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ABSTRACT

This paper approaches the fundamental challenge of accelerating the inherently
autoregressive nature of sampling in Flow Matching (FM) models like Stable Dif-
fusion 3 and Flux through a numerical systems perspective. Specifically, we in-
troduce a unified framework that recasts the autoregressive sampling process as
solving a system of triangular nonlinear equations (TNEs), thereby facilitating a
paradigm shift toward non-autoregressive sampling featuring parallel vector field
computation across multiple timesteps. Within this generic framework, we estab-
lish that: (1) the TNE system admits a unique solution corresponding precisely
to the autoregressive sampling trajectory; (2) solving the TNE system guaran-
tees convergence to this exact trajectory in far fewer sequential iterations. Build-
ing on these insights, we present ParaFlow, a training-free, step-parallel sampler
for accelerating autoregressive FM samplers. Extensive experiments validate that
ParaFlow achieves up to a 4ˆ reduction in sequential sampling steps and signifi-
cant wall-clock speedup of up to 4.3ˆ, with negligible impact on FID and CLIP
scores. The source code will be released publicly.

1 INTRODUCTION

Flow Matching (FM) has emerged as a leading framework for high-fidelity generative model-
ing, powering recent state-of-the-art systems such as Stable Diffusion 3 (Esser et al., 2024) and
Flux (Black Forest Labs, 2024). FM models learn a time-dependent vector field that transports a
simple prior distribution to the data distribution via an ordinary differential equation (ODE). Thus,
sampling reduces to numerically integrating this ODE, an inherently autoregressive procedure that
requires tens of sequential evaluations of a large neural network, constituting a major bottleneck for
real-time and interactive use.

Two main strategies have been explored to mitigate this cost. The first develops more efficient
numerical solvers: high-order methods such as DPM-Solver (Lu et al., 2022a;b) and task-specific
solvers (Shaul et al., 2023; Frankel et al., 2025) reduce the number of function evaluations (NFEs),
enabling generation in fewer steps, but remain fully sequential. The second pursues model distilla-
tion (Salimans & Ho, 2022), compressing multi-step teachers into student models capable of few-
shot or even one-shot generation. Approaches such as Latent Consistency Models (LCMs) (Luo
et al., 2023), based on Consistency Models (Song et al., 2023), achieve strong results but require
expensive retraining and degrade fidelity. Both methods reduce the step count but do not remove
sequential dependencies.

In contrast to these approaches, our work departs from the sequential paradigm. We propose
ParaFlow, a framework that accelerates sampling not by reducing steps but by executing them
in parallel. Our key idea is to recast the entire sampling trajectory—ordinarily produced by an ODE
solver—as a system of Triangular Nonlinear Equations (TNEs). This reformulation decouples de-
pendencies across timesteps, enabling simultaneous evaluation of the vector field at multiple steps.

We show that the proposed TNE system admits a unique solution mathematically identical to the
trajectory of the original autoregressive sampler, ensuring no loss in sample quality. To solve this
system efficiently, we adopt a fixed-point iteration scheme that converges rapidly to the exact so-
lution. A sliding-window implementation further makes the approach computationally feasible for
long sampling chains.

Our main contributions are:
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• We are the first to formulate the sampling process of Flow Matching models as a system of
TNEs, enabling step-level parallelism.

• We propose an efficient, parallel fixed-point solver, ParaFlow, with theoretical guarantees
of convergence to the exact autoregressive trajectory.

• Through extensive experiments on state-of-the-art flow-matching based models like Stable
Diffusion 3 and Flux, we demonstrate wall-clock speedups of 1.4-4.3ˆ and a reduction in
sequential operations by up to 4ˆ, with negligible impact on generation quality.

ParaFlow is a training-free, plug-and-play accelerator that is compatible with existing pre-trained
FM models, opening a new direction for efficient model inference.

2 RELATED WORK

Accelerating generative model sampling is a long-standing research problem. For diffusion and
flow-based models, which rely on iterative refinement, this is particularly critical.

Numerical ODE Solvers for Flow Matching. Flow Matching (FM) (Lipman et al., 2022; Liu et al.,
2022; Chen & Lipman, 2024) frames the sampling process as the integration of a learned time-
dependent vector field. Early work (Song & Ermon, 2020; Song et al., 2021) in score-based SDEs
and their corresponding probability-flow ODEs enabled deterministic sampling and efficient likeli-
hood evaluation. FM further refines this by training continuous normalizing flows (Chen et al., 2018)
through conditional vector field regression along optimized probability paths, such as those (e.g.
Lipman et al., 2022; Tong et al., 2023; Lipman et al., 2024; Schusterbauer et al., 2025; Wang et al.,
2025) derived from diffusion or optimal transport, improving stability and speed with standard ODE
solvers.

The choice of numerical integrator is crucial. First-order methods, such as Euler and DDIM (Song
et al., 2020), are computationally inexpensive but require a large number of steps to achieve high-
quality results. To mitigate this problem, second-order solvers, such as Heun’s method, are fre-
quently employed (Karras et al., 2022). For the most demanding tasks, higher-order solvers tai-
lored specifically for diffusion models, such as the DPM-Solver family (Lu et al., 2022a;b; Zheng
et al., 2023) and Bespoke Solvers (Shaul et al., 2023; 2024), offer improved sample quality with
lower NFEs. Furthermore, methods like S4S (Frankel et al., 2025), AYS (Sabour et al., 2024) and
DMN (Xue et al., 2024) have demonstrated potential for reducing discretization and global error.
However, these methods still require strictly sequential execution, limiting opportunities for paral-
lelization.

Parallel Sampling. ParaDiGMS (Shih et al., 2024) accelerates sampling by leveraging paral-
lelized Picard iterations to simultaneously predict and iteratively refine future denoising steps.
ParaTAA (Tang et al., 2024) reformulates the autoregressive diffusion sampling process as TNEs
and uses fixed-point methods to solve multiple steps in parallel. ParaSolver (Lu et al., 2025) fur-
ther models the sampling process as a system of banded nonlinear equations, and shows how to
exploit structural properties and hierarchical initialization to preserve sample quality while greatly
reducing inference time. Our proposed method, ParaFlow, builds on the parallel solving framework
pioneered by those works, but is the first to (i) systematically formulate parallel sampling in the
context of Flow Matching (FM) models; (ii) provide accompanying theoretical guarantees specific
to FM-based parallel solving; and (iii) empirically validate that TNE-based parallel sampling works
for state-of-the-art FM models without degradation in sample fidelity.

3 PRELIMINARY: FLOW MATCHING MODELS

Flow Matching models aim to learn a continuous-time process that transports a simple prior distri-
bution p0 (e.g., N p0, Iq) into a complex target data distribution p1. This transformation is described
by a time-dependent vector field vt : Rd ˆ r0, 1s Ñ Rd, parameterized by a neural network with
parameters θ. For a sample trajectory xt, t P r0, 1s, the dynamics are governed by the ODE:

dxt

dt
“ vtpxt, θq, x0 „ p0. (1)

2
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The vector field vt is learned by optimizing its underlying neural network parameters, such that the
distribution of the terminal state x1 approximates the target distribution p1 when x0 „ p0.

Sampling Process. To generate new samples, one first draws an initial point x0 „ p0 and then
integrates the ODE in Eq. (1) from t “ 0 to t “ 1. In practice, this integration is carried out
numerically. A common approach is the first-order Euler method: given a discretization 0 “ t0 ă

t1 ă ¨ ¨ ¨ ă tN “ 1, the update rule is

xti`1 “ xti ` pti`1 ´ tiq ¨ vpxti , ti, θq, i “ 0, . . . , N ´ 1. (2)

This discretization produces a sequence of intermediate states xti . Since each update depends on the
result of the previous step, the sampling procedure is inherently sequential, requiring N successive
evaluations of the neural network.

4 PROPOSED METHOD: PARAFLOW

4.1 MOTIVATION

The autoregressive update in Eq. (2) constitutes the main bottleneck: each step depends on the
previous one, precluding parallel computation and limiting sampling efficiency. We formalize this
dependency as follows.
Definition 1 (Autoregressive Sampling Procedure). Initiating with a sample xt0 „ p0, the sampling
process for an FM model using a numerical ODE solver is an autoregressive procedure of the form:

xti “ xt0 `

i´1
ÿ

j“0

hj ¨ vjpxtj , tj , θq, i P t1, . . . , Nu, (3)

where hj “ tj`1 ´ tj is the step size and vj is the vector field evaluated at time tj .

This formulation highlights the stepwise dependency. Viewing the entire trajectory
txt0 , xt1 , . . . , xtN u as unknown variables, this autoregressive process can be cast as a system of
N`1 equations. Solving this system yields the full trajectory simultaneously, eliminating sequen-
tial dependencies and enabling parallel computation.

4.2 RECASTING AUTOREGRESSIVE SAMPLING AS TRIANGULAR NONLINEAR EQUATION
SOLVING

We can view the sequence of updates in Definition 1 as a system of TNEs. Let tx̂t0 , . . . , x̂tN u be
the unknown variables corresponding to the true sampling trajectory txt0 , . . . , xtN u.
Definition 2 (TNEs for Flow Matching Sampling). We define the system of TNEs for the autoregres-
sive sampling procedure as:

Fpx̂t0 , . . . , x̂tN q “

"

x̂t0 ´ xt0 “ 0,

x̂ti ´ Fi´1px̂t0 , . . . , x̂ti´1q “ 0, i P t1, . . . , Nu,
(4)

where xt0 is the initial sample from the prior and Fi´1 is defined based on the ODE solver:

Fi´1px̂t0 , . . . , x̂ti´1
q “ x̂t0 `

i´1
ÿ

j“0

hj ¨ vpx̂tj , tj , θq. (5)

This reformulation decouples the stepwise dependencies: given tentative states tx̂tj u, the vector field
vpx̂tj , tj , θq can be evaluated for all timesteps j P t0, . . . , N ´ 1u in parallel. A crucial question
then arises: does solving this system recover the same trajectory as the original sequential process?
Proposition 1 (Trajectory Equivalence [see App. B for proof]). The TNE system in Eq. (4) possesses
a unique root that is identical to the sampling trajectory txtiu

N
i“0 generated by the autoregressive

procedure in Eq. (3).

This proposition ensures that by solving the TNEs, we can produce a sample indistinguishable in
quality from that obtained via the standard autoregressive process.

3
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Algorithm 1: ParaFlow: Parallel Sampling within a Sliding Window
Input : Initial noise xt0 , total steps N , timesteps ttiu

N
i“0, tolerance δ, window size p.

Output : Final sample x̂
pKq

tN
.

1 Initialize tx̂
p0q

ti
“ xt0 , i “ 0, . . . , p ´ 1u.

2 i Ð 0, k Ð 0;
3 while i ă N do
4 Compute vector field v

pkq

j “ vpx̂
pkq

ti`j
, ti`j , θq in parallel for j P t0, . . . , p ´ 1u.

5 Update temporary states Fj Ð x̂
pkq

ti
`

řj
l“0pti`l`1 ´ ti`lqv

pkq

l in parallel for j P t0, . . . , p ´ 1u.
6 Update the state x̂

pk`1q

ti`j`1
Ð Fj in parallel for j P t0, . . . , p ´ 1u.

7 stride Ð number of converged states based on 1
D

}x̂
pk`1q

ti`j`1
´ x̂

pkq

ti`j`1
}
2

ď δ2 for j P t0, . . . , p ´ 1u.

8 Initialize new states outside current window: x̂pk`1q

ti`p`j
Ð x̂

pk`1q

ti`p
for j P t1, . . . , strideu.

9 i Ð i ` stride, k Ð k ` 1, p Ð minpp,N ´ iq.

10 Return: x̂pKq

tN

4.3 SOLVING THE TNE SYSTEM WITH FIXED-POINT ITERATION

We can solve the system in Eq. (4) using various root-finding methods. Standard fixed-point iteration
(FPI) is a natural choice. Given an initial guess for the entire trajectory tx̂

p0q

ti uNi“0, the update rule is:

x̂
pk`1q

ti “ Fi´1px̂
pkq

t0 , . . . , x̂
pkq

ti´1
q, i P t1, . . . , Nu, (6)

with x̂
pk`1q

t0 “ xt0 for all k. Crucially, this update is step-level parallelizable: for any iteration k, the
vector field evaluations vpx̂

pkq

tj , tj , θq across all j P t0, . . . , N ´1u can be computed simultaneously.

Proposition 2 (Convergence Guarantee [see App. C for proof]). Starting from any initial guess
tx̂

p0q

ti uNi“0, the fixed-point iteration in Eq. (6) converges exactly to the autoregressive sampling tra-
jectory txtiu

N
i“0. This convergence is achieved in at most N iterations.

The proof follows from the structure of the update mapping, which admits the autoregressive trajec-
tory as its unique fixed point. In practice, the number of parallel iterations K required for conver-
gence is typically much smaller than N , resulting in substantial acceleration.

4.4 EFFICIENT IMPLEMENTATION WITH A SLIDING WINDOW

Solving for the entire trajectory of N steps in parallel can be computationally demanding. To make
this practical, we implement the FPI within a sliding window of size p ! N . We perform parallel
iterations only on p subequations at a time. The window slides forward once the states within it have
converged.

Initialization. We initialize all states within the first window to the starting noise vector: x̂p0q

ti “ xt0
for i “ 0, . . . , p ´ 1. When the window slides, new states entering the window are initialized with
the last converged state from the previous window.

Stopping Criterion. We define convergence within the window using a tolerance threshold
δ. An iterate x̂

pkq

ti is considered converged if the change from the previous iteration is small:
1
D }x̂

pkq

ti ´ x̂
pk´1q

ti }2 ď δ2, where D is the number of pixels. The window slides forward by a stride,
which is the number of contiguously converged states from the beginning of the window.

5 EXPERIMENT

Experimental setup. All experiments were carried out on 8 Ascend 910B GPUs. We eval-
uated generation quality using the Fréchet Inception Distance (FID) (Heusel et al., 2017) and
CLIP score (Hessel et al., 2021), calculated over 10,000 random prompts from the FluxPrompt-
ing dataset (VincentGOURBIN, 2024). We report the average wall-clock time to generate a single
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Steps Method
Stable Diffusion 3

ItersÓ NFEÓ CLIPÒ FIDÓ Time (s)Ó SpeedupÒ

100
Euler 100.00 100.00 32.38 50.75 18.22 1.0ˆ

Euler + ParaFlow 26.47 211.78 32.37 51.62 5.55 3.3ˆ

75
Euler 75.00 75.00 32.37 51.14 13.57 1.0ˆ

Euler + ParaFlow 22.96 183.66 32.37 51.91 4.95 2.7ˆ

50
Euler 50.00 50.00 32.37 51.57 9.37 1.0ˆ

Euler + ParaFlow 19.94 159.49 32.36 51.95 4.43 2.1ˆ

25
Euler 25.00 25.00 32.31 53.34 5.17 1.0ˆ

Euler + ParaFlow 16.02 128.12 32.32 54.00 3.73 1.4ˆ

Table 1: Quantitative comparisons of different methods on Stable Diffusion 3 over 10, 000 random
samples at 1024 ˆ 1024. The visual comparisons are shown in the Appendix. The best results in
each step are highlighted in bold. “Ò” (resp. “Ó”) means the larger (resp. smaller), the better. Note
that Euler + ParaFlow is evaluated with tolerance 0.005.

image. Our baseline is the standard sequential Euler solver. We compare it with our proposed Euler
+ ParaFlow method across different total sampling steps (N P t100, 75, 50, 25u). For ParaFlow, we
use a default parallel window size of p “ 8.

We define the total steps (N ) as the number of discrete steps in the sampling schedule. For a standard
sequential method such as the Euler solver, the number of iterations (Iters) and the total number of
function evaluations (NFE) are identical to N . For our parallel method, ParaFlow, Iters signifies
the reduced number of sequential blocks executed, while the total computational workload, NFE,
reflects the parallel execution and is calculated as Iters ˆ p, where p is the parallel window size.

5.1 RESULTS ON STABLE DIFFUSION 3

We first evaluate ParaFlow on Stable Diffusion 3, generating 1024 ˆ 1024 images from 10,000
random prompts.

Performance across different step counts. Table 1 compares the results of the vanilla Euler
solver and Euler + ParaFlow under different numbers of sampling steps. Our method demonstrates
a significant reduction in latency by parallelizing the computation. For example, in the 100-step set-
ting, ParaFlow reduces the number of sequential iterations from 100 to just 26.47, translating into a
3.3ˆ reduction in wall clock time (from 18.22 to 5.55 s), while incurring only a marginal increase in
FID (50.75 to 51.62) and maintaining an identical CLIP score.The corresponding qualitative results
are shown in Figure 1, further confirming the visual fidelity of our method.

This highlights the core trade-off of ParaFlow: we exchange a higher total computational cost (NFE
from 100.00 to 211.78) for a substantial decrease in generation latency. This advantage holds even at
fewer sampling steps, where ParaFlow delivers a 1.4ˆ speedup in the 25-step setting, underscoring
its robustness.

Effect of tolerance. To further investigate the trade-off between speed and fidelity, we vary
ParaFlow’s tolerance parameter at 25 total steps (Table 2). Increasing the tolerance (e.g., 0.01)
reduces the average number of iterations to 12.16, resulting in a 1.7ˆ acceleration, at the cost of
a modest increase in FID (55.59). Conversely, employing a stricter tolerance (e.g., 0.005) yields a
FID of 54.00, closely aligning with the baseline Euler method (53.34), while still achieving a 1.4ˆ

speedup. This tunable parameter enables practitioners to adapt ParaFlow to task-specific require-
ments, providing a controllable trade-off between sample quality and inference efficiency. Repre-
sentative visual comparisons are provided in Figure 2, which clearly illustrate the perceptual impact
of different tolerance settings.

5
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(a) iter = 0 (b) iter = 4 (c) iter = 8 (d) iter = 12 (e) iter = 16 (f) iter = 20

Figure 1: All images are generated by the stable-diffusion-3-medium model with 50 sampling
steps, using the prompt “Create a dreamlike landscape featuring rolling hills, shimmering water-
falls, and towering mountains made entirely of crystal and gemstones that refract light into rain-
bows.” at resolution 1024ˆ 1024. The top row corresponds to the Euler method, while the bottom
row corresponds to our proposed Euler + ParaFlow method (tolerance “ 0.005).

Method Tolerance
Stable Diffusion 3

ItersÓ NFEÓ CLIPÒ FIDÓ Time (s)Ó SpeedupÒ

Euler 0 25.00 25.00 32.31 53.34 5.17 1.0ˆ

Euler + ParaFlow
0.01 12.16 97.32 32.31 55.59 3.08 1.7ˆ

0.007 13.96 111.72 32.31 54.63 3.38 1.5ˆ

0.005 16.02 128.12 32.32 54.00 3.73 1.4ˆ

Table 2: Quantitative comparisons on Stable Diffusion 3 with 25 sampling steps over 10, 000 random
samples at 1024 ˆ 1024. The best results are highlighted in bold. “Ò” (resp. “Ó”) means the larger
(resp. smaller), the better.

(a) standard (b) tolerance = 0.005 (c) tolerance = 0.007 (d) tolerance = 0.01

Figure 2: The above images show results from the stable-diffusion-3-medium model at resolution
1024ˆ1024 with 25 sampling steps. The prompt used is “Abandoned church in night”. The leftmost
image corresponds to the Euler method, while the other three images correspond to our proposed
Euler + ParaFlow method with parallel window size “ 8 under different tolerance values (0.005,
0.007, 0.01).

5.2 RESULTS ON FLUX

We further validate ParaFlow on the Flux model, examining its performance across various sampling
steps, resolutions, and window sizes.

6
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Steps Method
Flux Model

ItersÓ NFEÓ CLIPÒ FIDÓ Time (s)Ó SpeedupÒ

100
Euler 100.00 100.00 32.31 55.62 87.94 1.0ˆ

Euler + ParaFlow 23.49 187.95 32.40 55.28 22.16 4.0ˆ

75
Euler 75.00 75.00 32.36 55.25 66.15 1.0ˆ

Euler + ParaFlow 19.32 154.54 32.42 55.35 18.38 3.6ˆ

50
Euler 50.00 50.00 32.38 54.89 44.38 1.0ˆ

Euler + ParaFlow 15.11 120.86 32.45 55.84 14.57 3.0ˆ

25
Euler 25.00 25.00 32.40 55.23 22.60 1.0ˆ

Euler + ParaFlow 12.79 102.33 32.47 55.88 12.42 1.8ˆ

Table 3: Quantitative comparisons of different methods on Flux over 10, 000 random samples at
1024 ˆ 1024. The visual comparisons are shown in the Appendix. The best results in each step are
highlighted in bold. “Ò” (resp. “Ó”) means the larger (resp. smaller), the better. Note that Euler +
ParaFlow is evaluated with tolerance 0.01.

(a) iter = 0 (b) iter = 3 (c) iter = 6 (d) iter = 9 (e) iter = 12 (f) iter = 14

Figure 3: All images are generated by the FLUX.1-dev model with 50 sampling steps, using the
prompt “A peaceful mountain village surrounded by rolling hills and a sparkling lake in the fore-
ground, with fishermen casting their lines into the calm waters.” at resolution 1024ˆ1024. The top
row corresponds to the Euler method, while the bottom row corresponds to our proposed Euler +
ParaFlow method (parallel window size “ 8, tolerance “ 0.01).

Performance across different steps. As shown in Table 3, ParaFlow delivers even greater ac-
celeration on Flux. At 100 steps, it reduces the required iterations to 23.49, yielding a 4.0ˆ

speedup (87.94 vs. 22.16 s) while slightly improving the FID score. The acceleration remains con-
sistent across step counts, reaching 1.8ˆ even at 25 steps, confirming ParaFlow’s effectiveness as
a general-purpose accelerator. Figure 3 further corroborates these findings with qualitative exam-
ples, highlighting that the perceptual quality is well preserved despite the substantial reduction in
computation.

Effect of resolution. Table 4 demonstrates ParaFlow’s scalability across different image resolu-
tions with a 25-step schedule. Our method delivers consistent speedups: 2.3ˆ at 512ˆ 512, 1.8ˆ at
1024ˆ1024, and 1.7ˆ at 2048ˆ2048. Crucially, the impact on FID and CLIP scores remains min-
imal across all resolutions, proving that ParaFlow’s benefits generalize effectively to both low- and
high-resolution synthesis. Complementary visual results are provided in Figure 4, which illustrate
that image fidelity is preserved across scales while the generation time is substantially reduced.

7
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Resolution Method
Flux Model

ItersÓ NFEÓ CLIPÒ FIDÓ Time (s)Ó SpeedupÒ

512ˆ512
Euler 25.00 25.00 32.19 52.49 11.31 1.0ˆ

Euler + ParaFlow 13.24 105.90 32.23 52.59 4.81 2.3ˆ

1024ˆ1024
Euler 25.00 25.00 32.40 55.23 22.60 1.0ˆ

Euler + ParaFlow 12.79 102.33 32.47 55.88 12.42 1.8ˆ

2048ˆ2048
Euler 25.00 25.00 31.34 55.98 109.55 1.0ˆ

Euler + ParaFlow 14.30 114.37 31.31 56.46 65.86 1.7ˆ

Table 4: Quantitative comparisons of Euler and Euler + ParaFlow on the Flux model over 10, 000
random samples at 25 sampling steps. The best results in each resolution are highlighted in bold for
Iters, Time, and Speedup only. “Ò” (resp. “Ó”) means the larger (resp. smaller), the better. Note that
Euler + ParaFlow is evaluated with tolerance 0.01 for 512 ˆ 512 and 1024 ˆ 1024, and 0.0028 for
2048 ˆ 2048.

(a) 512 ˆ 512 (b) 1024 ˆ 1024 (c) 2048 ˆ 2048

Figure 4: All images are generated by the FLUX.1-dev model with 25 sampling steps. The prompts
used are: “Skier gliding over fresh powder” at resolution 512 ˆ 512, “A photographer focusing
on the subject of a portrait, using natural light and composition to capture the perfect shot.” at
resolution 1024 ˆ 1024, and “A charming farmhouse exterior with a white picket fence, a covered
porch, and a garden full of colorful flowers and herbs.” at resolution 2048 ˆ 2048. In each group,
the left image corresponds to the Euler method, while the right image corresponds to our proposed
Euler + ParaFlow method (parallel window size “ 8, tolerance “ 0.01, 0.01, and 0.0028 for the
three resolutions, respectively).

Effect of window size (p). We further analyze the influence of window size p on ParaFlow, using
a 50-step schedule at 512 ˆ 512 resolution (Table 5). The results reveal a clear trade-off: a smaller
window size leads to a lower NFE and faster wall-clock time, at the cost of slightly more iterations.
The window size of p “ 8 provides the best balance, achieving a 4.3ˆ speedup with almost identical
image quality to the standard Euler solver. This flexibility allows practitioners to optimize ParaFlow
for their specific hardware configurations. Figure 5 visually demonstrates this effect, showing that
increasing the window size preserves fidelity while offering varying levels of acceleration.

5.3 ADDITIONAL QUALITATIVE EVALUATION

We also provide qualitative results in Appendix D, illustrating the images generated by ParaFlow on
both Stable Diffusion 3 and Flux. The samples demonstrate that ParaFlow preserves high percep-
tual quality and semantic alignment while significantly reducing sampling time. Together with the
quantitative analyses, these results confirm ParaFlow as a general and effective solution for fast and
high-fidelity diffusion sampling.

6 LIMITATION AND DISCUSSION

While ParaFlow achieves significant speedups, its effectiveness is predicated on the availability of
parallel computing resources. The fundamental trade-off is exchanging increased computational
throughput (evaluating p steps in parallel) for reduced latency. This approach also increases the

8
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Method Window Size
Flux Model

ItersÓ NFEÓ CLIPÒ FIDÓ Time (s)Ó SpeedupÒ

Euler 1 50.00 50.00 32.13 52.66 23.80 1.0ˆ

Euler + ParaFlow

32 14.76 472.44 32.17 52.64 15.12 1.6ˆ

24 14.75 354.02 32.17 52.64 12.21 1.9ˆ

16 14.83 237.27 32.17 52.66 9.18 2.6ˆ

8 15.44 123.51 32.16 52.58 5.58 4.3ˆ

Table 5: Quantitative comparisons of different window sizes for the FLUX model over 10, 000
random samples at 512 ˆ 512 with 50 sampling steps. The visual comparisons are shown in the
Appendix. The best results are highlighted in bold. “Ò” (resp. “Ó”) means the larger (resp. smaller),
the better. Note that Euler + ParaFlow is evaluated with tolerance 0.01.

(a) standard (b) size = 8 (c) size = 16 (d) size = 24 (e) size = 32

Figure 5: The above images show results from the FLUX.1-dev model at resolution 512ˆ 512 with
25 sampling steps. The prompt used is “Library with lots of books on the floor”. The leftmost image
corresponds to the Euler method, while the other four images correspond to our proposed Euler +
ParaFlow method under different parallel window sizes (8, 16, 24, 32) with tolerance fixed at 0.01.

memory footprint, since intermediate states within the parallel window must be stored. Our current
implementation is not fully system-level optimized; techniques like kernel fusion and optimized
communication collectives could further reduce overhead and amplify the speedup. Looking for-
ward, we anticipate that ParaFlow’s efficiency will scale with hardware advancements, particularly
with faster inter-GPU communication and larger on-chip memory. This positions parallelized sam-
pling as a promising direction for future large-scale generative models.

7 CONCLUSION

This paper introduces ParaFlow, a novel framework that reimagines the sampling process for Flow
Matching models. By reformulating the inherently autoregressive ODE solving process as a system
of triangular nonlinear equations, ParaFlow enables full step-level parallelism, allowing multiple
sampling steps to be computed simultaneously. Our theoretical analysis confirms that this method
converges to the exact trajectory of a standard sequential sampler. Empirically, on state-of-the-art
models like Stable Diffusion 3 and Flux, ParaFlow delivers wall-clock speedups of up to 4.3ˆ with
negligible impact on generation quality. This work opens a new avenue for accelerating genera-
tive model inference, complementing existing methods and paving the way for more efficient and
interactive creative applications.

9
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ETHICS & REPRODUCIBILITY STATEMENTS

Our work focuses on a fundamental algorithmic improvement for sampling from generative models
and does not introduce new ethical concerns beyond those already associated with large-scale text-
to-image models. The models used in our experiments (Stable Diffusion 3, Flux) are developed
by third parties, and we use them as is. Our method could be used to accelerate the generation of
harmful content, but it does not inherently make such generation easier or more likely than with
standard samplers. We believe the primary positive impact is making high-fidelity generative AI
more accessible for research and creative applications by lowering the inference time barrier. For
reproducibility, we have detailed our methodology, algorithm, and experimental setup in the paper.
We will release our source code, built upon standard open-source libraries, upon publication to allow
for full verification of our results.
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A USE OF LLM

During the preparation of this work, we used Large Language Models (LLMs) to assist with the
writing process. The primary uses included polishing and improving the fluency of the text, gener-
ating preliminary drafts of proofs, and assisting in the creation and formatting of tables. After using
these tools, the author(s) reviewed and edited the content extensively. We take full responsibility
for the entire content of this publication, including the ideas, proofs, and presentations ultimately
contained in the final manuscript.

B PROOF OF PROPOSITION 1

We first show that the triangular nonlinear equation (TNE) system in Eq. (4) has a unique root.
Suppose there exist two distinct solutions tA0, ¨ ¨ ¨ , ANu and tB0, ¨ ¨ ¨ , BNu. By construction, for
any i P t1, . . . , Nu these solutions satisfy:

"

Ai “ Fi´1pA0, ¨ ¨ ¨ , Ai´1q

Bi “ Fi´1pB0, ¨ ¨ ¨ , Bi´1q.
(7)

By induction, assume Aj “ Bj for all 0 ď j ď i ´ 1. Then,
Ai “ Fi´1pA0, ¨ ¨ ¨ , Ai´1q “ Fi´1pB0, ¨ ¨ ¨ , Bi´1q “ Bi, (8)

which implies Ai “ Bi. Therefore, all components of the two solutions must coincide, and the root
is unique.

Next, we show that this unique root coincides with the autoregressive trajectory. From Eq. (3), the
autoregressive update satisfies

xti “ xt0 `

i´1
ÿ

j“0

hjvpxtj , tj , θq. (9)

Meanwhile, the definition of Fi´1 in Eq. (5) gives

x̂ti “ Fi´1px̂t0 , ¨ ¨ ¨ , x̂ti´1
q “ x̂t0 `

i´1
ÿ

j“0

hjvpx̂tj , tj , θq. (10)

By induction on i, since x̂t0 “ xt0 , it follows that x̂ti “ xti for all i P t0, . . . , Nu. Thus, the TNE
system admits a unique solution identical to the autoregressive trajectory.

C PROOF OF PROPOSITION 2

We analyze the fixed-point iteration defined in Eq. (6):

x̂
pk`1q

t0 “ xt0 , x̂
pk`1q

ti “ Fi´1px̂
pkq

t0 , ¨ ¨ ¨ , x̂
pkq

ti´1
q, i P t1, . . . , Nu. (11)

We prove by induction that after k iterations, x̂pkq

tj “ xtj for all j ď k.

Base case (k “ 1). By definition, x̂p1q

t0 “ xt0 . Moreover,

x̂
p1q

t1 “ F0px̂
p0q

t0 q “ F0pxt0q “ xt1 . (12)
Thus, indices 0 and 1 are exact after the first iteration.

Inductive step. Suppose x̂
pkq

tj “ xtj for all j ď k. At the pk ` 1q-th iteration,

x̂
pk`1q

tk`1
“ Fkpx̂

pkq

t0 , ¨ ¨ ¨ , x̂
pkq

tk
q “ Fkpxt0 , ¨ ¨ ¨ , xtkq “ xtk`1

, (13)

Hence, the pk ` 1q-th variable becomes exact, while all previously correct variables remain un-
changed, since their updates depend only on values already exact.

Conclusion. After N iterations, x̂pNq

tj “ xtj for all j “ 0, . . . , N , establishing exact convergence in
at most N steps.

D ADDITIONAL QUALITATIVE RESULTS
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(a) A peaceful river surrounded by tall trees and lush greenery on both sides. (b) The glowing ember
of a dying fire, surrounded by the charred remains of last night’s logs and a few wispy strands of
smoke curling upwards. (c) Women in swimwear performing synchronized swimming routine. (d)
A stunning mountain range at sunset, with snow-capped peaks fading into a brilliant orange and
pink sky that stretches endlessly in every direction.

(e) Frozen lake with frosty trees reflected in the water (f) A stunning portrait of a wise old wood-
worker standing in front of a wooden workbench, surrounded by tools and half-finished projects. (g)
LED-lit cityscape at night (h) Old, creepy carnival at midnight

(i) Envision a serene coastal scene featuring a rustic lighthouse situated among towering sand dunes
and vast expanses of sandy beach, as the sun rises over the horizon. (j) An intricately carved Ice-
landic turf roofed cabin standing proudly amidst a windswept landscape of black sand beaches and
jagged rock formations. (k) Show a dramatic split-second moment of a thunderstorm unleashing its
fury on a deserted highway, with lightning flashing across the darkening sky and debris scattered ev-
erywhere. (l) Depict Captain America standing on a rooftop, looking out over a cityscape at sunset,
with his eyes narrowed in focus as he surveys his surroundings.

(m) A pod of dolphins swimming through coral reef (n) Desert landscape under stars (o) A mas-
sive thunderstorm unfolding over the Great Sandy Desert, with towering cumulus clouds stretching
across the sky. (p) A vibrant pomegranate fruit sitting alone on a rustic wooden table, surrounded
by lush greenery and autumn leaves.

Figure 6: Qualitative results generated by Euler + ParaFlow with different prompts on the FLUX.1-
dev and stable-diffusion-3-medium models at a resolution of 1024 ˆ 1024.
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