00	100.00	32.31	55.62	87.94	1.0 \times
	Euler + ParaFlow	23.49	187.95	32.40	55.28	22.16	4.0\times
75	Euler	75.00	75.00	32.36	55.25	66.15	1.0 \times
	Euler + ParaFlow	19.32	154.54	32.42	55.35	18.38	3.6\times
50	Euler	50.00	50.00	32.38	54.89	44.38	1.0 \times
	Euler + ParaFlow	15.11	120.86	32.45	55.84	14.57	3.0\times
25	Euler	25.00	25.00	32.40	55.23	22.60	1.0 \times
	Euler + ParaFlow	12.79	102.33	32.47	55.88	12.42	1.8\times

Table 3: Quantitative comparisons of different methods on Flux over 10,000 random samples at 1024×1024 . The visual comparisons are shown in the Appendix. The best results in each step are highlighted in **bold**. “ \uparrow ” (resp. “ \downarrow ”) means the larger (resp. smaller), the better. Note that Euler + ParaFlow is evaluated with tolerance 0.01.

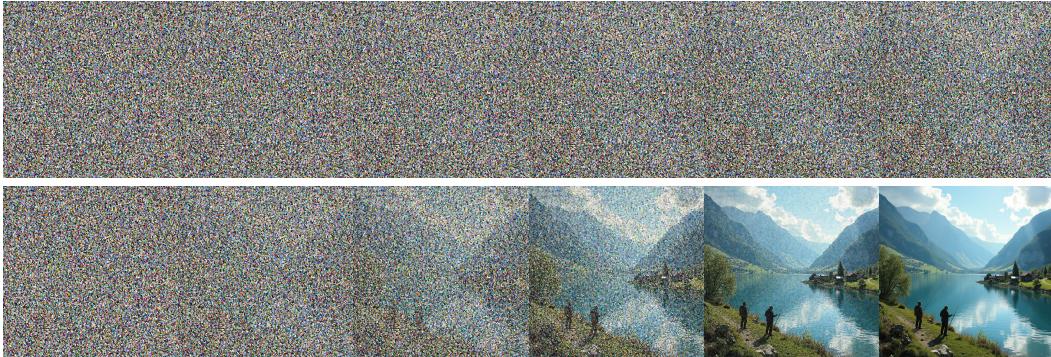


Figure 3: All images are generated by the **FLUX.1-dev** model with 50 sampling steps, using the prompt “A peaceful mountain village surrounded by rolling hills and a sparkling lake in the foreground, with fishermen casting their lines into the calm waters.” at resolution 1024×1024 . The **top row** corresponds to the **Euler** method, while the **bottom row** corresponds to our proposed **Euler + ParaFlow** method (parallel window size = 8, tolerance = 0.01).

Performance across different steps. As shown in Table 3, ParaFlow delivers even greater acceleration on Flux. At 100 steps, it reduces the required iterations to 23.49, yielding a 4.0 \times speedup (87.94 vs. 22.16 s) while slightly improving the FID score. The acceleration remains consistent across step counts, reaching 1.8 \times even at 25 steps, confirming ParaFlow’s effectiveness as a general-purpose accelerator. Figure 3 further corroborates these findings with qualitative examples, highlighting that the perceptual quality is well preserved despite the substantial reduction in computation.

Effect of resolution. Table 4 demonstrates ParaFlow’s scalability across different image resolutions with a 25-step schedule. Our method delivers consistent speedups: 2.3 \times at 512×512 , 1.8 \times at 1024×1024 , and 1.7 \times at 2048×2048 . Crucially, the impact on FID and CLIP scores remains minimal across all resolutions, proving that ParaFlow’s benefits generalize effectively to both low- and high-resolution synthesis. Complementary visual results are provided in Figure 4, which illustrate that image fidelity is preserved across scales while the generation time is substantially reduced.

378
379
380
381
382
383
384
385
386
387
388
389

Resolution	Method	Flux Model					
		Iters↓	NFE↓	CLIP↑	FID↓	Time (s)↓	Speedup↑
512×512	Euler	25.00	25.00	32.19	52.49	11.31	■ 1.0×
	Euler + ParaFlow	13.24	105.90	32.23	52.59	4.81	■ 2.3 ×
1024×1024	Euler	25.00	25.00	32.40	55.23	22.60	■ 1.0×
	Euler + ParaFlow	12.79	102.33	32.47	55.88	12.42	■ 1.8 ×
2048×2048	Euler	25.00	25.00	31.34	55.98	109.55	■ 1.0×
	Euler + ParaFlow	14.30	114.37	31.31	56.46	65.86	■ 1.7 ×

Table 4: Quantitative comparisons of Euler and Euler + ParaFlow on the Flux model over 10,000 random samples at 25 sampling steps. The best results in each resolution are highlighted in **bold** for Iters, Time, and Speedup only. “↑” (resp. “↓”) means the larger (resp. smaller), the better. Note that Euler + ParaFlow is evaluated with tolerance 0.01 for 512×512 and 1024×1024 , and 0.0028 for 2048×2048 .

Figure 4: All images are generated by the **FLUX.1-dev** model with 25 sampling steps. The prompts used are: “*Skier gliding over fresh powder*” at resolution 512×512 , “*A photographer focusing on the subject of a portrait, using natural light and composition to capture the perfect shot.*” at resolution 1024×1024 , and “*A charming farmhouse exterior with a white picket fence, a covered porch, and a garden full of colorful flowers and herbs.*” at resolution 2048×2048 . In each group, the **left image** corresponds to the **Euler** method, while the **right image** corresponds to our proposed **Euler + ParaFlow** method (parallel window size = 8, tolerance = 0.01, 0.01, and 0.0028 for the three resolutions, respectively).

Effect of window size (p). We further analyze the influence of window size p on ParaFlow, using a 50-step schedule at 512×512 resolution (Table 5). The results reveal a clear trade-off: a smaller window size leads to a lower NFE and faster wall-clock time, at the cost of slightly more iterations. The window size of $p = 8$ provides the best balance, achieving a $4.3 \times$ speedup with almost identical image quality to the standard Euler solver. This flexibility allows practitioners to optimize ParaFlow for their specific hardware configurations. Figure 5 visually demonstrates this effect, showing that increasing the window size preserves fidelity while offering varying levels of acceleration.

5.3 ADDITIONAL QUALITATIVE EVALUATION

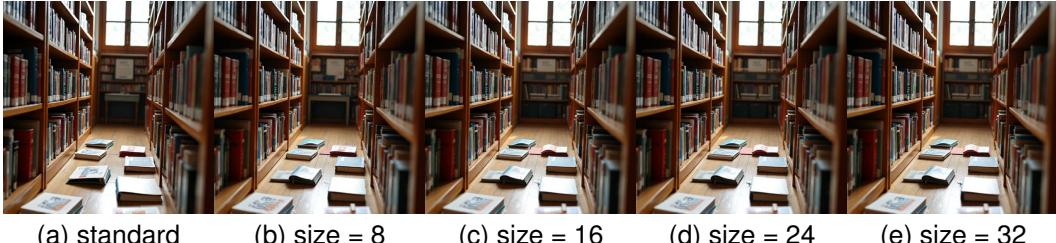
We also provide qualitative results in Appendix D, illustrating the images generated by ParaFlow on both Stable Diffusion 3 and Flux. The samples demonstrate that ParaFlow preserves high perceptual quality and semantic alignment while significantly reducing sampling time. Together with the quantitative analyses, these results confirm ParaFlow as a general and effective solution for fast and high-fidelity diffusion sampling.

6 LIMITATION AND DISCUSSION

While ParaFlow achieves significant speedups, its effectiveness is predicated on the availability of parallel computing resources. The fundamental trade-off is exchanging increased computational throughput (evaluating p steps in parallel) for reduced latency. This approach also increases the

432	433	Method	Window Size	Flux Model						
				434	Iters \downarrow	NFE \downarrow	CLIP \uparrow	FID \downarrow	Time (s) \downarrow	Speedup \uparrow
435	436	Euler + ParaFlow	Euler	1	50.00	50.00	32.13	52.66	23.80	1.0 \times
437	438			32	14.76	472.44	32.17	52.64	15.12	1.6 \times
439	440			24	14.75	354.02	32.17	52.64	12.21	1.9 \times
441				16	14.83	237.27	32.17	52.66	9.18	2.6 \times
				8	15.44	123.51	32.16	52.58	5.58	4.3\times

442
 443 Table 5: Quantitative comparisons of different window sizes for the FLUX model over 10,000
 444 random samples at 512×512 with 50 sampling steps. The visual comparisons are shown in the
 445 Appendix. The best results are highlighted in **bold**. “ \uparrow ” (resp. “ \downarrow ”) means the larger (resp. smaller),
 446 the better. Note that Euler + ParaFlow is evaluated with tolerance 0.01.
 447



448
 449 Figure 5: The above images show results from the **FLUX.1-dev** model at resolution 512×512 with
 450 25 sampling steps. The prompt used is “*Library with lots of books on the floor*”. The leftmost image
 451 corresponds to the **Euler** method, while the other four images correspond to our proposed **Euler +**
 452 **ParaFlow** method under different parallel window sizes (8, 16, 24, 32) with tolerance fixed at 0.01.
 453

454
 455 memory footprint, since intermediate states within the parallel window must be stored. Our current
 456 implementation is not fully system-level optimized; techniques like kernel fusion and optimized
 457 communication collectives could further reduce overhead and amplify the speedup. Looking for-
 458 ward, we anticipate that ParaFlow’s efficiency will scale with hardware advancements, particularly
 459 with faster inter-GPU communication and larger on-chip memory. This positions parallelized sam-
 460 pling as a promising direction for future large-scale generative models.
 461

462 7 CONCLUSION

463 This paper introduces ParaFlow, a novel framework that reimagines the sampling process for Flow
 464 Matching models. By reformulating the inherently autoregressive ODE solving process as a system
 465 of triangular nonlinear equations, ParaFlow enables full step-level parallelism, allowing multiple
 466 sampling steps to be computed simultaneously. Our theoretical analysis confirms that this method
 467 converges to the exact trajectory of a standard sequential sampler. Empirically, on state-of-the-art
 468 models like Stable Diffusion 3 and Flux, ParaFlow delivers wall-clock speedups of up to 4.3 \times with
 469 negligible impact on generation quality. This work opens a new avenue for accelerating generative
 470 model inference, complementing existing methods and paving the way for more efficient and
 471 interactive creative applications.
 472

486 ETHICS & REPRODUCIBILITY STATEMENTS
487

488 Our work focuses on a fundamental algorithmic improvement for sampling from generative models
489 and does not introduce new ethical concerns beyond those already associated with large-scale text-
490 to-image models. The models used in our experiments (Stable Diffusion 3, Flux) are developed
491 by third parties, and we use them as is. Our method could be used to accelerate the generation of
492 harmful content, but it does not inherently make such generation easier or more likely than with
493 standard samplers. We believe the primary positive impact is making high-fidelity generative AI
494 more accessible for research and creative applications by lowering the inference time barrier. For
495 reproducibility, we have detailed our methodology, algorithm, and experimental setup in the paper.
496 We will release our source code, built upon standard open-source libraries, upon publication to allow
497 for full verification of our results.

498 REFERENCES
499

500 Black Forest Labs. Introducing flux.1. <https://www.blackforestlabs.ai/announcements/introducing-flux>, August 2024. Accessed: 2025-09-07.

502 Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=g7ohDlTIL>.

506 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
507 differential equations. *Advances in neural information processing systems*, 31, 2018.

508 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
509 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
510 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
511 2024.

513 Eric Frankel, Sitan Chen, Jerry Li, Pang Wei Koh, Lillian J. Ratliff, and Sewoong Oh. S4s: Solving
514 for a fast diffusion model solver. In *Forty-second International Conference on Machine Learning*,
515 2025. URL <https://openreview.net/forum?id=90aZCNbV2w>.

516 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
517 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

519 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
520 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
521 neural information processing systems*, 30, 2017.

522 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
523 based generative models. In *NeurIPS*, 2022.

525 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
526 for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2022.

528 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
529 Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code, 2024.
530 URL <https://arxiv.org/abs/2412.06264>.

532 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
533 with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2022.

534 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
535 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural
536 Information Processing Systems*, 35:5775–5787, 2022a.

538 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
539 solver for guided sampling of diffusion probabilistic models. In *arXiv preprint arXiv:2211.01095*,
2022b.

540 Jianrong Lu, Zhiyu Zhu, and Junhui Hou. Parasolver: A hierarchical parallel integral solver for
 541 diffusion models. In *International Conference on Learning Representations*, 2025.

542

543 Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
 544 sizing high-resolution images with few-step inference. *arXiv preprint arXiv:2310.04378*, 2023.

545 Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
 546 schedules in diffusion models, 2024. URL <https://arxiv.org/abs/2404.14507>.

547

548 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 549 *International Conference on Learning Representations*, 2022.

550

551 Johannes Schusterbauer, Ming Gui, Frank Fundel, and Björn Ommer. Diff2flow: Training flow
 552 matching models via diffusion model alignment. In *Proceedings of the Computer Vision and*
 553 *Pattern Recognition Conference*, pp. 28347–28357, 2025.

554

555 Neta Shaul, Juan Perez, Ricky T. Q. Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Bespoke
 556 solvers for generative flow models, 2023. URL <https://arxiv.org/abs/2310.19075>.

557

558 Neta Shaul, Uriel Singer, Ricky T. Q. Chen, Matthew Le, Ali Thabet, Albert Pumarola, and Yaron
 559 Lipman. Bespoke non-stationary solvers for fast sampling of diffusion and flow models, 2024.
 560 URL <https://arxiv.org/abs/2403.01329>.

561

562 Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
 563 diffusion models. *Advances in Neural Information Processing Systems*, 36, 2024.

564

565 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 566 national Conference on Learning Representations*, 2020.

567

568 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
 569 2020. URL <https://arxiv.org/abs/1907.05600>.

570

571 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 572 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 573 national Conference on Learning Representations*, 2021.

574

575 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *International
 576 Conference on Machine Learning*, 2023.

577

578 Zhiwei Tang, Jiasheng Tang, Hao Luo, Fan Wang, and Tsung-Hui Chang. Accelerating parallel
 579 sampling of diffusion models. In *Forty-first International Conference on Machine Learning*, 2024.

580

581 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 582 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 583 with minibatch optimal transport. *arXiv preprint arXiv:2302.00482*, 2023.

584

585 VincentGOURBIN. Fluxprompting. [https://huggingface.co/datasets/
 586 VincentGOURBIN/FluxPrompting](https://huggingface.co/datasets/VincentGOURBIN/FluxPrompting), 2024.

587

588 Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, Limin Wang, et al.
 589 Differentiable solver search for fast diffusion sampling. *arXiv preprint arXiv:2505.21114*, 2025.

590

591 Shuchen Xue, Zhaoqiang Liu, Fei Chen, Shifeng Zhang, Tianyang Hu, Enze Xie, and Zhenguo
 592 Li. Accelerating diffusion sampling with optimized time steps, 2024. URL <https://arxiv.org/abs/2402.17376>.

593

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
 solver with empirical model statistics. In *NeurIPS*, 2023.

594 **A USE OF LLM**
 595

596 During the preparation of this work, we used Large Language Models (LLMs) to assist with the
 597 writing process. The primary uses included polishing and improving the fluency of the text, generating
 598 preliminary drafts of proofs, and assisting in the creation and formatting of tables. After using
 599 these tools, the author(s) reviewed and edited the content extensively. We take full responsibility
 600 for the entire content of this publication, including the ideas, proofs, and presentations ultimately
 601 contained in the final manuscript.

602 **B PROOF OF PROPOSITION 1**
 603

604 We first show that the triangular nonlinear equation (TNE) system in Eq. (4) has a unique root.
 605 Suppose there exist two distinct solutions $\{A_0, \dots, A_N\}$ and $\{B_0, \dots, B_N\}$. By construction, for
 606 any $i \in \{1, \dots, N\}$ these solutions satisfy:

$$\begin{cases} A_i = F_{i-1}(A_0, \dots, A_{i-1}) \\ B_i = F_{i-1}(B_0, \dots, B_{i-1}). \end{cases} \quad (7)$$

607 By induction, assume $A_j = B_j$ for all $0 \leq j \leq i-1$. Then,

$$A_i = F_{i-1}(A_0, \dots, A_{i-1}) = F_{i-1}(B_0, \dots, B_{i-1}) = B_i, \quad (8)$$

608 which implies $A_i = B_i$. Therefore, all components of the two solutions must coincide, and the root
 609 is unique.

610 Next, we show that this unique root coincides with the autoregressive trajectory. From Eq. (3), the
 611 autoregressive update satisfies

$$x_{t_i} = x_{t_0} + \sum_{j=0}^{i-1} h_j v(x_{t_j}, t_j, \theta). \quad (9)$$

612 Meanwhile, the definition of F_{i-1} in Eq. (5) gives

$$\hat{x}_{t_i} = F_{i-1}(\hat{x}_{t_0}, \dots, \hat{x}_{t_{i-1}}) = \hat{x}_{t_0} + \sum_{j=0}^{i-1} h_j v(\hat{x}_{t_j}, t_j, \theta). \quad (10)$$

613 By induction on i , since $\hat{x}_{t_0} = x_{t_0}$, it follows that $\hat{x}_{t_i} = x_{t_i}$ for all $i \in \{0, \dots, N\}$. Thus, the TNE
 614 system admits a unique solution identical to the autoregressive trajectory.

615 **C PROOF OF PROPOSITION 2**
 616

617 We analyze the fixed-point iteration defined in Eq. (6):
 618

$$\hat{x}_{t_0}^{(k+1)} = x_{t_0}, \quad \hat{x}_{t_i}^{(k+1)} = F_{i-1}(\hat{x}_{t_0}^{(k)}, \dots, \hat{x}_{t_{i-1}}^{(k)}), \quad i \in \{1, \dots, N\}. \quad (11)$$

619 We prove by induction that after k iterations, $\hat{x}_{t_j}^{(k)} = x_{t_j}$ for all $j \leq k$.

620 **Base case ($k = 1$).** By definition, $\hat{x}_{t_0}^{(1)} = x_{t_0}$. Moreover,

$$\hat{x}_{t_1}^{(1)} = F_0(\hat{x}_{t_0}^{(0)}) = F_0(x_{t_0}) = x_{t_1}. \quad (12)$$

621 Thus, indices 0 and 1 are exact after the first iteration.

622 **Inductive step.** Suppose $\hat{x}_{t_j}^{(k)} = x_{t_j}$ for all $j \leq k$. At the $(k+1)$ -th iteration,

$$\hat{x}_{t_{k+1}}^{(k+1)} = F_k(\hat{x}_{t_0}^{(k)}, \dots, \hat{x}_{t_k}^{(k)}) = F_k(x_{t_0}, \dots, x_{t_k}) = x_{t_{k+1}}, \quad (13)$$

623 Hence, the $(k+1)$ -th variable becomes exact, while all previously correct variables remain un-
 624 changed, since their updates depend only on values already exact.

625 **Conclusion.** After N iterations, $\hat{x}_{t_j}^{(N)} = x_{t_j}$ for all $j = 0, \dots, N$, establishing exact convergence in
 626 at most N steps.

627 **D ADDITIONAL QUALITATIVE RESULTS**
 628

(a) A peaceful river surrounded by tall trees and lush greenery on both sides. (b) The glowing ember of a dying fire, surrounded by the charred remains of last night's logs and a few wispy strands of smoke curling upwards. (c) Women in swimwear performing synchronized swimming routine. (d) A stunning mountain range at sunset, with snow-capped peaks fading into a brilliant orange and pink sky that stretches endlessly in every direction.

(e) Frozen lake with frosty trees reflected in the water (f) A stunning portrait of a wise old wood-worker standing in front of a wooden workbench, surrounded by tools and half-finished projects. (g) LED-lit cityscape at night (h) Old, creepy carnival at midnight

(i) Envision a serene coastal scene featuring a rustic lighthouse situated among towering sand dunes and vast expanses of sandy beach, as the sun rises over the horizon. (j) An intricately carved Icelandic turf roofed cabin standing proudly amidst a windswept landscape of black sand beaches and jagged rock formations. (k) Show a dramatic split-second moment of a thunderstorm unleashing its fury on a deserted highway, with lightning flashing across the darkening sky and debris scattered everywhere. (l) Depict Captain America standing on a rooftop, looking out over a cityscape at sunset, with his eyes narrowed in focus as he surveys his surroundings.

(m) A pod of dolphins swimming through coral reef (n) Desert landscape under stars (o) A massive thunderstorm unfolding over the Great Sandy Desert, with towering cumulus clouds stretching across the sky. (p) A vibrant pomegranate fruit sitting alone on a rustic wooden table, surrounded by lush greenery and autumn leaves.

Figure 6: Qualitative results generated by Euler + ParaFlow with different prompts on the FLUX.1-dev and stable-diffusion-3-medium models at a resolution of 1024×1024 .