
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAST SALIENT FACTOR CONCENTRATION (FSFC) RE-
CURRENT NEURAL NETWORK FOR TEXT CLASSIFICA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Models based on Recurrent Neural Networks (RNNs) have been widely employed
for text classification tasks. Traditional RNNs primarily emphasize long-term
memory capabilities. However, this approach does not fully align with human
cognitive learning processes, particularly in the context of classification tasks.
The human brain typically extracts essential information relevant to the classi-
fication categories, disregards irrelevant details, and compresses the input to ac-
celerate decision-making. Inspired by this, we propose a novel architecture, the
Fast Salient Factor Concentration (FSFC) RNN, specifically designed for classi-
fication tasks. FSFC dynamically clusters and compresses semantic information
by leveraging the short-term memory capabilities of recurrent neural networks.
Experimental results demonstrate that FSFC achieves performance comparable to
existing RNNs, while significantly improving training efficiency in classification
tasks. Based on the YelpReviewFull dataset, FSFC improves accuracy by 1.37%
over Long Short-Term Memory (LSTM), while reducing training time by 86%.
Additionally, we propose a new evaluation metric, E-score, which integrates both
accuracy and time efficiency to comprehensively assess the overall performance
of each network.

1 INTRODUCTION

Text classification is an important and fundamental problem in the field of natural language process-
ing (NLP) (Du et al., 2020; Joulin et al., 2016; Magalhães et al., 2023; Wang et al., 2023b), with
wide applications such as spam filtering, sentiment analysis, and news categorization (Wang et al.,
2018; Yao et al., 2019; Zeng et al., 2018). With the advancement of deep learning technologies, nu-
merous deep learning models have been introduced into text classification tasks. Recurrent Neural
Networks (RNNs), especially Long Short-Term Memory networks (LSTM) (Hochreiter & Schmid-
huber, 1997) and Gated Recurrent Units (GRU) (Cho, 2014), have garnered significant attention in
the field of text classification (Liu & Guo, 2019; Luan & Lin, 2019).

However, in classification tasks, the long-term memory mechanisms of traditional RNNs do not
fully align with human cognitive learning processes. When processing long texts or audio, humans
typically rely on short-term memory, focusing on task-relevant key information while ignoring ir-
relevant content. Through selective attention mechanisms, working memory prioritizes important
information and dynamically adjusts the focus and granularity of information processing (Hu et al.,
2024; Jeanneret et al., 2023). This ability to compress and organize information allows humans to
make more efficient decisions in complex tasks (Hu et al., 2024).

Inspired by cognitive mechanisms, we propose a novel RNN architecture specifically designed for
classification tasks, called Fast Salient Factor Concentration Recurrent Neural Network (FSFC).
Unlike traditional RNNs that predominantly rely on long-term memory (Duarte & Berton, 2023; Lu
et al., 2023; Soni et al., 2022), FSFC fully exploits the short-term memory capabilities of RNNs
while simplifying the network by removing complex gating mechanisms, leading to a significant
improvement in computational efficiency. Moreover, FSFC enhances the processing of crucial in-
formation by employing dynamic clustering and semantic compression techniques. Experimental
results indicate that FSFC achieves performance on par with existing RNN models, while consid-
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erably reducing training time in classification tasks. The primary contributions of this work are as
follows:

1. We propose a novel RNN architecture, FSFC (Fast Salient Factor Concentration), devel-
oped as an alternative to traditional RNN components. By integrating a semantic segmen-
tation and clustering mechanism, FSFC effectively compresses textual information while
utilizing the short-term memory capabilities of RNNs, leading to a significant enhancement
in the efficiency of classification tasks.

2. We introduce a cognitive function for FSFC, inspired by the human learning process that
transitions from detailed analysis to simplification, allowing for dynamic adjustment of the
granularity of semantic clustering.

3. We design the E-score metric, which integrates classification accuracy and train time, pro-
viding a comprehensive evaluation of model performance.

2 RELATED WORK

2.1 TRADITIONAL TEXT CLASSIFICATION

Traditional research in text classification primarily focuses on feature engineering and classification
algorithms (Yao et al., 2019). In early studies, conventional machine learning methods, such as
Support Vector Machines (SVM) (Zhang et al., 2010) and logistic regression (Genkin et al., 2007),
relied on sparse representation techniques, including the Bag of Words (BoW) model and TF-IDF.
These methods classify text by converting it into word frequency or weighted frequency matrices.
However, sparse representations fail to capture the contextual relationships between words, leading
to significant limitations when handling complex texts (Wang et al., 2024).

To address the limitations of sparse representations, (Mikolov, 2013) introduced the Word2Vec
model, which utilizes a Skip-gram architecture to embed words into a high-dimensional vector space
via neural networks, thereby capturing local contextual information within the text. Each word’s em-
bedding vector carries rich semantic information, and the cosine distance between these vectors can
effectively measure semantic similarity. Building on the Word2Vec model, researchers have pro-
posed various improved embedding models, such as GloVe (Pennington et al., 2014), Doc2Vec (Le
& Mikolov, 2014), and fastText (Xiong et al., 2021). These models enhance the understanding of
textual semantics through more complex structured representations.

Unlike traditional word embedding models, FSFC employs a dynamic adjustment approach in
its embedding layer. Traditional models are static and typically require pre-constructed corpora,
demonstrating poor adaptability to new texts. In contrast, FSFC embedding layer continuously
adjusts embedding vectors during training based on the loss function, analogous to how the hu-
man brain refines its understanding of new information. Dynamic embedding method enhances the
model’s adaptability and reduces its reliance on pre-trained corpora.

2.2 SEQUENTIAL MODELS FOR TEXT CLASSIFICATION

Neural networks based on GRU and LSTM architectures are mainly applied to learn multiple rich-
semantic sequential information in the relationships between words and their belonged documents
(Pham et al., 2022; Liu et al., 2016). (Kumar & S, 2022) proposed a hybrid model that combines
Convolutional Neural Networks (CNN) (LeCun et al., 1989) with Long Short-Term Memory net-
works (LSTM) to improve short text classification performance. CNNs extract spatial features from
the text, while LSTMs handle temporal sequence features, effectively capturing both local informa-
tion and sequential dependencies in short texts. (Du et al., 2020) introduced an efficient recurrent
neural network architecture based on Broad Learning System (BLS) (Chen & Liu, 2017), known as
R-BLS and G-BLS, which are similar to LSTM architectures. By incorporating BLS, this architec-
ture significantly accelerates training speed and mitigates common issues such as gradient vanishing
and explosion typically associated with RNNs and LSTMs. R-BLS addresses the limitations of
traditional BLS in processing sequential information and word importance, while G-BLS further
enhances information processing capabilities by introducing LSTM-like forget gates, enabling the
network to retain relevant information while discarding irrelevant data. (Behzadidoost et al., 2024)
proposed a stacked BILSTM-SVM model that integrates Bidirectional Long Short-Term Memory
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networks (BILSTM) (Schuster & Paliwal, 1997) with Support Vector Machines (SVM). This model
merges the two using a stacked approach to enhance text classification performance. The bidirec-
tional LSTM captures contextual information from both forward and backward directions, extracting
deep semantic features (Lu et al., 2023), while the SVM utilizes the high-dimensional semantic fea-
tures extracted by BILSTM for final classification.

Although the impressive performance of LSTM and GRU based models in text classification tasks
(Nithya et al., 2024), they still exhibit limitations when handling long texts. The gating mechanisms
of LSTM and GRU are primarily designed to capture long-term dependencies (Lu & Xu, 2023;
Fathnejat et al., 2023; Jiang et al., 2023). However, in text classification tasks, models often need
to focus only on key information relevant to the categories rather than all details within the text.
This reliance on long-term memory may result in models capturing a significant amount of irrel-
evant information during lengthy text processing, thus reducing training efficiency and increasing
computational overhead. Furthermore, these architectures still struggle to completely mitigate the
prevalent issues of gradient vanishing or explosion found in RNNs (Reusens et al., 2024). These
challenges suggest that relying solely on long-term memory RNN architectures may not be entirely
suitable for text classification tasks.

3 METHODOLOGY

To address the inefficiency caused by the processing of redundant information in traditional RNNs
for text classification tasks, we propose the Fast Salient Factor Concentration Recurrent Neural Net-
work (FSFC). This model focuses on short-term memory and is capable of dynamically aggregating
and compressing semantic information from the text, thereby reducing the computational load and
accelerating the classification process. FSFC is inspired by cognitive mechanisms in the human
brain, where essential task-related features are swiftly extracted in complex informational environ-
ments, while less relevant details are disregarded (Fonollosa et al., 2015).

FSFC consists of four stages: text mapping, semantic segmentation, clustering and compression,
and category classification. Our experiments demonstrate that FSFC not only achieves accuracy
comparable to traditional RNNs(LSTM, GRU) but also significantly improves training efficiency in
text classification tasks. Figure 1 illustrates the operational mechanism of FSFC.

Figure 1: Operational Mechanism of FSFC.

3.1 TEXT MAPPING AND SEMANTIC SEGMENTATION

The input text first passes through the embedding layer, which randomly maps each word into a high-
dimensional real-valued vector space (Shen et al., 2018; Defferrard et al., 2016). The vector space is
dynamic, and the embedding layer adjusts the word embeddings based on the gradients of the loss
function, thereby learning word representations that are better suited to the current task. Essentially,
the embedding layer is a weight matrix, where each row corresponds to the vector representation of
a word in the vocabulary. During training, the weights are updated according to the gradient of the
loss function.
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Assuming the size of the vocabulary is V and the embedding dimension is D, the embedding matrix
E = {e1, e2, . . . , eV }T ∈ RV×D, where ei represents the embedding vector of the i-th word in
the vocabulary. Each embedding vector has a dimension of D. For an input sequence of words
{w1, w2, . . . , wT }, each word wt is mapped to an index it in the vocabulary. The embedding layer
retrieves the corresponding embedding vector from the weight matrix as:

xt = Eit = eit (1)

where xt represents the embedding vector of the t-th word. After the completion of the model’s
forward propagation and the calculation of the loss function, the embedding matrix is updated by
backpropagation using equation 2:

Eit ← Eit − η
∂L

∂Eit

(2)

by combining equation 1 and equation 2, we can further express the update as:

Eit ← Eit − η
∂L

∂xt
(3)

The word embedding vectors contain rich semantic information about the respective words, and the
cosine distance between vectors can capture the semantic divergence between words. Therefore,
semantic segmentation problems can be addressed by computing the cosine similarity between the
embedding vectors of each word using equation 4:

Cosine Similarity =
A ·B
∥A∥∥B∥

(4)

A · B denotes the dot product of vectors A and B, while ∥A∥ and ∥B∥ represent their Euclidean
norms. The cosine similarity falls within the range Cosine Similarity ∈ [−1, 1]. A high cosine
similarity between word embedding vectors indicates a strong semantic similarity or association
between words, whereas a low cosine similarity suggests a significant semantic difference or lack of
relevance. It is important to note that directly calculating the cosine similarity between every pair of
words using equation 4 involves a computationally expensive operation. Assuming the embedding
matrix E ∈ Rn×m, where n is the number of words and m is the embedding dimension of each
word, the time complexity of calculating cosine similarity for all word pairs is O(n2m). To mitigate
this, we adopt a computational shortcut by sing equation 5 to compute a reference vector Rf , which
is computed by averaging the embedding vectors of all the words in the sequence. This reduces the
number of calculations required.

Rf =
1

n

n∑
i=1

Ei (5)

Rf can be considered as the global semantic center of the entire text or corpus. We compute the
cosine similarity between each word’s embedding vector and the reference vector Rf . Through this
approach, the time complexity is reduced to O(nm), allowing us to efficiently assess the alignment
of each word with the overall semantic context. This method not only lowers the computational
complexity but also preserves the global semantic information.

3.2 CLUSTERING COMPRESSION AND CATEGORY CLASSIFICATION

With the reference vector Rf , we can quickly obtain a cosine similarity matrix S ∈ Rb×v , where b
represents the batch size and v represents the sequence length. The core of the clustering operation
is achieved through a masking mechanism. Based on predefined thresholds, the cosine similarity
is segmented into intervals, and the corresponding mask matrix is generated from S. Through the
weighted operation of the mask matrix, we can extract the embedding vectors that contain relevant
semantic information.

For the cosine similarity, we assume the following: for an n-class classification task, the similarity
can be divided into at most n + 1 segments. This means that for an n-class problem, the content
can be segmented into n + 1 parts, corresponding to the content relevant to each of the n classes
and the content unrelated to these n classes. In human learning, the process of classification often
begins with detailed distinctions and gradually simplifies over time. Initially, due to insufficient
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understanding of the classes, humans tend to divide the content into more detailed categories. How-
ever, with accumulated experience, the cognitive system evolves to adopt a more efficient strategy,
reducing the number of classes and retaining only the most important distinctions (Žauhar et al.,
2016; Constantinidis et al., 2023). We believe that under extreme conditions, complex tasks can
only be simplified to binary classification decisions at most. This simplification mechanism aligns
with Bayesian classification theory and the entropy minimization principle in information theory.
It is important to note that by ”extreme conditions,” we mean that not all multidimensional classi-
fication problems can be fully reduced to binary classification. In tasks involving highly complex
features, the simplification process may be constrained. And, (Wang et al., 2023a) demonstrated that
for non-linear RNNs to approximate stable non-linear sequential relationships, the memory structure
must exhibit exponential decay. Based on the above theories, we designed a cognitive function for
FSFC to dynamically adjust the granularity of classification. The cognitive function is expressed as
shown in equation 6:

Cn = C0 − (C0 − Cf )× (1− e−kn) (6)

Where Cn represents the complexity at the n-th training epoch, C0 is the initial complexity, and
Cf is the final complexity. n denotes the current training epoch, and k is the cognitive coefficient,
which controls the rate at which cognitive complexity decreases. The introduction of this cognitive
function enhances the model generalization ability.

Cosine similarity matrix not only helps the model perform effective semantic segmentation but can
also be used to generate a mask matrix for clustering. To improve computational efficiency, we
propose a method for generating the mask matrix by expanding the data dimensions and calculating
the mask matrix in parallel. Specifically, based on predefined thresholds, the embedding vectors
are divided into different similarity intervals, each corresponding to a mask matrix. All batches
of mask matrices can be generated in a single computation. The generated mask matrix has the
structure (c, b, v, 1), where c denotes the number of classes, b denotes the batch size, and v denotes
the sequence length. Each mask matrix corresponds to a class and marks the words that belong
to that class. By generating the mask matrices in batches, we can achieve clustering for multiple
classes in a single operation.

Let X ∈ Rb×v×d represent the input embedding matrix of the text, and let Mc ∈ {0, 1}b×v represent
the mask matrix for class c, where C is the total number of classes. Using equation 7, we obtain the
compressed matrix Z = {Z1, Z2, . . . , Zc} ∈ Rb×C×d:

Zc =

v∑
i=1

X
(c)
i =

v∑
i=1

M (i)
c ⊙X(i) (7)

where Zc ∈ Rb×d is the weighted representation for class c, representing the weighted features for
each batch. The compressed matrix Z is then fed into the RNN for classification. Since the input
text has been clustered and compressed, the sequence length of Z is significantly reduced compared
to the original input matrix, effectively alleviating the problem of gradient explosion or vanishing.

4 EXPERIMENTS

4.1 E-SCORE

To provide a comprehensive evaluation of the model’s overall performance, we propose a new engi-
neering evaluation metric called E-score. The E-score integrates both the model’s accuracy and the
time required for training.

Assuming there are n models, with corresponding accuracy values A = {a1, a2, . . . , an} and train-
ing times T = {t1, t2, . . . , tn}, we first normalize the accuracy and time to eliminate the impact of
differences in magnitude. The normalization of accuracy is given by equation 8:

∆A =
A

min(A)
(8)

where ∆A = {∆a1 ,∆a2 , . . . ,∆an} represents the relative improvement in accuracy of each model
compared to the model with the lowest accuracy. This allows us to evaluate the model’s performance
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from the perspective of accuracy. For time efficiency, the normalization is conducted using equation
9:

∆T =
T

max(T )
(9)

where ∆T = {∆t1 ,∆t2 , . . . ,∆tn} reflects the relative training efficiency of each model compared
to the model with the longest training time. ∆A and ∆T indicate the time required for each model to
achieve its respective improvement in accuracy. By taking ∆T as the horizontal axis and ∆A as the
vertical axis, each model corresponding (∆t,∆a) can be plotted on a two-dimensional coordinate
plane.

The angle between the vector (∆t,∆a) and the x-axis is denoted as θ = {θ1, θ2, . . . , θn}, where
θ ∈

(
0, π

2

)
. When the training time is constant, When the training time is constant, θ can be

used to balance the trade-off between high and low accuracy. If the accuracy is the same, θ can
balance the time efficiency of the models. However, there are certain limitations to the use of θ. For
example,when the vectors corresponding to two models are collinear, if the score is based solely on
the value of θ, a model with a short training time but lower accuracy could end up with the same
score as a model with a long training time and higher accuracy, which is unreasonable. In practice,
for any model, priority should always be given to accuracy. Only after ensuring that the minimum
accuracy threshold is met should time efficiency be considered.

Therefore, the evaluation metric should primarily reflect the importance of accuracy. To achieve this,
we transform the problem into polar coordinates, where θ is the polar angle and ∆a is the radius.
The E-score is then defined as the area of the sector formed by θ and the radius ∆a, as shown in
equation 10:

E-score =

{
0, if A < Athreshold
1
2θ∆

2
a, if A ≥ Athreshold

(10)

4.2 TEST PERFORMANCE ON MULTIPLE DATASETS

In this section, we evaluate the performance of FSFC using several different classification datasets
and compare it against LSTM and GRU. All models were implemented using the PyTorch frame-
work. Specifically, the tests for the AG NEWS (Zhang et al., 2015), DBpedia (Auer et al., 2007),
IMDB (Maas et al., 2011), and YahooAnswers (Zhang et al., 2015) datasets were conducted on an
NVIDIA RTX 4090, while the tests for the YelpReviewFull (Zhang et al., 2015) and SogouNews
(Zhang & LeCun, 2015) datasets were conducted on an NVIDIA RTX 3090. The maximum time
step for all datasets was set to 400 to avoid any asynchronous effects on the experimental re-
sults.Table 1 presents the performance of three different models (LSTM, GRU, and FSFC) across
various text classification datasets. The comparison primarily considers accuracy, training time, and
the E-score metric. The results indicate that FSFC significantly improves training efficiency while
maintaining competitive performance.

In terms of training time, FSFC demonstrates a significant advantage, consistently outperforming
both LSTM and GRU with lower training times across all datasets. For instance, on the YelpRe-
viewFull dataset, FSFC average training time per epoch is only 14.51 seconds, whereas LSTM
requires 100.27 seconds, and GRU takes 125.97 seconds, representing efficiency improvements of
86% and 88%, respectively. On other datasets, such as YahooAnswers and IMDB, FSFC also shows
a clear reduction in training time, making it particularly advantageous for large-scale text classifica-
tion tasks.

With respect to accuracy, although FSFC shows slightly lower performance compared to LSTM
and GRU, it outperforms LSTM on the YelpReviewFull dataset, achieving an accuracy of 50.34%
compared to LSTM’s 48.97%. On the AG NEWS and IMDB datasets, FSFC experiences a slight
drop in accuracy but still maintains performance comparable to traditional methods. On the DBpedia
dataset, FSFC’s accuracy is same as both LSTM and GRU.

Regarding E-score metric, FSFC demonstrates remarkable performance in balancing training time
and accuracy. For instance, on the AG NEWS dataset, FSFC achieves an E-score of 0.675, sig-
nificantly higher than LSTM (0.456) and GRU (0.396). This indicates that while FSFC drastically
reduces training time, it is still able to maintain accuracy comparable to or even exceeding traditional
models. Overall, FSFC not only achieves accuracy comparable to LSTM and GRU but also signifi-
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cantly reduces the total training time, making it better suited for scenarios with tight time constraints
or limited computational resources.

Table 1: Comparison of accuracy and training time for FSFC, LSTM, and GRU across different
datasets (batch size = 128, epochs = 100, learning rate = 0.001, time step = 400). Avg Time repre-
sents the average training time per epoch (in seconds), and Total Time represents the total training
time for 100 epochs (in minutes).

Dataset Classes Network Accuracy Avg Time Total Time E-score

AG NEWS 4
LSTM 84.80% 8.29 13.81 0.456
GRU 84.74% 10.48 17.46 0.396
FSFC 84.40% 2.34 3.91 0.675

YahooAnswers 10
LSTM 49.29% 34.32 57.21 0.470
GRU 51.91% 43.00 71.67 0.472
FSFC 48.40% 5.96 9.93 0.717

YelpReviewFull 5
LSTM 48.97% 100.27 167.11 0.449
GRU 52.11% 125.97 209.95 0.462
FSFC 50.34% 14.51 24.18 0.771

DBpedia 14
LSTM 66.21% 13.58 22.64 0.437
GRU 66.21% 16.25 27.08 0.393
FSFC 66.21% 7.40 12.33 0.572

IMDB 2
LSTM 84.77% 41.78 69.63 0.457
GRU 84.99% 50.29 83.82 0.413
FSFC 83.40% 12.98 21.50 0.660

4.3 PARAMETER SENSITIVITY

FSFC network introduces a cognitive coefficient k. To investigate the effect of different values of k
on the accuracy of the FSFC network, we conducted experiments across multiple datasets. Figure 2
shows the impact of different cognitive coefficient values k on the test accuracy of the FSFC network
on four datasets: AG NEWS, YahooAnswers, YelpReviewFull, and IMDB. The figure indicates that
the sensitivity to k varies across different datasets. For example, on the YahooAnswers dataset, ac-
curacy significantly improves as the k value increases, while on the YelpReviewFull dataset, smaller
k values yield better performance. By adjusting the k value, the performance of the FSFC network
can be further optimized.

4.4 EFFECTS OF TIME STEP

Time step is one of the key factors affecting the training efficiency of sequence models. As the
time step increases, the sequence length the network needs to process grows, leading to higher
computational costs. In this section, we focus on investigating the impact of different time steps on
the training time of the FSFC network, and conduct a comparative analysis with traditional LSTM
and GRU networks. We evaluated the training time trends of FSFC, LSTM, and GRU under different
time steps (400, 500, 600, 700, and 800) using the SogouNews dataset. The SogouNews dataset, due
to its longer text length and rich semantic information, provides a better platform for showcasing the
performance differences of various models when handling long sequences. Moreover, the dataset
contains a wide range of categories, which helps to assess the changes in training efficiency of each
model when processing long-text sequences.

As shown in Figure 3, the training time for both LSTM and GRU networks increases significantly
as the time step grows, while the FSFC network’s training time remains nearly constant. The results
clearly demonstrate that, compared to LSTM and GRU, FSFC is able to maintain a very low com-
putational cost even when handling longer time sequences. As the time step increases, the training
time for LSTM and GRU networks almost linearly increases, whereas FSFC’s training time remains
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(a) AG NEWS (b) YahooAnswers

(c) YelpReviewFull (d) IMDB

Figure 2: (a) The impact of the cognitive coefficient k on the performance of the FSFC network
for the AG NEWS dataset. (b) The impact of the cognitive coefficient k on the performance of the
FSFC network for the YahooAnswers dataset. (c) The impact of the cognitive coefficient k on the
performance of the FSFC network for the YelpReviewFull dataset. (d) The impact of the cognitive
coefficient k on the performance of the FSFC network for the IMDB dataset.

Figure 3: The time taken to train FSFC, LSTM, and GRU for 100 epochs under different time steps
on the SogouNews dataset.

relatively stable. Therefore, using the FSFC network can significantly reduce training time, partic-
ularly when processing long-sequence text data. Its efficiency is especially prominent, effectively
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overcoming the time bottleneck faced by traditional LSTM and GRU networks when handling long
sequences.

5 CONCLUSION AND FUTURE WORK

In this study, we propose a novel recurrent neural network component, FSFC, designed specifically
for text classification tasks, as a potential replacement for existing RNN components. FSFC ef-
fectively reduces sequence length by performing semantic clustering and compression on the text,
which helps mitigate issues such as gradient vanishing or explosion. Unlike traditional recurrent
neural networks, FSFC focuses on leveraging the short-term memory capability of RNNs. Further-
more, to comprehensively evaluate both the accuracy and training time of the network, we introduce
a new evaluation metric, E-score, which combines model accuracy with training time, providing a
more holistic measure of performance. Through the E-score, we are better able to assess the balance
between accuracy and computational efficiency across different networks, particularly in scenarios
where both model precision and time constraints must be considered.

FSFC network demonstrates slightly lower accuracy compared to LSTM and GRU, primarily due to
its omission of positional information between words. In future work, we plan to design a positional
encoder to incorporate word position information during the clustering and compression process,
thereby improving the accuracy of the FSFC network.
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